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Abstract

The universe, a cosmic tapestry of structure and emptiness, houses two contrasting entities that
shape its destiny: halos and voids [Bond and Myers 1996]. This thesis delves into the fascinating
dichotomy between these cosmic counterparts, with a special emphasis on the enigmatic nature
of voids. To gain insight into the large-scale structure of the universe, fully analytical methods
are used to derive the evolutionary paths of both voids and halos. This is done by re-deriving
the implications of the spherical model and using the results to construct the halo excursion
set theory [Gunn and Gott 1972; Press and Schechter 1974; Bardeen et al. 1986; Bond et al.
1991]. Following the work of Sheth and Van de Weygaert 2004, the excursion set formalism is
then equipped with a second barrier to incorporate the effects of voids. This reveals a symmetry
breaking between halos and voids: voids can be squeezed out of existence by surrounding halos,
but no such fate can come upon overdensities [Van de Weygaert and Van Platen 2009]. Using
the approach introduced by Lacey and Cole 1993 for halos, an analogous merger tree algorithm
is developed for voids. This leads to analytical expressions for the merger and absorption rates
for voids of general size, thereby extending the work of Russell 2013. This thesis emphasizes the
profound significance of voids in shaping the cosmic panorama, providing valuable insights into
the cosmic order, and aims to contribute to the frontiers of analytical cosmological exploration.
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Introduction

In the cosmic theater, where stars shine and galaxies dance, a gripping drama unfolds. Titans of
structure rise, battling the primal forces of gravity and feeling the never-ending tug of the ever-
expanding universe, while silent voids patiently await their destiny in the shadows. Harmony
does not last long in the celestial ballroom. Sooner or later, overdense halos combine their forces
in merger events and eradicate any enclosed underdense voids, destroying all evidence of their
existence. This thesis aims to unveil part of this complex interplay, where the clash between
creation and nothingness shapes the destiny of the universe itself.

The study of large-scale structures in the universe has captivated scientists for many centuries.
Galaxies, clusters, and superclusters have been studied for decades and act as cosmic fossils that
preserve information about the universe at the time of their creation [Peebles 1980]. This leads to
new insights into growth mechanisms and dynamics, and helps in constraining the values of var-
ious cosmological parameters [Allen, Evrard, and Mantz 2011; Hoessel, Gunn, and Thuan 1980;
Bahcall and Soneira 1983; Voit 2005]. They offer testing grounds for cosmogonies and help in
unraveling the intriguing theories of dark matter and dark energy, without a doubt the two most
enigmatic components in the universe [Ryden 2017]. Large-scale structures are not positioned at
arbitrary points in the universe: on the megaparsec scale, they form a complex network of sheets,
filaments and clusters, interconnected by vast, seemingly empty pockets [Fabian 1992; Bond and
Myers 1996]. This labyrinthine structure is often dubbed the cosmic web. The cosmic voids are
characterized by their underdensity relative to the average density of the universe, turning them
in a way into mirror images of the cosmic halos. The dynamics of halos and voids, however, are
inherently different.

Halos are effectively gravity wells: the more matter is trapped in a region, to stronger the pull
on closely lying material will be. In the case of a static universe, in which the gravitational
interaction governs the dynamics on the largest scales, this would lead to a positive feedback
loop: all the matter in the universe would concentrate in a small region. This does not necessar-
ily mean that the density at a single point skyrockets to infinity, for the conservation of energy
and angular momentum might forbid this. Instead, a new equilibrium is found that is often
referred to as virtualization [Sparke and Gallagher 2007]. In the case of an expanding universe,
the Hubble expansion should also be taken into account. This leads to the so-called Hubble
flow, which drags matter along and increases the proper distances between objects [Ryden 2017].
These two external factors govern the structure formation of overdensities. In case two such halos
come close together, they might combine their masses in merger or accretion events, a process
reminiscent of two soap bubbles combining into one.
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INTRODUCTION

Figure 1: Growing voids. The six panels shows the time evolution of a growing void, as pre-
dicted by a numerical simulation of a ΛCDM universe. The blue regions represent smoothed
density distributions. The empty, dark regions shown in the panels slowly expand as time
progresses. From left-to-right, top-to-bottom, the panels correspond to the different times
a = 0.05, 0.15, 0.35, 0.55, 0.75 and 1.0. Image courtesy: Erwin Platen.

While halos represent overdensities and fight against the overall Hubble expansion by means of
their gravitational pull, voids are effectively left to their own devices since they lack a grip on the
environment to keep themselves together. In other words, underdense regions tend to expand at
a higher rate than the universal Hubble expansion, inevitably leading to voids blowing up in size
over time [Van de Weygaert and Van Platen 2009]. The effective negative gravity found inside
voids is stronger near the center. Matter close to the center hence experiences an outward push
stronger than matter near the edge, which is why this evolution is sometimes dubbed an inside-
out expansion. This so-called evacuation leads to a certain density profile that determines the
moment at which the inner shells of the void surpass the outer regions, known as shell-crossing.

Two physical processes particularly relevant to the evolution of voids are merging and collapsing
[Van de Weygaert and Van Platen 2009]. Consider the merging of two voids in the cosmic web
that are separated by a filament of overdense matter. For this to happen, the two voids push
on the matter strand in opposing directions, such that the material is pushed into thin filaments
acquiring a velocity component tangential to the void boundaries. While these overdense regions
slowly fade, the voids combine to form a single larger underdensity. The second process is par-
ticular to voids as it has no analog for their overdense siblings: a small-sized void may collapse
when an underdense region is part of a larger overdense structure. When the latter collapses
under the influence of their own gravity, the smaller voids contained in the halo are reeled into
the regions of ever-increasing density. This ultimately leads to a point where the void is shrinking
in size, until there simply no longer is an underdense region: the void has been squeezed out of
existence. Voids are after all relatively empty regions in space that can be filled by matter, while
halos are overdense objects whose content cannot suddenly disappear. In other words, halos
always survive in voids, but the converse is not necessarily true. This dissimilarity will play a
crucial role in the last chapter of this work. Over- and underdensities in the universe might
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INTRODUCTION

seem like simple mirror images at first glance: halos collapse and voids undergo an inside-out
expansion and undergo interactions with the external Hubble flow and with themselves through
merging. However, this symmetry is broken due to the halos being able to eradicate voids found
in overdense regions. The largest voids have little to fear: for them to disappear, they would need
to be enclosed by an even larger overdensity, which might be rare. This collapsing mechanism is
therefore of particular importance for the smallest voids.

Many current and upcoming surveys are designed and optimized to extract constraints on cos-
mological parameters from the overdense regions. Voids, however, play a crucial role in under-
standing the large-scale structure of the universe and fill 95% of the total galaxy distribution
[Kirshner et al. 1981; Geller and Huchra 1989; da et al. 1994]. They form a prominent aspect
in the megaparsec universe, whose evolution needs to be understood to predict the history and
dynamics of the cosmic web itself [Van de Weygaert and Bond 2008]. Due to their unique low-
density landscape, they also form the perfect playground to test theories on diffuse components
such as neutrinos and dark energy, and on modified theories of gravity [Pisani, Massara, and
Spergel 2019]. Studying the spatial distribution of voids, as well as their sizes and density profiles,
provides an unprecedented opportunity to uncover many of the lingering mysteries in astronomy.

The aim of this thesis is to shine a light on the mechanisms by which halos and voids grow,
how their evolution can be modeled mathematically, and what this implies for their statistics.
Throughout this work, the emphasis will be on voids, given their recent increase in popularity
to study cosmological parameters. Chapter 1 lays the foundation for the initial conditions for
structure growth in the universe by means of Gaussian Random Fields [Bardeen et al. 1986; Adler
2009]. The next chapter reviews the theory behind linearized gravity, which is often invoked in
structure formation theory to determine the evolution of complex mass distributions. The third
chapter combines the results of the first two chapters and introduces a key model when analyt-
ically describing halos and voids, known as the Spherical Model. This opens up the possibility
to predict when overdensities collapse to halos and when underdensities turn into cosmic voids.
These three chapters form the key ingredients to analyze the time evolution of the seeds laid out
by the initial density field. Further halo statistics are explored by means of the Press-Schechter
theory and Excursion Set formalism in chapter 4. Chapter 5 concludes this thesis by introducing
the Extended Excursion Set formalism by [Sheth and Van de Weygaert 2004], which is applicable
to voids, and analyzes the differences between over- and underdense regions using the Lacey &
Cole formalism [Lacey and Cole 1993].
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Chapter 1
Gaussian Random Fields

Within the natural sciences, in particular the field of cosmology, understanding how spatial and
angular correlations arise in the context of field fluctuations is a key element to unveiling the
structure of the Universe, and is essential to recognize the interconnectedness of different branches
of physics. The discovery of the Cosmic Microwave Background (CMB) has led to well-known
cosmological inflationary theories [Guth 1981; Linde 1982; Hawking 1982; Starobinsky 1982].
The inflationary epoch is characterized by the rapid expansion of the primordial universe, due
to which its size increased by approximately 60 e-foldings in 10−34 seconds, with the specific
details depending on particular model at hand [Ryden 2017]. This shows the existence of an
intrinsic connection between the physics at the smallest scales, governed by quantum field theo-
ries (QFTs), and that at the largest scales, described by General Relativity (GR), all connected
through the theory of inflation [Liddle and Lyth 2000; Brandenberger 2011]. In other words,
analyzing and understanding the statistics of field fluctuations is, evidently, a fruitful approach
to unveiling the artwork of the Universe.

This chapter is structured as follows. In the first section, the initial conditions for the density
field are explained through the theory of Gaussian Random Fields. The subsequent section
deals with the question of how these statistics are shaped by the so-called correlation function.
After representing the same quantities in Fourier space in the next section, it becomes clear that
Gaussian Random Fields are surprisingly simple mathematical objects. To pave the way for the
halo and void analysis in later chapters, the concepts of filter function and smoothed density
fields are introduced in the last section.

4



1.1. THE PRIMORDIAL DENSITY FIELD CHAPTER 1. GAUSSIAN RANDOM FIELDS

1.1 The Primordial Density Field

In order to describe the fluctuation fields, the natural generalization of the Gaussian distribution
comes into play: Gaussian Random Fields (GRFs) [Bardeen et al. 1986; Adler 2009; Peacock
1999]. In the same way that a normal distribution P (x) might describe the probabilistic nature of
some random variable x, a GRF ϕ(x⃗) contains the statistics of infinitely many random variables
positioned at each point x⃗ in real space1 . Just as in the case of Gaussian distributions, one can
calculate statistical moments such as the mean ϕ or standard deviation σ for GRFs. Any field
can thereby be decomposed into two components:

ϕ(x⃗) = ϕ+ ϕ̃(x⃗), (1.1)

where ϕ̃ represents the fluctuation on top of the mean background value ϕ. There are numerous
examples of scientific niches in which this type of random field is employed, examples ranging
from statistical physics [Rubi and Bedeaux 1988; Cardy 1996], ergodic theory [Katok and Has-
selblatt 1995], computational molecular biology [Shutta et al. 2022] to computer vision [Roth
and Black 2005; Boykov and Funka-Lea 2006].

One of the main actors in this thesis will be the density fluctuation field δ defined by:

δ(r⃗, t) ≡ ρ(r⃗, t)− ρ(t)

ρ(t)
, (1.2)

and is constructed from the primordial density field ρ [Bardeen et al. 1986; Van de Weygaert
2020; Ryden 2017]. A high value of ρ(r⃗) reflects a high concentration of mass at r⃗, while a value
close to zero is indicative of the absence of any matter. The density background value ρ depends
on the cosmological parameters and models used. For instance, in an Einstein-de Sitter (EdS)
universe, the mean density would be the critical density ρc:

ρ = ρc =
3H2

0

8πG
, (1.3)

with H0 the Hubble constant and G Newton’s gravitational constant [Ryden 2017]. In this con-
text, δ(r⃗) can hence be interpreted as the dimensionless fluctuation amplitude or the normalized
density excess or shortage relative to the background of the current cosmology. Note also the
range of δ(r⃗): it is bounded from below by −1, meaning that space is completely free of matter
at position r⃗. Values lower than this threshold make no sense, since this would mean a location
is effectively ’emptier than empty’. On the other end, δ has no upper limit, since there is no
threshold for the maximum matter density at any position in the field.

The primordial density fluctuation field δ is often taken to be a GRF. Before the full mathematical
toolbox for GRFs is assembled, it might be wise to pause and question on what grounds this
statement is justified. First and foremost, in the current models for the inflationary epoch,
blown-up quantum fluctuations act as a seed for the inhomogeneous distribution of matter and
subsequent structure formation [Guth 1981; Peebles 1980]. The Gaussianity of the primordial
density field is thereby directly inherited from the statistics of vacuum fluctuations, which are
often assumed to constitute a GRF [Coles 2014]. A second argument in favour of the density

1 Of course, the field ϕ might also have a temporal dependence. This case will be relevant in later sections and
will be denoted by ϕ(r⃗, t).
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1.2. CORRELATION FUNCTIONS CHAPTER 1. GAUSSIAN RANDOM FIELDS

Figure 1.1: Plots showing a Gaussian Random Field with the two-point correlation function
ξ(|x⃗1 − x⃗2|) = cos (2π |x⃗1 − x⃗2| /ℓ). The parameter ℓ can be interpreted as a correlation length.
GRFs are generated for values of ℓ = 4/5 and 1/5.

field being a GRF arises from the Central Limit Theorem: a variable that can be written as the
linear combination of many independent random variables, all drawn from the same distribution,
tends towards a Gaussian in the limit of large numbers. The cumulative effect of a myriad of
microscopic fluctuations would transform the primordial density field into a GRF [Bardeen et al.
1986; Narayanan and Croft 1998]. Mathematically speaking, a GRF is a relatively simple object
to work with: all of its higher-order moments can be described using the first- and second-order
moments only. This opens up the possibility to perform a statistical analysis fully analytically.

1.2 Correlation Functions

Besides the well-known mean and standard deviation moments of any distribution, GRFs are
characterised by their correlation functions. An N -point equal-time correlation function takes
N random points in the GRF ϕ and returns the averaged value:

Two-point correlation function: ⟨ϕ(x⃗1)ϕ(x⃗2)⟩
Three-point correlation function: ⟨ϕ(x⃗1)ϕ(x⃗2)ϕ(x⃗3)⟩

N -point correlation function: ⟨ϕ(x⃗1)ϕ(x⃗2) . . . ϕ(x⃗N )⟩

This generalizes the concept of the Nth moment of a distribution by allowing x⃗1, x⃗2 . . . x⃗N to be
different vectors. By invoking the Cosmological Principle, we enforce the field δ to be statistically
homogeneous and statistically isotropic [Ryden 2017]. As a direct consequence, the correlation
function must be invariant under translations to respect homogeneity and be invariant under
rotations to uphold isotropy. The resulting isometric state requires the correlation function to
only depend on the separation between its input points, rather than their absolute locations. In
other words, the physics at play governing the density fluctuations has no preference for specific
points nor particular directions.

These two symmetries simplify the mathematics of correlation functions. For instance, the two-
point correlation function transforms into:

⟨ϕ(x1)ϕ(x2)⟩ ≡ ξ(x⃗1 x⃗2) = ξ(|x⃗1 − x⃗2|). (1.4)

6



1.3. FOURIER DECOMPOSITION CHAPTER 1. GAUSSIAN RANDOM FIELDS

Note especially how in a 3-dimensional setting, ξ initially depended on 6 coordinates, 3 for each
vector, and now simplifies to only depend on one unknown. Likewise, a three-point correlation
function reduces from 9 independent input variables to only 3. Moreover, in the special case of
a GRF, for an integer k > 0 the correlation function between 2k+1 points is identically zero, in
line with the fact that all odd moments of a 1D Gaussian distribution vanish after the mean. All
higher-order even moments are determined by the standard deviation and carry no new statistics.
GRFs are therefore completely characterized by their two-point correlation functions. Fig. 1.1
shows two examples of a GRF with slightly different two-point correlation functions of the form
ξ(|x⃗1 − x⃗2|) = cos (2π |x⃗1 − x⃗2| /ℓ), with ℓ = 4/5 and 1/5.

1.3 Fourier Decomposition

Until now, the GRFs were described in real space. It is enlightening to view the same objects
from the view of frequency space via a Fourier transform. The fluctuations are then to be
regarded as a linear superposition of simple waves, described by their wavevector k⃗. As will be
calculated in more detail later, one of the reasons of performing this transformation is because the
equations of motion for small fluctuations on the Friedmann–Robertson-Walker-Lemaître metric
can be linearized, for which the Fourier modes will act independently. In other words, Fourier
modes are the preferred basis when describing the density fluctuations in a near-flat universe
[Van de Weygaert 2020; Scoccimarro 2021]. There exist different conventions on the definition
of the Fourier transform. This work will abide the following rules for the forward and inverse
transformations:

ϕ(x⃗) =

∫
dk⃗

(2π)3
ϕ̂(k⃗) e−ik⃗·x⃗ (1.5)

ϕ̂(k⃗) =

∫
dx⃗ ϕ(x⃗) eik⃗·x⃗, (1.6)

where ϕ is a general field, though this will often come back to be the density fluctuation field δ.
In the way that δ(x⃗) refers to the density fluctuation at position x⃗, δ(k⃗) refers to the contribution
to the field of a wave with wavevector k⃗.

The power spectrum P is a function of the wavevector k⃗ defined by the following relation:

(2π)3P (k⃗)δD(k⃗1 − k⃗2) = ⟨ϕ̂(k⃗1)ϕ̂∗(k⃗2)⟩, (1.7)

Its relation to the correlation function ξ becomes apparent upon expanding ϕ in terms of its
Fourier decomposition:

ξ(∥x⃗1 − x⃗2∥) = ⟨ϕ(x⃗1) · ϕ∗(x⃗2)⟩ (1.8)

=

∫ ∫
dk⃗1
(2π)3

dk⃗2
(2π)3

〈
ϕ̂(k⃗1) ϕ̂

∗(k⃗2)
〉

e−ik⃗1·x⃗1 eik⃗2·x⃗2 (1.9)

=

∫
dk⃗

(2π)3
P (k) e−ik⃗·(x⃗1−x⃗2). (1.10)

In other words, with the definition of the power function P (k⃗) as in Eq. 1.7, it becomes clear that
the correlation function ξ is nothing but the Fourier transform of P . Within the field of applied
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1.4. THE POWER-LAW CHAPTER 1. GAUSSIAN RANDOM FIELDS

mathematics, this is sometimes referred to as the Wiener–Khinchin theorem 2 [Wiener 1930].
The standard deviation of the field σ comes in via σ2 = ⟨δ(x⃗)2⟩ − ⟨δ(x⃗)⟩2 = ξ(∥x⃗− x⃗∥) = ξ(0),
since the mean of the fluctuations ⟨δ(x⃗)⟩ ought to be null. This second-order moment can
therefore rewritten using the power function as:

σ2 =

∫
dk⃗

(2π)3
P (k). (1.11)

P (k) quantifies the contribution to the total deviation σ2 via the spatial frequencies k⃗ [Van de
Weygaert 2020].

The Fourier mode ϕ̂(k⃗) will generally be a complex quantity. Using the complex plane, this mode
may therefore be written as:

ϕ̂(k⃗) = |ϕ̂(k⃗)|eiφ(k⃗), (1.12)

where |ϕ̂(k⃗)| denotes the distance to the origin and φ(k⃗) is the angle with the positive real axis.
GRFs have the special property that the real and imaginary parts of ϕ̂(k⃗) are independently
distributed [Coles 2014]. Equivalently, the phase factor φ(k⃗) takes on truly random values
within the interval [0, 2π). This remains true for small perturbations of the field, in particular
when considering linearized gravity, but fails for larger deviations [Peebles 1980]. Non-linear
gravitational interactions between the regions in the density field causes the Fourier mode phases
to slowly couple together, such that the evolving field no longer is a GRF.

1.4 The Power-Law

The power spectrum is shaped by physical processes having effects of various strengths on differ-
ent k⃗. The theory of inflation suggests that the primordial density fluctuation field is described
by a power spectrum of the form:

P (k) ∝ kn, (1.13)

where n ≈ 1 is the spectral index [Guth 1981; Ryden 2017]. The special case when n = 1 is often
referred to as the scale-invariant or Harrison-Zeldovich power spectrum and was studied before
the theory of inflation was introduced [Harrison 1970; Zeldovich 1972; Coles and Lucchin 1995].
Recent results from the Planck satellite from 2018 showed that CMB anisotropy measurements
dictate a value of n = 0.9649 ± 0.0042 for the primordial density fluctuation field, making the
Harrison-Zeldovich spectrum relevant [Planck Collaboration 2019]. The initial spectral index
will non-trivially evolve under the influence of both gravitational and non-gravitational interac-
tions. Before recombination, interactions such as silk damping, free streaming and the Meszaros
effect could alter the functional form of P (k), while the distribution of dark matter is mainly of
importance when the density perturbations start to grow significantly under gravity [Coles 2014;
Ryden 2017; Peebles 1980]. Other non-gravitational effects include baryon and photon pressure
and Jeans damping and oscillation. [Van de Weygaert 2020]

2 Interestingly, the theorem was proved by Norbert Wiener in 1930 and later extended by Aleksandr Khinchin in
1932, but it was Albert Einstein that explained, though without proof, the idea behind this relation already in
1914 [Wiener 1930; Champeney 1987; Einstein 1914].
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1.4. THE POWER-LAW CHAPTER 1. GAUSSIAN RANDOM FIELDS

Figure 1.2: Two examples of 2D GRFs with a power-law as power spectrum, with spectral indices
n = 1 and n = −3 respectively. In each row, the left-hand side shows a realization of a GRF
with P (k) = kn and the right-hand side shows an arbitrary slice of this field. Note in particular
that for n = −3, the power is dominated by the large k-values. For the n = 1 scenario, also the
smaller fluctuations contribute to the total power significantly.
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1.4. THE POWER-LAW CHAPTER 1. GAUSSIAN RANDOM FIELDS

Two examples of 2D GRFs with power-laws as power spectra, as well as an arbitrary 1D cross-
section, are shown in Fig. 1.2. From the slices through the density fluctuation field, it becomes
clear that for n = −3 the largest waves dominate the power in the field. The small-scale fluctu-
ations have a significant contribution to the power in the case that n ≈ 1. This can be related
to two different ways in which structure formation could take place. In the top-down scenario,
the larger waves are more important in the sense that they have higher amplitudes. Here, the
large-scale waves collapse on shorter time scales than that the small-scale fluctuations can con-
densate into smaller structures. Consequently, the larger objects emerge from the field first, after
which they might break down into smaller clumps. This relates to the scenario visualized in the
second row of Fig. 1.2. In the bottom-up scenario, also referred to as hierarchical clustering,
small-scale waves have higher amplitudes than larger waves. The former dominate the observed
fluctuations and collapse first. This means that smaller objects start to emerge from the field,
then collide under gravity to form larger structures. Reality can be a mixture of both processes,
which happens for example in the scale-invariant case where n = 1. In Fig. 1.2 this is depicted
in the first row.

Based on the continuity and Poisson equation for fluids in an expanding universe, one can relate
the power spectrum P (k) for the density fluctuation field to the power spectra Pv(k) and Pϕ(k)
for the velocity and gravitational potential fields, respectively. The main conclusion states that
[Van de Weygaert 2020]:

P (k) ∝ k2Pv(k) ∝ k4Pϕ(k). (1.14)

The implication is that the density perturbation spectrum is more sensitive to small-scale fluctua-
tions. Likewise, the gravitational potential perturbation spectrum is most sensitive to large-scale
fluctuations. Using Eq. 1.11, the fluctuation in the gravitational potential field ϕ can be explicitly
calculated in the case that P (k) takes on a power-law with general spectral index n:

σ2
ϕ =

∫
dk⃗

(2π)3
Pϕ(k) ∝

∫
dk
2π2

P (k)

k2
=

∫
d ln k

2π2
kn−1. (1.15)

If n = 1, then this transforms into the simpler relation:

σ2
ϕ ∝

∫
d ln k

2π2
, (1.16)

hence the contribution to the gravitational potential perturbations is the same for each loga-
rithmic bin. Each scale is thereby equally strong for the Harrison-Zeldovich spectrum. For the
fluctuations in the density field, Eq. 1.11 can once again be invoked combined with a general
power-law power spectrum:

σ2 =

∫
dk⃗

(2π)3
P (k) =

∫
d ln k

2π2
k3P (k). (1.17)

In this case, one may view k3P (k) as the power per logarithmic frequency band d ln k. Note in
particular that this integral might not converge, based on how P depends on k. One way to
circumvent this problem is by introducing filter functions, which act as an indicator or weighting
functions to limit the range in k over which P is integrated. This way, diverging integrals are
replaced by finite values such that σ2 is still well-defined.
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1.5. FILTER FUNCTIONS CHAPTER 1. GAUSSIAN RANDOM FIELDS

1.5 Filter Functions

Random fields can be filtered to more easily extract information about scales and size distribu-
tions. Integrals that previously diverged due to the infinite integration volume, might become
finite again by slightly adapting the field that is being integrated over. For instance, integrating
a density field with a non-zero mean over an infinite volume has no chance of limiting to a finite
value, but when the field is multiplied by an indicator function that is only non-zero in some finite
region, the same integral gives the total mass contained in this area. This example illustrates
the first of three commonly used window functions, the top-hat filter of size R:

WTH(x⃗, y⃗, R) =

{
1 if ∥x⃗− y⃗∥ < R

0 otherwise
(1.18)

The top-hat filter extends the Heaviside step function to a higher-dimensional, spherically sym-
metric case. The function smoothens the field δ by averaging the contribution to the field in an
N -sphere of radius R centered at some point r⃗, resulting in the filtered random field δf :

δf (r⃗) =

∫
dx⃗ δ(x⃗) WTH(x⃗, r⃗, R). (1.19)

Instead of using R as the scale parameter of the window function, one might just as well relate
to different scales using the typical mass Mf , related to R via the typical density:

Mf ≡
∫

dx⃗ ρ(x⃗) W (x⃗, R) =
4π

3
ρR3. (1.20)

Similar to probability density functions, the filter function itself should be normalized to unity to
be able to sensibly compare certain results. Eq. 1.18 should therefore be multiplied by the inverse
of the volume of the non-zero region, in this case 3/4πR3. The mass fluctuations smoothened
with a normalized filter on mass scale Mf can be shown to be:

σ2
M =

〈
(Mf −Mf )

2
〉

M
2
f

=

〈{∫
dx⃗ δ(x⃗)Wf (x⃗, R)

}2〉{∫
dx⃗ Wf (x⃗, R)

}2 (1.21)

=

∫
d ln k

2π2
k3 P (k) Ŵ 2

f (k,R) (1.22)

=

∫
dk
2π2

k2 P (k) Ŵ 2
f (k,R) (1.23)

Smoothening any field ϕ with some filter function W can also be done in Fourier space using the
relations:

ϕ(x⃗) =

∫
dy⃗ f(y⃗)W ∗(y⃗, x⃗) and W (y⃗ − x⃗) =

∫
dk⃗

(2π)3
Ŵ (k⃗)e−ik⃗·(y⃗−x⃗). (1.24)

With these conventions, the process of smoothening a random field in Fourier space can be shown
to be equivalent to multiplying the Fourier transforms of the field and the window function:

ϕ(x⃗) =

∫
dk⃗ dp⃗ dy⃗
(2π)6

ϕ̂(k⃗)e−ik⃗·y⃗ Ŵ ∗(p⃗)eip⃗·(y⃗−x⃗) =

∫
dk⃗

(2π)3
f̂(k⃗) Ŵ ∗(k⃗)e−ik⃗·x⃗ (1.25)

11



1.5. FILTER FUNCTIONS CHAPTER 1. GAUSSIAN RANDOM FIELDS

Figure 1.3: Examples of applying a Gaussian filter of various scales to a GRF with P (k) = k−3.
The first plot shows the unsmoothed GRF (RG = 0), the top-right and bottom-left show the
same field with RG = 2 and RG = 6 respectively. The plot on the bottom-right shows the
cross-section at an arbitrary pixel, showing that smaller perturbations disappear for increasing
filter size.

Calculating the Fourier transform of filter functions is thereby a necessary stepping stone. For
instance, in the case of the top-hat filter from Eq. 1.18, the frequency representation is given by:

ŴTH(k) =

∫
dx⃗ WTH(y⃗, x⃗)e

ik⃗·x⃗ =
3 [sin (kRTH)− kRTH cos (kRTH)]

(kRTH)3
. (1.26)

One might note that this result is proportional to the spherical Bessel function of the first kind
j1(kRTH). Also note that the real space top-hat function had a clear border at |x⃗|= RTH, but
that its Fourier transformation lacks such a clear boundary due to its ongoing oscillatory be-
haviour.

The top-hat filter has a jump discontinuity that could lead to some mathematical difficulties. It
is therefore customary to introduce two other filters: the Gaussian filter and the sharp k-space

12
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filter. Its definition and Fourier transformation are given by:

WG(x⃗, y⃗, RG) =
1

(2πR3
G)

3/2
exp

{
−∥y⃗ − x⃗∥2

2R2
G

}
, (1.27)

ŴG(kR) =
1

(2πR2
G)

3/2

∫
dx⃗ exp

{
−∥y⃗ − x⃗∥2

2R2
G

}
eik⃗·x⃗ = e−k2R2

G/2. (1.28)

Examples of Gaussian filtering can be seen in Fig. 1.3, in which a pure power-law with n = −3
GRF is shown, together with smoothened versions using a Gaussian filter with sizes RG = 2
and 6. From an arbitrary cross-section on the bottom-right, it becomes clear that higher RG

hide more of the small-scale behaviour of the fluctuation field. Finally, a sharp k-space filter
is essentially nothing but the Fourier transform of the top-hat filter, such that the spherical
step-function is now located in k-space:

Wk(x⃗, y⃗, Rk) =
sin (∥y⃗ − x⃗∥/Rk)− (∥y⃗ − x⃗∥/Rk) cos (∥y⃗ − x⃗∥/Rk)

2π2∥y⃗ − x⃗∥3
, (1.29)

ŴkRk(k) =

1 if k <
1

R
0 otherwise

(1.30)

This concludes a basic introduction to GRFs, their statistics and their relevance in the field of
cosmology. Now that the fundamental quantities are on the table, it is time to take a closer look
at how the evolution of the density fluctuation field δ relates to the formation of overdense halos
and underdense voids.
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Chapter 2
Linearized Gravity

The study of gravity is fundamental to humanity’s understanding of the structure and evolution
of the universe. In the field of cosmology, the behavior of gravitational interactions on the largest
scales is of particular interest, for it provides insights into the evolutionary history of the universe
and could be used to test different cosmogonies or constraint the values of cosmology parameters.
Linearized gravity, a powerful theoretical framework, provides a mathematical description of the
force of gravity within the context of small perturbations around a background spacetime. This
chapter explores the concept of linearized gravity through the density fluctuation field and the
cosmic fluid equations.

Analytical solutions to the time evolution of arbitrary mass distribution are scarce. In a dis-
crete system, the future paths of two or, in highly exceptional cases, three point masses can be
calculated explicitly using Newton’s laws of gravitation. Adding more particles to the system
generally prevents the system to be solved exactly. However, in the limit towards continuous
mass distributions, exact solutions can still be found in highly symmetric configurations. To
still get some sense of what happens in systems that cannot be solved analytically, it is fruitful
to simplify the non-linear character of gravity to get a system of equations that can be solved
exactly. Although only valid under limiting circumstances, these solutions can provide a first in-
sight into the more complex behaviour of a general system. The linear regime focuses on regions
in which the density perturbations are small, specifically when |δ| ≪ 1, which would depend
both on observed scale and time. CMB measurements show that at the time of recombination,
the matter perturbations satisfied |δ| ≲ 10−5, for which the linear theory would be applicable
[Burenin 2018; Planck Collaboration 2020a; Mo, Van den Bosch, and White 2010]. However, the
ever-lingering pull of gravity has led the universe to become a highly non-linear region, at least
on the scale of megaparsecs. On the largest spatial scales, the assumption of the density fluctua-
tions being much smaller than unity becomes applicable again, as suggested by the Cosmological
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Principle [Ryden 2017; Mo, Van den Bosch, and White 2010].

This chapter is structured as follows. First, the equations governing the evolution of the density
perturbation field δ are explored. Then, after linearizing the system, the focus will be on the
linear growth factors in an Einstein-de Sitter universe. These will be crucial in the next chapter,
where the spherical model is introduced.

2.1 The Fluid Equations

To infer what equations δ should obey, one should first ask what δ describes in the first place. In
the current context, this will often be cold dark matter, which is often taken to be a collisionless
fluid [Mo, Van den Bosch, and White 2010; Weinberg et al. 2015; Nadler et al. 2019]. It could
also describe tightly coupled photons and baryons in the epoch before recombination, or baryons
that act like an ideal gas right after recombination. In each of these three cases, the fluid
equations seem to come closest to describing the motion of δ. This description would be valid
for collisionless fluids in case velocity dispersions are small enough such that physical processes
as diffusion can be safely disregarded [Fraternali 2023]. Warm or hot dark matter fails to satisfy
these conditions, due to their non-zero peculiar velocities and hence dispersion. The collisionless,
pressureless and non-relativistic fluid equations form a set of five equations [Mo, Van den Bosch,
and White 2010; Van de Weygaert 2004a]:

∂δ

∂t
+

1

a
∇ · (1 + δ)v⃗ = 0 Continuity equation

∂v⃗

∂t
+

1

a
(v⃗ · ∇)v⃗ +Hv⃗ = −1

a
∇Ψ Euler equations

∇2Φ = 4πGa2δρm Poisson equation

(2.1)

with a the scale parameter of the cosmology, v⃗ the velocity vector, H the Hubble parameter and
Ψ the gravitational potential. This coupled system of partial differential equations is reduced in
complexity by removing terms that depend on products of δ or v⃗, on the assumption that both
these quantities are small. The result is the system of linearized fluid equations:

∂δ

∂t
+

1

a
∇ · v⃗ = 0 Continuity equation

∂v⃗

∂t
+Hv⃗ = −1

a
∇Ψ Euler equation

∇2Φ = 4πGa2δρm Poisson equation

(2.2)

Taking the time derivative of the continuity equation and the divergence of the Euler equation,
the first two equations can be combined to give:

∂2δ

∂t2
+ 2H

∂δ

∂t
=

∇2Ψ

a2
, (2.3)

and where ∇ · v = −a∂δ
∂t , which directly follows from the linearized continuity equation. Finally,

the Poisson equation can be substituted for a generic cosmology,

∇2Φ

a2
= 4πGδρm =

3

2
Ω0,mH2

0

δ

a3
, (2.4)
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such that the fluid equations can readily be combined into one master equation:

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGδρm =

3

2
Ω0,mH2

0

δ

a3
. (2.5)

This equation is valid for δ ≪ 1 for a non-relativistic pressure-less fluid. The second term on the
left represents the so-called Hubble Drag, and quantifies how the expansion of the surrounding
environment suppresses perturbation growth. The first term of the right hand side promotes
perturbation growth under influence of gravity. Another detail worth mentioning is what happens
when taking the Fourier transform on both sides of Eq. 2.5:

d2δ(k⃗)

dt2
+ 2H

dδ(k⃗)
dt

= 4πGδ(k⃗)ρm. (2.6)

This shows that the ordinary second-order differential equation that each Fourier mode δ(k⃗) has
to satisfy, makes no reference to any other Fourier mode [Mo, Van den Bosch, and White 2010].
In other words, in the linear theory, each Fourier mode evolves independently, thereby confirming
an earlier statement in Chapter 1 1 . An interesting observation is that Eq. 2.5 only contains
derivatives of δ with respect to time, meaning that there seems to be no spatial dependence
whatsoever. The spatial and temporal parts of δ behave in their own fashion and can thereby
be distilled into two separate factors:

δ(x⃗, t) = ∆(x⃗)D(t), (2.7)

where ∆(x⃗) is a function depending only on the spatial coordinate, and D(t) a function containing
just the temporal variable. ∆(x⃗) defines the primordial matter distribution, D(t) governs how
this spatial configuration of matter evolves over time and is referred to as the linear density
growth factor. Most importantly, the function D is universal in the sense that it applies to
all mass configurations at all times, and only applies a straightforward scaling of the initial
distribution. In the linearized theory then, mass distributions change in size, not in shape.

2.2 Modes in the Einstein-de Sitter universe

Within an EdS universe, the previous equations simplify under the observation that:

a(t) =

(
3

2
H0t

)2/3

,

H =
ȧ

a
=

2

3t
,

3

2a3
Ω0,mH2

0 =
2

3t2
.

(2.8)

In that case, the linearized fluid equation in terms of D transforms into:

∂2D

∂t2
+

4

3t

∂D

∂t
=

2

3t2
D. (2.9)

1 The Fourier transform of the generic master equation that would be valid in the non-linear regime as well, the
differential equation contains terms in which quantities are integrated over k⃗-space [Van de Weygaert 2004b].
These contributions couple the different Fourier modes together and destruct the Gaussianity of the initial GRF.

16



2.2. MODES IN THE EDS UNIVERSE CHAPTER 2. LINEARIZED GRAVITY

This leads to two linearly independent solutions D1 and D2 [Van de Weygaert 2004a]:

D1(t) ∝ t2/3 ∝ a(t) and D2(t) ∝ t−1/3. (2.10)

The most general solution in terms of the density fluctuation field is thereby a linear combination
of the two components:

δ(x⃗, t) = ∆1(x⃗)D1(t) + ∆2(x⃗)D2(t). (2.11)

The temporal scale factor D is often normalized to unity at the present epoch t0:

D1(t) :=

(
t

t0

)2/3

and D2(t) :=

(
t

t0

)−1/3

. (2.12)

D1 and D2 are, respectively, referred to as the growing mode and decaying mode solutions. The
total primordial density distribution is split between ∆1 and ∆2 which subsequently evolve in
their own manner. The contribution of the mass component connected to the decaying mode
solution slowly fades away over time and is therefore often omitted in further calculations [Van
de Weygaert 2004a]. Note how the growing mode solution, which determines the rate at which
the density fluctuation field δ changes over time within the linearized model, exactly mimics the
time behaviour of the scale parameter a of the EdS universe. In a universe with Ω0,m < 1, the
perturbations would grow at a slower rate since the rate of expansion is larger than inside an
EdS cosmology. Moreover, in a static universe the growth would be an exponential, but because
of the ongoing Hubble expansion, it is replaced by a power law in expanding cosmological models
[Mo, Van den Bosch, and White 2010].
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Chapter 3
The Spherical Model:
Collapsing Clumps & Expanding Voids

One of the main results of the previous chapter is that the primordial density fluctuation field δ
can be described using a GRF. The field evolves over time under the influence of both gravita-
tional and non-gravitational interactions, which, in the non-linear regime, will de-randomize the
distribution of the Fourier modes of δ. This mode-coupling causes the field to lose its Gaussian-
ity and hence higher-order moments are required to completely specify the density fluctuation
field. In general, no analytic solutions exist that fully describe the evolution of a system of
arbitrary shape and properties. Sometimes, light can be shed on only a part of the full solu-
tion, through various approximating mathematical techniques. In the linear regime for instance,
characterized by |δ| ≪ 1, the time evolution of mass distributions can be calculated through
first-order perturbative techniques [Peebles 1980; Peacock 1999; Dodelson 2003]. This chapter
relates the results of the non-linear regime to the linear theory by considering spherical over- and
underdense objects, representing oversimplified halos and voids respectively, living in a universe
governed by the FRWL equations. This spherical collapse model can be solved analytically and
has important connections with the linearized theory and predictions on the evolution of more
generic mass distributions in the universe [Gunn and Gott 1972; Peebles 1980; Padmanabhan
1999; Mo, Van den Bosch, and White 2010]. Although an analogous analysis can be done for
more general universes, this derivation adapts the Einstein-de Sitter (EdS) universe with zero
curvature and Ωm = 1.

This chapter is structured as follows. In the first section, the general equations of motion are
developed for a spherically symmetric mass distribution. Of particular importance in this section
are the implications for the overdense regions, that are on the verge of becoming halos. This is
then connected with the results from linearized gravity and leads to the definition of the so-called
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halo barrier. The second section follows underdense structures, cosmic voids, and relates again
their evolution to the linearized theory. This naturally leads to the second threshold, the void
barrier. The last section reflects on the shortcomings and general validity of the spherical model.

3.1 The Spherical Collapse Model

This section is largely based on the derivations by Van de Weygaert 1995. Consider first a
spherical object placed in an ever-expanding, otherwise homogeneous universe governed by the
FRWL equations, described by a sufficiently nice density function ρ. To be more exact, ρ is
required to be a function of time t and proper radius r only – that is, the object is only allowed
to have a radial structure. The infinitesimally thin 2-sphere at radius ri will be referred to as
a shell. Such mass distributions in an expanding universe are subject to at least two physical
processes: the attractive force of gravity between massive particles, and the Hubble expansion of
the background [Ryden 2017]. With the assumption that ρ describes the density field of a colli-
sionless fluid, other interactions, such as viscous or other frictional forces, are out of the question
[Fraternali 2023]. This makes the spherical model especially relevant for dark matter halos, due
to their apparent collisionless behaviour [Mo, Van den Bosch, and White 2010; Weinberg et al.
2015; Nadler et al. 2019]. An identical mass setup composed of baryonic matter immediately
introduces more complexity since collisions would transform kinetic energy into heat and form
shock waves [Fraternali 2023]. To solve the time evolution of this spherically symmetric system
analytically, shells will be assumed not to cross one another, at least not until total collapse.
Newton’s Shell Theorem for classical mechanics dictates that the evolution of a shell is com-
pletely determined by the mass contained within the boundary1 , so combined with the previous
assumption, the mass within each shell will be constant up to shell-crossing [Newton 1687; Arens
1990].

For an object that eventually contracts under gravity, its evolution can be subdivided into differ-
ent stages. In physical or proper coordinates, the initial density profile initially spreads out under
the Hubble expansion. If the gravitational interaction is strong enough, the resulting acceleration
toward the center of the sphere decelerates the expansion, until at some cosmological time the
sphere’s peculiar velocity cancels the Hubble expansion and reaches its maximum proper radius.
From this point of turn-around onward, the shells shrink until all of them collapse to a single
point in space. Physically speaking, this implies that all the mass of the original distribution is
now concentrated at a single point, such that the density skyrockets. Of course, reality would
deviate from this model long before this state is reached, but if one insists, then after this shell-
crossing the radii of the shells start oscillating harmonically as energy flows from gravitational
potential energy into kinetic energy and back. Realistic infalling matter would gain non-radial
velocity components that prevent all the matter to concentrate at a single point in space and
instead leads to virialization, a state in which kinetic and potential energy come into some sort
of balance [Mo, Van den Bosch, and White 2010; Padmanabhan 1999; Lyth and Liddle 2009].
The subsequent analysis focuses on the evolution of shells up until the first full collapse of a
spherically symmetric system.

1 This theorem is the Newtonian limit of the more widely applicable Birkhoff’s Theorem in GR [Padmanabhan
1996; Straumann 2014].
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Figure 3.1: Shell evolution. This simple schematic shows the general form of the evolution of
the radius of a shell of a given energy E. The red, green and blue curves show the open, critical
and closed shells respectively.

3.1.a Equations of Motion

The dynamics of the spherical shell are described by the equations of motion. The first equation
of this set comes from combining Newton’s second law of classical mechanics with the law of
universal gravitation, essentially expressing the Shell Theorem. The second equation is obtained
by integrating the first, which introduces an integration constant E:

d2r

dt2
= −GM(r)

r2
,

1

2

(
dr
dt

)2

− GM(r)

r
= E.

(3.1)

Here, r denotes the proper radius, G Newton’s gravitational constant, M(r) the mass contained
interior to the shell at radius r. It presents the law of conservation of energy in a spherically
symmetric system, where the first term is proportional to the kinetic energy and the second to
the internal potential energy of the shell at radius r. The constant E is thereby interpreted as
the energy of a shell at radius r. It is interesting to compare the equations of motion in Eq.
3.1 to the set of FRWL equations with scale parameter a for a universe with no cosmological
constant [Ryden 2017]:

ä

a
= −H2

0

2

Ω

a3
,(

ȧ

a

)2

=
H2

0Ω

a3
− k

a2
,

or


ä = −H2

0

2

Ω

a2
,

1

2
ȧ2 − H2

0Ω

2a
= −k

2

(3.2)

These equations describe the motion of the background in which the spherical mass distribution
is placed. In particular, note that the functional form of the system in Eq. 3.1 is identical to
that of Eq. 3.2. This implies that the time dependence of the spherical density profile can be
interpreted as the evolution of a bubble universe embedded in the background universe.

Similar to orbital mechanics, E can be subdivided into three distinct cases, leading to three types
of solutions (also see Fig. 3.1) [Van de Weygaert 1995; Shi 2017]:
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1. E > 0 (Open shell):
The shell is said to be unbounded and its equations of motion can be solved to find that:

r(Φr) =
GM

2E
(cosh (Φr)− 1)

t(Φr)− ti =
GM

2E
√
2E

(sinh (Φr)− Φr),
(3.3)

where Φr is the so-called development angle at radius r, ranging from 0 at the initial time
to 2π at the final time. Note that the development angle explicitly depends on the radius
r.

2. E = 0 (Critical shell):
The critical shell is a perfect balance between the kinetic and potential term in the con-
servation of energy equation. The solution can be shown to be:

r(t) =

(
9

2
GM

)1/3

(t− ti)
2/3. (3.4)

In this case, there is no need to parameterize the solution through a development angle.

3. E < 0 (Closed shell):
The shell is said to be bounded and its equations of motion can be solved to find that:

r(Φr) =
GM

2E
(cos (Φr)− 1)

t(Φr)− ti =
GM

2E
√
−2E

(sin (Φr)− Φr),
(3.5)

3.1.b Relating Energy to Expansion & Density

The magnitude of E depends on the strength of the Hubble expansion and on the initial density
profile of the spherical region. The mean density excess ∆ for the shell at initial radius ri is
used to quantify the latter, and quantifies the relative over- or underdensity of ρ compared to
the background ρ:

∆(t, ri) =
3

4πρ(t)r3i

∫
r′

2
sin θ (ρ(t)− ρ(r′, t)) dr′ dθ dϕ =

3

r3i

∫ ri

0
r′

2
δ(r′, t) dr′. (3.6)

∆(t, ri) is therefore completely determined by the internal mass distribution of the spherical
object under consideration. In the case of a spherical mass distribution that is constant up to
size R ≥ ri, Eq. 3.6 states that simply ∆(t, ri) = δ. Two useful definitions are the critical mean
density excess ∆c,i = ∆c(ti, ri) and kinetic energy measure αi for a shell at radius ri:

1 + ∆c,i := Ωi[1 + ∆(ti, ri)] (3.7)

αi :=

(
vi

Hiri

)2

− 1, (3.8)

where vi denotes the peculiar velocity in shell ri, which is then divided by the Hubble expansion
term Hiri. αi can be interpreted as a quantifier for the initial velocity perturbation. Using these
two definitions, one can deduce that the specific energy of a shell can be re-expressed as:

E =
1

2

(
dri
dt

)2

− GM(ri)

ri
=

1

2
(Hiri)

2 − GM(ri)

ri
=

1

2
(Hiri)

2(αi −∆c,i), (3.9)
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allowing us to make the same subdivision for E as enumerated above, but now in terms of ∆c,i

and αi. The main interest lies in the sign of E, so if one approximates the initial shell velocity
to be mainly composed of the Hubble flow, vi ≈ Hiri, in Eq. 3.8, then Eq. 3.9 takes on the
simpler form:

E ≈ 1

2
(Hiri)

2

(
1− Ωi

[
1 +

3

r3i

∫ ri

0
r′

2
δ(r′, t) dr′

])
, (3.10)

where Eqs. 3.6 and 3.7 were used [Mo, Van den Bosch, and White 2010]. The sign of E is, as
expected, determined by Ω and δ only. In the case of an EdS universe Ω = 1, such that E will
have exactly the opposite sign compared to δ: any overdensity leads to a bound system and any
underdensity is intrinsically linked to an open shell. However, for a more general universe, the
fate of the matter distribution also depends on Ω. An overdensity in one open universe (Ω < 1)
might have E > 0, although the same mass distribution embedded in an EdS will definitely
collapse at some finite time. In a sense, this reformulation of E allows one to compare density
fluctuations to a common playground: the Einstein-de Sitter universe.

The physical radius r at any subsequent time can be related to the initial physical radius ri
through the linear relation r(ri, t) = R(t, ri) ri. This becomes evident when rewriting Eq. 3.9
into:

√
2E = Hiri

√
αi −∆c,i, (3.11)

which is valid for each of the three cases. This allows Eqs. 3.3, 3.5 and 3.4 to be rewritten in
terms of R and Hit [Van de Weygaert 1995]:

1. E > 0 (αi > ∆c,i, open shell):
R(ti, ri,Φr) =

1

2

1 + ∆c,i

αi −∆c,i
(cosh (Φr)− 1)

Hi(t− ti) =
1

2

1 + ∆c,i

(αi −∆c,i)3/2
(sinh (Φr)− Φr),

(3.12)

2. E = 0 (αi = ∆c,i, critical shell):

R(t, ri) =

(
3

2
Hi(1 + ∆c,i)

1/2 (t− ti)

)2/3

. (3.13)

3. E < 0 (αi < ∆c,i, closed shell):
R(ti, ri,Φr) =

1

2

1 + ∆c,i

αi −∆c,i
(1− cos (Φr))

Hi(t− ti) =
1

2

1 + ∆c,i

(αi −∆c,i)3/2
(Φr − sin (Φr)),

(3.14)

Of particular interest in the theory of collapse is the evolution of the density profile. In terms of
the density deficit, one can show that:

1 + ∆(r, t) =
1 +∆i(ri)

R3

(
a(t)

ai

)3

=
f(Φr)

f(Φu)
, (3.15)
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where Φu is again a development angle, but this time corresponding to the universe in which the
spherical object is embedded. The function f depends on the characteristic of the universe, and
is given by:

f(Φ) =



(sinhΦ− Φ)2

(coshΦ− 1)3
if Ω < 1

2

9
if Ω = 1

(sinΦ− Φ)2

(1− cosΦ)3
if Ω > 1

(3.16)

3.1.c The Evolution of Closed Shells

The overdense regions are of particular importance for the subsequent analysis in this work, for
they represent the seeds of future structure formation. Depicted as the blue curve in Fig. 3.1, the
shell reaches a maximum radius before it collapses. Eq. 3.10 dictates that all overdense regions,
however small the density perturbation, will collapse at some finite time in an EdS universe.
Before full collapse takes place at the development angle Φcol = 2π and time tcol, from Eq. 3.14
it becomes clear that the shell first reaches a maximum scaling at Φta = π, which will be referred
to as the time of turn-around tta. Using the deduced relations for Hit, each of these two events
can also be linked to a cosmic time:

Turn-around:


R(ti, ri,Φta) =

1 +∆c,i

αi −∆c,i

Hitta =
π

2

1 + ∆c,i

(αi −∆c,i)3/2
,

(3.17)

Collapse:


R(ti, ri,Φcol) = 0

Hitcol = π
1 + ∆c,i

(αi −∆c,i)3/2
= 2Hitta,

(3.18)

Meanwhile, the density evolves in accordance with Eqs. 3.15 and 3.16 with Ω = 1:

1 + ∆(t) =
9

2
· (Φ− sinΦ)2

(1− cosΦ)3
(3.19)

At the time of turn-around and full collapse, this relation reduces to:

1 + ∆(tta) =
9π2

16
≈ 5.551, and 1 + ∆(tcol) → ∞. (3.20)

In other words, a top-hat density perturbation switches from the expanding to the collapsing
phase precisely when 1 + ∆(tta) ≈ 5.551, independent of the initial density measure ∆i. This
statement does not only hold for the top-hat density profile but works for the shells in a generic
spherically symmetric density distribution. For the moment of collapse, the density measure
approaches infinity, as previously anticipated. The time at which this happens, as predicted by
Eq. 3.18, can also be expressed in terms of the scale parameter a for the EdS universe:

Hitcol = π
1 + ∆c,i

(αi −∆c,i)3/2
=

2

3

t

ti
=

2

3

(
a

ai

)2/3

. (3.21)

With these results, the spherical model has done it’s job. It provides fully analytical expressions
for the physical radius r, the scaling parameter R and time measure Ht, and predicts the
evolution of the density excess ∆.
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Figure 3.2: Density evolution in the spherical collapse model. Four density curves are sketched:
the dashed orange line corresponds to the density evolution the spherical collapse model predicts,
the solid green line shows reality in the sense that full collapse is replaced by virialization,
the dashed blue line indicates the density predicted by the linear theory, and the solid yellow
curve shows the background density. Up to a scale parameter aNL, the SC model and linear
theory almost coincide. The sphere reaches its maximum radius at amax and reaches collapse
at avir = acol. Of particular importance will be the value of the density predicted by the linear
theory at this exact moment. Source Van den Bosch 2022.

3.1.d Relation to Linearized Gravity

To relate the linear theory described in the second chapter to the spherical model discussed in
the first subchapter, the implications of the growth factors obtained in the linearized theory are
applied to the same top-hat mass distribution. Fig. 3.2 shows this process visually. The density
profile of the spherical collapse model, indicated by the dashed orange curve, was calculated in
the previous section. The next goal is to relate the moment of collapse to the density value of
the linearized model, shown by the dashed blue line, by evaluating it at acol. The linear regime
is valid when t → 0 in the equations governing the evolution of the spherical system, which is
equivalent to the limit Φ → 0. Hence, one can perform a Taylor expansion of Eq. 3.19 around
the point Φ = 0 to extract the smallest-order terms:

δ ∼ 3

20
θ2 +

37

3800
θ4 +

1

1120
θ6 + . . . (3.22)

Retaining only the first term, one can show that [Mo, Van den Bosch, and White 2010]:

δlin,i =
3

20
(6π)2/3

(
ti
tta

)2/3

. (3.23)

Taken together with the growing mode D1 of the EdS universe as deduced in Eq. 2.12, this
implies that:

δlin(t) =
3

20
(6π)2/3

(
t

tta

)2/3

. (3.24)
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This equation describes the time evolution of the density perturbation in the linearized setup of
the spherical model, as opposed to the true evolution as predicted by Eq. 3.19. For instance, at
the time of turn-around tta, Eq. 3.24 predicts that:

δlin(tta) =
3

20
(6π)2/3 ≈ 1.062, (3.25)

as opposed to the actual value of 4.551 as derived in Eq. 3.20. More importantly, whereas the
density at the time of collapse tcol reached non-finite values in the spherical model, the linear
theory predicts that:

δlin(tcol) =
3

20
(12π)2/3 ≈ 1.686. (3.26)

The importance of this particular result cannot be overstated. Any region in the universe for
which the linearly extrapolated density field exceeds the value of 1.686, should have collapsed to
a gravitationally bound object. This value therefore represents the critical density threshold for
structure formation [Gunn and Gott 1972; Peebles 1980].

3.2 Evolution of Voids

Voids are characterized by their underdensity relative to the embedding space. As for the spher-
ical mass distributions seen before, the dynamical properties of these growing bubbles can be
calculated by approaching them as an evolving, low-density universe sitting in some background
universe with generic density Ω. Similar to how overdensities experience Hubble drag and expand
at a lower rate compared to the background, underdensities are subject to faster expansions since
there is little mass holding them together. The voids are therefore described by the equations
for the unbounded spherical shell derived earlier in Eq. 3.12, where now the energy E > 0. This
corresponds to the red curve in Fig. 3.1. For the closed shells, shell-crossing was assumed to
take place only at the very instant of collapse. In the case of open shells, this story is slightly
adapted. As will become clear from the equations, it is possible for inner shells to expand at a
higher rate than the outer shells, resulting in a relative velocity with which the inner parts of
the void can overtake the outer shells. Moreover, this shell-crossing event introduces a natural
timescale to consider in the overall evolution of cosmic underdensities.

3.2.a Voids as Unbound Shells

The expansion velocity of a shell of initial radius ri can be calculated through the time derivative
of the scaling factor R and the chain rule applied on the quantities in Eq. 3.12:

v(r, t) = ri
dR
dt

= ri
dR
dΦr

·
(

dt
dΦr

)−1

= ri
dR
dΦr

·
(

1

Hi

dHit

dΦr

)−1

(3.27)

= Hiri(αi −∆c,i)
1/2 cosh (Φr)

sinh (Φr)− 1
. (3.28)

From here it is clear that the rate at which the shell expands has a dependence on the criti-
cal mean density excess, ∆c,i, which is a measure of how much mass is enveloped by a sphere
of radius ri. For a spherical mass distribution that reaches δ = −1 on a plateau around the
center and slightly higher values in the neighbourhood around, it is very well possible for the
inner shells to grow at a higher rate than the outermost shells, inevitably leading to shell-crossing.
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Figure 3.3: Evolution of two spherical voids. The plot on the left shows a void with a bucket or
top-hat initial density profile, with ∆i = −10.0 and initial co-moving radius ri = 5.0 h−1Mpc.
The subsequent evolution of the density profile is depicted by the deeper and wider profile, right
up to shell-crossing (the last step being the blue curve). Note how around the void an overdense
ridge starts to grow, which is constructed from all the matter pushed outside the underdensity.
The plot on the right has the same initial parameters but concerns a fallen-over S-shape initial
density distribution. Note how the subsequent evolution transforms the distribution towards a
top-hat profile. Image courtesy: Rien van de Weygaert.

In the theory of linear perturbation growth, the initial velocity measure αi for the growing mode
can be written as:

αi = −2

3
f(Ωi)∆i, (3.29)

with the function f defined as in Eq. 3.16. This allows for Eq. 3.12 to be rewritten in a slightly
simpler form. By Eq. 3.7, one deduces that in the growing mode:

αi −∆c,i = −2

3
f(Ωi)∆i − Ωi(1 + ∆i) + 1 = −A(Ωi)∆i +B(Ωi) ≡ G(Ωi, ϵi), (3.30)

where A(Ωi) ≡ 2
3f(Ωi) + Ωi, B(Ωi) ≡ 1− Ωi and ϵi = −∆i to ease the notation. The reasoning

behind this transformation becomes clear upon approximating the fraction:
1 + ∆c,i

αi −∆c,i
≈ 1

αi −∆c,i
=

1

−A(Ωi)∆i +B(Ωi)
=

1

G(Ωi, ϵi)
. (3.31)

This allows Eq. 3.12 to be rewritten in the more accessible form:
R(ti, ri,Φr) =

1

2

1

G(Ωi, ϵi)
(cosh (Φr)− 1),

Hit =
1

2

1

G(Ωi, ϵi)3/2
(sinh (Φr)− Φr).

(3.32)

Again, to make the point clear, this is but a re-formulation of Eq. 3.12 and bears no new
underlying mechanics.

3.2.b A Condition for Shell-Crossing

The physical radius of the shell is related to the initial radius via the scaling parameter R:

r(R, ri) = Rri =
1

2
ri

1

G(Ωi, ϵi)
(cosh (Φr)− 1) = r(t, ri, G,Φr). (3.33)
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The main objective is now to find out when and where the first shell-crossing will take place.
This problem will be approached by considering two adjacent shells at a small initial radius ri,
and calculate at what time the jump across radii, δr, becomes identically zero. After all, this
is exactly what shell-crossing entails in the scenario of cosmic underdensities: an inner shell
overtakes an outer shell, hence their radii must be equal at some point in time. Fig. 3.3 shows
graphically what happens up until this epoch of shell-crossing. The plot on the left shows a
general top-hat function that evolves over time, right until shell-crossing takes place. The evacu-
ation of the center of the void and the formation of an overdense ridge around this void is clearly
visible. The plot on the right shows a similar void, but now with a more physical initial density
profile: there are no sudden discontinuities. However, as time evolves, it becomes clear that even
this mass distribution tends towards the top-hat profile.

The quantity δr can be calculated by using the total derivative:

δr =
∂r

∂ri
δri +

∂r

∂G
δG+

∂r

∂Φr
δΦr =

(
∂r

∂ri
+

∂r

∂G

∂G

∂ri
+

∂r

∂Φr

∂Φr

∂ri

)
δri. (3.34)

Though not immediately apparent, each of these terms can be evaluated with the knowledge at
hand. The results can be summarized as:

∂r

∂ri
= R =

r

ri
, (3.35)

∂r

∂G

∂G

∂ri
= − r

ri

∂ lnG

∂ ln ri
(3.36)

∂r

∂Φr

∂Φr

∂ri
=

3

2

r

ri

sinh(Φr) [sinh (Φr)− Φr]

(cosh (Φr)− 1)2
∂ lnG

∂ ln ri
(3.37)

Putting this all together, Eq. 3.34 can now be written as:

δr =
r

ri

(
1− ∂ lnG

∂ ln ri

[
1− 3

2

sinh(Φr) [sinh (Φr)− Φr]

(cosh (Φr)− 1)2

])
δri (3.38)

The final partial derivative can be re-expressed as a derive in ϵi instead through use of the chain
rule:

∂ lnG

∂ ln ri
=

ri
G

∂G

∂ri
=

ri
G

∂G

∂ϵi

∂ϵi
∂ri

=
ri
G
A(Ωi)

∂ϵi
∂ri

=
A(Ωi)ϵi

A(Ωi)ϵi +B(Ωi)

∂ ln ϵi
∂ ln ri

. (3.39)

The only derivative that remains to be found is how the density deficit changes with the radius.
In the case of the spherical step function, this relation will be relatively easy to deduce.

3.2.c Top-hat Voids in an Einstein-de Sitter Universe

For a spherical void, the radius relates to the mass and mass deficit according to:

M(ri) =
4

3
πr3i ρi(1− ϵi) = M(ri) + ∆M(ri), (3.40)

where the overbar represents the mean background contribution, and where ∆M(ri) essentially
quantifies the strength of the underdensity. Outside any localized void, the simplest of which can
be imagined as a spherical top-hat void, the mass deficit ∆M(ri) would no longer vary, meaning
that ∆M(ri) = −4

3πr
3
i ρiϵi becomes a constant. The missing derivative can then immediately be

calculated as:
∂ ln ϵi
∂ ln ri

=
∂

∂ ln ri

[
ln (r−3

i ) + C
]
= −3, (3.41)
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where C is some constant factor that disappears anyway. In that case, Eq. 3.39 further reduces
to:

∂ lnG

∂ ln ri
=

ri
G

∂G

∂ri
= −3

A(Ωi)ϵi
A(Ωi)ϵi +B(Ωi)

. (3.42)

This finally allows the condition for shell-crossing to be made explicit by setting Eq. 3.38 equal
to zero. In the case of an EdS universe Ω0 = Ωi = 1 and thus B(Ωi) = 1−Ωi = 0, so the above
condition can be expressed in terms of the development angle Φr only:

1 + 3
A(Ωi)ϵi

A(Ωi)ϵi +B(Ωi)

[
1− 3

2

sinh(Φr) [sinh (Φr)− Φr]

(cosh (Φr)− 1)2

]
= 0 (3.43)

=⇒ sinh(Φr) [sinh (Φr)− Φr]

(cosh (Φr)− 1)2
=

8A(Ωi)ϵi + 2B(Ωi)

9A(Ωi)ϵi
=

8

9
. (3.44)

This transcendental equation can only be solved numerically. The development angle is deter-
mined to be Φs-c ≈ 3.488 at the time of shell-crossing.

3.2.d Relation to Linearized Gravity

From Eq. 2.10 it is clear that density fluctuations are proportional to the scaling parameter
a ∝ t2/3 in an EdS universe. Since δi(t) ≈ (δM/M) (t) (Eq. 1.2) and as δi = ϵi for a top-hat
distribution, one can deduce based on these three observations that, indeed,(

∆M

M

)
(t) = −ϵi

a(t)

a(ti)
= −ϵi

(
t

ti

)2/3

. (3.45)

The second line in Eq. 3.32 can be rewritten using that Hi =
2
3ti

in an EdS, resulting in:

t

ti
=

3

4

1

G(Ωi, ϵi)3/2
(sinh (Φr)− Φr), (3.46)

or in terms of the scaling parameter a as:

a

ai
=

(
2t

3ti

)2/3

=

(
3

4

)2/3 1

G(Ωi, ϵi)
(sinh (Φr)− Φr)

2/3. (3.47)

At the time ts-c of shell-crossing, Φs-c ≈ 3.488 according to Eq. 3.44. The mass fluctuation at
this time may be approximated as:(

∆M

M

)
(ts-c) = −

(
3

4

)2/3 ϵi
G(Ωi, ϵi)

(sinh (Φs-c)− Φs-c)
2/3 ≈ −4.528

ϵi
G(Ωi, ϵi)

. (3.48)

which corresponds to the following in terms of the scale parameter:

as-c

a0
= 4.528

1

G(Ωi, ϵi)

ai
a0

=
4.528

A(Ωi, ϵi)

ai
a0

1

ϵi
=

4.528

A(Ωi, ϵi)

1

ϵ̃i
, (3.49)

where ϵ̃i ≡ a0ϵi/ai is dubbed the linearly extrapolated initial density deficit. For the EdS
universe, where G = 1 effectively, this means that:

as-c

a0
=

4.528

5/3

1

ϵ̃i
=

2.717

ϵ̃i
, (3.50)
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Figure 3.4: Ellipsoidal collapse. Instead of collapsing along all three axes at exactly the same
rate, an ellipsoidal mass distribution first collapses into a sheet, then into a filament, and only
then to a halo. During every collapse, the dimensionality of the object is decreased by one.
Source: Van den Bosch 2022.

or, equivalently, δlin(ts-c) ≈ −2.717. This result is analogous to Eq. 3.26 from the theory of Halo
collapse and acts as a bridge between the spherical model of void shell-crossing and the linearized
theory. Whenever a region in space shows a linearly extrapolated density smaller than −2.717,
then this bubble is to be regarded as a cosmic void. This value therefore represents the critical
density threshold for void formation.

To make a statement about the size of the underdense sphere at the time of shell-crossing, Eqs.
3.35 and 3.47 can be combined to find that:

r

ri
=

1

2

(
3

4

)2/3 coshΦ− 1

(sinhΦ− Φ)2/3

(
t

ti

)2/3

, (3.51)

which, at the time of shell-crossing ts-c, evaluates to:

rs-c

ri
= 1.697

(
tsc
ti

)2/3

= 1.697 · as-c

ai
. (3.52)

In terms of the scaling parameter R, it follows immediately that

Rsc = 1.697Ri, (3.53)

so shell-crossing takes place when the co-moving radius of the void has expanded by a factor of
1.697.

3.3 Validity of Results

The spherical collapse model was introduced in the seminal paper of Gunn & Gott to describe
the evolution of infalling matter in clusters. The theory has been extended and improved in
many subsequent articles [Fillmore and Goldreich 1984; Bertschinger 1985; Hoffman and Shaham
1985; Avila-Reese, Firmani, and Hernandez 1998; Ryden and Gunn 1987; Subramanian, Cen,
and Ostriker 2000; Ascasibar et al. 2004; Hoffman 1986; Zaroubi and Hoffman 1993; Williams,
Babul, and Dalcanton 2004; Del Popolo, Pace, and Lima 2013], for instance, to generalize the
results of infalling matter to shapes with different symmetries or to make the model more realistic
by including effects of shell-crossing, shear velocities or angular moment in generic cosmologies.
The background universe of the spherical collapse model can also be generalized to be different
than the Einstein-de Sitter universe often assumed in this work. Analytical solutions might not
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always exist in these generic cases. The collapse barrier for overdensities, accurate to within 1%,
can be approximated as [Mo, Van den Bosch, and White 2010]:

δlin,Ωm ̸=1(tcol) =
3

5

(
3π

2

)2/3

· [Ωm(tcol)]
0.0185 = δlin,Ωm=1 · [Ωm(tcol)]

0.0185 , (3.54)

where δlin,Ωm=1 ≈ 1.686. In a flat universe with a non-zero cosmological constant, there is an
extra contribution to the acceleration term due to an effective density term. In this case, one
can show that [Mo, Van den Bosch, and White 2010]:

δlin,Ωm ̸=1(tcol) =
3

5

(
3π

2

)2/3

· [Ωm(tcol)]
0.0055 = δlin,Ωm=1 · [Ωm(tcol)]

0.055 . (3.55)

In both scenarios, Eqs. 3.54 and 3.55 show an extremely weak dependence on Ωm. This suggests
that the collapse barrier found in an EdS, Eq. 3.26, can be safely used in more general contexts.
The implications of the spherical collapse model, in particular its applications for mass functions
predicted in the yet-to-be-treated (Extended) Press Schechter formalism, show reasonable fits
to the results of N -body simulations in the high mass range, but deviates substantially in the
lower mass regimes [Press and Schechter 1974; Lacey and Cole 1994; Bond et al. 1991; Sheth
and Tormen 1999]. The discrepancy is not unsurprising considering the many assumptions made
in the spherical model to obtain an analytical solution, and given that density perturbations in
the Gaussian field are sometimes thought to be triaxial [Bardeen et al. 1986; Doroshkevich 1970].

These fits are greatly improved upon by not considering the infall of a spherical shell, but rather
of an ellipsoidal distribution [White and Silk 1979; Eisenstein and Loeb 1995; Sheth, Mo, and
Tormen 2001]. The critical density threshold for structure formation δc is independent of the
initial size of the overdensity or its final mass in the case of a spherical model, but this no longer
holds for the ellipsoidal model. In that case, the barrier starts to depend on the initial overden-
sity and the shear field surrounding the object. During the ellipsoidal collapse, the axis ratio
quickly changes while the ellipsoid transforms into a flat pancake [White and Silk 1979]. As a
consequence, small impurities or anisotropies in an otherwise spherical mass distribution could
result in a more elongated shape along some axis, after which ellipsoidal collapse is imminent:
the spherical symmetry is lost and a runaway axially symmetric infall takes over. Collapsing
overdensities that exhibit spherical symmetry can be seen as an inherently unstable equilibrium
that quickly loses their azimuthal regularity due to small perturbations. Fig. 3.4 shows the idea
behind ellipsoidal collapse graphically.

From the argument that asphericities are magnified during collapse, it might not be surprising
that during expansion asphericities are minimized. In other words, underdense voids become
more spherically symmetric as time advances [Icke 1984; Van de Weygaert and Van Platen 2009;
Ryden and Peterson 2011; Aragon-Calvo and Szalay 2013]. This hypothesis has been tested by
numerical N -body simulations and sky surveys and indeed confirms that cosmic voids tend to be
more spherical than their overdense counterparts [Centrella and Melott 1983; Foster and Nelson
2009]. Full sphericity is, however, not always apparent. Instead, most voids are found to be
slightly prolate [Van Platen, Van de Weygaert, and Jones 2008; Park and Lee 2007; Shandarin
et al. 2006]. Underdensities, after all, are never environmentally isolated objects in the way they
are treated in the spherical model [Bertschinger 1985; Colberg, Krughoff, and Connolly 2005;
Mathis and White 2002]. The internal void dynamics push the system towards a sphere, but
external factors, such as the creation of matter filaments at the boundaries between neighbouring
voids, lead to asymmetries [Van de Weygaert and Van Platen 2009].
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Chapter 4
Hierarchical Halo Population:
Excursion Set Description

The key quantities and concepts are now on the table: the primordial density field δ can be
modeled as a Gaussian random field, which initially evolves in accordance with linearized grav-
ity and in which halos form when the linearly extrapolated density exceeds δc. This chapter
will look deeper into how these three observations can be combined to make general statements
about hierarchical structure formation. To this end, a powerful statistical framework has been
developed and improved upon since its introduction by Press & Schechter, which can be used to
deduce number densities and mass distributions for halos [Press and Schechter 1974; Bond et al.
1991]. It is no surprise that this theory has become a cornerstone in the current understanding
of the formation of, for instance, galaxies, clusters, and other cosmic structures. This chapter
hence fully concentrates on how these models arise from the theory and how they can be applied
to the cosmic overdensities. The last chapter will generalize the formalism to make it compatible
with the underdensities as well, providing the key to quantities such as the void number density
and size distributions.

Within the linearized theory, Eq. 2.7 predicts that the density perturbation field δ scales with
the linear growth rate D(t). The cosmology of interest determines D(t) and by knowing the
initial profile δ(ti) at time ti, one can deduce what the density field looks like through time when
extrapolated using the linear growth rate. The Spherical Model already showed that there exists
a relation between the linear and non-linear collapse through the linear collapse barrier δc and
linear shell-crossing barrier δs-c. The same evolution can be seen from two different perspectives:
the density field grows proportionally to D(t) in the linear regime until some part of the field
passes δc or δs-c to form a virialized bound object or evacuated void, respectively. This will be
referred to as the evolving-field picture. In the second approach, the field is taken to be constant
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in time, and instead the barriers δc(t) ≡ δc/D(t) and δs-c(t) ≡ δs-c/D(t) are decreasing over time.
This moving-barrier picture is equivalent to the evolving-field picture but is sometimes easier to
work with. Fig. 4.1 shows a cross-section of a 2D GRF, where the points whose linearly extrap-
olated density exceeds δc or falls below δv are shaded, signifying collapsed halos and expanding
voids respectively.

The Spherical Model assumed that the flat universe was otherwise homogeneous. Nevertheless,
it is illuminating to see how the non-linear evolution of the field can be explored by using the
initial density field and its linearized extension. To this end, the central assumption in this
chapter is that the long wavelength modes of the true, non-linear evolution of the field are well-
approximated by the predictions of the linear theory. The main idea is, then, to combine the
deterministic Spherical Model with the probabilistic nature of Gaussian random fields, in order
to statistically describe the properties of overdense halos and underdense voids. Bardeen et al.
1986 (hereafter BBKS) explored this idea for halos in full analyticity by focusing on the statis-
tical properties of the peaks in a GRF. In this so-called peak formalism, they assumed that the
region that collapses to a virialized dark matter halo has a mass that can be associated with
those places in the smoothed density field whose density exceeds δc. Here, the smoothed density
field is given by filtering the initial density field on a scale corresponding to that mass. The halo
mass function, the co-moving number density of halos of a given mass, then directly relates to the
number density of peaks in the smoothed density fluctuation field as a function of the filtering
size. Although the statistics of these peaks could be worked out in full rigor in the case of a GRF,
it soon became clear that the central assumption has a serious shortcoming [Bardeen et al. 1986].

Imagine some point massive particle in the fluctuation field, for which the smoothed density field
is δM1 > δc on a filter scale M1, but also δM2 > δc on the larger filter scale M2 > M1. The
relevant question is whether the test particle belongs to a halo of mass M1 or M2. If δM1 > δM2 ,
nothing peculiar is happening, for this can be imagined as a density peak surrounded by a slightly
less dense annulus: the particle will first be part of the halo of mass M1 and at some later time
merges or grows to form the halo of mass M2, hence it is part of both. However, in the case
of the opposite hierarchy δM1 < δM2 , the particle can never be part of a halo of mass M1 and
should instead be immediately incorporated into a halo of mass M2. This implies that δM1 ought
to be removed from the list of collapsed objects of mass M1. As has become clear, peaks in the
smoothed density field can in fact not always be associated with halos, contrary to the initial
assumption. This problem has become known as the cloud-in-cloud problem for halos [Liddle
and Lyth 2000; Jedamzik 1995].

This chapter is structured as follows. The first section replaces the peak formalism discussed so
far, with the slightly less sophisticated Press-Schechter theory. However, as it turns out, these
results can be derived formally using so-called excursion sets, which will be the topic of the
second section. Since this chapter focuses on the overdensities, a discussion on their merging
behaviour cannot be left out and is hence treated in the last section. It has to be stated that this
is merely an introduction to the topic and worked out in full detail for voids in the next chapter.

4.1 Press-Schechter Formalism

The rigorous peak statistics developed in BBKS cannot be easily adapted to this one shortcom-
ing, though numerical models exist that approach this modified version numerically [Bond and
Myers 1996]. To deal with this drawback, the mass function can be determined using the less
mathematically found Press-Schechter (PS) formalism [Press and Schechter 1974]. This heuris-
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Figure 4.1: A cross-section of a 2D GRF, representing the density fluctuation field δ. The dashed
lines represent the two critical barriers: δc = 1.686 for halos and δv = −2.717 for voids. In the
evolving-field picture, the points x with a linearly extrapolated density δ(x) exceeding δc will
have collapsed to a virialized halo, while those points that fall below δv have undergone shell-
crossing and are seen as voids. These regions are shaded in orange and green respectively.

tic approach was later re-derived from a different perspective using excursion sets and is now
commonly referred to as the Extended Press-Schechter (EPS) formalism [Bond et al. 1991]. This
section focuses on deriving the halo mass function within the PS approach, where voids are com-
pletely ignored. In that sense, only the halo collapse barrier δc is important, rather than also
taking the void barrier δv into account.

4.1.a Variances in the Smoothed Field

Recall that the density field δ can be smoothed on a scale Rf by means of the convolution integral
with the window function W (Eq. 1.19):

δ(x⃗, Rf ) =

∫
δ(y⃗)W (x⃗− y⃗, Rf ) dy⃗ (4.1)

The variance of the smoothed field generalizes that of the original field, and is thereby written
either in terms of Rf or the associated mass Mf :

σ2(Rf ) =
1

2π2

∫
dk k2P (k)Ŵ 2(kRf ) ≡ σ2

R, (4.2)

σ2(Mf ) =

〈(
M(x⃗, Rf )−M(R)

M(R)

)2
〉

≡ σ2
M . (4.3)

33



4.1. PS FORMALISM CHAPTER 4. HIERARCHICAL HALO POPULATION

Rf and Mf are related through some constant γf which is determined by the shape of the window
function.1 In hierarchical structure formation models, such as the CDM universe, the variance
σ will be a monotonically decreasing function with increasing smoothing radius Rf [Mo, Van den
Bosch, and White 2010]. This is not true for a Hot Dark Matter (HDM) universe, since in that
case there is a threshold scale on which structure formation can take place. In the particular
case that the power function can be written as a pure power law with spectral index n, Eq. 4.3
can be recast into the more explicit form:

σ2
M ∝ M−(n+3)/3 = M−α, (4.4)

where α ≡ (n + 3)/3. The exact proportionality constant can be deduced from the well-known
cosmic parameter σ8:

σ2
8 ≡ σ2(Rf = 8Mpc) =

1

2π2

∫
dk kn+2 Ŵ 2

TH(kRf ), (4.5)

where ŴTH is the top-hat filter function as defined in Eq. 1.18. The parameter σ8 is hence defined
as the field fluctuation when using a spherical unit step function filter of radius 8Mpc, which then
in turn specifies Eq. 4.4. Recent observations by Planck show that σ8 ≈ 0.811 ± 0.006 [Planck
Collaboration 2020b]. δ(x⃗) has been assumed to be a Gaussian field and the act of smoothing
the field on some scale Rf does not destroy this Gaussianity [Mo, Van den Bosch, and White
2010]. Hence, in terms of masses, the probability of finding a linear density deviation of size δM
is simply given by the normalized Gaussian:

P(δM ) =
1√

2π σM
exp

{
−

δ2M
2σ2

M

}
. (4.6)

The goal is now to assign masses to the peaks in the density distribution. The first step is to find
a peak within the field that satisfies δ > δc. Then, some smoothing function W is introduced
with a small filtering radius Rf and with its center on the peak. By increasing Rf , the smoothed
linear density excess will eventually start to decrease, as in the limit where Rf → ∞, δ → 0 per
the definition of the fluctuation field. At some point, the size of the filtering function is such
that δ = δc, and this is exactly the size Rf that will be assigned to the overdensity.

4.1.b The Halo Mass Function

Press and Schechter postulated that for the density δm smoothed on the scale M that:

The fraction of matter that satisfies δM > δc(t) is the same as the mass fraction that
at time t is contained in halos with mass greater than M .

With the mathematics developed so far, this translates into the preliminary definition:

F̃(> M, t) = P(δM > δc) =
1√

2π σM

∫ ∞

δc

dδM exp

{
−

δ2M
2σ2

M

}
=

1

2
erfc

(
δc√
2σM

)
. (4.7)

Here, F̃(> M, t) is a function that represents the fraction of matter on a mass scale larger than M
that exceeds the critical density δc. In the limiting case where M → 0, Eq. 4.7 predicts that 50%

1 For the often applicable top-hat filter γf = 4π/3 and the Gaussian filter uses γf = (2π)3/2. The sharp k-space
function has γf = 4π2.
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of all matter is contained in collapsed halos. This might seem sensible at first when realizing
that P(δ < 0) = 1

2 , so only the initially overdense regions collapse. Underdense parts of the
universe, however, might be enclosed within larger overdense regions, which would allow them to
have a non-vanishing probability of being incorporated into a larger collapsing object. So, even
underdense regions can be labeled as being part of some collapsed structure. This problem was
adverted by introducing the infamous fudge factor of 2:

F(> M, t) ≡ 2F̃(> M, t) = erfc
(

δc√
2σM

)
. (4.8)

Note that this particular problem bears a resemblance to the cloud-in-cloud problem. The
solution was only heuristic: Press & Schechter argued that all initially underdense regions would
be incorporated in collapsed structures at some point in time, hence only the frequencies would
have to be doubled in F̃(> M, t) to get the true functional form F(> M, t). The number of
haloes with masses between M and M + dM at time t per co-moving volume will be denoted by
n(M, t) dM [Van de Weygaert 2004c]:

n(M, t) dM =
dn
dM

=
1

M

dn
d lnM

. (4.9)

At the same time, ∂F
∂M dM gives the fraction of mass in the range [M,M + dM ] exceeding the

critical density. Multiplying this by ρ gives the mass per unit volume stored in the haloes, and
subsequent division by M then gives a number density of these objects with masses between M
and M + dM :

n(M, t) dM =
ρ

M

∂ F
∂M

dM =
ρ

M2

√
2

π

δc
σM

exp

{
− δ2c
2σ2

M

} ∣∣∣∣d lnσM
d lnM

∣∣∣∣ dM. (4.10)

This is the so-called Press-Schechter mass function which gives the co-moving number density
of objects in the mass range M and M + dM . By the simple change of variables ν := δc(t)/σM ,
Eq. 4.10 can be rewritten as:

n(M, t) dM =
ρ

M2

√
2

π
ν exp

{
−ν2

2

} ∣∣∣∣d lnσM
d lnM

∣∣∣∣ dM. (4.11)

The leftover derivative depends on the functional form of the power function. As done before,
the focus will lie on the implications of a pure power law, for which Eq. 4.4 already stated:

σ(M)2 = AM−(n+3)/3 = AM−α, (4.12)

where A is now the explicit proportionality factor. This relation allows one to express masses in
terms of a characteristic mass M∗:

ν√
2
=

δc√
2σ(M)

=
δc√
2A

M (n+3)/6 =

(
M

M∗

)(n+3)/6

=

(
M

M∗

)α/2

, (4.13)

where the mass M∗ is now defined as [Van de Weygaert 2004c]:

M∗ ≡

(√
2A

δc

)6/(n+3)

=

(
2A

δ2c

)3/(n+3)

=

(
2A

δ2c

)1/α

. (4.14)

Thereby, the mass function predicted by the Press-Schechter formalism (Eq. 4.10) for a pure
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Figure 4.2: The Press-Schechter mass function n(M, t) as derived in Eq. 4.15, multiplied by
M2/ρ. For the spectral index in the power law, a value of n = 1 was chosen. The time-
dependence enters via Eq. 4.14 into the characteristic mass, and is plotted as five different
values for the redshift z.

power law spectrum P (k) expressed in terms of M∗ is given by:

n(M, t) dM =
ρ

M2

1 + n/3√
π

(
M

M∗

)(n+3)/6

exp

{
−
(

M

M∗

)(n+3)/3
}

dM. (4.15)

This equation is plotted for a range of redshift values in Fig. 4.2 in an n = 1 universe. Note
the physical implications of this result. First of all, it is clear that the exponential term signifies
an exponential decay for large mass halos: the number density of collapsed structures hence ap-
proaches zero as M → ∞. Secondly, in the moving-barrier picture, δc(t) is a strictly decreasing
function of time. Hence, as the universe evolves, the characteristic mass in Eq. 4.14 starts to
increase, such that extremely heavy halos can start to appear. From the physical point of view,
this can be understood from later halos having had enough time to merge with other overden-
sities to form larger objects as time progresses. The PS mass function has for instance been
used to calculate the number densities of galaxies [Cole and Kaiser 1989; White and Frenk 1991;
Kauffmann, White, and Guiderdoni 1993], clusters of galaxies [Zhan 1990; Bartlett and Silk 1993]
and Lyman-α clouds [Kauffmann and Charlot 1994; Mo and Miralda-Escude 1994]. Moreover,
it has also led to the development of models of halo substructures and mergers [Rodrigues and
Thomas 1996; Bower 1991; Lacey and Cole 1993; Lacey and Cole 1994].

4.2 Extended Press-Schechter Formalism

The mathematical rigor that the original Press-Schechter formalism lacked, in particular the
magical fudge factor 2, was later provided by what is now referred to as the Extended Press-
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Schechter theory or the Excursion Set Formalism [Bond et al. 1991]. The seminal paper by Bond,
Cole, Efstathiou, and Kaiser (BCEK) showed how the same results of regular PS theory could be
obtained from a different point of view by considering so-called excursion sets. The quantity σ2

M

takes a central role in this approach and is therefore often denoted by S for shorthand notation.
As noted before, in a hierarchical model for cosmic structure formation, S is in a one-to-one
relation with the filter mass M or, equivalently, the filter size R: for a given S, one can always
find the corresponding R or M , or vice versa.

Excursion sets will be of particular importance in the last chapter of this work when they are
applied in the context of the evolution of voids. For now, this section focuses on deriving and
understanding the EPS theory first for the simpler overdense halos. As for the PS formalism
described before, this will be significantly easier than the full story, because now only the critical
barrier for halos δc has to be taken care of. In the last chapter, besides the cloud-in-cloud
problem, there will be three additional problems that are best handled by using excursion sets.

4.2.a Excursion Sets

In the excursion set method, the behaviour of the density field δS smoothed on a scale R (and
thereby S) is analyzed for each point in the field for a range of radii. By plotting them as a
graph of points (S, δS), the neighbourhood around this point is, so to say, being scanned for
over- and underdense regions. δS drops to zero when the filter mass approaches infinity since
the whole universe would then be smoothed to the average density ρ, such that the fluctuation
has to drop to zero. So, the starting point of such a graph has to be the point (0, 0). After that,
decreasing M will lead δS to take on non-zero values if embedded in a universe with non-zero
density fluctuations. Of course, the precise path taken subsequently depends on the surroundings
of the point of interest. If two points close together are compared to one another, one would
see that at the largest M scales, the paths taken would be almost identical. However, when
the filter size decreases to the order of magnitude of the distance between the two points, the
corresponding paths will also naturally start to differ. Within the EPS formalism, of particular
interest is the filter scale R where the path crosses the δc border for the first time. This is dubbed
the first up-crossing and signifies the mass M of the halo in which the point will eventually be
included. Fig. 4.3 shows an example of such a trajectory, taken from a 2D GRF with spectral
index n = −2.5. The smoothing of the random field was done using a top-hat filter of vary-
ing radius, so the resulting trajectory is strictly speaking not a true Markovian random walk.
Nevertheless, the path δ(S) can be seen to correspond to the cloud-in-cloud problem, where an
overdense region is surrounded by matter that also ultimately collapses to a bound structure.

In the EPS formalism, the window function is chosen to be the sharp k-space filter, defined in
Eq. 1.28, rather than the simpler real space top-hat function or the Gaussian smoothing filter.
For the sharp k-space filter of size R (and corresponding mass M and variance S), the smoothed
density profile is given by:

δS(x⃗) =

∫
dk⃗ δ(k⃗) Ŵ (k⃗R)eik⃗·x⃗ =

∫
k<kc

dk⃗ δ(k⃗)eik⃗·x⃗, (4.16)

with kc = 1/R. Now, whenever S is increased, we know by the one-to-one correspondence that
M decreases. Thereby, R decreases and kc increases: when slightly increasing S, δS(x⃗) takes on
the same value as before plus the contribution of the shell by which the k-sphere increases. For
a Gaussian random field, this means we are adding independent modes to the new value of δS ,
which bare no resemblance to any previous values. This would not be true for other smoothing
functions, thereby marking a major advantage of the sharp k-space filter [Mo, Van den Bosch,
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Figure 4.3: Three examples of a smoothed density trajectory as calculated in a 2D GRF with
spectral index n = −2.5 and a top-hat filtering function. The plots in the left column show
the GRF and the point at which the trajectory was taken. The surrounding circles indicate the
increasing size of the top-hat function. The plots on the right show the corresponding trajectories
δ(S). The mass element in the bottom row turns out to be a cloud-in-cloud: the overdensity is
surrounded by another overdense region.
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Figure 4.4: An example of three random walks, obtained by calculating δS for a range of S values
for three hypothetical points in the density field. Path B’ is obtained by mirroring path B for
all S > S1 in the dashed line. This line represents the collapse barrier for halos and would be
moving downward over time in the moving-barrier picture. The shaded region in the Gaussian
on the right above the barrier δc represents the fraction of trajectories above the barrier at S.
Since trajectories B and B’ are equally likely, an area of exactly the same size should be shaded
underneath the barrier, reflecting the fraction of trajectories that end up below the barrier, but
surpassed it at some point. Adapted from Mo, Van den Bosch, and White 2010; Bond et al.
1991.

and White 2010]. In essence, the new modes being independent with randomly distributed phases
implies that the paths (S, δS) are Markovian random walks, for which the mathematics involved
can be worked out analytically.

Fig. 4.4 shows an example of three such random walks, where path B’ is obtained by reflecting
path B in the dashed line, which represents the collapse barrier δc. If these hypothetical paths
were obtained by smoothing the GRF with a sharp k-space filter, then each of these trajectories
would be a Markovian random walk. In particular, this means that paths B and B’ are equally
likely to occur. The same figure also shows the shortcomings of the assumption made in the
original PS. This ansatz stated that the fraction of lines that lie above δc at S1 should be equal
to the fraction of matter that ends up in halos with a mass exceeding the mass M1 that cor-
responds to S1. Surely, this would not be the case for the mass element of trajectory B since
it has a density Q1 < δc for the smoothing size S1. Its density, however, does rise above the
critical collapse barrier between S2 and S3, and so the mass element would end up in a collapsed
structure of mass M > M3 > M1. But this immediately contradicts the previous statement,
hence one must conclude that the PS ansatz is in hindsight not self-consistent. Trajectories like
path B are not properly taken care of in the original formalism and is thereby not accounted
for when calculating number densities, but the solution to this apparent problem is surprisingly
simple. Path B’ is consistently described by the PS ansatz, and because of the use of the sharp
k-space filter, it is equally likely to appear as path B. Since it holds true that any failing path
has one, and only one, succeeding mirror version, the number density can simply be doubled to
take care of any missed trajectories. This explains precisely the origin of the fudge factor 2 in
the original PS formalism.
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4.2.b The Diffusion Equation

The PS ansatz is now replaced by the EPS ansatz:

The fraction of trajectories that have their first up-crossing through the critical col-
lapse barrier δS > δc(t) at a scale S > S1 is equivalent to the mass fraction that is
incorporated in halos of mass M < M1 at that time t.

If M → 0 as S → ∞, as is the case for the hierarchical structure formation models, essentially
each path will at some large S have a positive density fluctuation, such that over time all matter
elements will have to be part of some collapsed structure. Now as noted before for pure Brownian
random walks, when S increases by ∆S then δ changes by an amount dδ, where this increment
is completely determined by the contribution of new Fourier modes in the infinitesimal shell in
k-space. The trajectories δ(S) will thereby satisfy the diffusion equation [Mo, Van den Bosch,
and White 2010]:

∂Q

∂S
=

1

2

∂2Q

∂δ2
, (4.17)

where Q(δ, S) denotes the number density of trajectories at S within the range [δ, δ + dδ].2

Boundary conditions should be imposed on the differential equation in order to get sensible re-
sults. The trajectories δ(S) have to pass through the point (δS , S) = (0, 0) and reach (δS , S)
without have crossed an S′ < S for which δ(S′) > δc. The second condition is equivalent to
putting an absorbing barrier right at δc.

Including the boundary conditions, Eq. 4.17 can be solved analytically [Chandrasekhar 1943]:

Q(δS , S, δc(t)) =
1√
2πS

(
exp

{
−
δ2S
2S

}
− exp

{
−(δS − 2δc)

2

2S

})
(4.18)

The fraction of trajectories F (> S) that have their first up-crossing at an S′ > S is then given
by the integral:

F (> S) =

∫ δc

−∞
Q(δS′ , S′, δc(t)) dS′. (4.19)

Finally, the first-crossing distribution is calculated explicitly as:

f(S, δc) dS =
∂F (> S)

∂S
dS =

1√
2π

δc

S3/2
exp

{
− δ2c
2S

}
dS, (4.20)

and substituting in the first equality of Eq. 4.10, one obtains:

n(M, t) dM =
ρ

M

∂ F
∂M

dM =
ρ

M
f(S, δc)

∣∣∣∣ dS
dM

∣∣∣∣ dM (4.21)

=
ρ

M2

√
2

π

δc√
S
exp

{
− δ2c
2S2

} ∣∣∣∣∣d ln
√
S

d lnM

∣∣∣∣∣ dM. (4.22)

The mass function as predicted by the excursion set formalism exactly matches that of the PS
approach in Eq. 4.10. In this case, there was no need to include any ad hoc fudge factors to make
the solution consistent. The excursion set formalism hence provides the mathematical backbone
that the original Press-Schechter perspective sometimes slightly lacked.

2 BCEK showed that this partial differential equation is only slightly adapted in the case of smoothing functions
other than the sharp k-space filter applied here. The generalized version includes two new parameters: the drift
and variance parameters [Bond et al. 1991].
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4.2.c Excursion Sets in Other Applications

The excursion set theory forms the mathematical backbone of the Extended Press-Schechter for-
malism, though there exist many more applications within the field of cosmology. For instance, it
has been used to predict characteristic bubble sizes of HII regions during the epoch of reionization
and their statistical distribution [Furlanetto, Zaldarriaga, and Hernquist 2004; Lin et al. 2016;
McQuinn et al. 2007]. The size distributions in the reionization bubble network is essential in
determining the progress and duration of the reionization epoch, and for instance also affects the
CMB anisotropies [McQuinn et al. 2005; Zahn et al. 2005; Iliev et al. 2006a; Iliev et al. 2006b].
The correspondence between the analytical model, which once again assumes the bubbles being
perfectly spherical, and radiative transfer simulations of reionization are remarkable [Zahn et al.
2007; Mesinger and Furlanetto 2007; Zahn et al. 2011].

The next chapter focuses on applying set excursion theory to the objects that have been left
untouched till now: the cosmic voids. As will soon become clear, to properly describe the
underdense pockets, the second barrier δv should somehow be included in the story. This imposes
extra conditions on the smoothed density trajectories, since now two barriers have to be accounted
for instead of one [Sheth and Van de Weygaert 2004]. The details are left to the next chapter. As
it turns out, both the overdense halos as well as the underdense voids can be described in terms of
excursion set theory. It might not come as a surprise that this formalism can then also be used to
analytically compute the evolution of other components in the cosmic web: sheets and filaments
[Shen et al. 2006]. In a sense, these two can be interpreted as the higher-dimensional siblings
of halos: sheets refer to objects that collapsed along one axis, filaments to those that collapsed
along two, and halos to those objects which completed their triaxial collapse [Sheth, Mo, and
Tormen 2001]. Applying set excursion theory on this configuration allows one to compute the
mass fraction of the universe contained in each of these three objects. In hierarchical structure
formation models, sheets are composed of filaments, which in turn are made up of halos, while
every halo at a some time used to be a filament of the same mass, and much before that, a sheet
[Shen et al. 2006].

4.3 Halo Merging: Lacey & Cole Formalism

The (Extended) Press-Schechter theory has proved useful in predicting the number densities of
dark matter halos for a given mass and time. This later lead to the halo merger formalism
introduced by [Lacey and Cole 1993], which provides access to, for instance, the probability
mass distribution for the progenitors of a halo of a given mass. In their binary model, the EPS
formalism can then be used to deduce the merger and absorption rates of the overdensities, in
which the former refers to the fusion of two halos of similar size, and where the latter refers
to the continuous accumulation of matter on the existing halo. This rate naturally not only
depends on the masses of the two halos involved, but also on the properties of the cosmology
through the spectral index n and the density Ω0 Much effort is put in N -body codes to simulate
the gravitational interactions on some initial mass configuration, including advanced feedback
mechanisms such as energy injections due to star formation, which could then be used to nu-
merically determine these rates. Although these models might result in accurate results, having
access to analytical models to calculate halo merger rates is essential to shed light on the delicate
physics involved. The next chapter will derive the mathematical expressions discussed so far in
the context of voids and compares these to what the halo theory of Lacey & Cole predicts.

Merger trees play a crucial role in the Lacey & Cole formalism, offering a comprehensive un-
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Figure 4.5: Merger Tree. This figure schematically shows how separated clumps of mass (parent
halos) at earlier times (top of the diagram) merge under the effect of gravity into ever larger
structures. When two branches collide, a merging event takes place. The horizontal line t0
indicates the present time with a single halo of mass M . The time tf represents the first time
time that a parent halo has a mass M ′ > M/2. Note that this binary model assumes that
merging events always take place with two bodies involved. Source: [Lacey and Cole 1993].

derstanding of the hierarchical structure formation and merging history of dark matter halos.
These trees provide a powerful tool for tracking the evolution of structures and investigating the
growth of overdensities as time progresses. In this formalism, a merger tree represents the merg-
ing history of dark matter halos and graphically illustrates how smaller halos combine to form
larger overdensities, as depicted in Fig. 4.5. At the root of the merger tree, which corresponds
very contradictory to the top of the diagram, lies the initial conditions of the universe in terms
of the primordial density fluctuations. As the universe evolves over time, these fluctuations start
to grow and merge under the influence of gravity. Each branch of the merger tree represents
a merger event, where two halos combine to form a more massive halo. The branches connect
halos of possibly vastly different sizes at different cosmic epochs, which reflects the assembly
history of cosmic structures, all while conserving the total mass. The LC formalism utilizes the
statistical properties of these density fluctuations to determine the merger rates and construct
the merger tree. It is important to remember that this is built upon the assumption that merging
is a binary event, in which two halos collide to form one larger object. Many algorithms have
been developed with the specific purpose of calculating the merger tree [Kauffmann, White, and
Guiderdoni 1993; Sheth and Lemson 1999; Somerville and Kolatt 1999; Cole et al. 2000; Neistein
and Dekel 2008].
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Chapter 5
Hierarchical Evolution of the Void Population

The Press-Schechter theory discussed so far, and for that matter also the excursion set formal-
ism, only concerns the structure formation of overdense halos. In the context of the Extended
Press-Schechter formalism, combining the notion of excursion sets and the critical density col-
lapse barrier δc leads to the diffusion equation in Eq. 4.17. After imposing the relevant boundary
conditions, the solution to this partial differential equation can be directly related to the halo
mass function. This approach is nowadays preferred over the original work of Press & Schechter.
The main difficulty in their theory arose in the context of double counting the halos enclosed
in larger overdense structures. This cloud-in-cloud problem could be averted in the extended
formalism by introducing the absorbing barrier condition while solving the differential equation.

Counting voids is inherently more complex than counting halos. A first guess might be to simply
replace the critical density for collapse δc by the critical density for expanding voids δv in the
EPS formalism. However, as it turns out, voids are to be treated with more delicacy. As will soon
become clear, even though the GRF treats over- and underdensities on an equal footing, voids
should not be regarded as the negative mirror image of their overdense counterparts. Interactions
between voids and halos destroy the apparent symmetry between the two. This makes the same
problem immediately a lot more challenging, for now two barriers have to be taken into account:
the single-barrier excursion set formalism ought to be extended to intrinsically more complex
double-barrier theory. Physically speaking, dealing with both the halo and void barrier leads
to four typical mass configurations that could be found in the density field [Sheth and Van de
Weygaert 2004] (also see Figs. 5.1 and 5.2):
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Figure 5.1: The four modes in the extended excursion set formalism for voids. Each row shows
one of the characteristic mass configurations when including both halos and voids in the model.
The first column shows the smoothed density trajectories δ(S), where the dashes lines indicate
the halo and void barriers, while the second and third column graphically show the evolution
of such a mass distribution as predicted by an N -body simulation. Source: [Sheth and Van de
Weygaert 2004].

Cloud-in-Cloud: This mode is inherited from the halo theory and refers to collapsing clumps
embedded in larger overdense regions. These smaller subhalos should no longer be taken
into account when counting halos, since they are already part of a greater structure. Only
the largest cloud should therefore be counted.

Cloud-in-Void: Collapsed structures can also be embedded in an expanding void. The
halos are not easily torn apart by the expansion of the surrounding void, making this mode
relatively unimportant for halo formation [Sheth and Van de Weygaert 2004].

Void-in-Cloud: Although the naming suggests that this could perhaps be regarded as the
complement of the previous mode, the void-in-cloud configuration is inherently different
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from the cloud-in-void. As time progresses, the subvoid naturally tries to expand while the
surrounding overdensity compresses to form a virialized halo. The void will not survive this
process. This is often phrased as the void being squeezed out of existence by the collapse of
the surrounding overdensity [Sheth and Van de Weygaert 2004]. It is this particular process
that leads to a symmetry breaking that requires halos and voids to be treated differently.

Void-in-Void: The final configuration is analogous to the cloud-in-cloud problem. It de-
scribes a situation in which underdense subvoids are embedded in bigger, still underdense,
structures. The largest void is selected when counting voids and the smaller subvoids
should be disregarded.

Together, these four modes show two important physical interactions. On the one hand, as
was the case in overdense halos, voids may combine with other voids in merger events. An
illustrative example is shown in the first row in Fig. 5.6. Using an N -body simulation, each
panel shows the time evolution of some initial density configuration, where over time a web-like
structure appears. Of particular interest in this context is the appearance of small voids in the
center panel. As time progresses, these subvoids merge together into ever larger voids until one
large underdense structure remains in the last panels, surrounded by filaments and similarly
grown underdensities. On the other hand, besides growing through combining, voids can also
cease to exist. This process is encapsulated in the void-in-cloud mode and has no direct analog
in halo theory. The bottom row in Fig. 5.6 shows this process in practice for three different
voids. In each panel, the void depicted in the center is surrounded by matter moving towards
the underdensity, as is denoted by the arrows representing velocity vectors. None of these three
voids can escape their fate: sooner or later, matter penetrates the underdensity after which the
void size inevitably drops, until at some point they are simply eradicated.
This chapter is structured as follows. The excursion set formalism introduced in the last chapter
is made compatible with voids by including the second barrier, in what has become known as the
Sheth & Van de Weygaert Model. The second section combines the results of the first section
with the mathematical techniques of Lacey & Cole, introduced in the previous chapter. In time,
this leads to conditional void size distributions, void merger rates, and void absorption rates.
These are key quantities that help in understanding the evolutionary properties and dynamics
of voids.

5.1 Void Excursion Sets

To count the number of voids, one is interested in those trajectories that reach the critical density
value for voids δv at some scale S, without having crossed the critical density value for halos δc
at some earlier pseudotime S′ < S. The trajectories for which this last statement is not true
are those that are underdense regions on the small scales and overdense regions on the larger
scales. These are precisely the void-in-clouds that should be omitted when counting voids, for
they are known to cease to exist when the trajectory surpasses δc and the surrounding cloud
collapses. As calculated in the spherical model for voids, a natural choice for the void barrier is
δv = −2.717. The story is slightly more complicated for the halo barrier. Choosing the value
δc = 1.686 supposes that the overdensities already collapsed into bound structures. Voids that
are trapped in such overdense structures are subject to the infall of matter, decreasing their radii
until at full collapse they simply disappear. Any void embedded in an overdensities that already
surpassed the point of turn-around will also already see its diameter shrinking. Hence, by impos-
ing δc = 1.686, the voids in collapsed structures are taken to have a zero radius, while those in
collapsing structures are not altered. This choice of the void barrier value thereby overestimates
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Figure 5.2: Four trajectories as calculated in a 2D GRF with spectral index n = −2.5 and a top-
hat filtering function. The plot on the left shows the GRF and the point at which the trajectory
will be taken, and on the right, the corresponding smoothed density paths are shown. From top
to bottom, this shows the cloud-in-cloud, cloud-in-void, void-in-cloud, and void-in-void modes.
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the size of embedded voids. A value of δt-a = 1.062, conversely, underestimates the size of voids.
In this case, all voids that are embedded in halos that underwent turn-around are taken to have a
diameter of zero, even though they could very well have some non-zero radius. Ongoing research
tries to find an optimal choice of δc in this void-in-cloud problem, for now a value of 1.686 is
adopted when necessary, while keeping in mind that this overestimates the typical void size.

Figure 5.3: Scaled void size distribution. The curves show the simplified distribution f(ν) of the
fraction of trajectories crossing δv without having crossed δc at some lower S, according to Eq.
5.5 with three different values for the cloud-and-void parameter. A constant value of δv = −2.717
was adopted for the void barrier. Three different values for the halo barrier are used: δc = 1.686
as predicted by the spherical collapse model in an EdS, δc = 1.062 as the turn-around factor
found in the same model, and δc → 0 as a limiting case in which the void-in-cloud problem is
completely irrelevant. More massive voids correspond to lower S and thereby higher ν ≡ δ2v/S.
The void-in-cloud problem is irrelevant for them.

5.1.a Void Size Distribution

The excursion set formalism for halos has been extended to include the effects of the void barrier
δv by Sheth and Van de Weygaert 2004. This chapter is built entirely upon these results. Let F
denote the fraction of trajectories that cross δv at some pseudotime S, without having crossed
δc at some S′ < S. Physically speaking, F should be equal to the first-crossing distribution (Eq.
4.20) through the threshold δv minus the number of trajectories that cross δc for some smaller
S:

F(S, δv, δc) = f(S, δv)−
∫ S

0
f(S′, δc) · f

(
S, δv

∣∣∣ S′, δc

)
dS′. (5.1)

The first term in the integrand represents those trajectories that pass through the collapse barrier
δc at time S′, the second term filters out those paths that pass through δv at scale S, given that
they already passed through the point (S′, δc). Integrating the product thereby gives the number
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of trajectories that pass through (S, δv) and (S′, δc) with S′ < S. This removes all the void-in-
cloud underdensities, but leaves for example the cloud-in-void situations untouched. The solution
to Eq. 5.1 can be found through Laplace transformations [Sheth and Van de Weygaert 2004]:

S F(S, δv, δc) =

∞∑
j=1

j2π2D2

δ2v/S

sin (jπD)

jπ
exp

{
−j2π2D2

2δ2v/S

}
, (5.2)

where D denotes the void-and-cloud parameter:

D ≡ |δv|
δc + |δv|

. (5.3)

This parameter quantifies the influence of halo evolution on the evolving population of clouds.
Its meaning becomes clearer upon integrating F [Sheth and Van de Weygaert 2004]:∫

F(S, δv, δc) dS = 1−D =
δc

δc + |δv|
, (5.4)

which represents the fraction of mass contained in voids. When the void-and-cloud parameter is
small, then the probability that the smallest voids disappear through the void-in-cloud process
decreases. By the above relation, that implies that most of the mass is incorporated in voids.
The converse states that the bigger D becomes, the smaller the mass fraction in voids will be
since the void-in-cloud process effectively removes engulfed voids from the counting process.

Infinite series are somewhat cumbersome to work with since the true functional form is not
directly visible. For δc/|δv|≥ 1/4, Sheth and Van de Weygaert 2004 approximate Eq. 5.2 to:1

νf(ν) ≈
√

ν

2π
exp
{
−ν

2

}
exp

{
−|δv|

δc

D2

4ν
− 2D4

ν2

}
, (5.5)

where ν ≡ δ2v/S = δ2v/σ
2 is the fractional underdensity and νf(ν) dν/ν ≈ SF dS/S. The first

exponential shows the decaying number density for large voids, while the second exponential
suppresses the existence of tiny voids. The peak of the distribution can be determined graphically
to correspond to ν ≈ 1. Eq. 5.5 can be rewritten using the chain rule in terms of S and the
barriers explicitly:

f(ν) dν = f(δ2v/S) d(δ2v/S) =
1√
2π

δv

S3/2
exp

{
− δ2v
2S

}
exp

{
−|δv|

δc

D2S

4δ2v
− 2D4S2

δ4v

}
dS (5.6)

Note that in the limit where D → 0, corresponding to a universe in which the void-in-cloud
process can be safely ignored, the second exponential term approaches unity. This restores the
broken symmetry between the void-in-cloud and cloud-in-void modes: both do not significantly
contribute to the counting of voids. In this limit, the resulting expression for the void distribution
in Eq. 5.6 takes on the same mathematical form as Eq. 4.20 for the halo distribution.

1 Jennings, Li, and Hu 2013 argued that the accuracy of this approximation is uncontrolled in certain limits and
instead propose to use a piecewise continuous approximation, where four terms of Eq. 5.2 remain. However,
this work will stick to Eq. 5.5 due to its validity in the relevant regime and due to the fact that it is easy to see
that it reduces to Eq. 4.20 in the limit where D approaches zero.

48



5.2. MERGING & ABSORPTION CHAPTER 5. HIERARCHICAL VOID POPULATION

5.1.b The Void Mass Function

Determining the mass of halos is relatively easy. After all, they form overdensities whose gravita-
tional effect could technically speaking be measured and reverse-engineered to mass distributions.
This becomes slightly more challenging in the context of the cosmic underdensities. One way to
infer the mass for a void is to use the simplest conversion from volume to mass via the average
density: M = ρ · V/(1.697)3, where the value 1.697 corresponds to the factor by which the co-
moving radius of a matured void increased according to Eq. 3.53. Similar to the result in halo
excursion theory, the number density n of voids of masses within [M,M + dM ] at time t can be
determined to be:

n(M, t) dM = SF ρ

m2

∣∣∣∣ d lnS

d lnM

∣∣∣∣ dM (5.7)

=

√
ν

2π
exp
{
−ν

2

}
exp

{
−|δv|

δc

D2

4ν
− 2D4

ν2

}
ρ

M2

d lnS

d lnM
dM, (5.8)

where again the time dependence enters via the barrier values. Besides a formulation in terms
of mass M , one can equally well describe the void distribution in terms of volume or radius:

σ2(M) = S(M) = δ2lin

(
M

M∗

)−α

= δ2lin

(
V

V∗

)−α

= δ2lin

(
R

R∗

)−3α

, (5.9)

where α = (n + 3)/3 and where a pure power spectrum P (k) ∝ kn was assumed. The void
scale distribution in Eq. 5.6 may therefore equally well be rewritten in terms of mass, volume or
radius:

f(S) dS ∝ f(M) dM ∝ f(V ) dV ∝ f(R) dR. (5.10)

The cumulative mass fraction P(> M, t) found in voids can be found upon integrating Eq. 5.6:

P(> M, t) =

∫ ∞

M

1√
2π

δv(t)

S3/2(M ′)
exp

{
− δ2v(t)

2S(M ′)

}
exp

{
−|δv(t)|

δc(t)

D2S(M ′)

4δ2v(t)
− 2D4S2(M ′)

δ4v(t)

}
dM ′.

(5.11)

In particular, in the limit where D → 0, this approaches:

P(> M, t) =

∫ ∞

M

1√
2π

δv(t)

S3/2(M ′)
exp

{
− δ2v(t)

2S(M ′)

}
dM ′ = erfc

(
δv(t)√
2S(M)

)
, (5.12)

where erfc(x) denotes the complimentary error function. Indeed, as M → 0 and hence S → ∞,
it follows from this result that P(> 0, t) = 1.

5.2 Merging & Absorption

The trajectories δ(S) discussed so far can be used to explore the merging histories of halos and
voids. Following these merging events in the normal temporal sequence means that the trajec-
tories start at early times t with low masses and grow over time. In terms of trajectory plots,
reading off the accretion events should then be done by starting at a high S and continuing to
the left. The mass of the object is taken to correspond to the lowest S for which the trajectory
crosses the barriers δc or δv. The horizontal jumps when moving from one barrier-crossing to
the other corresponds to sudden increases in the mass of the object. These can be interpreted
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as merging events [Lacey and Cole 1993], as is depicted graphically in Fig. 5.6. In fact, any
time δ increases can be interpreted as tiny accretions of mass. Following the work by Lacey and
Cole 1993 on halo merger rates in hierarchical models, this section is dedicated to finding the
analogous result for voids. These calculations were already performed for the largest voids by
Russell 2013, by taking the limit D → 0.

5.2.a Conditional Void Size Distribution

Recall that the general formula for the fraction of trajectories passing through (S, δv), only
permitted to pass through δc for some S′ > S, is given by Eq. 5.6. The probability that a
trajectory has its first barrier-crossing at |δv,1| in the range [S1, S1 + dS1], given that it already
passes through |δv,2| < |δv,1| at S2 < S1, will be denoted by fS1

(
S1, δv,1

∣∣∣ S2, δv,2

)
dS1. By

realizing that this is nothing more than Eq. 5.6 after shifting the origin to new starting position
(S2, δv,2), a simple variable transformation |δv|→ |δv,1|−|δv,2|, S → S1 −S2 and δc → δc,1 − |δv,2|
is enough to calculate the conditional probability [Lacey and Cole 1993; Bond et al. 1991; Bower
1991]:

f
(
S1, |δv,1|

∣∣∣ S2, |δv,2|
)

dS1 =
1√
2π

|δv,1|−|δv,2|
(S1 − S2)3/2

exp

{
−(|δv,1|−|δv,2|)2

2(S1 − S2)

}
exp

{
−|δv,1|−|δv,2|
δc,1 − |δv,2|

D2
(S1 − S2)

4(|δv,1|−|δv,2|)2
− 2D4

(S1 − S2)
2

(|δv,1|−|δv,2|)4

}
dS1. (5.13)

where now the adapted void-and-cloud parameter D takes the specific form:

D =
|δv,1|−|δv,2|

δc,1 − |δv,2|+|δv,1|−|δv,2|
=

|δv,1|−|δv,2|
δc,1 + |δv,1|−2|δv,2|

. (5.14)

Meanwhile, Eq. 5.9 can be used to find the derivative of S with respect to M , V and R:∣∣∣∣ d lnS

d lnM

∣∣∣∣ = ∣∣∣∣ d lnS

d lnV

∣∣∣∣ = α and
∣∣∣∣d lnS

d lnR

∣∣∣∣ = 3α, (5.15)

which allows for the conditional probability in Eq. 5.13 to be re-expressed in terms of the
corresponding radii:

f
(
R1, |δv,1|

∣∣∣ R2, |δv,2|
) ∣∣∣∣ dS1

dR1

∣∣∣∣ dR1 =
3αδ2lin,v,1(|δv,1|−|δv,2|)

√
2πR1

(
δ2lin,v,1

(
R1
R∗

)−3α
− δ2lin,v,2

(
R2
R∗

)−3α
)3/2

(
R1

R∗

)−3α

exp

− (|δv,1|−|δv,2|)2

2

(
δ2lin,v,1

(
R1
R∗

)−3α
− δ2lin,v,2

(
R2
R∗

)−3α
)


exp

−|δv,1|−|δv,2|
δc,1 − |δv,2|

D2
(
δ2lin,v,1

(
R1
R∗

)−3α
− δ2lin,v,2

(
R2
R∗

)−3α
)

4(|δv,1|−|δv,2|)2


exp

−
2D4

(
δ2lin,v,1

(
R1
R∗

)−3α
− δ2lin,v,2

(
R2
R∗

)−3α
)2

(|δv,1|−|δv,2|)4

 dR1. (5.16)
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Figure 5.4: Conditional void size distribution. The plot shows the conditional probability of a
void of size R1 at time δv,1 = δv(1 + z1) later being merged into a void of size R2 = 2R1 at time
δv,2 = δv, as calculated in Eq. 5.16 with a universe in which n = −1. A characteristic radius
of R∗ = 8h−1Mpc and σ8 = 0.8 were chosen for normalisation. The dashed lines represent
the result for halos, the solid curves the same configuration but then for voids. The exponential
cut-off for halos at large radii is also apparent for the voids. Note how this decay moves to higher
radii for more recent redshifts, which is indicative of hierarchical structure formation. A second
cut-off at relatively low radii is unique to voids and stems from the void-in-cloud problem.

This quantity can be interpreted as the conditional probability that a void of size R1 at time
t1 incorporates into a void of size R2 at a later time t2. In a binary model, choosing R2 = 2R1

could be used to get an indication of the conditional probability of doubling in size in a certain
time frame. This is shown in Fig. 5.4 for the case of an n = −1 universe and where z2 = 0
was set for convenience. For both halos and voids, there is an exponential cut-off at large scales
in the size probability distribution that moves to higher radii for smaller redshifts. It is also
clear that the distribution reaches the highest values for increasing redshift. In a hierarchical
model for structure formation for halos, this could be interpreted as the merging of high redshift
overdensities to form larger objects in more recent times [Lacey and Cole 1993; Russell 2013].
The void-in-cloud asymmetry breaking causes the void distribution to have a second exponential
decay at low radii: a tiny void cannot merge into a void double its size, since the latter were
already removed by void collapse at that redshift. As expected in hierarchical models, also this
cut-off moves to higher radii for decreasing redshift.

5.2.b Power Law Dependence

The conditional void size probability in Fig. 5.4 was calculated for an n = −1 power spectrum,
though it is interesting to compare this to other toy universes. In an n = 0 universe for instance,
the initial conditions do not contain as many large blobs as compared to the n = −1 model. The
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Figure 5.5: The conditional probability of a void of size R1 at time δv,1 = δv(1 + z1) later being
merged into a void of size R2 = 2R1 at time δv,2 = δv, as calculated in Eq. 5.16. The figure at the
top corresponds to a pure power law universe with n = 0, while the bottom figure corresponds
to n = −2. Again, the solid lines indicate the results for voids, while the halo lines represent
the halo theory. The dissimilarity is caused by the void-in-cloud problem. As for the case where
n = −1, halos have a single exponential decay at high radii, whereas voids also have a second
cut-off at lower radii.
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Figure 5.6: Void merging (top row) and collapsing (bottom row). This schematic graphic aims to
show the two main modes in the evolution of voids. The top row shows the result of an N -body
simulation in increasing time order. As time progresses, a web-like structure emerges with clearly
visible underdensities. These voids slowly merge to form the larger underdensity visible in the
rightmost panel. The bottom row shows three separate instances of void collapse, with slightly
different mass configurations. The arrows indicate velocity vectors. Over time, the voids located
at the center of each panel cease to exist as matter hails down. Source: [Van de Weygaert and
Van Platen 2009].

conditional void size probability for this particular system, as is visible in the top diagram of
Fig. 5.5, is shifted to slightly lower radii. The main difference is the behaviour for the smaller
halos: in an n = −1 system, the probabilities locally remained constant as a function of small
radius, but in an n = 0 this likelihood decreases for smaller and smaller halos. The conditional
halo size distribution all peak at some radius between 10 and 100 h−1Mpc in the curves drawn.
Exactly the opposite happens in an n = −2 universe, in which larger structures appear in the
initial density field: for halos, the conditional probability rises as the radius decreases. The high
radius cut-off for both structure types move to higher radii, as visible in the bottom diagram of
Fig. 5.5.

5.2.c Merger Rates

In order to calculate the merging and absorption rate, first another conditional probability has
to be calculated. The conditional probability that a trajectory first moves through (S1, δv,1) and
then develops to move through δv,2 within some range [S2, S2 + dS2] can be directly obtained
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from Eq. 5.13 and is given by the following expression:

f
(
S2, δv,2

∣∣∣ S1, δv,1

)
dS2 =

fS1

(
S1, δv,1

∣∣∣ S2, δv,2

)
dS1 · fS2 (S1, δv,1) dS2

fS1 (S1, δv,1) dS1

=
1√
2π

|δv,1|−|δv,2|
(S1 − S2)3/2

δv,2
δv,1

(
S1

S2

)3/2

exp

{
−(S1|δv,2|−S2|δv,1|)2

2S1S2(S1 − S2)

}

exp

{
−|δv,1|−|δv,2|
δc,1 − |δv,2|

D2
(S1 − S2)

2

4(|δv,1|−|δv,2|)2
− 2D4

(S1 − S2)
2

(|δv,1|−|δv,2|)4

}

exp

{
− D2

4δc,1

(
S2
2

δv,2
− S2

1

δv,1

)
− 2D4

(
S2
2

δ4v,2
− S2

1

δ4v,1

)}
dS2 (5.17)

This quantity is interpreted as the probability that a void of a mass M1 at time t1 will have
merged at a time t2 > t1 and gained a mass in the range [M2,M2 + dM2]. The mean transition
rate is obtained by taking the limit of Eq. 5.17 when |δv,2|→ |δv,1| ≡ δv and |δc,1| ≡ δc, such that
|δv,1|−|δv,2|= dδv [Lacey and Cole 1993]. To first order in dδv, this becomes:

d2p

dS2 d|δv|
(S2 → S1 | δv) =

1√
2π

(
S1
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The analogous result derived for halos is interpreted as an indicator for merger events, happening
in some step with size ∆δv [Lacey and Cole 1993]. In the infinitesimal case shown above, this re-
duces so a single accumulation event, hence Eq. 5.18 can be understood as the probability that a
void of a volume congruent to S1 merges with another void with a volume congruent to S2−S1 in
a time interval d|δv|. From now on, Eq. 5.18 will be referred to as the void transition probability.

The void merging rate is defined to be the rate of change in the transition probability in terms
of the total increment in volume due to merging events, all per unit time [Lacey and Cole 1993;
Russell 2013]. The void merging rate is thereby:
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This quantity, d2p/d ln∆V d ln t, represents the number of voids of size ∆V ≡ V2 − V1 that
are merged in one Hubble time by a void of volume V1. For an EdS universe specifically,
| d ln|δv|/d ln t | = 2/3. The resulting void merging rate in an n = −1 universe is shown in
the left plot of Fig. 5.7, against the same result for halos in the graph on the right. The region
in the top-left corresponds to the minor merging events and the area in the bottom-right to the
major merging events. The latter is mainly applicable for the smaller objects since the largest
objects do not have many neighbors of similar sizes to merge with. It is not easy to see how
the results for underdensities differ from that of the overdensities in this particular figure, so
Fig. 5.8 specifically shows the difference in the curves as halos minus voids. The plot suggests
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Figure 5.7: Void and halo merger rates. The plot on the left shows the rate at which the growing
voids merge as predicted by Eq. 5.19 for an n = −1 universe, and the plot on the right shows the
analogous results for halos. Four different values for V1/V∗ are followed, essentially corresponding
to voids of four different initial sizes. Again, the values R∗ = 8h−1Mpc and σ8 = 0.8 were used
for normalisation. The top-left region of each plot corresponds to the minor merger events in
which, for example, relatively small objects collide with an initially large V1. The bottom-right
area can be associated with big merger events, in which the mass of the final product is much
larger than that of the main progenitor. Note how functional form starts to differ between voids
and halos in this region.

that small merger events are more common for halos than for voids. Recalling that small merger
events consist of the accretion of relatively small objects onto existing larger structures, this
observation could be tied to the fact that the number density of small voids is severely limited
by the void-in-cloud problem, as opposed to halos.

A power spectrum with a smaller value of the spectral index n has more power on large scales
compared to small scales, which would make major merger events more frequent. This reasoning
is indeed confirmed when performing the same calculations in an n = −2 universe, as can be
checked in Fig. A.13. The opposite reasoning holds true for higher spectral indices: more power is
found on the smaller scales, making minor merger events more common. This is again confirmed
by the results of Fig. A.15.

5.2.d Absorption Rates

The accretion rate for halos is defined to be the rate of mass increase due to minor mergers,
and the absorption rate is defined to be the analogous quantity but for voids. This rate can be
interpreted as the mass- or volume-weighted merger rate, so its functional form for voids simply
comes down to multiplying 5.19 by ∆V/V1 [Lacey and Cole 1993]:
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Figure 5.8: Halo - void merger rate difference. These curves show the difference between the
halo merger rate and void merger rate for the n = −1 universe, as depicted in Fig. 5.7. Note
how the y-axis is no longer log-scale. The difference between the two is the largest for minor
merger events, indicating that small mergers are more common for halos than for voids. Beware
that the difference goes to zero for the largest merger events, but that this simply follows from
both merger rates approaching zero in that limit.

In other words, the quantity ∆V/V1 ·d2p/d ln∆V d ln t may be interpreted as the fractional mass
accreted during one Hubble time. An example is shown in Fig. 5.9, in which the absorption rate
is compared between voids and halos. Unlike merger rates, the absorption and accretion rates
are well-peaked at a value of ∆V/V1 ∼ 10−1 − 100, indicating that these structures gain most of
their mass by merging with objects of very similar sizes. The overall shape of the distribution
has a complex dependence on the initial void size V1/V∗ in the case of voids but shows a clear
ordering when returning to the halo example. Also note how, for instance, the V1/V∗ = 0.25
curve is heavily attenuated in the case of voids. As of now, it is not yet clear how the vast
difference between these results arises and has to be studied in future work. For reference, also
the difference between the curves is explicitly shown in Fig. 5.10.
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Figure 5.9: Void absorption and halo accretion rates. The plot on the left shows the absorption
rate for voids as predicted by Eq. 5.20 for an n = −1 universe, and the plot on the right
shows the analogous accretion results for halos. Four different values for V1/V∗ are followed,
essentially corresponding to voids of four different initial sizes. Again, the values R∗ = 8h−1Mpc
and σ8 = 0.8 were used for normalization. For both voids and halos, the distributions are well-
peaked for ∆V/V1 ∼ 10−1 − 100. This shows that these structures gain most of their mass by
merging with objects of approximately equal sizes. Also note how the curves corresponding to
the same initial void sizes have vastly different scales when comparing voids to halos. The clear
ordering in the four curves seen for halos is suddenly lost in the case of voids.

Figure 5.10: Halo - void accretion rate difference. These curves show the difference between the
halo accretion rate and void absorption rate for the n = −1 universe, as depicted in Fig. 5.9.
Note how the y-axis is no longer log-scale. The curves show a strong dependence on the initial
void size V1/V∗. As explained in the main body, what exactly leads to these seemingly peculiar
results has not yet been determined and should be studied in future work.
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Summary & Discussion

The grand tapestry of the cosmos, where celestial ballets unfold and mysteries abound, contin-
ues to amaze generations of scientists. This thesis specialized in the formation of structures on
the largest cosmic scales and explored the differences that arise between overdense halos and
underdense voids. The first three chapters laid the foundation by discussing the evolution of the
primordial density fluctuation field with the help of linearized gravity and the spherical model.
Often assumed to be a Gaussian Random Field, the density field could be fully described in
terms of its first and second moments, or equivalently in terms of the power function. The com-
plex subsequent evolution of these blobs under the force of gravity is practically impossible to
calculate analytically, but by using the spherically symmetric shell model, the non-linear regime
could still be probed by means of the linearized theory. For halos, the infall epoch of overdense
clouds could be connected to the linearly extrapolated density excess, leading to the critical col-
lapse value δc. Similarly, for voids the epoch of shell-crossing was used to explore the underdense
regions in the non-linear regimes, which led to the critical value for shell-crossing δc.

Based on δc and the assumption of the primordial density field being a Gaussian Random Field,
Press & Schechter deduced a heuristic formula for the halo mass function. This model was later
formalized by Bond, Cole, Efstathiou, and Kaiser by approaching the same problem from the
point of view of excursion sets. The well-known cloud-in-cloud problem could now be accounted
for and led to a self-consistent theory. However, in order to include the cosmic voids in the model,
the excursion set formalism had to be extended to include the void barrier δv. This was pioneered
in the work of Sheth & Van de Weygaert. Adding voids does not simply add a single number
to the framework, because three new problems naturally arose: the void-in-cloud, cloud-in-void
and void-in-void modes. Especially the void-in-cloud model proved problematic for its ability
to remove small voids when these are embedded in overdense structures. Moreover, this mode
destroyed the symmetry between the halos and voids, though their similarity remained for the
biggest of voids. In the extended excursion set formalism, the two-barrier problem led to the size
distribution of voids and showed that indeed the number densities of small voids is attenuated by
the void-in-cloud mode. In the final subsection, conditional size probabilities, merger rates, and
absorption and accretion rates were compared between voids and halos. This revealed that these
quantities behave in a more complex, perhaps even erratic, manner than halos. The underlying
physical processes are yet to be understood in detail.

A natural next step for future research would be to try to understand the physical processes
shaping the void merger rates and void absorption rates and compare these analytical results
to numerical simulations. In particular, the void conditional size distribution, merger rate, and
absorption rate could be tested against these algorithms, to help identify for what void sizes the

58



SUMMARY & DISCUSSION

analytical results derived in this work are valid and applicable. Creating such a code is in reality
much harder than it seems, for it has to implement certain void-finding algorithms [Aikio and
Mahonen 1998; Einasto, Einasto, and Gramann 1989; Ryden 1995; Ryden and Melott 1996].
This essentially comes down to how a void should be defined in N -body simulations. In this
work, shell-crossing was used as an indicator for void maturity, but none of the numerical void
locators implement this condition. One of the main challenges is hence to build a numerical
framework that can handle the non-linear evolution of evolving voids.

Moreover, future work could look into the dependency of the void merger tree algorithm on
cosmological parameters and initial conditions. For example, the spherical model assumed an
Einstein-de Sitter universe for simplicity. In section 3.3 it was shown how these results general-
ize to other cosmologies for the overdensities and subsequently concluded that the halo collapse
barrier only slightly changed for different cosmological parameters. It could be interesting to
analyze to what extent this remains true for voids. In the case that the void barrier is again
weakly depending on Ωm,0, then that confirms that at least the results from the spherical void
model stay relatively constant. In the same section, the ellipsoidal model for halos was intro-
duced, which turned out to be a more reliable model for reality than assuming perfect spherically
symmetric overdensities. However, such an extension for the spherical void model would be irrel-
evant because of their tendency towards sphericity over time. In any case, it might be useful to
look specifically into the effect of other physical effects, such as the tidal forces mentioned before.

Finally, another interesting path to take is to complete the remaining applications of Lacey &
Cole’s halo theory to voids. The work of Russell 2013 already provides these in the case of the
largest voids, where the two-barrier problem essentially reduces to a single barrier. This work,
however, derived the conditional void size probabilities, void merging rates, and absorption rates
for voids of general sizes. Possible extensions of the void merger tree algorithm could look into
the void formation and survival times. The formation time of a void of mass M would be defined
as the time at which a parent void with a mass exceeding M appears for the first time in the
merger tree [Lacey and Cole 1993]. The void survival time could, for instance, be defined as
the time it takes before a void is incorporated into a void of double its size. Once again, the
functional forms for these quantities were already derived in Russell 2013 for the largest voids,
but the objective would be to generalize this to voids of arbitrary size.

In conclusion, the study of cosmic voids unveils the awe-inspiring tapestry of the universe’s grand
design. These vast chasms, where emptiness and darkness hold sway, provide an underresearched
decor for understanding the universe. Cosmic voids are celestial laboratories, where the cosmic
dance of gravity and expansion draws clear parallels and contrasts with the overdense halos.
Through the exploration of their formation, evolution, and statistical properties, a heroic quest
to unravel the mysteries of the universe awaits.
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Appendix A: Figures

Figure A.11: Conditional void size distribution. The plot shows the conditional probability of
a void of size R1 at time δv,1 = δv(1 + z1) later being merged into a void of size R2 = 2R1

at time δv,2 = δv, as calculated in Eq. 5.16 with a universe in which n = −1. A characteristic
radius of R∗ = 8h−1Mpc and σ8 = 0.8 were chosen for normalisation. The dashed lines represent
the result for halos, the solid curves the same configuration but then for voids. The exponential
cut-off for halos at large radii is also apparent for the voids. Note how this decay moves to higher
radii for more recent redshifts, which is indicative of hierarchical structure formation. A second
cut-off at relatively low radii is unique to voids and stems from the void-in-cloud problem.
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A.1. CONDITIONAL PROBABILITIES APPENDIX A: FIGURES

Figure A.12: The conditional probability of a void of size R1 at time δv,1 = δv(1 + z1) later
being merged into a void of size R2 = 2R1 at time δv,2 = δv, as calculated in Eq. 5.16. The
figure at the top corresponds to a pure power law universe with n = 0, while the bottom figure
corresponds to n = −2.
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A.2. MERGING RATES APPENDIX A: FIGURES

Figure A.13: The void merging rate as predicted by Eq. 5.19, against the same result for halos
in an n = −2 universe.

Figure A.14: The void merging rate as predicted by Eq. 5.19, against the same result for halos
in an n = −1 universe.

Figure A.15: The void merging rate as predicted by Eq. 5.19, against the same result for halos
in an n = 0 universe.
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A.3. ABSORPTION RATES APPENDIX A: FIGURES

Figure A.16: The void absorption rate as predicted by Eq. 5.20, against the same result for
halos, against the same result for halos in an n = −2 universe.

Figure A.17: The void absorption rate as predicted by Eq. 5.20, against the same result for
halos, against the same result for halos in an n = −1 universe.

Figure A.18: The void absorption rate as predicted by Eq. 5.20, against the same result for
halos, against the same result for halos in an n = 0 universe.
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