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Abstract

Early- and late-universe observations of the Hubble constant H0 show a systematic difference be-
tween the two inferred values, termed the Hubble tension. The inclusion of Early Dark Energy (EDE)
to the early universe acting as a cosmological constant before quickly decaying away can resolve this
tension as it increases H0 inferred from the cosmic microwave background (CMB). Here is studied the
inclusion of Rayleigh scattering to Fisher forecasts of a three parameter EDE extension to the ΛCDM
model. Rayleigh scattering is a secondary anisotropy of the CMB caused by the additional scattering
of neutral species produced during recombination with a unique frequency dependency (∝ ν4). EDE
Fisher forecasts show benefits when including the Rayleigh signal as it peaks a short time after recom-
bination, tightening constraints on the local expansion history. For this work the Python branch of the
Boltzmann hierarchy solver CAMB was modified to calculate, for a singe frequency, the total Thomson
+ Rayleigh power spectrum. The implementation is consistent with the older Fortran Rayleigh branch
of CAMB to sub-percentile level. The auto RR and cross TR spectra are calculated indirectly from the
total spectra which are accurate except for RR at the lowest ℓ. The EDE parameter forecast, includ-
ing PICO noise levels, give an improvement ranging 54 to 90% (depending on the parameter) for the
Rayleigh signal compared to the Thomson primary. This improvement is too high compared to previous
studies, particularly Ωch

2, H0 and fEDE. The missing cross-correlation terms in the covariance matri-
ces and only including temperature are the possible errors. However, the individual parameter errors
are slightly worse than other studies due to excluding polarization effects. Upcoming development in
the code, primarily including multi-frequency correlated Rayleigh signals, should clarify whether the
forecasts are accurate or correct them to only show minor improvements.
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1 Introduction

For decades, the Cosmic Microwave Background (CMB) has been one of the most critical foundations
of observational cosmology. Its existence provides a source for determining the physical properties of
the universe and is a landmark proof of the Big Bang theory. The first observations of the CMB by
Arno Penzias and Robert Wilson in 1965 measured an almost uniform blackbody spectrum, while small
anisotropies in the temperature and polarization spectrum predicted by cosmological models were later
confirmed by the space-based mission COBE [1]. Later missions mapped these primary anisotropies to
even higher detail, setting greater constraints on parameters in the standard cosmological model of our
universe. These primary fluctuations are expected to come from primordial density perturbations in a
plasma consisting of electrons, photons, H and He nuclei. The photons are in equilibrium with electrons
by Thomson scattering, the low-energy limit of Compton scattering, such that electrons cannot combine
with the nuclei, resulting in a plasma. After the universe expanded outwards sufficiently enough so that
the average temperature dropped below a level to sustain this equilibrium, the electrons combined with the
nuclei resulting in the universe becoming transparent to photons, seen today as the CMB. Power spectra
of the small variations in the CMB temperature and polarization maps show particular features, such as
acoustic peaks, providing constraints on the cosmological parameters as varying values result in minute
changes in the power spectra.

Over the years, these primary anisotropies have been analysed intensively. However more precise mea-
surements show limitations to the information gained from these cosmic features. Secondary anisotropies
previously undetectable are now measurable with next-generation detectors and will help further constrain
the cosmological parameters. One such secondary effect is Rayleigh scattering affecting the photon’s last
scattering surface. After recombination, most electrons will combine with nuclei, causing photons to rarely
scatter of electrons. However, the large presence of neutral species after recombination results in a small
fraction of photons scattering of these species. This effect leaves a small imprint on the CMB signal and
has a signature frequency dependency not shown in Thomson scattering due to the cross section being
proportional to ∝ ν4. Models predict the signal peaks some time after the primary signal and quickly
decaying away as the universe expands [2]. Moreover, a 4 percent increase in the polarization signal at
large scales and high frequencies is expected and is best detectable in the frequency range 200 ≤ ν ≤ 800
GHz [3]. However, the signal’s detectability is heavily limited by noise and foregrounds showing a similar
frequency dependency. No detection has been achieved at the moment although there is hope it is possible
within the next 10 years [4].

Nevertheless, parameter forecasts including Raleigh scattering effects are useful as it can predict pos-
sible improvements to the experiment constraining power and aid in the experimental design process.
Several codes have been developed that compute the CMB temperature and polarization spectra for a
wide range of cosmological models, one being CAMB. This code will be used and modified to implement
Rayleigh scattering effects to the power spectrum.

One cosmological conundrum that could benefit from including Raleigh effects in the power spectra
is the Hubble tension. For several years studies determining the Hubble constant H0 from early time
probes like the CMB systematically give a lower value than studies using local measurements from for
example Type Ia supernovae [5]. This inconsistency in H0 has not yet been solved and is not expected to
originate from measurements systematics thus giving rise to proposals that include new physics. One such
exotic hypothesis is Early Dark Energy (EDE) which theorizes a new early universe component acting as
a cosmological constant, increasing H0 determined from the CMB before quickly decaying away at some
critical redshift. Due to the late time probing of Rayleigh scattering on the CMB power spectra, inclusion
of Rayleigh in the EDE parameter forecasts can possibly increase the constraining power. Earlier studies
have shown that constraints on both the expansion history as well as the physical densities can benefit
from Rayleigh scattering [2], [6], [7]. For that reason, we expect that constraints on EDE could equally
benefit from Rayleigh effects.
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2 Theory

2.1 Physics of the Cosmic Microwave Background

A short time after the big bang the universe contained three main components: matter, radiation and
dark energy with radiation dominating the energy density at this early time. The radiation, consisting
of photons and neutrinos, was in thermal equilibrium with the matter component, made of the usual
elementary particles but also dark matter. This resulted in a photon-baryon fluid/plasma where the
photons are energetic enough to ionize the baryons causing a coupling to the matter component, consisting
mainly of hydrogen and helium. The free stream of electrons resulting from this equilibrium causes an
opaque universe as Thomson scattering between photons and electrons result in both particles having a
low mean free path.

Meanwhile, the combined matter and radiation energy densities drive the universe to expand as de-
scribed by the Friedmann equations [1]. This expansion stretches particle wavelengths, decreasing the
temperature by a factor of (1 + z) with z the redshift. After the universe cooled sufficiently atoms,
predominately hydrogen, began to form in a process called recombination as the average photon energy
decreased far below the ionization energy. Numerically, it is defined as the instant where the number
density of ions is equal to the neutral atoms [1]. Afterwards, decoupling is defined as the instant the rate
of Thomson scattering events became smaller than the Hubble parameter (describing the universes expan-
sion at that instant) causing photons to stop interacting with electrons resulting in a transparent universe.
Lastly, the epoch of last scattering is the moment an average photon underwent its last scattering of an
electron. Hence surrounding every observer there is a last scattering surface from which photons stream
freely. This is the moment where density perturbations in the plasma are transferred to the tempera-
ture and polarization anisotropies of the released CMB photons. Decoupling and last scattering follow
each other closely as a photon is unlikely to scatter once the universe expansion rate is greater than the
Thomson scattering rate [1].

The thermal equilibrium between the radiation and matter components results in the energy density of
the released photons to be described by a blackbody spectrum over the whole sky. However this observation
is contradicted by the causal horizon setting limits on how far information travelled (moving with speed
c) since the big bang. Meanwhile, the CMB is uniform on scales larger than this horizon scale causing
the horizon problem. Cosmic inflation provides a solution as it describes an early universe the size of the
Planck length and its contents in thermal equilibrium and causal connection [8]. The framework of this
universe is modeled by the Friedmann-Robertson-Walker (FRW) metric describing a homogeneous and
isotropic universe on large scales. On these small scales quantum fluctuations are the primary source of
density perturbations of the matter and radiation components. These tiny fluctuations are then projected
onto greater scales as inflation causes the universe to rapidly expand disconnecting patches formally in
causal contact. After inflation stops and the expansion slows down the horizon grows and the universe
becomes homogeneous on large scales with almost scale-invariant inhomogeneities on top. For a detailed
introduction to inflation, see [9].

The perturbations in the photon-baryon fluid can be described in terms of the curvature perturbations
R measuring the spatial curvature of a part of the comoving space-time slicing. The power spectrum of
the curvature perturbations can be described as a power law [10]:

∆2
R(k) = ∆2

R(k∗)

[
k

k∗

]ns−1

= As

[
k

k∗

]ns−1

, (1)

with k∗ some arbitrary chosen pivot scale, most often the statistical center of the data [5]. For CMB
anisotropies the Planck collaboration sets k∗ = 0.05 Mpc−1 [11] which we also adopt here. As is the scalar
amplitude of the matter power spectrum and ns the primordial spectral index of the scalar fluctuations
which inflation expects to be ns ∼ 1 producing a nearly scale-invariant spectrum [12]. The perturbations
in the energy density cause gravitational instabilities manifested as potential wells and hills. The photon-
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baryon fluid oscillate in this perturbed potential changing the distribution of the fluid which again alters
the gravitational field. As mentioned earlier, at decoupling the horizon had a finite scale of around 1◦ [8].
Thus before last scattering at scales smaller than the horizon, the fluid had time to compress. On even
smaller scales the compression continues until radiation pressure resist the fluid movement, halting it, and
then expands it again causing acoustic oscillations. The resulting acoustic peaks in the power spectrum
are described further in section 2.1.2.

Besides temperature anisotropies the CMB also contains a linear polarization signal, mainly curl-free
E and divergence-free B modes. These modes are harder to detect than the T signal. Nonetheless, the
E modes almost have been fully mapped with the B modes to be expected in future experiments. Both
these modes contain new information that are expected to help studies to fundamental physics [8]. The
E-mode is sourced by scattering of the quadrupole temperature anisotropy present around recombination
even when the radiation itself is unpolarized [2]. The B modes are sourced by quadrupoles induced by
gravitational-waves at recombination, which themself are sourced by the inflation tensor perturbations
[13].

The previous described properties of our universe are reasonable explained by the standard cosmological
model (or ΛCDM model) describing a universe containing three main components: a cosmological constant
(Λ), cold dark matter and ordinary matter. It assumes a spatially flat universe and the density parameters
summing to unity [5]. The simplest ΛCDM model contains six independent parameters (listed in Table
1) giving a reasonable fit to the latest observations, though extra parameters can be added to consider
more complex models. The parameters cannot be determined individually as significant degeneracies are
present in the CMB data. Often assumptions (priors) have to be made to constrain particular parameters
[8].

2.1.1 Power Spectrum

To quantify the properties of the CMB, the density anisotropies are converted to a power spectrum giving
a measure of the fluctuations over the angular scales. For this the CMB temperature observations can be
expanded around a mean T , along a direction n̂ as T (n̂) = T (1+Θ(n̂)), with Θ(n̂) ≡ δT (n̂)

T the fractional
temperature fluctuation [10]. Since the CMB anisotropies are described on the last scattering surface of a
sphere it is useful to express these fluctuations as a harmonic function expansion [1]:

Θ(n̂) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(n̂), (2)

with aℓm the multipole moments and Yℓm(n̂) the spherical harmonic functions. Here the multipole ℓ
roughly corresponds to the angular scale by θ ∼ π/ℓ [1]. Because theories cannot predict the exact
anisotropies, cosmologist are mainly interested in the statistical properties of this field [12]. One such
property of interest is the correlation function between two directions n̂ and n̂′:

C(θ) = ⟨Θ(n̂)Θ(n̂′)⟩, (3)

where cos(θ) = n̂·n̂′ is the angle between the two directions and ⟨·⟩ is the average over multiple realisations
of our universe [12]. The rotational invariance due to the isotropic sky means that the multipole correlator
function can be written as [12]:

⟨aℓma∗ℓ′m′⟩ = Cℓδℓmδℓ′m′ , (4)

where Cℓ is the angular power spectrum and thus related to the correlation function. The correlation
function in real space is related to Cl by [1]:

C(θ) =
∑
ℓ

2ℓ+ 1

4π
CℓPℓ(cos θ), (5)
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with Pℓ the Legendre polynomials. The angular power spectrum for the relevant CMB modes is defined
as [2]:

CXY
l = ⟨aXlmaYlm⟩, (6)

where X and Y can be T or E modes (the B modes sourced by gravitational lensing and tensor fluctuations
are not affected by Rayleigh scattering and thus not considered here). Averaging this power function
over all m moments (ranging from -ℓ to ℓ) at each ℓ gives (2ℓ + 1)Cℓ/4π [13]. Note that the power
spectrum is often portrayed as Dℓ = ℓ(ℓ + 1)Cℓ/2π as this gets constant at low ℓ for a scale-invariant
curvature spectrum. If the temperature and polarization fluctuations are Gaussian this quantity fully
characterizes the anisotropies in the CMB map and is used to deduce the cosmological parameters [13].
The measurements of the CMB temperature power spectrum for various experiments is shown in Figure
1. Here the monopole (ℓ = 0) of the CMB is the mean temperature T = 2.7255± 0.0006 K [13]. All CMB

Figure 1: CMB temperature power spectrum measurements from the Planck, WMAP, ACT and SPT
missions. Figure taken from Workman et al. [13].

mapping experiments, except COBE, are insensitive to the monopole as they measure only temperature
and polarization differences. Meanwhile, the dipole (ℓ = 1) is the greatest anisotropy and is caused by
the motion of the solar system relative to the isotropic CMB [13]. This term is always removed out of the
final CMB map. The higher order multipoles (ℓ ≥ 2) are due to the density perturbations present at the
last scattering surface of the CMB photons.

The high error at low ℓ (large angular scale) is due to cosmic variance. In earlier equations we averaged
over the ensemble of universe realisations. However, only our visible universe is observable to us introducing
an intrinsic error to every measurement we make of the cosmological properties. As said earlier, to deduce
the underlying distribution function we take the average over all (2ℓ + 1) multipoles. It can be shown
that this estimate of the power spectrum has a cosmic variance of [2/(2ℓ + 1)]C2

ℓ at each measured Cℓ

[10]. So at low ℓ, few independent modes are available to average over causing the high cosmic variance.
Meanwhile at high ℓ the cosmic variance is minor and dominated by other errors such as instrumental
noise, resolution and foregrounds [12].
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2.1.2 Primary anisotropies

The temperature and polarization anisotropies we observe today are well modelled by probing a background
FRW universe with linear perturbations whose evolution is affected by the cosmological parameters. To
see how these affect the power spectra we go over the TT auto spectrum (see Figure 1). The particular
shape of this spectrum is affected by the cosmological parameters and used to determine their exact values.
Starting at low ℓ the power spectrum start on a long plateau as the perturbations did not have enough time
to evolve to such large angular scales. The Hubble radius, representing the maximal comoving distance
a particle could have travelled, at last scattering is around ℓ ≈ 100, causing lower ℓ to reflect the initial
conditions [13]. As the temperature fluctuations originate from variations in the gravitational potential,
which is termed the Sachs-Wolfe effect, the gravitational fluctuations at these low ℓ were constant. This
is called the Sachs-Wolfe plateau [1].

At larger ℓ the spectrum rises to a series of peaks termed the acoustic peaks. These are due to
gravitational acoustic oscillations in the baryon-photon plasma before recombination as stated earlier. The
perturbations oscillate in potential wells generated primarily by the dark matter component. Here the
photon pressure acts as a restoring force and baryon mass as a inertia component. These perturbations are
sufficiently small in amplitude to be treated as linear so that the system is described as a driven harmonic
oscillator with the spatial frequency related to the sound speed in the fluid [13]. The oscillations in the
fluid gives rise to temperature fluctuations which at last scattering freeze in the temperature map seen
today as a series of harmonic peaks. The first and next odd peaks represent the modes that compressed
maximally before recombination while the even peaks are the maximum under-density rarefaction’s. The
even peaks are generally smaller in amplitude as the fluid’s inertia holds back the rebound [10].

At further increasing ℓ there is a damping tail that is caused by the last scattering surface having a
depth as recombination does not happen instantaneously. Fluctuations at angular scales smaller then this
depth are damped as the photons make random walks in the fluid during recombination mixing the hot
and cold patches. This causes the acoustic oscillations on scales smaller than the random walk to decay
over time and is responsible for why Cℓ’s at even higher ℓ are harder to measure [13].

2.1.3 Secondary anisotropies

Besides primary anisotropies, secondary effects happening after recombination can leave imprints on the
CMB. One effect is parameterized by the reionization optical depth τ with the optical depth being the
probability that a photon scatters once assuming the reionization happens instantaneous and completely
[5]. Here reionization refers to the period when the first stars were born and ionized the baryonic matter.
Thus CMB photons scatter again of free electrons, although much less frequently than before recombination
as the expansion of the universe diffused matter significantly. The universe has remained transparent to
this day with a low density of ionized hydrogen and helium. Nevertheless, these few scattering events leave
a small imprint on the CMB which must be taken into consideration when examining the power spectra.
While reionization is not instantaneous, τ is still a useful measure of the mean redshift of the event [5].

In addition, the gravitational bending of CMB photons, called lensing, from compact objects in the
later universe distorts the temperature and polarization anisotropies at high ℓ. Apart from being an effect
that must be considered when modelling the CMB, lensing can also help constrain certain parameters
from the power spectra. Most notably the neutrino masses and dark-energy evolution [13].

Rayleigh scattering can also be considered a secondary anisotropy which will be the topic of this thesis
and discussed in the next section.

2.2 Rayleigh Scattering

Rayleigh scattering is the scattering of photons from neutral species with the particle size much smaller
than the photon wavelength. The cross section is given by [3], [6]:
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σR(ν) = σT

 ∞∑
j=2

f1j
ν2

ν21j − ν2

2

, (7)

with ν1j and f1j the Lyman series frequencies and oscillator strengths respectively and σT = 8π
3

(
q2

4πϵ0mc2

)2

the Thomson scattering cross section. The Lyman series frequencies are of order 3 PHz, while the photon
frequencies at recombination are many orders of magnitude smaller making it possible to Taylor expand
the expression [6]. By defining νeff =

√
8/9R∞c ≈ 3.102 · 106 GHz ≈ 12.83 eV with R∞ the Rydberg

constant, equation (7) can be approximated as:

σR(ν) ≈ σT

[(
ν

νeff

)4

+ α

(
ν

νeff

)6

+ β

(
ν

νeff

)8

+ ...

]
, (8)

with α ≈ 2.626 and β ≈ 5.502 [3]. For frequencies well below νeff the Rayleigh scattering cross section is
therefore described by a ∝ ν4 dependency in contrast to the frequency independent Thomson scattering.

2.2.1 Effects of Rayleigh scattering on the CMB

Rayleigh scattering changes the comoving opacity in the recombination history from [6]

τ̇ = aneσT ,

to
→ τ̇(ν) = aneσT + a(nH +RHenHe)σR(ν). (9)

Here, RHe ≈ 0.1 accounts for the relative strength of Rayleigh scattering for Helium atoms compared to
Hydrogen [3]. The visibility function is defined as [10]:

g(z) = τ̇ e−τ , (10)

with τ the optical depth. It is the probability density that a photon last scattered at a particular red-
shift. Thus the visibility function becomes frequency dependent due to the altered comoving opacity.
Moreover, the increased total coupling between photons and baryons shifts the last scattering surface and
consequently the visibility function to later times [2].

As stated earlier, the photon mean free path in the plasma controls the strength of diffusion damping.
Including Rayleigh scattering will reduce the mean free path as there is an increased probability of photons
scattering. So Rayleigh reduces the amplitude of diffusion damping. However, this only holds at low
frequencies. At higher frequencies, the visibility function is shifted to later times where the mean free
path is overall longer leading to an increase in the damping [2]. Moreover, the last scattering surface gets
frequency dependent causing the size of the sound horizon at last scattering to also become frequency
dependent showing an increase at higher frequencies. The increase shifts the acoustic peaks in the CMB
and matter power spectra to smaller ℓ [2]. Lastly, Rayleigh scattering also produces polarization modes as
the scattering structure from the induced dipoles in the classical limit is the same as in Thomson scattering
and so can be handled the same way in the Boltzmann code [3]. The shift in the visibility function increases
these local temperature quadruples around recombination resulting in a boost to polarization E modes at
small ℓ [2]. In theory B modes would also be affected by Rayleigh scattering but because the polarization
originates from a wide scale range where Rayleigh has a varying sign, the contribution to the lensed BB
spectrum partially averages out [3].
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2.3 Early Dark Energy and the Hubble tension

Since the first estimate by Edwin Hubble, the Hubble constant has been under heavy discussion by
scientists and many missions undertaken to pin down its value. Two main ways exist to infer H0: determine
it from early time probes as is done most recently by the Planck Collaboration giving a value H0 =
67.4± 0.5 km s−1 Mpc−1 [11]. The second are local measurements using a variety of astronomical sources
such as: Type Ia supernovae acting as calibrated cosmic distance ladders, time delays in gravitationally-
lensed quasars and most recently gravitational waves from standard sirens such as the binary neutron star
GW170817 [5]. All these methods give a higher H0 value. For example, the SH0ES team using Cepheid
variables reports a baseline H0 = 73.04±1.04 km s−1 Mpc−1 [14], and overall disagree at a ≳ 5σ level with
values from CMB experiments [5], [15]. This conflict of H0 between local measurements and a ΛCDM fit
to the CMB is termed the Hubble tension. Possible measurement and calibration systematics in either
the local or CMB methods cannot easily explain this difference and therefore attention is given to possible
hints of new physics [16].

Several resolutions to the Hubble tension have been proposed but many are heavily constrained by
the acoustic peaks in the CMB power spectrum [16]. One exotic solution that is less constrained includes
an early time (z ≳ 3000) dark energy component termed Early Dark Energy (EDE). Many physical
models of EDE have been proposed including an oscillating scalar field ϕ which we will focus on in this
thesis. Here a scalar field at early times is displaced from its potential minimum and frozen, acting as a
cosmological constant. However, when the Hubble parameter drops below the mass of the field at some
critical redshift zc, the field falls back to the potential minimum oscillating around it resulting in a decay
of its contribution to the energy density. The field now behaves as a fluid decaying similar or faster
than the radiation component. This increases the early expansion of the universe while leaving the later
evolution unaltered resulting in a reduced sound horizon at decoupling giving a higher H0 from the CMB
[16]. The model is described in terms of: fEDE(zc) ≡ Ωφ(zc)/Ωtot(zc) being the maximal EDE energy
density fraction of the universe, zc the redshift at which fEDE is a maximum and θi ≡ ϕi/f the initial field
displacement [17]. zc roughly corresponds to the moment just before oscillations occur.

Although current data cannot confirm the existence of EDE, it remains one of the prime candidates
to resolve the Hubble tension and future experiments are expected to decisively establish whether EDE
should be incorporated into current cosmological models [18]. In this thesis, Rayleigh effects are considered
in the EDE parameter forecasts as the late time recombination sampling inherent to Rayleigh scattering
can possibly help establish the parameters of EDE.

2.4 Statistical methods: Fisher forecasts

A statistical tool that can access the parameter constraining power of future CMB experiments is a
Fisher forecast. This tool is useful as it can test the detectability of Rayleigh scattering before actual
measurements and thus is instrumental for experimental designs and forecasts of parameter errors. The
technique assumes that the likelihood is Gaussian around its maximum which may not represent the
true likelihood. Nevertheless, the likelihood can still be approximated to be locally Gaussian around the
maximum making this technique viable for a wide range of cases [19]. Assuming a noiseless survey, the
likelihood L(θ|d) with θ a vector of cosmological parameters and d the data vector is [2]:

L(θ|d)) ∝ 1√
det(C(θ))

exp
(
−1

2
d†(C(θ))−1d

)
, (11)

where C(θ) is the theoretical covariance. The Fisher matrix is defined as [19]:

Fij = −
〈
∂2 lnL
∂θiθj

〉
, (12)

where ⟨·⟩ is again the ensemble average over the observational data. It originates from Taylor expanding
the log likelihood surface and contains the parameter errors and covariance. Because the likelihood of
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independent data sets is the product of the likelihoods, the Fisher matrix of the independent data sets is
the sum of each Fisher matrix. This allows not only for easy implementation of noise to the Fisher matrix
but also merging several suitable data sets to increase the constraining power. From the Fisher matrix it
can be shown that the standard deviation in a parameter estimation is given by [19]:

σ2
ij ≥

(
F−1

)
ij
, (13)

and when estimated simultaneously for all parameters the marginalized error is:

σθi ≥
(
F−1

)1/2
ii

. (14)

This inequality is the Cramér–Rao bound and is the best case estimate possible of the errors due to
not only excluding systematics and real world errors in the Fisher matrix but also, fundamentally, when
approximating the likelihood to be Gaussian [19]. When combining equations (11) and (12) the Fisher
matrix for CMB experiments is [2]:

Fij,ℓ =
1

2
Tr

[
(Cℓ)

−1 ∂Cℓ

∂θi
(Cℓ)

−1 ∂Cℓ

∂θj

]
, (15)

where each ℓ corresponds to fsky(2ℓ+ 1) independent modes. Thus the total Fisher matrix is:

Fij =
∑
ℓ

fsky(2ℓ+ 1)Fij,ℓ. (16)

The covariance matrix normally used when including Rayleigh effects to the power spectra for estimating
the parameter constraints is [2]:

Cνν
ℓ =

(
CTT

ℓ CTR
ℓ

CTR
ℓ CRR

ℓ

)
. (17)

Here CTT
ℓ , CTR

ℓ and CRR
ℓ are the Nν ×Nν frequency covariance matrices of the Thomson auto, Thomson-

Raleigh cross and Rayleigh auto power spectra respectively. This way all frequency auto- and cross spectra
are accounted for. Noise can be easily implemented by adding noise power spectra Nℓ, which are Nν ×Nν

diagonal frequency matrices, to the diagonal elements [2]. However, the code used in this thesis can
only calculate single-frequency Rayleigh spectra. To circumvent this a low-frequency map will be cross-
correlated with a high-frequency map leading to partially uncorrelated Thomson and Rayleigh signals. To
approximate this the covariance matrix will consist of a primary Thomson + low ν Rayleigh signal in the
(0,0) element and a primary Thomson + high ν Rayleigh signal in the (1,1) element. The off-diagonal
elements contain the Thomson primary and two TR spectra at low and high ν. The described Rayleigh
covariance matrix is:

Cν1ν2
ℓ =

[
CTT
ℓ + 2

(
ν1
500

)4
CTR
ℓ +

(
ν1
500

)8
CRR
ℓ +Nℓ(ν1) CTT

ℓ +
(

ν1
500

)4
CTR
ℓ +

(
ν2
500

)4
CTR
ℓ

CTT
ℓ +

(
ν1
500

)4
CTR
ℓ +

(
ν2
500

)4
CTR
ℓ CTT

ℓ + 2
(

ν2
500

)4
CTR
ℓ +

(
ν2
500

)8
CRR
ℓ +Nℓ(ν2)

]
. (18)

However, cross-correlating the low and high ν maps also needs the CRR
ℓ (ν1 × ν2) term in the off-diagonal

elements. This term cannot be outputted by our version of the code at this point. For the Thomson
primary forecast the previous covariance matrix is used without the Rayleigh terms giving:

Cν1ν2
ℓ =

[
CTT
ℓ +Nℓ(ν1) CTT

ℓ

CTT
ℓ CTT

ℓ +Nℓ(ν2)

]
. (19)

In these two matrices, Nℓ(ν) is the PICO noise power spectrum described further in section 3.3.
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3 Methods: Modeling and Parameter Forecasts

Modelling inhomogeneities in the primordial photon density is complex as the photons are connected to
other components present in the plasma. Photons are affected by gravity and the free electron distribution,
through Thomson scattering, which itself is tightly coupled to the nuclei and gravity. Additionally, the
metric, describing the geometry and causal structure of spacetime, is influenced by all aforementioned
including dark matter. To solve the photon distribution thus requires solving the distribution for all these
components using the Boltzmann equations that tracks the photon distribution function evolution. The
Boltzmann hierarchy provides a framework for a quick numerical solver of the Boltzmann equations. For
a deeper overview of this framework see [12].

3.1 Code for Anisotropies in the Microwave Background (CAMB)

Several codes exist that solve the Bultmann equations and hierarchy numerically, one being CAMB created
by A. Lewis and A. Challinor in the early 2000s [20]. It is based on CMBFAST developed by U. Seljak and
M. Zaldarriaga and was originally fully written in Fortran 90 although new versions have released that
include a Python wrapper. CAMB can, when giving a set of cosmological parameters and model universe,
compute the temperature and polarization auto and cross correlation power spectra. Additionally, it can
compute the transfer and backgrounds functions and the matter power spectrum. Besides the standard
recombination calculator the Fortran codes include a Rayleigh branch computing the effects of Rayleigh
scattering on the power spectrum. However, the new CAMB Python version misses this function. By
comparing how Rayleigh is implemented in old CAMB, the feature will be added to the new version of CAMB.
To understand the differences between the two codes and how CAMB calculates the power spectra a review
of each code structure will be provided below.

3.1.1 Old CAMB structure

The code starts with params.ini specifying the necessary cosmological parameters including extra terms
that are required for different model universes. For example, setting the various mass fractions, enabling re-
ionization, choosing which polarization and scalar/vector/tensor modes can all be tweaked. The Rayleigh
branch includes an option specifying which frequencies are used in the computations. Additionally, in
params.ini the working and accuracy of the code is specified by several accuracy parameters. However,
increasing the accuracy of CAMB comes with a significant time penalty in the calculations. Next the file
inidriver.f90 reads params.ini and prompts the code to run.

The other .f90 files can be divided into two main categories: utilities and cosmology. The utilities
such as bessel.f90 and utils.f90 support the cosmology code with various miscellaneous tasks while the
cosmology files fulfill the main computations and are divided into subtasks such as reionization.f90 and
lensing.f90 performing the reionization and CMB lensing calculations respectively. Each file uses modules
which are either defined itself in the code or are used from other files. After the calculations, CAMB gives
the output in several files containing the lensed, unlensed and scalar or tensor modes. The Cℓ’s are given
in terms of Dℓ = ℓ(ℓ+ 1)Cℓ/2π in units µK2.1

3.1.2 New CAMB structure

The python wrapper of CAMB offers the possibility to run the code from a python script editor with the
various parameters now accessed and edited through a series of function that call the CAMB subroutines.
Meanwhile the results can be called into the same editor resulting in more streamlined workflow.2 The
code structure still includes mostly the same .f90 files although they are heavily modified due to continues
development. Nevertheless the basic Rayleigh computations can be easily implemented by identifying

1For a detailed description of the source files and outputs of CAMB see the README file: https://CAMB.info/readme.html
2For a detailed documentation of the CAMB python wrapper see: https://CAMB.readthedocs.io/en/latest/
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where the new version computes the visibility function and introducing the Rayleigh term as outlined in
section 2.2.1.

3.2 Fisher forecasts and parameter estimation

The tested parameters are shown in table 1 with their fiducial value and step size for determining the
numerical derivatives. The six ΛCDM parameters are taken from Planck Collaboration [11] and the three
EDE from Hill et al. [17]. The step sizes were varied until a converging derivative with respect to the
parameters was achieved. Here Ωbh

2 and Ωch
2 are the physical densities of baryons and cold dark matter

in the universe respectively.3

Parameter Fiducial value Step size
Ωbh

2 0.02237 8 · 10−6

Ωch
2 0.120 3 · 10−5

109As 2.099 0.01
ns 0.9649 0.001

H0 [km/s/Mpc] 67.3 0.001
τ 0.0544 5 · 10−4

fEDE 0.122 1 · 10−6

zc 103.562 1
θi 2.83 1 · 10−4

Table 1: List of six ΛCDM [11] and three EDE parameters [17] used and their Fiducial value and step size
when determining the derivative.

As the Raleigh auto RR and cross TR correlations cannot be calculated in the first modified version of
CAMB, only single frequency Thomson+Rayleigh spectra are computed, they must be calculated indirectly.
This is done by decomposing the computed spectra at different frequencies in terms of the Thomson CTT

ℓ

and Rayleigh CRR
ℓ auto spectrum and the cross correlation CTR

ℓ of the two modes. As there are three
unknowns, a system of three equations is required to solve each term. To solve the system, the spectra
are calculated at frequencies 0, 500 and 750 GHz and decomposed into:

C0
ℓ = CTT

ℓ

C500
ℓ = CTT

ℓ + 2CTR
l + CRR

ℓ

C750
ℓ = CTT

ℓ + 2
(
750
500

)4
CTR
ℓ +

(
750
500

)8
CRR
ℓ

(20)

where the zero frequency is purely Thomson and thus equivalent to the temperature auto spectrum.
The other frequency spectra do include Rayleigh so the total spectrum is decomposed into (T + R)2 =
TT +2TR+RR. The 750 GHz spectrum is rescaled to the 500 GHz for proper normalization. The system
can be rewritten into: 

CTT
ℓ = C0

ℓ

CTR
ℓ = 1

2
(
1−( 500

750)
4
) [

C500
ℓ − C0

ℓ −
(
500
750

)8 [
C750
ℓ − C0

ℓ

]]
CRR
ℓ = 1(

1−( 750
500)

4
) [

C500
ℓ − C0

ℓ −
(
500
750

)4 [
C750
ℓ − C0

ℓ

]] (21)

3.3 Noise Modelling

The noise spectra curves in the cross elements of the covariance matrices (Eqs. (18) and (19)) are taken
from the PICO (Probe of Inflation and Cosmic Origin) mission which is a proposed CMB mapping satellite

3The physical density is defined as Ωi ≡ ϵi/ϵc with ϵi the energy density of the specific component and ϵc the critical
energy density required for a spatially flat universe [1].
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equipped with 21 frequency channels ranging from 21 to 799 GHz. This mission is expected to deepen our
understanding of foreground contamination and its frequency channels offers the chance to better study
Rayleigh scattering effects in the CMB [2]. Its Gaussian white noise in Cℓ is [21]:

NTT ′
ℓ = s2 exp

(
ℓ(ℓ+ 1)

θ2FWHM

8 log 2

)
, (22)

with s the total intensity instrumental noise in units of µK and θFWHM the full width at half maximum
beam size in radians. The parameter noise values for the various PICO frequency channels are taken from
[22].
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4 Results

The detailed code modifications made to the python branch of CAMB are shown in the Appendix (8) and
are used to obtain the following results.

4.1 Rayleigh effect on power spectra

With the modified code, a 500 GHz Rayleigh scattering enabled power spectrum was compared to a
zero frequency Thomson primary spectrum for both lensed scalar TT and EE modes shown in Figure 2.
This plot is similar to previous studies on Rayleigh effects [2], [3], [6] and confirms the working of the
code. For a detailed analysis of the new CAMB version the fractional difference between the old and new

Figure 2: Fractional difference between the modified CAMB Thomson primary and 500 GHz Rayleigh power
spectra for lensed scalar TT and EE.

Rayleigh code is shown in Figure 3. The sub-percentile differences displayed could however be caused by
the general divergence between the Fortran and Python branch. To discern differences caused only by the
Rayleigh implementation, the baseline Thomson primary fractional difference between the Fortran and
Python branches was subtracted from this signal shown in Figure 4. Here the fractional differences are at
a sub-percentile level at best at the highest ℓ.

Figure 3: Fractional difference between the old Rayleigh branch and Rayleigh modified python branch of
CAMB for both the lensed scalar TT and EE modes. Rayleigh signals at 500 GHz.
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Figure 4: Fractional difference between the old Rayleigh branch and Rayleigh modified python branch of
CAMB minus the fractional difference of the old and new CAMB Thomson primary for both the lensed scalar
TT and EE modes. Rayleigh signals at 500 GHz.

4.2 Fisher forecasts and Early Dark Energy

The lensed Thomson and Rayleigh auto and cross correlation terms derived using equations (21) are shown
in Figure 5 for 500 and 750 GHz from ℓ = 2 to ℓ = 3000. Additionally, in Figure 6 these terms are shown for
90 and 555 GHz and the accompanying PICO noise curves used to compute the EDE parameter forecast.
When the noise curve is below the various terms it signifies the signal detectability is mostly limited by
cosmic variance.

For the calculation of the Fisher information matrices the numerical derivatives with respect to the
nine parameters are computed (see Eq. (15)) and are shown in Figures 7 and 8.

Figure 5: The lensed Thomson and Rayleigh (TT , TR and RR) terms derived from the expansion given
in Eq. (21) for 500 and 750 GHz. Note the absolute values of Rayleigh TR and RR terms are given here
where the downwards peak denotes a switch of sign.
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Figure 6: The lensed Thomson and Rayleigh terms (TT , TR and RR) derived from the expansion given
in Eq. (21) for 90 and 555 GHz and the corresponding PICO noises.

Figure 7: Absolute values of numerical derivatives ∂Cℓ/∂θi of the six ΛCDM parameters used by Eq. (15)
for the TT , TR and RR modes, scaled at 500 GHz.

Figure 8: Absolute values of numerical derivatives ∂Cℓ/∂θi of the three EDE parameters used by Eq. (15)
for the TT , TR and RR modes, scaled at 500 GHz.
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The Fisher matrices are obtained from the computed power spectra and converted to a parameter
forecast using a Gaussian likelihood function. The forecast is shown in Figure 9 for the lensed Thomson
and Rayleigh signals. The covariance matrices (Eqs. (18) and (19)) use a low frequency ν1 = 90 GHz map
and PICO noise, as around this frequency the primary CMB is the best observable with the lowest noise,
and a high frequency ν2 = 555 GHz map and PICO noise. Although the Rayleigh signal gets stronger at
higher frequencies, the noise level also are greater. This results in the Rayleigh signal being best observable
around 555 GHz

In our forecast, the diagonal graphs constitute the single parameter posteriors. The off-diagonal graphs
go over every two parameter cross-correlation combination possible displaying the mutual parameter prob-
ability as ellipses. Here, circles represent no correlation between the two parameters as their probabilities
are not interdependent. Meanwhile, narrow slanted ellipses constitute a strong (anti-)correlation between
the two parameters as the value of one greatly narrows done the value of the other. Here an 45◦ slanted
ellipse means a 100% correlation between the two parameters. The contours indicate a 1-σ (68%) con-
fidence region. In Table 2 the 1-σ errors on the posteriors are listed for each parameter including the
percentile improvements.

Figure 9: Fisher parameter forecast of the lensed Thomson primary signal and Rayleigh signal for a three
parameter EDE extension to the ΛCDM model with six parameters including PICO noise. The red and
blue contours show a 1σ confidence region. Fiducial values used are shown in Table 1. The covariance
matrices used for the Rayleigh and Thomson forecasts are Eqs. (18) and (19) respectively with ν1 = 90GHz
and ν2 = 555GHz.
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Parameter PICO Thomson only PICO with Rayleigh Improvement [%]

Ωbh
2 1.61 · 10−4 6.06 · 10−5 62.3

Ωch
2 4.15 · 10−3 6.04 · 10−4 85.5

109As 5.27 · 10−2 2.33 · 10−2 55.7
ns 8.45 · 10−3 2.52 · 10−3 70.1

H0 [km/s/Mpc] 1.11 1.63 · 10−1 85.4
τ 1.44 · 10−2 5.52 · 10−3 61.6

fEDE 3.24 · 10−2 3.24 · 10−3 90.0
zc 4.10 · 102 1.57 · 102 61.8
θi 6.31 · 10−2 2.89 · 10−2 54.2

Table 2: List of 1-σ errors on parameter posteriors for the Thomson and Raleigh Fisher forecast in Figure
9 including percentile improvements.
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5 Discussion

When analyzing the Rayleigh scattering implementation into the Python branch several things are noticed.
First in Fig. 3, the Fortran and Python branches of CAMB output a notably different EE spectrum in
comparison to the TT spectrum with a spike around ℓ ∼ 10. This is caused by the effect of Rayleigh
scattering on EE having a large derivative at these same multipoles (see Fig. 2). Thus any offset
would lead to large difference between the two branches. Previous forecasts using the Rayleigh E modes
calculated using the Fortran branch of CAMB are therefore expected to slightly benefit from the Rayleigh
implementation into the Python branch.

Furthermore, the approximation of the Rayleigh auto and cross spectra shown in Fig. 5 does not
completely correspond with previous studies using code computing them directly [2], [3]. Especially at
low ℓ does the Rayleigh auto (RR) spectrum differ as no sign change and no increase of the signal at
lower ℓ are present in the other studies. At these low multipoles the spectrum should be roughly one
order of magnitude smaller. This causes a conflict when incorporating noise as seen in Fig. 6 for the 555
GHz RR spectrum. At low ℓ the signal is only limited by cosmic variance while the noise curve decreases
suggesting the Rayleigh auto spectrum is best detectable at these multipoles. This contradicts previous
studies where the spectra should be more affected by foregrounds and instrumental noise at large angular
scales [2]. Whether the approximation or the old CAMB version is inaccurate was not determined, although
the Fisher forecasts should not change significantly as only few multipoles are affected. At high ℓ the auto
and cross terms are approximated reasonably well showing clear acoustic oscillations. Furthermore, in Fig.
6 the Thomson primary is limited only by noise above ℓ ∼ 1500 for 90 GHz and ℓ ∼ 2500 at 555 GHz.
Meanwhile at 555 GHz, the Rayleigh TR mode is only affected by noise at ℓ ∼ 45 and above ℓ ∼ 1000,
while for RR noise contributes significantly at all multipoles except lower ℓ’s. At 90 GHz, noise dominates
the RR spectrum completely but is minor for TR at low to middle ℓ range, though still dominant over
the acoustic oscillations. Thus, the TR spectrum is the greater contributor of Rayleigh effects to the
Fisher information matrix when considering noise. Additionally, the numerical spectrum derivatives in
Fig. 7 and 8 are smooth for the TT and TR spectra with respect to all parameters with oscillations at
high ℓ. These come from the acoustic oscillations in the Cℓ’s. However the RR spectrum is not smooth
for most parameters. Smoothness is expected as accurately computed terms should be continuous in the
first derivative with respect to all parameters. Again, this irregularity indicates that the RR spectrum
approximation is not fully correct.

Looking at the Fisher forecasts in Fig. 9 the parameter confidence contours are significantly smaller
when including Rayleigh effects. In Table 2, the Rayleigh parameter errors improve from 54 to 90 % with
respect to the Thomson forecast, constraining the parameters errors substantially. However, stochastically
mode counting two signals (Thomson and Rayleigh) should only, at best, give a 1/

√
2 reduction (29.3%

improvement) in the parameter errors if both modes are uncorrelated, which they are not. This significant
improvement in the parameter errors, in particular for Ωch

2, H0 and fEDE, are thus not expected and
hints to a mistake somewhere in the calculations. The missing CRR

ℓ (ν1 × ν2) term in the covariance
matrices correlating the low and high frequency maps could be the possible culprit. Additionally, only the
temperature signal was used which could result in a initial poor forecast but constraining tightly when
including Rayleigh. This performance is likely to decrease when also including polarization.

Moreover, the individual likelihood regions are reasonable as the found ΛCDM parameter intervals are
slightly worse compared to other studies [2], [6], being roughly one order of magnitude bigger. This is
caused by excluding polarization effects in the forecasts causing overall worse constraining power. More-
over, the expected high correlation between τ and 109As is observed, being a key feature in ΛCDM
forecasts. But despite that, checking the correctness of the other parameter correlations is harder as no
independent method was readily available to verify the results.
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6 Conclusions

The Rayleigh TT and EE auto correlation spectra implementation to the Python branch of CAMB produced
accurate results for both spectra compared to the Fortran Rayleigh branch. For both spectra the differences
are greatest at higher ℓ values although still far below and around sub-percentile level making this code
usable for modelling single-frequency Rayleigh effects in the CMB. Multi-frequency and cross-correlation
spectra calculations are not yet coded into this version but will be included in future development of
the code. For the remaining calculations an indirect derivation of the Rayleigh auto and cross spectra
was used to obtain the results. This approximation gave an accurate Rayleigh cross spectrum CTR

ℓ .
However, the Rayleigh auto spectrum CRR

ℓ deviated at low ℓ having a sign switch and being an order of
magnitude too large compared to previous studies. At higher ℓ however the spectrum is accurate. The
numerical derivatives with respect to the three EDE and six ΛCDM parameters, used to produce the
Fisher information matrix, are smooth for CTT

ℓ and CTR
ℓ except CRR

ℓ . Again indicating the RR spectrum
is not fully accurate leading to PICO noise curves suggesting RR is mostly cosmic variance limited at low
ℓ. However, the possibility exist the old CAMB determines the Rayleigh terms incorrectly although this was
not further studied.

The Fisher forecasts of a three parameter EDE extension to a six parameter ΛCDM model resulted in
the Rayleigh signal to produce parameter likelihoods improved by 54 to 90 % compared to the Thomson
primary forecast. In particular Ωch

2, H0 and fEDE are heavily constrained. This significant improvement
in the constraining power is surprising based on mode counting estimates. The approximation of cross-
correlating a low and high frequency map in the covariance matrices and only using the temperature
signal are the possible sources. Nevertheless, the individual parameter intervals are reasonable, being
an order of magnitude greater than previous studies caused by excluding the polarization signal in the
forecast. Independently verifying the results was not done but shall be continued in upcoming studies.
Here, further development in including multi-frequency correlated Rayleigh signals into CAMB could obtain
more reasonable forecasts and accurately demonstrate the constraining power of Rayleigh on EDE models.
With the prospect of a first Rayleigh detection in the upcoming decade, further developments in modeling
Rayleigh scattering brings us one step closer to fully understanding its effects on cosmological models,
giving us new avenues of obtaining information on our early universe.
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8 Appendix: Code modifications

To classes.f90 a function and subroutine were added giving the functions used in results.f90 the right class
type.

1 procedure :: x_rayleigh_eff => TRecombinationModel_x_rayleigh_eff
2 procedure :: xrayleigh_eff => TRecombinationModel_xrayleigh_eff
3

4

5 function TRecombinationModel_xrayleigh_eff(this ,a)
6 class(TRecombinationModel) :: this
7 real(dl), intent(in) :: a
8 real(dl) TRecombinationModel_xrayleigh_eff
9 call MpiStop('TRecombinationModel_xrayleigh not implemented ')

10 TRecombinationModel_xrayleigh_eff =0
11

12 end function TRecombinationModel_xrayleigh_eff
13

14 subroutine TRecombinationModel_x_rayleigh_eff(this ,a, xrayleigh_eff_var)
15 class(TRecombinationModel) :: this
16 real(dl), intent(in) :: a
17 real(dl), intent(out) :: xrayleigh_eff_var
18 xrayleigh_eff_var = this%xrayleigh_eff(a)
19

20 end subroutine TRecombinationModel_x_rayleigh_eff

In recfast.f90, containing the recombination calculations, the function TRecfast_xrayleigh_eff was
added that calculates the recombination fraction

1 ! In module recombination
2 real(dl), private :: xrayrec(Nz), dxrayrec(Nz)
3

4 procedure :: xrayleigh_eff => TRecfast_xrayleigh_eff
5

6 function TRecfast_xrayleigh_eff(this ,a)
7 class(TRecfast) :: this
8 real(dl), intent(in) :: a
9 real(dl) zst ,z,az ,bz,TRecfast_xrayleigh_eff

10 integer ilo ,ihi
11

12 z=1/a-1
13 associate(Calc => this%Calc)
14 if (z.ge.Calc%zrec (1)) then
15 TRecfast_xrayleigh_eff=Calc%xrayrec (1)
16 else
17 if (z.le.Calc%zrec(nz)) then
18 TRecfast_xrayleigh_eff=Calc%xrayrec(nz)
19 else
20 zst=(zinitial -z)/delta_z
21 ihi= int(zst)
22 ilo = ihi+1
23 az=zst - ihi
24 bz=1-az
25 TRecfast_xrayleigh_eff=az*Calc%xrayrec(ilo)+bz*Calc%xrayrec(ihi)+ &
26 ((az**3-az)*Calc%dxrayrec(ilo)+(bz**3-bz)*Calc%dxrayrec(ihi))/6. _dl
27 endif
28 endif
29 end associate
30 end function TRecfast_xrayleigh_eff
31

32 ! In subroutine TRecfast_init
33 Calc%xrayrec(i) = 1._dl - x_H + 0.1 _dl *(1. _dl - x_He)*Calc%fHe
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34

35 call spline_def(Calc%zrec ,Calc%xrayrec ,nz,Calc%dxrayrec)

Lastly, the functions and subroutines defined earlier are applied to results.f90 by adding the Raleigh
scattering term to the visibility function as outlined in section 2.2.1.

1 ! In subroutine Thermo_Init
2 real(dl), parameter :: nu_eff = 3101692. _dl
3

4 real(dl), allocatable :: xrayleigh_eff_a (:)
5

6 allocate(taus(nthermo), xe_a(nthermo), xrayleigh_eff_a(nthermo))
7

8 call CP%Recomb%x_rayleigh_eff(a0 , xrayleigh_eff_a (1))
9

10 this%dotmu (1)=(this%xe(1)+ xrayleigh_eff_a (1) * (500. _dl / (a0*nu_eff))**4 )*State%
akthom/a0**2

11

12 call CP%Recomb%x_rayleigh_eff(this%scaleFactor(i), xrayleigh_eff_a(i))
13

14 this%dotmu(i)=(this%xe(i)+ xrayleigh_eff_a(i) * ((500. _dl / nu_eff)**4)/a2**2)*State
%akthom/a2
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