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Abstract

In this thesis we construct modular elliptic curves associated to modular curves X0(N) of genus one.
We introduce the notion of a Riemann surface and we study modular curves in this context. We
study holomorphic differentials on modular curves and relate these to the set of cusp forms. We
write down generators of S2(Γ0(N)) which are realized as η−products and use these to calculate
the period lattices associated to X0(N). The theory of elliptic functions is developed and used to
construct an elliptic curve from a period lattice. Finally, we put this theory together to compute the
elliptic curves which are isomorphic to X0(N).
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Introduction

Fermat’s Last Theorem is one of the most monumental results of twentieth-century mathematics. It
states that an + bn = cn has no nontrivial integer solutions for n ≥ 3. In 1990, Ribet proved Fermat’s
Last Theorem (in [31]) assuming that every so-called semistable elliptic curve over Q is modular. In
1995 Wiles proved Ribet’s assumption [38, Theorem 0.4] proving the 350 year old theorem. This is only
a part of the full picture however; as conjectured by Taniyama and Shimura in 1957, every elliptic curve
over Q is modular. In 2001, the collaborative efforts of Breuil, Conrad, Diamond, and Taylor proved this
conjecture in [6, Theorem A].

In this thesis we explore what it means for an elliptic curve to be modular. To do this, we require
a Riemann surface called the modular curve X0(N) where N is a positive integer. On this Riemann
surface, objects along which we can integrate are defined. By integrating along these elements, one finds
a canonical way to construct an elliptic curve. The case where a modular curve has genus one immensely
simplifies this process compared to higher genera. And in this case, the elliptic curve we obtain is iso-
morphic to X0(N). In this thesis we rigorously carry out the process of constructing an elliptic curve in
this way and develop the necessary theory to do so.

In the first section we develop the theory of Riemann surfaces which will serve as the framework sur-
rounding the objects of study. In the next two sections we take a closer look at modular curves and
holomorphic differentials. In the final two sections we develop the theory and a way to construct a
(modular) elliptic curve from a modular curve. For X0(N) of genus one, we implement this method and
write down the elliptic curves isomorphic to it. It turns out that these elliptic curves are defined over Q,
the reason why this is true is not treated in this thesis as we mainly take a complex analytical approach.
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1 Riemann surfaces

A Riemann surface is a topological space that looks like an open set of the complex plane around each
point. In this section we define Riemann surfaces and the basic notions that relate to these objects. As
a main source we use Miranda’s book [28]. In the sections afterwards we go through two examples of
Riemann surfaces mainly using [27] and [13].

1.1 Definitions and morphisms

Much like a 2−dimensional real manifold, the idea of a Riemann surface is a topological space that
locally looks like an open set of the complex plane. Contrary to a real manifold, a Riemann surface has
additional structure, namely the structure from the complex plane. To define this more precisely, we
require charts.

Definition 1.1. [28, Definition II.1.1] Let X be a topological space. A chart for X is a homeomorphism
φ : U → V where U ⊂ X and V ⊂ C are open. The chart φ is centered around x ∈ U if φ(x) = 0. ▲

A chart φ : U → V gives coordinates on an open subset of a topological space. As an example, consider
the following.

Example 1.2. [28, Example I.1.13] The 2−sphere

S2 = {(x, y, w) ∈ R3 : x2 + y2 + w2 = 1} ⊂ R3

is a connected and compact topological space. Identify C with the plane {(x, y, 0)} where z = x + iy.
The map φ1 : S2 \ {(0, 0, 1)} → C defined by

φ1(x, y, w) =
x

1− w
+ i

y

1− w

is a chart of S2. It has continuous inverse

φ−1
1 (z) =

(
2Re(z)

|z|2 + 1
,
2 Im(z)

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

♦

Suppose that we have two charts φ1 : U1 → V1 and φ2 : U2 → V2 such that U1 ∩ U2 ̸= ∅. In this
situation we get to choose which chart we use. It is desirable that the choice of chart here does not affect
definitions. To ensure this, we require charts to satisfy the following definition.

Definition 1.3. [28, Definition I.1.6] Let X be a topological space. The charts φ1 : U1 → V1 and
φ2 : U2 → V2 are compatible if the transition function

φ2φ
−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2)

is a holomorphic map of open subsets in C whenever U1 and U2 have nonempty intersection. ▲

An interpretation of the transition function φ2φ
−1
1 is as a change of coordinates between two local

coordinates. By the inverse function theorem [9, Proposition III.2.20] the map φ1φ
−1
2 is also holomorphic.

A Riemann surface is covered in such charts so that we can take coordinates at every point.

Definition 1.4. [28, Definition I.1.18] A Riemann surface is a connected topological space X which is
Hausdorff and second countable together with a set of pairwise compatible charts. These charts are such
that around every point x ∈ X there is a chart φ : U → V where U is an open neighborhood of x and
V ⊂ C is an open subset of the complex plane. ▲

Example 1.5. Any open subset U ⊂ C along with the global chart id : U → U is a Riemann surface.♦

Example 1.6. [28, Example I.1.20] The 2−sphere S2 as in Example 1.2 is a Riemann surface. The sphere
S2 is Hausdorff and second countable. In Example 1.2 we defined the chart φ1 : S2 \{(0, 0, 1)} → C. This
chart does not include the point (0, 0, 1). Define the chart φ2 : S2 \ {(0, 0,−1)} → C by

φ2(x, y, w) =
x

1 + w
− i

y

1 + w
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with inverse

φ−1
2 (z) =

(
2Re(z)

|z|2 + 1
,
2 Im(z)

|z|2 + 1
,
1− |z|2

|z|2 + 1

)
.

A simple (but tedious) computation shows that the transition map φ2φ
−1
1 : C \ {0} → C \ {0} maps z to

1/z which is holomorphic on its domain. Interpret the point (0, 0, 1) on S2 as the point at ∞. The chart
φ1 maps S2 \ {∞} to C, this allows us to consider this Riemann surface as the complex plane with the
point ∞ added to it. The Riemann surface constructed in this way is usually referred to as the Riemann
sphere and is denoted by C∞. ♦

Using the coordinates around every point of a Riemann surface we can define a notion of holomorphic
functions on these objects.

Definition 1.7. [28, Definition II.1.1] Let X be a Riemann surface. Let x be a point in X and let
φ : U → V be a chart about x. We say that f : X → C is holomorphic at x if fφ−1 : φ(U) → C is
holomorphic at φ(x). We call f holomorphic if it is holomorphic at every point x ∈ X. ▲

We have to be careful that this definition does not depend on the coordinates that we take. Thankfully,
compatibility of the charts of X ensures choice independence. To see this, let φ1 : U1 → V1 and φ2 : U2 →
V2 be charts of a point x ∈ X. Suppose that fφ−1

1 : X → C is holomorphic at φ1(x). Then

fφ−1
2 = (fφ−1

1 )(φ1φ
−1
2 ).

Both fφ−1
1 and φ1φ

−1
2 are holomorphic at φ1(x) and φ2(x) respectively, the former by assumption and

the latter by compatibility. This shows that Definition 1.7 is independent of the chosen local coordinates.

The morphisms of Riemann surfaces, that is, the maps that preserve the structure of a Riemann surface,
are defined as follows.

Definition 1.8. [28, Definition II.3.1] Let X and Y be Riemann surfaces. A mapping Ψ: X → Y is
holomorphic at x if there exist charts φX : UX → VX and φY : UY → VY of x and Ψ(x) respectively such
that φYΨφ

−1
X is holomorphic at φX(x). We say that Ψ is a holomorphic map of Riemann surfaces (or

just holomorphic) if it is holomorphic at every point x ∈ X. ▲

Definition 1.9. [28, Definition II.3.6] Let X and Y be Riemann surfaces. A mapping Ψ: X → Y is an
isomorphism of Riemann surfaces (or just isomorphism) if it is a bijective holomorphic mapping such
that Ψ−1 : Y → X is holomorphic. If an isomorphism Ψ: X → Y exists then we say that X and Y are
isomorphic and we write X ∼= Y . ▲

Again, by a similar argument to the above, these definitions do not depend on the choice of chart due
to compatibility. Holomorphic maps between Riemann surfaces are generalizations of holomorphic maps
between open subsets of C. Most results that hold for the latter carry over to the former. The ones that
are important for us are summarized here.

Proposition 1.10. [28, Proposition II.3.11] Let X be a compact Riemann surface and Ψ: X → Y be a
non-constant holomorphic map. Then Y is compact and Ψ is surjective.

Proposition 1.11. [28, Proposition II.3.12] Let X and Y be compact Riemann surfaces and Ψ: X → Y
a holomorphic map. Then for every y ∈ Y the preimage Ψ−1(y) is a nonempty finite subset of X.

In the next two sections we study two examples of Riemann surfaces that are significant for our purposes.
The first example are complex tori which turn out to be elliptic curves over C. When studying isomorphic
complex tori one encounters a group action on

H = {τ ∈ C : Im τ > 0}.

The orbits of this group action are a Riemann surface called a modular curve, these serve as our second
example.

1.2 Complex Tori

A complex torus is a quotient of the complex plane by a Z−module of rank 2. We use [27] as a main
source to define these concepts more precisely.
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Definition 1.12. [27, Section III.1] Let ω1, ω2 ∈ C be linearly independent over R. A lattice Λ is a
Z−module generated by ω1 and ω2. ▲

A lattice Λ which is generated by ω1 and ω2 has the form

Λ = Zω1 ⊕ Zω2 = {mω1 + nω2 : m,n ∈ Z}.

Without loss of generality we can order ω1 and ω2 such that Im(ω1/ω2) > 0. This is possible if and only
if ω1 and ω2 are linearly independent over R. Let ω̃1 and ω̃2 be elements of the lattice Λ = Zω1 ⊕ Zω2

and write

ω̃1 = aω1 + bω2

ω̃2 = cω1 + dω2

for integers a, b, c, d ∈ Z. Equivalently, (
ω̃1

ω̃2

)
=

(
a b

c d

)(
ω1

ω2

)
(1.1)

Write (a, b; c, d) for the 2 × 2 matrix in (1.1). If (a, b; c, d) is invertible over Z then we can write every
element in Λ as a Z−linear combination of ω̃1 and ω̃2. In this case, Λ = Zω̃1 ⊕ Zω̃2. The coefficients of
(a, b; c, d) are in Z, we can therefore invert (a, b; c, d) if and only if ad− bc = ±1 ∈ Z×. We still require
Im(ω̃1/ω̃2) > 0, from which we obtain,

Im
( ω̃1

ω̃2

)
= Im

(a(ω1/ω2) + b

c(ω1/ω2) + d

)
=

Im(ac|ω1/ω2|2 + ad(ω1/ω2) + bc(ω1/ω2) + bd)

|c(ω1/ω2) + d|2
=

(ad− bc) Im(ω1/ω2)

|c(ω1/ω2) + d|2
.

The last expression is greater than 0 if and only if ad− bc > 0 and thus equal to 1.

Definition 1.13. The special linear group over Z is the group

SL2(Z) =
{(

a b

c d

)
∈ Z2×2 : ad− bc = 1

}
with matrix multiplication as group law and identity matrix I = (1, 0; 0, 1) as identity element. ▲

Summarizing the argument above, we obtain the following.

Proposition 1.14. [27, Proposition III.1.1] Let ω1, ω2, ω̃1, ω̃2 ∈ C such that Im(ω1/ω2) > 0 and
Im(ω̃1/ω̃2) > 0. If there is a matrix A ∈ SL2(Z) such that

A

(
ω1

ω2

)
=

(
ω̃1

ω̃2

)
,

then the lattices Zω1 ⊕ Zω2 and Zω̃1 ⊕ Zω̃2 are equal.

The set SL2(Z) induces an equivalence relation on the set of pairs (ω1, ω2) ∈ C satisfying Im(ω1/ω2) > 0.
Define (ω1, ω2) ∼ (ω̃1, ω̃2) when there is some A ∈ SL2(Z) satisfying the hypotheses of Proposition 1.14.
By projecting onto this equivalence relation, we obtain a bijection

{Lattices Λ ⊂ C} ↔ {(ω1, ω2) ∈ C : Im(ω1/ω2) > 0}/∼ .

Let Λ ⊂ C be a lattice. The lattice Λ is a subgroup of the additive group C. Therefore the quotient C/Λ
is a group. Let π : C → C/Λ be the projection homomorphism z 7→ z + Λ. Using this homomorphism
we define a topology on C/Λ. Define a set U ⊂ C/Λ to be open whenever π−1(U) is open in C. In this
topology, the map π is continuous. Additionally, π is an open map as for open U ⊂ C we have

π−1(π(U)) =
⋃
ω∈Λ

U + ω

where U + ω is the image of the homeomorphism z 7→ z + ω and is therefore open, thus π(U) is open.
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As a topological space, C/Λ is homeomorphic to S1 × S1, a 1−holed torus. We therefore fittingly name
C/Λ a complex torus. If Λ = Zω1 ⊕ Zω2 then for z ∈ C, the connected compact set

Dz = {z + w1ω1 + w2ω2 : w1, w2 ∈ [0, 1]} ⊂ C (1.2)

is a complete set of representatives for C/Λ and hence π(Dz) = C/Λ incidentally showing that C/Λ is
compact and connected. Moreover, the interior Dz of Dz does not contain two points which are con-
gruent modulo Λ. For arbitrary z0 ∈ C, picking z = z0 − ω1/2 − ω2/2, we see that z0 ∈ Dz. We can
therefore choose Dz such that it contains any point of our choosing. A set of the form Dz is called a
fundamental domain for Λ.

For z0 ∈ C, the coset z0 + Λ is a set of isolated points of C, therefore there is an open neighborhood
U ⊂ C of z0 containing no two elements which are congruent modulo Λ. Take for example a fundamental
domain Dz containing z0 and any open subset U ⊂ Dz such that z0 ∈ U . Then π|U : U → π(U) is a
bijection, and hence a homeomorphism as π is open and continuous. Let φ : π(U) → U be the local
inverse of π. Then φ satisfies Definition 1.1 and defines a chart for C/Λ.

Proposition 1.15. Let Λ ⊂ C be a lattice. The complex torus C/Λ endowed with the quotient topology
is a compact Riemann surface.

Proof. By the argument above it follows that C/Λ is compact, connected, and around every point in
C/Λ there exists a chart. Additionally, C/Λ inherits the second countable and Hausdorff properties from
C. What remains to be checked is whether the transition charts are compatible in the sense of Definition
1.3. Let φ1 : π(U1) → U1 and φ2 : π(U2) → U2 be local inverses of π such that U1 ∩ U2 ̸= ∅. The
transition function φ1φ

−1
2 : φ1(π(U1)∩π(U2)) → φ2(π(U1)∩π(U2)) sends a point z ∈ φ1(π(U1)∩π(U2))

to π(z) for some z ∈ U1. We have that π(z) = π(u) for some u ∈ U2 hence z+ω = u for some ω ∈ Λ and
φ2(π(z)) = u = z + ω. We obtain that φ1φ

−1
2 (z) = z + ω for some ω ∈ Λ. It follows that the transition

function φ1φ
−1
2 is a holomorphic map of open subsets of C. ■

Next, we investigate the holomorphic maps between two complex tori. Let Λ and Λ′ be lattices. Covering
space theorists call C a universal covering space for π : C → C/Λ and π′ : C → C/Λ′. A result from
covering space theory [15, Theorems 5.1, 6.4] states that a continuous map Ψ: C/Λ → C/Λ′ such that
Ψ(0) = 0 lifts to a unique continuous map Ψ̃: C → C sending 0 to 0 such that

C C

C/Λ C/Λ′Ψ

Ψ̃

π π′ (1.3)

commutes. Around every point, locally, π and π′ are bijections and commutativity of the above diagram
implies Ψ̃ = π′−1Ψπ. If Ψ is a holomorphic map of Riemann surfaces, then by Definition 1.8 the right
hand side of this equation is holomorphic hence Ψ̃ is holomorphic. Conversely if Ψ̃ is holomorphic we
see that Ψ is holomorphic.

Example 1.16. Let α ∈ C define the map Ψ: C/Λ → C/Λ′ as z + Λ 7→ αz + Λ′. Such a mapping is
well-defined if and only if αΛ ⊂ Λ. To see this, suppose that u + Λ = z + Λ. Then u − z ∈ Λ. We
have αu + Λ′ = αz + Λ′ if and only if α(u − z) ∈ Λ′. In particular, setting z = 0 we obtain αΛ ⊂ Λ′.
In this case, the map Ψ̃: z 7→ αz is holomorphic on C and is the unique continuous map C → C such
that the diagram (1.3) commutes. This shows that Ψ satisfies Definition 1.8 and is a holomorphic map
C/Λ → C/Λ′. ♦

Proposition 1.17. [27, Proposition 3.3] Let Λ and Λ′ be lattices. Suppose that Ψ: C/Λ → C/Λ′ is
holomorphic sending 0 to 0. Then there exists an α ∈ C such that αΛ ⊂ Λ′ and Ψ: z + Λ 7→ αz + Λ′.

Proof. Let Ψ̃ : C → C be the lifting map of Ψ making (1.3) commute and let ω ∈ Λ. Then

π′(Ψ̃(z + ω)− Ψ̃(z)) = π′(Ψ̃(z + ω))− π′(Ψ̃(z)) = Ψ(π(z + ω))−Ψ(π(z)) = Ψ(π(z))−Ψ(π(z)) = 0

which implies Ψ̃(z + ω) − Ψ̃(z) ∈ Λ′. Since Ψ̃(z + ω) − Ψ̃(z) is continuous, it can not jump to different
values of Λ′ as each point in Λ′ is isolated. This forces z 7→ Ψ̃(z+ω)− Ψ̃(z) to be constant. Its derivative
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will then be 0. It follows that Ψ̃′(z + ω) = Ψ̃′(z), this means that Ψ̃′ is fully determined on the closure
of some fundamental domain Dz. Such a set is compact and hence Ψ̃′ is bounded on Dz. Since Ψ′ is
determined entirely on Dz, it is bounded on the whole complex plane and hence constant by Liouville’s
theorem. Write Ψ̃′(z) = α for α ∈ C and take an anti-derivative to obtain Ψ̃(z) = αz+ β. Plugging in 0
gives Ψ̃(0) = β = 0 and

Ψ(z + Λ) = Ψ(π(z)) = π′(Ψ̃(z)) = αz + Λ′,

as required. ■

An immediate consequence of this is that every holomorphic function between complex tori which sends
0 to 0 is a group homomorphism.

Corollary 1.18. [27, Corollary 3.4] Let Λ and Λ′ be lattices. The Riemann surfaces C/Λ and C/Λ′ are
isomorphic as groups and Riemann surfaces if and only if αΛ = Λ′ for some α ∈ C.

For a lattice Λ = Zω1 ⊕ Zω2, write Λ = ω2(Zω1

ω2
⊕ Z). By Corollary 1.18, for any lattice Λ there is a

lattice of the form Λτ = Zτ ⊕Z with τ ∈ H such that C/Λ ∼= C/Λτ . In the next proposition, we classify
elliptic tori of the form C/Λτ up to isomorphism.

Proposition 1.19. Let τ1, τ2 ∈ H. Define Λτ1 = Zτ1 ⊕ Z and Λτ2 = Zτ2 ⊕ Z. Then C/Λτ1 ∼= C/Λτ2 if
and only if

τ1 =
aτ2 + b

cτ2 + d
(1.4)

for some (a, b; c, d) ∈ SL2(Z).

Proof. Suppose that C/Λτ1 ∼= C/Λτ2 . By Corollary 1.18 αΛτ1 = Λτ2 for some α ∈ C. This means that
there is some (a, b; c, d) ∈ SL2(Z) such that(

a b

c d

)(
τ2
1

)
=

(
ατ1
α

)
.

Then

τ1 =
ατ1
α

=
aτ2 + b

cτ2 + d
.

Conversely, suppose that τ1 and τ2 satisfy (1.4) for some (a, b; c, d) ∈ SL2(Z). Then

C/Λτ1 = C/(Zτ1⊕Z) = C/
(
Z
(aτ2 + b

cτ2 + d

)
⊕Z

) 1.18∼= C/(Z(aτ2+ b)⊕Z(cτ2+d))
1.14
= C/(Zτ2⊕Z) = C/Λτ2 .

■

The relation (1.4) between τ1 and τ2 defines a group action of SL2(Z) on H. This fact is the groundwork
of modular curves which is studied in the next section. In Section 4.2 an isomorphism between complex
tori and elliptic curves is described, further emphasizing the importance of studying isomorphism classes
of complex tori.

1.3 Modular curves

A modular curve is a compact Riemann surface consisting of the set of orbits of a group action of a cer-
tain type of subgroup Γ ≤ SL2(Z). These objects are widely studied in algebraic geometry and number
theory. Modular curves allows us to study certain types of objects through the lens of Riemann surfaces.
In this section we define these objects and show that they are indeed Riemann surfaces. These objects are
paramount to us, for this reason we define these objects in quite some detail, mainly using [13, Section 2].

As hinted at in the previous section, the group SL2(Z) acts on the upper half complex plane H.

Proposition 1.20. The action SL2(Z)×H → H defined by(
a b

c d

)
τ =

aτ + b

cτ + d

is a well-defined group action.
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Proof. Let τ ∈ H and (a, b; c, d) ∈ SL2(Z). Showing that the action is well-defined amounts to showing
that cτ + d ̸= 0 and that (a, b; c, d)τ ∈ H. Suppose that cτ + d = 0. It follows that c = d = 0 as τ has
nonzero imaginary part. No (a, b; 0, 0) ∈ SL2(Z) exists. For τ ∈ H and (a, b; c, d) ∈ SL2(Z),

Im

((
a b

c d

)
τ

)
=

Im((aτ + b)(cτ + d))

|cτ + d|2
=

(ad− bc) Im τ

|cτ + d|2
=

Im τ

|cτ + d|2

which is greater than 0. This shows that (a, b; c, d)τ ∈ H. Moreover, (1, 0; 0, 1)τ = τ and α(βτ) = (αβ)τ
for α, β ∈ SL2(Z). ■

Let N > 1 be an integer. The homomorphism πN : SL2(Z) → SL2(Z/NZ) induced by the projection
homomorphism Z → Z/NZ has kernel

kerπN =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡
(
1 0

0 1

)
mod N

}
.

This normal subgroup of SL2(Z) is denoted by Γ(N) for integer N > 1 and is referred to as the principle
congruence subgroup of SL2(Z). As a convention, Γ(1) = SL2(Z). The map πN is surjective [8, Theorem
3.2], its image SL2(Z/NZ) is a finite set. By the first homomorphism theorem we see that

[SL2(Z) : Γ(N)] = |SL2(Z/NZ)| <∞

Definition 1.21. [13, Definition 1.2.1] A subgroup Γ of SL2(Z) is a congruence subgroup if there is an
integer N ≥ 1 such that Γ(N) ≤ Γ. ▲

Let Γ be a congruence subgroup. From the inclusion Γ(N) ≤ Γ ≤ SL2(Z) we obtain

[SL2(Z) : Γ] ≤ [SL2(Z) : Γ(N)] <∞.

Any congruence group Γ inherits a group action from SL2(Z) on H as in Proposition 1.20. The set of
orbits is denoted by

Y (Γ) = {Γτ : τ ∈ H} = Γ\H.
The expression Γ\H is a left quotient and is interpreted as identifying Γ equivalent points. Let π : H →
Y (Γ) denote the projection map. With the subspace topology on H we endow Y (Γ) with the quotient
topology where we define U ⊂ Y (Γ) to be open whenever π−1(U) is an open subset of H. With this
topology, π is continuous and open. To see that π is open, let U ⊂ H be an open subset, then

π−1(π(U)) =
⋃
γ∈Γ

π−1(γ(U)). (1.5)

Interpret γ as a homeomorphism H → H with continuous inverse γ−1. We see that γ(U) is open and
from (1.5) it follows that π(U) is open.

By second countability of H it follows that Y (Γ) also has this property. Moreover by continuity of π and
connectedness of H we see that π(H) = Y (Γ) is connected. Next, we show that Y (Γ) is Hausdorff. This
requires some more work. However, the intermediate results we obtain are important when defining the
domains of the charts on Y (Γ). The following lemma is proven in the proof of Proposition 2.1.1 of [13].
The proof we include here fills in some of the missing details.

Lemma 1.22. [13, Proposition 2.1.1] Let Γ be a congruence subgroup. For open sets U1, U2 of H with
compact closure the set

{γ ∈ Γ : γ(U1) ∩ U2 ̸= ∅}
has finite cardinality.

Proof. First note that for (a, b; c, d) ∈ SL2(Z) we have ad− bc = 1. This implies that gcd(c, d) = 1. Let
(c, d) ∈ Z2 be any pair such that gcd(c, d) = 1. Define the real numbers

y1 = inf{Im(τ) : τ ∈ U1}
Y1 = sup{Im(τ) : τ ∈ U1}
y2 = inf{Im(τ) : τ ∈ U2}.
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Existence of these is ensured by the fact that U1 and U2 have compact closure inH. Let γ = (a, b; c, d) ∈ Γ
and τ ∈ U1, then

Im(γτ) =
Im τ

|cτ + d|2
=

Im τ

(cRe τ + d)2 + (c Im τ)2
≤ min

{ Im τ

(c Im τ)2
,

Im τ

(cRe τ + d)2

}
= min

{ 1

c2 Im τ
,

Im τ

(cRe τ + d)2

}
≤ min

{ 1

c2y1
,

Y1
(cRe τ + d)2

}
.

(1.6)

For |c| large enough we have 1/(c2y1) < y2, say, for |c| ≥ R with R ∈ Z>0. There are only finitely many
c such that |c| ≤ R. For these c we have

Y1
(cRe τ + d)2

< y2

for d large enough, say, |d| ≥ Q with Q ∈ Z>0. Combining these two results and the bound obtained
above, we see that for all but finitely many pairs (c, d) ∈ Z2 with gcd(c, d) = 1 we have Im(γτ) < y2
where γ has bottom row (c, d). By taking the supremum of (1.6) we obtain

sup{γτ : γ ∈ Γ has bottom row (c, d), τ ∈ U1} < y2

which holds for all but finitely many pairs (c, d) such that gcd(c, d) = 1. In particular, this implies that
γ(U1) ∩ U2 = ∅ for all but finitely many of such pairs.

Next, we show that there are only finitely many γc,d ∈ Γ with fixed bottom row (c, d) such that γc,d(U1)∩
U2 ̸= ∅. Combining this fact with the fact that γ(U1) ∩ U2 = ∅ for all but finitely many pairs (c, d)
proves the lemma. To find the elements γc,d = (a, b; c, d) ∈ Γ with fixed bottom row (c, d), we note
that by Bézout’s identity the equation ad − bc = 1 is solved by (a, b) = (a + kc, b + kd) for any k ∈ Z.
Therefore, any matrix in Γ with bottom row (c, d) has the form(

a+ kc b+ kd

c d

)
=

(
1 k

0 1

)
γc,d.

The action of (1, k; 0, 1)γc,d on τ ∈ U1 is(
1 k

0 1

)
γc,dτ = γc,dτ + k.

Such a matrix translates γc,d by integer amounts, and since both U1 and U2 are bounded, there are only
finitely many integers k ∈ Z such

(
γc,d(U1)+k

)
∩U2 ̸= ∅. As argued above, this proves the statement. ■

Proposition 1.23. [13, Proposition 2.1.1] Let Γ be a congruence subgroup. Suppose x, y ∈ H satisfy
π(x) ̸= π(y). Then there exists open neighborhoods U of x and V of y such that

γ(U) ∩ V = ∅

for all γ ∈ Γ.

Proof. Pick open neighborhoods A of x and B of y with compact closure. By Lemma 1.22 the set

S = {γ ∈ Γ : γ(A) ∩B ̸= ∅}

is finite. By assumption, γx ̸= y for all γ ∈ S. We can therefore (since H is Hausdorff) pick disjoint
open neighborhoods Uγ and Vγ of γx and y, respectively. Define

U = A ∩
( ⋂
γ∈S

γ−1Uγ

)
V = B ∩

( ⋂
γ∈S

Vγ

)
.

Then U and V are open since the intersections are finite. Moreover, x ∈ U and y ∈ V . Additionally
U and V satisfy γ(U) ∩ V = ∅ for every γ ∈ Γ. To see this, suppose γ ̸∈ S. Then γ(U) ⊂ γ(A) and
γ(U)∩V ⊂ γ(A)∩B = ∅. It follows that γ(U)∩V = ∅. Conversely, suppose γ ∈ S we have γ(U) ⊂ Uγ
and γ(U) ∩ V ⊂ Uγ ∩ Vγ = ∅. It follows that γ(U) ∩ V = ∅ for all γ ∈ Γ ■
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Corollary 1.24. [13, Corollary 2.1.2] Let Γ be a congruence subgroup. The topological space Y (Γ) is
Hausdorff.

Proof. Let π(x), π(y) ∈ Y (Γ) be distinct points. By Theorem 1.23, there exist open neighborhoods U
and V of x and y such that γ(U) ∩ V = ∅ for all γ ∈ Γ. This implies that π(U) ∩ π(V ) = ∅. To see
this, for x ∈ π(U) ∩ π(V ) we have x = π(u) and x = π(v) for some u ∈ U and v ∈ V . By definition,
there exists some γ ∈ Γ such that γu = v. This implies that v ∈ γ(U) ∩ V , a contradiction. Since π is
an open map, we have π(U) and π(V ) open in Y (Γ). Moreover π(U) and π(V ) contain π(x) and π(y)
respectively, which were taken to be arbitrary, proving that Y (Γ) is Hausdorff. ■

Next, we define charts on Y (Γ). As with the complex torus, around most points τ ∈ H we can find an
open neighborhood of τ such that π is locally invertible. However, there are some points for which this
is not possible. For example, the point i ∈ H is fixed by γ = (0,−1; 1, 0)(

0 −1

1 0

)
i = −1

i
= i.

Since γ : H → H is a homeomorphism and fixes i, any neighborhood around i is mapped to a neighbor-
hood of i. This implies that there are always two SL2(Z) equivalent points in any neighborhood of i and
π is not locally invertible.

Definition 1.25. [13, Definition 2.2.1] Let Γ be a congruence subgroup. A point τ ∈ H is called an
elliptic point for Γ if its stabilizer

Γτ = {γ ∈ Γ: γτ = τ}

contains any element other than I or −I. ▲

For example SL2(Z)i contains (0,−1; 1, 0) and i is an elliptic point for SL2(Z). The elliptic points are
well behaved as the stabilizer groups are uncomplicated groups.

Proposition 1.26. [13, Corollary 2.3.5] For every τ ∈ H the stabilizer Γτ is cyclic and finite.

This result leads to the following definition.

Definition 1.27. [13, Section 2.2] Let Γ be a congruence subgroup. The period of τ ∈ H is

hτ =

{
|Γτ |/2 if − I ∈ Γ

|Γτ | if − I ̸∈ Γ.

▲

This definition counts the number of elements γ ∈ Γ which fix τ up to −I, since γ and −γ act identically
on H for all γ ∈ SL2(Z). The point τ ∈ H is an elliptic point whenever its period hτ is greater than 1.
An alternate way to calculate hτ is as hτ = |{±I}Γτ/{±I}| where {±I}Γτ is a product of subgroups.
For α ∈ SL2(Z), the period of τ with respect to Γ is equal to the period of ατ with respect to αΓα−1.
To see this, let γ ∈ Γτ . Then

αγα−1(ατ) = αγτ = ατ.

It follows that the isomorphism

Γτ → (αΓα−1)ατ

γ 7→ αγα−1,

is well-defined. In particular, when α ∈ Γ we have αΓα−1 = Γ and hτ = hατ . Showing that the period
is well-defined on Y (Γ).

Proposition 1.28. [13, Corollary 2.2.3] Let Γ be a congruence subgroup. For every τ ∈ H there exists
an open neighborhood U ⊂ H of τ such that for all γ ∈ SL2(Z),

if γ(U) ∩ U ̸= ∅ then γ ∈ Γτ .

Moreover, the only possible elliptic point in U is τ .

11



For a point τ ∈ H which is not an elliptic point, Theorem 1.28 provides an open neighborhood of τ such
that no distinct points are equivalent. This means that π restricts to a bijection U → π(U) and hence a
homeomorphism as π is open and continuous. The open sets π(U) serve as the domains of the charts on
Y (Γ).

Proof of Proposition 1.28. Let τ ∈ H and let V ⊂ H be an open neighborhood of τ with compact closure.
By Lemma 1.22, the set

S = {γ ∈ Γ: γ(V ) ∩ V ̸= ∅, γτ ̸= τ}

has finite cardinality. For every γ ∈ S let Uγ and Vγ be disjoint open neighborhoods of τ and γτ
respectively. These sets exist since γτ ̸= τ and H is Hausdorff. Define

U = V ∩
( ⋂
γ∈S

Uγ ∩ γ−1(Vγ)
)
.

Then U is an open neighborhood of τ as the intersection is finite. Suppose that γ(U) ∩ U ̸= ∅, then
γ(V ) ∩ V ̸= ∅. In addition, suppose for a contradiction that γτ ̸= τ so that γ ∈ S. Then U ⊂ Uγ and
γ(U) ⊂ Vγ and hence

∅ ̸= γ(U) ∩ U ⊂ Uγ ∩ Vγ = ∅,

a contradiction. Therefore, γ ̸∈ S. It follows that γτ = τ and γ ∈ Γτ .

For the second assertion, suppose that τ is not an elliptic point and that there is some elliptic point z ∈ U
distinct from τ . Then there is a nontrivial γ ∈ Γz and γ(U) ∩ U ̸= ∅ implying γ ∈ Γτ , a contradiction.
Suppose τ is an elliptic point and that there is some other elliptic point z ∈ U . The same argument as
above shows that Γz ⊂ Γτ . Therefore, for (a, b; c, d) ∈ Γz we have(

a b

c d

)
τ = τ ⇔ aτ + b

cτ + d
= τ ⇔ cτ2 + (d− a)τ + b = 0.

If c ̸= 0 then the last equation is only satisfied for τ and τ . This is because the coefficients a, b, c and d
are real. Therefore, (a, b; c, d) does not fix z and c = 0. It is easily verified that for c = 0 the equation
above implies (a, b; c, d) = ±I. Therefore, z is not an elliptic point. We conclude that the only possible
elliptic point in U is τ . ■

Proposition 1.29. [13, Section 2.2] Let Γ be a congruence subgroup. The set of orbits Y (Γ) is a
Riemann surface.

Proof. Recall that Y (Γ) is second countable and connected. Additionally, by Corollary 1.23, Y (Γ) is
Hausdorff. What remains to be shown is that there is a chart around every point in Y (Γ). To do this,
define the general linear group over C

GL2(C) =
{[
a b

c d

]
∈ C2×2 : ad− bc ̸= 0

}
.

The group GL2(C) acts on the Riemann sphere C∞ = C ∪ {∞} as[
a b

c d

]
z =

{
∞ if cz + d = 0
az+b
cz+d otherwise

for z ∈ C

[
a b

c d

]
∞ =

{
∞ if c = 0
a
c otherwise.

Let τ ∈ H, then δτ = (1,−τ ; 1,−τ) ∈ GL2(C) sends τ 7→ 0 and τ → ∞ via its action on H. Let U ⊂ H
be as in Theorem 1.28. Interpret δτ as the map δτ : U → C induced by the action of GL2(C) on H.
When τ is not an elliptic point, the map δτ serves as a chart U → δτ (U). More care is required when τ
is an elliptic point. Define

ψ : U → C
ν 7→ ρδτ (ν)

(1.7)
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where ρ(z) = zhτ and hτ is the period of τ . Points in H which are Γ equivalent have the same image
under ψ. To see this, suppose that τ1, τ2 ∈ U are such that π(τ1) = π(τ2). By the choice of U we must
have τ1 ∈ Γττ2. Applying δτ on both sides we obtain that this is equivalent to

δτ (τ1) ∈ δτΓττ2 = δτΓτδ
−1
τ (δτ (τ2)). (1.8)

For δτγδ
−1
τ ∈ δτΓτδ

−1
τ we have

0 τ τ 0 ∞ τ τ ∞.
δ−1
τ γ δτ δ−1

τ γ δτ

Elements in GL2(C) which fix 0 and ∞ act as multiplication. Therefore, elements in δτΓτδ
−1
τ act as

multiplication. Using this fact and (1.8) we obtain

δτ (τ1) = δτγδ
−1
τ (δτ (τ1)) = ζδτ (τ2) for some ζ ∈ C and γ ∈ Γτ .

By Proposition 1.26 we know that δτΓτδ
−1
τ is cyclic of order hτ or 2hτ . Therefore (δταδ

−1
τ )hτ = ±I

which acts trivially on δτ (τ2). It follows that ζhτ = 1 and hence ζ is an hτ−th root of unity, write
ζ = ζdhτ

for some d ∈ Z. Then

δτ (τ1) = ζdhτ
δτ (τ2) ⇔

(
δτ (τ1)

)hτ
=
(
δτ (τ2)

)hτ ⇔ ψ(τ1) = ψ(τ2).

Doing this calculation in reverse we obtain that π(τ1) = π(τ2) if and only if ψ(τ1) = ψ(τ2). Set V = ψ(U)
which is open by the open mapping theorem [9, Theorem IV.7.5]. Define φ : π(U) → V to be the (unique)
map that makes the following diagram commute.

U V

π(U)

π
φ

ψ

(1.9)

By the argument above, φ is well-defined and injective. Since π and ψ are open, continuous and surjective,
so is φ. The homeomorphism φ : π(U) → V satisfies Definition 1.1 and defines a chart on Y (Γ). In [13,
Section 2.2] the transition maps of these charts are calculated which turn out to be holomorphic. The
charts φ : π(U) → V are defined around any point τ ∈ H. It follows that Y (Γ) is a Riemann surface. ■

Next, we add a point at ∞ to Y (Γ). To do this we compactify H by adding ∞. By attempting to extend
the action of SL2(Z) to H ∪ {∞} by defining(

a b

c d

)
∞ =

{
∞ if c = 0
a
c otherwise

we see that this extension of H also requires Q to be added. Denote the extended upper half plane by
H∞ = H ∪Q ∪ {∞} and for p/q ∈ Q define(

a b

c d

)
p

q
=

{
∞ if pc+ qd = 0
pa+qb
pc+qd otherwise.

Any congruence subgroup Γ inherits its action on H∞ from SL2(Z).

Definition 1.30. Let Γ be a congruence subgroup. The modular curve X(Γ) is the set of orbits of H∞

X(Γ) = Γ\H∞ = Y (Γ) ∪ Γ\(Q ∪ {∞}).

A cusp of X(Γ) is an orbit of the form Γs ∈ Γ\(Q ∪ {∞}). ▲

Lemma 1.31. [13, Lemma 2.4.1] The modular curve X(SL2(Z)) has one cusp. If Γ is a congruence
subgroup then X(Γ) has a finite number of cusps.

13



Proof. Let p, q ∈ Z with gcd(p, q) = 1. By Bézout’s identity there exists integers s, t ∈ Z such that
ps− tq = 1 then (p, t; q, s) ∈ SL2(Z) and (

p t

q s

)
∞ =

p

q
.

Therefore, ∞ is in the same orbit as any rational number. As a consequence, SL2(Z)∞ is the only cusp
of X(SL2(Z)).

For the second assertion, let Γ be a congruence subgroup. The subgroup Γ has finite index in SL2(Z),
therefore, there exist γi ∈ SL2(Z) such that

SL2(Z) =
n⋃
i=1

Γγi

where n = [SL2(Z) : Γ]. Let s ∈ Q ∪ {∞}. By the previous argument, there is some α ∈ SL2(Z) such
that s = α(∞) and we can write α = δγj for some δ ∈ Γ and j ∈ {1, . . . , n}. This implies Γs = Γγj(∞)
and hence |Γ\(Q ∪ {∞})| ≤ [SL2(Z) : Γ] <∞. ■

The topology on H∞ has the same basis as the topology of H along with the sets

α(NM ∪ {∞}) for α ∈ SL2(Z)

where
NM = {τ ∈ H : Im(τ) > M} for some positive M ∈ R. (1.10)

Let π : H∞ → X(Γ) be the projection τ 7→ Γτ . The modular curve X(Γ) is endowed with the quotient
topology. With respect to this topology, π is continuous and open. Additionally, X(Γ) has the following
topological properties.

Proposition 1.32. [13, Proposition 2.4.2] Let Γ be a congruence subgroup. The modular curve X(Γ)
is Hausdorff, second countable, connected and compact.

Proposition 1.33. [13, Section 2.4] Let Γ be a congruence subgroup. The modular curve X(Γ) is a
compact Riemann surface.

To prove this, we require an analogue of the period for the cusps of X(Γ). This is required for the
definition of the charts around the cusps. A swift computation shows that the stabilizer SL2(Z)∞ of ∞
is of the form

SL2(Z)∞ = {±I}
〈(

1 1

0 1

)〉
. (1.11)

Let s ∈ Q ∪ {∞}, then by Lemma 1.31 there is some α ∈ SL2(Z) such that α(∞) = s. The group
{±I}(αΓα−1)∞ is a subgroup of SL2(Z)∞ and using (1.11) has the form

{±I}(αΓα−1)∞ = {±I}
〈(

1 hs
0 1

)〉
(1.12)

for some integer hs ≥ 1. Such an integer hs exists since there is some positive N ∈ Z such that

Γ(N) ≤ Γ ⇔ Γ(N)∞ ≤ {±I}(αΓα−1)∞

where we used that Γ(N) is normal in SL2(Z). From the above inclusion we have that (1, N ; 0, 1) ∈
{±I}(αΓα−1)∞ which shows existence of hs and that hs ≤ N . Define the width of s (for Γ) to be the
positive integer hs. Combining (1.11) and (1.12) we see that the set of cosets has representatives

SL2(Z)∞/({±I}αΓα−1)∞ =

{(
1 0

0 1

)
({±I}αΓα−1), . . . ,

(
1 hs − 1

0 1

)
({±I}αΓα−1)

}
.

This gives the formula hs = |SL2(Z)∞/({±I}αΓα−1)∞|. From this formula, we see that hs is inde-
pendent of the choice of α as ±αγα−1 7→ ±γ is an isomorphism {±I}(αΓα−1)∞ → {±I}Γs. It follows
that

hs = |SL2(Z)∞/({±I}αΓα−1)∞| = |SL2(Z)∞/({±I}Γs)|.
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This shows that hs is independent of the choice of α. Let α ∈ SL2(Z). The width hγs of γs for αΓα−1 is

hγs = |SL2(Z)∞/({±I}βαΓα−1β−1)∞| = |SL2(Z)∞/({±I}(βα)Γ(βα)−1)∞|

where β ∈ SL2(Z) is such that βγs = ∞. The expression on the right is equal to the period hs for Γ.
In particular, if α ∈ Γ, then αΓα−1 = Γ and hs = hγs. This shows that the width is well-defined on X(Γ).

Proof of Proposition 1.33. By Proposition 1.32, all that remains to show is that around every point in
X(Γ) there is a chart. For points π(τ) ∈ Y (Γ) ⊂ X(Γ) we use the charts as in Proposition 1.29. The
points we have to account for are the cusps of X(Γ).

Let s ∈ Q∪{∞}. By Lemma 1.31 there is some δ ∈ SL2(Z) such that δ(s) = ∞. Let U = δ−1(N2∪{∞})
be an open neighborhood of s where N2 is as in (1.10). As before, define

ψ : U → C
ν 7→ ρδ(ν)

(1.13)

where we interpret δ as a holomorphic bijection H∞ → H∞ and

ρ : N2 ∪ {∞} → C

z 7→

{
0 if z = ∞
e2πiz/hs otherwise

where hs is the width of s. Points in U which are Γ equivalent have the same image under ψ. To see
this, let τ1, τ2 ∈ U such that τ1 = γτ2 for some γ ∈ Γ. By applying δ on both sides we obtain

δ(τ1) = δ(γτ2) ⇔ δ(τ1) = δγδ−1(δ(τ2)). (1.14)

Both δ(τ1) and δ(τ2) are elements in N2 ∪{∞} and hence have imaginary part larger than 2 or are both
equal to ∞. A computation verifies that this implies that δγδ−1 = (1, n; 0, 1) for some n ∈ Z. Then
δγδ−1 fixes ∞ and

δγδ−1 ∈ (δΓδ−1)∞ ⊂ {±I}
〈(

1 hs
0 1

)〉
.

The equation on the right of (1.14) is then

δ(τ1) = δ(τ2) +mhs for some m ∈ Z.

Apply ρ on both sides to obtain

ψ(τ1) = e2πiδ(τ1)/hs = e2πi(δ(τ2)+mhs)/hs = e2πiδ(τ2)/hs = ψ(τ2).

By reversing the argument above we obtain that π(τ1) = π(τ2) if and only if ψ(τ1) = ψ(τ2). Set
V = ψ(U), then V is open by the open mapping theorem. Let φ : π(U) → V be the unique map such
that

U V

π(U)

π
φ

ψ

(1.15)

commutes. The map φ is well-defined and injective by the equivalence obtained above. Since π and
ψ are surjective, open and continuous, so is φ. This shows that φ satisfies Definition 1.1 and defines
a chart around the cusps Γs ∈ Γ\(Q ∪ {∞}). Section 2.4 of [13] computes the transition functions of
the charts around the cusps and shows that these are compatible. It follows that X(Γ) is a compact
Riemann surface. ■
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2 Meromorphic differentials and the genus

The coordinate transformation (x, y) 7→ x + iy is a smooth map from an open subset of R2 to an open
subset of C when viewed as real manifolds. It follows that a Riemann surface X is a 2−dimensional real
manifold. It turns out that X is also orientable as a 2−dimensional real manifold, this follows from the
fact that the transition functions of X satisfy the Cauchy-Riemann equations. The compact oriented
2−dimensional smooth manifolds are classified in the sense that every such manifold is isomorphic (as
real manifolds) to a sphere with g ∈ Z≥0 handles attached to it [4, Section 7]. By combining these facts,
we obtain the following.

Proposition 2.1. [28, Proposition 1.23] Every Riemann surface is an orientable path-connected 2−
dimensional smooth real manifold. Every compact Riemann surface is isomorphic (as real manifolds) to
a sphere with g handles attached to it for some unique integer g ≥ 0.

The first homology group is the set of loops in X with zero boundary modulo the boundaries of triangles
in X (see [4, Section 8]). The homology group of a sphere with g handles is isomorphic to Z2g. Combining
this fact with Proposition 2.1 we obtain the following definition.

Definition 2.2. Let X be a Riemann surface. The genus g of X is defined to be the positive integer
such that

H1(X,Z) ∼= Z2g

where H1(X,Z) is the first homology group of X. ▲

In this section we introduce meromorphic functions and meromorphic differentials. In particular, we
investigate the meromorphic and holomorphic differentials on X(Γ). We relate the latter to the genus
of X(Γ) using the Riemann-Roch theorem. Studying meromorphic differentials on X(Γ) gives rise to
meromorphic functions on H which preserve a certain symmetry of Γ. These functions turn out to be
classified by meromorphic differentials on X(Γ). This allows us to relate them to the genus of X(Γ).
Finally, we give explicit formulas for calculating the genus of a specific type of congruence subgroup. We
use [28, Section II] for most definitions relating to Riemann surfaces. In the rest of this section we follow
the ideas of [13, Section 3].

2.1 Meromorphic functions

Meromorphic functions are objects of great interest when studying residue theory. On Riemann surfaces,
the notion of a meromorphic function generalizes this concept using charts. In this section meromorphic
functions are defined using [28, Chapter II] and are related to holomorphic functions on the Riemann
sphere.

Definition 2.3. [28, Definition II.1.13] Let X be a Riemann surface. Let U ⊂ X be open, x ∈ U and
suppose f : U \ {x} → C is holomorphic. We say that

1. f has a pole at x if and only if there is a chart φ : U → V such that fφ−1 : φ(U) → V has a pole
at φ(x);

2. f has a removable singularity if and only if there is a chart φ : U → V such that fφ−1 : φ(U) → V
has a removable singularity at φ(x);

3. f has an essential singularity if and only if there is a chart φ : U → V such that fφ−1 : φ(U) → V
has an essential singularity at φ(x). ▲

As in Section 1.1, this definition is independent of the choice of chart.

Definition 2.4. [28, Definition II.1.15] A function f : X → C is meromorphic at x ∈ X if f is holomor-
phic at x, has a removable singularity at x, or has a pole at x. We say that f is meromorphic if it is
meromorphic at every point x ∈ X. ▲

Example 2.5. Let Γ be a congruence subgroup and f : X(Γ) → C be meromorphic. Let φ : π(U) → V
be a chart of X(Γ). Then φπ = ψ where ψ is as in (1.7) or (1.13). By definition, fφ−1 : V → C is a
meromorphic function of open subsets of the complex plane. Elements in V take the form ψ(τ). Then
fφ−1(ψ(τ)) = f(π(τ)). This means that fφ−1 is Γ invariant for every chart φ of X(Γ). The fact that
f is meromorphic in particular implies that f is meromorphic at every Γs ∈ π(Q ∪ {∞}). It follows
that fαφ−1 is meromorphic at ∞ for all α ∈ SL2(Z) (see Definition 2.20). We obtain a one-to-one
correspondence between meromorphic functions on X(Γ) and meromorphic functions f : H → C which
are meromorphic at the cusps and satisfy f(γτ) = f(τ) for all γ ∈ Γ. ♦
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Proposition 2.6. [28, Example II.1.17] Let X be a Riemann surface. Let f, g : X → C be meromorphic
functions. Then f ± g and f · g are meromorphic on X. If g is not identically 0 on X, then f/g is
meromorphic on X.

From Proposition 2.6, we see that the set of meromorphic functions onX form a field with usual pointwise
multiplication and addition which we denote by C(X). For a meromorphic function f : X → C and a
chart φ : U → V of X, the function fφ−1 : φ(U) → V is a meromorphic function of open subsets of C.
It has the Laurent series around z0 ∈ φ(U)

fφ−1(z) =

∞∑
n=m

an(z − z0)
n. (2.1)

for some m ∈ Z.

Definition 2.7. [28, Definition II.1.27] LetX be a Riemann surface. Suppose f : X → C is meromorphic.
Let φ : U → V be a chart of X. The order of f at a point x ∈ U is the smallest m such that an = 0 for
all n < m in (2.1). The order of f at x is denoted by ordx(f). ▲

Due to compatibility, the order of a meromorphic function at a point is independent of the chart chosen
[28, Section II.1].

Proposition 2.8. [28, Lemma II.1.28] Let X be a Riemann surface. Suppose f : X → C is meromorphic
at x ∈ X. Then f

1. is holomorphic at x if and only if ordx(f) ≥ 0;

2. has a zero at x if and only if ordx(f) > 0;

3. has a pole at x if and only if ordx(f) < 0.

Proposition 2.9. [28, Lemma II.1.29] Let X be a Riemann surface and f, g : X → C meromorphic at
x ∈ X. Then

1. ordx(fg) = ordx(f) + ordx(g)

2. ordx(f ± g) ≥ min{ordx(f), ordx(g)} with equality if ordx(f) and ordx(g) are distinct.

Suppose f : X → C is a meromorphic map on a Riemann surface X. At the poles, f tends to ∞. The
Riemann sphere allows us to make this precise by defining the holomorphic map Ψ: X → C∞ as

Ψ(x) =

{
∞ if x is a pole of f

f(x) otherwise.

Via this construction we obtain a bijection between the meromorphic functions f : X → C and holomor-
phic maps Ψ: X → C∞ which are not identically ∞ [28, Proposition II.3.13].

2.2 Meromorphic differentials

Meromorphic differentials are objects defined on a Riemann surfaces. As with most objects on Riemann
surfaces we first define these objects on open subsets of the complex plane.

Definition 2.10. [13, Section 3.3] Let V ⊂ C be open. A meromorphic differential on V is an object of
the form f(z)dz where f : V → C is meromorphic and z is a coordinate on V . The set of meromorphic
differentials on V is denoted by Ω(V ). ▲

For all open V ⊂ C the set Ω(V ) is a C−vector space with vector addition and scalar multiplication

f(z)dz + g(z)dz = (f(z) + g(z))dz

α(f(z)dz) = αf(z)dz.
(2.2)

where f(z)dz, g(z)dz ∈ Ω(V ) and α ∈ C.
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Definition 2.11. [13, Section 3.3] Let V1 and V2 be open subsets of C with coordinates z1 and z2,
respectively. Let Ψ: V1 → V2 be holomorphic. The pull back of Ψ is the map Ψ∗ : Ω(V2) → Ω(V1)
defined by

Ψ∗(f(z2)dz2) = f(Ψ(z1))Ψ
′(z1)dz1

where Ψ′ : V1 → V2 denotes the derivative of Ψ. ▲

When d is interpreted as the exterior derivative, the pull back is obtained by plugging in the coordinates
z2 = Ψ(z1) as

f(Ψ(z1))d(Ψ(z1)) = f(Ψ(z1))Ψ
′(z1)dz1.

The pull back is linear and satisfies the following properties.

Proposition 2.12. [13, Section 3.3] Suppose V, V1, V2, V3 ⊂ C are open, Ψ1 : V1 → V2 and Ψ2 : V2 → V3
holomorphic maps. Then

1. the pull back (Ψ2Ψ1)
∗ : Ω(V3) → Ω(V1) is equal to Ψ∗

1Ψ
∗
2;

2. the identity map idV : V → V has pull back (idV )
∗ = idΩ(V );

3. if Ψ1 : V1 → V2 is surjective then Ψ∗ : Ω(V2) → Ω(V1) is injective.

If Ψ: V1 → V2 is an isomorphism, then by combining Proposition 2.12.1 and 2.12.2 we obtain that Ψ∗ is
a isomorphism of vector spaces with inverse (Ψ∗)−1 = (Ψ−1)∗.

Definition 2.13. [13, Section 3.3] Let X be a Riemann surface with charts {φj : Uj → Vj : j ∈ J} for
some indexing set J . A meromorphic differential on X is an object of the form

(ωj)j∈J ∈
∏
j∈J

Ω(Vj)

such that for every transition function φjφ
−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) with i, j ∈ J , we have

(φjφ
−1
i )∗(ωj |φj(Ui∩Uj)) = ωi|φi(Ui∩Uj). (2.3)

A meromorphic differential is compatible whenever it satisfies (2.3) for every transition function. Denote
the set of meromorphic differentials on X by Ω(X). ▲

Compatibility ensures that this definition is independent of the choice of chart. A meromorphic differ-
ential on a Riemann surface X is a patchwork of meromorphic differentials on the local coordinates of
X. The compatibility requirement ensures that the meromorphic differentials agree on the overlapping
coordinates. The set Ω(X) forms a C−vector space with addition and scalar multiplication as in (2.2).
Additionally, Ω(X) forms a C(X)−vector space via pointwise addition and scalar multiplication as fol-
lows. Let φj : Uj → Vj be a chart of X. If ω ∈ Ω(X) has local expression ωj = gj(zj)dzj , then for
f ∈ C(X), the scalar multiple fω has local expression

(fω)j = f(φ−1
j (zj))gj(zj)dzj .

This is well-defined since fω is compatible. To see this, let φi : Ui → Vi be another chart of X. Then

(φjφ
−1
i )∗(fω)j = f(φ−1

j φjφ
−1
i (zi))gj(φjφ

−1
i (zi))(φjφ

−1
i )′(zi)dzi = f(φ−1

i (zi))(φiφ
−1
j )∗(ωj) = (fω)i

where we omitted the domain restrictions to ease notation. It follows that fω is compatible whenever ω
is compatible. It turns out that the structure of Ω(X) as a C(X)−vector space is quite simple.

Lemma 2.14. [28, Lemma V.1.12] LetX be a Riemann surface. The C(X)−vector space of meromorphic
differentials Ω(X) has dimension one.

Proof. Let ω1 and ω2 be elements of Ω(X). We show that there exists a function f ∈ C(X) such that
fω1 = ω2. It then follows that Ω(X) = span{ω1} and the statement follows. Let φi : Ui → Vi be a chart
of X. Then, locally on Vi,

(ω1)i = g1(zi)dzi and (ω2)i = g2(zi)dzi

for meromorphic functions g1 and g2. Define f locally on Ui as

f(x) =
g2(φi(x))

g1(φi(x))
=
g2(zi)

g1(zi)
.
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Then

(fω1)i =
g2(zi)

g1(zi)
g1(zi)dzi = g2(zi)dzi = (ω2)i.

To see that f can be extended to all of X, let φj : Uj → Vj be another chart such that Ui ∩ Uj ̸= ∅.
Write

(ω1)j = h1(zj)dzj and (ω2)j = h2(zj)dzj .

By compatibility of ω1 and ω2, we have

(φiφ
−1
j )∗((ωk)j |φj(Ui∩Uj)) = (ωk)j |φj(Ui∩Uj) = hk(zj)dzj |φi(Ui∩Uj) (2.4)

for k = 1, 2. On the other hand,

(φiφ
−1
j )∗((ωk)j |φj(Ui∩Uj)) = gk(φiφ

−1
j (zj))(φiφ

−1
j )′(zj)dzj |φi(Ui∩Uj). (2.5)

Combining (2.4) and (2.5), we obtain

gk(φiφ
−1
j (zj)) =

hk(zj)

(φiφ
−1
j )′(zj)

for all zj ∈ φi(Ui ∩ Uj). (2.6)

This is well-defined since (φiφ
−1
j )′ ̸= 0 by [28, Lemma I.1.7]. Then for x ∈ Ui ∩ Uj ,

g2(φi(x))

g1(φi(x))
=
g2(φiφ

−1
j φj(x))

g1(φiφ
−1
j φj(x))

=
g2(φiφ

−1
j (zj))

g1(φiφ
−1
j (zj))

=
h2(zj)/(φiφ

−1
j )′(zj)

h1(zj)/(φiφ
−1
j )′(zj)

(2.6)
=

h2(φj(x))

h1(φj(x))

It follows that defining f(x) = h(φj(x))/h(φj(x)) on Uj yields a well-defined meromorphic function on
Uj∪Ui. Doing this on every chart, we obtain a meromorphic function f : X → C such that fω1 = ω2. ■

Example 2.15. Let X be a complex torus C/Λ as in Section 1.2. Denote the local inverses of the
projection C → C/Λ by φj : Uj → Vj where j is in some indexing set J . The transition maps are of the
form φjφ

−1
i (z) = z + ω for some ω ∈ Λ. For j ∈ J , denote the coordinates on Vj by zj . Then (dzj)j∈J

is a meromorphic differential since

(φjφ
−1
i )∗(dzj |φj(Ui∩Uj)) = (φjφ

−1
i )′(z)dzi = dzi|φi(Uj∩Ui).

Since dzj pulls back to dzi for all i, j ∈ J . We can write dz as a global expression for (dzj)j∈J . ♦

Definition 2.16. [13, Section 6.2] Let X and Y be Riemann surfaces and Ψ: X → Y a holomorphic
map. The pull back of Ψ is the map Ψ∗ : Ω(Y ) → Ω(X) mapping ω 7→ Ψ∗ω. Here, Ψ∗ω is locally defined
as

(Ψ∗ω)j = (φ̃jΨφ
−1
j )∗(ωj) ∈ Ω(Vj) for ωj ∈ Ω(Ṽj)

where φj : Uj → Vj and φ̃j : Ũj → Ṽj are charts of X and Y , respectively, such that Ψ(Uj) = Ũj . ▲

With notation as in Definition 2.16, the object ωj is an element in Ω(Ṽj) so it has the form ωj = g(z̃j)dz̃j .
The local pull back is then calculated as

(Ψ∗ω)j = (φ̃jΨφ
−1
j )∗(ωj) = g(φ̃jΨφ

−1
j (zj))(φ̃jΨφ

−1
j )′(zj)dzj .

Some wariness is required for Definition 2.16 as we claim that Ψ∗ maps to Ω(X) which requires Ψ∗ω to
be compatible for ω ∈ Ω(Y ).

Proposition 2.17. Let X and Y be Riemann surfaces and Ψ: X → Y . The pull back Ψ: Ω(Y ) → Ω(X)
is a well-defined linear map.

Proof. Let φi and φj be charts of X, φ̃i and φ̃j be charts of Y and ω ∈ Ω(X). To ease notation, define

Wi = φi(Ui ∩ Uj), define Wj , W̃i and W̃j in a similar fashion. Then

(φjφ
−1
i )∗((Ψ∗ω)j |Wj ) = (φjφ

−1
i )∗(φ̃jΨφ

−1
j )∗(ωj |W̃j

) = (φjφ
−1
i )∗(φ̃jφ̃

−1
i φ̃iΨφ

−1
j )∗(ωj |W̃j

)

2.12.1
= (φjφ

−1
i )∗(φ̃iΨφ

−1
j )∗(φ̃jφ̃

−1
i )∗(ωj |W̃j

) = (φ̃iΨφ
−1
j φjφ

−1
i )∗(ωi|W̃i

)

= (φ̃iΨφ
−1
i )∗(ωi|W̃i

) = (Ψ∗ω)i|Wi

where the fourth equality follows from compatibility of ω. Linearity of Ψ∗ follows from linearity of
(φ̃iΨφ

−1
i )∗ ■
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Properties similar to 1 and 2 of Proposition 2.12 hold for the pull back Ψ∗ in Definition 2.16.

Let Γ be a congruence subgroup of SL2(Z). Denote the charts of X(Γ) by φi : π(Ui) → Vi with φiπ = ψi
with i ∈ I for some index set I. Here, ψi is as in (1.7) or (1.13) and φi is as in (1.9) or (1.15). Remove
the cusps from the Ui to obtain U ′

i = Ui ∩ H and define V ′
i = ψi(U

′
i). Then H is a Riemann surface

with charts idi : U
′
i → U ′

i . With these charts on H, the restriction of the projection π : H → X(Γ) is a
holomorphic map of Riemann surfaces. Let ω ∈ Ω(X(Γ)), then φi|π(U ′

i)
: π(U ′

i) → V ′
i is a chart and the

local pull back of π is
(π∗ω)i|U ′

i
= (φiπid

−1)∗(ωi|V ′
i
) = ψ∗

i (ωj |V ′
j
). (2.7)

This construction actually gives a global meromorphic differential. To see this, we have

φ−1
j ψj |U ′

j∩U ′
i
= π|U ′

j∩U ′
i
= φ−1

i ψi|U ′
j∩U ′

i
⇔ φiφ

−1
j ψj |U ′

j∩U ′
i
= ψi|U ′

j∩U ′
i
.

Define the complex function σi,j as

σi,j = φiφ
−1
j |φj(π(U ′

j)∩π(U ′
i))
. (2.8)

By pulling back (2.7), we obtain ψ∗
i = ψ∗

jσ
∗
i,j . Then

(π∗ω)i|U ′
i∩U ′

j
= ψ∗

i (ωi|ψi(U ′
i∩U ′

j)
) = ψ∗

jσ
∗
i,j(ωi|ψi(U ′

i∩U ′
j)
) = ψ∗

j (ωj |ψj(U ′
i∩U ′

j)
) = (π∗ω)j |U ′

i∩U ′
j

where we used compatibility of ω in the third equality. This shows that π∗ω agrees on the overlapping
charts of H and π∗ω is of the form π∗ω = f(τ)dτ for some meromorphic f : H → C. Let γ = (a, b; c, d) ∈
Γ, interpret γ as a holomorphic map H → H. Pull back the equation πγ = π to obtain γ∗π∗ = π∗. Then

f(τ)dτ = π∗(ω) = γ∗π∗(ω) = γ∗(f(τ)dτ) = f(γ(τ))γ′(τ)dτ = (cτ + d)−2f(γ(τ))dτ.

We see that f : H → C satisfies f(τ) = (cτ + d)−2f(γτ).

Definition 2.18. [13, Definition 1.1.1] Let Γ be a congruence subgroup and let f : H → C be mero-
morphic. Let (a, b; c, d) ∈ SL2(Z). Let k ∈ Z, the meromorphic function f [γ]k : H → C is defined
by

f [γ]k(τ) = (cτ + d)−kf(γτ).

The map f is weakly modular of weight k (with respect to Γ) if f = f [γ]k for all γ ∈ Γ. ▲

With this new terminology, we see that the function f : H → C such that π∗ω = f(τ)dτ is weakly
modular of weight 2. Next, we study the behaviour of f around the cusps. To explore this, we require
some more terminology.

Let (1, h; 0, 1) ∈ Γ be such that |h| is as small as possible and nonzero. A weakly modular meromorphic
function g : H → C of weight k with respect to Γ satisfies

g(τ + h) = g

((
1 h

0 1

)
τ

)
= (0τ + 1)kg(τ) = g(τ).

It follows that g is h−periodic. If there is some region D = {z ∈ H : Im z > R} with R ∈ R>0 in which
g has no poles, then g has Laurent series expression

g(z) =

∞∑
n=−∞

ane
2πizn

h where z ∈ D. (2.9)

Note that such a region D does not necessarily exist. For example 1/ sin(τi) is meromorphic on H but
a region D does not exist for this function.

Definition 2.19. [13, Section 3.2] Let Γ be a congruence subgroup. Let g : H → C be meromorphic and
weakly modular of weight k with respect to Γ. Suppose that an expansion (2.9) exists for g. The map g
is meromorphic at ∞ if there exists an m ∈ Z such that an = 0 for all n ≤ m with an as in (2.9). The
order of g at ∞ is the smallest such m and is denoted by ord∞(g). If ord∞(g) ≥ 0 then g is holomorphic
at ∞. ▲
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Suppose that g is holomorphic at ∞. By taking the limit on both sides of (2.9) we obtain limy→∞ g(iy) =
a0. Verifying whether a meromorphic weakly modular function is holomorphic at ∞ amounts to checking
if this limit exists because it does not exist for functions which are not holomorphic at ∞.

Let ω ∈ Ω(X(Γ)) and f : H → C such that π∗ω = f(τ)dτ . Let α = (a, b; c, d) ∈ SL2(Z), then f [α]2 is a
weakly modular and meromorphic map H → C. Additionally, f [α]2 is meromorphic at ∞. To see this,
set s = α(∞) ∈ Q ∪ {∞}. Furthermore, let ψ : U → V be as in (1.13) write, φπ = ψ for some chart φ
around Γs as in (1.15). The map ψ has the form ψ = ρα−1 where ρ(z) = e2πiz/h with h the width of s.
Let τ, z and q denote coordinates on U,α−1(U) and V respectively. On V , ω has the form ω|V = g(q)dq
for some meromorphic g : H → C. By definition, ω is meromorphic at s. The point s is sent to q = 0 via
ψ. We see that g is then meromorphic at q = 0 and since q = e2πiz/h, g has a Laurent series expression
as in (2.9) with finite starting index. It follows that g is meromorphic at ∞. From (2.7) we obtain

ψ∗(g(q)dq|V \{0}) = ψ∗(ω|V \{0}) = (π∗ω)|U\{s} = f(τ)dτ |U\{s}. (2.10)

The left hand side of the above is

ψ∗(g(q)dq)) = g(ρα−1(τ))ρ′(α−1(τ))(α−1)′(τ)dτ = g(ρα−1(τ))
2πi

h
e2πiα

−1(τ)/h(a− cτ)−2dτ.

By (2.10) and the above, on U \ {s} we have

f(τ) = g(ρα−1(τ))
2πi

h
e2πiα

−1(z)/h(a− cτ)−2

and

f [α]2(z) = (cz + d)−2f(α(z)) = g(e2πiz/h)
2πi

h
e2πiz/h.

The right hand side is meromorphic at ∞, therefore so is f [α]2. If we require g to be holomorphic on U
then the right hand side of the above has Laurent series expression of the form (2.9) with starting index
n = 1 so that f [α]2(iy) → 0 as y → ∞.

Definition 2.20. [13, Definition 3.2.1] Let Γ be a congruence subgroup of SL2(Z). A function f : H → C
is meromorphic at s = α(∞) ∈ Q∪ {∞} when f [α]2 is meromorphic at ∞. We say that f : H → C is an
automorphic form of weight 2 with respect to Γ if

1. f is meromorphic on H;

2. f is weakly modular of weight 2 with respect to Γ;

3. f is meromorphic at every s ∈ Q ∪ {∞}.

The set of automorphic forms of weight 2 with respect to Γ is denoted by A2(Γ). ▲

Example 2.21. The modular j−invariant is the map j : H → C defined by

j(τ) = 1728
g4(τ)

3

(2π)12η(τ)24

where g4(τ) = 60G4(Zτ ⊕Z) (see Section 4.2) and η is the Dedekind eta function (see Chapter 3). Both
τ 7→ η(τ)24 and τ 7→ g4(τ)

3 are weakly modular of weight 12 with respect to SL2(Z), see Section 4.2 and
Chapter 3 for more details. Due to this fact, it follows that j is weakly modular of weight 0 with respect
to SL2(Z). In other words, j satisfies

j(γτ) = j(τ) for all γ ∈ SL2(Z). (2.11)

The j−invariant is holomorphic on H since both η and g4 are holomorphic on H and η is non-vanishing
on H by Proposition 3.6. The η−function vanishes at ∞ and hence, j is meromorphic at ∞ and has a
pole there (and hence also at every cusp by Lemma 1.31). The derivative j′ also inherits these properties.
By taking the derivative of (2.11), we obtain

j′(γτ)(cτ + d)−2 = j′(τ) for all γ =

(
a b

c d

)
∈ SL2(Z).

It follows that j′ ∈ A2(SL2(Z)). In particular j′ ∈ A2(Γ) for every congruence subgroup Γ. ♦
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The set A2(Γ) is a vector space with pointwise addition and scalar multiplication. By the argument
above, the functions f : H → C such that π∗ω = f(τ)dτ for some meromorphic differential ω ∈ Ω(X(Γ))
are elements of A2(Γ). Conversely, it turns out that every automorphic form f ∈ A2(Γ) comes from a
meromorphic form ω ∈ Ω(X(Γ)).

Theorem 2.22. [13, Theorem 3.3.1] Let Γ be a congruence subgroup. The map ς : ω 7→ f , where f is
such that π∗ω = f(τ)dτ , is an isomorphism of C−vector spaces Ω(X(Γ)) → A2(Γ).

We require a lemma which simplifies the proof of Theorem 2.22. The lemma states that the calculation
that π∗ω has a global form can be turned around.

Lemma 2.23. [13, Section 3.3] Let Γ be a congruence subgroup. Let {φi : π(Ui) → Vi : i ∈ I} denote the
charts of X(Γ) for some indexing set I. Suppose we are given a collection of meromorphic differentials
(ωi)i∈I ∈

∏
i∈I Ω(Vi). Remove the cusps of Ui to obtain U

′
i and define V ′

i = ψi(U
′
i). If every ωi|V ′

i
satisfies

ψ∗
i (ωi|V ′

i
) = f(τ)dτ |U ′

i
for some f ∈ A2(Γ) then (ωi)i∈I is compatible and hence (ωi)i∈I ∈ Ω(X(Γ)).

Proof. As before, we have ψ∗
i = ψ∗

jσ
∗
i,j with σi,j = φiφ

−1
j |φj(π(U ′

j)∩π(U ′
i))

. Then

ψ∗
j (ωj |ψ(U ′

j∩U ′
i)
) = f(τ)dτ |U ′

j∩U ′
i
= ψ∗

i (ωi|ψ(U ′
j∩U ′

i)
) = ψ∗

j (σ
∗
i,j(ωi|ψ(U ′

j∩U ′
i)
))

The map ψj : U
′
j → V ′

j is surjective. By Proposition 2.12.3, ψ∗
j is injective. Therefore, the above equality

implies
ωj |ψ(U ′

j∩U ′
i)
= σ∗

i,j(ωi|ψ(U ′
j∩U ′

i)
)

which shows compatibility. We conclude (ωi)i∈I ∈ Ω(X(Γ)). ■

Proof of Theorem 2.22. Linearity of the map ς : ω 7→ f follows from linearity of π∗. It follows that ς is
injective by using Proposition 2.12.3 and the fact that π is surjective.

For surjectivity of ς, let f ∈ A2(Γ). Using the same notation as in Lemma 2.23, it suffices to construct a
meromorphic differential ωi ∈ Ω(V ′

i ) which pulls back under ψi to restrictions f(τ)dτ |U ′
i
∈ Ω(U ′

i). The
maps ψi : Ui → Vi are of the form ψi = ρiδi where δi ∈ GL2(C). Denote coordinates of Ui, δi(Ui) and Vi
by τ , z and q respectively. Define λi ∈ Ω(δi(Ui)) as

λi = (δ−1
i )∗(f(τ)dτ |U ′

i
) = f(δ−1

i (z))(δ−1
i )′(z)dz =: f̃(z)dz.

Since (δ−1
i )∗ = (δ∗i )

−1 we have δ∗i λi = f(τ)dτ |U ′
i
. The form λi is δiΓδ

−1
i invariant since the pull back of

λi by δiγδ
−1
i ∈ δiΓδ

−1
i is

(δ−1
i )∗γ∗δ∗i λi = (δ−1

i )∗γ∗(f(τ)dτ |U ′
i
) = (δ−1

i )∗(f(τ)dτ |U ′
i
) = λi

where we used Γ invariance of f(τ)dτ in the second equality.

If Ui does not contain a cusp, then δi takes some τi ∈ Ui to 0. By Proposition 1.26, the group Gi :=
{±I}δiΓτiδ−1

i /{±I} is cyclic of order hi where hi is the period of τi. Then ρi(z) = zhi . An element that
generates Gi, say, r acts as r : z 7→ ζhz on H where ζh is a primitive hi−th root of unity. Since λi is
δiΓδ

−1
i invariant, it is also Gi invariant, hence

f̃(z)dz = λi = r∗λi = r∗(f̃(z)dz) = f̃(ζhz)ζhdz.

It follows that zf̃(z) = f̃(ζhz)ζhz. Therefore it is possible to write zf̃(z) = gi(z
hi) for some meromorphic

gi : Vi → C. Define the meromorphic differential

ωi =
gi(q)

hiq
dq ∈ Ω(Vi).

Then

ρ∗iωi =
gi(ρi(z))

hiρi(z)
ρ′i(z)dz =

gi(z
hτi )

hizhi
hiz

hi−1dz =
zf̃(z)

z
dz = λi.

Then ψ∗
i ωi = δ∗i ρ

∗
iωi = δ∗i λi = f(τ)dτ |U ′

i
. This shows that ωi pulls back to f(τ)dτ |U ′

i
under ψi.
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If Ui contains a cusp si ∈ Q ∪ {∞} then δi ∈ SL2(Z) ⊂ GL2(C) such that δi sends si to ∞. And
ρi(z) = e(2πiz)/hi where hi is the period of si. Similarly to the above, λi is δiΓδ

−1
i invariant and

therefore also {±I}(δiΓδ−1
i )∞ invariant. This subgroup has the form

{±I}(δiΓδ−1
i )∞ = {±I}

〈(
1 hi
0 1

)〉
.

The generator r = ±(1, hi; 0, 1) acts as r : z 7→ z + hi on H∞. By invariance of λi we obtain

f̃(z)dz = λi = r∗λi = r∗(f̃(z)dz) = f̃(z + hi)dz.

It follows that f̃(z) is hi periodic. As above, we may write f̃(z) = gi(e
(2πiz)/hi) for some meromorphic

gi : Vi → C. Define the meromorphic differential

ωi =
higi(q)

2πiq
dq ∈ Ω(Vi).

Then

ρ∗iωi =
higi(ρi(z))

2πiρi(z)
ρ′i(z)dq =

higi(e
(2πiz)/hi)

2πi
e−(2πiz)/hi

2πi

hi
e(2πiz)/hidz = f̃(z)dz = λi.

And hence ωi pulls back to f(τ)dτ |U ′
i
under ψi. By Lemma 2.23, we conclude that ς is an isomorphism.

■

Thus far we have only discussed meromorphic differentials. The holomorphic differentials on X(Γ) are
worth studying as they give a lot of information about X(Γ).

Definition 2.24. Let V ⊂ C be open with coordinate z. A holomorphic differential on V is a mero-
morphic differential f(z)dz where f : V → C is holomorphic. Denote the set of holomorphic differentials
on V by Ωhol(V ). Let X be a Riemann surface with charts {φj : Uj → Vj : j ∈ J} for some indexing set
J . A holomorphic differential on X is an object of the form

(ωj)j∈J ∈
∏
j∈J

Ωhol(Vj)

such that (ωj)j∈J is compatible. Denote the set of holomorphic differentials on X by Ωhol(X). ▲

The set of holomorphic differentials Ωhol(X) on X is a linear subspace of the meromorphic differentials
Ω(X) on X. Next, we investigate the image of the isomorphism ς in Theorem 2.22 when restricted to
Ωhol(X(Γ)).

Let f ∈ ς(Ωhol(X(Γ))), and let τ0 ∈ H. Using the same notation as in the proof of Theorem 2.22, there
is some chart about τ0, say, φ0 : π(U0) → V0 such that φ0π = ψ0 = ρ0δ0 where δ0(τ) = (τ − τ0)/(τ − τ0)
as (1.7). By assumption, there is some ω0 ∈ Ωhol(V0) such that ψ∗

0ω0 = f(τ)dτ |U0
. In other words,

ς−1(f) = ω0. From the proof of Theorem 2.22, the holomorphic differential ω0 has the form

ω0 =
g0(q)

hq
dq. (2.12)

Where g0 is some meromorphic and obtained as in the proof of Theorem 2.22 and h is the period of τ0.
Since ω0 is holomorphic on V0, it is holomorphic at q = 0. Therefore, by Proposition 2.8 ord0(g0) ≥ 1. Via
the relation g0(z

h) = zf̃(z) we see that ord0(f̃) ≥ 0. The map f̃ relates to f via δ∗0(f̃(z)dz) = f(τ)dτ |U0
.

Then

f(τ) = f̃(δ0(z))δ
′
0(z) = 2 Im(τ0)f̃

( τ − τ0
τ − τ0

)
(τ − τ0)

−2 for τ ∈ U0.

We see that ordτ0(f) = ord0(f̃) ≥ 0 and by Proposition 2.8, f is holomorphic at τ0. As τ0 was taken to
be arbitrary, f is holomorphic on H.

Let s ∈ Q ∪ {∞} be a cusp and let φ0 : π(U0) → V0 be a chart around π(s). Using the same notation as
above, ς−1(f) = ω0 has the form

ω0 =
hg0(q)

2πiq
dq (2.13)
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where g0 is obtained as in the proof of Proposition 2.22. By assumption, ω0 is a holomorphic differential
on V0. It follows that ord0(g0) ≥ 1 and since f̃(z) = g0(q) with q = e2πiz/h, ord∞(f̃) = ord0(g0) ≥ 1. It
follows that f̃ is holomorphic at ∞ and vanishes there. Recall that δ0 is such that δ0(s) = ∞, f̃ relates
to f via f̃ = f [δ−1

0 ]. As s is taken to be arbitrary we see that for α ∈ SL2(Z) such that α(∞) = s, the
map f [α]2 is holomorphic at ∞ and vanishes there for every s ∈ Q ∪ {∞}.

We see that the elements of ς(Ωhol(X(Γ))) are elements of A2(Γ) which satisfy additional properties.

Definition 2.25. [13, Definition 1.1.3] Let Γ be a congruence subgroup of SL2(Z). Let α ∈ SL2(Z). A
function f : H → C is holomorphic at s = α(∞) ∈ Q ∪ {∞} when f [α]2 is holomorphic at ∞. We say
that f is a cusp form of weight 2 with respect to Γ if

1. f is holomorphic on H;

2. f is weakly modular of weight 2 with respect to Γ;

3. f is holomorphic at every s ∈ Q ∪ {∞} and vanishes there.

Denote the set of cusp forms of weight 2 with respect to Γ as S2(Γ). ▲

The set S2(Γ) is a linear subspace of A2(Γ).

Corollary 2.26. [13, Exercise 3.3.6] Let Γ be a congruence subgroup. The restriction map ς : ω 7→ f ,
where π∗ω = f(τ)dτ , is an isomorphism of vector spaces Ωhol(X(Γ)) → S2(Γ).

Proof. The restriction ς|Ωhol(X(Γ)) is injective and linear since ς is. It remains to show surjectivity. We do
this by showing that ς(Ωhol(X(Γ)) = S2(Γ). By the argument above, via the isomorphism ς of Theorem
2.22, the holomorphic differentials on X(Γ) are mapped to a subspace of S2(Γ). To obtain the reverse
inclusion, let f ∈ S2(Γ). Around τ0 ∈ H the meromorphic differential ς−1(f) is locally of the form
(2.12). We have that ordτ0(f) ≥ 0 implies ord0(g0) ≥ 1. It follows that ω0 is locally a holomorphic
differential. Similarly, around the cusps s ∈ Q ∪ {∞}, ς−1(f) takes the form (2.13). The fact that f
is holomorphic at every cusp and vanishes there ensures that ord0(g0) ≥ 1. This implies that ς−1(f)
is a holomorphic differential around the cusps. By combining these two facts, it follows that ς−1(f) is
a holomorphic differential. As f is taken to be arbitrary, we obtain the reverse inclusion and hence an
equality of C−vector spaces. ■

2.3 The Riemann-Roch theorem

The Riemann-Roch theorem relates the genus of a compact Riemann surface X to the meromorphic
differentials on X. For some congruence group Γ, Riemann-Roch allows us to compute the dimension of
the holomorphic differentials on X(Γ) and, by Corollary 2.26, also the dimension of S2(Γ). In this section
we cover the preliminaries required for Riemann-Roch and we state the theorem and some consequences.

Definition 2.27. [13, Section 3.4] Let X be a compact Riemann surface. A divisor D on X is a formal
sum

D =
∑
x∈X

nxx

where nx = 0 for all but finite x. Denote the set of divisors on X by Div(X). The set of divisors is an
abelian group with group law ∑

x∈X
nxx+

∑
x∈X

n′xx =
∑
x∈X

(nx + n′x)x.

If D′ =
∑
x∈X n

′
xx ∈ Div(X) then we write D ≥ D′ if and only if nx ≥ n′x for all x ∈ X. The degree

deg(D) of the divisor D is the sum deg(D) =
∑
x∈X nx. ▲

Definition 2.28. [13, Section 3.4] Let X be a compact Riemann surface and f : X → C a nonzero
meromorphic map. The divisor of f , denoted by div(f), is the element

div(f) =
∑
x∈X

ordx(f)x ∈ Div(X).

▲
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Note that ordx(f) = 0 for all but finitely many x ∈ X as X is compact. By Proposition 2.9.1,
div : C(X)× → Div(X) is a homomorphism of groups.

Definition 2.29. [13, Section 3.4] Let X be a compact Riemann surface and D ∈ Div(X). The linear
space L(D) of D is

L(D) = {f̃ ∈ C(X) : div(f̃) +D ≥ 0} ∪ {0}.
▲

Let f : X → C be meromorphic, x ∈ X and α ∈ C. By the identity ordx(αf) = ordx(f) and by
Proposition 2.9.2, L(D) is a C−vector space. Denote the dimension of L(D) as a C−vector space by
ℓ(D).

Definition 2.30. [13, section 3.4] Let X be a compact Riemann surface and ω ∈ Ω(X) nonzero. Let
x ∈ X and φ : U → V be a chart about x. Then ω|V = f(z)dz for some meromorphic f : U → V . The
order of ω at x is the integer ordφ(x)(f) and is denoted by ordx(ω). Define

div(ω) =
∑
x∈X

ordx(ω)x.

A canonical divisor on Div(X) is a divisor of the form div(ω) for some nonzero ω ∈ Ω(X). ▲

Compatibility of the meromorphic differentials on X ensures that the order of a meromorphic differential
does not depend on the choice of chart.

Theorem 2.31. [13, Theorem 3.4.1](Riemann-Roch) Let X be a compact Riemann surface with genus
g. Let div(ω) be a canonical divisor of X. Then

ℓ(D) = deg(D)− g + 1 + ℓ(div(ω)−D)

for every divisor D ∈ Div(X).

The interested reader is referred to [36] for a proof of the Riemann-Roch theorem. We are mostly
interested in the following consequence of the Riemann-Roch theorem.

Corollary 2.32. [13, Exercise 3.4.3 and 3.3.6] Let Γ be a congruence subgroup and g the genus of X(Γ).
Then dimΩhol(X(Γ)) = g and dimS2(Γ) = g.

It holds more generally that the dimension of the holomorphic differentials of a compact Riemann surface
is equal to the genus. Because of this, the genus of a compact Riemann surface X is often defined as the
dimension of Ωhol(X).

Proof. The strategy of proving Corollary 2.32 is by relating the meromorphic differentials on X(Γ) to the
meromorphic functions on X(Γ). This relation is used to find a correspondence between the holomorphic
differentials on X(Γ) and the linear space of a canonical divisor ω. With these relations in place, the
result follows from the Riemann-Roch Theorem 2.31.

By Lemma 2.14, we can write Ω(X(Γ)) = C(X(Γ))ω as C(X(Γ))−vector spaces for some nonzero
ω ∈ Ω(X(Γ)). The map µ : Ω(X(Γ)) → C(X(Γ)) sending fω 7→ f is a C−vector space isomorphism
with inverse f 7→ fω.

Via µ we have Ωhol(X(Γ)) ∼= L(div(ω)). To see this, let η ∈ Ωhol(X(Γ)) and let fη = µ(η) ∈ C(X(Γ))
so that fηω = η. The differential η has a global expression g(τ)dτ where g is holomorphic, so that
div(η) = div(g) ≥ 0. We obtain

div(η) = div(fη) + div(ω) ≥ 0

and fη ∈ L(div(ω)). Conversely, let f ∈ L(div(ω)) ⊂ C(X(Γ)), then µ−1(f) = fω which is a holomor-
phic differential by definition of L(div(ω)). We see that f lies in the image µ(Ωhol(X(Γ))) and hence
Ωhol(X(Γ)) ∼= L(div(ω)) for any nonzero ω ∈ Ω(X(Γ)).

Invoke the Riemann-Roch Theorem 2.31 for 0 ∈ Div(X(Γ)) to obtain

ℓ(0) = deg(0)− g + 1 + ℓ(div(ω)) = −g + 1 + dim(Ωhol(X(Γ))).

Then dim(Ωhol(X(Γ))) = g since ℓ(0) = 1. To see this, let f ∈ L(0) be nonzero so that div(f) ≥ 0. Then
f is holomorphic on X(Γ). Suppose for a contradiction that f is not constant. By Proposition 1.10, f is
surjective and its image, which is C, is compact, a contradiction. We conclude f is constant. It follows
that L(0) ∼= C and ℓ(0) = 1. The second assertion of Corollary 2.32 follows directly from Corollary
2.26. ■
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2.4 Genus of X0(N)

The genus of X(Γ) is fully determined by its elliptic points of period 2 and 3, its cusps and a positive
integer associated to the projection map X(Γ) → X(SL2(Z)). In this section we introduce this associated
integer and give an explicit formula for the genus of X(Γ). For a positive integer N , we then specialise
to the congruence subgroup,

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
and compute the genus of its associated modular curve X0(N) := X(Γ0(N)).

Locally, holomorphic maps between Riemann surfaces are very simple. That is, in coordinates they are
power maps.

Proposition 2.33. [28, Proposition II.4.1](Local Normal Form) Let X and Y be Riemann surfaces and
Ψ: X → Y a non-constant holomorphic mapping defined at x ∈ X. Then there is a unique integer m ≥ 1
which satisfies the following property: for every chart φ2 : U2 → V2 centered at Ψ(x), there exists a chart
φ1 : U1 → V1 centered at x such that φ2Ψφ

−1
1 (z) = zm.

Definition 2.34. [28, Definition II.4.2] With notation as in Proposition 2.33, the multiplicity of Ψ at
x ∈ X, denoted multx(Ψ), is the unique integer m such that, locally, Ψ has the form z 7→ zm. ▲

Consider the open unit disc D = {z ∈ Z : |z| < 1} and the holomorphic and onto map f : D → D
mapping z 7→ zm for some positive integer m. The preimage of w ̸= 0 contains the m m−th roots of w,
each having multiplicity 1. The preimage of w = 0 under f is the singleton set containing 0 where 0 has
multiplicity m. We see that the preimages of f all have the same number of elements when counting
multiplicity. A similar property holds for compact Riemann surfaces.

Proposition 2.35. [28, Proposition II.4.8] Let X and Y be compact Riemann surfaces and Ψ: X → Y
a holomorphic map. For y ∈ Y define

dy(Ψ) =
∑

x∈Ψ−1(y)

multx(Ψ).

Then dy(Ψ) is independent of y.

Note that dy(Ψ) above is well-defined for all y ∈ Y by Proposition 1.11.

Definition 2.36. [28, Definition II.4.9] Let X and Y be compact Riemann surfaces and let Ψ: X → Y
be holomorphic. The degree deg(Ψ) of Ψ is the positive integer dy(Ψ) for any y ∈ Y . ▲

For a holomorphic map Ψ: X → Y between compact Riemann surfaces, the Riemann–Hurwitz formula
relates the genus of X and Y to the degree of Ψ. In [13, Section 3.1] this relation is used to compute an
explicit formula for the genus of a modular curve.

Theorem 2.37. [13, Theorem 3.1.1] Let Γ be a congruence subgroup and ΨΓ : X(Γ) → X(SL2(Z)) the
projection. Let ε2 and ε3 denote the number of elliptic points of order 2 and 3 in X(Γ), and ε∞ the
number of cusps of X(Γ). Then the genus g of X(Γ) is

g = 1 +
deg(ΨΓ)

12
− ε2

4
− ε3

3
− ε∞

2
.

Limiting our attention to the case where Γ = Γ0(N) for some positive integer N , in [13, Section 3.7],
Diamond and Shurman reduce the problem of finding ε2 and ε3 of X0(N) to counting the ideals J of
Z[i] and Z[ζ3] such that Z[i]/J ∼= Z/NZ and Z[ζ3]/J ∼= Z/NZ. From this, we obtain explicit formulas
for ε2 and ε3.

Proposition 2.38. [13, Corollary 3.7.2] Let N > 1 be an integer. Let ε2(Γ0(N)) and ε3(Γ0(N)) denote
the number of elliptic points of period 2 and 3 for Γ0(N). Then

ε2(Γ0(N)) =


∏
p|N (1 +

(
− 1
p

)
) if 4 ∤ N

0 if 4 | N
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where (−1/p) is ±1 if p ≡ 1 mod 4 and 0 if p = 2, and

ε3(Γ0(N)) =


∏
p|N (1 +

(
− 3
p

)
) if 9 ∤ N

0 if 9 | N

where (−3/p) is ±1 if p ≡ ±1 mod 3 and 0 if p = 3.

In [13, Section 3.8] an explicit formula for the number of cusps of X0(N) is given. The proof is mainly
a calculation where the definition of Γ0(N) is central.

Proposition 2.39. [13, Section 3.8] Let N > 1 be an integer. Let ε∞(Γ0(N)) denote the number of
cusps of X0(N). Then

ε∞(Γ0(N)) =
∑
d|N

ϕ(gcd(d,N/d))

where ϕ is the Euler totient function.

Finally, in [13, Section 3.8 and 3.9], the degree deg(ΨΓ0(N)) of the projection holomorphism
ΨΓ0(N) : X0(N) → X(SL2(Z)) is computed.

Proposition 2.40. [13, Section 3.9] Let N > 1 be an integer. The degree deg(ΨΓ0(N)) of the projection
Ψ: X0(N) → X(SL2(Z)) is

deg(ΨΓ0(N)) =
N2

ϕ(N)

∏
p|N

(
1− 1

p2

)
.

The four formulas above allow us to calculate the genus of X0(N) for any N > 1. Incidentally, by
Corollary 2.32, Theorem 2.37 allows us to compute the dimension of S2(Γ0(N)) for any N > 1. The first
few values are

Genus g(X0(N)) of X0(N)

N 2 . . . 10 11 12 13 14 15 16 17 18 19 20

g(X0(N)) 0 . . . 0 1 0 0 1 1 0 1 0 1 1

The sequence g(X0(N)) is sequence A001617 in the OEIS [30].

Figure 1: The genus of X0(N) versus N for N ≤ 1000 (left) and N ≤ 50000 (right)

In Figure 1 two plots of the genus of X0(N) are provided for two maximum values of N . From the image
it seems like g(X0(N)) is bounded above and below by N . The paper [11] gives such bounds explicitly,
the lower bound is

g(X0(N)) ≥ (N − 5
√
N − 8)/12. (2.14)
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We are mostly interested in the values of N for which g(X0(N)) = 1. By the bound (2.14), we only have
to check the values of N smaller than 59. The values of N such that the genus of X0(N) is 1 are

N = 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49. (2.15)

Precisely for these values of N the vector space S2(Γ0(N)) is generated by a single element. In Chapter
3 we write down explicit formulas for these elements for some of the values in (2.15).
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3 The η−function and eta products

In the previous section we established a relation between the holomorphic differentials on X(Γ) and
S2(Γ). The elements in S2(Γ) are weakly modular holomorphic functions H → C which vanish at the
cusps. The purpose of this section is to write down generators of S2(Γ0(N)) for some N among (2.15).
It is in general a difficult task to write down closed form expressions for these generators. However, in
some cases it is possible to do this with an eta product. This is a product of the η−function η : H → C.
In this section we investigate how η transforms under SL2(Z). With this transformation property, we
determine how eta products transform under SL2(Z). We do this following the ideas of [21].

Let Γ be a congruence subgroup and let f ∈ S2(Γ). Let h be the smallest positive integer such that
(1, h; 0, 1) ∈ Γ. Then, by Definition 2.25.2, f(z + h) = f(z). This means that f is determined on the
region

Hh = {τ ∈ H : |Re τ | ≤ h/2}.
The map z 7→ e2πiτ/h is a homeomorphism from the regionHh to the punctured unit disc D. By changing
coordinates, f is defined on D. To make this precise, define the holomorphic map

f̃ : D → C

q 7→ f

(
h log q

2πi

)
.

This map is well-defined due to h−periodicity of f . We have that f is holomorphic at ∞ and vanishes
there by Definition 2.25.3. Since e2πiτ/h → 0 if and only if Im τ → ∞, we extend f̃ to D∪{0} by setting
f̃(0) = 0. From this we obtain a holomorphic function on the unit disc which then has Fourier expansion

f̃(q) =
∑
n=1

anq
n with q ∈ D.

Definition 3.1. Let Γ, f and h be as above and let q = e2πiτ/h. The q−expansion of f ∈ S2(Γ) is the
Fourier series

f(τ) =
∑
n=1

anq
n

for some an ∈ C. ▲

Some of the cusp forms that are important to us are built from a function η : H → C. This function is
defined as a q−expansion.

Definition 3.2. The Dedekind eta function η : H → C is the infinite product

η(τ) = e2πiτ/24
∞∏
n=1

(1− qn) (3.1)

where q = e2πiτ . ▲

The η−function is widely studied and has applications in algebraic geometry and number theory, among
other fields (see [21]). To determine how SL2(Z) acts on η we require the following fact.

Proposition 3.3. [8, Theorem 1.1] The group SL2(Z) is generated by

T =

(
1 1

0 1

)
S =

(
0 −1

1 0

)

The action (γ, f) 7→ f [γ]k is a group action of SL2(Z) on holomorphic functions on H. From this fact
and Proposition 3.3 it is sufficient to deduce the actions of S and T on a holomorphic function f : H → C
to determine the action of SL2(Z) on f . The generators S and T act as

f(Tτ) = f(τ + 1) and f(Sτ) = f

(
−1

τ

)
.

The η−function satisfies
η(τ + 1) = e2πi/24η(τ) for all τ ∈ H. (3.2)

The action of S on η requires some more work, we will define a function G2 which transforms a certain
way under S. This function then appears when we transform η under S.
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Proposition 3.4. [7, Proposition 2.7] For every τ ∈ H we have

η

(
−1

τ

)
=

√
−iτη(τ)

where the branch of
√
−iτ is taken to have positive real part.

In Figure 2, η is plotted when considered as a function of the unit disc D. On the right, the identity
map is depicted as a reference, the color of q ∈ D represents the argument of q. On the left, the colour
represents the argument of η(q) ∈ C.

Figure 2: Colour plot of η when considered as a function of D (left) and the identity map q 7→ q (right)

First, we show that η is a holomorphic function on H. This amounts to showing that the infinite product
defining η is holomorphic on the unit disc. To do this, we require the following result in complex analysis.

Lemma 3.5. [9, Section IIV.5] Let U ⊂ C be open and {fn : U → C : n ∈ Zn≥1} a family of holomorphic
functions such that ∑

n=1

|fn|

converges uniformly on U . Then the product

F =

∞∏
n=1

(1 + fn)

converges uniformly on compact subsets of U and is holomorphic. Additionally, for z ∈ U such that
F (z) ̸= 0, we have

F ′(z)

F (z)
=

∞∑
n=1

f ′n(z)

1 + fn(z)
.

Proposition 3.6. The Dedekind eta function η : H → C is holomorphic and non-vanishing on H.

Proof. For q in the open unit disc D, the series

∞∑
n=1

| − qn| =
∞∑
n=1

|q|n

is a geometric series and converges uniformly on D. By Lemma 3.5, the map defined by the product

∞∏
n=1

(1− qn)
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is holomorphic on D. Since the maps τ 7→ q = e2πiτ and τ 7→ e2πiτ/24 are holomorphic, so is η. The fact
that η(τ) ̸= 0 for all τ ∈ H follows from the fact that q = 0 if and only if Im(τ) → ∞ and q = 1 if and
only if τ is an integer. ■

Proving Proposition 3.4 requires introducing a second function on the upper half complex plane. Much
like η, this function has properties that come close to being weakly modular of weight 2.

Definition 3.7. The Eisenstein series of weight 2 is the function G2 : H → C defined by

G2(τ) =
π2

3
+

∞∑
m=−∞
m̸=0

∞∑
n=−∞

1

(mτ + n)2
. (3.3)

▲
The function G2(z) converges but fails to converge absolutely. This means that rearranging the terms
changes the value of the sum. This is why G2 is not weakly modular. It is close however.

Proposition 3.8. [7, Proposition 2.4] The Eisenstein series of weight 2 satisfies

G2

(
−1

τ

)
= τ2G2(τ)− 2πiτ (3.4)

for all τ ∈ H.

A colour plot of G2 is provided in Figure 3. The colour of a point τ ∈ H represents the argument of
G2(τ) ∈ C.

Figure 3: Colour plot of G2 on a segment of H.

The proof of [33, Theorem VII.4.6] contains a proof for Proposition 3.8 and incidentally shows that G2

converges. The proof comes down to advanced manipulation of infinite series. Additionally, in his proof,
Serre shows that G2 has q−expansion

G2(τ) =
π2

3
− 8π2

∞∑
k=1

σ1(k)q
k, (3.5)

where σ1(n) is the sum of positive divisors of n ∈ Z. These are all the tools needed for the proof of
Proposition 3.4.

Proof of Proposition 3.4. By Lemma 3.5 and Proposition 3.6, the logarithmic derivative of η is

d

dτ
log η(τ) =

η′(τ)

η(τ)
=

2πi

24
+

∞∑
n=1

d
dτ (−q

n)

1− qn
=

2πi

24
− 2πi

∞∑
n=1

nqn
1

1− qn

=
2πi

24
− 2πi

∞∑
n=1

nqn
∑
m=0

qnm =
2πi

24
− 2πi

∞∑
n=1

∞∑
m=1

nqnm

In the last expression, for k ∈ Z>0, the coefficient in front of qk is the sum of integers n ∈ Z>0 such that
there exists an integer m ∈ Z>0 with mn = k. In other words, the coefficient in front of qk is σ1(k). We
obtain

d

dz
log η(τ) =

2πi

24
− 2πi

∞∑
k=1

σ1(k)q
k =

i

4π

(
π2

3
− 8π2

∞∑
k=1

σ1(k)q
k

)
(3.5)
=

i

4π
G2(τ). (3.6)
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Additionally,

d

dτ
log

(
η

(
−1

τ

))
=

1

τ2

[
d

dµ
log(η(µ))

]
µ=− 1

τ

(3.6)
=

i

4πτ2
G2

(
−1

τ

)
(3.4)
=

i

4π
G2(τ) +

1

2τ
=

d

dτ
log(

√
−iτη(τ)).

By taking an anti-derivative with respect to τ of the above we obtain

log

(
η

(
−1

τ

))
= log(

√
−iτη(τ)) + C for some C ∈ C

⇔ η

(
−1

τ

)
= B

√
−iτη(τ) where B = eC .

The formula above also holds when τ = i, from which we obtain η(i) = Bη(i). Since η(i) ̸= 0 by
Proposition 3.6, it follows that B = 1. This completes the proof. ■

Proposition 3.4 and (3.2) show that the generators T and S of SL2(Z) act on η as

η(Tτ) = ζ24η(τ) and η(Sτ) = ζ324
√
τη(τ) for all τ ∈ H

where ζ24 = e2πi/24. Since these elements generate SL2(Z) by Proposition 3.3, a similar fact holds for
general elements of SL2(Z).

Proposition 3.9. [21, Section 1.3, (1.16)] Let α = (a, b; c, d) ∈ SL2(Z). Then

η(ατ) = vη(α)
√
cτ + dη(τ)

where vη(α) is a 24−th root of unity depending on α.

In [19, Section 4.1] an explicit formula for vη(α) is computed. To write this down, we require an extension
of the Jacobi symbol (see [32, Section 11.1]).

Definition 3.10. [21, Section 1.3] Let c and d be integers such that gcd(c, d) = 1, d odd and c ̸= 0.
Then ( c

d

)∗
=

(
c

|d|

)
and

( c
d

)
∗
=

(
c

|d|

)
· (−1)(sgn(c)−1)(sgn(d)−1)/4

where ( cd ) is the Jacobi symbol. Define(
0

1

)∗

=

(
0

−1

)∗

= 1,

(
0

1

)
∗
= 1 and

(
0

−1

)
∗
= −1.

▲

Proposition 3.11. [21, Theorem 1.7] For α = (a, b; c, d) ∈ SL2(Z) we have

vη(α) =
( c
d

)
∗
ζ
(a+d)c−bd(c2−1)+3d−3−3cd
24 if c is even.

vη(α) =

(
d

c

)∗

ζ
(a+d)c−bd(c2−1)−3c
24 if c is odd

As mentioned, for some values of N , the η−function serves as the building block for the generators of
S2(Γ0(N)). These elements have the following form.

Definition 3.12. [21, Section 2.1] An eta product of level N is a holomorphic function f : H → C defined
by the product

f(τ) =
∏
m|N

η(mτ)am (3.7)

where the product runs through the divisors of N and the am are positive integers. ▲
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Let f be an eta product as in (3.7) and γ = (a, b; c, d) ∈ Γ0(N). Then f transforms as

f(γτ) = vf (γ)(cτ + d)
1
2

∑
m amf(τ) (3.8)

(see [21, Section 2.1]). Here, vf (γ) is a 24−th root of unity associated to f . It is equal to

vf (γ) = vf

((
a b

c d

))
=
∏
m|N

vη

((
a mb

c/m d

))am
. (3.9)

The following proposition writes down explicit eta products of level N . These are generators for
S2(Γ0(N)) for some N among (2.15). The proof provided in [26] uses Hecke operators and Dirichlet
characters.

Proposition 3.13. [26, Theorem 1] The following list of eta products are generators for the one dimen-
sional vector space S2(Γ0(N)) for the indicated N .

N = 11 η(τ)2 η(11τ)2

N = 14 η(τ) η(2τ) η(7τ) η(14τ)

N = 15 η(τ) η(3τ) η(5τ) η(15τ)

N = 20 η(2τ)2 η(10τ)2

N = 24 η(2τ) η(4τ) η(6τ) η(12τ)

N = 27 η(3τ)2 η(9τ)2

N = 32 η(4τ)2 η(8τ)2

N = 36 η(6τ)4.

The map τ 7→ f(τ) where f is an eta product can be interpreted as a function of the unit disc D
via q = e2πiτ . For example, using (3.1), the N = 14 product in Proposition 3.13, dubbed f14, has
q−expansion

f14(τ) = q

∞∏
n=1

(1− qn)(1− q2n)(1− q7n)(1− q14n)

Let f24 be the eta product corresponding to N = 24. In Figure 4 colour plots of f14 and f24 are depicted.

Figure 4: Colour plot of f14 (left) and of f24 (right) when considered as a function of D
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An alternative proof of Proposition 3.13 is done as follows. First, find generators of Γ0(N), this can be
done using the computer algebra system Sage [37] or by using the algorithm described in [20]. Then,
using these generators and the transformation (3.8) show that the eta products are weakly modular of
weight 2 with respect to these generators. Property 1 and 3 of Definition 2.25 follow since η has these
properties. For example, for N = 14, by running the command Gamma0(14).generators() in Sage, we
obtain that Γ0(14) is generated by the matrices(

9 −2

14 −3

)
,

(
41 −11

56 −15

)
,

(
−29 9

−42 13

)
,

(
−11 4

−14 5

)
,

(
1 1

0 1

)
, and

(
−1 0

0 −1

)
. (3.10)

For the first matrix in (3.10), by (3.8) we obtain

f14

((
9 −2

14 −3

)
τ

)
= vf14

((
9 −2

14 −3

))
(14τ − 3)2f(τ). (3.11)

Using Proposition 3.11 and (3.9), we compute the 24−th root of unity vf14 for this matrix to be equal to

vf14

((
9 −2

14 −3

))
=
∏
m|14

vη

((
9 −2m

14/m −3

))
= ζ−960

24 · ζ−555
24 · ζ−96

24 · ζ324 = ζ−1608
24 =

(
ζ2424
)67

= 1.

By substituting this into (3.11), we see that f14 respects the modularity property with respect to this
matrix. Similarly f14 respects the modularity condition for the other matrices in (3.10). Since these are
generators of Γ0(14), it follows that f14 is weakly modular of weight 2 with respect to Γ0(14).

For the remaining values of N , that is, the values for which X0(N) has genus one but is not among those
in Proposition 3.13, the space S2(Γ0(N)) is generated by a single element. However, this element may
or may not have a closed form expression. In [10, Section 2.9], a method to compute the q−expansions
of these generators is explained. This method uses Hecke operators and exploits the duality between
S2(Γ0(N)) and H1(X0(N),Z). To do this, Cremona introduces modular symbols, these symbols give a
description of H1(X0(N),Q). In Section 5.2 we introduce these symbols and use them to calculate the
period lattice. These, and many more, q−expansions are found in the LMFDB [24].
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4 Elliptic curves as Riemann surfaces

In this section we encounter the third major example of a Riemann surface, elliptic curves. First we
introduce elliptic curves and state some results which are important for our purposes. In the second
subsection it is made apparent that elliptic curves are actually complex tori.

4.1 Elliptic curves over C
In this subsection we briefly discuss definitions and results relating to elliptic curves which are of partic-
ular interest to us. We mainly use [34] and [18].

A Weierstrass equation over C is an equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (4.1)

where a1, . . . , a6 ∈ C. Define the associated polynomial F ∈ C[X,Y, Z] as

F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 + a2X

2Z − a4XZ
2 − a6Z

3. (4.2)

Then F is a homogeneous polynomial of degree 3, that is, for λ ∈ C, F satisfies F (λX, λY, λZ) =
λ3F (X,Y, Z). The fact that F is homogeneous ensures that the zero set of F in P2(C)

{(X : Y : Z) ∈ P2(C) : F (X,Y, Z) = 0}

is well-defined.

Definition 4.1. [28, Definition I.3.2] A homogeneous polynomial F (X,Y, Z) of degree 3 is nonsingular
if

F =
∂F

∂X
=
∂F

∂Y
=
∂F

∂Z
= 0

has no solutions in C3. ▲

Definition 4.2. [34, Section III.3] An elliptic curve E over C is a curve defined by the equation (4.1)
where a1, . . . , a6 ∈ C are such that its associated polynomial (4.2) is nonsingular. We say that E is
defined over Q if a1, . . . , a6 ∈ Q. ▲

Proposition 4.3. [28, Proposition I.3.6] Let F ∈ C[X,Y, Z] be a homogeneous nonsingular polynomial
of degree 3. Then the zero set of F in P2(C) is a compact Riemann surface.

The charts on such a zero set are local projections. The fact that F is nonsingular ensures that these
projections are homeomorphisms. In particular, by Proposition 4.3, the points satisfying the equation of
an elliptic curve E over C is a Riemann surface. Set Z = 0 in (4.1), then (0 : 1 : 0) is the only solution
to the equation. This point is referred to as the point at infinity. With this point in mind, assume Z ̸= 0
and transform coordinates as x = X/Z and y = Y/Z to obtain

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (4.3)

An elliptic curve E is then the curve defined by (4.3) along with the point at infinity which we denote
by O.

It is possible to simplify the equation (4.3) by making suitable changes of coordinates. Define

b2 = a21 + 4a4

b4 = 2a4 + a1a3

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

(4.4)
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Changing coordinates as y 7→ 1
2 (y − a1x− a3) changes (4.3) to

y2 = 4x3 + b2x
2 + 2b4x+ b6. (4.5)

Further replacing (x, y) with (
x− 3b2

36
,
y

108

)
simplifies the equation (4.5) to

y2 = x3 − 27c4x− 54c6. (4.6)

The discriminant ∆ is of particular interest to us, due to the following result.

Proposition 4.4. [18, Theorem 3.2] The polynomial (4.2) is nonsingular if and only if ∆ ̸= 0.

In [18, Section III.2] Knapp shows that the discriminant ∆ coincides with the discriminant of the poly-
nomials on the right hand side of (4.5) and (4.6). The discriminant is a (very) rough measure of how
complicated a polynomial is. A fact that promotes this interpretation is that a polynomial has a repeated
root if and only if its discriminant vanishes (see [22, Chapter IV.6]). Combining these facts, we obtain
the following result.

Proposition 4.5. [18, Proposition 3.5] A curve of the form

y2 = x3 − αx2 + βx− γ with α, β, γ ∈ C

is an elliptic curve if and only if f(x) = x3 − αx2 + βx− γ has distinct roots in C.

Using projective geometry, a binary operation can be constructed on E as follows. Let E ⊂ P2(C) be an
elliptic curve over C (considered as a set of points satisfying a Weierstrass equation) and let A,B ∈ E
be two points. Let L ⊂ P2(C) be the (unique) line connecting A and B, if A = B then L is the tangent
line at A. By [17, Corollary I.7.8], L intersects E in a third point (counting multiplicity), say, C ∈ E.
Let L′ be the line connecting C with the point at infinity O. Again, L′ intersects E in a third point
(counting multiplicity) which is denoted by A⊕B. Then ⊕ : E × E → E is a binary operation on E.

Proposition 4.6. [34, Proposition 2.2] Let E be an elliptic curve. The binary operation ⊕ on E turns
E into an abelian group with identity element O.

Two elliptic curves E1 and E2 over C can be isomorphic as groups and as Riemann surfaces even
though they have two different Weierstrass equations describing them. Silverman describes the coordinate
transformations which yield isomorphic elliptic curves.

Proposition 4.7. [34, Proposition III.3.1.b] Let E1 and E2 be elliptic curves over C with Weierstrass
equations (4.3). Then E1 and E2 are isomorphic as Riemann surfaces and as groups if and only if the
Weierstrass equations of E1 and E2 are related via a coordinate transformation of the form

x = u2x′ + r

y = u3y′ + su2x′ + t
(4.7)

where u ∈ C× and r, s, t ∈ C.

Definition 4.8. Let E1 and E2 be elliptic curves over Q with Weierstrass equations (4.3). We say that
E1 and E2 are isomorphic over Q if they are related via a coordinate transformation of the form (4.7)
where u ∈ Q× and r, s, t ∈ Q. ▲

The formulation of Proposition 4.7 is different from [34, Proposition III.3.1.b]. However, these are
equivalent statements. This will become apparent when we delve deeper into the Riemann surface
structure of E, see Proposition 4.25. The change of coordinates that simplifies (4.3) to (4.6) is of the
form (4.7). Changing coordinates as in (4.7) affects the ci and ∆ in (4.4) as

u4c′4 = c4

u6c′6 = c6

u12∆′ = ∆.

(4.8)
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For an elliptic E with Weierstrass equation (4.3) we introduce the j−invariant of E as the quantity

j =
c34
∆
. (4.9)

By (4.8), via a change of variables of the form (4.7) the j−invariant remains unchanged. The converse
is also true.

Proposition 4.9. [34, Proposition III.1.4.b] Two elliptic curves over C are isomorphic if and only if
they have the same j−invariant.

In its full generality, Proposition 4.9, states that two elliptic curves over algebraically closed fields are
isomorphic. In particular, if two elliptic curve defined over Q have the same j−invariant, then they
may or may not be isomorphic. The j−invariant encodes information about the field of definition of an
elliptic curve E.

Proposition 4.10. [18, Proposition 3.7.b] If j0 ∈ Q then there exists an elliptic curve over Q with
j−invariant equal to j0.

Suppose that E is an elliptic curve over Q with Weierstrass equation (4.3). By the above propositions,
there are a multitude of curves with different Weierstrass equations that are isomorphic to E (over Q).
We wish to have an equation for E which is as ’uncomplicated’ as possible. This is formalized as follows.

Definition 4.11. [10, Chapter 3.1] Let E be an elliptic curve over Q. A minimal Weierstrass equation
for E is a Weierstrass equation of the form (4.3) with a1 . . . , a6 ∈ Z minimizing |∆| such that the elliptic
curve given by this equation is isomorphic to E over Q. ▲

As mentioned before, the discriminant roughly measures how complicated an equation is. An equation
for E which minimizes the discriminant then gives the least complicated Weierstrass equation for E,
roughly speaking.

Proposition 4.12. [34, Proposition VII.1.3 (a) and (b)] Let E be an elliptic curve defined over Q. Then
E has a minimal Weierstrass equation. This minimal Weierstrass equation is unique up to change of
coordinates of the form (4.7) where u = ±1 and r, s, t ∈ Z.

4.2 Elliptic functions

In this section we introduce the notion of an elliptic function. These are essentially meromorphic func-
tions on complex tori. Studying these functions leads us to the correspondence between complex tori
and elliptic curves. The main ideas in this section are from [34, Section VI] and [27, Section III].

Let Λ ⊂ C be a lattice. There is a bijection between meromorphic functions f : C/Λ → C and meromor-
phic functions f : C → C satisfying f(z+ω) = f(z) for all ω ∈ Λ and z ∈ C. If Λ = Zω1 ⊕Zω2 then this
property is equivalent to

f(z + ω1) = f(z) and f(z + ω2) = f(z) for all z ∈ C. (4.10)

Definition 4.13. [34, Section VI.2] Let Λ = Zω1 ⊕ Zω2 be a lattice. An elliptic function (for Λ) is a
meromorphic function f : C → C satisfying (4.10). ▲

An elliptic function f for Λ is fully determined on the closure of a fundamental domain Dz, where Dz

is as in (1.2). Such a set is compact, therefore, a holomorphic elliptic function is bounded on Dz. Since
f satisfies (4.10) it follows that f is bounded on C. Liouville’s theorem implies that such a function is
constant. We obtain the following.

Proposition 4.14. [34, Proposition IV.2.1] A holomorphic function which is elliptic is constant.

Proposition 4.15. [27, Proposition III.2.1] Let f : C → C be a nonzero elliptic function and Λ ⊂ C
a lattice. Let Dz be a fundamental domain for Λ such that f has no zeroes or poles on the boundary.
Then
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1.
∑
x∈Dz

Resx(f) = 0;

2.
∑
x∈Dz

ordx(f) = 0,

where Resx(f) is the residue of f at x (see [9, Definition V.2.1]).

Proof. By the residue theorem [9, Theorem V.2.2],∫
∂Dz

f(z)dz =
∑
x∈Dz

Resx(f).

Since f is elliptic, the opposite boundaries of the integral on the left hand side cancel out. It follows
that this integral is equal to 0, this proves 1. For 2, note that f ′/f is an elliptic function and that
Resx(f

′/f) = ordx(f). Applying the residue theorem to f ′/f proves 2. ■

From Proposition 4.15 and 4.14 it follows that non-constant elliptic functions have at least two poles in
Dz. To see this, let f : C → C be elliptic with exactly one pole in Dz. By Proposition 4.15 the residue
at this pole is 0 and f is actually holomorphic and hence constant by Proposition 4.14, a contradiction.
With this in mind, we look for an elliptic function with a pole of order 2 at every z ∈ Λ so that every
fundamental domain Dz contains at least 2 poles. We obtain the following.

Definition 4.16. [34, Section VI.3] Let Λ ⊂ C be a lattice. The Weierstrass ℘−function (for Λ) is the
series

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

1

(z − ω)2
− 1

ω2
.

▲

Proposition 4.17. [34, Theorem VI.3.1 (b) and (c)] Let Λ ⊂ C be a lattice. The series defining the
Weierstrass ℘−function is absolutely and uniformly convergent. Furthermore, ℘ is an elliptic function
which is holomorphic on C \ Λ.

In the proof of this theorem, Silverman uses the following intermediate result to find a uniform bound
on the series defining ℘.

Lemma 4.18. Let Λ ⊂ C be a lattice and k > 1 an integer. Then the series∑
ω∈Λ
|ω|≥1

1

|ω|2k

converges.

As ℘ is uniformly convergent, it is justified to differentiate term by term in order to determine its
derivative

℘′(z) = −
∑
ω∈Λ

2

(z − ω)3
.

The derivative ℘′ is again an elliptic function. As ℘ and ℘′ are meromorphic on C, they have Laurent
series expansions around every point. We derive these series around 0. Incidentally we find that ℘
satisfies a differential equation which is of particular interest to us. To do all this, we first study the
following series.

Definition 4.19. [34, Section VI.3] Let Λ ⊂ C be a lattice and k > 1 an integer. The Eisenstein series
of weight 2k (for Λ) is the series

G2k(Λ) =
∑

ω∈Λ\{0}

1

ω2k
.

▲
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By Lemma 4.18, G2k(Λ) converges absolutely and hence converges. For α ∈ C nonzero we have
G2k(αΛ) = α−2kG2k(Λ) so that for generators ω1, ω2 ∈ C of Λ,

G2k(Zω1 ⊕ Zω2) =
1

ω2k
2

G2k(Z(ω1/ω2)⊕ Z). (4.11)

The function G2k(τ) = G2k(Zτ ⊕ Z) is holomorphic and is weakly modular of weight 2k with respect
to SL2(Z) ([13, Section 1.1]). Additionally, G2k is holomorphic at the cusps but does not vanish there.
Such a function is called a modular form with respect to SL2(Z), for more details on modular forms see
[13, Section 1.1]. The Eisenstein series of weight 2 has an analogous definition to that of G2k. However,
G2 is not weakly modular of weight 2 with respect to SL2(Z) as discussed in (3.2) and Proposition 3.4.

Proposition 4.20. [34, Theorem VI.3.5.a] Let Λ ⊂ C be a lattice. The Laurent series of ℘ and ℘′ for
Λ around z = 0 are

℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2(Λ)z
2k−1 (4.12)

℘′(z) = − 2

z3
+

∞∑
k=1

2k(2k + 1)G2k+2(Λ)z
2k−1. (4.13)

Proof. Recall the Laurent expression

1

(1− z)2
=

∞∑
n=0

(n+ 1)zn for |z| < 1.

For |z| < min{|ω| : ω ∈ Λ},

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1

(1− z/ω)2
− 1

)
=

∞∑
n=1

(n+ 1)
zn

ωn+2
.

Plugging this into the definition of ℘ we obtain (4.12). Differentiating term by term yields (4.13). ■

Using (4.12) and (4.13), we obtain the expansions

℘′(z)2 =
4

z6
− 24G4(Λ)

z2
− 80G6(Λ)− . . .

℘(z)3 =
1

z6
+

9G4(Λ)

z2
+ 15G6(Λ) + . . .

℘(z) =
1

z2
+ 3G4(Λ)z

2 + 5G6(Λ)z
4 + . . . .

Using these we see that the elliptic function f(z) = ℘′(z)2 − 4℘(z)3 + 60G4(Λ)℘(z) + 160G6(Λ) has no
pole at z = 0. It follows that f is holomorphic in a fundamental domain Dz containing 0. Therefore
f is holomorphic and elliptic and hence constant by Proposition 4.14. Since f(0) = 0 we obtain the
following.

Proposition 4.21. [34, Theorem VI.3.5.a] Let Λ ⊂ C be a lattice. The Weierstrass ℘−function satisfies
the differential equation

℘′(z)2 = 4℘(z)3 − 60G4(Λ)℘(z)− 140G6(Λ).

It is customary to set g4 = g4(Λ) = 60G4(Λ) and g6 = g6(Λ) = 140G6(Λ). Then (℘(z), ℘′(z)) ∈ C2

satisfies (4.5) where b2 = 0, b4 = −g4/2 and b6 = −g6.

Proposition 4.22. [34, Proposition VI.3.6.a] Let Λ ⊂ C be a lattice with associated quantities g4 and
g6. Then f(z) = 4z3 − g4z − g6 has distinct roots.
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Proof. Let ω1 and ω2 be generators of Λ. Using the fact that the elliptic function ℘′ for Λ is odd we
obtain

℘′(ω1/2) = ℘′(ω1/2− ω1) = ℘′(−ω1/2) = −℘′(ω1/2).

It follows that ω1/2 is a zero of ℘′. By Proposition 4.21, ℘(ω1/2) is a root of f . Similarly ℘(ω2/2) and
℘((ω1 + ω2)/2) are roots of f . By [22, Theorem IV.1.4], f does not have more than 3 roots (counting
multiplicity) in C. Therefore, it remains to be shown that ℘(ω1/2), ℘(ω2/2) and ℘((ω1 + ω2)/2) are
distinct.

Define the elliptic function g : z 7→ ℘(z)−℘(ω1/2). The elliptic function g has two poles (with multiplicity)
in a fundamental domain Dz containing 0 (namely a double root at 0). By Proposition 4.15.2, g has two
zeroes in Dz. This is a double zero since both g and g′ have ω1/2 as a root ([22, Proposition IV.1.11]). It
follows that ℘(z) ̸= ℘(ω1/2) for all z ̸= ω1/2. A similar argument shows an analogous result for ℘(ω2/2)
and ℘((ω1 +ω2)/2). In particular ℘(ω1/2), ℘(ω2/2) and ℘((ω1 +ω2)/2) are distinct. This completes the
proof. ■

Let Λ ⊂ C be a lattice with associated quantities g4 and g6. The curve given by the equation

y2 = 4x3 − g4x− g6 (4.14)

is of the form (4.5). Replacing (x, y) by (x/36, y/108) we obtain the curve

y2 = x3 − 27c4x− 54c6 (4.15)

where c4 = 12g4 and c6 = 216g6. Suppose that Λ is generated by ω1 and ω2. The polynomial in x on the
right hand side of (4.15) has the roots 36℘(ω1/2), 36℘(ω2/2) and 36℘((ω1+ω2)/2) which are distinct by
Proposition 4.22. By Proposition 4.5 it follows that (4.15) defines an elliptic curve over C.

Proposition 4.23. [34, Proposition VI.3.6.b] Let Λ be a lattice with associated quantities g4 and g6.
Let E be the elliptic curve with equation (4.15). Then the map

ϕ : C/Λ → E ⊂ P2(C)

z + Λ 7→

{
(℘(z)/36 : ℘′(z)/108 : 1) if z ̸∈ Λ

(0 : 1 : 0) otherwise

is an isomorphism of groups and Riemann surfaces.

The mapping in Proposition 4.23 is well-defined by Proposition 4.21. Silverman uses techniques from
complex analysis to show that ϕ is bijective. He then determines how the pull back ϕ∗ acts on the
invariant differentials to show that ϕ is holomorphic. A proof by more elementary means that shows
that ϕ is a homomorphism is found in the lecture notes written by Sutherland [35, Theorem 15.1].

Using (4.4), the curve with equation (4.14) has discriminant ∆ = g4 − 27g6 ̸= 0. Though this is not
needed in this thesis, it turns out that every elliptic curve E over C is isomorphic to C/Λ for some lattice
Λ ⊂ C. This fact follows from the following proposition.

Proposition 4.24. [2, Theorem 2.9] Given two complex numbers A and B such that A − 27B ̸= 0,
there exist complex numbers ω1 and ω2 such that Im(ω1/ω2) > 0 and

g4(Zω1 ⊕ Zω2) = A and g6(Zω1 ⊕ Zω2) = B.

Proposition 4.25. [34, Corollary III.3.9] Let E1 and E2 be isomorphic elliptic curves over C with
associated lattices Λ1 and Λ2. Then there is some α ∈ C such that αΛ1 = Λ2.

Proof. Via the isomorphism in Proposition 4.23 we obtain that C/Λ1
∼= C/Λ2. By Proposition 1.18,

there exists some α such that αΛ1 = Λ2. ■
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5 The period lattice and its associated elliptic curve

The sections leading up to this one culminate in determining the structure of the following object.

Definition 5.1. Let Γ be a congruence subgroup such that X(Γ) has genus 1 and let f ∈ S2(Γ0(N)).
The period lattice of f is the set

Λf =

{∫ γx

x

2πif(ζ)dζ : γ ∈ Γ

}
.

▲

It is not immediate that Λf is a lattice, this will become apparent however when we develop the theory in
this section. We start by introducing the standard notions of integrating along paths on Riemann surfaces.
In the second section we introduce modular symbols. These symbols describe the homology group of
X(Γ) and allow us to determine Λf via this homology group. From this, we obtain an isomorphism
X0(N) → Ef , where Ef is the elliptic curve isomorphic to the complex torus C/Λf . This means that
we obtain an algebraic expression for X0(N).

5.1 Integration along paths on Riemann surfaces

We start this section by defining path integrals on Riemann surfaces as in [13, Section 6.1] and [28,
Section IV.3]. In particular, we look at path integrals on X(Γ) and summarize some results.

Definition 5.2. [28, Definition 3.1] Let X be a Riemann surface. A path on X is a continuous map
ν : [a, b] → X for some a, b ∈ R. The points ν(a) and ν(b) are the endpoints of ν. A path σ : [a, b] → X
is a loop if σ(a) = σ(b). ▲

Definition 5.3. [13, Section 6.1] and [28, Definition IV.3.8] Let X be a Riemann surface. Let φ : U → V
be a chart for X and ν : [a, b] → X a path such that ν([a, b]) ⊂ U . The integral of ω ∈ Ωhol(X) along ν
is the complex number ∫

ν

ω =

∫
φν

ω|V =

∫
φν

f(ζ)dζ

where f(ζ)dζ ∈ Ωhol(V ) is the restriction of ω to V . ▲

Let φ1 : U1 → V1 and φ2 : U2 → V2 be charts. If the image of a path ν : [a, b] → X lies in U1 ∩ U2 then
the value of the integral in Definition 5.3 may depend on the coordinates we choose on this intersection.
Luckily, these values coincide as for ω ∈ Ωhol(X), we have∫

φ2ν

ω|V2
=

∫
φ2φ

−1
1 φ1ν

ω|V2
=

∫
φ1ν

(φ2φ
−1
1 )∗ω|V2

=

∫
φ1ν

ω|V1
(5.1)

where the second equality follows from compatibility of ω. This motivates the following definition.

Definition 5.4. [28, Section IV.3] Let ν : [a, b] → X be a path. Let a0, . . . , an ∈ [a, b] be such that
a = a0 < a1 < . . . < an = b. A partition of ν is the set {νi} of n paths νi : [ai−1, ai] → X such that
νi(ai) = νi+1(ai) for all i = 1, . . . n− 1. ▲

To define an integral along a general path, we would like to pick a partition of a path such that each
part lies inside the domain of a chart. Lemma IV.3.7 of [28] ensures that this is possible.

Definition 5.5. [28, Definition IV.3.8] Let X be a Riemann surface. Let ν : [a, b] → X be a path and
let {νi} be a partition of ν such that the image of νi is contained in the domain of the chart φi : Ui → Vi.
The integral of ω ∈ Ωhol(X) along ν is the complex number∫

ν

ω =
∑
i

∫
φiν

ω|Vi .

▲

The computation in (5.1) ensures that Definition 5.5 is well-defined.
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Proposition 5.6. [28, Lemma IV.3.9.f] Let X and Y be Riemann surfaces and ν : [a, b] → X a path.
Furthermore, suppose that Ψ: X → Y is holomorphic. Then Ψν : [a, b] → Y is a path and for ω ∈
Ωhol(X), ∫

Ψν

ω =

∫
ν

Ψ∗ω.

Let Γ be a congruence subgroup and let ν̃ : [a, b] → X(Γ) be a path. Then ν̃ = πν for some path
ν : [a, b] → H∞. Let ω ∈ Ωhol(X(Γ)) and let f ∈ S2(Γ) be nonzero such that π∗ω = f(ζ)dζ. Then∫

ν̃

ω =

∫
πν

ω
5.6
=

∫
ν

π∗ω =

∫
ν

f(ζ)dζ. (5.2)

The integral on the right of (5.2) is an integral in C and is easily computed. The following results say
something about integrals over holomorphic differentials on X(Γ) along loops which are representatives
of elements in the first homology group of X(Γ). Integrating along these representatives is well-defined
as it is independent of the choice of representative [28, Section VIII.1].

Proposition 5.7. [16, Proposition 3.6] Let Γ be a congruence subgroup. Let σ1, . . . , σ2g be representa-
tives of a basis for H1(X(Γ),Z) and f1, . . . , fg a basis for S2(Γ). Then the 2g vectors

∫
σi
f1(ζ)dζ
...∫

σi
fg(ζ)dζ

 i = 1, . . . , 2g

are linearly independent over R.

A more general version of Proposition 5.7 holds where X(Γ) is replaced by a Riemann surface X and
S2(Γ) is replaced by Ωhol(X). The proof of this general version uses de Rham cohomology which defines
the genus of X as the dimension of the exact holomorphic differentials modulo the closed differentials,
see [28, Definition 4.9] for more details. Additionally, in [28, Section VIII.4] this theorem is proven
using Riemann’s Bilinear relations. In [34, Proposition VI.5.1.a], Silverman uses the pull-back of the
isomorphism in Proposition 4.23 to show that the integrals of the invariant differentials over homology
generators of an elliptic curve are R−linearly independent. This shows Proposition 5.5 in the special
case where X(Γ) is of genus one assuming the fact that if X(Γ) is of genus one, then it is isomorphic to
an elliptic curve.

Definition 5.8. Let Γ be a congruence subgroup. Let σ1, . . . , σ2g be a basis for H1(X(Γ),Z) and
f1, . . . , fg a basis for S2(Γ). The g × 2g period matrix Ω is defined as

Ω =


∫
σ1
f1(ζ)dζ · · ·

∫
σ2g

f1(ζ)dζ

...
. . .

...∫
σ1
fg(ζ)dζ · · ·

∫
σ2g

fg(ζ)dζ


▲

From Proposition 5.7 we immediately see that Ω has rank g. Suppose that Γ is a congruence subgroup
such that X(Γ) has genus 1. Let x, x0 ∈ X(Γ) and ω ∈ Ωhol(X(Γ)), the path integral∫ x

x0

ω

is dependent of the path from x0 to x. To see this, let ν and ν′ be two paths connecting x0 and x. Let
σ be the loop which traverses forward along ν and backwards along ν′. Then∫

σ

ω =

∫
ν

ω −
∫
ν′
ω ⇔

∫
ν

ω =

∫
ν′
ω +

∫
σ

ω.

It follows that integration from x to x0 is well-defined modulo integrating along loops in X(Γ). To make
this precise, let σ1 and σ2 be a basis of H1(X(Γ),Z) and let Λ be the lattice

Λ = Z
(∫

σ1

ω

)
⊕ Z

(∫
σ2

ω

)
. (5.3)
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Then, the integral ∫ x

x0

ω + Λ

is independent of the path between x0 and x and hence well-defined.

Definition 5.9. [28, Section VIII.2] Let Γ be a congruence subgroup such that X(Γ) has genus 1. Let
x0 ∈ X(Γ) and let σ1 and σ2 be representatives of a basis of H1(X(Γ),Z). Furthermore, let Λ be the
lattice generated by

∫
σ1
ω and

∫
σ2
ω for some nonzero ω ∈ Ωhol(X(Γ)). The Abel-Jacobi Map on X(Γ) is

the map

X(Γ) → C/Λ

x 7→
∫ x

x0

ω + Λ

▲

By the argument above, the Abel-Jacobi map is independent of the choice of path between x and x0.
Furthermore, Λ is indeed a lattice by Proposition 5.7.

Proposition 5.10. [3, Section 4] Let Γ be a congruence subgroup such that X(Γ) has genus one. The
Abel-Jacobi map is independent of the basepoint x0 ∈ X(Γ) and an isomorphism X(Γ) → C/Λ of
Riemann surfaces.

5.2 Modular symbols

Modular symbols describe elements of the homology group of X(Γ). This is useful when determining
the homology group explicitly; this is done in Section 6.1 using M−symbols. Modular symbols have
more uses than this, however; in [10, Chapter II], Cremona uses the duality between S2(Γ0(N)) and
H1(X0(N),C) to calculate the q−expansions of the so-called newforms of S2(Γ0(N)). In this section we
define modular symbols and explore this duality. We then use this duality to connect the period lattice
to the homology group of X(Γ).

Let X be a Riemann surface. By Proposition 2.1, H1(X,Z) ∼= Z2g where g is the genus of X. For a
given ring R, the homology group as an R−module is defined by

H1(X,R) = H1(X,Z)⊗Z R.

Let Γ be a congruence subgroup of SL2(Z) and let x, y ∈ H∞ be such that x = γy for some γ ∈ Γ. Then
the path in H∞ connecting x and y is a loop in X(Γ) when passing to the quotient via π : H∞ → X(Γ)
and therefore defines an element in H1(X(Γ),Z).

Definition 5.11. [10, Section 2.1.2] Let Γ be a congruence subgroup of SL2(Z). Let x, y ∈ H∞ such
that x = γy for some γ ∈ Γ. The image of the path connecting x and y in H∞ under π is denoted by
the modular symbol {x, y} ∈ H1(X(Γ),Z). ▲

It turns out that every path σ ∈ H1(X(Γ),Z) is of the form {x, y} for some x, y ∈ H∞ equivalent
under the action of Γ. This is proven by Manin in [25, Proposition 1.4]. He does this by explicitly
constructing an element {x, γx} for a given representative of H1(X(Γ),Z). To do this, he uses the fact
that the abelianization of the fundamental group is equal to the homology group. Let f ∈ S2(Γ) and
σ ∈ H1(X(Γ),Z) corresponding to {x, y} we define

⟨σ, f⟩ =
∫
σ

2πif(ζ)dζ =

∫ y

x

2πif(ζ)dζ. (5.4)

We see that σ acts as a linear functional on S2(Γ) via f 7→ ⟨σ, f⟩. Next, we wish to extend modular
symbols to H1(X(Γ)),R)). We do this using the following result.

Proposition 5.12. [10, Section 2.1.2] Let Γ be a congruence subgroup of SL2(Z). There is a bijection
between H1(X(Γ),R) and the C−linear functionals on S2(Γ).
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Proof. Let σ1, . . . , σ2g be representatives of a basis for H1(X(Γ),Z) and let σ ∈ H1(X(Γ),R). Write

σ =

2g∑
i=1

ciσi with ci ∈ R.

Then, for f ∈ S2(Γ) define

⟨σ, f⟩ =
2g∑
i=1

ci⟨σi, f⟩

where ⟨σi, f⟩ are as (5.4). Then f 7→ ⟨σ, f⟩ is a C−linear functional on S2(Γ).

Conversely, suppose ω : S2(Γ) → C is linear. Let f1, . . . , fg be a basis for S2(Γ). The vectorω(f1)...

ω(fg)


can be expressed as a R−linear combination of column vectors of the period matrix Ω. This expression
gives simultaneous c1 . . . , c2g ∈ R such that

ω(fi) =

2g∑
j=1

cj⟨σj , fi⟩ for all i = 1, . . . , g.

For f =
∑g
i=1 αifi ∈ S2(Γ) we have

ω(f) =

g∑
i=1

αiω(fi) =

g∑
i=1

αi

2g∑
j=1

cj⟨σj , fi⟩ =
2g∑
j=1

cj⟨σj ,
g∑
i=1

αifi⟩ =
2g∑
j=1

cj⟨σ, f⟩ = ⟨σ, f⟩

where σ =
∑2g
j=1 cjσj ∈ H1(X(Γ),R). Then ω = (f 7→ ⟨σ, f⟩) as desired. ■

Let x, y ∈ H∞. The map f 7→
∫ y
x
f(ζ)dζ is a linear functional on S2(Γ) and by Proposition 5.12 it

corresponds to some σ ∈ H1(X(Γ),R). Define {x, y} ∈ H1(X(Γ),R) to be this element. This agrees
with the definition above in the case that x and y are equivalent under Γ. These extended modular
symbols are elements of an R−vector space and we therefore have a notion of adding them. We discuss
some algebraic properties which follow from the definition. For example, for x, y, z ∈ H∞, the element
{x, y}+ {y, z} corresponds to

f 7→
∫ y

x

2πif(ζ)dζ +

∫ z

y

2πif(ζ)dζ =

∫ z

x

2πif(ζ)dζ

which corresponds to {x, z}. We obtain the identity {x, y}+{y, z} = {x, z}. More identities are obtained
in similar fashion summarized in the following proposition.

Proposition 5.13. [10, Proposition 2.1.1] Let Γ be a congruence subgroup of SL2(Z). Let x, y, z ∈ H∞,
and let γ, γ1, γ2 ∈ Γ. Then

1. {x, x} = 0;

2. {x, y}+ {y, x} = 0;

3. {x, y}+ {y, z}+ {z, x} = 0;

4. {γx, γy} = {x, y};
5. {x, γx} = {y, γy};
6. {x, γ1γ2x} = {x, γ1x}+ {x, γ2x};
7. {x, γx} ∈ H1(X(Γ),Z).

Corollary 5.14. [25, Proposition 1.4] Let Γ be a congruence subgroup of SL2(Z) and x ∈ H∞. The
map γ 7→ {x, γx} is a surjective group homomorphism Γ → H1(X(Γ),Z) independent of x.
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Corollary 5.14 in particular implies that if X(Γ) has genus 1, then the period lattice of a nonzero
f ∈ S2(Γ) is equal to

Λf =

{∫ γx

x

2πif(ζ)dζ : γ ∈ Γ

}
=

{∫
σ

2πif(ζ)dζ : σ ∈ H1(X(Γ),Z)
}

= Z⟨σ1, f⟩ ⊕ Z⟨σ2, f⟩ (5.5)

where σ1 and σ2 form a Z basis for H1(X(Γ),Z). Proposition 5.7 ensures that Λf is indeed a lattice.
Note that Λf is precisely the lattice (5.3) in the definition of the Abel-Jacobi map. This map is an
isomorphism by Proposition 5.10. Let Ef denote the elliptic curve which is isomorphic to C/Λf via the
isomorphism in Proposition 4.23. The above proves the following.

Theorem 5.15. Let N be one of 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49. Let f ∈ S2(Γ0(N)) and Ef
the elliptic curve defined above. The modular curve X0(N) is isomorphic to Ef via the composition of
the maps

X0(N) → C/Λf → Ef (5.6)

where the first map is the Abel-Jacobi map.

It turns out that the modular curve X0(N) is an algebraic curve defined over Q and that the maps in
Theorem 5.15 are rational maps defined over Q, see [13, Section 7.7]. From this, it follows that X0(N) is
isomorphic to an elliptic curve which is defined over Q. When the genus of X0(N) is greater than one,
a similar holomorphic mapping X0(N) → E exists, where E is an elliptic curve defined over Q. Such
a map is not an isomorphism however, merely a surjection. Such an elliptic curve over Q comes from
a so-called newform f ∈ S2(Γ0(N)), see [18, Theorem 11.74]. The existence of such a map is precisely
what it means for an elliptic curve over Q to be modular.
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6 Putting the theory into numbers

Let N be such that X0(N) is of genus one. Our goal is to calculate a formula for the elliptic curve Ef over
Q which is isomorphic to X0(N) via (5.6). To do this, the period lattice has to be calculated, we do this
by using the right hand side of (5.5). This means that we need to calculate a basis for H1(X0(N),Z). In
this section, by following the ideas in [10, Sections 2.2-2.5], we develop the theory of M−symbols. This
allows us to find an explicit basis of H1(X0(N),Z). Furthermore, we determine efficient ways to calculate
g4 and g6 and find error bounds for these calculations. Finally, we go through the process of calculating
the elliptic curve formula’s of X0(14) and X0(24). The methods of computing Ef are implemented in
Python and can be found in [29].

The methods we use are the methods in Cremona’s book [10] simplified to the case where the genus of
X0(N) is one. In the general case, one has to work with newforms in S2(Γ0(N)). In [10, Section 2.9], a
method to calculate the q−expansions of these objects for a given N is described. Sections 2.10-2.14 of
[10] are dedicated to calculate the equations for the elliptic curves corresponding to these newforms. The
LMFDB [24] is a database of elliptic curves, modular forms, and other related objects. This database
contains a little less than 300,000 newforms (as of June 2023) up to level N = 10, 000 including those
which we care about. Furthermore, the LMFDB contains a little less than 3 million elliptic curves over
Q. We shall use this database to check whether we obtained the correct formula for Ef and to obtain
the q−expansions of the generators of S(Γ0(N)) with N in (2.15).

6.1 M−symbols

When calculating the period lattice, we require an explicit basis for the first homology group of X0(N).
In this section we summarize results from [10, Sections 2.1-2.3] which allow us to compute H1(X0(N),Z)
using M−symbols. These sections in Cremona’s book are adapted from Manin’s paper [25, Chapter 1]
where he introduced M−symbols as ‘distinguished classes’.

The duality over R between H1(X(Γ),R) and S2(Γ) obtained in the previous section can be extended
to a duality over C. Let σ ∈ H1(X(Γ),R) and c ∈ C. Define cσ ∈ H1(X(Γ),C) to be the element
corresponding to the functional f 7→ c⟨σ, f⟩. This construction gives a duality over C. Next, we split
H1(X(Γ),R) into two eigenspaces.

Definition 6.1. [10, Section 2.1.3] Let Γ be a congruence subgroup of SL2(Z). We say that Γ is of real
type if for every γ = (a, b; c, d) ∈ Γ we have that

γ∗ =

(
a −b
−c d

)
is an element in Γ. ▲

For z ∈ H∞ define z∗ = −z. It is readily shown that (γz)∗ = γ∗z∗ for all γ ∈ Γ and z ∈ H∞ meaning that
the map π(z) 7→ π(z∗) is a well-defined map X(Γ) → X(Γ) if and only if Γ is of real type. If Γ is of real
type we also have that {x, y} 7→ {x∗, y∗} is a well-defined linear mapping H1(X(Γ),R) → H1(X(Γ),R).
The map ∗ has order 2, consequently, its eigenvalues are ±1. We can therefore decompose H1(X(Γ),R)
into eigenspaces as

H1(X(Γ),R) = H−
1 (X(Γ),R)⊕H+

1 (X(Γ),R). (6.1)

We aim to use the duality between H1(X(Γ),R) and S2(Γ) to obtain properties of H1(X(Γ),R). It turns
out to be useful to define the map f 7→ f∗ where f∗(z) = f(z∗). For a holomorphic function f : H → C
the map f∗ : H → C is again holomorphic on H.

Proposition 6.2. [10, Section 2.1.3] Let Γ be a congruence subgroup of SL2(Z). Let f be holomorphic
on H, γ ∈ Γ and σ ∈ H1(X(Γ),R). Then

1. If f has q−expansion f(z) =
∑
n≥0 anq

n, then f∗ has q−expansion f∗(z) =
∑
n≥0 anq

n;

2. for γ ∈ Γ, we have f∗[γ] = (f [γ∗])∗;

3. if f ∈ S2(Γ) then ⟨σ∗, f∗⟩ = ⟨σ, f⟩.
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From Proposition 6.2.2 we see that if Γ is of real type, then the map f 7→ f∗ is a well-defined R linear
mapping S2(Γ) → S2(Γ) which equals the identity when composed with itself. Let S2(Γ)R be the subspace
fixed by f 7→ f∗. From Proposition 6.2.3 we have that if ⟨σ, f⟩ ∈ R for some σ ∈ H1(X(Γ),R) and for
all f ∈ S2(Γ)R, then ⟨σ, f⟩ = ⟨σ∗, f∗⟩ = ⟨σ∗, f⟩ and hence σ ∈ H+

1 (X(Γ),R). Similarly, if ⟨σ, f⟩ ∈ iR for
all f ∈ S2(Γ)R, then σ ∈ H−

1 (X(Γ),R). Moreover, for any f ∈ S2(Γ)R,

σ ∈ H+
1 (X(Γ),R) ⇔ ⟨σ, f⟩ ∈ R ⇔ ⟨iσ, f⟩ ∈ iR ⇔ iσ ∈ H−

1 (X(Γ),R).

This shows that σ 7→ iσ is an isomorphism of vector spaces H+
1 (X(Γ),R) → H−

1 (X(Γ),R). Conse-
quently, we obtain dimH+

1 (X(Γ),R) = dimH−
1 (X(Γ),R) which must then be equal to g by the decom-

position (6.1).

Next, we investigate the Q−vector space H1(X(Γ),Q). This restriction to Q is of interested to us due
to the following result.

Theorem 6.3. (Manin, Drinfeld) [10, Theorem 2.1.3] Let Γ be a congruence subgroup. The vector space
H1(X(Γ),Q) is generated by the modular symbols of the form {x, y} where x, y ∈ Q ∪ {∞} ⊂ H∞.

This theorem is proven using Hecke operators, which are linear functions S2(Γ) → S2(Γ) with eigenvalues
that satisfy some useful properties. Section 2.9 of [10] gives a sketch of the argument for the special case
where Γ = Γ0(N). When computing the period lattice, H1(X(Γ),Q) has to be computed explicitly. This
is done using M−symbols. To introduce these, we need to find an explicit triangulation of X(Γ).

For α ∈ SL2(Z), define (α) to be the path in H∞ connecting α(0) and α(∞). Let (α)Γ denote the image
of this path under π : H∞ → X(Γ). Define C(Γ) as the vector space spanned by the symbols (α)Γ. For
γ ∈ Γ we have that (γα)Γ = (α)Γ, therefore C(Γ) has at most dimension [SL2(Z) : Γ]. Let B(Γ) ⊂ C(Γ)
be the space spanned by

(αS)Γ + (α)Γ (6.2)

and (α)Γ + (αTS)Γ + (α(TS)2)Γ. (6.3)

Here, S and T are as in Proposition 3.3. The idea here is that (6.3) represents the image under α of
the triangle with vertices 0,∞ and 1 which is represented by the element (I)Γ + (TS)Γ + ((TS)2)Γ. The
paths (α)Γ and (Sα)Γ are the same, but have different orientation, we therefore want (α)Γ = −(Sα)Γ.
We obtain this from (6.2) when we quotient out B(Γ) from C(Γ). Let C0(Γ) be the space spanned by
elements of the form π(s) with s ∈ Q ∪ {∞}. In other words C0(Γ) is spanned by the cusps of X(Γ).
Define the boundary map

δ : C(Γ) → C0(Γ)

(α)Γ 7→ π(α∞)− π(α0).

A simple computation shows that B(Γ) ⊂ ker δ. Define H(Γ) = ker δ/B(Γ). The set H(Γ) can be
interpreted as the set of closed loops in X(Γ) which are not of the form (α)Γ + (αTS)Γ + (α(TS)2)Γ.
This construction actually gives the rational homology on X(Γ).

Theorem 6.4. [25, Theorem 1.9] Let Γ be a congruence subgroup of SL2(Z). Then H(Γ) is isomorphic
to H1(X(Γ),Q). The isomorphism is induced by

(α)Γ 7→ {α0, α∞}.

We interchangeably write elements of H(Γ) as (α)Γ with α ∈ SL2(Z) or as {α0, α∞}. We can write
an arbitrary {x, y} ∈ H1(X(Γ),Q) as a sum of elements in H(Γ) as follows. First write {x, y} =
{0, y}−{0, x}. Then find the continued fraction expansion x = [a0; a1, . . . , ak] for some k, then x = pk/qk
where

p−2 = 0 q−2 = 1

p−1 = 1 q−1 = 0

pn = anpn−1 + pn−2 qn = anqn−1 + qn−2
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for n = 0, . . . , k. See [32, Section 12.2] for more details. The integers pj and qj satisfy the relation

(−1)j−1pjqj−1 − (−1)j−1pj−1qj = 1, j = −1, 0, . . . , k. (6.4)

Then

{0, x} =

k∑
j=−1

{pj−1

qj−1
,
pj
qj

}
=

k∑
j=−1

{αj0, αj∞} =

k∑
j=−1

(αj)Γ (6.5)

where we set 1/0 = ∞ and

αj =

(
(−1)j−1pj pj−1

(−1)j−1qj qj−1

)
which is an element of SL2(Z) by (6.4).

We now specialise to the case where Γ = Γ0(N). In the construction of H(Γ) it is crucial to know when
two elements of SL2(Z) are in the same coset. The following result helps us determine this for Γ0(N).

Proposition 6.5. [10, Proposition 2.2.1.] Let N > 1 be an integer. For j = 1, 2, let αj = (aj , bj ; cj , dj) ∈
SL2(Z). The following are equivalent.

1. The right cosets Γ0(N)α1 and Γ0(N)α2 are equal;

2. c1d2 ≡ c2d1 mod N ;

3. there exists u coprime to N such that c1 ≡ uc2 mod N and d1 ≡ ud2 mod N .

We define an equivalence relation on the pairs (c, d) ∈ Z2 with gcd(c, d,N) = 1 by setting

(c1, d1) ∼ (c2, d2) if and only if c1d2 ≡ c2d1 mod N. (6.6)

The equivalence of 2 and 3 of Proposition 6.5 ensures that this is an equivalence relation, while the
equivalence of 1 and 2 gives an alternate way to write down the right cosets of Γ0(N).

Definition 6.6. Let N > 1 be an integer. The equivalence class of (c, d) for the equivalence (6.6) is
denoted by (c : d) and is referred to as an M−symbol. The set of M−symbols is denoted by P1(Z/NZ).
▲

Every representative (c : d) is determined modulo N and can be chosen such that gcd(c, d) = 1. Propo-
sition 6.4 and the equivalence of 1 and 2 in Proposition (6.5) gives us the following result.

Proposition 6.7. [10, Proposition 2.2.2.] Let N > 1 be an integer. The following maps are bijections.

P1(Z/NZ) SL2(Z)/Γ0(N) C(Γ0(N))

(c : d) Γ0(N)
(
a b
c d

)
{b/d, a/c}p p

where a and b are integers chosen such that ad− bc = 1.

The map on the left is independent of the choice of a and b since the solutions of the equation xd−yc = 1
have the form (x, y) = (a+ kc, b+ kd) for some k ∈ Z so that the right coset is given by

Γ0(N)T k
(
a b

c d

)
= Γ0(N)

(
a b

c d

)
.

Here, we used that T ∈ Γ0(N) with T as in Proposition 3.3. Determining H(Γ0(N)) is much less of a
perilous exercise when usingM−symbols rather than the definition of C(Γ0(N)). To do this computation
we need to carry over a few things that we defined on symbols of the form (α)Γ to symbols of the form
(c : d). The bijections in Proposition 6.7 allow us to view C(Γ0(N)) as a vector space spanned by the
symbols (c : d). The boundary map then becomes

δ : (c : d) 7→ π(a/c)− π(b/d).
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Moreover, the right action of SL2(Z) on C(Γ0(N)) defined by (α)ΓA := (αA)Γ induces an action on
P1(Z/NZ) defined as

(c : d)

(
p q

r s

)
= (cp+ dr : cq + ds).

Then B(Γ0(N)) is spanned by elements of the form

(c : d) + (c : d)S = (c : d) + (−d : c) and

(c : d) + (c : d)TS + (c : d)(TS)2 = (c : d) + (d+ c : −c) + (d : −c− d).

The map ∗ : H1(X0(N),R) → H1(X0(N),R) restricts to H1(X0(N),Q) = H(Γ0(N)) and acts on the
M−symbols as

∗(c : d) = (−c : d).

Denote the eigenspaces of this restriction as H+(Γ0(N)) and H−(Γ0(N)). Finally, since we want to
explicitly calculate H(Γ0(N)) we need to determine ker δ. To simplify this process we use a result that
states that cusp equivalence is equivalent to a condition that is easily verifiable.

Proposition 6.8. [10, Proposition 2.2.3.] For j = 1, 2 let sj = pj/qj with pj and qj coprime. The
following are equivalent.

1. s2 = α(s1) for some α ∈ Γ0(N);

2. there is some u coprime to N such that q2 ≡ uq1 mod N and up2 ≡ p1 mod gcd(q1, N).

6.2 Calculating the period lattice

With an explicit basis for the homology group of X0(N) we can calculate the period lattice. In this
section we describe the process of explicitly calculating the period lattice. We do this using a simpli-
fied version of the approach described in [10, Section 2.10]. Furthermore, we find some numerical error
bounds that will allow us to make our method provably correct to any desired precision.

In this section, we assume that N > 1 is such that X0(N) has genus one. In other words, N is among
(2.15). Define the period of γ ∈ Γ0(N) with respect to f ∈ S2(Γ0(N)) as the complex number

Φf (γ) =

∫ γx

x

2πif(ζ)dζ.

By Proposition 5.13, Φf is a homomorphism Γ0(N) → Λf independent of the basepoint x. By Corollary
5.14 the image of Φf is the period lattice Λf . The first step to calculating the period lattice is to deter-
mine a basis for H1(X0(N),Q) = H(Γ0(N)) (and hence a set of generators for H1(X0(N),Z)). This can
be explicitly done thanks to the theory of M−symbols developed in the previous section. The integral
homology H1(X0(N),Z) is contained in H1(X0(N),Q) and is given by the elements {x, y} where x and
y are equivalent cusps in X0(N).

To calculate H(Γ0(N)) we need to find a basis for ker δ/B(Γ0(N)). This can be done without too much
labour when we possess a basis for C(Γ0(N))/B(Γ0(N)) beforehand. To see that this works, we invoke
the universal property for quotient spaces to obtain a unique linear map δ : C(Γ0(N))/B(Γ0(N)) →
C0(Γ0(N)) such that

C(Γ0(N)) C0(Γ0(N))

C(Γ0(N))/B(Γ0(N))

δ

δ

commutes. A swift computation verifies that ker δ = ker δ/B(Γ0(N)). From now on we write δ in place
of δ. By taking the quotient of B(Γ0(N)) we are setting the expressions of the form

(c : d) + (−d : c)

(c : d) + (d+ c : −c) + (d : −c− d)
(6.7)
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equal to 0. So C(Γ0(N))/B(Γ0(N)) can be seen as the kernel of the linear map mapping the C(Γ0(N))
to the relations (6.7). The matrix representing this linear map is quite large, even for small values of
N . The function modulo_relations_matrix(N) in [29] creates the matrix representation of the linear
map (6.7) with respect to an ordered basis of C(Γ0(N))/B(Γ0(N)) and returns this matrix in its re-
duced row echelon form. From this matrix we can read off a basis of C(Γ0(N))/B(Γ0(N)) and how
every M−symbol in C(Γ0(N))/B(Γ0(N)) is expressed in terms of this basis. Next, we use the basis of
C(Γ0(N))/B(Γ0(N)) to calculate H(Γ0(N)) = ker δ/B(Γ0(N)). Since N is chosen such that the genus
of X0(N) is 1 we expect to find two linearly independent elements that vanish under δ. To calculate ker δ
it is useful to know which cusps are equivalent. The function equiv_test(p1,q1,p2,q2,N) implements
Proposition 6.8 and is the main tool we use to determine a complete set of cusp equivalence classes for
X0(N).

Let σ1 and σ2 be generators of H1(X(Γ0(N),Z) and therefore also a basis for H(Γ0(N)). Every element
σ ∈ H(Γ0(N)) can be written as σ = a1σ1 + a2σ2 for a1, a2 ∈ Q. We represent σ as the vector
(a1, a2)

T ∈ Q2. The next step is to split off H(Γ0(N)) into the one dimensional eigenspaces H+(Γ0(N))
and H−(Γ0(N)) which is possible as Γ0(N) is of real type. Let σ+ and σ− be the generators of these
spaces. Since

H(Γ0(N)) = H+(Γ0(N))⊕H−(Γ0(N))

we can write every element σ ∈ H(Γ0(N)) uniquely as

σ = c1σ
+ + c2σ

− with c1, c2 ∈ Q.

Write σ+ and σ− as vectors with respect to the ordered basis (σ1, σ2) and construct the invertible matrix(
σ+ σ−

)
∈ Q2×2.

Define the row vectors v+ and v− as (
v+

v−

)
=
(
σ+ σ−

)−1
.

Then
σ = c1σ

+ + c2σ
− = (v+σ)σ+ + (v−σ)σ−. (6.8)

Let σ ∈ H1(X0(N),Z). By (6.8), for a generator f of S2(Γ0(N)) we have

⟨σ, f⟩ = (v+σ)⟨σ+, f⟩+ (v−σ)⟨σ−, f⟩. (6.9)

Define x = ⟨σ+, f⟩ and y = −i⟨σ−, f⟩. The cusp form f has real Fourier coefficients by [10, Chapter II].
From Proposition 6.2.1 and 6.2.3 it follows that both x and y are real numbers. Then

⟨σ, f⟩ = (v+σ)x+ i(v−σ)y. (6.10)

Since σ1 and σ2 generate H1(X0(N),Z), by (5.5) and (6.10) we have

Λf = Z⟨σ1, f⟩ ⊕ Z⟨σ2, f⟩ = Z(a1x+ ib1y)⊕ Z(a2x+ ib2y).

where v+ =
(
a1 a2

)
and v− =

(
b1 b2

)
. To get the full period lattice, all that remains is to find x and

y. By (6.9) it suffices to calculate ⟨σ, f⟩ for some integral cycle σ ∈ H1(X0(N),Z) and setting

x =
Re⟨σ, f⟩
(v+σ)

and y =
Im⟨σ, f⟩
(v−σ)

.

This is essentially one calculation of Φf (γ) where γ ∈ Γ0(N) satisfies σ = {τ, γτ} for any basepoint
τ ∈ H∞. Note that all we need to determine is ⟨σ, f⟩, v+, v− and a vector representation of σ. In partic-
ular, we do not have to determine σ+, or σ−. The vectors v+ and v− come from the right eigenvectors
σ+ and σ−. If we represent ∗ as a matrix with respect to the ordered basis (σ1, σ2) then v

+ and v− are
left eigenvectors of this matrix. They may be scaled versions of the original v±. However, scaling v+ or
v− will inversely scale x and y, leaving Λf unchanged.
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As noted multiple times, Φf (γ) is independent of the basepoint τ ∈ H∞. A general element γ ∈ Γ0(N)
is of the form

γ =

(
a b

cN d

)
. (6.11)

In [10], Cremona claims that choosing the basepoint

τ =
−d+ i

cN
so that γτ =

a+ i

cN
(6.12)

results in the fastest convergence of Φf (γ). We may assume that c ̸= 0 as in the case where c = 0, we
have Φf (γ) = 0 by [18, Proposition 11.1]. We also require c > 0 so that τ ∈ H∞ which is achieved by
replacing γ by −γ if necessary.

Proposition 6.9. [10, Proposition 2.10.2.] Let f ∈ S2(Γ0(N)) with q−expansion

f(τ) =

∞∑
n=1

ane
2πiτn.

Then for any γ = (a, b; cN, d) ∈ Γ0(N), the period of γ is equal to

Φf (γ) =

∞∑
n=1

an
n
e−2πn/cN (e2πina/cN − e2πind/cN ). (6.13)

Proof. Without loss of generality we assume that c > 0, otherwise replace γ by −γ which has the same
action on H∞. Setting the basepoint as in (6.12), we obtain

Φf (γ) =

∫ (a+i)/cN

(−d+i)/cN
2πi

∞∑
n=1

ane
2πiζndζ.

The Fourier coefficients are bounded as |an| ≤ n. This follows from a more general result by Deligne
which bounds Fourier coefficients for general cusp forms, see [12, Théorème 8.2]. It also follows more
easily from the fact that the Fourier coefficients ap of f for a prime p of good reduction come from the
amount of solutions of Ef reduced modulo p and the other coefficients via the fact that amn = aman
when gcd(m,n) = 1. Combining this fact with the Hasse-Weil bound [34, Theorem V.1.1], we obtain the
desired bound on |an|. Since an does not grow disproportionately large, this integral can be integrated
term by term. Doing so yields (6.13). ■

We only have to calculate one period, we are therefore free to choose γ = (a, b; c, d) ∈ Γ0(N) with c > 0.
To make the sum in Proposition 6.9 converge as fast as possible we want c to be as small as possible so
that e2πn/cN → 0 as fast as possible, so preferably c = 1. When explicitly calculating a period we can
only sum the first M terms of (6.13). Let e(M) denote the absolute error between (6.13) and the first
M terms of the sum.

Proposition 6.10. Let f ∈ S2(Γ0(N)) and (a, b; cN, d) ∈ Γ0(N). Then for M > 1,

e(M) ≤ e−2π(M+1)/cN

1− e−2π/cN

Proof. By the triangle inequality,

e(M) =

∣∣∣∣∣
∞∑

n=M+1

an
n
e−2πn/cN (e2πina/cN − e2πind/cN )

∣∣∣∣∣ ≤
∞∑

n=M+1

∣∣∣an
n

∣∣∣ e−2πn/cN
∣∣e2πina/cN − e2πind/cN

∣∣.
We can bound this expression further by using the bound |an| ≤ n as in the proof of Proposition 6.9.
The exponents in the expression |e2πina/cN − e2πina/cN | are strictly complex. Therefore, by using the
triangle inequality this expression is bounded by 1. We obtain

e(M) ≤
∞∑

n=M+1

e−2πn/cN =

∞∑
n=0

e−2πn/cN −
M∑
n=0

e−2πn/cN

=
1

1− e−2π/cN
− 1− e−2π(M+1)/cN

1− e−2π/cN
=
e−2π(M+1)/cN

1− e−2π/cN
(6.14)

■
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Denote the expression on the right of (6.14) by ε(M). All that remains is finding σ ∈ H1(X0(Γ),Z) such
that σ = {τ, γτ} for some τ ∈ H∞, we set this τ to 0 for convenience. Pick b/d such that π(b/d) = π(0),
so that {0, b/d} ∈ H1(X0(N),Z). Picking d coprime to N will do the trick by Proposition 6.8. Solve
ad − bcN = 1 to obtain γ = (a, b; cN, d), this γ is then used to calculate the period Φf (γ). We have
σ = {0, γ0} = {0, b/d}. To obtain a vector expression of σ we express σ as in (6.5) and use the bijection
in Proposition 6.7 to obtain

{0, b/d} (6.5)
=

k∑
j=−1

(αj)Γ0(N)
6.7
=

k∑
j=−1

((−1)j−1qj : qj−1).

The first two terms of the sum on the right hand side are 0 in C(Γ0(N))/B(Γ0(N)) since

(q−1 : q−2) + (−q−1 : q−1) = (0 : 1) + (−1 : 0) = 0.

Hence

{0, b/d} =

k∑
j=1

((−1)j−1qj : qj−1). (6.15)

We should be able to express this as a Z−linear combination of σ1 and σ2 since {0, b/d} ∈ H1(X0(N),Z).

By Proposition 4.23, the complex torus C/Λf is isomorphic to an elliptic curve Ef over C which is defined
by the equation (4.15). We determine c4 and c6 via calculating g4 and g6. To calculate these coefficients
g4 and g6, the sums that defines G4 and G6 are not suitable, because they converge very slowly. To
obtain accurate values in a reasonable amount of time, we use the following formula’s for g4 and g6.

Proposition 6.11. [27, Proposition 8.1] Let Λ ⊂ C be a lattice with generators ω1 and ω2. The values
g4 = 60G4(Λ) and g6 = 140G6(Λ) have expressions

g4 =
4π4

3ω4
2

(
1 + 240

∞∑
d=1

d3

e−2πidω1/ω2 − 1

)

g6 =
8π6

27ω2
2

(
1− 504

∞∑
d=1

d5

e−2πidω1/ω2 − 1

) (6.16)

Proof. Set τ = ω1/ω2 ∈ H. We find an expression for G2k(τ) := G2k(Zτ ⊕ Z) and use (4.11) to obtain
an expression for g4 and g6. Start with the known identity

π cotπτ =
1

τ
+

∞∑
m=1

(
1

τ +m
+

1

τ −m

)
which converges uniformly on compact subsets of H. On the other hand,

π cotπτ = π
cosπτ

sinπτ
= iπ − 2πi

1− e2πiτ
= iπ − 2πi

∞∑
d=0

e2πiτd.

We obtain
1

τ
+

∞∑
m=1

(
1

τ +m
+

1

τ −m

)
= iπ − 2πi

∞∑
d=0

e2πiτd. (6.17)

By taking the derivative k − 1 times on both sides of (6.17) we obtain

−(2πi)k
∞∑
d=1

dk−1e2πiτd = (k − 1)!(−1)k−1
∑
m∈Z

1

(τ +m)k
.

Rearranging this yields ∑
m∈Z

1

(τ +m)k
=

(−2πi)k

(k − 1)!

∞∑
d=1

dk−1e2πiτd. (6.18)
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Then

G2k(τ) =
∑

(m,n)∈Z2

(m,n)̸=(0,0)

1

(mτ + n)2k
= 2

∞∑
n=1

1

n2k
+

∞∑
m=1

∑
n∈Z

1

(mτ + n)2k

(6.18)
= 2

∞∑
n=1

1

n2k
+

2(2πi)2k

(2k − 1)!

∞∑
m=1

∞∑
d=1

d2k−1e2πimτd = 2

∞∑
n=1

1

n2k
+

2(2πi)2k

(2k − 1)!

∞∑
d=1

d2k−1e2πiτd

1− e2πiτd

= 2

∞∑
n=1

1

n2k
+

2(2πi)2k

(2k − 1)!

∞∑
d=1

d2k−1

e−2πiτd − 1

Using equation [1, 23.2.16] for the values of the Riemann zeta function at positive even integers and
(4.11) we obtain

G4(Λ) =
1

ω4
2

(
π2

45
+

16π4

3

∞∑
d=1

d3

e−2πidω1/ω2 − 1

)

G6(Λ) =
1

ω6
2

(
2π6

945
− 16π6

15

∞∑
d=1

d5

e−2πidω1/ω2 − 1

)
.

Multiplying G4(Λ) and G6(Λ) by the appropriate quantities yields (6.16). ■

Via (4.4) and (4.9), the j−invariant of Ef is

j =
1728g34
g34 − 27g26

.

We want to calculate the sums in (6.16), we can only sum the first M terms however. Let e4(M) and
e6(M) denote the errors.

Proposition 6.12. Let ω1 and ω2 be generators of a lattice such that e2π Im τ − 1 > 1 where τ = ω1/ω2.
Then

e4(M) ≤ 320
π4

|ω2|4

(
a(a2 + 4a+ 1)

(a− 1)4
−

M∑
d=1

d3ad

)

e6(M) ≤ 430

3π6|ω2|6

(
a(a4 + 26a3 + 66a2 + 26a+ 1)

(a− 1)6
−

M∑
d=1

d5ad

) (6.19)

where a = 1/(e2π Im τ − 1)

Proof. First, we can pick ω1 and ω2 such that e2π Im τ − 1 > 1. If this is not satisfied replace (ω1, ω2)
T

by A(ω1, ω2)
T for A ∈ SL2(Z) such that Im τ ≥

√
3/2. This leaves the lattice unchanged by Proposition

1.14 and is possible by [7, Theorem 1.5]. Let us first find a bound for the denominator of the sums in
(6.16). For d ∈ Z>0, we have

|e−2πidτ − 1| ≥
∣∣|e−2πidτ | − 1

∣∣ = e2πd Im τ − 1 ≥ (e2π Im τ − 1)d. (6.20)

The last inequality is proven by, for example, induction. Then, for k = 3 or 5,∣∣∣∣∣
∞∑

d=M+1

dk

e−2πidτ − 1

∣∣∣∣∣ ≤
∞∑

d=M+1

dk

|e−2πidτ − 1|
(6.20)

≤
∞∑

d=M+1

dk

(e2π Im τ − 1)d

=

∞∑
d=M+1

dkad =

∞∑
d=1

dkad −
M∑
d=1

dkad

The infinite series in the last expression has a closed form which is found in [5, Equation 3.4]. Filling
this in for k = 3 and k = 5 we obtain∣∣∣∣∣

∞∑
d=M+1

d3

e2πidτ − 1

∣∣∣∣∣ ≤ a(a2 + 4a+ 1)

(a− 1)4
−

M∑
d=1

d3ad∣∣∣∣∣
∞∑

d=M+1

d5

e2πidτ − 1

∣∣∣∣∣ ≤ a(a4 + 26a3 + 66a2 + 26a+ 1)

(a− 1)6
−

M∑
d=1

d5ad.
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Substituting these inequalities in e4(M) and e6(M) yields (6.19). ■

6.3 Explicit calculations for N = 14 and N = 24

Most calculations of the period lattice of the generator of S2(Γ0(N)) are very similar. In this section we
cover explicit calculations for the two cases where N = 14 and N = 24 to highlight this process. This is
done using the code in [29]. The function names below refer to this code.

The more straightforward computation of the two is N = 14. We first determine a basis for
C(Γ0(14))/B(Γ0(14)). Running the function modulo_relations_matrix(14) gives us that

C(Γ0(14))/B(Γ0(14)) = span{(13 : 2), (11 : 2), (1 : 7), (2 : 7), (1 : 0)}.

This function uses a set of representatives for C(Γ0(14))/B(Γ0(14)) which is given by
generate_M_symbols(14). Next, we find ker δ = H(Γ0(14)), where we view δ as a map
C(Γ0(14))/B(Γ0(14)) → C0(14). Using the function equiv_test(p1,q1,p2,q2,14) and the fact that
X0(14) has 4 cusps by Proposition 2.39, we find that

C0(Γ0(14)) = span{π(0), π(∞), π(1/2), π(1/7)}.

To see how δ acts on its domain we solve ad − bc = 1 for (c : d) and then δ((c : d)) = π(a/c) − π(b/d).
The M−symbols (p : 1) where p is coprime to N have the property that

δ((p : 1)) = π(0)− π(1/p).

Then Proposition 6.8 ensures that π(1/p) = π(0) so that δ((p : 1)) = 0. In the case where N = 14
we have δ((3 : 1)) = 0 and δ((5 : 1)) = 0. The function modulo_relations_matrix(14) also gives
expressions for these in terms of the basis

(3 : 1) = (11 : 2)− (13 : 2) and (5 : 1) = (11 : 2)− (1 : 7) + (2 : 7).

We see that (3 : 1) and (5 : 1) are linearly independent elements of H(Γ0(14)). Since X0(14)
has genus 1, by Proposition 2.37, these two elements are a basis for H(Γ0(14)). The function
representative(representatives,element,14) gives a representative of anyM−symbol which is use-
ful to determine how ∗ acts on H(Γ0(14))

∗(5 : 1) = (−5 : 1) = (9 : 1) = −(3 : 1)

∗(3 : 1) = (−3 : 1) = (11 : 1) = −(5 : 1).

Then the matrix representation of ∗ with respect to the chosen ordered basis ((5 : 1), (3 : 1)) is

∗((5:1),(3:1)) =
(

0 −1

−1 0

)
.

We find that this matrix has the left eigenvectors v+ =
(
−1 1

)
and v− =

(
1 1

)
. By Proposition 3.13,

S2(Γ0(14)) is spanned by

f(τ) = η(τ)η(2τ)η(7τ)η(14τ) = q − q2 − 2q3 + q4 + 2q6 + q7 − q8

+ q9 − 2q12 − 4q13 − q14 + q16 + 6q17 − q18 + 2q19 − 2q21 +O(q22).

This is the cusp form with label 14.2.a.a in the LMFDB. The period lattice Λf is then is generated by

ω1 = −x+ iy and ω2 = x+ iy

where

x =
ReΦf (γ)

v+σ
and y =

ImΦf (γ)

v−σ

for some γ ∈ Γ0(14) such that σ = {τ, γτ} ∈ H1(X0(14),Z). Pick σ = {0, 1/5}. Via the bijection in
Proposition 6.7, we find that σ = (5 : 1) which corresponds to the vector (1, 0)T ∈ H1(X0(14),Z) with
respect to the ordered basis of H(Γ0(14)). Moreover, σ = {0, γ0} with γ = (3, 1; 14, 5) (so that c = 1 in
(6.11)). Running the function Phi_f(M, f) gives the numerical approximation

Φf (γ) = ⟨σ, f⟩ ≈ 0.9906709780334416 + 1.3254912396824865i.
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We use the first 100 Fourier coefficients of f to calculate Φf (γ). The error is then at most

ε(100) = 1.3982506587477533 · 10−19.

Carrying out the other computations, we obtain

ω1 ≈ −0.9906709780334416 + 1.3254912396824865i

ω2 ≈ 0.9906709780334416 + 1.3254912396824865i.

The complex torus C/Λf is then isomorphic to the elliptic curve Ef over C with equation (4.15) where

g4 ≈ −17.91666666666667

g6 ≈ 24.495370370370367 + 7.105427357601002 · 10−15i.

We calculated the first 50 terms of (6.16). Using Proposition 6.19, we obtain the error bounds

e4(50) ≤ 1.80276830312386 · 10−15

e6(50) ≤ 3.032190829109276 · 10−15

The elliptic curve Ef approximately has j−invariant

j ≈ 452.73209730320735− 1.9383632428589129 · 10−13i.

Neglecting the imaginary part of j, using the function rational_approximation(alpha, denom) we
find that j is a close approximation of

9938375

21952
= 452.732097303207 . . . . (6.21)

The approximate coefficients

c4 = 12g4 ≈ −215.00000000000006

c6 = 216g6 ≈ 5290.999999999999

of Ef are very close to integers. The actual values of c4 and c6 are actually integers. This follows from
the fact that Ef is defined over Q and the so-called Manin constant is an integer. The latter fact is
proven by Edixhoven in [14, Proposition 2]. Due to the small size of the error bound ε(100), along with
the bounds on the error e4(50) and e6(50), we recognize that the actual values of Ef are c4 = −215 and
c6 = 5291. With these values, the j−invariant of Ef is equal to (6.21)

The Kraus–Laska–Connell algorithm [23, Section 2] is an algorithm which takes integers c4 and c6 of
an elliptic curve over Q and outputs a1, . . . , a6 such that (4.3) is in minimal form. This algorithm
is implemented in Kraus-Laska-Connell_algorithm.py in [29]. Using this algorithm for the values
c4 = −215 and c6 = 5291, we obtain the curve

Ef : y2 + xy + y = x3 + x2 + 4x− 6.

By Theorem 5.15, this is an algebraic description of X0(14) as this modular curve is isomorphic to Ef .
The elliptic curve Ef has label 14.a6 in the LMFDB.

The case where N = 24 is different from N = 14 in the sense that the elements of the form (p : 1) ∈
H(Γ0(24)) with p coprime to 24 are equal to 0 in C(Γ0(24))/B(Γ0(24)). This means that we have to put
some more work into calculating ker δ. Using modulo_relations_matrix(24) we obtain a basis

C(Γ0(24))/B(Γ0(24)) = span{(14 : 3), (3 : 4), (5 : 4), (1 : 8), (5 : 8), (7 : 6), (3 : 8), (1 : 12), (1 : 0)}.

Using equiv_test(p1,q1,p2,q2,24) and Proposition 2.39 we find that

C0(Γ0(24)) = span{π(0), π(1/2), π(1/3), π(1/4), π(1/6), π(1/8), π(1/12), π(∞)}.

55



Then

δ((14 : 3)) = π(1/2)− π(1/3) δ((3 : 4)) = π(1/3)− π(1/4)

δ((5 : 4)) = π(0)− π(1/4) δ((7 : 6))) = π(0)− π(1/6)

δ((3 : 8)) = π(1/3)− π(1/8) δ((1 : 12)) = π(0)− π(1/12)

δ((1 : 8)) = π(0)− π(1/8) δ((5 : 8)) = π(0)− π(1/8)

δ((1 : 24)) = π(0)− π(∞).

We immediately see that δ((1 : 8)) = δ((5 : 8)) so that (1 : 8)− (5 : 8) ∈ ker δ. We also find that,

δ((5 : 4) + (3 : 8)) = δ((3 : 4) + (5 : 8)).

It follows that ker δ = H(Γ0(24)) = span{A,B} where

A = (1 : 8)− (5 : 8) and B = (3 : 4)− (3 : 8) + (5 : 8)− (5 : 4).

Using representative(representative,element,24) and expressions for M−symbols provided by
modulo_relations_matrix(24), we find that ∗ acts on A and B as

∗A = (−1 : 8)− (−5 : 8) = (5 : 8)− (1 : 8) = −A
∗B = (−3 : 4)− (−3 : 8) + (−5 : 8)− (−5 : 4) = (3 : 4)− (3 : 8) + (5 : 8)− (5 : 4) = B.

We choose the ordered basis (B,A+B) for ker δ so that the calculations later on work out better. The
matrix representation of ∗ with respect to this basis is then

∗(B,A+B) =

(
1 2

0 −1

)
,

which has left eigenvectors v+ =
(
1 1

)
and v− =

(
0 1

)
. By Proposition 3.13 the vector space

S2(Γ0(24)) is spanned by

f(τ) = η(2τ)η(4τ)η(6τ)η(12τ) = q − q3 − 2q5 + q9 + 4q11 − 2q13 + 2q15

+ 2q17 − 4q19 − 8q23 − q25 − q27 + 6q29 + 8q31 − 4q33 + 6q37 + . . .

This is the cusp form with label 24.2.a.a in the LMFDB. Trying a few elements of the form {0, b/d},
we find that σ = {0, 22/35} is such that v+σ, v−σ ̸= 0. The quantity 22/35 has continued fraction
expression 22/35 = [0; 1, 1, 1, 2, 4]. By (6.15) we obtain

{0, 22/35} = (1 : 1) + (−2 : 1) + (3 : 2) + (−8 : 3) + (35 : 8)

= (3 : 4)− (5 : 4)− (1 : 8)− (3 : 8) + 2(5 : 8) = −(A+B) + 2B,

so that {0, 22/35} = (2,−1)T with respect to (B,A + B). We can write σ = {0, 22/35} = {0, γ0} for
γ = (181,−22; 288,−35). Then

Φf (γ) = ⟨σ, f⟩ ≈ −2.156515647476195− 1.6857503548538644i. (6.22)

As the lower left entry of γ is quite large, we require more terms of (6.13) to accurately compute Φf (γ).
To calculate (6.22), the first 1000 Fourier coefficients of f are used. The error is then at most

ε(1000) = 1.519255433010195 · 10−8.

Approximate values of the generators of Λf are calculated similarly to the above

ω1 ≈ −2.156515647476195

ω2 ≈ −2.156515647476195 + 1.6857503548538644i.

The coefficients g4 and g6 are then approximately

g4 ≈ 17.333333331992574− 3.071498574454836 · 10−16i

g6 ≈ −10.370370368260845− 5.055248595759895 · 10−16i.
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These values are calculated with an error of at most

e4(50) ≤ −1.5412311129356958 · 10−14

e6(50) ≤ −1.894908830110192 · 10−14.

The j−invariant of Ef is approximately

j ≈ 3905.7777769174277 + 7.415831332785713 · 10−13i.

Running rational_approximation(alpha, denom), we find that the j−invariant closely approximates
the rational number

35152

9
= 3905.77777777777 . . . .

Again, the coefficients

c4 = 12g4 ≈ 207.9999999839083

c6 = 216g6 ≈ −2239.99999954429

are close to integers. Running the Kraus-Laska-Conell algorithm for c4 = 208 and c6 = −2240, we obtain
the curve

Ef : y2 = x3 − x2 − 4x+ 4

This curve has label 24.a4 in the LMFDB.

These calculations have been carried out for the values of N in (2.15). The findings of these calculations
are found in the tables in Section 7.
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7 Tables

The following tables contain the values which are calculated as in Section 6.3 for all N in (2.15).

N = 11

f τ 7→ η(τ)2η(11τ)2

ω1 −1.269209304279553 + 0.00000000000000000i

ω2 −0.6346046521397765 + 1.4588166169384957i

g4 41.33333333333347 + 1.509903313490213 · 10−14i

g6 92.62962962962979 + 7.105427357601002 · 10−15i

j −757.6726378600639− 1.0271993225395667 · 10−12i ≈ −122023936

161051

Coefficients of associated minimal curve Ef

a1 0 a6 −20

a3 1 ∆ −115

a2 −1 j −757.6726378600567

a4 −10

N = 14

f τ 7→ η(τ)η(2τ)η(7τ)η(14τ)

ω1 −0.9906709780334416 + 1.3254912396824865i

ω2 0.9906709780334416 + 1.3254912396824865i

g4 −17.91666666666667 + 0.00000000000000000i

g6 24.495370370370367 + 7.105427357601002 · 10−15i

j 452.73209730320735− 1.9383632428589129 · 10−13i ≈ 9938375

21952

Coefficients of associated minimal curve Ef

a1 1 a6 −6

a3 1 ∆ −2673

a2 1 j 452.73209730320 . . .

a4 4

N = 15

f τ 7→ η(τ)η(3τ)η(5τ)η(15τ)

ω1 0.00000000000000000− 1.5962422222156807j

ω2 −1.4006030425344482− 0.00000000000000000i

g4 40.083333314407994 + 0.00000000000000000i

g6 22.58796293325066 + 0.00000000000000000i

j 2198.215130137807 + 0.00000000000000000i ≈ 111284641

50625

Coefficients of associated minimal curve Ef

a1 1 a6 −10

a3 1 ∆ 3454

a2 1 j 2198.215130864197 . . .

a4 −10
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N = 17

ω1 −1.5470797535511192 + 0.00000000000000000i

ω2 −0.7735398767755596 + 1.3728695590448772i

g4 2.750000000000115 + 6.661338147750939 · 10−15i

g6 55.62500000000008− 9.769962616701378 · 10−16i

j −0.43027502065354106− 3.2787347441463774 · 10−15i ≈ −35937

83521

Coefficients of associated minimal curve Ef

a1 1 a6 −14

a3 1 ∆ −174

a2 −1 j −0.43027502065348 . . .

a4 −1

N = 19

ω1 −1.359759733488311 + 0.00000000000000000i

ω2 0.6798798667441555 + 2.063546195858619i

g4 37.333333333333336− 1.2434497875801753 · 10−14i

g6 46.70370370370374− 3.552713678800501 · 10−15i

j −13109.110949117812 + 9.534418332904698 · 10−11i ≈ −89915392

6859

Coefficients of associated minimal curve Ef

a1 0 a6 −15

a3 1 ∆ −193

a2 1 j −13109.110949117947 . . .

a4 −9

N = 20

f τ 7→ η(2τ)2η(10τ)2

ω1 −1.4121875709795586− 1.1370825995205394i

ω2 0.00000000000000000 + 2.2741651990410787i

g4 −14.666666666666593− 1.9272415413648787 · 10−15i

g6 −10.962962962963045 + 1.72732011129823 · 10−16i

j 851.839999999987 + 1.838747915423377 · 10−13i ≈ 21296

25

Coefficients of associated minimal curve Ef

a1 0 a6 4

a3 0 ∆ −2852

a2 1 j 851.84

a4 4
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N = 21

ω1 1.8044616215539697 + 0.00000000000000000

ω2 0.00000000000000000− 1.9109897807518297i

g4 16.083333333333293 + 0.00000000000000000i

g6 2.662037037037007 + 0.00000000000000000i

j 1811.301839254219 + 0.00000000000000000i ≈ 7189057

3969

Coefficients of associated minimal curve Ef

a1 1 a6 −1

a3 0 ∆ 3472

a2 0 j 1811.30183925422 . . .

a4 −4

N = 24

f τ 7→ η(2τ)η(4τ)η(6τ)η(12τ)

ω1 −2.156515647476195 + 0.00000000000000000i

ω2 −2.156515647476195 + 1.6857503548538644i

g4 17.333333331992574− 3.071498574454836 · 10−16i

g6 −10.370370368260845− 5.055248595759895 · 10−16i

j 3905.7777769174277 + 7.415831332785713 · 10−13i ≈ 35152

9

Coefficients of associated minimal curve Ef

a1 0 a6 4

a3 0 ∆ 2832

a2 −1 j 3905.777 . . .

a4 −4

N = 27

f τ 7→ η(3τ)2η(9τ)2

ω1 −0.8833172835427812 + 1.5299521924023414i

ω2 0.8833172835427812 + 1.5299521924023414i

g4 8.099227083519532 · 10−05 + 5.7852689110647615 · 10−15i

g6 27.00028946174126 + 2.34980492095499 · 10−15i

j −4.664164520028151 · 10−14 − 9.994814492097526 · 10−24i ≈ 0

Coefficients of associated minimal curve Ef

a1 0 a6 −7

a3 1 ∆ −39

a2 0 j 0

a4 0
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N = 32

f τ 7→ η(4τ)2η(8τ)2

ω1 −1.3110318329942086 + 1.311024152052975i

ω2 1.3110318329942086 + 1.311024152052975i

g4 −16.000038300486118 + 2.4649336391457943 · 10−15i

g6 −0.00027352518736865195− 2.5243998287445214 · 10−15i

j 1727.9999991478046− 1.5730436397994827 · 10−17i ≈ 1728

Coefficients of associated minimal curve Ef

a1 0 a6 0

a3 0 ∆ −212

a2 0 j 1728

a4 4

N = 36

f τ 7→ η(6τ)4

ω1 −2.1028644299587596− 1.2146261322417762

ω2 0.00000000000000000 + 2.4292522644835524i

g4 −0.00862385623628428 + 4.350252796880838 · 10−15i

g6 −3.999359414494687− 3.481590016285452 · 10−15i

j 2.5662775647986147 · 10−6 − 3.888098266200391 · 10−18i ≈ 0

Coefficients of associated minimal curve Ef

a1 0 a6 1

a3 0 ∆ −2433

a2 0 j 0

a4 0

N = 49

ω1 −1.9333117056168114 + 0.00000000000000000

ω2 −0.9666558528084057 + 2.5575309899160983i

g4 8.749999999999995− 1.1102230246251565 · 10−15i

g6 6.12500000000000000− 1.3322676295501878 · 10−15i

j −3374.999999999982− 5.419771774230322 · 10−13i ≈ −3375

Coefficients of associated minimal curve Ef

a1 1 a6 −1

a3 0 ∆ −73

a2 −1 j −3375

a4 −2
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