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Abstract

In this thesis, the ultimate goal is to introduce the Brauer group of a variety and understand how
it can be used to detect an obstruction to the Hasse principle. We provide an overview of the
fundamental theory, including the necessary background in advanced algebra, algebraic geometry,
and number theory. In the central part of this paper, we study the Brauer groups of fields, rings,
and varieties, without introducing cohomology. The theory is applied to an example of a surface
first considered by Swinnerton-Dyer. We conclude by confirming that for this example, despite
the presence of points everywhere locally, there is a Brauer-Manin obstruction to the presence
of global points.
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Introduction

A central topic in arithmetic geometry is the study of solutions to a system of equations such that
all coordinates lie in Q. The set of solutions to such a system forms a geometrical object when
we consider all solutions over an algebraically closed field. This object is known as an algebraic
variety, and the solutions are called points on the variety. The points with all coordinates in
Q are specifically called the Q-rational points of the variety. As an illustrative example, the
equation

3x3 + 4y3 + 5z3 = 0

defines a variety known as Selmer’s cubic. The remarkable fact about this elegant equation, as
proved by Selmer in 1951 [38], is that it has no Q-rational points (disregarding the zero solution1),
while it does have R-rational points (points with all coordinates in R) as well as rational points
over all other completions of Q: those are the fields Qp of p-adic numbers for a prime p.

It turns out to be easier to check if the variety has rational points over each completion of
Q, than checking if it has a rational point over Q itself. Given that Q is embedded in each
completion, the existence of Q-rational points naturally implies the existence of rational points
over each completion. It would be useful to know when the converse also holds: that a variety
has a Q-rational point if and only if it has a rational point over all its completions. When this is
the case, the variety is said to satisfy the Hasse principle. Selmer’s cubic clearly does not satisfy
the Hasse principle, nor do many other varieties. It is natural to wonder whether these varieties
observe a shared phenomenon that obstructs the presence of a Q-rational point, despite these
varieties having rational points over all completions of Q. Such a phenomenon is referred to as
an obstruction to the Hasse principle on the variety.

In 1971, Yuri Manin discovered that for certain varieties, an obstruction to the Hasse principle
can be detected using the Brauer group of the variety [26]. This obstruction became known as
the Brauer-Manin obstruction. The Brauer group of a field, originally defined by the algebraist
Richard Brauer in 1932 [3], is a group consisting of equivalence classes of central simple algebras.
This definition was later generalized to the Brauer group of a scheme by Alexander Grothendieck
in 1968 [19]. Motivated by our interest in understanding this obstruction to the Hasse principle,
the aim of this thesis is to study Brauer groups of fields, rings, and varieties in detail, provide
examples, and to apply this knowledge to understand the Brauer-Manin obstruction.

It takes a few pages to show that the definition of the Brauer group of a field is indeed a
well-defined group. But once we have worked through the details and considered some examples,
we pick up the speed and generalize our definition to the Brauer group of a commutive ring.
Using this definition, we then define the Brauer group of a variety, and finish off with a chapter
on its application to the Brauer-Manin obstruction. Before we can study Brauer groups, however,
we need a foundational understanding of (central simple) algebras, and, specifically, quaternion
algebras. In addition, at the beginning of the thesis, a full chapter is dedicated to provide the
necessary prerequisites from algebra, algebraic geometry, and number theory.

The reader may notice that the chapter of preliminaries is quite dense, with many new definitions
introduced one after the other. However, it is not necessary to memorize each definition before
one can read the other chapters. Chapters 2 to 5, so everything up to Brauer groups of rings, can
be understood with knowledge of tensor products and algebras, both of which are discussed in
the first section of chapter 1. The concepts from algebraic geometry and number theory are only
used in a few examples within chapters 3 to 5, which can also be skipped over at first. These
concepts really find their application in chapters 6 and 7, so the reader is free to consult the
remaining sections of the preliminaries once needed.

1The zero solution does not define a Q-rational point, because we look at points in projective space, which
requires the point to be nonzero
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1 Preliminaries

Throughout this thesis, rings are denoted by R and are assumed to be unitary. Fields are denoted
by k and a choice of a fixed algebraic closure by k.

This chapter covers some preliminary theory from advanced algebra, algebraic geometry, and
algebraic number theory. The reader that is already familiar in any of these realms, is free to skip
over their respective sections. In any case, it may not be worthwhile to study the preliminaries
in detail upfront. Some definitions are never directly used in the rest of the thesis, and are only
included for the sake of completion. For example, the definition of a coordinate ring is necessary
for defining the local ring of a variety, but only the latter term returns in later chapters. To
provide a self-contained paper, both of these definitions are still included. The advise is then
to use this chapter merely as a compendium, something one can refer back to when necessary.
A quick glance at the first section (Advanced algebra) should be sufficient for reading up until
chapter 5.

Most proofs are omitted in this chapter, however, every section lists a few references which the
reader can consult for finding these proofs.

1.1 Advanced algebra

1.1.1 Module theory

Prior knowledge of module theory is advised, but all necessary definitions and results are repeated
in this section. The theory is extracted from the notes [42], unless indicated otherwise.

Definition 1.1. (Left R-module)
A left R-module M is an abelian group (M,+, 0) together with a map

R×M →M, (a,m) 7→ a ·m

satisfying the following conditions for all a, b ∈ R and m,n ∈M :

(1) a · (m+ n) = a ·m+ a · n;

(2) (a+ b) ·m = a ·m+ b ·m;

(3) a · (b ·m) = (ab) ·m;

(4) 1 ·m = m.

The map · is also called scalar multiplication or the action of R on M .

Remark 1.2.

(a) Similarly a right R-module is defined. If R is commutative, the left and right R-modules
coincide. If R is not commutative, an R-module is assumed to be a left R-module.

(b) If R is a field, the above definition is precisely that of an R-vector space.

(c) For any ring R, R forms an R-module by defining the scalar multiplication as the usual
ring multiplication.

(d) From the axioms we obtain the properties 0 ·m = 0 and (−a) ·m = −(a ·m) = a · (−m),
which we define as −am.
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Example 1.3.
Let (M,+, 0) be any abelian group. Then M is a Z-module via the map Z×M →M defined by

(a, x) 7→ a · x :=


x+ · · ·+ x (a times) if a > 0

0 if a = 0

−((−a)x) if a < 0.

Definition 1.4. (Submodule)
A submodule of a left R-module M is a subgroup N of M closed under the action of R.

Example 1.5.

(a) If k is a field and V a k-vector space, the k-submodules of V are precisely the k-subspaces
of V .

(b) The R-submodules of the R-module R are precisely the ideals of R.

Definition 1.6. (Left vector space over a division ring) [36, Page 536]
For a division ring D, a left D-module is also called a left vector space over D.

Definition 1.7. (R-module homomorphism)
Let M and N be R-modules. An R-module homomorphism is a homomorphism f : M → N of
abelian groups which is also R-linear. In other words, for all r ∈ R and x, y ∈M , it satisfies

f(x+ y) = f(x) + f(y) and f(r · x) = r · f(x).

The notions of R-module isomorphisms, endomorphisms and automorphisms are defined in the
usual way.

Remark 1.8.

(a) The set of R-module homomorphisms M → N is denoted by HomR(M,N). It is an abelian
group with addition defined by (f+g)(m) := f(m)+g(m) for f, g ∈ HomR(M,N), m ∈M .

(b) The set of R-module endomorphisms on M is denoted by EndR(M) := HomR(M,M). It
is a ring with multiplication defined by (fg)(m) := (f ◦ g)(m) = f(g(m)).

(c) If k is a field with k-vector spaces V and W , the k-module homomorphisms V → W
are precisely the k-linear transformations V → W . When dimk(V ) = n < ∞ and
dimk(W ) = m < ∞, the linear transformations can be represented by matrices, so we
have Homk(V,W ) ∼=Mm×n(k).

(d) For an R-module homomorphism f : M → N , ker(f) and im(f) are submodules of M and
N respectively.

Definition 1.9. (Quotient module)
Let N be a submodule of an R-module M . The quotient group M/N is an R-module via the
map

R×M/N →M/N, (r,m+N) 7→ rm+N.

It is called the quotient module.

Theorem 1.10. (First isomorphism theorem) [36, Thm 7.8]
If f : M → N is a homomorphism of R-modules, then there is an R-isomorphism

ϕ : M/ ker(f) → im(f)

m+ ker(f) 7→ f(m).
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Theorem 1.11. (Second isomorphism theorem) [36, Thm 7.9]
If S and T are submodules of an R-module M , then there is an R-isomorphism

S/(S ∩ T ) ∼= (S + T )/T.

Theorem 1.12. (Third isomorphism theorem) [36, Thm 7.10]
If T ⊆ S ⊆M is a tower of submodules, then there is an R-isomorphism

(M/T )/(S/T ) ∼=M/S.

Definition 1.13. (Direct sum)
Let I be a nonempty set and {Mi}i∈I a set of R-modules. The direct sum defined as⊕

i∈I
Mi := {(xi)i∈I : xi ∈Mi, xi ̸= 0 for finitely many i ∈ I}

is an R-module.

Definition 1.14.
Let S be a subset of an R-module M . Then S is called

• linearly independent if for all finite sums
∑

s∈S rs · s where rs ∈ R, the sum being zero
implies rs = 0 for all s.

• a generating set if ⟨S⟩ := {finite sums
∑

s∈S rs · s : rs ∈ R} =M .

• a basis if it is a linearly independent generating set.

If M has a basis it is called free. It is called finitely generated if there exists a finite S ⊂M such
that ⟨S⟩ =M . Finally, M is called cyclic if M = ⟨{x}⟩ = Rx for some x ∈M .

Definition 1.15. (Simple module) [36, Page 431]
A module M is called simple if M ̸= {0} and its only submodules are {0} and M .

Proposition 1.16. [36, Cor 7.14]
An R-module M is simple if and only if M ∼= R/I, where I is a maximal ideal.

Definition 1.17. (Projective module)
An R-module P is called projective if for every surjective R-module homomorphism f : M → N
and for every R-module homomorphism h : P → N , there exists an R-module homomorphism
h̃ : P →M such that fh̃ = h.

Proposition 1.18. [42, VII.4.2]
A free R-module is projective.

Proposition 1.19. [36, Page 477]
Let R be a PID and P a projective R-module. Then P is free.

1.1.2 Tensor products

As the group law of Brauer groups turns out to be induced by the tensor product, we recap some
basic theory about tensor products that is relevant to our discussion. The definitions and results
are taken from the notes [42] and [9], which also contain any proofs.

Throughout this section, R is assumed to be a commutative ring and M,N some R-modules.
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Definition 1.20. (Bilinear map)
Let S be an R-module. A map b : M ×N → S is called bilinear if for every m ∈M and n ∈ N ,
b(m,−) ∈ HomR(N,S) and b(−, n) ∈ HomR(M,S).

Tensor products are defined by their universal property:

Definition 1.21. (Tensor product)
A tensor product of M and N is a pair (T, β) where T is an R-module
and β : M × N → T a bilinear map, such that for any pair (S, b) of an
R-module S and a bilinear map b : M ×N → S, there exists a unique map
f ∈ HomR(T, S) such that b = f ◦ β. In other words, the diagram on the
right commutes.

M ×N S

T

b

β
f

Theorem 1.22. (Uniqueness of tensor product) [42, VII.3.4]
If (T, β) and (T ′, β′) are tensor products of M and N , then there exists a unique R-module
isomorphism g : T → T ′ such that β′ = g ◦ β.

Theorem 1.23. (Existence of tensor product) [42, VII.3.6]
For any R-modules M and N , a tensor product (T, β) exist.

Because a tensor product exists and it is unique, we speak of the tensor product of M and N .

Remark 1.24.

(a) The unique tensor product (T, β) for M and N is denoted by M ⊗R N . When the ring R
is clear from the context, ⊗R is often replaced by ⊗.

(b) For any (m,n) ∈M×N , the element β(m,n) ∈ T is also denoted by m⊗n. These elements
m⊗n are called elementary tensors. The elementary tensors generate M⊗N : any element
in M ⊗N can be written as an R-linear combination r1(m1 ⊗ n1) + · · ·+ rk(mk ⊗ nk).

Remark 1.25. (Properties of elementary tensors)
As with any bilinear map, m⊗ n satisfies the following properties:

• (rm)⊗ n = r(m⊗ n) = m⊗ (rn) for any r ∈ R;

• (−m)⊗ n = −(m⊗ n) = m⊗ (−n) and (−m)⊗ (−n) = m⊗ n;

• m⊗ 0 = 0 and 0⊗ n = 0;

• m⊗ n = 0 does not imply m = 0 or n = 0.

To clarify the last item above, take Z-modules Z/3Z and Q (both are abelian groups, so they are
Z-modules by example 1.3). Since any nonzero m ∈ Z/3Z has order 3, we find, for any nonzero
n ∈ Q,

m⊗ n = m⊗
(
3 · 1

3
· n
)

= (3 ·m)⊗
(
1

3
· n
)

= 0⊗
(
1

3
· n
)

= 0.

Theorem 1.26. [9, Thm 3.3]
If R-modules M and N are spanned by {xi}i∈I and {yj}j∈J respectively, then M ⊗N is spanned
by {xi ⊗ yj}(i,j)∈I×J .
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Theorem 1.27. [42, VII.3.11]
Let V and W be vector spaces over a field k, with bases {ei}i∈I and {fj}j∈J respectively. Then
V ⊗W is a k-vector space with basis {ei ⊗ fj}(i,j)∈I×J .
In particular, if dimk(V ) = n <∞ and dimk(W ) = m <∞, we have dimk(V ⊗W ) = n ·m.

Theorem 1.28. [9, Thm 4.25]
Let R be a domain and F and F ′ be free R-modules. If x ∈ F and x′ ∈ F ′ are nonzero, then
x⊗ x′ ̸= 0 in F ⊗R F

′. This holds in particular for vector spaces over a field.

Finally, two properties that we often use without referring to them:

Proposition 1.29. [42, VII.3.7]
For any R-modules M and N , M ⊗N ∼= N ⊗M .

Proposition 1.30. [42, VII.3.9]
For any R-module M , R⊗M ∼=M .

1.1.3 Algebras over a field

In this section we introduce the notion of an algebra over a field. Much like for rings, groups and
modules, we can define algebra homomorphisms, the center of an algebra, and when an algebra is
simple. The definitions are taken from chapter 18 of the book [35]. Properties of certain algebras
are further explored in chapter 2.

Recall that k always denotes a field, unless stated otherwise.

Definition 1.31. (Algebra over a field)
An (associative) algebra A over k, also called a k-algebra, is a nonempty set A with the operations
addition, multiplication and scalar multiplication (denoted by ·), such that

(A1) A is a vector space over k under addition and scalar multiplication,

(A2) A is a ring with identity under addition and multiplication,

(A3) For all r ∈ k, a, b ∈ A, we have r · (ab) = (r · a)b = a(r · b).

An algebra is called finite dimensional if it is finite dimensional as a k-vector space.

When the field k is clear from the context, k-algebras are sometimes simply called algebras.

Notice that a k-algebraA is in particular a k-module under scalar multiplication. The k-subspaces
of A are therefore precisely the k-submodules of A. But although the ideals of A form the
A-submodules of A, they are not necessarily k-submodules of A.

Definition 1.32. (Algebra homomorphism)
Let A and B be k-algebras. A map f : A→ B is called a k-algebra homomorphism if it is a ring
homomorphism and k-linear. So, for all a, a′ ∈ A and r ∈ k, we have

• f(a+ a′) = f(a) + f(a′);

• f(r · a) = r · f(a);

• f(aa′) = f(a)f(a′);

• f(1) = 1.
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The notions of k-algebra isomorphisms, endomorphisms and automorphisms are defined in the
usual way.

Since a k-algebra A has both a ring structure and a k-module structure, the above definition
of a k-algebra homomorphism makes sense: it is both a ring homomorphism and a k-module
homomorphism. This allows us to extend a result from module theory about a set of endomorphisms:

Proposition 1.33.
For a k-algebra A and A-moduleM , the set EndA(M) of endomorphisms onM is also a k-algebra.

Proof. By remark 1.8 (b), the set EndA(M) is a ring with multiplication defined by f◦g. Consider
the map

k × EndA(M) → EndA(M)

(r, f) 7→ r ∗ f := (m 7→ r ·m),

where · denotes the scalar multiplication of k on A. This map turns EndA(M) into a k-module
and hence a k-vector space. Using that elements in EndA(M) are A-linear, one can show

r ∗ (f ◦ g) = f ◦ (r ∗ g) = (r ∗ f) ◦ g

for any f, g ∈ EndA(M) and r ∈ k, which proves that EndA(M) is a k-algebra.

To see the relation of module theory and ring theory with the following definition, recall that a
module M is called simple if the only submodules of M are {0} and M itself, and that a ring R
is called simple if its only two-sided ideals are (0) and R. These definitions agree with the same
definition for algebras:

Definition 1.34. (Simple algebra)
A k-algebra A is called simple if the only two-sided ideals of A are (0) and A.

Definition 1.35. (Division algebra)
A division algebra is an algebra that is a division ring.

Since division rings are simple, it follows that division algebras are simple as well.

Definition 1.36. (Center)
Let A be a k-algebra. The center of A is defined as

Z(A) := {a ∈ A : ab = ba ∀b ∈ A}.

The image of the k-algebra homomorphism ϕ : k → A, x 7→ x · 1 is always contained in Z(A):
Using property (A3) from definition 1.31, we find

(x · 1)b = x · (1b) = x · b = x · (b1) = b(x · 1) for every b ∈ A.

Definition 1.37. (Central algebra)
A k-algebra A is called central if Z(A) = {x · 1 : x ∈ k}, that is, the center of A is trivial.

We have thus defined central simple k-algebras: algebras that have no nontrivial two-sided ideals,
and whose center contains only the image of k. Such algebras form the elements of the Brauer
group of the field k, under an equivalence relation, as we will see in chapter 4. The inverse element
of the equivalence class of such an element A will be the equivalence class of the opposite algebra
of A:
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Definition 1.38. (Opposite algebra)
Let A be a k-algebra. The opposite algebra of A denoted by A◦ is the k-algebra obtained from
A by reversing the order of multiplication. That is, a · b := ba, where the right-hand side is
multiplication in A.

Proposition 1.39.
For a central simple algebra A, its opposite algebra A◦ is central and simple as well.

Proof. We have Z(A) = Z(A◦), since the order of multiplication does not affect which elements
commute with one another. Moreover, the two-sided ideals of A◦ are precisely the two-sided
ideals of A. To clarify this, note that since the multiplication axb in A is the same as bxa in A◦,
it follows that if x is a generator of a two-sided ideal in A, then it is also a generator of the same
ideal in A◦.

Proposition 1.40. (Matrix algebra)
Let n ∈ Z>0 be arbitrary. The set Mn(k) consisting of all n × n matrices over k forms a
finite dimensional k-algebra. Moreover, for any finite dimensional k-algebra A, Mn(A) is a finite
dimensional k-algebra. We call algebras of this form matrix algebras.

Proof. We show the more general statement that Mn(A) is a finite dimensional k algebra for
any finite dimensional k-algebra A. Mn(A) receives a k-module structure from the k-module
structure on A via the map

k ×Mn(A) →Mn(A), (r, (aij)) 7→ (r · aij)

where · denotes the scalar multiplication of k on A. This turns Mn(A) into a vector space over
k with finite basis {alEij} where {al} is a basis for A and Eij denotes the elementary matrix
with a 1 in the (i, j)th position. Checking that it is a ring with ordinary matrix multiplication is
straightforward, using that A is a ring itself. Lastly, one can show r·(MN) = (r·M)N =M(r·N)
for any r ∈ k and M,N ∈ Mn(A) using that A satisfies condition (A3) from definition 1.31 as
well.

A more interesting result is the following:

Proposition 1.41.
For any central simple algebra A, its matrix algebra Mn(A) is central and simple as well.

Proof. We first show Z(Mn(A)) ∼= Z(A). Take any matrix M ∈ Z(Mn(A)). Since M has to
satisfy 

0 · · · 0
...

...
mi,1 · · · mi,n

...
...

0 · · · 0

 = EiiM =MEii =


0 · · · m1,i · · · 0

...
...

...

0 · · · mn,i · · · 0


for all 1 ≤ i ≤ n, M is diagonal. One can also check that the condition EijM = MEij for all
i and j implies that all diagonal entries have to be equal. So M = aI for some a ∈ A, where
I denotes the identity matrix. But since M has to satisfy baI = (bI)M = M(bI) = abI for all
b ∈ A, we must have a ∈ Z(A). Conversely, for any a ∈ Z(A), the matrix aI commutes with all
of Mn(A). So Z(Mn(A)) = {aI : a ∈ Z(A)} ∼= Z(A). Hence, Mn(A) is central.

To show simplicity, take a nonzero two-sided ideal J of Mn(A). The aim is to show that J
contains the identity matrix, after which we conclude J =Mn(A), so Mn(A) is simple.
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Take a nonzero matrix M ∈ J , with nonzero entry mij . Multiplying EiiMEjj yields a matrix
with onlymij in entry (i, j) and zeros everywhere else. Denote this matrix by N . N lies in J since
J is a two-sided ideal. Multiplying E1iNEj1 yields a matrix with mij in entry (1, 1) (and zeros
everywhere else). Similarly, for any 1 ≤ k ≤ n, multiplying EkiNEjk puts mij in entry (k, k).
Since J is a two-sided ideal, we have that

∑
k EkiNEjk ∈ J . This diagonal matrix with mij on

the diagonal we call D. Since A is simple, the two-sided ideal (mij) = {
∑
xmijy : x, y ∈ A}

in A equals A. So there exist elements {xr} and {ys} in A such that
∑

r,s xrmijys = 1. Then∑
r,s(xrI)D(ysI) is also an element of J and it equals I.

1.2 Algebraic geometry

The field of algebraic geometry is vast, and any summary of its foundations cannot truly do it
justice. The reader that is interested in learning some of the fundamentals is encouraged to look
into the notes of Gathmann [16]. This section is also based on these notes, but only defines what
is necessary for the purposes of this thesis.

Note, however, that Gathmann’s notes only define varieties (and all subsequent definitions) over
an algebraically closed field. Since this thesis works out an example of a variety over Q, we require
the definitions to be extended to any field. These more general definitions can be recognized
from the addition over k, where k denotes any field, not necessarily algebraically closed. They
are taken from [4, Chapter 3] and adapted to our setting.

1.2.1 Projective varieties

A projective variety is essentially the set of solutions in projective space to a system of homogeneous
polynomials considered over an algebraically closed field. There is also the definition of an affine
variety, for which the solutions are considered in affine space and the polynomials do not need
to be homogeneous. The examples discussed in this thesis only involve projective varieties, so
we introduce the following theory in terms of projective varieties and disregard the affine case.
However, it should be noted that most of these statements can be adapted to hold for affine
varieties as well. In chapter 6, we define the Brauer group of varieties, regardless of whether
they are affine or projective. But also in that chapter, we only work with examples of projective
varieties.

Recall that k denotes a field and k a choice of a fixed algebraic closure of k. We begin by defining
projective space:

Definition 1.42. (Projective space)
The set of 1-dimensional linear subspaces of the vector space kn+1 is called the projective n-space
over k and is denoted by Pn

k , or Pn if the field is clear from the context.

Notation 1.43. (Homogeneous coordinates)
Since a 1-dimensional linear subspace of kn+1 is uniquely determined by a nonzero vector in kn+1

up to scalar multiplication, we can equivalently define Pn as the space kn+1 \ {0} modulo an
equivalence relation ∼ defined as

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ xi = λyi for some λ ∈ k× for all i.

So the convention is to see Pn as the set containing equivalence classes of (x0, . . . , xn) ∈ kn. Such
an equivalence class is denoted by (x0 : . . . : xn). The xi are called the homogeneous coordinates
of the point (x0 : . . . : xn) ∈ Pn.
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For the cases n = 1 and n = 2, P1 is also called the projective line and P2 the projective plane.

Definition 1.44. (Homogeneous polynomial)
A polynomial is called homogeneous if all its monomials have the same total degree. The total
degree of a monomial xi00 · · ·xinn in k[x0, . . . , xn] is defined as the sum of the exponents of each
variable: i0 + · · ·+ in.

For example, f(x, y, z) = x2y3 + xz4 + xy2z2 ∈ k[x, y, z] is homogeneous because all monomials
have total degree 5, but g(x, y, z) = x2y3 + 1 is not.

Definition 1.45. (Projective variety)
For a subset S ⊂ k[x0, . . . , xn] of homogeneous polynomials, the set

V (S) := {P ∈ Pn
k
: f(P ) = 0 for all f ∈ S} ⊂ Pn

k

is called the projective zero locus over k of S. Subsets of Pn
k

of this form are called projective
(algebraic) varieties over k.

Throughout this thesis, all considered varieties are algebraic, so from now on we drop this
adjective and simply refer to them as (projective) varieties.

Note that we can also consider a projective variety over k as a variety over k: the subset
S ⊂ k[x0, . . . , xn] that defines the porjective variety over k, is also a subset of k[x0, . . . , xn], and
hence defines a variety over k.

If the field k is itself algebraically closed, there is no need to specify that the variety is defined
over k.

Notation 1.46. (Points and rational points)
A projective variety is usually denoted by X. Elements of X are called points on X. If we want
to specify a subfield ℓ ⊂ k over which the points are defined, we often use the notation X(ℓ).
For a variety X ⊂ Pn

k
, this denotes the set of points (a0 : . . . : an) ∈ X such that ai ∈ ℓ for all i.

These points are also called ℓ-rational points.

Definition 1.47. (Ideal of a variety)
For a projective variety X ⊂ Pn

k
over k, the set

I(X) := ⟨f ∈ k[x0, . . . , xn] homogeneous : f(P ) = 0 for all P ∈ X⟩⊴ k[x0, . . . , xn]

is called the ideal of X.

Definition 1.48. (Coordinate ring)
For a projective variety X ⊂ Pn

k
over k, the quotient ring

Γ(X) := k[x0, . . . , xn]/I(X)

is called the (homogeneous) coordinate ring of X.

Definition 1.49. (Projective subvariety)
Let X be a projective variety. For a homogeneous ideal J ⊴ Γ(X), the set

V (J) := {P ∈ X : f(P ) = 0 for all homogeneous f ∈ J} ⊂ X

is called the zero locus of J . Subsets of X of this form are called projective subvarieties of X.
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1.2.2 The Zariski topology

For a projective variety X, defining closed sets to be its subvarieties gives a topology on X:

Definition 1.50. (Zariski topology)
Let X be a projective variety over k. The topology on X whose closed sets are the projective
subvarieties of X is called the k-Zariski topology. If k is algebraically closed, it is simply called
the Zariski topology.

With this definition of closed sets in place, we can define notions like irreducibility and dimension.

Definition 1.51. (Reducible/Irreducible variety)
Let X be a projective variety over k. If X can be written as X = X1 ∪ X2 for closed subsets
(in the k-Zariski topology) X1, X2 ⊊ X, then X is called reducible over k. Otherwise it is called
irreducible over k. If k is algebraically closed, we simply say X is reducible/irreducible.

Definition 1.52. (Geometrically irreducible)
A projective variety X over k is called geometrically irreducible if X is irreducible over k, and X
considered as a variety over k is irreducible.

Proposition 1.53. (Irreducible decomposition) [16, Prop 2.14]
A projective variety X can be written as a finite union X = X1∪· · ·∪Xr of nonempty irreducible
subvarieties. If one assumes Xi ̸⊂ Xj for all i ̸= j, then the Xi are unique up to permutation
and called the irreducible components of X.

Definition 1.54. (Dimension, codimension and pure dimension)
Let X be a nonempty projective variety.

• The supremum over all n ∈ N such that there is a chain

∅ ≠ Y0 ⊊ · · · ⊊ Yn ⊂ X

of length n of irreducible closed subsets of X, is called the dimension of X and is denoted
by dim(X).

• For a nonempty irreducible closed subset Y ⊂ X, the supremum over all n ∈ N such that
there is a chain

Y ⊂ Y0 ⊊ · · · ⊊ Yn ⊂ X

of length n of irreducible closed subsets of X containing Y , is called the codimension of Y
in X and is denoted by codimXY .

• If every irreducible component of X has dimension n, X is said to be of pure dimension n.

Definition 1.55. (Curve, surface, hypersurface)
A projective variety is called

• a curve if it is of pure dimension 1;

• a surface if it is of pure dimension 2;

• a hypersurface in a pure-dimensional projective variety Y if it is a projective subvariety of
Y of pure dimension dim(Y )− 1.

Proposition 1.56. [16, Rmk 6.33]
For a projective hypersurface X, its ideal is principal. So I(X) = ⟨f⟩ for some f ∈ k[x0, . . . , xn].
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Definition 1.57. (Degree of a hypersurface)
Let X be a projective hypersurface with ideal I(X) = ⟨f⟩. Then the degree of X is defined as
the degree of f and denoted by deg(X). If X has degree 1,2 or 3, it is called a linear, quadric or
cubic hypersurface, respectively.

Definition 1.58. (Conic)
A quadric curve is also called a conic.

1.2.3 Local rings and function fields

As will be explained in chapter 6, the Brauer group of a variety is closely related to the Brauer
group of its function field and the Brauer group of certain local rings. We first define local rings:

Definition 1.59. (Local ring and residue field) [40, Tag 07BI]
A local ring is a ring R with exactly one maximal ideal m. The quotient ring R/m is called its
residue field.

Definition 1.60. (Local ring of a variety at a point)
Let X be a projective variety and P be a point on X. The ring

OX,P :=

{
f

g
: f, g ∈ Γ(X) with g(P ) ̸= 0

}
is a local ring with unique maximal ideal

IP :=

{
f

g
: f, g ∈ Γ(X) with f(P ) = 0 and g(P ) ̸= 0

}
.

It is called the local ring of X at P .

Definition 1.61. (Smoothness) [16, Rmk 10.10 (a)]
Let X be a projective variety and P a point on X. If the dimension of IP /I2P as a vector space
over the residue field OX,P /IP equals codimX{P}, we say P is smooth. If every point on X is
smooth, we call X itself smooth.

Definition 1.62. (Function field) [4, Rmk 3.2.15]
Let X ⊂ Pn

k
be a projective variety over k. The function field κ(X) of X is the set of quotients

of two homogeneous polynomials F,G ∈ k[x0, . . . , xn] of the same degree, where two quotients
F/G and F ′/G′ represent the same element in κ(X) if and only if FG′ − F ′G ∈ I(X). The
elements of κ(X) are called rational functions on X.

One useful application of function fields is that it helps to classify projective curves:

Proposition 1.63.
Two smooth projective curves are isomorphic if and only if their function fields are.

Proof. This follows from combining the results [14, Chapter 6, Prop 12] and [14, Chapter 7, Thm
3].

Let us finish with an example, combining definitions from the whole section:
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Example 1.64. (Del Pezzo surface of degree 4)
Consider the projective variety in P4

Q (with coordinates u, v, x, y, z) over Q defined by the
equations {

uv = x2 − 5y2

(u+ v)(u+ 2v) = x2 − 5z2.

This defines a smooth surface [41, Thm 3] which is an example of a so-called del Pezzo surface of
degree 4. It is the first del Pezzo surface of degree 4 for which it was shown that it violates the
Hasse principle, as was done by Birch and Swinnerton-Dyer in 1975 [41, Thm 3]. We revisit this
surface in chapters 6 and 7 to prove that it is indeed a counterexample to the Hasse principle, by
applying Manin’s method, which uses the Brauer group of the surface. To be precise, we show
that there is a Brauer-Manin obstruction to the Hasse principle on this surface. These terms are
properly defined in chapter 7.

Let us return to the example. Denoting the surface by X, we find its coordinate ring

Γ(X) = Q[u, v, x, y, z]/I(X) = Q[u, v, x, y, z]/⟨uv − x2 + 5y2, (u+ v)(u+ 2v)− x2 + 5x2⟩.

And its function field given by

κ(X) =

{
F

G
: F,G ∈ Q[u, v, x, y, z] homogeneous and of same degree

}
/ ∼

where F/G ∼ F ′/G′ if and only if FG′ − F ′G ∈ ⟨uv − x2 + 5y2, (u+ v)(u+ 2v)− x2 + 5x2⟩.

1.3 Algebraic number theory

For chapter 7 on the Brauer-Manin obstruction, we need an understanding of local and global
fields. Especially of the field of p-adic numbers Qp, a completion of Q which is also a local field,
so that we can work with such numbers in an example. Before we can introduce the notions of
a completion, local fields, and global fields, we first define absolute values and valuations, and
what it means for these to be equivalent.

Most theory, but in particular the part on p-adic numbers, is taken from Gouvêa’s book [18]2.
Some gaps in the theory for general fields are filled with theory from Neukirch’s book on algebraic
number theory [32] or Milne’s lecture notes [28].

Before we start looking at absolute values and valuations, first two general definitions:

Definition 1.65. (Number field)
An (algebraic) number field is a finite extension of Q.

Definition 1.66. (Algebraic integer and ring of integers)
Let k be a number field. An element of k that is a root of a monic polynomial in Z[X] is called
an algebraic integer in k. The ring consisting of all algebraic integers in k is called the ring of
integers of k.

2This is a good reference for the reader who wants to learn more about different ways to define p-adic numbers.
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1.3.1 Absolute values and valuations

Definition 1.67. (Absolute value)
An absolute value on a field k is a function | | : k → R≥0 such that for all x, y ∈ k

• |x| = 0 if and only if x = 0;

• |xy| = |x||y|;

• |x+ y| ≤ |x|+ |y|.

If moreover |x+y| ≤ max{|x|, |y|} holds, the absolute value is called non-archimedean. Otherwise
it is called archimedean.

Each field has a trivial absolute value defined by |x| = 1 for all x ̸= 0. Usually we do not consider
this one.

Example 1.68. (p-adic absolute value)
On Q we can define two types of (nontrivial) absolute values:

• The usual absolute value which we denote by | |∞ (and which also extends to R);

• The so-called p-adic absolute value for a prime p, defined by |x|p := p−m, where m is the
unique (possibly negative) integer such that x = pma

b where p ∤ ab.

Note that | |∞ is archimedean and | |p is non-archimedean for each prime p. For convenience,
we refer to ∞ as the prime at infinity. This allows us to talk about all absolute values on Q
without making a distincion between the archimedean and the non-archimedean ones. We then
also refer to both kinds of absolute values using the short notation p ≤ ∞.

An absolute value | | defines a metric on k given by d(x, y) = |x − y|. This turns k into a
topological space, which allows us to give the following definition:

Definition 1.69.
Two absolute values on k are called equivalent if they define the same topology on k.

An equivalence class of absolute values on k is called a place of k [28, Page 111].

Theorem 1.70. (Ostrowski) [33]
Let | | be a nontrivial absolute value on Q. Then | | is equivalent to either | |∞ or | |p for exactly
one prime p.

For a number field k, a place of k coming from a non-archimedean absolute value is called a finite
place. Otherwise it is called an infinite place.

Closely related to absolute values are so-called valuations3 on a field:

Definition 1.71. (Valuation)
A valuation on a field k is a function v : k → R ∪ {∞} such that for all x, y ∈ k

• v(x) = ∞ if and only if x = 0;

• v(xy) = v(x) + v(y);

• v(x+ y) ≥ min{v(x), v(y)}.
3Some references (including Neukirch’s book) call absolute values valuations and valuations exponential

valuations. However, we prefer to work with the terminology of Gouvêa, as this is more commonly used.
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Again, we usually disregard the trivial valuation defined by v(x) = 0 for all x ̸= 0.

Definition 1.72.
Two valuations v1 and v2 on k are called equivalent if v1 = sv2 for some real number s > 0.

If v is a valuation on a field k, we obtain an absolute value on k defined by |x|v = q−v(x) for
some fixed real number q > 1. Conversely, if | | is a non-archimedean absolute value on k, setting
v(x) = −log|x| for x ̸= 0 and v(0) = ∞ defines a valuation on k associated to | |. For a fixed q,
if v1 and v2 are equivalent valuations on k, the associated absolute values q−v1( ) and q−v2( ) are
equivalent as well [32, Page 120].

Example 1.73. (p-adic valuation)
From the p-adic absolute value, we obtain the p-adic valuation on Q: for x ∈ Q, we define
vp(x) := −log|x|p = m, where m is again the integer such that x = pma

b where p ∤ ab.

1.3.2 Local and global fields

We first define the notion of a completion of a valued field, which is related to local and global
fields in proposition 1.81.

Definition 1.74. (Completion)
For a field k with absolute value | |, we say a field k̂ is a completion of k with respect to | | if

• there exists an injective homomorphism k ↪−→ k̂;

• the absolute value | | extends to k̂;

• L is complete with respect to the extended absolute value;

• k is dense in k̂.

Theorem 1.75. [28, Thm 7.23, Rmk 7.24(a)]
For a field k with absolute value | |, a completion k̂ with respect to | | exists and it is unique up
to unique isomorphism.

For a place v of k, we write kv for the completion with respect to v. Because there is an inclusion
map from the field k to its completion kv, we can identify k with its image under this map and
see it as a subfield of kv.

Definition 1.76. (Field of p-adic numbers)
For each prime p, the completion of Q with respect to the p-adic absolute value is called the field
of p-adic numbers and is denoted by Qp.

In the next section we define p-adic numbers in a more concrete way.

By Ostrowski’s theorem, the completions of Q are R (with respect to | |∞) and the p-adic numbers
Qp for each prime p.

The following result is also known as Ostrowski’s theorem, but to avoid confusion, we only refer
to the previous version as Ostrwoski’s theorem.

18



Theorem 1.77. [28, Rmk 7.49(a)] [33]
Let k be a field that is complete with respect to an archimedean absolute value. Then k is
isomorphic to either R or C and the absolute value is equivalent to the usual absolute value.

The following proposition helps us to define a local field:

Proposition 1.78. [32, Prop 3.8]
Let | |v be a non-archimedean absolute value on k and v the associated valuation. The subset

O = {x ∈ k : |x|v ≤ 1} = {x ∈ k : v(x) ≥ 0}

is a local ring with unique maximal ideal

p = {x ∈ k : |x|v < 1} = {x ∈ k : v(x) > 0}.

We call O the valuation ring, p the valuation ideal, and the quotient ring O/p the residue field
of k with respect to | |v.

Definition 1.79. (Local field)
A local field is a field k which is complete with respect to an absolute value | | and whose residue
field is finite.

Since Qp is complete with respect to the p-adic absolute value and its residue field is finite [18,
Cor 4.2.7], it is a local field.

Definition 1.80. (Global field)
A global field is a field which falls in one of the two categories:

• Algebraic number fields.

• Function fields in one variable over a finite field, i.e., finite extensions of Fq(T ) for some q.

In this paper we are mainly interested in the first case, so the global fields that are finite extensions
of Q.

Proposition 1.81. [32, Page 134]
The completions of a global field are local fields.

So Q is a global field with corresponding local fields R and Qp for each prime p.

1.3.3 More on p-adic numbers

In order to work with p-adic numbers in an example later, we provide a more hands-on definition
of Qp that gives an expression of its elements, and that makes it more clear how we can see Q
as a subfield of Qp.

Throughout this section, let p be a prime number.

For a rational number x, we can write it uniquely as a series

x = bn0p
n0 + bn0+1p

n0+1 + · · · =
∑
n≥n0

bnp
n

where bn ∈ Z, 0 ≤ bn ≤ p−1. For example, taking p = 3, we can write 25 as 1 ·30+2 ·31+2 ·32.
One can find such an expression for any rational number.
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Notice that n0 (which could be negative) denotes the “multiplicity” of p in x: it is the unique
integer m such that x = pma

b where p ∤ ab. Recall that this equals vp(x). For the expression of
25 in powers of 3 above, we have n0 = 0, and indeed, v3(25) = 0 because 25 is not divisible by 3.

Definition 1.82. (p-adic expansion)
Let x ∈ Q. We call the series

∑
n≥n0

bnp
n that represents x the p-adic expansion of x.

More generally, we call any series
∑

n≥n0
bnp

n with bn ∈ Z, 0 ≤ bn ≤ p− 1, a p-adic expansion,
regardless of whether it represents an element in Q. For example, the series

∞∑
n=0

pn
2
= 1 + p2 + p4 + . . .

is not an element of Q [18, Page 18], but we still call it a p-adic expansion.

We can define operations such as addition and multiplication of p-adic expansions4. This turns
the set of all p-adic expansions into a field:

Definition 1.83. (Field of p-adic numbers)
The field of all p-adic expansions, we denote by Qp. The elements of Qp are also called p-adic
numbers.

Since every x ∈ Q has a p-adic expansion, we have an inclusion map:

Q ↪−→ Qp

x 7→ the p-adic expansion of x.

Remark 1.84.
It may seem strange that we are allowed to sum infinitely many positive powers of p. For example,
the 3-adic expansion of −1 is 2+2 · 3+2 · 32+2 · 33+ . . . (adding 1 to the series gives 0). Doing
this computation in R, it blows up and the series is divergent. However, we choose to look at
this series over Qp, where it does converge and so we can identify it with −1. The reason that
the series converges in Qp is that |pn|p → 0 as n→ ∞.

With this definition of Qp, it is a completion of Q with respect to | |p [18, Thm 3.2.14], and by
theorem 1.75 it is unique up to unique isomorphism.

For our purposes in chapter 7, we want to work with p-adic numbers as a re-scaling of p-adic
integers:

Definition 1.85. (p-adic integers)
The ring of p-adic integers is defined as the valuation ring of Qp:

Zp := {x ∈ Qp : |x|p ≤ 1} = {x ∈ Qp : vp(x) ≥ 0}.

The maximal ideal of Zp (so the valuation ideal of Qp) is the principal ideal

pZp = {x ∈ Qp : |x|p < 1} = {x ∈ Qp : vp(x) > 0}.

Furthermore, we define the p-adic units as the invertible elements of Zp:

Z×
p := {x ∈ Qp : |x|p = 1} = {x ∈ Qp : vp(x) = 0}.

Note that via the inclusion Q ↪−→ Qp, an element a
b ∈ Q is in Z×

p if and only if p ∤ ab.
4For more information on how to find p-adic expansions and how to do arithmetic with them, see [18, Chapter

1]. This provides multiple examples and analogies which lead to a better intuition of p-adic numbers.
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Proposition 1.86.
For any n ≥ 1, we have

Zp/p
nZp

∼= Z/pnZ.

Theorem 1.87. (Hensel’s lemma) [20]
Let F (x) = a0 + a1x + · · · + anx

n be a polynomial in Zp[x]. Suppose there exists a1 ∈ Zp such
that

F (a1) ≡ 0 mod pZp and F ′(a1) ̸≡ 0 mod pZp.

Then there exists a unique a ∈ Zp such that a ≡ a1 mod pZp and F (a) = 0.

Just as there is an inclusion Q ↪−→ Qp with the image of Q dense in Qp, there is an inclusion
map Z ↪−→ Zp under which the image of Z is dense in Zp: for any x ∈ Z, we can map x to its
p-adic expansion, which is an element in Zp. This is easier to see with the following proposition
describing the elements of Zp:

Proposition 1.88. [18, Cor 4.3.3, 4.3.4]
Any x ∈ Zp can be written in a unique way as

x = b0 + b1p+ b2p
2 + · · · =

∑
n≥0

bnp
n

with 0 ≤ bn ≤ p− 1. Similarly, any x ∈ Qp can be written in a unique way as

x = bn0p
n0 + bn0+1p

n0+1 + bn0+2p
n0+2 + · · · =

∑
n≥n0

bnp
n

with 0 ≤ bn ≤ p− 1 and n0 = vp(x) possibly negative.

Remark 1.89.
As a consequence, for any x ∈ Qp there exists a y ∈ Zp and an integer m such that x = pmy.
This was meant by re-scaling p-adic integers to obtain p-adic numbers, which will be used in
examples in chapter 7.

Note that the proposition above gives an analogy between Qp and R, the other completion of Q:
Any x ∈ R can be written (albeit not in a unique way) as

x = bn010
n0 + bn0−110

n0−1 + bn0−210
n0−2 + . . . .

So in Qp, the rational numbers are essentially written as an expansion with base p, instead of
the usual base 10. The only difference is that 10 is not a prime, which means R has a very
different structure (it is an archimedean valued field, after all) than each Qp. But both kinds of
fields complete Q. When we introduce the Hasse principle in chapter 7, it is useful to see Q as
a subfield of R and each Qp in this way.
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2 A closer look at algebras

In this chapter we prove several properties for certain types of algebras, in order to have a toolbox
ready for the next chapters. We first take a closer look at tensor products of algebras in section
2.1. The statements covered in this section enable us to define the Brauer group of a field in
chapter 4. In section 2.2, we turn our attention to division rings and division algebras, and prove
two theorems by Wedderburn. These are also applied in chapter 4, namely, to determine the
Brauer group of certain classes of fields.

2.1 Tensor products of algebras

We start with a powerful property of matrix algebras that we often use without referring back
to.

Proposition 2.1. [12, Lem 4.1]
Let A be a k-algebra and n,m ∈ Z>0. Then the following hold:

(i) Mn(A) ∼= A⊗Mn(k).

(ii) Mm(k)⊗Mn(k) ∼=Mmn(k).

Proof.

(i) We prove this using the universal property of the tensor product. But first, note that the
following map is a homomorphism of k-algebras: ϕ : Mn(k) →Mn(A), (mij) 7→ (mij · 1).

Now consider the map

β : A×Mn(k) →Mn(A)

(a,M) 7→ aϕ(M)

which can be checked to be bilinear over k. Let S be any k-module and b : A×Mn(k) → S
any bilinear map. We then need to show the existence and uniqueness of a map f ∈
Homk(Mn(A), S) such that f ◦ β = b.
In what follows, let Eij and eij denote the elementary matrices of Mn(A) and Mn(k)
respectively. Then, any M ∈ Mn(A) and R ∈ Mn(k) can be written as M =

∑
i,j mijEij

and R =
∑

i,j rijeij for some unique mij ∈ A, rij ∈ k.

For existence, define f : Mn(A) → S by f(M) =
∑

i,j b(mij , eij), which is well-defined by
uniqueness of the coefficients mij . We first prove that f is a k-module homomorphism. For
arbitrary M,N ∈Mn(A) we have:

f(M +N) = f
(∑

(mij + nij)Eij

)
=
∑

b(mij + nij , eij)
1
=
∑

b(mij , eij) + b(nij , eij)

=
∑

b(mij , eij) +
∑

b(nij , eij) = f(M) + f(N).

Equality 1 uses that b is bilinear. For arbitrary r ∈ k, M ∈Mn(A) we have:

f(r ·M) = f
(
r ·
∑

mijEij

)
1
= f

(∑
(r ·mij)Eij

)
=
∑

b(r ·mij , eij)

2
=
∑

r · b(mij , eij)
3
= r ·

(∑
b(mij , eij)

)
= r · f(M).

Equality 1 relies on the k-algebra structure of Mn(A), equality 2 uses bilinearity of b, and
equality 3 that S is a k-module.
To show that f ◦ β = b, let a ∈ A and R ∈Mn(k) be arbitrary. We have

ϕ(R) =
∑
i,j

(rij · 1)ϕ(eij) =
∑
i,j

(rij · 1)Eij .
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This gives

f(β(a,R)) = f(aϕ(R)) = f
(
a
(∑

rij · Eij

))
1
= f

(∑
(rij · a)Eij

)
=
∑

b(rij · a, eij)
2
=
∑

rij · b(a, eij)
3
=
∑

b(a, rijeij)
4
= b

(
a,
∑

rijeij

)
= b(a,R).

Here, equality 1 again uses that Mn(A) is a k-algebra. Equality 2, 3 and 4 are by bilinearity
of b.

For uniqueness, assuming we have an f ∈ Homk(Mn(A), S) satisfying f ◦ β = b, then for
any M ∈Mn(A) we have:

f(M) = f
(∑

mijEij

)
=
∑

f(mijEij) =
∑

f(β(mij , Eij)) =
∑

b(mij , Eij).

This concludes the proof.

(ii) Based on the proof given in [12, Lem 4.1]
Let A :=Mm(k). Then by (i), we have

Mm(k)⊗Mn(k) ∼=Mn(Mm(k))

which is isomorphic to Mnm(k) in the natural sense if we ‘remove’ the lines that indicate
the block matrices.

A consequence of (ii) is that for every m,n ∈ Z>0, we have

k ⊗Mmn(k) ∼=Mmn(k) ∼=Mm(k)⊗Mn(k) (1)

where the first isomorphism is by proposition 1.30. This property will return later when we
define equivalence classes of central simple algebras.

Example 2.2. We present and work out some details of the statements given in [12, Page 82]
In this example we look at some properties of the tensor product of k-algebras.

(i) The tensor product of algebras over k is itself a k-algebra:
For k-algebras A and B, their tensor product A⊗B forms a ring with multiplicative identity
1A ⊗ 1B and multiplication defined by

(a1 ⊗ a2)(b1 ⊗ b2) := a1b1 ⊗ a2b2.

Since the tensor product is a k-module and k is a field, it follows that it is a vector space
over k. Lastly, it can be checked that A⊗B satisfies (A3) from definition 1.31 using that
A and B satisfy this condition.

(ii) In order to identify another structure on the tensor product, first consider the following
two maps:

i : A→ A⊗B,

a 7→ a⊗ 1

j : B 7→ A⊗B

b 7→ 1⊗ b.

It can easily be checked that both maps are k-algebra homomorphisms. Now, A ⊗ B can
be seen as a (left) B-module via the map j, meaning we define the action of B on A⊗ B
as

B × (A⊗B) → A⊗B

(b′, a⊗ b) 7→ b′ · (a⊗ b) := j(b′)(a⊗ b) = (1⊗ b′)(a⊗ b) = a⊗ b′b.

It can be verified that this map indeed turns A⊗B into a B-module. In a similar fashion,
A⊗B is an A-module via the map i.
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(iii) One more observation necessary for following proofs: If a set {ai} inA is linearly independent
over k, then the set {i(ai)} is linearly independent in A⊗ B as B-module. To prove this,
assume

∑
bi · i(ai) = 0 for some arbitrary {bi} ⊂ B. Let {eℓ} be a k-basis for B and write

bi =
∑
ci,ℓeℓ where ci,ℓ ∈ k. We have:

0 =
∑
i

bi · i(ai) =
∑
i

j(bi)i(ai) =
∑
i

(1⊗ bi)(ai ⊗ 1) =
∑
i

ai ⊗ bi

=
∑
i

ai ⊗ (
∑
ℓ

ci,ℓeℓ) =
∑
i

∑
ℓ

ci,ℓ(ai ⊗ eℓ)

Since {ai} ⊂ A and {eℓ} ⊂ B are both linearly independent over k, {ai ⊗ eℓ}i,ℓ ⊂ A ⊗ B
is linearly independent over k (this follows from theorem 1.27 when {ai} is extended to
a basis of A). This implies ci,ℓ = 0 for all i and ℓ, so bi = 0 for all i, which proves the
statement.

The following two results are necessary to prove proposition 2.5, which states that the tensor
product of algebras preserves simplicity and centrality. The proofs of lemma 2.3 and theorem
2.4 align with the proofs given in [12, Lem 3.7] and [12, Thm 3.5 (1.)], respectively. They are
slightly modified for completion and contain additional elaboration on some arguments.

Lemma 2.3. [12, Lem 3.7]
Let S be a central simple algebra and A any algebra. If J is a nonzero two-sided ideal of A⊗ S,
then J ∩ i(A) ̸= (0).

Proof. Take a nonzero x ∈ J such that x =
∑l

i=1 ai ⊗ si with l minimal. Note that the set
{ai} must be linearly independent over k, for otherwise we could write x as a sum of elementary
tensors aj ⊗ s′j where {aj} is a linearly independent subset of {ai}, contradicting the minimality
of l. Similarly, {si} is linearly independent over k. Therefore, s1 ̸= 0. By simplicity of S, we
then have that the two-sided ideal (s1) = Ss1S = {

∑
xjs1yj : xj , yj ∈ S} must equal S since it

is nonzero. So, there exist m ∈ N and xj , yj ∈ S such that 1 =
∑m

j=1 xjs1yj .

Consider x′ =
∑m

j=1(1 ⊗ xj)x(1 ⊗ yj) which is an element of J since J is a two-sided ideal
containing x. We can rewrite it as follows:

x′ =
m∑
j=1

(1⊗ xj)(
l∑

i=1

ai ⊗ si)(1⊗ yj)

=
m∑
j=1

l∑
i=1

ai ⊗ (xjsiyj)

=
l∑

i=1

ai ⊗ (
m∑
j=1

xjsiyj)

Defining s′i =
∑m

j=1 xjsiyj ∈ S, we have x′ =
∑l

i=1 ai ⊗ s′i. By part (iii) of example 2.2 we know
that {i(ai)} = {ai ⊗ 1} is linearly independent over S, so since s′1 = 1, we have x′ ̸= 0.
We show that x′ ∈ i(A) to conclude J ∩ i(A) ̸= (0). First, let s ∈ S be arbitrary. Then,

(1⊗ s)x′ − x′(1⊗ s) =

l∑
i=1

ai ⊗ ss′i −
l∑

i=1

ai ⊗ s′is

=

l∑
i=1

ai ⊗ (ss′i − s′is).
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Since s′1 = 1, the first term vanishes, so we get (1 ⊗ s)x′ − x′(1 ⊗ s) =
∑l

i=2 ai ⊗ (ss′i − s′is).
This is an element in J since x′ ∈ J , so by minimality of l, it has to be zero. Once again using
that {i(ai)} is linearly independent over S,

∑l
i=2 ai⊗ (ss′i− s′is) being zero implies ss′i− s′is = 0

for all i. Since s was assumed to be arbitrary, this gives s′i ∈ Z(S) = {x · 1 : x ∈ k} (since S is
assumed to be simple). Writing s′i = si · 1 for si ∈ k, we have

ai ⊗ s′i = ai ⊗ (si · 1) = si(ai ⊗ 1) = si · (ai1)⊗ 1 = ai(si · 1)⊗ 1 = ais
′
i ⊗ 1.

Finally, we can rewrite x′ =
∑
ai ⊗ s′i as

∑
ais

′
i ⊗ 1 = (

∑
ais

′
i)⊗ 1 which is in i(A).

Theorem 2.4. [12, Thm 3.5 (1.)]
Let S be a central simple algebra and A any algebra. Then every two-sided ideal of A ⊗ S is of
the form I ⊗ S where I is a two-sided ideal of A. In particular, if A is simple, then A ⊗ S is
simple.

Proof. Let J be a two-sided ideal of A ⊗ S and define I = {a ∈ A : a ⊗ 1 ∈ J}. Note that
I is then a two-sided ideal of A: for any a, a′ ∈ A and x ∈ I, we have (x ⊗ 1) ∈ J , so also
(axa′ ⊗ 1) = (a⊗ 1)(x⊗ 1)(a′ ⊗ 1) ∈ J , which shows axa′ ∈ I.

We want to show J = I ⊗ S. We already have J ⊇ I ⊗ S: if a ⊗ s ∈ I ⊗ S, then a ⊗ 1 ∈ J by
definition of I, so also a⊗ s = (a⊗ 1)(1⊗ s) ∈ J . In what follows we show that I ⊗ S is not a
proper subset of J .

First, consider the natural map

A⊗ S → (A/I)⊗ S

a⊗ s 7→ a⊗ s.

We show that its kernel equals I⊗S. First note that any element i⊗s ∈ I⊗S is indeed mapped
to 0⊗s = 0. For showing the reverse inclusion, let {xi} be a k-basis for I and extend it to a basis
{xi} ∪ {yi} for A. Then {yi} is a basis for A/I. Now, let a⊗ s = (

∑
aixi +

∑
bjyj)⊗ s be any

element in the kernel, so a ⊗ s = 0. By proposition 1.28, then either s = 0, which gives us the
trivial element in A⊗ S, or a =

∑
bjyi = 0, in which case bj = 0 for all j. Hence, a⊗ s ∈ I ⊗ S.

Since the map is surjective, the homomorphism theorem gives (A⊗S)/(I ⊗S) ∼= (A/I)⊗S. We
now look at the natural map

J → (A⊗ S)/(I ⊗ S) ∼= (A/I)⊗ S

a⊗ b 7→ a⊗ b.

Suppose J would contain I ⊗ S properly. Then the above map is nonzero, so the image of J
under this map is a nonzero ideal of (A/I) ⊗ S. Lemma 2.3 then gives im(J) ∩ i(A/I) ̸= (0).
But this contradicts with our choice of I: if we take a nonzero a ⊗ 1 ∈ i(A/I), then a /∈ I, so
a ⊗ 1 /∈ J and a ⊗ 1 /∈ im(J). So the intersection is in fact trivial, so this contradiction implies
J = I ⊗ S, which finishes the proof.

Proposition 2.5.
If A and B are central simple algebras, then A⊗B is central and simple as well.

Proof. The tensor product A ⊗ B being simple follows from the previous theorem. To prove
that it is central, we show Z(A ⊗ B) = Z(A) ⊗ Z(B), using the argument from [40, Tag 0749].
To show Z(A) ⊗ Z(B) ⊆ Z(A ⊗ B) is straightforward: for any r ∈ Z(A) and s ∈ Z(B), r ⊗ s
commutes with any element a⊗ b ∈ A⊗B.

25

https://stacks.math.columbia.edu/tag/0749


For the converse, note that every element in r⊗ s ∈ Z(A⊗B) in particular commutes with any
a⊗ 1 ∈ A⊗B. This gives

ra⊗ s = (r ⊗ s)(a⊗ 1) = (a⊗ 1)(r ⊗ s) = ar ⊗ s

so (ra − ar) ⊗ s = 0. By proposition 1.28 this implies ra = ar, so Z(A ⊗ B) ⊆ Z(A) ⊗ B.
Similarly, Z(A⊗B) ⊆ A⊗ Z(B). Combining this, we find

Z(A⊗B) ⊆ (Z(A)⊗B) ∩ (A⊗ Z(B)) = Z(A)⊗ Z(B).

Proposition 2.6.
Let A be a finite dimensional central simple algebra with dimk(A) = n. Then A⊗A◦ ∼=Mn(k).

Proof. Inspired by the proofs in [12, Cor 1.17] and [40, Tag 074I]
Consider the following homomorphism of k-algebras:

A⊗A◦ → Endk(A)

a⊗ b 7→ (x 7→ axb)

By proposition 2.5 and recalling proposition 1.39, A ⊗ A◦ is simple. So the kernel of this map
is either (0) or A ⊗ A◦. The map is nonzero, so the former must be true, which means the
map is injective. Since Endk(A) ∼= Mn(k) we have dim(Endk(A)) = dim(Mn(k)) = n2. This
equals the dimension of A ⊗ A◦, so we conclude the map is also surjective, and hence provides
an isomorphism between A⊗A◦ and Endk(A) ∼=Mn(k).

2.2 Wedderburn’s theorems

In this section, we prove two theorems by Wedderburn. We start with the one known as
Wedderburn’s little theorem [24], a powerful result that tells us that finite division rings are
fields, and which we use on many occasions later on. Wedderburn’s main theorem [25] states
that any finite dimensional simple k-algebra is isomorphic to the matrix algebra over some
division algebra over k. To prove this second theorem, we first shortly look at composition series
and the Jordan-Hölder theorem, and prove lemmas by Schur and Rieffel.

Theorem 2.7. (Wedderburn’s little theorem) [12, Thm 3.18]
Every finite division ring is commutative.

Proof. We work out in detail the proof given in [22, Page 214, 215]
Let D be a finite division ring and define F := Z(D). Then F is a finite field since Z(D) forms
a subring of the division ring D and all elements in the center commute. Let q = |F |. Since F
contains 0 and 1, q is a prime power ≥ 2. Seeing D as a finite vector space over F (note that
F ⊂ D is a finite field extension), denote n = dimF (D). Once we show n = 1, it follows that D
is a field.

For now assume n > 1. Note that D× = D \ {0} is a finite group of size qn − 1 with subgroup
Z(D×) = Z(D \ {0}) = F \ {0} = F× of size q − 1. We determine the class equation [36, Page
104] of D×. The class equation is defined as
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|D×| = |Z(D×)|+
∑
a

[D× : CD×(a)]

where one a is chosen from each conjugacy class of D× that contains more than one element. Let
a ∈ D× be a representative of such a non-singleton conjugacy class. Then a /∈ Z(D×), because
otherwise its conjugacy class contains only a. The centralizer CD×(a) = {g ∈ D× : ga = ag} is
a subgroup of D×. For all g ∈ CD×(a), we have g−1 ∈ CD×(a), so comparing definitions we see

(CD(a))
× = {g ∈ CD(a) : g

−1 exists and g−1 ∈ CD(a)} = CD×(a).

Since CD(a) is a (proper, since a /∈ Z(D×)) subgroup of D, by Lagrange’s theorem, |CD(a)| = qra

for some 1 ≤ ra < n dividing n. So |CD×(a)| = qra − 1. Then the class equation becomes

qn − 1 = q − 1 +
∑
a

qn − 1

qra − 1
.

We have xra − 1 | xn− 1 in Z[X] since ra | n. The nth cyclotomic polynomial Φn(x) also divides
xn − 1. Since Φn(x) is irreducible, xra − 1 ∤ Φn(x), and by definition of Φn(x), Φn(x) ∤ xra − 1
since ra < n. So we obtain the following factorization in Z[x]:

xn − 1 = Φn(x)(x
ra − 1)h(x) for some h(x) ∈ Z[x].

Setting x = q gives (qn − 1)/(qra − 1) = Φn(q)h(q) ∈ Z, so for each a, (qn − 1)/(qra − 1) is
an integer divisible by Φn(q). Then it follows from the class equation that Φn(q) | q − 1. This
implies

q − 1 ≥ |Φn(q)| = |
∏

q − ζin| =
∏

|q − ζin|

where the ζin are the primitive nth roots of unity. But since n > 1 and q ≥ 2, |q− ζin| > q−1 ≥ 1
for each ζin, so this is a contradiction.

Definition 2.8. (Composition series) [11]
Let A be a k-algebra and V an A-module. A composition series of V is a finite chain of
A-submodules

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

such that each quotient module Vi/Vi−1 is simple.

Theorem 2.9. (Jordan-Hölder Theorem)
Let A be a k-algebra. Suppose an A-module V has two composition series

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

0 =W0 ⊂W1 ⊂ · · · ⊂Wm = V.

Then n = m, and there is a permutation σ of {1, . . . , n} such that Vi/Vi−1
∼= Wσ(i)/Wσ(i)−1 for

each i = 1, . . . , n.

Proof. A proof can be found in [11, Thm 3.11].

Example 2.10. Inspired by [11, Ex 3.7 (4)]
Let D be a division algebra over k. In this example we find a composition series for Mn(D).
Define the subring

Ir = {(mij) ∈Mn(D) : mij = 0 for all j ̸= r}

of Mn(D) for each 1 ≤ r ≤ n. We first show that each Ir is a simple left Mn(D)-submodule of
the module Mn(D).
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Observe that each Ir is a left ideal of Mn(D). Also, each Ir does not contain a nonzero proper
(left) subideal:
Suppose that J ⊆ Ir is a nonzero left ideal. Then it contains a matrix M = (mij) with at least
one mir ̸= 0, so since D is a division ring, there exists m−1

ir ∈ D. Note that EirM = mirEir

since all columns of M are zero except for the rth column. So Eir = (mir)
−1EirM ∈ J since J

is a left ideal. Then also Ejr = EjiEir ∈ J for any 1 ≤ j ≤ n. Since every element of Ir is a
D-linear combination of all Ejr, we find Ir ⊆ J .

So Ir as a left Mn(D)-module is simple. Since Mn(D) =
⊕
r
Ir, we have a chain of submodules:

0 ⊂ I1 ⊂ I1 ⊕ I2 ⊂ · · · ⊂ I1 ⊕ · · · ⊕ In =Mn(D). (2)

By the second isomorphism theorem for modules we have for each quotient module the relation

(I1 ⊕ · · · ⊕ Ik)/(I1 ⊕ · · · ⊕ Ik−1) ∼= Ik/Ik ∩ (I1 ⊕ · · · ⊕ Ik−1) ∼= Ik/{0} ∼= Ik.

So each quotient module is simple, and so, the above chain is a composition series for Mn(D).

In the next example, we determine all simple left submodules of Mn(D), a necessary result for
the proof of Wedderburn’s theorem.

Example 2.11. We work out in detail the argument given in [17, Ex 2.1.4]
Let D be a division algebra over k. In the previous example we showed that each Ir is a
simple left Mn(D)-submodule of Mn(D). This yielded a composition series (equation (2)) for
Mn(D) where each quotient module is isomorphic to one of the Ir. To show that all simple left
Mn(D)-submodules of the module Mn(D) are isomorphic to some Ir, we apply Jordan-Hölder’s
theorem to this series and the one we construct below.

Suppose M is a simple left Mn(D)-submodule. Then it is isomorphic to a quotient Mn(D)/m
where m is a maximal ideal by proposition 1.16. Take a series of Mn(D) containing m. By [1,
Prop 6.7], this series can be refined (i.e., adding extra submodules in between) to a composition
series. Since m is maximal, it appears as the largest proper submodule in the refined series:

0 ⊂ · · · ⊂ m ⊂Mn(D).

By Jordan-Hölder’s theorem, M ∼=Mn(D)/m ∼= Ir for some 1 ≤ r ≤ n.

One final example about the matrix algebra over a division algebra:

Example 2.12.
By part (c) of remark 1.8, we have Endk(V ) ∼=Mn(k) for a field k and an n-dimensional vector
space V over k. Now consider Dn as a left vector space over a division ring D. Then we can also
define an isomorphism EndD(D

n) ∼=Mn(D):
For any matrix A ∈Mn(D), the map

Dn → Dn, v 7→ (vTA)T

is D-linear and completely determined by A. Conversely, any map in EndD(D
n) can be described

in this way for a matrix in Mn(D).
The same holds for any left vector space M over D of dimension n.

To prove Wedderburn’s main theorem, we require two more lemmas. First, we look at a simplified
version of Schur’s lemma. The original formulation and proof can be found in [37].
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Lemma 2.13. (Schur’s Lemma) [17, Lem 2.1.5]
For a simple module M over a k-algebra A, EndA(M) is a division algebra.

Proof. For any f ∈ EndA(M), ker(f) is either (0) or M since M is simple. So, if f is nonzero,
it is injective, in which case it is also surjective since it maps from M to itself. So any nonzero
element in EndA(M) has an inverse, and hence, EndA(M) is a division algebra.

Lemma 2.14. (Rieffel) [34]
Let R be a simple ring, let M be any nonzero left ideal in R, and view M as a left R-module.
Then R coincides with the bicommutant of M . That is, if R′ := EndR(M), then R ∼= EndR′(M).

Proof. We closely follow the proof presented by Rieffel himself in [34]
Define the natural homomorphism from R to R′′ := EndR′(M)

L : R→ R′′

r 7→ Lr : m 7→ rm.

Note that the maps Lr are indeed in R′′: for any f ∈ EndR(M) and m ∈M , we have Lr(f(m)) =
r · f(m) = f(rm) = f ◦ Lr(m).

We show that L is a bijection. Since L maps 1R to 1R′′ it is a nonzero map, so by simplicity of
R, it has trivial kernel and is hence injective.

To prove surjectivity, we first claim that L(M) is a left ideal in R′′:
Let ϕ ∈ R′′, Lm ∈ L(M) and x ∈ M be arbitrary. We show ϕ ◦ Lm ∈ L(M). Defining
λx ∈ EndR(M) to denote right multiplication by x, we have

(ϕ ◦ Lm)(x) = ϕ(mx) = ϕ(λx ◦m) = λx ◦ ϕ(m) = ϕ(m)x

using that ϕ is EndR(M)-linear. So ϕ ◦ Lm = Lϕ(m) ∈ L(M).

Now, since the product ideal MR is a two-sided ideal, by simplicity of R we have MR = R.
Then L(R) = L(MR) = L(M)L(R). The last equality can be derived using the definition of the
product ideal: An arbitrary element

∑
Lmi ◦ Lrj in L(M)L(R) maps x ∈M to

(
∑

Lmi ◦ Lrj )(x) =
∑

(Lmi ◦ Lrj )(x) =
∑

mirjx

so this equals the map L∑
mirj in L(MR).

Using that L(M) is a left ideal in R′′, it follows that L(R) is a left ideal in R′′. Since 1R′′ ∈ L(R),
we have L(R) = R, concluding the proof.

Theorem 2.15. (Wedderburn’s Theorem) [17, Thm 2.1.3]
For a finite dimensional simple k-algebra A, there exists n ∈ Z>0 and a division algebra D over
k, such that A ∼=Mn(D). This D is unique up to isomorphism.

Proof. We work out in detail the proof given in [17, Thm 2.1.3]
Since A is a finite dimensional vector space over k, it contains a subspace of dimension 1, which
can also be seen as a cyclic k-module. We call this module M . Since M is a nonzero subspace
of minimal dimension, and the submodules of A coincide with its subspaces, M is a simple
submodule. By Schur’s lemma, D = EndA(M) is a division algebra. M is in particular a left
submodule of A and since A is a ring, its submodules coincide with its ideals, so M is also a left
ideal of A. This allows us to apply Rieffel’s lemma, which gives A ∼= EndD(M).
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Now note that M also forms a left D-module via the map

EndA(M)×M →M

(f,m) 7→ f(m).

So we can also view M as a left vector space over D, since D is a division algebra. M being
finite dimensional over k, it is also finite dimensional over D. Denoting n = dimD(M), we have
EndD(M) ∼=Mn(D) as discussed in example 2.12.

To show D is unique up to isomorphism, suppose D′ is another division ring such that A ∼=
Mm(D′) for some m ∈ Z>0. We claim that our submodule M satisfies Dn ∼=M ∼= D′m. Namely,
by example 2.11, M is isomorphic to some Ir ⊂Mn(D), which is isomorphic to Dn, and similarly
for D′.

Next, using that A ∼=Mn(D) we can show D ∼= EndA(D
n):

Let f ∈ EndA(D
n) be arbitrary and let v = (v1, . . . , vn) ∈ Dn. Write w = (w1, . . . , wn) = f(v).

Since f has to be A-linear, we have f(Mv) =Mf(v) =Mw for any matrix M ∈Mn(D). Taking
M to be the elementary matrix Eii gives f(0, . . . , vi, . . . , 0) = (0, . . . , wi . . . , 0). Since f is linear,
wi = αvi + β for some α, β ∈ D, but since in particular f(0) = 0, β must be zero. Hence,
f(v) = (α1v1, . . . , αnvn) for some αi ∈ D. Taking M to be Eij with distinct i and j gives that

(0, . . . , αjvj , . . . , 0) = Eijf(v) = f(Eijv) = (0, . . . , αivj , . . . , 0)

where the nonzero coordinate is in the ith position. This gives αi = αj since D is a division ring.
So f(v) = αv and can hence be associated with an element in D. Conversely, for any α ∈ D, the
map v 7→ αv is indeed an element of EndA(Dn).

Using this result for both D and D′, we finally find

D ∼= EndA(D
n) ∼= EndA(M) ∼= EndA(D

′m) ∼= D′.
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3 Quaternion algebras

3.1 Definition and properties

In this section we study the basics of quaternion algebras, which provide concrete examples
of certain elements of Brauer groups, as we will see in the next chapter. The definitions and
examples in this chapter are taken from [17, Chapter 1].

Throughout this chapter, k is assumed to be a field of characteristic unequal to 2.

Definition 3.1. (Quaternion algebras)
For a, b ∈ k×, the quaternion algebra (a, b) is defined as the 4-dimensional k-algebra with basis
1, i, j, ij and multiplication according to the rules

i2 = a, j2 = b, ij = −ji.

Given an element q = x+ yi+ zj +wij ∈ (a, b) (here, x, y, z, w are in k), we define its conjugate
by q = x− yi− zj − wij and its norm by N(q) = qq = x2 − ay2 − bz2 + abw2 ∈ k.

One can check that for any q1, q2 ∈ (a, b) we have N(q1q2) = N(q1)N(q2). With this we can
show the following property:

Proposition 3.2. [17, Lem 1.1.3]
An element q ∈ (a, b) is invertible if and only if N(q) ̸= 0. It follows that (a, b) is a division
algebra if and only if the norm map N : (a, b) → k does not vanish outside of 0.

Proof. For an invertible element q with inverse q−1, we haveN(q)N(q−1) = N(qq−1) = N(1) = 1,
so N(q) ̸= 0. Conversely, if N(q) ̸= 0, defining q−1 = q/N(q) ∈ (a, b) yields an inverse for q.

Example 3.3. (Hamilton’s quaternions)
If k = R and a = b = −1, we obtain Hamilton’s quaternions, which are denoted by H. Since the
norm map N(q) = x2 + y2 + z2 + w2 is zero if and only if q = 0, H is a division algebra by the
previous result.

An element q ∈ (a, b) is called a pure quaternion if q2 ∈ k but q /∈ k. Such elements are precisely
the ones of the form yi+ zj +wij. So any element q ∈ (a, b) can be written uniquely as q1 + q2
with q1 ∈ k and q2 a pure quaternion. With this notation, q = q1 − q2 and N(q) = q21 − q22. So
conjugation and the norm are independent of the choice of basis [17, Rmk 1.1.4].

Example 3.4. [17, Rmk 1.1.5]
The matrix algebra M2(k) is a quaternion algebra isomorphic to (1, b). Namely, the matrices

Id =

[
1 0
0 1

]
, I =

[
1 0
0 −1

]
, J =

[
0 b
1 0

]
, IJ =

[
0 b
−1 b

]
form a k-basis for M2(k) and satisfy I2 = Id, J2 = bId, IJ = −JI. So identifying i, j of (1, b)
with I, J respectively, yields an isomorphism.

Identifying i with ui and j with vj for any u, v ∈ k× yields another isomorphism of quaternion
algebras:

Proposition 3.5. [17, Rmk 1.1.2]
For all u, v ∈ k×, (a, b) ∼= (u2a, v2b).
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So whenever a or b is divisible by a square in k×, we can “take the square out”.

Corollary 3.6.
For any quaternion algebra (a, b), we have (a, b) ∼= (b, a).

Proof. Based on [17, Rmk 1.1.2]
Mapping i 7→ abj and j 7→ abi gives an isomorphism (a, b) ∼= (a2b3, a3b2). Taking u = v = ab in
the previous proposition yields (a2b3, a3b2) ∼= (b, a).

Definition 3.7. (Split)
A quaternion algebra is called split if it is isomorphic to M2(k) as k-algebra.

It is clear from the above definition that all split quaternion algebras are isomorphic. Over the
field R, the non-split quaternion algebras are also isomorphic, as is explained after proposition
4.15. However, in general this is not true. For example, over the field Q, there are infinitely
many non-isomorphic quaternion algebras [7, Page 10].

Proposition 3.8. [17, Prop 1.1.7]
For a quaternion algebra (a, b) the following statements are equivalent:

(1) (a, b) is split;

(2) (a, b) is not a division algebra;

(3) The norm map N : (a, b) → k× has a nontrivial zero;

(4) The element b is a norm from the field extension k(
√
a)/k.

Proof. We work out in detail the proof given in [17, Prop 1.1.7]
From (1) to (2) is clear as there are nonsingular matrices in M2(k). From (2) to (3) is part of
lemma 3.2.

For showing (3) to (4), recall that the norm map k(
√
a) → k is given by x + y

√
a 7→ x2 − ay2.

Denoting this map by Nk(
√
a) we have to show b ∈ im

(
Nk(

√
a)

)
.

In the case that a = α2 is a square in k, we can take x = (b+1)/2 and y = (1− b)/2α such that

Nk(
√
a)(x+ y

√
a) = x2 − ay2 = (x+ αy)(x− αy) = 1b = b.

Assuming a is not a square, take a nonzero q = x+ yi+ zj+wij ∈ (a, b) with zero norm. Then,
0 = N(q) = x2 − ay2 − bz2 + abw2 gives (z2 − aw2)b = x2 − ay2, so

Nk(
√
a)(z + w

√
a)b = Nk(

√
a)(x+ y

√
a).

Note that Nk(
√
a)(z + w

√
a) = z2 − aw2 ̸= 0, for otherwise a is a square: if w ̸= 0 we have

a = (z/w)2; if w = 0 then z = 0 so y ̸= 0 (otherwise N(q) = x2 ̸= 0) which gives a = (x/y)2.

So since Nk(
√
a)(z + w

√
a) ̸= 0 we find

b =
Nk(

√
a)(x+ y

√
a)

Nk(
√
a)(z + w

√
a)

= Nk(
√
a)(x+ y

√
a) ·Nk(

√
a)((z + w

√
a)−1)

which is a norm by multiplicativity of Nk(
√
a).
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To show (1) from (4), in the case that a is a square we have (a, b) ∼= (1, b) by proposition 3.5,
and hence (a, b) ∼= M2(k) by example 3.4. Assuming a is not a square, we have the norm map
Nk(

√
a) as defined above. If b ∈ im

(
Nk(

√
a)

)
, then so is b−1, so we can find r, s ∈ k such that

b−1 = r2 − as2. Defining u = rj + sij and v = (1 + a)i+ (1− a)ui we find

u2 = r2j2 + rs(−ij2 + ij2) + s2(ij)2 = r2b− abs2 = b(r2 − as2) = bb−1 = 1,

ui = rji+ siji = −rij − si2j = −iu,

uv = (1 + a)ui+ (1− a)u2i = −(1 + a)iu+ (1− a)i = −vu,

v2 = (1 + a)2i2 + (1 + a)(1− a)(−ui2 + ui2) + (1− a)2(ui)2 = (1 + a)2a− (1− a)2a = 4a2.

So mapping i 7→ u, j 7→ v, gives an isomorphism (a, b) ∼= (1, 4a2), after which example 3.4 yields
the isomorphism with M2(k).

With this we can prove a nice property of quaternion algebras relevant to our discussion of Brauer
groups.

Proposition 3.9.
A quaternion algebra (a, b) is central and simple, and its opposite algebra is equal to itself.

Proof. In the case that (a, b) is split, it is clearly central and simple by example 1.41. If it is not
split, it is a division algebra by the previous result, so it is simple as well.

We show that any quaternion algebra (a, b) is central:
Let x + yi + zj + wij ∈ Z((a, b)). Then (x + yi + zj + wij)i = i(x + yi + zj + wij) implies
zji + wiji = zij + wi2j. Rewriting gives 2waj + 2zij = 0 and since {1, i, j, ij} is a k-basis,
we must have z = w = 0. Similarly, (x + yi + zj + wij)j = j(x + yi + zj + wij) gives y = 0.
So Z((a, b)) ⊆ k and since any element in k commutes with all quaternions, we obtain equality.
Hence, (a, b) is central.

Finally, to prove that (a, b)◦ ∼= (a, b), recall that the opposite algebra (a, b)◦ only differs from
(a, b) in the order of multiplication: in (a, b)◦, the multiplication i · j is defined as the ordinary
multiplication ji from (a, b). So i · j := ji = −ij =: −j · i. Hence, with · as multiplication
operator, (a, b)◦ has the same structure as (a, b).

Another two interesting results, of which the proofs can be found in [17]:

Proposition 3.10. [17, Prop 1.2.1]
A 4-dimensional division algebra D is isomorphic to a quaternion algebra.

Proposition 3.11. [17, Lem 1.4.4]
If (a, b) is a quaternion algebra and c ∈ k× is a norm from the field extension k(

√
a)/k, then

(a, b) ∼= (a, bc).

3.2 Relation to conics

A nice characterization of quaternion algebras is by its associated conic. From this definition the
utility of quaternion algebras in algebraic geometry becomes clear when we look at proposition
3.13 and a theorem by Witt.
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Definition 3.12. (Associated conic)
For the quaternion algebra (a, b), we define its associated conic C(a, b) by the projective plane
curve defined by ax2 + by2 = z2.

Proposition 3.13. [17, Prop 1.3.2]
The quaternion algebra (a, b) is split if and only if the associated conic C(a, b) has a k-rational
point.

Proof. Based on the proof given in [17, Prop 1.3.2]
Suppose (x0 : y0 : z0) is a k-rational point on C(a, b), so ax20 + by20 = z20 . If y0 ̸= 0, this gives
b = (z0/y0)

2−a(x0/y0)2, so (4) of proposition 3.8 is satisfied, and hence, (a, b) is split. If y0 = 0,
then x0 must be nonzero, so we have a = (z0/x0)

2 which lies in im
(
Nk(

√
b)

)
. In this case, (4) is

again satisfied by symmetry in a and b.
For the converse direction, if (a, b) is split, (4) of proposition 3.8 guarantees the existence of
r, s ∈ k such that b = r2 − as2. We conclude that (s : 1 : r) is a k-rational point on C(a, b).

Note that conics always have a rational point over a degree 2 extension of the field: the conic
ax2 + by2 = z2 has (1 : 0 :

√
a) as a k(

√
a)-rational point. It follows that any quaternion algebra

becomes split over a degree 2 extension of the field.

The following theorem was originally proven by Witt in [46].

Theorem 3.14. (Witt) [17, Thm 1.4.2]
Let Q1 = (a1, b1) and Q2 = (a2, b2) be quaternion algebras, and let Ci = C(ai, bi) be the associated
conics. The algebras Q1 and Q2 are isomorphic over k if and only if the function fields k(C1)
and k(C2) are isomorphic over k.

By proposition 1.63, this theorem gives an equivalence between quaternion algebras and their
associated conics. In particular, it tells us that all conics with k-rational points are isomorphic:
If C1 and C2 are conics with a k-rational point, then their associated quaternion algebras Q1

and Q2 are split, so Q1
∼= M2(k) ∼= Q2. Hence, by Witt’s theorem, C1 and C2 are isomorphic.

Recall that non-split quaternion algebras are not necessarily isomorphic, so this does not hold
for conics without a k-rational point.

3.3 Tensor products of quaternion algebras

We present a few statements that are useful for classifying elements of Brauer groups in the next
chapter.

Proposition 3.15. [17, Lem 1.5.2]
For any a, b, b′ ∈ k× we have

(a, b)⊗ (a, b′) ∼= (a, bb′)⊗M2(k).

Proof. A proof can be found in [17, Lem 1.5.2].

Proposition 3.16. [17, Cor 1.5.3]
For a quaternion algebra (a, b) we have (a, b)⊗ (a, b) ∼=M4(k).
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Proof. This follows from the previous proposition, together with propositions 3.5 and 2.1, and
example 3.4:

(a, b)⊗ (a, b) ∼= (a, b2)⊗M2(k) ∼= (a, 1)⊗M2(k) ∼=M2(k)⊗M2(k) ∼=M4(k).

We say that a finite dimensional division algebra D over a field k has period 2 when there exists
an n ∈ Z>0 such that D ⊗ D ∼= Mn(k). The previous result shows quaternion algebras satisfy
this definition. For central division algebras of period 2, the following theorem by Merkurjev
[27] relates them to quaternion algebras. We will see in the next chapter that this provides a
classification of the order 2 elements of a Brauer group.

Theorem 3.17. (Merkurjev) [17, Thm 1.5.8]
Let D be a central division algebra of period 2 over a field k. There exist positive integers
m1,m2, n and quaternion algberas Q1, . . . , Qn over k such that

D ⊗Mm1(k)
∼= Q1 ⊗Q2 ⊗ · · · ⊗Qn ⊗Mm2(k).
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4 Brauer groups of fields

4.1 Definition of the Brauer group of a field

With all preliminary theory in place, we are ready to define the Brauer group of a field. We first
define the elements of such a group and prove a few properties to make sure the group law is
well defined. Up until definition 4.5, we follow the theory as presented by Farb and Dennis in
[12, Chapter 4]5.

Definition 4.1.
Let A and B be finite dimensional central simple algebras over a field k. They are called similar
if there exist positive integers m and n such that A⊗Mn(k) ∼= B ⊗Mm(k).
In this case we write A ∼ B.

Proposition 4.2.
Similarity ∼ defines an equivalence relation.

Proof. Reflexivity and symmetry are trivial. For proving transitivity, let A,B, and C be finite
dimensional central simple algebras such that A ∼ B and B ∼ C. Then there exist integers
m,n, p, q such that

A⊗Mn(k) ∼= B ⊗Mm(k), B ⊗Mp(k) ∼= C ⊗Mq(k).

This leads to the following sequence of isomorphisms:

A⊗Mmp(k) ∼= A⊗Mm(k)⊗Mp(k)
∼= B ⊗Mn(k)⊗Mp(k)
∼= B ⊗Mp(k)⊗Mn(k)
∼= C ⊗Mq(k)⊗Mn(k)
∼= C ⊗Mqn(k)

where we use (ii) of proposition 2.1 and commutativity of the tensor product. Hence, A ∼ C,
which proves transitivity.

The term central simple algebra will sometimes be abbreviated by CSA. The equivalence class of
a finite dimensional CSA A is denoted by [A].

Recalling our earlier observation in equation 1, we see that [k] = [Mn(k)] for every n ∈ Z>0.

Proposition 4.3. [12, Lem 4.2]
If A1 ∼ A2 and B1 ∼ B2 for finite dimensional CSAs Ai and Bi, then A1 ⊗B1 ∼ A2 ⊗B2.

Proof. A different proof using an equivalent definition of similarity can be found in [12, Lem 4.2]
Take integers m,n, p, q such that

A1 ⊗Mn(k) ∼= A2 ⊗Mm(k), B1 ⊗Mp(k) ∼= B2 ⊗Mq(k).

Again using commutativity of tensor products and (ii) of proposition 2.1, we obtain:

(A1 ⊗B1)⊗Mnp(k) ∼= A1 ⊗Mn(k)⊗B1 ⊗Mp(k)
∼= A2 ⊗Mm(k)⊗B2 ⊗Mq(k)
∼= (A2 ⊗B2)⊗Mmq(k).

5This book is a nice reference for studying Brauer groups of fields from scratch. The authors include necessary
background material theory on modules, tensor products, and algebras, before introducing Brauer groups. It has
been a reliable first resource for the author of this thesis.
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Theorem 4.4. [12, Prop 4.3]
The set of equivalence classes of finite dimensional central simple k-algebras forms an abelian
group with group law [A] • [B] := [A⊗B] and the class [k] as identity element.

Proof. Based on the proof given in [12, Prop 4.3]
By proposition 4.3, the group law is well-defined. The tensor product of finite dimensional CSAs
is itself a finite dimensional CSA by theorem 1.27 and proposition 2.5, so the set is closed under
the group law. Associativity and commutativity of the group law follows from the respective
properties of the tensor product. The class [k] indeed acts as identity since for any k-algebra A
we have A⊗k ∼= A by proposition 1.30. Recalling from proposition 2.6 that A⊗A◦ ∼=Mn(k) for
n = dimk(A), and using the observation [k] = [Mn(k)] for any n, we conclude that every element
[A] has an inverse: [A] • [A◦] = [A⊗A◦] = [Mn(k)] = [k].

Definition 4.5. (Brauer group of a field)
The group of equivalence classes of finite dimensional central simple k-algebras, as defined in the
statement of theorem 4.4, is called the Brauer group of the field k and is denoted by Br(k).

Remark 4.6.
By Wedderburn’s theorem, every central simple algebra A over k is isomorphic to Mn(D) ∼=
D⊗Mn(k) for some division algebra D and some n. Since A is central and Z(D) ∼= Z(Mn(D)),
D is central as well. So we observe that [D] = [A] is an element of Br(k). Moreover, since for
every CSA A such a D exists, we find that every element of the Brauer group is the class of some
central division algebra over k.

Remark 4.7.
To see the connection of Brauer groups with quaternion algebras, recall from the previous chapter
that any quaternion algebra (a, b) over a field k with char(k) ̸= 2 is a central simple algebra, that
it equals its opposite algebra, and that (a, b)⊗(a, b) ∼=M4(k). In other words, [(a, b)] is an element
of Br(k) of order at most 2 (the order is 1 if (a, b) is split). We also have [(a, b)]•[(a, b′)] = [(a, bb′)]
for any a, b, b′ ∈ k× by proposition 3.15.

By proposition 3.10, every element of Br(k) (for a field k of char(k) ̸= 2) that is the class of a
four-dimensional CSA, is equal to the class of some quaternion algebra, and hence of order 2.
To top it off, using Merkurjev’s theorem in the light of remark 4.6, we have that for any class
[A] ∈ Br(k) of order 2, there exist quaternion algebras Q1, . . . , Qn such that [A] = [Q1⊗· · ·⊗Qn].
So every order 2 element in the Brauer group can be expressed as the class of a tensor product
of quaternion algebras.

In the next section we determine the Brauer groups for specific fields, using the theory from
previous chapters.

4.2 Examples of Brauer groups of fields

Proposition 4.8. [12, Chapter 4, Ex 1]
For any finite field Fq, Br(Fq) = 0. That is, its Brauer group is the trivial group, containing only
the identity element [Fq].

Proof. Let A be any finite dimensional CSA over Fq. As a finite vector space over a finite field,
A is finite itself. By Wedderburn’s theorem there exists a unique division algebra D over k such
that A ∼= Mn(D) for some n. We have Z(A) = Z(Mn(D)) ∼= Z(D). Since A is central, D is
central as well, so Z(D) ∼= Fq.
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Also, since A is finite, D has to be finite, so by Wedderburn’s little theorem, D is in particular
a field. But since the center of a field is the field itself, it follows that D ∼= Fq. So we have
[A] = [Fq]. Hence the Brauer group is trivial.

Proposition 4.9. [12, Chapter 4, Ex 2]
For any algebraically closed field k, Br(k) = 0.

Proof. We work out in detail the proof given in [17, Cor 2.1.7]
We show there are no finite dimensional division algebras over k except for k itself. Then
Wedderburn’s theorem yields that for any CSA A over k, we must have A ∼=Mn(k) for some n.
So [A] = [k], and hence, the Brauer group is trivial.

Assume D is a finite dimensional division algebra over k not equal to the homomorphic image
ϕ(k) = {x · 1 : x ∈ k} of k in D. Note that this image is still an algebraically closed field. For
ease of notation we denote this field by K.

Take d ∈ D \ K. Since D is finite dimensional over k, and hence also over K, the powers
1, d, d2, · · · , ddim(D) are certainly linearly dependent over K. Let m be the smallest integer such
that 1, d, d2, · · · , dm are linearly dependent. Then there exists a polynomial f ∈ K[x] of degree
m such that f(d) = 0. Since its coefficients are in a field, we may assume f to be monic. Note
that f is irreducible: If f = gh for g, h ∈ K[x] non-units, then f(d) = 0 implies either g(d) = 0
or h(d) = 0 since D contains no zero divisors. But this contradicts the minimality of the degree
of m.

So d is algebraic over K with minimal polynomial f . Then K[x]/(f) ∼= K(d), and since K is
algebraically closed, K(d) = K. Considering the map

ψ : K ∼= K[x]/(f) → D

x 7→ d

which can be checked to be a K-algebra homomorphism, we see that d ∈ im(ψ). But K ⊂ D, so
ψ is an inclusion map, contradicting that d /∈ K.

In fact, the above two examples fall into a larger category of fields that have trivial Brauer group.
These are so-called C1-fields:

Definition 4.10. (C1-field) [17, Def 6.2.1]
A field k is called C1 if every homogeneous polynomial f ∈ k[x1, . . . , xn] with deg(f) < n has a
nontrivial zero in kn.

These fields are also known as quasi-algebraically closed fields.

Theorem 4.11.
For a C1-field k, Br(k) = 0.

Proof. A C1-field has no nontrivial finite dimensional division algebras over them [23, Page 374],
so as shown in the proof of proposition 4.9, its Brauer group is trivial.

Since algebraically closed fields are quasi-algebraically closed, proposition 4.9 also follows from
this theorem. Similarly for finite fields, which are C1 as showed by Chevalley and Warning [5].

Theorem 4.12. (Tsen’s theorem) [43]
Let k be an algebraically closed field. The function field of a curve over k is C1.

Proof. A proof can be found in [17, Thm 6.2.8].
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Proposition 4.13.
Let C be a curve over an algebraically closed field and let κ(C) be its function field. Then
Br(κ(C)) = 0.

Proof. This follows from the previous two theorems.

Having seen a few trivial Brauer groups, we now turn our attention to more interesting examples,
the simplest of which is the Brauer group of R. To find this group, we use the following theorem:

Theorem 4.14. (Frobenius theorem) [13]
A finite dimensional division algebra over R is isomorphic to either R, C or H.

Proof. A proof can be found in [12, Thm 3.20].

Proposition 4.15. [12, Chapter 4, Ex 3]
Br(R) = {[R], [H]} ∼= Z/2Z.

Proof. Let A be a finite dimensional CSA over R. By Wedderburn’s theorem and using Frobenius
theorem, A ∼=Mn(D) for a unique D ∈ {R,C,H} and for some n. If A ∼=Mn(R), then [A] = [R]
is the identity element. If A ∼=Mn(C), then Z(A) ∼= Z(C) = C, which contradicts with A being
central, so this is not possible. Finally, if A ∼= Mn(H) ∼= H ⊗Mn(R) this works out nicely: H
is central over R and H◦ = H by proposition 3.9, so H ⊗ H◦ = H ⊗ H ∼= M4(R) by proposition
3.16. Therefore, [A] = [H] is an element in Br(R) of order 2.

Example 4.16. (Conics over R)
As a consequence of proposition 4.15, any quaternion algebra (a, b) over R satisfies either

• [(a, b)] = [R] = [(1, 1)], if it is split; or

• [(a, b)] = [H] = [(−1,−1)], if it is non-split.

In the first case, the associated conic ax2 + by2 = z2 has an R-rational point and is (by our
discussion after Witt’s theorem) isomorphic to the conic x2 + y2 = z2 associated to the split
quaternion algebra (1, 1).

If (a, b) is non-split, its associated conic necessarily has a rational point over a degree 2 extension
of R, which can only be C. It follows that (a, b) is split over C, so (a, b) ∼=M2(C) ∼= (−1,−1) as
C-algebras. By Witt’s theorem, the associated conic is then isomorphic to the conic −x2−y2 = z2

over C. Since both conics have no R-rational points, they are also isomorphic over R.

Note that every conic over R can be given by a diagonal quadratic form, and is thus associated
to some quaternion algebra. The above observation then implies that there are two conics over
R up to isomorphism: those with an R-rational point that are isomorphic to x2 + y2 = z2, and
those that acquire a point over R(i) = C and are isomorphic to the conic −x2 − y2 = z2.

Proposition 4.17. [29, IV.4]
For a non-archimedean local field K, Br(K) ∼= Q/Z.

Proof. A construction of the isomorphism can be found in [29, IV.4], which falls outside the
scope of this paper.

We look at the isomorphism of proposition 4.17 in more detail in the next section.
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4.3 The Hasse invariant map

In this section we introduce and state some properties of the Hasse invariant map, which plays
an important role in the Brauer-Manin obstruction of chapter 7. Throughout this section, we
use some definitions from section 1.3 on algebraic number theory. The new theory is taken from
[4, Chapter 10].

If k is a number field (so a global field) and v a finite place of k, the completion kv is a
non-archimedean local field by proposition 1.81. The canonical isomorphism Br(kv) → Q/Z
of proposition 4.17 is then denoted by invv and called the Hasse invariant map.

We extend the definition of the Hasse invariant map to infinite places:

• If v is a real place of k, then kv ∼= R by theorem 1.77. So Br(kv) ∼= Br(R) ∼= Z/2Z which
is isomorphic to the subgroup {0, 12} of Q/Z. We therefore define invv : Br(kv) → Q/Z as
the injective homomorphism defined by [R] 7→ 0 and [H] 7→ 1

2 .

• If v is a complex place, theorem 1.77 gives kv ∼= C, so Br(C) = 0 by proposition 4.9. In
this case we define invv as the zero map.

Having defined the invariant map at all places v of k, we can state a well-known result of Brauer
groups of number fields:

Theorem 4.18. [4, Thm 10.4.5]
Let k be a number field. The sequence

0 → Br(k) →
⊕
v

Br(kv)

∑
v invv−−−−−→ Q/Z

is exact. In the direct sum, v ranges over all places of k, and Br(k) →
⊕
v
Br(kv) is the diagonal

map induced by the inclusion maps k ↪−→ kv.

In particular, recalling Ostrowski’s theorem, we have the following exact sequence for k = Q:

0 → Br(Q) →
⊕
p≤∞

Br(Qp)

∑
p invp

−−−−−→ Q/Z.

In chapter 7, we compute the value of the invariant map of some quaternion algebras over a local
field. It turns out, as becomes clear when we prove proposition 4.21, that we can do this by
computing a Hilbert symbol instead.

Definition 4.19. (Hilbert symbol)
Let k be a number field and v a place of k. For a, b ∈ k×v we define their Hilbert symbol at v by

(a, b)v =

{
1 if the conic ax2 + by2 = z2 has a kv-rational point;
−1 otherwise.

In our example in chapter 7, we only have to compute the Hilbert symbol at finite places v of
the number field Q. This can be done using the formulas in the following proposition:

Proposition 4.20. [4, Prop 10.1.6 (ii), (iii)]

(i) Let p be an odd prime. Let a, b ∈ Q×
p and write a = pαu and b = pβv with u, v ∈ Z×

p .
Write ϵ(p) = (p− 1)/2. Then

(a, b)p = (−1)αβϵ(p)
(
u

p

)β (v
p

)α

.
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In particular, (u, v)p = 1 if u, v ∈ Z×
p .

(Here,
(
u
p

)
denotes the Legendre symbol

(
u
p

)
, where u is the image of u under the map

of reduction modulo p: Z×
p → F×

p .)

(ii) Let a, b ∈ Q×
2 and write a = 2αu and b = 2βv with u, v ∈ Z×

2 . For x ∈ Z×
2 , write

ϵ(x) = (x− 1)/2mod 2 and ω(x) = (x2 − 1)/8mod 2. Then

(a, b)2 = (−1)ϵ(u)ϵ(v)+αω(v)+βω(u).

Proof. A proof can be found in [39, Chapter III, 1.2, Thm 1].

Finally, the Hilbert symbol can be used to compute the value of the Hasse invariant map of
certain quaternion algebras:

Proposition 4.21. [4, Exc 10.4.4]
Let v be a valuation of Q and a, b ∈ Q×

v . Write (a, b)Qv for the quaternion algebra over Qv. Then

invv[(a, b)Qv ] =

{
0 if (a, b)v = 1;
1
2 if (a, b)v = −1.

Proof. If (a, b) = 1, the conic ax2 + by2 = z2 has a Qv-rational point. Proposition 3.13 gives
that the quaternion algebra (a, b)Qv is split, so isomorphic to M2(Qv). The equivalence class of
(a, b)Qv in Br(Qv) is then equal to the identity, and hence, invv[(a, b)Qv ] = 0.

If (a, b) = −1, we have that the order of [(a, b)Qv ] in Br(Qv) equals 2 (see remark 4.7). Then,

invv[(a, b)Qv ] + invv[(a, b)Qv ] = invv[(a, b)Qv ⊗ (a, b)Qv ] = invv[M4(Qv)] = 0.

Since invv is injective and [(a, b)Qv ] is not the identity, we find invv(a, b)Qv ] =
1
2 .
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5 Brauer groups of rings

In this chapter we extend the definition of the Brauer group of a field to the one of a commutative
ring. Instead of classes of CSAs, the elements of the Brauer group of a ring are the classes of
so-called Azumaya algebras. In the case that the ring is a field, the Azumaya algebras are exactly
the finite dimensional central simple algebras. So as we will see later, the definition of the Brauer
group of a ring indeed coincides with the one of the Brauer group of a field in case the ring is itself
a field. Before we define the group, we introduce the notion of an algebra over a commutative ring
so that we can define Azumaya algebras. Just as in the previous chapter, we find an equivalence
relation between Azumaya algebras over the ring, after which the group structure becomes clear.

Throughout this chapter, a ring R is assumed to be commutative. Proofs are often omitted, as
we are mostly interested in the definition of the Brauer group of a ring to be able to define the
Brauer group of a variety in the next chapter and use this for the Brauer-Manin obstruction
in chapter 7. We mostly follow the theory from [12, Chapter 8], with some additions from [4,
Chapter 11].

5.1 Azumaya algebras

We start this chapter by extending the definitions from section 1.1.3 about algebras over a field to
algebras over a commutative ring. The definition of such an R-algebra depends on the reference.
We assume the one used by Farb and Dennis in [12, Chapter 0], and adapt the formulation to
fit the style of definition 1.31.

Definition 5.1. (Algebra over a commutative ring)
An (associative) algebra over R, also called an R-algebra, is a nonempty set A with the operations
addition, multiplication ∗ and scalar multiplication ·, such that

(A1) A is an R-module under addition and scalar multiplication,

(A2) A is a ring with identity under addition and multiplication,

(A3) For all r ∈ R, a, b ∈ A, we have r · (a ∗ b) = (r · a) ∗ b = a ∗ (r · b).

An R-algebra homomorphism is defined in the same way as definition 1.32 for the case of fields:
it is an R-module homomorphism that is also a ring homomorphism.

Example 5.2.
For an R-algebra A we define the map

ϕA : A⊗R A
◦ → EndR(A)

a⊗ b 7→ (x 7→ axb)

which can be checked to be a homomorphism of R-algebras. Recall that the same map was used
in the proof of proposition 2.6 for the case that R is a field.

One of the conditions for an R-algebra A to be an Azumaya algebra is that this map ϕA is an
isomorphism. Another is that it has to be faithful :

Definition 5.3. (Faithful)
An R-module M is called faithful if the natural map

R→ EndR(M)

r 7→ (m 7→ r ·m)

is injective. Equivalently, for any r, s ∈ R, there exists an m ∈M such that r ·m ̸= s ·m.
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To reduce the amount of adjectives in what follows, we introduce the following terminology:

Definition 5.4. (Faithfully projective)
An R-module A that is finitely generated, projective and faithful, is called faithfully projective.

Definition 5.5. (Azumaya algebra)
An Azumaya algebra over R is an R-algebra that is faithfully projective as R-module and for
which the map ϕA of example 5.2 is an isomorphism.

The following lemma provides a nice way to check if an algebra is Azumaya when it is known
that it is finitely generated and projective.

Lemma 5.6. [4, Lem 11.2.1]
Let A be an R-algebra, and suppose that A is finitely generated and projective as R-module.
Then A is faithful if and only if the natural map R→ A, r 7→ r · 1A is injective.

Another way to check this is given in the following proposition. To understand this statement
in full generality requires some knowledge on localization (the interested reader is referred to [1,
Chapter 3]), but for our purposes it is sufficient to know the definition of reduction in the case
of a local ring:

Definition 5.7. (Reduction) [4]
For a local ring R and an R-algebra A, the reduction of A modulo the maximal ideal m of R is
defined as the algebra A(m) := A⊗R km where km = R/m is the residue field.

Proposition 5.8. [4, Prop 11.2.3]
Let R be a local ring and A an R-algebra that is finitely generated and projective as R-module.
Then A is Azumaya over R if and only if the reduction A(m) modulo the maximal ideal m of R
is central and simple over the residue field km.

To see the relation between Brauer groups of fields and Brauer groups of rings later on, consider
the following statement:

Proposition 5.9.
The finite dimensional CSAs over a field k are precisely the Azumaya algebras over k.

Proof. Let A be a finite dimensional CSA over k. Then, since it has a finite basis, it is finitely
generated and free. By proposition 1.18 it is therefore projective. To show it is faithful we apply
lemma 5.6. Suppose the natural map is not injective, i.e., there exists a nonzero r ∈ k such that
r · 1A = 0. Since k is a field, r−1 exists, and so we arrive at a contradiction via

1A = 1 · 1A = (r−1r) · 1A = r−1 · (r · 1A) = r−1 · 0 = 0.

As shown in the proof of proposition 2.6, ϕA is an isomorphism. So A is Azumaya.

Now assume A is an Azumaya algebra over k. Being finitely generated implies it is finite
dimensional over k. Finally, in the proof of [4, Prop 10.2.14] it is shown that ϕA being an
isomorphism implies that A is central and simple.

The following proposition and consecutive example are useful for determining the identity element
of the Brauer group of R.
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Proposition 5.10. [12, Prop 8.3]
For any faithfully projective R-module P , the endomorphism ring EndR(P ) is an Azumaya
algebra.

Example 5.11.
Consider the R-module Rn. It is finite dimensional and free and therefore, finitely generated
and projective. Defining multiplication component-wise gives it the structure of a ring with
multiplication satisfying (A3) of definition 5.1. So it is an R-algebra. The natural map R→ Rn,
r 7→ r · (1, . . . , 1) is injective, so by lemma 5.6, it is faithful. So we have that EndR(R

n) is an
Azumaya algebra by the above proposition.

Just as with the Brauer group of a field, the equivalence class of Mn(R) ∼= EndR(R
n) acts as the

identity element of the Brauer group of R. In fact, the identity element is the class of EndR(P )
for any faithfully projective module P , as will become clear soon.

To show that the group law for the Brauer group of a ring is well-defined, we require the
isomorphism from the next proposition:

Proposition 5.12. [12, Prop 8.2]
Let P and Q be finitely generated projective R-modules. Then the map

w : EndR(P )⊗ EndR(Q) → EndR(P ⊗Q)

defined by w(f ⊗ g) = f ⊗ g extended linearly is an isomorphism.

5.2 Definition of the Brauer group of a ring

We now turn our attention to the equivalence relation with which we can define the elements of
the Brauer group.

Definition 5.13.
Let A and B be Azumaya algebras over a commutative ring R. They are called equivalent if
there exist faithfully projective R-modules P and Q such that A⊗EndR(P ) ∼= B ⊗EndR(Q) as
R-modules. In this case we write A ∼ B.

It can be checked that ∼ defines an equivalence relation: reflexivity and symmetry are trivial,
and proving transitivity is very similar to the proof of proposition 4.2 using the isomorphism
from proposition 5.12.
We denote the equivalence class of an Azumaya algebra A by [A].

With this definition we observe that [EndR(P )] = [R] for any faithfully projective module P .

Remark 5.14.
To see the relation to similarity as defined in definition 4.1, let A and B be finite dimensional
CSAs over a field k that are similar. Then A and B are Azumaya over k by proposition 5.9 and
there exist integers m,n such that A ⊗Mm(k) ∼= B ⊗Mn(k). Since Mm(k) ∼= Endk(k

m), we
have A⊗ Endk(k

m) ∼= B ⊗ Endk(k
n). So A and B are equivalent Azumaya algebras.

Conversely, if A and B are equivalent Azumaya algebras over a field k, then they are finite
dimensional CSAs over k (again by proposition 5.9) that are similar:
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Let P and Q be faithfully projective modules such that A⊗Endk(P ) ∼= B⊗Endk(Q). Because k
is a field, projective modules are free by proposition 1.19, so since P and Q are finitely generated,
there exist integers m and n such that P ∼= km and Q ∼= kn. Hence,

A⊗Mm(k) ∼= A⊗ Endk(k
m) ∼= B ⊗ Endk(k

n) ∼= B ⊗Mn(k).

So the definitions of similar and equivalent match if R is a field.

As you might expect, the group operation of the Brauer group of R will be induced by the tensor
product again. To show that this operation is well-defined and that the Brauer group is closed,
we require two more properties:

Proposition 5.15.
If A1 ∼ A2 and B1 ∼ B2 for Azumaya algebras Ai and Bi, then A1 ⊗B1 ∼ A2 ⊗B2.

Proof. Take faithfully projective modules M,N,P,Q such that

A1 ⊗ EndR(M) ∼= A2 ⊗ EndR(N), B1 ⊗ EndR(P ) ∼= B2 ⊗ EndR(Q).

Using the isomorphism from proposition 5.12, we obtain:

(A1 ⊗B1)⊗ EndR(M ⊗ P ) ∼= A1 ⊗ EndR(M)⊗B1 ⊗ EndR(P )
∼= A2 ⊗ EndR(N)⊗B2 ⊗ EndR(Q)
∼= (A2 ⊗B2)⊗ EndR(N ⊗Q).

Proposition 5.16. [12, Prop 8.4]
If A and B are Azumaya algebras, then A⊗B is an Azumaya algebra.

Theorem 5.17. [12, Thm 8.5]
The set of equivalence classes of Azumaya R-algebras forms an abelian group with group law
[A] • [B] := [A⊗B] and the class [R] as identity element.

Proof. Based on the proof given in [12, Thm 8.5]
By proposition 5.15, the group law is well-defined and by proposition 5.16, the set is closed under
the group law. Associativity and commutativity of the group law follows from the respective
properties of the tensor product. The class [R] indeed acts as identity since for any module
A over R we have A ⊗ R ∼= A by proposition 1.30. Since the map ϕA is an isomorphism for
Azumaya algebras, we have that A⊗A◦ ∼= EndR(A). So since [EndR(P )] = [R] for any faithfully
projective module P and one can show that A◦ is Azumaya for any Azumaya algebra A, we find
that every element [A] has an inverse:

[A] • [A◦] = [A⊗A◦] = [EndR(A)] = [R].

Definition 5.18. (Brauer group of a ring)
The group defined in the statement of theorem 5.17 is called the Brauer group of the commutative
ring R and is denoted by Br(R).

In the case that R is a field, the elements of Br(R) are precisely the classes of finite dimensional
CSAs over R, by proposition 5.9 and remark 5.14. The group law and identity element coincide
as well, so the definition of the Brauer group of a ring is indeed an extension of the one of the
Brauer group of a field.
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For certain rings R we can identify an injective map from Br(R) to Br(K), where K is the field of
fractions of R. This property, which is stated in theorem 5.20, holds for so-called regular integral
domains, of which we will see an example in the next chapter. First a proposition that holds for
general integral domains:

Proposition 5.19. [4, Rmk 11.2.4]
Let R be an integral domain with field of fractions K. For any Azumaya algebra A over R, the
K-algebra A⊗R K is central and simple over K.

Theorem 5.20. [2, Thm 7.2]
If R is a regular integral domain with field of fractions K, then the natural homomorphism

Br(R) → Br(K)

[A] 7→ [A⊗R K]

is injective.

Recall that for the Brauer group of a field (of characteristic unequal to 2), classes of quaternion
algebras provide elements of order 2. Although this property does not extend to the Brauer group
of a ring (see also remark 5.22 below), there is a generalization of the definition of quaternion
algebras for a ring, so-called Hamilton algebras:

Definition 5.21. (Hamilton algebra) [4, Def 11.3.2]
For a, b ∈ R, the Hamilton algebra (a, b)R is defined as the R-algebra freely generated by 1, i, j, ij
as an R-module and multiplication according to the rules

i2 = a, j2 = b, ij = −ji.

Remark 5.22. [4, Page 134]
Hamilton algebras over a ring generalize quaternion algebras over a field: if k is a field with
char(k) ̸= 2, then the Hamilton algebra (a, b)k satisfies the definition of the quaternion algebra
(a, b) over k. However, it is important to note that not all Hamilton algebras are Azumaya. So
unlike quaternion algebras, whose classes are elements of the Brauer group of the field, Hamilton
algebras do not necessarily give classes that lie in the Brauer group of the ring. For an example
of a Hamilton algebra that is Azumaya, see section 6.2.

Proposition 5.23. [4, Page 134]
If f : R → S is an homomorphism of commutative rings and a, b ∈ R, then the natural
homomorphism

(a, b)R ⊗R S → (f(a), f(b))S

is an isomorphism of S-algebras.

More generally:

Proposition 5.24. [4, Page 133]
If f : R→ S is an homomorphism of commutative rings, it induces a group homomorphism

f∗ : Br(R) → Br(S)

[A] 7→ [A⊗R S]
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Just as in the previous chapter, there are examples of Brauer groups of rings that are trivial:

Proposition 5.25. [31]
Br(Z) = 0.

Proposition 5.26. [4, Cor 11.3.13]
Let k be a finite extension of the field of p-adic numbers Qp and let R be the ring of integers in
k. Then Br(R) = 0.
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6 Brauer groups of varieties

After having defined the Brauer group of a ring, we can use this definition to introduce the
Brauer group of a variety. In this chapter, X denotes a smooth geometrically irreducible variety,
κ(X) its function field, OX,P the local ring at a point P of X, and X(k) the set of k-rational
points on X. Note that X can be either a projective or affine variety, even though we only
properly defined the former. However, the main example of a variety of which we want to study
its Brauer group, is the del Pezzo surface from example 1.64, which is projective.

6.1 Definition of the Brauer group of a variety

Most references define the Brauer group of a variety using cohomology, which is studied in some
graduate level courses. To avoid introducing this theory, we define it in an easier way, following
the lecture notes of Bright, Testa and van Luijk [4, Chapter 12].

For a smooth point P ∈ X(k), the local ring OX,P is a so-called regular local ring, which is
studied in commutative algebra [16, Rmk 10.10]. Such a ring is an integral domain [15, Prop
11.40] and since X is irreducible over k, the field of fractions of OX,P is isomorphic to the function
field κ(X) [10, Exc 4.7.17]. Knowing this, theorem 5.20 gives an injective homomorphism

Br(OX,P ) ↪−→ Br(κ(X)).

Under this map, Br(OX,P ) can be seen as a subgroup of Br(κ(X)).

The elements of Br(κ(X)) in the image of Br(OX,P ) are called unramified at P . The other
elements are called ramified at P .

The Brauer group of X is then defined as follows:

Definition 6.1. (Brauer group of a variety)
Let X be a smooth geometrically irreducible variety over k. The Brauer group of X is defined
as the subgroup of Br(κ(X)) consisting of the elements that are unramified at all P ∈ X(k). In
other words,

Br(X) :=
⋂

P∈X(k)

Br(OX,P ),

where each Br(OX,P ) is seen as a subgroup of Br(κ(X)).

Proposition 6.2. [4, Thm 12.3.1]
Let C be a smooth irreducible curve over an algebraically closed field. Then Br(C) = 0.

Proof. This follows from proposition 4.13 in which we showed Br(κ(C)) = 0, and the fact that
Br(C) is a subgroup of Br(κ(C)).

6.2 The Brauer group of a del Pezzo surface of degree 4

In this section we work out an example from the notes by Bright et al. [4, Ex 12.1.2]. We look
at the Brauer group of the del Pezzo surface of degree 4 which was introduced in example 1.64.

Denoting this surface by X, recall that X ⊂ P4
Q is a projective variety over Q defined by the

equations {
uv = x2 − 5y2

(u+ v)(u+ 2v) = x2 − 5z2.
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This is a smooth and geometrically irreducible variety [44], so its Brauer group Br(X) is well-defined
as a subgroup of Br(κ(X)).

Recalling the function field κ(X) from example 1.64, note that the rational functions 5 and
u/(u+ v) are elements in κ(X), since they are both fractions of homogeneous polynomials of the
same degree. So we can define the following quaternion algebra over κ(X):

A :=

(
5,

u

u+ v

)
.

Although we are not able to give the Brauer group of X explicitly, we can show that the class
of A, which is an element of Br(κ(X)), lies in Br(X). To do this, we show that for any point
P ∈ X(Q), [A] lies in the image of Br(OX,P ) ↪−→ Br(κ(X)).

First, let P ∈ X(Q) be a point with u(P ) ̸= 0 and u(P ) + v(P ) ̸= 0. Then 5 and u/(u+ v) are
elements of the local ring OX,P , so we can define the Hamilton algebra

AP :=

(
5,

u

u+ v

)
OX,P

over OX,P . We show that it is Azumaya using proposition 5.8. First note that the algebra is
finitely generated and free. By proposition 1.18 it is then also projective. So the only thing left
to show is that its reduction modulo the maximal ideal IP of OX,P is central and simple over
the residue field.

Denote the residue field OX,P /IP by kP . Recall that the reduction modulo IP of AP is defined
as the tensor product

AP ⊗OX,P
kP =

(
5,

u

u+ v

)
OX,P

⊗OX,P
kP .

Consider the homomorphism

f : OX,P → kP

g

h
7→ g(P )

h(P )
+ IP .

Using proposition 5.23 with this map f gives(
5,

u

u+ v

)
OX,P

⊗OX,P
kP ∼=

(
f(5), f

(
u

u+ v

))
kP

=

(
5 + IP ,

u(P )

u(P ) + v(P )
+ IP

)
kP

.

Since u(P ) ̸= 0, we have u(P )/(u(P ) + v(P )) /∈ IP , so f(5) and f(u/(u + v)) are nonzero in
kP . Therefore, the algebra above defines a quaternion algebra over kP . By proposition 3.9, it is
central and simple, and hence, by proposition 5.8, AP is an Azumaya algebra over OX,P .

Considering the natural map g : OX,P ↪−→ κ(X) (recall that κ(X) is the field of fractions of OX,P ),
proposition 5.23 gives

AP ⊗OX,P
κ(X) ∼=

(
g(5), g

(
u

u+ v

))
κ(X)

=

(
5,

u

u+ v

)
= A.

Since the inclusion map Br(OX,P ) ↪−→ Br(κ(X)) as defined in theorem 5.20 maps [AP ] to
[AP ⊗OX,P

κ(X)] = [A], the class of A lies indeed in the image of Br(OX,P ).

Now we want to show the same for points P ∈ X(Q) that have either u(P ) = 0 or u(P )+v(P ) = 0.
Recall from example 1.64 that two rational functions F/G and F ′/G′ define the same element
in κ(X) if and only if

FG′ − F ′G ∈ I(X) = ⟨uv − x2 + 5y2, (u+ v)(u+ 2v)− x2 + 5z2⟩.
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Since uv2 − (x2 − 5y2)v = (uv − x2 + 5y2)v ∈ I(X). we have

u

v
=
x2 − 5y2

v2
∈ κ(X).

This equals the norm Nκ(X)(
√
5)((x+

√
5y)/v) from the field extension κ(X)(

√
5)/κ(X). So, by

proposition 3.11, we have

A =

(
5,

u

u+ v

)
∼=

5,
u

u+ v

(
Nκ(X)(

√
5)

(
x+

√
5y

v

))−1
 =

(
5,

u

u+ v

v

u

)
=

(
5,

v

u+ v

)
.

Similarly,
u+ v

u+ 2v
=

x2 − 5z2

(u+ 2v)2
= Nκ(X)(

√
5)

(
x+

√
5z

u+ 2v

)
.

So A is also isomorphic to the quaternion algebras(
5,

u

u+ v

u+ v

u+ 2v

)
=

(
5,

u

u+ 2v

)
and

(
5,

u

u+ 2v

v

u

)
∼=
(
5,

v

u+ 2v

)
.

Depending on whether u(P ) = 0 or u(P ) + v(P ) = 0, we can take one representative of A, i.e.,
one of the three quaternion algebras isomorphic to A, and repeat the same argument as before
to show that the class of this algebra lies in the image of Br(OX,P ).

It remains to show that for a point P ∈ X(Q) with both u(P ) = 0 and v(P ) = 0, [A] lies in the
image of Br(OX,P ). In this case we have x2(P ) = 5y2(P ) = 5z2(P ), so this gives four possible
points in P4

Q that we need to check: (0 : 0 :
√
5 : ±1 : ±1). For this we show that A is isomorphic

to the quaternion algebra (
5,

2u+ 3v + 2x

u+ v + 2x

)
.

Then, for each of the points P = (0 : 0 :
√
5 : ±1 : ±1) we can repeat the same argument as

before to show that the class of this algebra lies in the image of Br(OX,P ), which finishes the
proof.

Consider the function

g =
u+ v + x−

√
5z

u+ x−
√
5y

∈ κ(X)(
√
5).

Computing the norm from the field extension κ(X)(
√
5)/κ(X) of g gives

Nκ(X)(
√
5)(g) =

(u+ v + x)2 − 5z2

(u+ x)2 − 5y2
=

(u+ v)2 + 2x(u+ v) + x2 − 5z2

u2 + 2ux+ x2 − 5y2
.

Recall that in κ(X) we have x2−5z2 = (u+v)(u+2v) and x2−5y2 = uv, so the above expression
in κ(X) equals

(u+ v)2 + 2x(u+ v) + (u+ v)(u+ 2v)

u2 + 2ux+ uv
.

Using proposition 3.11 again, we find after some arithmetic:

A ∼=
(
5,

u

u+ v
Nκ(X)(

√
5)(g)

)
=

(
5,

2u+ 3v + 2x

u+ v + 2x

)
.

This shows that also for the points P ∈ X(Q) with u(P ) = v(P ) = 0, the class [A] lies in the
image of Br(OX,P ).

To conclude, [A] lies in the image of the map Br(OX,P ) ↪−→ Br(κ(X)) for any P ∈ X(Q). Hence,
[A] defines an element in the Brauer group of X.
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7 The Brauer-Manin obstruction

In this chapter, we look at an application of Brauer groups in algebraic geometry. Given a
variety X which has local points everywhere, the Brauer group of X can in some cases be used
to determine that X still has no global point. When this is indeed the case, we say there is a
Brauer-Manin obstruction to the Hasse principle on X.

We first define the Hasse principle in the next section, relying on [4, Chapter 2]. Then, in section
7.2, we introduce the Brauer-Manin obstruction, using mostly the theory from [4, Chapter 13].
Finally, we apply this to the example of our del Pezzo Surface in section 7.3.

7.1 The Hasse principle

Let k be a number field. As discussed in section 1.3.2, there is an embedding of k in each
completion kv, where v denotes a place of k. Consequentially, for a variety X over k, if X has a
k-rational point, it also has a kv-rational point for each v. So we have an implication

X(k) ̸= ∅ =⇒ X(kv) ̸= ∅ for each place v.

A very simple example for the number field Q: if X has a Q-rational point, it obviously has an
R-rational point. Here, R is the completion of Q with respect to the infinite place v = ∞. Since
Q is moreover embedded in the field of p-adic numbers Qp for each prime p, the condition also
implies X has a Qp-rational point for each p.

We call the rational points over the local fields kv the local points of X and the rational points
over the global field k the global points of X.

So far we know that a global point implies a local point everywhere, that is, a rational point over
each of the kv. Equivalently, the absence of a local point at some place always implies the absence
of a global point. For example, the projective curve defined by x2 + y2 = 0 has no R-rational
points (recall that the solution x = y = 0 does not define a point in P2), and, therefore, it has
no Q-rational points.

However, a variety could have local points everywhere and still lack a global point. The projective
curve 3x3+4y3+5z3 = 0, known as Selmer’s cubic, has rational points over R and each Qp, but
not over Q [38]6. But for other varieties, having local points everywhere does imply the existence
of a global point. For such varieties, the existence of local points everywhere is hence not only a
necessary condition, but also a sufficient condition for having a global point.

We would like to know when this is the case: when for a variety X the absence or existence of
a global point can be detected by checking if there are local points everywhere. In other words,
when there is also a reverse implication:

X(k) ̸= ∅ ⇐= X(kv) ̸= ∅ for each place v.

When the implication indeed goes in both directions, we say that the variety satisfies the Hasse
principle:

Definition 7.1. (Hasse principle)
Let X be a variety over a number field k. If the condition X(kv) ̸= ∅ for all places v of k implies
X(k) ̸= ∅, then X is said to satisfy the Hasse principle. If this is not the case, we say that X is
a counterexample to the Hasse principle.

6See also Conrad’s notes [8] for a proof.
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It has been shown that del Pezzo surfaces of degree at least 5 satisfy the Hasse principle [45,
Thm 2.1]. For del Pezzo surfaces of degree 4, this is not the case: The surface introduced in
example 1.64 is a counterexample, as was first shown by Birch and Swinnerton-Dyer in [41]. A
proof will be worked out in detail in section 7.3. There are also examples of del Pezzo surfaces
of degree 4 that do satisfy the Hasse principle: in [30], a family of such surfaces is given of which
most satisfy the Hasse principle.

To make it easier to refer to the local points of a variety at every place, we introduce some new
terminology.

Definition 7.2. (Adèles and adelic points)
Let k be a number field. The ring of adèles of k is the subring Ak of the direct product

∏
v kv

consisting of the tuples (xv), where xv is an algebraic integer for all but finitely many places v.

Let X be a variety over k. The set of adelic points of X is the subset X(Ak) of the direct product∏
vX(kv) consisting of the tuples (Pv), where Pv ∈ X(kv) has coordinates which are algebraic

integers in kv, for all but finitely many places v.

Proposition 7.3. [4, Page 7]
If X is a projective variety, then X(Ak) =

∏
vX(kv).

So for a projective variety X, we have that X(Ak) is nonempty if and only if X(kv) is nonempty
for each place v. As a consequence, a projective variety X satisfies the Hasse principle if the
condition X(Ak) ̸= ∅ implies X(k) ̸= ∅.

A theorem by Hasse and Minkowski states that quadratic forms satisfy the Hasse principle:

Theorem 7.4. (Hasse-Minkowski theorem) [4, Thm 2.3.1]
Let X be a projective variety over a number field k defined by one quadratic form. If X(Ak) is
nonempty, then X(k) is nonempty.

Proof. A proof can be found in [39, Chapter IV, 3.2, Thm 8].

If a smooth projective variety X over a number field k satisfies the Hasse principle, it can be
easier to check whether X(k) is nonempty. Namely, checking whether X(Ak) is nonempty is a
finite process [4, Page 10].

If a tool helps to show that the Hasse principle fails for a given variety, we speak of an obstruction
to the Hasse principle. The method we develop in the next section using Brauer groups, can
lead to an obstruction that we refer to as the Brauer-Manin obstruction. When we work out an
example of this in the last section, we often work with rational points over Qp by relating them
to rational points over Z/pnZ for some n ≥ 1. The next proposition allows us to do this.

Proposition 7.5.
Let X be a projective variety defined by polynomials with coefficients in Z. If X(Z/pnZ) is
empty for some n ≥ 1, then X(Qp) is empty.

Proof. Suppose P = (x0 : . . . : xk) is a point in X(Qp). By remark 1.89, each coordinate
can be re-scaled to a p-adic integer by multiplying it with a power of p. Multiplying the
homogeneous coordinates by a sufficiently high power of p gives homogeneous coordinates in
Zp for P . So P defines a point in X(Zp). Reducing the equations modulo pnZp, still guarantees
a point in X(Zp/p

nZp). By proposition 1.86, this gives a point in X(Z/pnZ). Hence, we have a
contradiction.
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As an example, consider the projective conic x2 + y2 = 3z2. One can check that X(Z/4Z) is
empty [4, Ex 2.1.2]. Therefore, by the proposition, X(Q2) is empty as well.

Similarly, one can show that an integer a ∈ Z is not a square in Qp by showing it is not a square
in Z/pnZ for some n ≥ 1: If the equation x = a2 has no solutions over Z/pnZ, the proposition
implies it has no solution over Qp.

7.2 The Brauer-Manin obstruction

Let X denote a smooth, projective, geometrically irreducible variety over a field k. We first
define a map that evaluates classes in Br(X) at a point:

Proposition 7.6. [4, Page 144]
Let ℓ ⊃ k be a field extension. For each P ∈ X(ℓ), there is a group homomorphism

evP : Br(X) → Br(ℓ)

induced by the ring homomorphism OX,P → ℓ that evaluates f/g ∈ OX,P at P . For a class
α ∈ Br(X), we denote its image evP (α) also by α(P ).

Proof. The evaluation homomorphism OX,P → ℓ induces a group homomorphism

evP : Br(OX,P ) → Br(ℓ)

by proposition 5.24. We claim that this map restricts to a group homomorphism

evP : Br(X) → Br(ℓ).

In the case P ∈ X(k), Br(X) is contained in the image of the embedding

ϕ : Br(OX,P ) ↪−→ Br(κ(X))

as discussed in section 6.1. So we can restrict the map as follows:

Br(X)
ϕ−1

↪−−→ Br(OX,P ) → Br(ℓ).

In the case P ∈ X(ℓ) \ X(k), we have OX,P
∼= κ(X), since at least one coordinate of P is

transcendental over k, and hence every regular function F/G ∈ κ(X) is such that G(P ) ̸= 0.
So since Br(X) is a subgroup of Br(κ(X)) ∼= Br(OX,P ), we have a restriction coming from the
natural inclusion of Br(X) into Br(OX,P ).

Example 7.7.
Recall the example discussed in section 6.2 with the field extension ℓ := kP = OX,P /IP ⊃ Q.
For a certain point P ∈ X(Q), we had a ring homomorphism

f : OX,P → kP

g

h
7→ g(P )

h(P )
+ IP .

It induced a group homomorphism
Br(X) → Br(kp)

which sends the class of the quaternion algebra A =
(
5, u

u+v

)
to the class of the quaternion

algebra
(
5 + IP ,

u(P )
u(P )+v(P ) + IP

)
.
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Let k be a number field. Recall that for each place v of k, we can see k as a subfield of kv via the
injection k ↪−→ kv. By proposition 7.6, we thus obtain a group homomorphism Br(X) → Br(kv)
that evaluates a class α ∈ Br(X) at a point P ∈ X(kv) to get a class α(P ) ∈ Br(kv).

From a different perspective, for each class α ∈ Br(X), we have an evaluation map

X(kv) → Br(kv)

P 7→ α(P )

which we denote by α. Recalling the Hasse invariant map invv : Br(kv) → Q/Z from section 4.3,
we can pre-compose invv with α to obtain a map

X(kv)
α→ Br(kv)

invv−−→ Q/Z,

which we call the local invariant map. Proposition 7.3 gives X(Ak) =
∏

vX(kv), so we can
combine the local invariant maps of each place v to obtain a map

X(Ak) →
⊕
v

Br(kv)

∑
v invv−−−−−→ Q/Z.

We refer to this as the adelic evaluation map. It takes an adelic point (Pv) ∈ X(Ak) and maps
it to

∑
v invvα(Pv) ∈ Q/Z.

Since X(k) is a subset of each X(kv), we obtain a diagonal embedding X(k) ↪−→ X(Ak), which
allows us to state another property:

Proposition 7.8. [4, Prop 13.1.4]
Let α be a class in Br(X). Then X(k) lies in the kernel of the adelic evaluation map.

Proof. A proof can be found in [4, Prop 13.1.4], which uses the exact sequence of theorem
4.18.

Definition 7.9.
Let α be a class in Br(X) and B a subset of Br(X). We define the sets

X(Ak)
α := {(Pv) ∈ X(Ak) :

∑
v

invvα(Pv) = 0};

X(Ak)
B := {(Pv) ∈ X(Ak) :

∑
v

invvα(Pv) = 0 for all α ∈ B}.

If B = Br(X) we write X(Ak)
Br instead of X(Ak)

B.

By proposition 7.8, X(k) lies in X(Ak)
α for each class α ∈ Br(X). As a consequence, we can

show that X(k) is empty by showing that X(Ak)
B is empty for some subset B ⊂ Br(X), even

if the set of adelic points X(Ak) is itself nonempty. This is the idea behind the Brauer-Manin
obstruction, which is defined as follows:

Definition 7.10. (Brauer-Manin obstruction)
Let X be a smooth, projective, geometrically irreducible variety over a number field k. Let B be
a subset of Br(X). If X(Ak)

B is empty but X(Ak) is nonempty, we say there is a Brauer-Manin
obstruction to the Hasse principle on X coming from B. In the case B = Br(X), we simply say
there is a Brauer-Manin obstruction to the Hasse principle on X.
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So by finding X(Ak)
B for an effective B ⊂ Br(X), one can obtain a Brauer-Manin obstruction

on the given variety. Finding a small B that does the job is a different problem. However, for
some varieties, it is even possible to determine X(Ak)

B with B = Br(X) [4, Page 167]. In the
next section we find X(Ak)

α for a (given) effective α ∈ Br(X) to show there is a Brauer-Manin
obstruction. But first, we require one more property of the map α:

Proposition 7.11. [4, Prop 13.1.9]
Let X be a smooth variety over a local field kv and α a class in Br(X). The evaluation map
α : X(kv) → Br(kv) is locally constant for the analytic topology on X(kv), that is, the topology
induced by the topology on kv combined with the product topology.

7.3 Application to a del Pezzo surface of degree 4

In this section we revisit our del Pezzo surface from example 1.64 and show there is a Brauer-Manin
obstruction on this surface following the procedure in [4, Example 13.2.1].

Recall that the surface X ⊂ P4
Q over Q is defined by the equations{

uv = x2 − 5y2

(u+ v)(u+ 2v) = x2 − 5z2.

In section 6.2 we also defined the quaternion algebra

A :=

(
5,

u

u+ v

)
over κ(X) and showed that its class is an element of Br(X). Let us denote this class by α. We
show that there is a Brauer-Manin obstruction on X coming from α. In other words, we show

X(AQ)
α = {(Pv) ∈ X(AQ) :

∑
v

invv α(Pv) = 0}

is empty while X(AQ) is nonempty.

To show X(AQ)
α is empty, we determine the value of the local invariant map invv α(Pv) at each

place v of Q for an arbitrary adelic point (Pv) ∈ X(AQ). The sum of these values should then
be nonzero for X(AQ)

α to be empty. We look at different places v seperately:

v = ∞, the real place

Here, Qp = R. Let P = (u0 : v0 : x0 : y0 : z0) be a point in X(R) such that u0 and v0 are
nonzero. The ring homomorphism

f : OX,P → R

which maps u
u+v to u0

u0+v0
induces, by proposition 7.6, a group homomorphism

evP : Br(X) → Br(R).

This maps α to α(P ), the class of the quaternion algebra(
f(5), f

(
u

u+ v

))
R
=

(
5,

u0
u0 + v0

)
R

by propositions 5.23 and 5.24.
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Since 5 is a square in R, proposition 3.5 gives that this quaternion algebra is isomorphic to(
1,

u0
u0 + v0

)
which is then isomorphic to M2(R) by example 3.4. So α(P ) is the identity element in Br(R),
which gives inv∞ α(P ) = 0. Because the map α : X(R) → Br(R) is locally constant and the set
of points P with u0 and v0 nonzero is dense in X(R), it follows that α(P ) = [R] for all P ∈ X(R),
and, thus, we also have inv∞ α(P ) = 0 for all P ∈ X(R).

v corresponding to an odd prime p such that 5 is a square in Qp

The same argument as above shows that invp α(P ) = 0 for all P ∈ X(Qp).

v corresponding to an odd prime p ̸= 5 such that 5 is not a square in Qp

The assumption that 5 is not a square in Qp implies that it is also not a square in Z/pZ: Suppose
F = x2 − 5 has a solution in Z/pZ, i.e., there exists an a1 ∈ Z ⊂ Zp such that F (a1) ≡ 0mod p.
Since p ̸= 2, F ′(a1) = 2a1 ̸≡ 0mod p. Then Hensel’s lemma guarantees the existence of an
element a ∈ Zp ⊂ Qp such that F (a) = 0, so a is a root of 5 in Qp, which is a contradiction.

Now let P be a point in X(Qp) and choose homogeneous coordinates (u0 : v0 : x0 : y0 : z0) that
all lie in Zp and are not all divisible by p. We can do this by multiplying the coordinates with a
power of p:

• If all coordinates satisfy vp(·) > 0 and m is the smallest of the p-adic valuations of the
coordinates, multiply all coordinates by p−m to obtain at least one coordinate with vp(·) = 0
(so it is not divisible by p).

• If n ∈ Z < 0 is the smallest integer such that one of the coordinates has vp(·) = n, multiply
all coordinates by p−n so that all coordinates lie in Zp and at least one has vp(·) = 0.

Substituting the coordinates of P into the equations defining X and reducing both equations
modulo p, we see that u0 and v0 cannot both be divisible by p: Otherwise,{

0 ≡ x20 − 5y20 mod p
0 ≡ x20 − 5z20 mod p,

where x0, y0, z0 not all congruent to 0mod p. Then at least one of x0/y0 and x0/z0 is a square
root of 5 in Z/pZ, which contradicts with our earlier observation.

The same argument shows at least one of u0 + v0 and u0 + 2v0 is not divisible by p. Remember
that all of u0, v0, u0 + v0, u0 + 2v0 are in Zp. Any of them being not divisible by p implies it is
an element of the group of units Z×

p . Therefore, at least one of the expressions

b =
u0

u0 + v0
,

v0
u0 + v0

,
u0

u0 + 2v0
,

v0
u0 + 2v0

is such that b ∈ Z×
p . Taking that b, the quaternion algebra (5, b) over Qp has its class in Br(Qp)

equal to α(P ). This is because, as shown in section 6.2, the quaternion algebra A over κ(X) also
has four different representations, all isomorphic:(

5,
u

u+ v

)
,

(
5,

v

u+ v

)
,

(
5,

u

u+ 2v

)
,

(
5,

v

u+ 2v

)
.

So evaluating the class α of the right expression of A at P gives the class α(P ) of the quaternion
algebra (5, b) for our choice of b.
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Since 5 and b are both in Z×
p (note that 5 is not divisible by p), proposition 4.20 (i) gives the

Hilbert symbol (5, b)p = 1. Then proposition 4.21 gives invp α(P ) = 0. Note that P was taken
to be arbitrary, so this holds for all P ∈ X(Qp).

v corresponding to the prime p = 2

Let P be a point in X(Q2) and choose homogeneous coordinates (u0 : v0 : x0 : y0 : z0) that
all lie in Z2 and are not all divisible by 2. Substituting the coordinates of P into the equations
defining X, we reduce both equations modulo 8. Again we aim to show that u0 and v0 cannot
both be divisible by 2.

Suppose they are both divisible by 2. Then each of u0 and v0 is congruent to one of

{0mod 8, 2mod 8, 4mod 8, 6mod 8}.

It follows that at least one of u0v0 and (u0 + v0)(u0 + 2v0) is congruent to 0mod 8. So, at least
one of x20− 5y20 and x20− 5z20 is congruent to 0mod 8. Without loss of generality, assume the first
is the case. The only solutions (x0 mod 8, y0 mod 8) to x20 − 5y20 ≡ 0mod 8 are

{(0, 0), (0, 4), (2, 2), (2, 6), (4, 0), (4, 4), (6, 2), (6, 6)}.

So all of u0, v0, x0, y0 are divisible by 2. This gives that z0 is also divisible by 2, but this
contradicts our choice of coordinates for P .

So at least one of u0 and v0 is not divisible by 2. A very similar argument shows at least one
of u0 + v0 and u0 + 2v0 is not divisible by 2. Just as in the previous part, at least one of the
expressions

b =
u0

u0 + v0
,

v0
u0 + v0

,
u0

u0 + 2v0
,

v0
u0 + 2v0

is such that b ∈ Z×
2 . Taking that b again, the quaternion algebra (5, b) over Q2 has its class in

Br(Q2) equal to α(P ). Since 5 and b are both in Z×
2 , proposition 4.20 (ii) gives

(5, b)2 = (−1)ϵ(5)ϵ(b) = (−1)0ϵ(b) = 1,

after which proposition 4.21 again yields inv2 α(P ) = 0.

v corresponding to the prime p = 5

For this final place, we start with the same setting: Let P be a point in X(Q5) and choose
homogeneous coordinates (u0 : v0 : x0 : y0 : z0) that all lie in Z5 and are not all divisible by
5. Substituting the coordinates of P into the equations defining X we reduce both equations
modulo 5: {

u0v0 ≡ x20 mod 5

(u0 + v0)(u0 + 2v0) ≡ x20 mod 5.
(3)

The equation u0v0 ≡ (u0 + v0)(u0 + 2v0) has the following solutions (u0 mod 5, v0 mod 5):

A := {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}, B := {(1, 3), (2, 1), (3, 4), (4, 2)}.

The solutions in B give that x20 ≡ u0v0 is congruent to either 2mod 5 or 3mod 5. But these are
not squares in Z/5Z, so these choices for u0 and v0 do not give solutions for our system (3). The
solutions in A do work.

Let us look more carefully at the solution u0 ≡ v0 ≡ x0 ≡ 0mod 5. This means all of u0, v0, x0
are divisible by 5. Then, each of u0v0, (u0 + v0)(u0 +2v0), and x20 is divisible by 25, so reducing
our original system of equations defining X modulo 25 gives{

0 ≡ −5y20 mod 25

0 ≡ −5z20 mod 25.

57



This implies that both y0 and z0 are also divisible by 5, but this contradicts our choice of
coordinates of P again. So u0 ≡ v0 ≡ x0 ≡ 0mod 5 does not give a solution to (3) coming from
P ∈ X(Q5).

For all other solutions (u0 mod 5, v0 mod 5, x0 mod 5) to (3), we have that u0 ≡ v0 ≡ ±x20 mod 5.
Any choice for b from

u0
u0 + v0

,
v0

u0 + v0
,

u0
u0 + 2v0

,
v0

u0 + 2v0

gives b = 1
2 ≡ 3mod 5 or b = 1

3 ≡ 2mod 5. So b is not divisible by 5 and hence an element in
Z×
5 . The Legendre symbols

(
2
5

)
and

(
3
5

)
both equal −1 since 2 and 3 are non-squares in Z/5Z.

So using the formula from proposition 4.20 (i) gives

(5, b)5 = (51 · 1, 50 · b) = (−1)0
(
5

5

)0(3

5

)1

= −1.

In this case, proposition 4.21 gives inv5(P ) =
1
2 .

Conclusion

Summing all values of invv α(Pv) at each place v of Q yields
∑

v invv α(Pv) = 1
2 . We thus

conclude X(AQ)
α is empty. In [4, Example 2.3.5], the authors state that X(AQ) is nonempty:

• (10 : −10 : 5 : 5 :
√
5) defines a point in X(R) and X(Qp) for each prime p such that 5 is

a square in Q5;

• For primes p ̸= 2 such that 5 is not a square in Qp, one of (1 : 1 : 1 : 0 :
√
−1) and

(5 : 0 : 0 : 0 :
√
−5) gives a point in X(Qp);

• And (−25 : 5 : 0 : 5 : 2
√
−15) defines a point in X(Q2).

We have thus obtained a Brauer-Manin obstruction to the Hasse principle on our surface X,
hence, proving that X has rational points over every completion Qv, but not over Q.

Discussion

One may wonder whether the same method works if the 5 in the equations defining X is replaced
by another odd prime q. In that case, taking α to be the class of the algebra (q, u

u+v ) gives the
same results for the first cases treated above: For any place v corresponding to an odd prime
unequal to q (including the real place), the same arguments show that invv α(Pv) = 0 for any
Pv ∈ X(Qv).

For the place v corresponding to the prime 2, the same argument works if and only if q is not
congruent to 1mod 8. This is because the equation x20 − qy20 ≡ 0mod 8 also has odd solutions if
q ≡ 1mod 8, but only even solutions if q ≡ 3, 5, or 7. So for example, the argument does not
work for the prime q = 17.

Finally, for the place v corresponding to the prime q, the same argument works only if the
equation

u0v0 ≡ (u0 + v0)(u0 + 2v0) mod q

has a nonzero solution. So for the primes 3, 7, and 11, it does not work. But in this case, when
there is only the zero solution, it follows that X(Z/qZ) is empty, implying that X(Qq) is empty
as well. Then X misses a local point and therefore also has no global points, so it is useless to
check for a Brauer-Manin obstruction on X.
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Taking the prime q = 13, it could work: q is not congruent to 1mod 8 and the equation

u0v0 ≡ (u0 + v0)(u0 + 2v0)mod 13

does have nonzero solutions. Indeed, Colliot-Thélène pointed out that when the 5 is replaced by
13, the variety X is a counterexample to the Hasse principle [41, Page 169].

In [21], the authors considered the more general surface S := SD;A,B over a field k defined by
the equations {

uv= x2 −Dy2

(u+Av)(u+Bv)= x2 −Dz2

for A,B,D ∈ k. If S is smooth, it is a del Pezzo surface of degree 4, and, under a list of extra
conditions, it is a counterexample to the Hasse principle [21, Thm 6.1]. Taking D = 17, A = 9,
and B = 11, for example, these conditions are indeed satisfied, as shown in [21, Ex 6.3], so the
surface S satisfies S(AQ) ̸= ∅ but S(Q) = ∅.

59



8 Conclusion

This thesis provided definitions and examples of Brauer groups of fields, commutative rings, and
smooth, geometrically irreducible varieties. Using this, the Brauer-Manin obstruction to the
Hasse principle was introduced and applied to an example.

The Brauer group of a field was defined as the set of equivalence classes of finite dimensional
central simple algebras. We have seen that each equivalence class can be represented by a division
algebra, and that, if the field is of characteristic unequal to 2, the order 2 elements of its Brauer
group can be classified by tensor products of quaternion algebras. Replacing central simple
algebras by Azumaya algebras yielded a generalization of this definition as the Brauer group of a
commutative ring. Finally, the Brauer group of a smooth, geometrically irreducible variety was
defined as a subgroup of the Brauer group of its function field, consisting of the classes that lie
in the image of the Brauer group of the local ring of the variety, at each point. An example with
a del Pezzo surface illustrated the procedure for checking that a class of the Brauer group of the
function field indeed lies in the Brauer group of the surface. This example also helped to show
there is a Brauer-Manin obstruction on the surface, proving that the surface lacks a global point
although it has local points everywhere.

For further research it would be interesting to study how to determine the full Brauer group of
the del Pezzo surface considered in this thesis, as well as to look at other examples of varieties
for which there might be a Brauer-Manin obstruction. A conjecture proposed by Colliot-Thélène
and Sansuc suggests that for any del Pezzo surface, failure of the Hasse principle can always be
detected by a Brauer-Manin obstruction [6]. Further investigation into why this theory appears
plausible would be an interesting next project.

Lastly, the author is interested in the choice of an effective element in the Brauer group of
a variety for showing that there is a Brauer-Manin obstruction. For the particular example
discussed in this thesis, the class of the algebra (5, f) with rational function f = u/u+ v turned
out to be effective, and this choice of f was deliberate, as can be understood from [41, Page 174].
It would be worthwhile to study how this algebra was obtained and guaranteed to be successful.
In its complete formulation, Manin’s method only requires the algebraic geometer to consider a
finite amount of algebras for finding a Brauer-Manin obstruction [41, Page 171]. To be able to
study this method in its totality, however, some understanding of cohomology is needed and it
therefore presents an appealing opportunity for future exploration.
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