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Abstract: This project employs a semi-supervised learning approach for segmenting organoid
microscopy images, involving two distinct stages: pre-training and fine-tuning. The pre-training
stage can be further divided into a global unsupervised contrastive learning stage and a local
supervised contrastive learning stage. The objective is to investigate whether the semi-supervised
approach outperforms the supervised approach. To evaluate this, the models are trained on vary-
ing amounts of data during the pre-training stage to determine the minimum quantity required
to develop a model that outperforms the supervised learning approach. Additionally, the study
examines whether two different loss functions (SSIM loss and SSIM-MAE loss) positively con-
tribute to the segmentation performance when being used in the fine-tuning stage. Finally, the
effect of freezing (vs not freezing) the U-Net encoder of the global stage when training on the
local stage is examined in the context of segmentation performance. Results showed that the
local stage of the semi-supervised learning approach has a more positive impact on the F1-scores
as more data is used compared to the global stage, with F1-scores around 0.9. The SSIM(-MAE)
is a better choice in terms of the organoids’ coherent structure and the frozen models outperform
the frozen models in capturing the larger organoids.

1 Introduction

Organoids are 3D structures of tissue that are
created from multiple cells in vitro and are de-
signed to simulate the properties and functions of
a particular organ in vivo (Kretzschmar & Clevers,
2016). Organoids serve as a valuable tool for
researchers because they can be used to discover
biological mechanisms, model diseases, and to test
the efficacy of treatments (de Souza, 2018). For
organoids research, it is crucial to periodically
observe microscopic images of the organoids to
gather data on their physical- and growth patterns
(Bian et al., 2021).

In recent years, the potential of deep learning
in medical imaging tasks has been recognized
(Suzuki, 2017). While convolutional neural net-
works have shown success in image classification
tasks, such as distinguishing between cats and
dogs (Deperlioglu, 2018) (Gavali & Banu, 2019),
medical imaging tasks require more complex anal-

ysis such as image segmentation to locate tumors.
Supervised learning approaches have proven to
be successful in image segmentation (Oktay et
al., 2018) (He et al., 2017). However, supervised
learning approaches require all data to be labeled,
which can be time-consuming and expensive.
It also requires domain-specific knowledge for
labeling the data and the expertise of machine
learning experts or data scientists (Hu et al., 2021).

Semi-supervised learning offers a promising solu-
tion for these challenges by using the unlabeled
data to reduce the reliance on labeled data (Bai et
al., 2017). In (Hu et al., 2021), a semi-supervised
learning approach is used to segment medical
images. This model utilizes semi-supervised con-
trastive learning to efficiently label medical images
of CT and MRI scans. According to the paper,
prior to training a U-Net on segmenting the med-
ical images, both the labeled and unlabeled data
are used in a two-step pre-training stage. First,
a self-supervised learning algorithm is utilized
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to learn global features of the unlabeled data.
Next, a supervised learning algorithm is employed
to learn local features of the labeled data.
The global features can be seen as the high-level
features such as the organoids’ shape, size and
overall appearance, while the local features are
the fine details and local structures within the
images. By implementing the pre-training stage
into the learning procedure, the model significantly
achieves better performance than self-supervised
learning techniques (Chaitanya et al., 2020). When
fine-tuning the network, Hu et al. (2021) use a
combination of the Dice loss and the BCE-loss, as
it seems to give the best results. A Dice score of
0.866 is achieved when only 20% of the train data
is labeled.

In this project, the goal is to use the above
approach of semi-supervised learning to iden-
tify organoids and classify organoid images into
”organoid” and ”non-organoid” pixels. The model
is built upon the existing model of Hu et al.
(2021). The first contribution to the paper is to
evaluate the effectiveness of the semi-supervised
learning approach in organoid segmentation by
comparing it to the supervised learning approach.
This involves analyzing whether the pre-training
stage, which is unique to the semi-supervised
learning approach, has a positive impact on the
segmentation task. The evaluation is conducted by
training the models on varying amounts of data
during the pre-training phase to determine the
minimum amount required to develop a model that
outperforms the supervised learning approach. A
second contribution to the paper is to examine
whether two different loss functions (SSIM loss
and SSIM-MAE loss) positively affect organoid
segmentation when being used in fine-tuning the
model. A third contribution to the paper is to
examine whether freezing (vs not freezing) the
encoder of the global stage when training on the
local stage has a positive impact on the final
segmentation results.

This paper is divided into 6 sections. Section 2 of-
fers a more detailed explanation of semi-supervised
learning and the rationale behind using the
SSIM(-MAE) loss in the semi-supervised learning
approach. Section 3 provides an overview of the
data that is being used, the different stages of the

experiment and the loss functions that are being
used. Section 4 discusses the experimental settings.
Section 5 provides all results of the experiments
being done and section 6 is associated with the
conclusion and further work.

2 Related Work

Semi-supervised learning is a relatively new learn-
ing approach that gained popularity around the
00s (Seeger, 2000) (Nigam, 2001). Semi-supervised
learning works with both labeled and unlabeled
data to improve the performance of the model
(Zhu, 2005). There are various methods used in
semi-supervised learning, such as combining trans-
fer learning with semi-supervised learning (Cai et
al., 2021). Transfer learning is a learning technique
where a pre-trained model is utilized as a starting
point to solve a new task. The pre-trained model
has already extracted useful features from the
data, which can be leveraged during the training
of the model for the new task (Weiss et al., 2016).
Semi-supervised learning combined with transfer
learning has proven to perform well (Xie et al.,
2020).

Earlier, Wang et al. (2004) proposed the so-called
SSIM loss as a new loss function for image qual-
ity assessment. The SSIM index takes into account
that the human visual system is more sensitive to
changes in the patterns and structures of an im-
age rather than changes in the individual pixel in-
tensities. It measures the structural similarity be-
tween the ground truth image and the generated
image produced by the neural network. The paper
showed that the SSIM index correlated better with
human perception of image quality than traditional
methods such as the mean squared error (MSE) and
the peak signal-to-noise ratio (PSNR). Thereby, the
SSIM loss takes into account the structural infor-
mation and texture similarities of the image, mak-
ing it more robust to noise and distortion (Tao
et al., 2017). The SSIM index outperformed other
state-of-the-art methods on a set of distorted im-
ages, and is since then being used for a wide range
of applications in image processing and computer
vision (Tao et al., 2017) (Zhao et al., 2015).

However, little research is available where the
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SSIM loss has specifically been used for image
segmentation. In (Huang et al., 2020), a U-Net ar-
chitecture was used for segmenting liver and spleen
CT images. A hybrid loss combination including
the SSIM loss was designed to operate at three
different levels; pixel-, patch- and map-level. This
hybrid loss combination aimed to promote accurate
segmentation of both large-scale structures and
fine structures. The results of the paper indicated
that the U-Net architecture in combination with
the hybrid loss function outperformed all previous
state-of-the-art approaches, such as the PSPNet
and the DeepLab architecture. Ahamed & Imran
(2022) employed different implementations of the
U-Net architecture for segmenting cell nucleus
and retinal vessel images. The U-Net architectures
were used in combination with the proposed
Image-to-Patch/Patch-to-Image (IPPI) frame-
work, which consisted of an image segmentation
branch and a patch segmentation branch. The
image segmentation branch was responsible for
segmenting the input image X while the patch seg-
mentation branch was responsible for segmenting
all non-overlapping patches x generated from input
image X. To achieve global consistency at the local
patch-level, the SSIM loss was calculated between
Y ′ (i.e. the reconstructed image of the segmented
patches x ) and Ŷ (i.e. the segmented input image
X ). Similarly, to ensure local consistency at the
image-level, the SSIM loss was calculated between
y′ (i.e. the generated patches from the segmented
input image X ) and ŷ (i.e. the segmented patches
x ). The results indicated that using the IPPI
framework in combination with the SSIM loss out-
performed the regular fully-supervised approach
(i.e. without the IPPI framework), which indicated
that the SSIM loss positively contributed to the
segmentation performance.

As opposed to previous research, the idea in this
project is that the SSIM loss can effectively elabo-
rate on the neural network parameters learned from
the pre-training stage of the semi-supervised ap-
proach.

3 Methods

The semi-supervised learning approach is predomi-
nantly based on the paper of Hu et al. (2021). The

approach involves a three-stage training process,
where all stages utilize (part of) the U-Net. The
first two stages are considered as the pre-training
stage, while the last stage is the segmentation fine-
tuning stage. Section 3.1 explains the data used
in the project. Section 3.2 and 3.3 provide a deeper
insight in the U-Net and SIMCLR algorithm as
these are important concepts for understanding the
full model. Section 3.4 explains the three different
stages used in the model. Section 3.5 provides an
overview of the different loss functions used in the
fine-tuning stage.

3.1 Data

The data used in this project consists of grey
organoid images obtained from the University Med-
ical Center Groningen (UMCG). Images were cap-
tured at five different time points within a time
span of 96 hours, with a 24-hour interval between
each time point. From all these images, 10 CZI files
were created. A CZI file is a file format used for
saving 3D microscopic images which are build up
from 2D horizontal slices taken at different depths
in the culture (Haja et al., 2023). As most of the
organoids were present in the middle stacks, only
these stacks were used.
The initial images have a resolution of around 3830
x 2900 pixels. To get a good balance between the in-
formation content and computational cost, the im-
ages were divided into smaller crops of 320 x 320
pixels using a sliding window technique. To gener-
ate more data, the sliding window technique was
only moved a fraction of the image size which led
to overlapping regions between images. Images that
contained less than 3% of organoid pixels were ex-
cluded from the data set. To further increase the
data size, the resulting images were rotated by 90◦,
180◦ and 270◦.

3.2 U-Net

U-Net is a convolutional neural network architec-
ture designed for biomedical image segmentation.
It has a U-shape structure, hence its name. The
network consists of a contracting path that down-
samples the image and a symmetric expanding path
that restores the resolution for pixel-wise prediction
(Ronneberger et al., 2015). Since the initial deploy-
ment of the U-Net, the architecture has undergone
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Figure 3.1: The original U-Net structure as used in the paper of Ronneberger et al. (2015)

continuous development, resulting in various forms
of the network being used (Wu et al., 2022) (Zhou
et al., 2018) (Zhang et al., 2021). Figure 3.1 shows
the original U-Net structure as used in the paper
of Ronneberger et al. (2015).

3.3 SIMCLR

SIMCLR (i.e. ”Simple Contrastive Learning”) is a
self-supervised framework, which can be utilized for
training neural networks on large unlabeled data
sets to learn representations that can be used for
downstream tasks (Chen et al., 2020). Figure 3.2
shows the procedure of the SIMCLR algorithm. An
image x is transformed to two different augmented
images x̃i and x̃j . The goal of the SIMCLR algo-
rithm is to maximize agreement using a contrastive
loss between the output vectors zi and zj by train-
ing the base encoder f(·) and projection head g(·).
As explained by Chen et al. (2020), the SIMCLR
algorithm uses a contrastive loss function that tries
to maximize similarity between positive pairs and
minimize similarity between negative pairs in the
vector space. A positive pair refers to two different
versions of the same input image that are obtained
through different data augmentation transforma-

tions, while a negative pair refers to two indepen-
dent augmented versions of different input images.

Figure 3.2: A simple framework illustrating the
SIMCLR algorithm as described in the paper
of Chen et al. (2020). A series of data augmen-
tations from τ are applied to a single image x
twice to generate two separate versions x̃i and
x̃j of the image x. These two images x̃i and x̃j

are then passed through a base encoder network
f(·) and a projection head g(·), which produces
two corresponding vectors zi and zj. The goal of
the training process is to maximize agreement
using a contrastive loss between the output vec-
tors zi and zj by training the base encoder and
projection head.
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3.4 Stages of the model

The first two stages are largely similar to the paper
of Hu et al. (2021), but they will still be discussed
for clarification.

3.4.1 First stage: Global unsupervised con-
trastive learning

The first stage focuses on global unsupervised con-
trastive learning. The process largely follows the
structure of the SIMCLR algorithm. During this
stage of the experiment, the encoding path of the
U-Net network is utilized as a feature extractor and
the Multi-layer perception (MLP) head is used to
convert the U-Net output into vector representa-
tions of the images. Figure 3.4 visualizes the struc-
ture of the this stage. The four green blocks resem-
ble the encoding layers of the U-Net and the head
is the MLP. Only the procedure of the positive pair
is shown in this image but in reality the batch con-
sists of both positive- and negative pairs. To train
our model using the SIMCLR algorithm, both pos-
itive and negative examples are required. To obtain
the positive and negative examples, a sequence of
augmentations is applied twice for each image in
a given batch B. The augmentations for this stage
consist of:

1. Random translation or random zooming

2. Random brightness adjustment

3. Random Gaussian blurring

4. Random Gaussian noise or random salt and
pepper noise

The augmentations are applied in a random order
but translation/zooming is always done at the first
step. Figure 3.3 illustrates the different augmenta-
tions that are utilized in this project. Figure 3.5
shows an example of a positive pair and

Figure 3.4: The structure of the global unsuper-
vised contrastive learning stage. The four green
blocks resemble the global U-Net encoding lay-
ers. The head is the MLP.

Figure 3.5: Two examples of a positive pair and
two examples of a negative pair in the global
unsupervised contrastive stage.

a negative pair of the data being used in the global
supervised contrastive learning part. A positive
pair is a pair of augmented images which are both
derived from the same ground truth. A negative
pair is a pair of augmented images which are
both derived from different ground truths. The
first stage is given the name ”global” because the
comparison is done between the two 256-D output
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Figure 3.3: The different data augmentations that are used in this project.

vectors, which represent the whole images.

To put it formally, let B = {x1, x2, ... xb} represent
an input batch, in which x represents the original
image (i.e. ground truth). By applying two random
sequences of augmentations on each image x in the
given batch of size b, two augmented data sets C =
{a1, a2, ...ab} and D = {a1, a2, ...ab} are generated
of size b where a represents the augmented image
of x. The two augmented sets are combined into one
augmented dataset E = {a1, ..., a2b} of size 2b. Let
ai, i ∈ I = {1..2b} be the index of an augmented
image in the augmented set E. For each image ai,
j(i) represents the index of the other augmented
image in augmented image set E that was derived
from the same image set B as ai. Hence, ai and aj(i)
form a positive pair. The formula for the global
contrastive loss is

Lg = − 1

|A|
∑
i∈I

log
esim(zi,zj(i))/τ∑2b

k=1 [k ̸=i] e
sim(zi,zk)/τ

(3.1)

where τ is the temperature and z is the normal-
ized output of the MLP, i.e. zi = g(f(ai)) and
zj(i) = g(f(aj(i))), sim() represents the dot simi-
larity between the vectors, f is the U-Net encoder
output and g is the MLP.

3.4.2 Second stage: Local supervised con-
trastive learning

The second stage of the semi-supervised learn-
ing approach concentrates on local supervised con-
trastive learning. This stage follows a structure sim-
ilar to the first stage, with the difference that now
the full U-Net is employed to learn about the local
features of the images. Transfer learning is applied
by loading the saved encoding weights from the U-

Figure 3.6: The structure of the local supervised
contrastive learning stage. The green blocks re-
semble the full U-Net layers. The head is the
MLP. The object represents the organoid pixels
and the background represents the background
pixels

Net of the first stage into the U-Net of this stage.
Figure 3.6 visualizes the structure of this stage. The
green blocks resemble the full U-Net and the head
is the MLP. The augmentations of this stage consist
of:

1. Random brightness adjustment
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2. Random Gaussian blurring

3. Random Gaussian noise or random salt and
pepper noise

The positive- and negative pairs are different from
the previous stage. A pair is considered positive
when two pixels share the same value (i.e. both
”organoid” pixels or both ”non-organoid” pixels).
Conversely, a pair is considered negative when two
pixels contain different values. Figure 3.7 shows an
example of both a positive pair and a negative pair.
Every pixel in the batch is being compared to all
other pixels in the batch. This means that both the
positive- and negative set consist of within pairs
(i.e. positive- and negative pairs within an image)
and between pairs (i.e. positive- and negative pairs
between images). Formally, the positive set P can
be defined as

P = {(p1, p2) | p1, p2 ∈ I, loc(p1) ̸= loc(p2), val(p1) = val(p2)} (3.2)

where p1 and p2 represent all pixels in image set I,
loc() represents the pixel location and val() repre-
sents the pixel annotation. Since the pixels can only
contain either zero (background) or one (organoid),
the positive set consists of positive ”background”
pairs and positive ”non-background” pairs. Simi-
larly, the negative set N can be defined as

N = {(p1, p2) | p1, p2 ∈ I, loc(p1) ̸= loc(p2), val(p1) ̸= val(p2)} (3.3)

The negative set N will therefore only consist of
pairs with one ”background pixel” and one ”non-
background” pixel. Translation and zooming are
not used in this stage for the reason that positive
non-background pixels are already sparse (the
images mainly consist of background pixels) and
translation and zooming can cause less ”organoid”
pixels.

Similar to the first stage, each image is undergoing
a random sequence of the augmentations twice. ai
represents the augmented image at index i in A
and h(xi) = g(f(ai))) represents the output feature
map after going through the U-Net network f and
the MLP g. The formula for the local contrastive
loss of feature map h(ai) is

Loss(ai) = −
1

|Ω|

∑
(u,v)∈Ω

1

P (u, v)
log

∑
(up,vp) ∈P (u,v) exp(hu,v · hup,vp /τ)∑
(u′ ,v′ ) ∈N(u,v) exp(hu,v · hu′ ,v′ /τ)

(3.4)

Figure 3.7: Example of a positive pair and a
negative pair in the local supervised contrastive
stage.

where (u,v) represents the column and row indices
of the feature map, respectively. τ is the tempera-
ture. P(u,v) and N(u,v) denote the sets of similar
and dissimilar features, respectively. Ω is the total
number of non-background pixels used in the loss
computation. Since the goal of the neural network
is to learn about the structure of the organoids,
positive pairs that consist of ”background” pixels
are filtered out of the positive set. The formula for
the total local loss can be defined as

Ll =
1

|A|
∑
ai ∈ A

loss(ai) (3.5)

where A is the augmented image set.

3.4.3 Third stage: Segmentation fine-
tuning

The final stage of the semi-supervised learning
approach involves segmentation fine-tuning, which
utilizes the pre-trained U-Net model from the pre-
training stage. Figure 3.8 visualizes the structure
of this stage. Again, the green blocks resemble the
U-Net and the head is the MLP. This fine-tuning
process is employed for the purpose of performing
semantic segmentation tasks on an organoid im-
age dataset. In this stage, no augmentation tech-
niques are used. The augmentation techniques can
cause distortions/alterations that compromise the
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semantic integrity of the ground truth images and
accurate segmentation is needed in this stage.

Figure 3.8: The structure of the segmentation
fine-tuning stage. The green blocks resemble the
full U-Net layers. The head is the MLP.

3.5 Loss-functions

To optimize the performance of the model for se-
mantic segmentation, it is trained using three dif-
ferent loss functions. The first loss function con-
sists of a combination of the Binary Cross-Entropy
(BCE) loss and the Dice loss. Additionally, two
other loss functions are employed with the com-
bination of the Dice loss, namely the structural
similarity (SSIM) loss and the SSIM loss combined
with mean absolute error (MAE). After training
the model with the three aforementioned loss func-
tions, the resulting three models are compared to
each other using the F1-score metric. This compari-
son allows for the determination of the loss function
that most effectively optimizes the model’s perfor-
mance for the segmentation tasks.

3.5.1 BCE loss

The Binary Cross-Entropy loss is a widely used loss
function for classification tasks. Cross-entropy is
defined as the measure of the difference between
two probability distributions (Jadon, 2020). The
formula for the BCE loss is defined as

LBCE(y, ŷ) = −(y·log(ŷ)+(1−y)·log(1−ŷ)) (3.6)

where y is the ground truth and ŷ is the predicted
mask.

3.5.2 Dice loss

The Dice coefficient is widely used for tasks where
the similarity needs to be calculated between the
predicted image and its real mask (Jadon, 2020).
The formula for the dice loss is defined as

Ldice(y, ŷ) = 1− 2 · y ∩ ŷ

y + ŷ
(3.7)

where the numerator represents the union of the
ground truth and the predicted mask, and the de-
nominator represents the sum of the ground truth
and the predicted mask.

3.5.3 SSIM loss

The Structural Similarity Index Measure is a
method to calculate the structural similarity of the
ground truth and the predicted mask (Nilsson &
Akenine-Möller, 2020). The formula for the SSIM
loss is defined as

LSSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.8)

where µx and µy denote the mean of the input im-
age x and target image y respectively, σx and σy

denote the standard deviations of x and y and σxy

is the covariance of x and y. C1 and C2 are small
constants added to avoid division by zero.

3.5.4 MAE

The Mean Absolute Error measures the error be-
tween the ground truth and the predicted mask.
The formula for the MAE is defined as

LMAE(x, y) =

∑N
i=1 |yi − xi|

n
(3.9)
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where y is the prediction, x is the true value and n
is the total number of data points.

4 Experiment

4.1 Dataset

The dataset contains a collection of grey images,
each of which contains one or more organoids.
The images are accompanied by masks that iden-
tify the pixels corresponding to the organoids and
non-organoids. The dataset consists of approxi-
mately 80,000 crops and masks. The dataset of
80,000 crops and masks was partitioned into three
distinct sets for different stages of training and
testing. Specifically, around 35,000 crops were set
aside for the pre training phase, while another
35,000 crops were reserved for the segmentation
fine-tuning stage. The remaining 10,000 crops were
used for assessing the performance of the model.
The resolutions of the crops are 320 x 320 pixels.

4.2 Pre-training stage

33,680 images and the corresponding masks were
reserved for the pre-training stage. Since the pre-
training stage itself consists of two stages, 16,840
images were set aside for each stage. To manage the
computational costs and ensure reasonable training
times, a maximum of 60% of the images (i.e. 10104
images) was used for both stages.

4.2.1 Global unsupervised contrastive
learning stage

In this stage, the neural network consists of the U-
Net encoder and the MLP. During this stage, the
neural network was trained six times, each time us-
ing a different percentage of the dataset. Specifi-
cally, the training process involved training the neu-
ral network with subsets of increasing size, ranging
from 10% (1684 images) to 60% (10,104 images) of
the entire dataset. Each time the neural network
was trained, 5-fold cross validation was used to ob-
tain a more reliable estimate of the model’s per-
formance on unseen data. This resulted in 6 x 5
= 30 models. Table 4.1 shows all the values of the
different parameters used in this stage.
The neural network receives two tensors as input,
denoted as xis and xjs. Each element xi and xj ,

Parameter Value
Learning rate 0.0001
Batch size 50
Epochs 50
Temperature 0.5

Table 4.1: Model parameters of the global un-
supervised contrastive learning stage with their
values

where i == j, are derived from the same image,
and thus form a positive pair. Both tensors possess
a shape of (50,1,320,320), where 50 corresponds to
the batch size, 1 corresponds to the greyscale chan-
nel, and (320 x 320) represents the image size. After
being processed through the encoding component
of the U-Net architecture, the output dimensions
of both xis and xjs become (50,512,320,320). Sub-
sequently, these tensors are directed to the MLP,
which employs a 2D average pooling layer followed
by two fully connected layers to transform the neu-
ral network outputs into vector representations of
the images. The final output of both xjs and xjs
will be (50,256) and these vector representations
are used for computing the global contrastive loss.

4.2.2 Local supervised contrastive learning
stage

All 6 models from the first stage needed to be
trained on the second stage. The best fold was cho-
sen for each of the six models of the first stage. The
optimal fold was determined by selecting the model
with the lowest average validation loss across the
epochs. The saved weights of each best fold were
loaded into the encoding path of the full U-Net.
Then, the model was trained again on the six mod-
els from the local supervised contrastive learning
stage, each with five folds. As a result, 6x6x5 = 180
models were created. Table 4.2 shows all values of
the different parameters used in this stage.

4.3 Segmentation fine-tuning stage

The best folds from each of the 36 models of the
second stage were chosen for the last training-stage.
Again, the optimal fold was determined by select-
ing the model with the lowest average validation
loss across the epochs. In the last stage, all 36 mod-
els were trained using the 3 losses defined in section
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Parameter Value
Learning rate 0.0001
Batch size 8
Epochs 8
Block size 16
Temperature 0.07

Table 4.2: Model parameters of the local super-
vised contrastive learning stage with their val-
ues

3.5, namely Dice loss + BCE loss, Dice loss + SSIM
loss and Dice + SSIM-MAE loss. Hence, 36 x 3 =
108 models were created. The resulting three mod-
els were compared to each other using the F1-score
metric.

5 Results

5.1 Semi-supervised learning ap-
proach vs supervised learning
approach

The first research question that needs to be
answered is whether the semi-supervised learning
approach outperforms the supervised learning
approach. And if so, what is the minimum amount
of data required in the pre-training stage to
develop a model that outperforms the supervised
learning approach?

In order to test the effectiveness of the pre-
training stage on the segmentation performance,
the F1-scores of the pre-trained models (i.e. semi-
supervised approach) are compared to the non
pre-trained models (supervised approach). Figures
5.1, 5.3 and 5.5, each trained with a different
loss combination, contain six plots that show the
progression of the F1-scores with increasing data
proportions for the global stage. The data propor-
tion for the local stage remains fixed. By keeping
the data proportions for the local stage constant,
it is possible to determine whether increasing the
data proportion for the global stage has a positive
impact on the F1-score. Figures 5.1, 5.3 and 5.5 all
show the same pattern, in which more data used
in the global stage does not increase the F1-score.
Instead the F1-score remains unchanged when

more data is reserved for the global stage. This is
likely due to the fact that in a ”global sense” the
organoid images in the dataset are already quite
similar to each other. Therefore, by allocating
more data to the global stage, the data set will
not be more diverse and will not lead to a better
F1-score.

Figures 5.2, 5.4 and 5.6, each trained with a
different loss combination, contain six plots that
show the progression of the F1-scores with increas-
ing data proportions for the local stage. The data
proportion for the global stage is held constant
to be able to determine whether increasing data
proportions for the local stage has a positive
impact on the F1-scores. In these Figures, it can
be seen that as more data is used for the local stage
there is an increase in the F1-score. Thereby, most
pre-trained models outperform the supervised
model when 60% of the data is used for the local
stage as opposed to 10%. Since the local stage is
trained with supervision, adding more data will
lead to a more generalized model, which is more
robust to over-fitting.

To conclude, it is difficult to determine the specific
data amounts needed for the pre-training
stage to outperform the supervised model. How-
ever, the local stage seems to have a more positive
impact on the F1-scores as more data is used com-
pared to the global stage.

5.2 SSIM(-MAE) loss vs BCE-loss

The second research question is to examine
whether the SSIM loss and the SSIM-MAE loss
lead to better organoid segmentation as opposed
to the BCE loss when being used for fine-tuning
the model. Table 5.1 shows the mean F1-score and
the mean standard deviation of all 36 pre-trained
models trained with the three different loss com-
binations. Based on the F1-scores, the BCE and
Dice loss combination outperforms the SSIM(-
MAE) and Dice loss combinations. However, the
F1-scores alone do not provide a comprehensive
understanding of the overall performance. Figure
5.7 shows three randomly selected organoid images
from the test set, their masks and the predictions
of the three fine-tuned models with the highest
F1-scores. Although the three predicted masks
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(Semi-)supervised results: BCE loss and Dice loss

Figure 5.1: Progression of F1-score with increasing data usage in the global
stage, with constant proportion for the local stage, and trained with the
combination of the BCE loss and Dice loss. The blue lines indicate the mean
of the supervised model without the pre-training stage. The red lines indicate
the mean of the semi-supervised models and the vertical lines indicate their
corresponding standard deviations.
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Figure 5.2: Progression of F1-score with increasing data usage in the local
stage, with constant proportion for the global stage, and trained with the
combination of the BCE loss and Dice loss. The blue lines indicate the mean
of the supervised model without the pre-training stage. The red lines indicate
the mean of the semi-supervised models and the vertical lines indicate their
corresponding standard deviations.
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(Semi-)supervised results: SSIM loss and Dice loss

Figure 5.3: Progression of F1-score with increasing data usage in the global
stage, with constant proportion for the local stage, and trained with the
combination of the SSIM loss and Dice loss. The blue lines indicate the mean
of the supervised model without the pre-training stage. The red lines indicate
the mean of the semi-supervised models and the vertical lines indicate their
corresponding standard deviations.
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Figure 5.4: Progression of F1-score with increasing data usage in the local
stage, with constant proportion for the global stage, and trained with the
combination of the SSIM loss and Dice loss. The blue lines indicate the mean
of the supervised model without the pre-training stage. The red lines indicate
the mean of the semi-supervised models and the vertical lines indicate their
corresponding standard deviations.
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(Semi-)supervised results: SSIM-MAE loss and Dice loss

Figure 5.5: Progression of F1-score with increasing data usage in the global
stage, with constant proportion for the local stage, and trained with the
combination of the SSIM loss and Dice loss. The blue lines indicate the mean
of the supervised model without the pre-training stage. The red lines indicate
the mean of the semi-supervised models and the vertical lines indicate their
corresponding standard deviations.
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Figure 5.6: Progression of F1-score with increasing data usage in the local
stage, with constant proportion for the global stage, and trained with the
combination of the SSIM loss and Dice loss. The blue lines indicate the mean
of the supervised model without the pre-training stage. The red lines indicate
the mean of the semi-supervised models and the vertical lines indicate their
corresponding standard deviations.
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BCE & Dice SSIM & Dice SSIM-MAE & Dice
F1-score 0.893 ± 0.120 0.885 ± 0.128 0.886 ± 0.127

Table 5.1: Mean F1-score and standard deviation of all 36 pre-trained models trained with different
loss combinations.

Figure 5.7: Three randomly selected organoid images from the test set, attached with the real
masks and the predictions of the three fine-tuned models. The predictions of each of the three
fine-tuned models are derived from the model with the highest F1-score of all 36 models.
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look quite similar for each organoid image, there
are some differences between them. Upon observ-
ing the predictions obtained from training with
the BCE and dice loss combination, irregularities
become apparent in some organoids, indicated by
the red boxes. The predictions of the other loss
combinations also contain irregularities in certain
organoids but is more evident in the predictions
of the BCE and dice loss combination. Some
organoids contain random black pixels and other
organoids exhibit irregular boundaries. This can
best be explained by the formula of the BCE loss
(see formula 3.6). The BCE loss function treats
each pixel independently, aiming to minimize the
difference between the predicted values and the
ground truth labels on a pixel-wise basis. Since the
BCE loss function does not take into account the
relationship between pixels and the spatial struc-
ture of the image, it may result in inconsistencies
and irregularities in the segmented regions. On
the other hand, the SSIM loss (see formula (3.8))
does take into account the luminance, contrast and
structural components of the images, which allows
the model to better capture the spatial structure
of the image and the relationships between pixels.
Figure 5.8 provides a visualization that clarifies
the explanation. The left image shows a circle,
intended to represent a real organoid object. The
middle- and right images exhibit similar structural
patterns although the middle image has a smaller
radius while the right image contains random
black pixels. Both images have an equal number of
misclassified pixels.

Figure 5.8: Three 320x320 pixel images: left
- real organoid, middle - similar shape with
smaller radius, right - similar shape with ran-
dom black pixels.

As expected, the BCE loss values are similar for
the middle image and right image as the BCE
loss does not consider pixel relationships and the
spatial structure. Conversely, the SSIM loss values
differ between the images. The SSIM loss is lower
for the middle image compared to the right image,
indicating that the SSIM prioritizes coherent
shapes over incoherent shapes.

To conclude, based on the F1-score, the BCE
and Dice loss combination outperforms the SSIM(-
MAE) loss combinations. However, in terms of the
organoids’ coherent structure, the SSIM loss might
be a better choice than the BCE loss.

5.3 Frozen models vs non-frozen
models

The third research question focuses on examining
whether freezing (vs not freezing) the encoder of
the global stage when training on the local stage
led to better final segmentation results. Table
5.2 shows the F1-scores of the frozen models and
the non-frozen models. All non-frozen models
exhibit higher F1-scores than their corresponding
frozen models. Figure 5.9 visualizes three random
organoid images from the test set, where the
F1-score for the frozen and non-frozen models
can be discussed. As can be seen in the Figure,
the F1-scores of the frozen models are (far) lower
than the F1-scores of the non-frozen models.
However, the frozen models actually provide better
predictions of the input image than the non-frozen
predictions. The reason that the F1-score is lower
for the frozen models is because the real mask
does not contain some large organoids, indicated
with the red boxes. Therefore, given that the
masks are not always perfectly aligned with the
actual organoids, the F1-scores should not be fully
trusted. The larger organoids are better captured
by the frozen models because the global stage
parameters aims to learn the high-level features
that can help the network differentiate between
images with different characteristics, such as
variations in shape and size. The local stage aims
to learn the low-level features by capturing the
fine details. For the non-frozen models, the local
stage parameters diminish the efficiency of the
global stage parameters and therefore the larger
organoids are detected worse.
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frozen non-frozen

F1-score
BCE & Dice SSIM & Dice SSIM-MAE & Dice BCE & Dice SSIM & Dice SSIM-MAE & Dice
0.886 ± 0.119 0.867 ± 0.138 0.864 ± 0.139 0.901 ± 0.114 0.891 ± 0.126 0.893 ± 0.126

(a) 40% global stage, 60% local stage

frozen non-frozen

F1-score
BCE & Dice SSIM & Dice SSIM-MAE & Dice BCE & Dice SSIM & Dice SSIM-MAE & Dice
0.875 ± 0.128 0.869 ± 0.130 0.852 ± 0.137 0.890 ± 0.121 0.880 ± 0.130 0.879 ± 0.130

(b) 60% global stage, 10% local stage

Table 5.2: The F1-scores of the six trained frozen models attached with their corresponding non-
frozen models.

Figure 5.9: Three randomly selected organoid images from the test set, attached with the real
masks and the predictions of three frozen models and three non-frozen models.
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To sum up, based on the F1-scores, the non-frozen
models outperform the frozen models. However, the
real masks are not always perfectly aligned with
the actual organoids and the frozen models seem
to better capture the larger organoids.

6 Conclusion

6.1 Discussion

This work evaluates the performance of the semi-
supervised learning approach by implementing
a two-step pre-training procedure. The perfor-
mance is measured by comparing the F1-scores of
the semi-supervised learning approach with the
F1-scores of the supervised learning approach.
Contrary to previous research (Berthelot et al.,
2019) (Zhai et al., 2019), the results indicate that
increasing the amount of unlabeled data does not
result in improved segmentation performances
for the semi-supervised models compared to the
supervised models. The images of the dataset
show a certain degree of similarity, which is why
more data does not necessarily lead to better
segmentation performances.

Additionally, the three different loss combinations
are evaluated by comparing the F1-scores and
by comparing the predicted masks. The results
indicate that the SSIM(-MAE) (vs BCE) loss is
better at segmenting the organoids’ coherent struc-
ture. This result is evident when looking at their
respective formulas (Nilsson & Akenine-Möller,
2020) (Jadon, 2020).

Finally, image visualization and F1-score com-
parison is done for the frozen (vs non-frozen)
models. The results indicate better segmentation
performances of the large organoid structures for
the non-frozen (vs frozen) models. Due to the
larger influence of the global stage parameters on
the final model, the model is better at capturing
the larger organoid structures.

The study is confronted with two major issues.
First, the F1-scores are not fully reliable since the
real masks are not always perfectly aligned with
the actual organoids present in the original images.

Therefore, drawing conclusions on the F1-scores
only becomes problematic. The only way to dis-
cover the performance is by visually analysing all
of the predicted masks. Unfortunately, analysing
all predicted masks is impractical due to the
substantial workload.

Another potential problem is the class imbalance of
the image dataset. Most of the dataset is made up
of background pixels and only a small amount con-
sists of organoid pixels. This can lead to poor gen-
eralization on new seen datasets (Ali et al., 2013).
Since the background class dominates the training
data, the model may not effectively capture the pat-
terns and characteristics of the organoid pixels.

6.2 Future work

For further research, the focus should be placed on
two key aspects: improving the reliability of the seg-
mented masks and resolving the class imbalance of
the organoid- and background pixels. By improv-
ing the reliability of the segmented masks, perfect
segmentation performance can be achieved and the
evaluation scores can be more heavily relied on. By
minimizing the differences between the organoid-
and background pixels, the model will receive equal
exposure to both of the classes, making it better
at learning the patterns and characteristics of the
organoids.
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