
Proxy Attention : Approximating Attention

in CNNs using Gradient Based Techniques
Masters Thesis Project

(Computational Intelligence and Robotics)

Subhaditya Mukherjee (s4747925)

July 6, 2023

Internal Supervisor: S.H. Mohades Kasaei, PhD

Second Internal Supervisor: Matias Valdenegro, PhD

Artificial Intelligence
University of Groningen, The Netherlands

2

CONTENTS

1 Introduction 9
1.1 Problem Statement . 9

1.2 Motivation . 9

1.3 Context and Novelty . 10

1.4 Contributions . 10

1.5 Challenges . 10

1.6 Research Questions . 11

1.7 Thesis Outline . 11

2 State of the Art 12
2.1 Gradient Based Explanations . 12

2.1.1 Need For Explainability . 12

2.1.2 Literature . 13

2.2 Augmentation . 18

2.2.1 Need for Augmentation . 18

2.2.2 Literature . 19

2.2.3 Similar Methods . 22

2.2.4 Limitations . 23

3 Proposed Method 25
3.1 Proxy Attention . 25

3.2 Implementation . 26

3.2.1 Hyper Parameters . 26

3.2.2 Training Biases . 29

3.2.3 Overview of the Codebase . 30

3.2.4 Datasets . 30

3.2.5 Data Loading and Pre-Processing . 35

3.2.6 Architectures . 38

3.2.7 Grid Search . 40

3.2.8 Training Resumption . 40

3.2.9 Optimizations . 41

3.2.10 Tensorboard . 42

3

3.2.11 Optimizer . 43

3.2.12 LR scheduler . 43

3.2.13 Loss function . 44

3.2.14 Batch Size Finder . 44

3.2.15 Result Aggregation . 44

3.2.16 Inference . 44

4 Results 46
4.1 Time to run the Proxy Step . 46

4.2 Accuracy . 46

4.2.1 Results Per Dataset . 46

4.2.2 Tsinghua Dogs and Places Results . 46

4.2.3 Stanford Dogs and CIFAR100 Results . 47

4.2.4 Caltech101 and ASL Results . 47

4.2.5 Plant Disease Results . 47

4.2.6 Results Grouped By Schedule . 48

4.2.7 Results Grouped By Proxy Threshold . 49

4.2.8 Results Grouped By Proxy Image Weight . 50

4.2.9 Results Grouped By Proxy Image Subset . 51

4.3 Explanability . 51

4.3.1 CIFAR 100, ResNet18, EigenGradCAM . 52

4.3.2 CIFAR 100, EfficientNetB0, EigenGradCAM . 52

4.3.3 CIFAR 100, ViT , EigenGradCAM . 52

4.3.4 CIFAR 100, ViT , GradCam++ . 54

4.3.5 Tsinghua Dogs, ResNet50 , GradCam++ . 54

4.3.6 Tsinghua Dogs, ResNet18, EigenGradCAM . 54

4.4 Improvement in Other Metrics . 56

5 Discussion 57
5.1 Research Questions . 57

5.2 Discussion of Results . 58

5.3 Limitations of this Study . 58

5.4 Future Work . 59

5.5 General Discussion . 60

5.5.1 Data Augmentation . 60

5.5.2 Other Domains . 60

5.5.3 Model Architecture and Attention Modules . 60

5.5.4 Gradient Based Techniques . 61

5.5.5 Hyperparameters . 61

5.5.6 Stability and Training Effects . 61

5.5.7 Challenges with External Libraries . 61

6 Conclusion 63
6.1 Lessons Learned . 63

4

7 Appendix 64
7.1 Intuition Figure . 64

7.2 Proxy Images Examples . 64

7.3 Batch Finder Algorithm . 64

7.4 Additional Explanability Results . 64

5

LIST OF FIGURES

2.1 Taxonomy of Data Augmentation [29] . 19

3.1 Proxy Attention Visualized . 26

3.2 A comparison of different methods to replace the pixels in the original image 28

3.3 A visualization of the different thresholds and their effect on the image 29

3.4 Code Directory Structure . 31

3.5 A batch of images from the CIFAR100 dataset . 32

3.6 A batch of images from the Stanford Dogs dataset . 32

3.7 A batch of images from the ASL Alphabet dataset . 33

3.8 A batch of images from the Plant Disease dataset . 33

3.9 A batch of images from the Caltech101 dataset . 34

3.10 A batch of images from the Places dataset . 35

3.11 A batch of images from the Tsinghua Dogs dataset . 35

3.12 The structure of the Dataset Directory . 36

3.13 VGG16 architecture . 38

3.14 ResNet18 architecture . 39

3.15 EfficientNetB0 architecture . 39

3.16 ViT Base Patch 16×224 architecture . 40

4.1 Comparing Accuracies of Models trained with and without Proxy Attention on the Tsinghua

Dogs and Places datasets . 47

4.2 Comparing Accuracies of models trained with and without Proxy Attention on the Stanford

Dogs and CIFAR100 datasets . 48

4.3 Comparing Accuracies of models trained with and without Proxy Attention on the Caltech101

and Asl datasets . 48

4.4 Comparing Accuracies of models trained with and without Proxy Attention on the Plant Disease

dataset . 49

4.5 Comparing Accuracies of models trained with and without Proxy Attention on the ResNet50

[27] architecture for different step schedules . 49

4.6 Comparing Accuracies of models trained with Proxy Attention for Different Proxy Thresholds 50

4.7 Comparing Accuracies of models trained with Proxy Attention for Different Proxy Image Weights 51

4.8 Comparing Accuracies of models trained with Proxy Attention for different Proxy Image Subsets 52

6

4.9 Comparison of attention maps generated by resnet18 trained with and without Proxy Attention

on the CIFAR100 dataset . 53

4.10 Comparison of attention maps generated by efficientnet_b0 trained with and without Proxy

Attention on the CIFAR100 dataset . 53

4.11 Comparison of attention maps generated by vit_base_patch16_224 trained with and without

Proxy Attention on the CIFAR100 dataset . 54

4.12 Comparison of attention maps generated by vit_base_patch16_224 trained with and without

Proxy Attention on the CIFAR100 dataset . 55

4.13 Comparison of attention maps generated by resnet50 trained with and without Proxy Attention

on the Tsinghua Dogs dataset . 55

4.14 Comparison of attention maps generated by resnet18 trained with and without Proxy Attention

on the Tsinghua Dogs dataset . 56

7.1 Intuition Figure for Proxy Attention . 64

7.2 Example of Proxy Images 1 . 65

7.3 Example of Proxy Images 2 . 66

7.4 Example of Proxy Images 3 . 67

7.5 Diagramatic representation of the Batch Size Finder Algorithm 68

7.6 Comparison of attention maps generated by resnet18 trained with and without Proxy Attention

on the CIFAR100 dataset using EigenGradCAM . 69

7.7 Comparison of attention maps generated by resnet18 trained with and without Proxy Attention

on the CIFAR100 dataset using EigenGradCAM . 69

7.8 Comparison of attention maps generated by resnet18 trained with and without Proxy Attention

on the CIFAR100 dataset using EigenGradCAM . 70

7.9 Comparison of attention maps generated by efficientnet_b0 trained with and without Proxy

Attention on the CIFAR100 dataset using EigenGradCAM 70

7.10 Comparison of attention maps generated by efficientnet_b0 trained with and without Proxy

Attention on the CIFAR100 dataset using EigenGradCAM 71

7.11 Comparison of attention maps generated by efficientnet_b0 trained with and without Proxy

Attention on the CIFAR100 dataset using EigenGradCAM 71

7.12 Comparison of attention maps generated by vit_base_patch16_224 trained with and without

Proxy Attention on the CIFAR100 dataset using EigenGradCAM 72

7.13 Comparison of attention maps generated by vit_base_patch16_224 trained with and without

Proxy Attention on the CIFAR100 dataset using EigenGradCAM 72

7.14 Comparison of attention maps generated by vit_base_patch16_224 trained with and without

Proxy Attention on the CIFAR100 dataset using EigenGradCAM 73

7.15 Comparison of attention maps generated by vit_base_patch16_224 trained with and without

Proxy Attention on the CIFAR100 dataset using GradCAM++ 73

7.16 Comparison of attention maps generated by vit_base_patch16_224 trained with and without

Proxy Attention on the CIFAR100 dataset using GradCAM++ 74

7.17 Comparison of attention maps generated by vit_base_patch16_224 trained with and without

Proxy Attention on the CIFAR100 dataset using GradCAM++ 74

7

7.18 Comparison of attention maps generated by resnet50 trained with and without Proxy Attention

on the Tsinghua Dogs dataset using GradCAM++ . 75

7.19 Comparison of attention maps generated by resnet50 trained with and without Proxy Attention

on the Tsinghua Dogs dataset using GradCAM++ . 75

7.20 Comparison of attention maps generated by resnet50 trained with and without Proxy Attention

on the Tsinghua Dogs dataset using GradCAM++ . 76

7.21 Comparison of attention maps generated by resnet18 trained with and without Proxy Attention

on the Tsinghua Dogs dataset using EigenGradCAM . 76

7.22 Comparison of attention maps generated by resnet18 trained with and without Proxy Attention

on the Tsinghua Dogs dataset using EigenGradCAM . 77

7.23 Comparison of attention maps generated by resnet18 trained with and without Proxy Attention

on the Tsinghua Dogs dataset using EigenGradCAM . 77

8

KEY

1. ⊙ denotes element-wise multiplication

2. CNN denotes Convolutional Neural Network

3. NLP denotes Natural Language Processing

4. NN denotes Neural Network

5. SOTA denotes State of the Art

6. ViT denotes Vision Transformer

7. XAI denotes Explainable Artificial Intelligence

8. LR denotes Learning Rate

9. LM denotes Language Modeling

10. CV denotes Computer Vision

9

CHAPTER 1
INTRODUCTION

1.1 Problem Statement
The problem statement of this study is creating a novel augmentation technique Proxy Attention, that uses

attention maps to improve the performance of any model by de-weighting the regions that are not important for

the classification task and guiding the model to better focus on critical parts of the image. In turn, this method

should also improve the explainability of the model while maintaining the same architecture and hyperparam-

eters.

1.2 Motivation
Over the past few years, Transformers have slowly become the SOTA in most NLP tasks. Recently, they have

also started taking over the CV world. Dosovitskiy et al. [1] modified the image pipeline to generate patches

of images, hence mimicking the NLP pipeline required by the Transformer. Doing so led to the creation of

Vision Transfer (ViT), variants of which have also been used to achieve SOTA results in image classification.

However, ViTs are computationally expensive, harder to train, and require more data. While transfer learning

can mitigate the data requirement, CNNs are still extremely useful and are the go-to choice for many computer

vision tasks.

One of the biggest advantages of Transformers is Attention, which helps it learn where to look in an image/text

[2]. The caveat of the boost in performance that Attention brings is offset by its computational cost. As Poli

et al. [3] in their research on larger language models, find, using Attention is not always worth it. Bastings et

al. [4] compare the concepts of Attention maps from Transformers and Saliency maps from CNNs and find

that Transformers do not always have much of an advantage in explainability. CNNs are still extremely useful,

but they lack the inbuilt explainability of Transformers. Most CNNs we use today rely on older concepts,

and upgrading the principles behind them to fit more modern standards takes work. An initial idea for this

study is inspired by the work of Liu et al. [5], where the authors proposed a new architecture that uses

many concepts from Transformers to improve the performance of CNNs. While this approach is promising, it

requires a lot of changes to the architecture and hyperparameters and needs to generalize better to other models.

The motivation behind Proxy Attention is to combine the best of CNNs and ViTs. Since it is not di-

rectly possible without specialized architectures, we use XAI techniques to approximate the effects of

Attention and use it as a Proxy. The idea behind Proxy Attention stems from the following intuition: the

mistakes made by CNNs are often due to the model focusing on the wrong regions of the image. While CNNs

eventually learn to understand the images better and choose the right regions, this requires quite some training

10

time. Proxy Attention aims to slightly speed up this process and eventually make the model converge faster by

gently guiding its Attention away from the regions that are not important for the classification task. (Refer to

Fig. 7.1 for a visual representation of the idea behind Proxy Attention).

Proxy Attention uses what the model already knows to help guide it by allowing it better understand its

mistakes. The regions that the model used to make its prediction can be identified using XAI techniques. If

the image is misclassified, the model probably focused on the wrong regions. Using this information, we can

re-weight the image to minimize the effect of the regions that most strongly influenced the prediction. Since the

model is already familiar with the image, showing it a modified version of the image as an image augmentation

should potentially help it generalize better.

This research further explores the idea of Proxy Attention and tests its effect on the performance and

explainability of standard models for classification tasks. No method is perfect, and Proxy Attention is no

exception. That being the case, we also explore some of the limitations of Proxy Attention and discuss possible

solutions to mitigate them.

1.3 Context and Novelty
Proxy Attention is relevant to any computer vision task, but we focus on image classification in this study.

Using Proxy Attention, significant improvements in performance and explainability can be achieved without

changing the architecture and with minimal changes to an existing code base.

This study’s novelty is using XAI techniques as an augmentation technique to approximate the effects of Atten-

tion in a CNN and guide the model’s focus away from the regions that are preventing it from making the correct

prediction. Proxy Attention is created to show that the explainability of CNNs can be improved by using the

outputs from XAI techniques.

Combining these two concepts is a novel approach, and the author hopes that this study will inspire further re-

search in this direction and motivate researchers to explore the possibilities of combining seemingly unrelated

concepts to create novel solutions.

1.4 Contributions
The contributions of this thesis are as follows:

• Novel augmentation technique that uses attention maps: We proposed a novel, easy-to-implement

augmentation technique - Proxy Attention that uses attention maps generated by XAI methods to emulate

Attention in CNNs. We showed that this technique can be used to improve the performance of CNNs

without any change in the architecture. We also showed that Proxy Attention improves the explainability

of the model with minimal computational overhead.

• Robustness: We performed many experiments with different hyperparameters and models to test the

method’s robustness and find the best configuration.

• Open source callback code: We have open-sourced the code that can be used to add Proxy Attention to

any existing code base easily.

• Tensorboard Log Parser: We have also open-sourced a script to quickly parse tensorboard logs to a

unified DataFrame for easy analysis. This script is used to generate the plots and tables in this thesis.

• Reproducibility: All the scripts used for this thesis and the training logs are available for open source.

This makes it easy to reproduce all the results in this thesis.

1.5 Challenges
The major challenges of this study are as follows:

11

1. Creating a novel augmentation technique that uses attention maps to improve the model’s performance.

2. Testing the effect of Proxy attention on the explainability of the model.

3. Comparing many hyperparameters and models with limited computational resources.

4. Optimizing the usage of XAI techniques to improve the computational efficiency of Proxy Attention.

1.6 Research Questions
The main research questions that summarize the aims of this study are as follows.

1. Is it possible to create an augmentation technique that uses Attention maps?

2. Is it possible to approximate the effects of Attention from ViTs in a CNN without changing the architec-

ture?

3. Is it possible to make a network converge faster and consequently require less data using the outputs from

XAI techniques?

4. Does using Proxy Attention impact the explainability positively?

1.7 Thesis Outline
This thesis follows the following structure:

• Chapter 2 provides the necessary background information and literature review of the relevant topics.

• Chapter 3 describes the methodology used in this study and the implementation details.

• Chapter 4 presents the results and answers the research questions.

• Chapter 5 discusses the results in the context of the research questions and provides recommendations

for future work.

• Chapter 6 concludes the thesis and talks about personal learnings.

• Chapter 7 provides additional details and results.

12

CHAPTER 2
STATE OF THE ART

This chapter discusses the current state of the art in the fields of Gradient-Based Explanations and Augmenta-

tions for CNNs. The chapter is divided into two sections, one for each of the fields. The first section discusses

the various methods used to explain the predictions of CNNs. The second section discusses the different meth-

ods used to augment the training data for CNNs. This chapter also discusses the limitations of the current

techniques and the motivation behind Proxy Attention.

2.1 Gradient Based Explanations

2.1.1 Need For Explainability

With the massive influx of new AI technologies and public use of these advanced technologies, being able to

have some way to determine how well the systems perform outside the standard metrics is very important. The

field of XAI aims to provide these explanations and, in the process, enable stakeholders to have a higher trust

in the AI models given to them. The following subsection lists some major reasons for using XAI techniques

for any AI research project.

• Fairness: What a model learns depends largely on the dataset it is trained on. That being the case, if

the dataset is biased towards a certain class, the model might learn that bias during training. Examples

include - Not having people of color in a face recognition dataset, having gendered examples in a formal

clothing dataset, etc. XAI can help find these biases before a model is shipped to production.

• Safety: In safety-critical systems such as self-driving cars or medical diagnosis, knowing what factors

led a model to provide a specific output is essential. Even if the system is partially operated by a human

expert, having incorrect predictions could potentially lead to fatal decisions. XAI can be used to provide

the required insights and prevent potentially harmful outcomes.

• User Experience: Since most real-world models are used in collaboration with human experts, having

explanations makes the job of the human much more accessible and increases trust in the decisions

provided by the model.

• Better Model Performance: Once we understand why a model is making inevitable mistakes, we can

adjust the model or the data it is trained on to correct these issues. Using XAI techniques, it is possible

to identify issues with the data or the models in question and potentially improve performance. (A good

case in point is the research done for this paper - Proxy Attention.)

• Regulatory Compliance: Some regulations require that AI systems make explainable decisions. GDPR,

for instance, includes a "right to explanation" of automated decisions. Since these policies are essential

in a societal setting, having these explanations as part of any model might help prevent legal issues. Note

https://gdpr-info.eu/

13

that GDPR and similar rules require explainability to prevent companies from releasing models without

appropriate testing.

2.1.2 Literature

Saliency Map: The earliest mention of Saliency Maps was made in a book by Koch et al. [6]. They proposed

measuring attentional control in organisms based on a combination of visual features. The Saliency Map, in this

case, refers to a topographically oriented map of these combined features that can be used to determine how

different a specific location would be from its surroundings based on the visual features. Koch et al. did not

perform any practical research and were unrelated to the field of deep learning. Although the name Saliency map

was proposed by them, the term is used interchangeably with that of the Saliency map proposed by Simonyan

et al. [7].

CAM: Another one of the most popular gradient-based XAI methods, Class Activation Mapping (aka CAM),

was proposed by Zhou et al. [8]. CAM relies on modifying the architecture of the classification network by

adding a Global Average Pooling layer and a linearly combined version of the class weights and the feature

map to produce a class activation map. Compared to previous approaches, Zhou et al. focused on the visuals

created for an explanation. Also, they mentioned that zeroing out the negative gradients for the backward step

produces more appealing results.

GradCAM: The last convolutional layer before the final dense layer can be thought to have been learned from

the combined knowledge of the entire network and can thus be used to produce a course saliency map. Thus

in GradCAM [9] the gradient is only back-propagated till the last conv layer. Another advantage of GradCAM

is that it provides class-wise activation maps for a chosen class c. To do so, only the class activations for c are

used for backpropagation. A global average pooling is also used, weighted by the gradient. A class-specific

heat map can then be generated from this information by passing the weights through a ReLU function. It is to

be noted that the generated heat map is not the same size as the image but is smaller and has to be mapped back

to the dimensions of the original input.

DeconvNet: One of the earlier approaches to Saliency maps for CNNs was proposed by Zeiler et al. [10] termed

DeconvNet. DeconvNet works by inverting the network’s operations in the forward pass. After attaching the

DeconvNet layers to the network, propagating through these layers represents features that the original CNN

possessed. The relevant reconstruction can be obtained for a single class by setting all the activations other than

the one corresponding to the class to zero. The resulting image is then used to generate the saliency map. A

Deconv layer replaces the Conv layer, and the ReLU operation has negative values clamped. While the pooling

operation is not strictly invertible, the authors use switch variables that store the maximum value position for

each pooling operation. While the DeconvNet works to a certain extent, the results are less accurate than the

ones obtained by other methods and are also biased towards the representations of the first layer.

Vanilla Gradient: Building on the DeconvNet, Simonyan et al. [7] extrapolate the idea of class visualization

to create one of the first approaches to Saliency maps. Their approach, also called Vanilla Gradient, ranks the

pixels of an image I0 by how important they are in the prediction of the Saliency score

Sc(I)≈ wT I +b

. In this equation, w and b are the network weights and biases obtained by back-propagating the image itself.

The objective to be minimized thus is

argm
I

axSc(I)−λ||I||22

14

where λ is used as a regularization parameter. Using these equations, a saliency map A ∈ Rm×n (m× n stands

for height ×width) can be computed. To find the map, we find the derivative of w, rearrange the elements, and

then process them according to the number of input channels. If the number of channels is greater than one, the

maximum value over the channel is considered

Ai, j = m
ch

ax|wh(i, j,ch) |

. Where ch is the color channel of the pixel (i, j), h(i, j,ch) is the index of the w corresponding to that pixel. The

Vanilla Gradient method produces an approximate saliency map but has much noise. This leads to issues for

more complex images. The methods proposed in the following papers have addressed many issues with Vanilla

Gradients and DeconvNets [10].

ScoreCAM: In another paper, the authors propose a score-weighted approach - ScoreCAM to create saliency

maps [11]. Like many other methods, the images are first passed through the network, and the corresponding

activations are obtained from the final convolutional layer. These activation maps are upsampled and normalized

to [0,1]. The highlighted activation map portions are then passed through a CNN with a softmax layer to obtain

the score for each of the current classes. These scores are used to find the activation maps’ relative importance.

Finally, the sum of all these maps is computed using a linear combination with the corresponding target score

and then passed through a ReLU operation. These operations can be mathematically represented as

Lc
ScoreCAM = ReLU(Σ

k
wc

kAk)

, where k represents the index considered, c represents the current class and Sk represents the outputs of the

SoftMax as mentioned earlier layer. The authors find that the maps obtained using ScoreCAM are less noisy,

and this method removes the dependency on unstable gradients compared to other methods.

Guided Gradcam: A variant of GradCAM [9] was proposed by Selvaraju et al. [12] where, unlike GradCAM

that finds the parts of the image that influence the model’s decision, Guided GradCAM takes the positive

gradients into account. These gradients are used to obtain an even more fine-grained representation of the

outputs of the saliency map. While GradCAM backpropagates both positive and negative gradients, Guided

Backprop only propagates the positive gradients and is defined as a pointwise multiplication of the results of

GradCAM and Guided Backpropagation [13].

Guided Backprop: Guided Backprop (GBP) [13] can be thought of as a combination of the ideas of Decon-

vNets [10] and Vanilla Gradients [7]. Since the DeconvNet does not consider negative gradients, it suffers from

a loss in performance for the higher layers in the network. Springenberg et al. propose masking all the negative

values in the ReLU function applied by DeconvNet. They use the DeconvNet mask and apply it to the output

of the Vanilla Gradient method to remove the noise that the latter creates. Doing so enables GBP to generate

clearer images than the other two methods. Note that GBP is applied across the entire network, not just the first

layer.

GradCAM++: GradCAM++ [14] improves upon the original GradCAM method by considering both first-

order and second-order gradients. Considering both allows GradCAM++ to gather more detailed information

about the significance of each pixel in an input image. The second-order gradients of the target class are com-

puted in relation to the final convolutional feature maps. These gradients are then multiplied with each other, and

are used as importance scores. GradCAM++ uses these scores to generate a more accurate heatmap, highlight-

ing the most distinguishing areas in the image. GradCAM++ also introduces a self-correcting mechanism that

15

uses positive gradient information obtained from the other classes to enhance localization precision, rectifying

any potential localization errors.

Noise Tunnel: In combination with attribution methods, Noise Tunnel [15] is an algorithm that improves the

accuracy of the masks obtained by these methods. Noise Tunnel was proposed to counter noisy and irrele-

vant attributions obtained by some gradient-based methods by adding a Gaussian Noise and then averaging

the predictions over sampled attributions. Since all the samples are considered, this method has a significant

computational overhead. For Smooth Grad [16], the new attribution is defined as

M̂c(x) =
1
n

Σ
n
1Mc(x+N (0,σ2))

. Where Mc is the attribution calculated by SmoothGrad, N (0,0.012) is the Gaussian Noise with σ = 0.01 and

n is the number of samples. Similarly for Smooth Grad Square,

M̂c(x) =
1
n

Σ
n
1

√
Mc(x+N (0,σ2))

. Noise Tunnel can also be used on Var Grad [17] with the equation

M̂c(x) =
1
n

Σ
n
k=1{Mc(x+N (0,σ2))}2 −{M̂c(x)}2

Integrated Gradients: For a model F , the attribution method Integrated Gradients [18] computes the contribu-

tion of each pixel in the image towards the final prediction. The model’s output is used to calculate a pixel-wise

partial derivative that is then integrated along a path starting from the baseline and ending at the input. Each

step is scaled according to the partial derivative obtained in the previous step. For every step k with m total

steps over the path, the IG equation is defined as

IntegratedGradsapprox
i (x) = (xi − x′i)×Σ

m
k=1

∂F(x′+ k
m × (x− x′))
∂xi

× 1
m

. Where (xi − x′i) is the pixel-wise difference between the two images,

∂F(x′+ k
m × (x− x′))
∂xi

is the partial derivative of the model output F for pixel i at the k-th step of the path, and 1
m is the scaling factor

that ensures that each of the steps taken contributes equally to the final result.

Conductance: Building upon Integrated Gradients, Dhamdhere et al. propose [19] Conductance, a means to

boost the attributions provided by IG to specific neurons in the hidden layer. This is done by decomposing the

computation that IG performs. The authors apply this method to the Inception network [20] and can find the

filters that influence the final predictions the most. For a neuron y, the network can be represented as a function

F : Rn → [0,1]. Given an input x ∈ Rn and a baseline input x′ ∈ Rn, the IG for the ith dimension at x is given by

IGi(x) = (xi − x′i)
∫ 1

α=0

∂F(x′+α(x− x′))
∂xi

dα

16

. Considering ∂F(x)
∂xi

to be the gradient of F along ith dimension at x, the Conductance for y can be defined as

Condy
i (x) ::== (xi − x′i)

∫ 1

α=0

∂F(x′+α(x− x′))
∂y

· ∂y
∂xi

dα

. The authors also propose methods of evaluating Conductance by the assumption that an influential hidden

network should be good at predicting the given input class. This assumption can be validated by two metrics:

the

Gradient ×Activation = y× ∂F(x′+α× (x− x′))
∂y

dα

and the Internal Influence :

IntIn f y(x) =
∫ 1

α=0

∂F(x′+α(x− x′))
∂y

dα

.

RISE: Petsiuk et al. propose RISE [21], a saliency method that randomly alters the input images by applying

random noise to each. After model predictions are obtained, the saliency map is generated by combining the

partial maps over each modified image. RISE improves accuracy but needs a lot of computation time, consid-

ering that multiple models must be trained for each random noise sample.

Influence Of Image Classification Accuracy On Saliency Map Estimation: Oyama et al. [22] found a strong

correlation concerning the relationship between saliency maps and image classification accuracy. The authors

found that the architecture and the initialization strategy influence the final saliency map. By analyzing the

generated saliency maps, they find that if the model is randomly initialized and trained for image classification,

having limited categories in the original dataset leads to overfitting. On the other hand, having many types

suppresses the overfitting of the objects present in the training dataset. On training their proposed network

ReadoutNet on a fixation task (which requires the network to learn where to focus), they found that the accuracy

of estimating the saliency map was linked to the image classification accuracy.

Summit: While a large amount of research focuses on interpreting the influence of a single image or neuron,

Hohman et al. propose Summit, [23] a novel scalable summarization algorithm. Summit creates an attribution

graph that distills the influence of neurons and substructures throughout the network used to make the final pre-

diction. The attribution graph is created due to combining activation aggregation, a technique to find important

neurons, and neuron-influence aggregation, a technique to find relationships among the neurons identified in

the previous step. After a forward pass through the network, the activation channels maximums are obtained to

aggregate the activations. These are then filtered by class and aggregated by taking the top k channels or the top

k channels by weight. To quantify how much a layer influences the next, the authors aggregate the influences

by creating a tensor Il for all the network layers (l). How important channel i of the layer l − 1 is determined

by the aggregate tensor Il
ci j where j represents the output channel and c is the class of the image. Considering

the jth kernel of the layer K(j) ∈ RH×W×Cl−1 , a single channel Y can be represented using the 3D convolution

operation by Y:,:, j = X ∗K(j). This is equivalent to it’s representation by the 2D convolution

Y:,:, j = Σ
Cl−1
i=1 X:,:,i ∗K(j)

:,:,i

. The value X:,:,i ∗K(j)
:,:,i is the contribution of the current channel from the previous layer, and the maximum of

this value is used to generate the influence map.

Smooth Grad: Consider an image classification task where an input image x is classified as a single class from

a set C. For every class c ∈C, the output class is represented as class(x) = argmaxc∈CSc(x). Using this class, a

17

sensitivity map Mc(x) can be generated by differentiating with respect to x,

Mc(x) =
∂Sc

∂x

. Mc, being a sensitivity map [7], thus representing the influential regions of the image used to make the pre-

diction. Since these maps are noisy, Smilkov et al. propose SmoothGrad [16], a modification of the previous

method where instead of using ∂Sc, a smoothing is applied using a Gaussian kernel to ∂Sc. The authors also

find that it is impossible to directly compute the smoothing due to high dimensionality and thus approximate

the calculation by averaging multiple maps computed in the neighborhood of x using random sampling. The

final SmoothGrad equation then becomes

M̂c(x) =
1
n

Σ
n
1Mc(x+N (0,σ2))

, where N (0,σ2) is the Gaussian noise and σ is the standard deviation.

Deep Visual Explanations: The ability of a model to explain the reason for its predictions in the context

of an image classification task is known as Deep Visual Explanation (DVE). Babiker et al. [24] propose a

method to generate DVEs by using the activation of different spatial scales in the Fourier space. Since CNNs

generate spatial information at different layers, the authors use this information in the form of feature maps to

generate explanations. The activations that do not contribute to the final prediction are penalized and the final

explanation is generated by combining the activations of the high and low spatial scales in the aforementioned

Fourier space. Combining the explanations provided by these two scales allows the authors to generate a more

targeted explanation.

Embedding Knowledge Into Deep Attention Map: Mitsuhara et al. [25] propose an approach that involves

manually editing the attention maps generated by the network to provide the model with expert human input.

They use an Attention Branch Network (ABN), fine-tune it using the manually edited attention maps, and then

use the fine-tuned model to generate the final attention map. The authors also demonstrate a tool that can be

used to interactively modify the attention maps using a mouse. This tool takes misclassified images as input and

allows the user to add or remove attention regions before passing the edited attention map to the network. The

authors also demonstrate that the fine-tuned model performs better than the original model due to the additional

expert input.

Sam ResNet: Another approach to creating attention maps involves using an LSTM as part of a method called

SAM [26] . The authors use a ResNet [27] to extract feature maps from the input image, which are then passed

to an Attentive Convolutional LSTM for refinement. A separate module is used to add priors to the attention

map to account for the center bias present in human eye fixations. Many advantages that LSTMs provide are

used in the research, such as the ability to process features iteratively. The attention map is generated with a

convolution of the previous hidden state and the input, which is then normalized using the softmax operator.

The authors find that the attention maps generated by SAM are quite accurate and using a modified version of

the ResNet, they can generate attention maps that are of higher resolution.

Eigen CAM: Another method for computing Saliency Maps without modifying the architecture of the network,

EigenCAM was proposed by Bany et al. [28]. EigenCAM uses a combination of an Eigen decomposition of

the class-activated output by projecting it on the input, and a PCA of it to remove unnecessary features from

the maps. The Eigen-Saliency map is computed across the network and produces sharper outputs based on the

distance (using PCA) from the input image. EigenCAM and Eigen Saliency maps were fused by a point-wise

18

multiplication operation.

2.2 Augmentation
2.2.1 Need for Augmentation

A good dataset is the bread and butter of a high-performing deep learning model. That being the case, it is

not always possible to have a large data set, especially for niche tasks. This is where augmentation comes

into play. The major idea behind augmentation is to generate more images given an existing dataset where the

newly generated images belong to the same distribution as the other images in the dataset. Using augmentation

techniques, it is possible to increase the size of datasets where there are few annotated samples present. It is

also to be noted that these augmentation techniques are independent of the task at hand, except for cases where

the operations do not translate well over to a different task. For instance, cropping, an image would make

sense in an image classification task, but in the case of a semantic segmentation task, performing a naive crop

without any other metrics might lead to negative performance. Yang et al. [29] proposed a hierarchy of data

augmentation techniques in their paper, which is referred to for the below classification. (Also refer to Figure

2.1 for more information.)

Classification of Augmentation techniques:

• Image Erasing : This operation refers to deleting subregions of the images to generate newer images.

The deleted regions can be replaced with values ranging from complete zeros, random numbers, or any

other parameter. Examples include : [30, 31, 32] etc.

• Image Mix : Image mixing refers to the operation where multiple images have their subregions merged.

The amount of mixing and the method of mixing these images are different for every method. An example

of such an image of mixing augmentation technique is MixUp [33].

• Image Manipulation : Image manipulation refers to any operation that modifies the image geometrically,

such as rotating or flipping the image, cropping, etc. An example of Image Mixing is CutMix [34].

• Auto Augment : Auto Augmentation refers to methods that instead of taking a fixed parameter or aug-

mentation technique, perform a grid search over a set of parameters and techniques to find one that

performs the best. Since the search space is potentially extremely large, these methods attempt to manip-

ulate the order of searches or attempt to narrow down the search space to be able to find the best method.

One of the most popular auto augmentation techniques is RandAugment [35].

• Feature Augmentation : Another method of augmentation involves manipulating transformations in the

feature space instead of the input space like the other methods. These methods work on the following

principle - since the images come from the same dataset, they are expected to be from the same distri-

bution. (This distribution can be thought of as a data manifold.) While traversing this data manifold, it is

possible to find other similar examples that could also potentially belong to the same data distribution,

thereby generating new samples that also fall in the same distribution as the original dataset. An example

would be [36].

• Deep Generative Models : GANs are a family of models that essentially perform the same task as feature

augmentation, whereby they attempt to generate images that belong to the same distribution as the input

data set. Since the generated images are similar to the images that were given to the network to learn in

the first place, but not the same, it is possible to use these outputs as images for data augmentation. It is

to be noted that using these images directly might not always be a good idea because GANs sometimes

produce noisy outputs that might lead to network learning features that are not relevant. Some examples

of GANs that can be used for Data Augmentation are [37, 38].

19

Figure 2.1: Taxonomy of Data Augmentation [29]

2.2.2 Literature

AugMix: Another augmentation strategy proposed by [39] first applies multiple transformations randomly

and in parallel chains to each image. These transformations can include combinations of Translation, Rotation,

Shearing, and others. The outputs of these combinations are then mixed to form a new image, which is further

mixed with the original image to form the new image. This combination improves performance in cases where

data shifts are encountered in production. Once the images are mixed, a skip connection is used to combine

the results of the chains. AugMix also uses the Jensen-Shannon Divergence consistency loss [40] to ensure

the images are stable across various inputs. Considering KL to be Kullback-Leibler Divergence, the Jensen-

Shannon Divergence can be defined as

JS(porig; paugmix1; paugmix2) =
1
3
(KL[porig||M||]+KL[paugmix1||M||]+KL[paugmix2||M||])

, where M is the mean of the three distributions porig, paugmix1, paugmix2.

Cutout: Devries et al., in their paper [36], propose an augmentation method they call Cutout. This method

removes random-sized square patches from the images by replacing the corresponding pixels with a constant

value (usually 0). Selecting the region involves picking a random pixel value and creating a uniform-sized

square around the chosen pixel. The authors also find that Cutout performs better with other methods than just

being used by itself. Cutout can be expressed as an element-wise multiplication operation

xcutout = x⊙M

, x is the original image, M is a binary mask of the same size as x with randomly chosen coordinates of a square

patch of pixels to be cut out, and ⊙ denotes element-wise multiplication.

Cut and Mix: Unlike Cutout [36], where the chosen patch is replaced with zero pixels, in CutMix [41], the

chosen patch is replaced with a randomly chosen patch from a different region of the same image. Yun et al.

propose this approach as multiple class labels can be learned with a single image. CutMix can be defined by

the following operations
∼
x = M⊙ xA +(1−M)⊙ xB

20

;
∼
y = λyA +(1−λ)yB

. x is an RGB image, y is the respective label, M is a binary mask of the image patch that will be dropped,

and ⊙ represents element-wise multiplication. The new training sample
∼
x,

∼
y is created by combining two other

training samples xA,yA and xB,yB. To control the combination ratio λ, a sample from the β(1,1) distribution

is chosen. This combination is quite similar to [33] but differs in the sense that CutMix focuses on generating

locally natural images.

Attentive Cutmix: Building upon [41], Walawalkar et al. propose an alternative method of replacing patches

in an image they call Attentive CutMix [42]. Instead of randomly pasting patches in the image, this method

uses a pre-trained network to identify attentive regions from the image. Similar to the earlier approach, these

patches are mapped back to the original image. Doing so allows the network to select important background

regions for the task while also updating the label information.

Cow Mask: Many of the algorithms use rectangular or square-shaped masks. While effective, French et al.

propose Cow Mask [43], a new masking method that uses irregularly shaped masks with a Gaussian filter to

reduce noise. The authors also propose two mixing methods, one that builds up on Random Erasing [30], and

another that uses Cut Mix [41]. A pixel-wise mixing threshold is also chosen, and either mixing or erasing is

applied to the image based on this threshold. This augmentation technique is shown to be effective in semi-

supervised learning.

Cut Paste Learn: Dwibedi et al. proposed another approach involving a cut-paste methodology [44]. In their

paper, the authors propose a new method of augmentation that extracts instances of objects from the images.

Instead of pasting them on other images, they are pasted on randomly chosen backgrounds. This method leads

to pixel artifacts in the images, as selecting the objects is a noisy process. To overcome the drop in performance,

the authors apply a Gaussian blur and Poisson blending to the boundaries of the pasted objects. Further aug-

mentation is applied before pasting the objects by rotation, occlusion, and truncation. The authors also find that

this approach makes the network more robust to image artifacts.

Hide and Seek: In their paper, Singh et al. [32] propose a data augmentation method that takes an image as an

input and divides it into a grid. Each of the sub-grids is then turned off with a given probability. These sub-grids

can be connected or independent of each other, and the turned-off grids are replaced by the average pixel value

of all the images in the dataset.

GridMask: One of the major drawbacks of algorithms that rely on modifying image patches (such as [32,

36, 30]) is that they sometimes delete parts of the image that might be useful to the network. To overcome this

problem, Chen et al. propose a new method Grid Mask [31], that uses evenly spaced grids to find a balance

between the amount of information that is deleted and stored. Using the number of grids and their respective

sizes as a hyperparameter, the authors find that Grid Mask effectively preserves important parts of the image.

Intra-class Part Swapping: Zhang et al. propose a data augmentation method called Intra-class Part Swapping

[45] that uses a CAM [8] to identify the most important regions of an image. These parts are then thresholded,

scaled, translated, and pasted onto the target image. A similar process is also applied to the target image, and

the attentive parts of the original image are used to replace the corresponding attentive parts of the target image.

Similar to previous methods, the labels are also updated to reflect the changes in the image.

Random Erasing: While Cutout augmentation [36] is applied to every image in the dataset, Zhong et al.

propose a new method, Random Erasing, that takes a probability of being applied into account [30]. In Random

Erasing, contiguous rectangular regions are selected and replaced randomly with random upper and lower limits

21

chosen for both region area and aspect ratio. A region-aware detection algorithm is applied for object detection

tasks to make the network more robust to occlusion. Note that Cutout removes square patches, while Random

Erasing removes square or rectangular patches.

ResizeMix: Many augmentation methods that rely on randomly choosing regions to cut and paste from some-

times fail to work well with regions that need more object information. ResizeMix [46] tackles this problem

by replacing the patch with a proportionally resized version of the selected image. This method is similar to

CutMix [41] but differs in the sense that ResizeMix uses a resized version of the entire image instead of a

randomly chosen patch.

RICAP: Another augmentation technique that applies random cropping and pasting is RICAP [47]. In this

method, four regions are cropped from different images and pasted together to form a new image. The created

image thus has multiple mixed labels. A uniform distribution is used to determine the area of each cropped

region in the final image. The authors propose multiple variants of RICAP that use different points of origin for

cropping. The method works best when the cropped regions use the corners as the origin, allowing the network

to see more of the image.

Sample Pairing: In their paper, Inoue et al. propose a method that merges images not by cut and paste but

by averaging their pixel intensities. While algorithms like Mixup [33] modify the image’s labels proportional

to the amount of mixing between the original and the target images, Sample Pairing [48] maintains the same

training labels. Sample Pairing follows an interval-based augmentation policy, where the network is trained for

100 epochs before being introduced to the mixed images. This process is also repeated cyclically with eight

epochs of training with mixed images followed by 2 epochs of training with normal images.

Smooth Mix: With the success of mask-based approaches for data augmentation, there have been many papers

that attempt to fix the flaws of previous research. One such method is SmoothMix [49], which builds up on both

CutMix [41], and Cutout [36] but modifies the mask to have softer edges. The intensity of the masked edges

gradually decreases and depends on the strength of the mask. The updated pixel values are thus obtained by

mixing the mask with the original image according to the formula

λ =
ΣW

i=1ΣH
j=1Gi j

WH

. Where Gi j is the pixel value of mask G and H,W are the height and width of the image, respectively. The new

pixel values are then

(xnew,ynew) = (G.xa+(1−G).xb,λ.ya+(1−λ).yb)

SMOTE: One of the older data augmentation methods is SMOTE [50]. This algorithm is not domain specific,

but in the context of computer vision, it can be used to balance datasets that suffer from imbalanced labels.

SMOTE generates new samples by combining the K-nearest neighbors of the minority class images to form

new instances. Although many of the other methods discussed in this paper are more effective, SMOTE is still

useful.

SnapMix: Huang et al. propose SnapMix [51], where choosing the patch size to be cut is determined from the

beta distributions of both the original and target images. The extracted patches are then merged with random

image regions, each of which is different in size. Labels are also updated by taking the composition of the

images into account.

Remix: Cao et al. address the problem of class imbalance by performing data augmentation on images that are

part of a minority class. From the labels of the images that were mixed, the final label is chosen as the label of

22

the image with the least representation in the dataset. The authors call this method ReMix [52].

Visual Context Augmentation: Dvornik et al. propose Visual Context Augmentation [53] that uses a NN to

understand the context of objects in the image before pasting them in the target image. The authors generate

training data by first generating pairs of context images with the objects masked out. These images are then fed

into the NN to learn the difference between objects and backgrounds given the masked pixels. Once the model

has learned this information, instances of the objects are placed into the masked regions of the target image.

Puzzle Mix: While many techniques are based on MixUp [33], they are mostly focused on generating new

samples of images from the existing data. Doing so is useful but sometimes leads to generating examples that

confuse the network and do not represent the data. To tackle this issue, Kim et al. [54] propose Puzzle Mix, an

algorithm that learns to copy patches of images between each other while taking saliency into account. Puzzle

Mix learns to minimize the equation

h(x0,x1) = (1− z)⊙Π
T
0 x0 + z⊙Π

T
1 x1

where x0,x1 are the two images, zi is a binary mask, λ = 1
n Σizi is the mixing ratio and Π0,Π1 represent n× n

grids that denote the amount of mass that is transported during transport of the image patch to another location.

LSI: Liu et al. [55] propose a method LSI that uses an adversarial autoencoder to impose a uniform distribution

on the latent space. The authors then perform linear interpolation on the latent space to generate new samples.

This method is a modification of Mixup [33], where the linear interpolation is performed in the latent space

instead of the pixel level. This new augmentation technique overcomes the limitation of previous methods that

can generate only a small set of new data given an existing image. Many of the other methods rely on random

sampling and linear interpolation, which can result in finding samples that are far away from the required parts

of the data manifold. Since vision datasets are very high dimensional, this is a common problem that the authors

address. The authors use one-hot vectors to label the original samples. The final loss is a weighted sum (λ) of

the cross-entropy losses of the generated samples with their original samples. If λ equals 0.5, a two-hot vector

is used for labels. This method is found to perform well on smaller datasets, such as classifying medical images.

RandAugment: A semi-automated approach to augmentation was proposed by Cubuk et al. [35] in their

research, which they call RandAugment. Considering the large search spaces involved when attempting to

find the best hyperparameters for augmentation, the authors propose a method that uses a single parameter

(M) that controls all the possible transformations. Instead of searching for individual distortion magnitudes for

each operation, RandAugment parameterizes all the augmentations with M, and then can then be tested using

multiple schedules to find the best value. These schedules include constant and random magnitudes, linearly

increasing values, and randomly sampled values that increase with subsequent iterations. The authors find that

RandAugment is largely insensitive to the selection of transformations for different datasets and that distilling

the search space down to a simpler task vastly reduces the computational expense required for hyperparameter

tuning.

2.2.3 Similar Methods

Some of the papers in the literature have similar ideas to ours but with different focuses. To maintain the

novelty of our method, this subsection explains how they are different from Proxy Attention. A more complete

discussion can also be found in 5

M2Det: Zhao et al. propose M2Det [56], a single-shot object detection framework that uses a multi-level

feature pyramid network that shares similar principles of using attention in the network. While the authors

propose a multi-level feature pyramid network, they do not use the outputs of XAI algorithms. M2Det also uses

23

channel-wise attention, while our method is independent of that. M2Det takes images and passes them through

multiple networks and then aggregates the features obtained from each of those networks. Our method uses a

trained network and is independent of these steps. Unlike the former, our method does not use a compressed

feature map but uses a trained network to predict an explainability map instead.

SaliencyMix: Similar to CutMix [41], SaliencyMix [57] extracts salient regions from images and uses these

regions to replace parts of the target image. These regions are chosen based on the maximum intensities of

pixels in the saliency maps. The authors find that the models trained with SaliencyMix help to improve the

object detection performance. Because SaliencyMix uses saliency maps to extract regions of interest, it is

similar to Proxy Attention. However, Proxy Attention does not mix images and labels and instead uses the

attention map to re-weight the image. Proxy Attention also has more schedules and hyperparameters that can

be tuned to improve the performance of the model.

KeepAugment: Unlike many augmentation techniques that involve replacing or modifying patches of images

or the entire image, KeepAugment [58] uses saliency maps to identify salient regions to ensure that they are not

modified during augmentation. They use a selective cut-and-paste algorithm that uses thresholds to determine

the regions that are not to be modified. KeepAugment aims to solve the issue of distribution shifts that generally

occur as applying any augmentation sometimes drastically changes the content of the images. The authors also

propose two methods to reduce the computational cost of KeepAugment, namely computing saliency maps

at a lower resolution and upscaling later, and using additional layers in the network to reduce compute costs.

While KeepAugment uses saliency maps to identify regions of interest, it does not use them to improve the

performance of the network. Proxy Attention, conversely, uses saliency maps to re-weight the image which

helps the network focus on the regions that are important for classification and improve its performance. Proxy

Attention also does not require any additional layers to be added to the network and is independent of the

network architecture.

SSL: Self-supervised learning (SSL) is also a domain that might seem similar to Proxy Attention at first

glance. Training any NN requires a large amount of labeled data, since this is not always readily available,

many methods to overcome these limitations have been developed over the years. SSL refers to using a network

trained on a task similar to the one at hand to generate pseudo-labels that can be used in place of annotations

for datasets that do not have any labels. Since a similar task (also called a pretext task) already generates some

learnable features, a NN can use these features to speed up their learning process. In many cases, SSL is an

iterative process, but no human annotation is added to the data. In contrast, while Proxy Attention could be

thought to have a pretext task, the task is the same as the one being performed. No extra labels are generated.

Proxy Attention can even potentially be used together with SSL.

2.2.4 Limitations

While each of these papers has its strengths, a few limitations were identified. These limitations do not affect

the methods themselves but rather how they are used in the project context.

• Most of the XAI algorithms are used as a final post-processing of the outputs to find the inherent biases

present in the network. While this is the most common use case, it does not influence the network to

learn from its mistakes and improve its performance. The XAI methods generally focus on explaining

the network’s decisions rather than improving them. This research proposes performing the latter.

• Contextual awareness in image classification is difficult to achieve without special networks or longer

training times. While object detection tasks require this knowledge, networks trained purely for clas-

sification can do without it. That being the case, most of the research on data augmentation that were

24

surveyed tackle this challenge in ways that are not generalizable to other networks easily. Proxy Atten-

tion, on the other hand, is independent of the network and can be used with any model and dataset.

• Combining the fields of XAI and data augmentation to improve network performance is a rare practice.

This research is performed to bridge the gap between the two fields and to show that they can be used

together to improve not only the performance of the network but also the explainability of the network’s

decisions simultaneously.

25

CHAPTER 3
PROPOSED METHOD

3.1 Proxy Attention
Let Is ∈ RW×H×C be a random source image. Applying a gradient-based algorithm (eg: Grad-CAM) to Is and

resizing it to the size of Is produces a saliency map M ∈RW×H . Since Is is normalized with ImageNet statistics,

to obtain the heatmap we apply an inverse normalization to Is to get Isi.

Now, we define a proxy function proxy(Isi) that takes Isi as input and outputs a proxy image Io ∈ RW×H×C.

Io = proxy(Isi,λ,τ) =

(1−λ⊙M)⊙ Isi, if Isi > τ.

Isi, otherwise.
(3.1)

where λ is the Proxy Image Weight and τ is the Proxy Threshold. The proxy function is applied pixel-wise to

the input image. If the pixel value is greater than the Proxy Threshold, the pixel value is modified by the Proxy

Image Weight and the saliency map. Otherwise, the pixel value is left unchanged. The proxy function is applied

to each channel of the input image. Note that if the proxy function is applied multiple times to the same image,

the output image might get completely masked out. To prevent this, the proxy images are cleared after training.

The Proxy Attention step generates a proxy image Io from the source image Is where the thresholded salient

regions of Is are weighted by λ and combined with Is to produce Io.

The pipeline for Proxy Attention is shown in Figure 3.1. (For a more intuitive explanation, refer to section

7.1)

To the left of the figure, we can see the usual training NN training pipeline. A model and a dataset are chosen,

and the model is trained on the data for a few epochs. The chosen metrics (e.g. accuracy) are computed using

this model, and the images that were incorrectly classified are passed to a new dataloader along with their labels.

To choose the number of images given to the dataloader, the proxy image subset (ref 3.2.1.6) hyperparameter

is used. For every batch of images in the dataloader, according to the proxy schedule (ref 3.2.1.5), an XAI

method (ref 3.2.1.2) is applied to find the gradients. The hyperparameter proxy threshold (ref 3.2.1.3) is used

to threshold out parts of the gradient, and proxy image weight (ref 3.2.1.4) is used to multiply the gradient with

the image to generate the weighted proxy image. Once all the batches have been computed, they are collected

and passed to a function that saves the proxy images locally. The trained model is also saved at this stage. The

process is then repeated with the model being reloaded along with the new dataloader.

For more example images of the proxy images generated, refer to section 7.2.

26

Figure 3.1: Proxy Attention Visualized

3.2 Implementation
This section describes the implementation of Proxy Attention in detail.

3.2.1 Hyper Parameters

Proxy Attention is a novel method, so there is no previous research on the best hyperparameters to use. The

objective in choosing them is to find a balance between performance, computational overhead, and memory

usage. The following section discusses the different hyperparameters that are tested and the reasoning behind

their selection.

3.2.1.1 Proxy Method

The Proxy Attention step involves replacing the pixels in the original images based on the attention maps

obtained from a trained model. There are many different ways in which this can be done, some that are explored

in the literature, some that are implemented, and others that are left for future research. The following are the

different methods that are considered:

Image Statistics Based Replacement These methods use local or global statistical information from the images

for replacement. All these methods can be computed per image, batch, or entire dataset.

1. Average Pixel Value: The average pixel value of the original image is used for replacement.

2. Max Pixel Value: The maximum pixel value of the original image is used for replacement.

3. Min Pixel Value: The minimum pixel value of the original image is used for replacement.

4. 0/255 Pixel Value: The pixel value of 0 or 255 is used for replacement, where 0 refers to black and 255

refers to white.

27

These methods are simple but naive, leading to significant information loss. In many cases, if many images

have their values replaced with these values, the model might become biased towards predicting a specific class

when an image contains many pixels with these values. Due to this reason, these methods are not considered

for the final implementation. A visualization of these methods can be found in Figure 3.2.

Data Augmentation Based Replacement

Data Augmentation techniques involve computing some transformation over images. Many of these methods

are covered in the literature survey (Section 2.2), some of which replaced the pixels with random values, pixels

sampled from either the current image or another image in the dataset, or even deleted the pixels. Most of these

methods do not consider the model itself, but some, such as Saliency Mix [57] use saliency measures to find

patches from other images in the dataset that are used to replace the chosen pixels. These methods inspired

Proxy Attention, but instead of replacing image patches or deleting pixels, it uses a gradient-based method to

down-weight the pixels that might have led to the wrong prediction. This method moves away from using naive

statistical information but enables the model to learn from its mistakes eventually.

Modifying the Weights

Instead of replacing the pixels, another possible method would be to modify the network weights directly. While

many research papers elaborate on methods to perform this procedure, this domain still needs to be researched

enough to be used easily. Research on this domain has been done from the early 90s [59], but practical imple-

mentation of such a network that learns to modify its weight while training has not been extremely successful

[60].

Another such attempt to create a network closely inspired by the neuron plasticity of the human brain was done

by Miconi et al. in their paper [61]. In human brains, learning and forgetting are controlled by plasticity, the

ability of the brain to modify its previous understanding of concepts and solidify or remove these concepts if

necessary. With this theme, Miconi et al. perform research emulating these functions using neuromodulated

LSTMs that are given the ability to use gradient descent to optimize the weight themselves and the plasticity of

the weights. The authors find that these networks outperform standard LSTMs by a significant margin given an

LM task, thus creating their training pardigm Backpropamine. Backpropamine is given a neuromodulated signal

that controls the plasticity. In the brain, the chemical dopamine also potentially affects the synaptic weights,

and thus Backpropamine is also affected by a decaying change in the weights given the right conditions.

While these methods work, they are quite challenging and rely on very different types of networks than those

usually used in CV research. That being the case, implementing such a method is left to future research.

Multiply with Attention Map

The method chosen for this research does not directly replace the image’s pixels but weights them using the

attention map generated by passing the image through the trained model. The obtained attention map is thus

multiplied with the original image. In line with the principles of Proxy Attention, this allows the network to

understand that the parts of the image it initially focused on did not lead to the correct result. Note that doing

so is only possible if the network has seen this image. Because the images are slightly modified after the

Proxy Attention step, if the network still needs to learn what the original image looks like, it might make more

mistakes in the future by learning the wrong set of features.

A caveat of this method is that, after successfully applying the Proxy step to an image, the number of weighted

pixels increases and, over time, might lead to the image not having any useful features left. This loss of infor-

mation is tackled by clearing the proxy images every couple of steps. A visualization of this method compared

to others can be found in Figure 3.2.

28

71 grads mean max min halfmax proxy

Figure 3.2: A comparison of different methods to replace the pixels in the original image

3.2.1.2 Gradient Method

Many gradient-based methods are available for generating attention maps from trained networks. While many

of these methods are mentioned in the survey, it is impossible to test them all. The ones that are tested are

explained below.

The important factor considered while choosing these methods is the difference in complexity and the power

of explanation they provide. While algorithms like GradCAM++ [14] provide more nuanced and better expla-

nations of the image, older algorithms like Vanilla Gradients [10] are not so accurate. The objective here is to

understand if using a more powerful method would improve performance concerning classification accuracy

when used with Proxy Attention. If this is the case, then it is possible to use more powerful methods to further

improve performance in the future. The gradient methods that are tested are as follows:

• GradCAM++ [14].

• EigenGradCAM [28]

For further explanations, refer to the literature survey in Section 2.1.

3.2.1.3 Gradient Threshold (Proxy Image Threshold)

Every gradient method generates a heatmap where the higher the activation, the more important the pixel is.

The activations are mapped to a [0,1] range with higher values in the heatmap indicating higher activation

values. Since using Proxy Attention would mean that the pixels with the chosen activation values would be

down-weighted, choosing a threshold value would result in the best classification accuracy is important.

This is a balancing act as choosing too small of a threshold would result in larger parts of the image being

down-weighted, while choosing too large of a threshold would result in the image being down-weighted too

little and hence being too close to the original image to make any difference.

A visualization of the different thresholds and their effects is shown in Figure 3.3.

3.2.1.4 Multiply Weight (Proxy Image Weight)

The Multiply Weight hyperparameter controls how strongly the attention map is applied to the image. The

values are in the range [0,1]. A higher value would mean that the image is more strongly affected by the

attention map, while a lower value would mean that the image is less affected. This is a balancing act as

choosing too high of a value would mean that the image is affected too much, and important features might be

lost from the image. Choosing too low of a value would mean the image is not affected enough, rendering the

Proxy step useless. The optimal value of this hyperparameter is found based on the results of the experiments

conducted. Figure 3.3 shows a visualization of the different multiply weights tested.

3.2.1.5 Proxy Step Schedule

Proxy Attention is a novel method, which means that there is no previous literature on how often to apply

the Proxy step. Multiple schedules are tested to understand how the network performs when the Proxy step is

applied at different times.

29

image grads 0.1 0.2

0.3 0.4 0.5 0.6

0.7 0.8 0.9 1.0

(a) A visualization of the different thresholds and their effect
on the image

image grads 0.1 0.2

0.3 0.4 0.5 0.6

0.7 0.8 0.9 1.0

(b) A visualization of the different multiply weights and their
effect on the image for a Gradient Threshold of 0.8

Figure 3.3: A visualization of the different thresholds and their effect on the image

The challenge while testing for this is that if the Proxy step is applied too many times, it might lead to overfitting,

while if it is applied too few times, it might not have any effect. One might consider applying the Proxy

step for every step, but this would be too computationally expensive. Since Proxy Attention also relies on the

understanding of the model, applying the Proxy step too many times initially, when the network is not trained

yet, might degrade performance as well.

These issues also indicate a need for a schedule for the Proxy step. It is manually scheduled as of now, except

when using the schedule generator (which is also a naive method).

Future work might include generating a schedule concerning the validation accuracy. This might be a good

idea as, if the network is not learning well, the Proxy step could be applied more often. But if the performance

is already sufficient, then there remains no need to apply the Proxy step as frequently and potentially degrade

performance.

3.2.1.6 Subset Of Wrongly Classified Images

This hyperparameter is chosen to understand if increasing the number of images passed to the Proxy step would

help improve performance. While providing more images might lead to better performance, the more images

passed to the Proxy step, the more computationally expensive it becomes. To test this, both ends of the spectrum

are tested, with a small fraction and a large fraction of the images being passed through the Proxy step.

Currently, the number of images passed to the Proxy step is a fraction of the total number of images in the

dataset. Future work could also include a schedule for this, where the number of images passed to the Proxy

step decreases over time as the network learns more and does not need as much help in improving performance.

3.2.2 Training Biases

Gradient-based XAI methods are not perfect, and in many cases, they cannot provide accurate explanations for

the predictions made by the model. Since Proxy Attention relies on the outputs of these methods, this might

lead to the model learning biased representations of the data. This section discusses the different biases that

30

might be introduced by using these methods in combination with Proxy Attention and how they can potentially

be mitigated.

Method Bias
Not all explainability methods perform equally. Some methods are shown to have better masks generated, while

other methods are more computationally expensive. Since Proxy Attention heavily depends on these methods,

using them may lead to additional artefacts in the generated images. Some methods lead to better results while

being used alongside Proxy Attention. To test the effects of this, multiple gradient-based methods are used to

compare the performance of the networks.

Mask Bias
Proxy Attention uses the attention maps produced by gradient-based methods and multiplies them on the origi-

nal image as a mask. While this works well, the masks themselves have edge artefacts that may lead to corrupt-

ing some regions of the image. These artefacts are further amplified for smaller image sizes and might impact

performance in the long run. Potential solutions include:

1. Smoothing the masks before applying them to the image using techniques such as Eigen Smoothing [28].

This could help in reducing the edge artefacts.

2. Ensuring that only a certain percentage of the image is replaced by the Proxy Attention step. Doing so

would preserve more information.

Learning Bias

1. Testing multiple schedules of when to apply the Proxy Attention step. This would help in understanding

which part of the training process would benefit from the Proxy Attention step the most, reducing the

computational overhead in the long run.

2. Not reusing previously masked images for the Proxy Step. Doing so ensures that the artefacts are not

propagated further into the training process.

3.2.3 Overview of the Codebase

This section provides an overview of the code structure and the datasets used in this project. The code is

written in Python 3.10.10 , and uses PyTorch version 2.0.0. The codebase is available on GitHub. The entire

requirements are listed in the requirements.txt file in the root directory of the codebase. The structure of the

codebase is shown in Figure 3.4. A separate directory is used for each dataset, with each dataset being split

into training and testing subdirectories. The results directory contains the aggregated runs used directly in the

report. The figures and tables are generated from the aggregated runs using the log_viewer.ipynb file. The runs

directory contains the runs of the model. Each run has a folder with the run number containing the tensorboard

logs and the checkpoints. The src directory contains the source code for this project. The main.py file is the entry

point for the code and is used to configure the runtime hyperparameters. The proxyattention folder contains the

code for the model and the meta_utils.py file contains utilities that are reused across the codebase while the

training.py file contains all the code required for Proxy Attention and training the models.

3.2.4 Datasets

To test Proxy Attention, a variety of datasets are chosen. The datasets are chosen to be of varying difficulty,

and to have varying number of classes. The objective in choosing them was to have a good mix of fine and

coarse-grained classification datasets.

https://github.com/SubhadityaMukherjee/proxy_attention

31

Figure 3.4: Code Directory Structure

The images provided by the datasets are of varying sizes, but are resized to a similar size for consistency.

These visualizations are generated by the author, and are not fully representative of the original dataset but are

provided for reference. Due to space constraints, not all classes are shown in the visualizations. The complete

list of classes and examples can be found in the links provided.

CIFAR 100
The CIFAR 100 dataset, introduced by [62], is an image dataset with 60000 colour images with dimensions

32x32 pixels. As the name suggests, the dataset has 100 unique classes. Each of these classes has 500 training

images. Some classes are - airplane, bird, truck, ship, deer and dog. This dataset is used as a coarse-grained

classification dataset in this project.

The dataset and complete class information can be found here. A sample of the images from the dataset is

shown in Figure 3.5.

Stanford Dogs
The Stanford Dogs dataset [63] is a popular fine-grained image classification dataset. There are more than 20k

images in this dataset categorized into 120 classes of dog breeds like the Afghan Hound , Appenzeller etc.

Being a fine-grained dataset, the images are very similar, and the classification task is much harder.

This dataset is chosen to further evaluate the explainability of Proxy Attention.

The dataset and complete class information can be found here. A sample of the images from the dataset is

shown in Figure 3.6.

ASL Alphabet

https://www.kaggle.com/datasets/fedesoriano/cifar100
http://vision.stanford.edu/aditya86/ImageNetDogs/

32

mountain mouse bed forest leopard lawn_mower turtle orange

worm beaver mountain otter crocodile bear rose girl

skyscraper tractor rose lizard wardrobe boy trout crocodile

train lawn_mower man forest snake seal rabbit sunflower

Figure 3.5: A batch of images from the CIFAR100 dataset

Images Images Images Images Images Images Images Images

Images Images Images Images Images Images Images Images

Images Images Images Images Images Images Images Images

Images Images Images Images Images Images Images Images

Figure 3.6: A batch of images from the Stanford Dogs dataset

The ASL dataset is a collection of hand pose images from the American Sign Language. This dataset has no

pose information, but the images can be classified using the provided class labels. The dataset chosen to evaluate

Proxy Attention is the ASL Alphabet dataset, a more specific subset with all the letters of the English alphabet

and the special characters del, space and nothing. The background is mostly the same, with minor changes.

The data is also recorded from people with a similar skin tones, making the task easier.

This is an easy to classify dataset used as an initial test of the Proxy Attention mechanism. The results of the

same are left in for future reference.

The dataset and complete class information can be found here.

A sample of the images from the dataset is shown in Figure 3.7.

https://www.kaggle.com/datasets/grassknoted/asl-alphabet

33

G L C nothing Q G J K

del W W W space N B K

M C L K space M Q C

B J X space L Q Q S

Figure 3.7: A batch of images from the ASL Alphabet dataset

Plant Disease
This dataset consists of images of plant diseases across a variety of plants. The dataset is also a fine-grained

classification dataset with 39 classes. Other than a few diseases, most of them are quite similar to each other,

making the classification task harder. Some examples of the classes are apple scab, blueberry healthy, cherry
powdery mildew etc.

The dataset and complete class information can be found here.

Tomato___T Grape___Bl Apple___he Tomato___T Corn___hea Squash___P Orange___H Orange___H

Grape___Es Grape___Es Tomato___S Potato___E Orange___H Grape___Le Soybean___ Peach___Ba

Tomato___B Raspberry_ Tomato___T Soybean___ Orange___H Blueberry_ Grape___Es Tomato___E

Tomato___L Apple___he Squash___P Strawberry Potato___L Orange___H Soybean___ Tomato___T

Figure 3.8: A batch of images from the Plant Disease dataset

Caltech101
The Caltech101 [64] dataset is created to tackle the absence of a uniform baseline comparison for vision clas-

https://www.kaggle.com/datasets/rajibdpi/plant-disease-dataset

34

sification tasks. The dataset has 101 categories of images, totaling 9146 images. A background category is also

included, with images that do not belong to any of the 101 categories. An advantage of this dataset is that the

images are of uniform size and have low clutter and occlusion, making it easier to classify. The caveat is that

some categories have fewer samples than others.

The dataset and complete class information can be found here.

A sample of the images from the dataset is shown in Figure 3.9.

butterfly Faces_easy Faces watch Motorbikes airplanes cannon dragonfly

flamingo_head car_side Leopards dragonfly Motorbikes beaver ibis soccer_ball

crocodile_head dragonfly electric_guitar inline_skate Faces_easy Faces dalmatian sea_horse

airplanes euphonium stegosaurus barrel airplanes pizza lobster Motorbikes

Figure 3.9: A batch of images from the Caltech101 dataset

Places
The Places dataset [65] contains 2.5 million images of different scenes. These scenes contain indoor and outdoor

scenes and have been categorized into 205 classes, including engine room, excavation, and kitchen. This dataset

used for this research is a subset of the MIT places dataset, which comprises a total of 10% out of the original

10 million images. The large-scale nature of the dataset allows for extensive exploration of scene recognition

and understanding tasks but here it is used as a coarse-grained image classification dataset.

The dataset and complete class information can be found here.

Figure 3.10 shows a sample of the dataset’s images.

Tsinghua Dogs
The Tsinghua Dogs dataset [66] is a comprehensive fine-grained classification dataset specifically designed

for dog breeds. It contains a substantial collection of images, with over 65% of them collected from real-life

sources. Each breed is represented by a minimum of 200 images and a maximum of 7,449 images. According

to the authors, these values are somewhat proportionate to their relative population in China. This approach

ensures increased diversity for each breed compared to existing datasets. The Tsinghua Dogs dataset also pro-

vides annotated bounding boxes for each dog’s whole body and head in the images, for object detection tasks,

but this information is not used for this project. With a wide range of breeds included, such as Great Danes and

Norwich Terriers, the dataset exhibits significant variations in appearance. While some breeds are quite similar,

others are rather different, which further adds to the complexity of the image classification task. The dataset

and complete class information can be found here.

https://www.kaggle.com/datasets/862ae86edba271c39f76d0b530edeb55076b4b82b971160637210900747c44b1
https://www.kaggle.com/datasets/mittalshubham/images256
https://cg.cs.tsinghua.edu.cn/ThuDogs/

35

train train train train train train train train

train train train val train test train train

train train test train train train train train

train test test test train train test train

Figure 3.10: A batch of images from the Places dataset

A sample of the images from the dataset is shown in Figure 3.11.

216 2909 2909 2192 5355 286 226 2909

1160 3336 2192 2192 2342 3580 3336 2909

2925 225 480 202 211 230 420 3336

226 2925 5355 232 217 215 224 5355

Figure 3.11: A batch of images from the Tsinghua Dogs dataset

3.2.5 Data Loading and Pre-Processing

Since many datasets are used in the project, it is important to ensure that the data is consistent across all the

experiments. The main priorities are efficient use of memory and network performance while designing the

data loading and pre-processing steps. This section details all the tweaks, custom loaders, and pre-processing

steps used to ensure the same.

Data Directory structure
The data is stored in a specific directory structure similar to the ImageNet [67] dataset to maintain consistency

36

across the different experiments. Every dataset is divided into training and validation folders. Most of the

datasets used in the project come with this split, but a validation split is created manually for those that do

not. (Note that the test split is created from the training split while training the model and is not hardcoded.)

For every class in the dataset, a subfolder within the parent folder is created with the name of the class. All

the datasets used are stored in the same folder on an SSD for ease of access and performance. The directory

structure is shown in Figure 3.12.

Dataset

training

image001

image002

...

validation

image001

image002

...

Figure 3.12: The structure of the Dataset Directory

Custom Data Loading
A custom data loading logic is implementd for this project. The steps are as follows:

1. First, the previously generated proxy images (if they exist) are cleared from the data folder. This ensures

that the proxy images are not loaded by mistake.

2. For all the remaining images, the file paths are listed and shuffled.

3. If the current step is a Proxy step, the corresponding original image is not given to the data loader for

every proxy image loaded. This is done so that the number of images the networks trained with and

without Proxy Attention are equal.

4. If the subset parameter is set to a positive value, then only a subset of the data is obtained. If not, the

entire dataset is used.

5. Using these file paths, a Pandas DataFrame is created with the file path and label. The label is generated

using a label function (Ref 3.2.5) based on the file path.

6. The labels are encoded and transformed into numerical values using the LabelEncoder and

LabelBinarizer classes from the sklearn library. A label map and reverse label map are created and

stored in memory, a useful step for inference.

7. To ensure an equal percentage of samples per class (some datasets used have unequal distributions), a

Stratified K-Fold oversampling is applied.

8. Before loading the images, an additional check is performed to ensure that the images have 3 channels.

If they do not, then they are converted to RGB. This check is performed as some images in the datasets

https://pandas.pydata.org/

37

could be transparent, have 4 channels, or accidentally be grayscale. Not handling these images leads to

errors while training, so they are preemptively converted to RGB.

Label function
Label functions are used to obtain labels given a file path to ensure easy compatibility with new datasets instead

of hardcoding them. This enables a uniform API to be extended to any dataset by writing a simple lambda

function.

In the previous step, a Pandas DataFrame with the file paths of all the images is created. The label function is

mapped across the entire column of file paths to generate labels. This function is also used to create the label

map and reverse label map, that is useful for inference.

For example, consider the ASL dataset. The file path for a single training image is of the form

/media/subhaditya/datasets/ASL/asl_alphabet_train/asl_alphabet_train/A/A1.jpg

To obtain the label, a lambda function lambda x: x. split (" /")[−2] is used. The label function splits the string

into a list by the Unix path label separator "/" and returns the second last element in the list. Thus, the label for

this image becomes A.

Clearing proxy images
The images are saved locally for every iteration of the Proxy Attention step. That being the case, using these

generated images over further iterations of the Proxy Attention step is possible. Since these images replace the

original image from the data set, it is possible to use them as a direct substitute for the original images in the

data set. Note that doing so would give the network more images when using Proxy Attention during training,

which is potentially an unfair comparison. Only a single image is chosen during the data loading to avoid this

issue. Thus, this becomes a hyperparameter where the options are to store the last generated proxy images

across iterations and use those images as direct replacements for the original images or not perform the step.

In the long run, the option to persist the images across iterations could lead to the network learning

artefacts introduced in prior iterations. To ensure that the networks that train with Proxy Attention are fairly

compared with the ones that do not, the data loader is only passed either the original image or its substitute but

not both.

Augmentations
Augmentations are a useful step in training neural networks and increasing robustness to new data. Since this

project is a test of Proxy Attention and not of improving performance of specific architectures, a minimal set of

augmentations are used. All the transforms are applied using torchvision.

The images are normalized using the ImageNet statistics for training and validation. This is done to maintain

a standard and since the pretrained models used have been trained on ImageNet [67]. The mean and standard

deviation used are

mean = [0.485, 0.456, 0.406]

std = [0.229, 0.224, 0.225]

For training, the images are resized to 224× 224. Random horizontal flips are also applied with a probability

of 0.5, random rotations with a maximum angle of 10 degrees, and a similar probability. The images are then

converted to Tensors.

38

The images are resized to 224× 224 for validation and then converted to Tensors. No further augmentations

are applied.

3.2.6 Architectures

This section discusses the architectures used and the library used to implement them.

TIMM
The library used to load the models is called TIMM [68]. It is a PyTorch library that provides many models

with the option of loading pretrained versions of the same. The library also provides an easy way to customize

the loading options for transfer learning, including the ability to choose the number of classes, the number of

layers to freeze, Global Pooling options, etc.

The following models are used in this project:

VGG16
The VGG architecture [69] is one of the first deep networks that proposed an increase in depth using smaller

filters (eg. 3×3 convs.) Increasing the depth enabled the network to understand local image features and showed

the deep learning community that increasing depth could lead to better performance. While this did hold to a

certain extent, enabling VGG to provide a good baseline over the years, it is not until ResNet [27] that it is

possible to use these deeper networks stably. The number after the VGG (eg, VGG 18) denotes the deep layers

of the network.

The architecture of VGG16 is shown in Figure 3.13.

Figure 3.13: VGG16 architecture

ResNet
The ResNet architecture [27] introduced by He et al. changed the way deep learning models are created by

stabilising the flow of gradients across the network and enabling the creation of much deeper models. He et

al. addressed the problem of deeper networks failing to perform better than their shallower counterparts by

using a residual connection that enables propagating the input along with the learned features across the deeper

network. The ResNet architecture directly tackled the vanishing gradient issue faced by its predecessors and

paved the way for better models. The number after the ResNet (eg, ResNet 18) denotes the deep layers of the

network.

The architecture of ResNet18 is shown in Figure 3.14.

EfficientNetB0

39

Figure 3.14: ResNet18 architecture

EfficientNet is one of the newer architectures on this list and is proposed by Tan et al. [70] as a means of running

larger architectures with lower computational resources. The research on EfficientNet proposed a compound

uniform scaling method that combined depth, width and resolution scaling. This scaling approach enables

EfficientNet to scale between performance and efficiency as required. The number after the EfficientNet (eg.

EfficientNet B0) denotes the scaling factor. The larger the number, the larger the number of layers and the wider

the network is. This paper uses the base (B0) configuration.

The architecture of EfficientNetB0 is shown in Figure 3.15.

Figure 3.15: EfficientNetB0 architecture

ViT Base Patch 16×224

Transformers have been all the rage in NLP for years now, but it is not possible to use them directly in CV tasks

until Dosovitskiy et al. proposed the Vision Transformer (ViT) [1]. The ViT considers an image as a sequence of

x×y patches that enables it to use transformer architectures to images. Using a sequential representation allows

capturing long-range dependences and since transformers learn "attention", using them allows the model to

also learn contextual information better than regular CNNs. The ViT proved to be a landmark in CV and now

approaches that use transformers dominate the SOTA in almost every niche. x in this case represents the patch

size, and a size of 16 is used in this paper. y represents the size of the input image, and in this paper an image

size of 224 is used.

The architecture of ViT Base Patch 16×224 is shown in Figure 3.16.

40

Figure 3.16: ViT Base Patch 16×224 architecture

3.2.7 Grid Search

A grid search is performed to test the effectiveness of Proxy Attention and to find the best combination of

hyperparameters. The grid search is performed on a single machine with a single GPU. An analysis script is

written to determine what trials to run instead of using a separate optimization framework (Ref 3.2.15). Due

to limited resources, an initial sweep over the hyperparameters is performed using a low memory network

(ResNet18 [27]), a subset of the Stanford Dogs dataset ([63]), a simple gradient method (GradCAM [9]) and

a small number of epochs. A separate process is started for each trial in the grid search, and the memory is

cleared after each trial. This process is repeated until the best combination of hyperparameters is found. Once

the worst-performing parameters are eliminated, the rest of the trials are run for the other networks, datasets

and methods.

Although it is possible to use a separate optimization framework and an algorithm like Bayesian Optimization

to find the best combination of hyperparameters, the parameters are semi-automatically chosen instead due to

a lack of resources and time.

3.2.8 Training Resumption

Training resumption is an important part of this project. Since Proxy Attention is applied between training runs,

it is important to be able to resume training from the last checkpoint. Furthermore, since a single machine is

used, resuming broken trials easily is a useful feature to have. This section discusses the challenges faced in

creating this feature and the solutions implemented to overcome them.

Checkpoints

While checkpoints are almost always a good idea, they are especially important in this project. The Proxy

Attention step is applied between training runs, and to preserve memory, it unloads the existing models and

DataLoaders from the GPU. This means that when continuing training, the models and DataLoaders need to be

reloaded before the next training run. Doing so would effectively reset the training process, so it is important to

have checkpoints to resume training. As part of the final analysis, the author also iterated over the trained models

and compared the explainability of models trained with or without Proxy Attention. Having saved checkpoints

made this process much easier.

Broken Trials

A challenge of training on a single machine is that the training process could be interrupted at any time. Since

this project required several experiments to find the best combination of hyperparameters, it is important to be

41

able to resume training in case of any interruptions.

The objective of the solution is to be able to reload the last configuration and continue the training from there.

In the implementation, the trials are generated as a list of possible configurations, and the program iterated over

the list to run them. If the trial broke, the list of configurations and position of the current trial in the list is

saved as a pickled dictionary. Using this saved object, the script could easily reload the last configuration and

continue training without having to start from the beginning.

An additional useful feature of this solution is that it allowed the author to quickly patch any minor bugs without

having to reiterate over the entire list of trials. This was especially useful when the author was testing the code

for the first time and had to fix several bugs in the code.

3.2.9 Optimizations

The following section discusses the optimizations that are implemented to improve the performance of Proxy

Attention, training the networks and reducing memory usage.

Proxy Step specific optimizations

The Proxy Attention step is the most computationally expensive step in the training process since it applies an

XAI algorithm to each of the images in the batch of wrongly classified images. To reduce the time taken to

apply the XAI algorithm, the following optimizations are implemented:

• CPU: The CPU is used to store the wrongly classified images and labels as GPU memory is limited.

The images and labels are stored during an epoch on the CPU and then passed to the GPU for the Proxy

Attention step in batches.

• Computational Graph: The computational graphs of the wrongly classified images are deleted as they

are not required and storing them unnecessarily increases memory usage.

• Native PyTorch: All computations are done on the GPU using PyTorch tensors, unlike many libraries

that use numpy arrays. This reduced the overhead of converting between numpy arrays and PyTorch

tensors and enabled the use of the GPU for all computations.

• torch.where: Replacing the pixels in the image is done using torch.where which is much faster than

simply iterating over the image and replacing the pixels.

• Freeing GPU memory: The gradients are deleted from the GPU after the step is completed to reduce

memory usage. This is done using del and then calling torch.cuda.empty_cache() to free the memory.

• Batching: All preprocessing steps, label changes, etc., are done in batches to reduce memory usage and

CPU calls.

• Saving Images: It is a known issue that saving images as png files with no compression is slow using

Pillow and thus the images are saved as jpeg files instead. (Ref. Github issue). In practise, jpeg images

have smaller file sizes than png images, which inturn reduces the additional storage required.

Grid Search

The major challenge with implementing a grid search is the memory usage. On a single machine, PyTorch

reserves some memory for itself, and this memory is not released until the program is closed. This means that

if the grid search is run sequentially, the memory usage will increase with each trial and eventually lead to a

crash. The solution implemented is to run each trial as a separate process and call it from a main script. This

ensured that the memory is released after each trial and the memory usage is kept in check.

This project did not require training multiple models simultaneously (and only a single GPU is available) and

so parallelization is not required or implemented.

Workers

https://github.com/python-pillow/Pillow/issues/1211

42

By default, PyTorch uses a single worker to load data from the SSD. This is not ideal, as the resources must be

fully utilized. In this project, eight workers are to load data from the SSD, which improves the training process’s

performance. Note that increasing the number of workers beyond a certain point does not necessarily improve

performance due to the overhead of transferring data between the CPU and GPU and might lead to detrimental

effects. (Ref. PyTorch Forum)

Mixed Precision

Mixed Precision Training [71] involves computing most of the operations in the network in half-precision

(16-bit) and only using full precision (32-bit) for important operations such as the loss function. This allows

for much larger batch sizes, faster training, and reduced memory usage. Micikevicius et al. also find that using

Mixed Precision training does not significantly affect the model’s accuracy. With all these benefits, using Mixed

Precision training is a no-brainer for this project.

The only caveat is that only some operations are stable in half precision. Operations like Batch Normalization

tend to break when using Mixed Precision training, and unless managed, the model fails to converge. PyTorch

supports automatic casting to and from half-precision and this API is used for this project.

torch.no_grad

Since a single machine is used for training, it is important to reduce memory usage wherever possible. Since it

is not necessary to store the gradients for the validation step as they are not used for anything, one of the ways to

reduce memory consumption is to disable gradient computation for the validation step. This is done by using the

torch.no_grad() context manager. The optimizer’s zero_grad() method is used to clear the gradients (using

set_to_none=True). The additional parameter set_to_none is shown to have better performance (Refer to

the Official PyTorch tuning guide for more information.) as it involves fewer operations.

Pillow SIMD

SIMD (Single Instruction, Multiple Data) is a computational technique that allows the simultaneous execution

of the same operation on multiple data points by utilizing multiple processing elements. It is particularly advan-

tageous when compiled for specific processors, improving performance in graphics and image processing tasks.

SIMD operates synchronously and deterministically, making it suitable for operations that traditionally rely on

the capabilities of a GPU. Since one of the major bottlenecks in the training process is loading images from

the SSD, using SIMD operations is a way to reduce the latency. A few years ago the image processing library

Pillow, used to be one of the majorly used libraries for loading images. Recently, it has been superceded by the

Pillow SIMD library, which uses SIMD instructions to improve performance. Pillow SIMD’s API is a drop-in

replacement for Pillow and requires no changes to the code but increases image I/O speeds by a significant

margin (Refer to Benchmark comparison between Pillow and Pillow SIMD for the official comparison).

3.2.10 Tensorboard

Tensorboard is a utility for managing and visualizing training logs. In this project, it is used to store the training

configurations, metrics, images and other information that is generated during training. Since Tensorboard uses

a custom file format to store this information, it can be used to store any information. Unlike many other logging

utilities, Tensorboard stores all its logs locally. While storing them online might be useful in some cases, it is

more difficult to manage and quite unnecessary for this project. Another useful feature of Tensorboard is the

ability to see live updates while training is in progress. This is useful for debugging and ensuring the training is

progressing as expected.

https://discuss.pytorch.org/t/guidelines-for-assigning-num-workers-to-dataloader/813
https://pytorch.org/docs/stable/notes/amp_examples.html
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html
https://github.com/uploadcare/pillow-simd
https://python-pillow.org/pillow-perf/

43

3.2.11 Optimizer

While ADAM [72] is one of the most used optimizers in the deep learning community, Lonschiolov et al.

[73] show that many libraries implement weight decay incorrectly. This finding is inspired by the choice of

many researchers to use SGD with momentum instead of ADAM as it somehow seemed to perform better in

many cases, but the reason for the difference in performance was not well understood. After finding the issue,

Lonschiolov et al. proposed a simple fix to the weight decay implementation in ADAM, which they called

ADAMW.

The error comes from the incorrect assumption that weight decay and L2 regularization are identical. While this

is true in the case of SGD, it is not true for other optimizers, especially ADAM. In the case of ADAM, weight

decay first applies the update and then subtracts a portion of the weight. While L2 regularization adds the weight

decay term to the gradients and then computes the moving average of the gradients and the corresponding

squares before applying them to the update. Many deep learning libraries use L2 regularization instead of

weight decay in their implementations, leading to a significant performance difference. Another important point

to note is that the weight decay must be disabled for the optmizers as doing so will lead to L2 regularization

being applied, which defeats the purpose of using ADAMW. This project uses the ADAMW optimizer with a

learning rate of 10−3 and a weight decay of 10−5.

3.2.12 LR scheduler

Choosing an appropriate learning rate is important when training a neural network. A learning rate that is

too high might lead to the model overshooting the local minima when traversing the loss landscape. While a

learning rate that is too low might lead to the model taking a long time to converge. A learning rate scheduler

is used to find the optimal learning rate during training. The LR scheduler used in this project is the One Cycle

LR scheduler proposed by Smith et al. [74].

In their paper, the authors propose a cyclic LR scheduler that moves from a lower LR to a higher LR in cycles.

An LR finder is used to find the maximum LR that can be used for training. The LR finder is a simple algorithm

that starts with a very low LR and increases it by a tiny amount for many iterations. If the loss for the chosen

LR increases fast, the LR finder terminates and the maximum LR is obtained. The One Cycle policy builds

on previous research on warming the learning rate at the beginning of training. While other approaches move

directly to a higher LR after the initial warmup, Leslie et al. suggest a slower approach. In the middle, the LR

rizing can be considered a regularization method.

In addition to the cycle of LR, the authors also propose a cycle of momentum. They suggest that the momentum

should be high at the beginning of training and should be decreased as the LR increases. This is because

using a higher momentum at the beginning of training allows the model to quickly traverse the loss landscape

and attempt to find local minima, but in later stages, a lower momentum is beneficial as it helps the model

to converge to a local minima stably instead of overshooting it. Using a cyclic momentum removes some

guesswork in choosing the optimal momentum value for training, as the momentum is lower to higher in a

cycle.

Other benefits of the One Cycle Policy include the ability to use higher batch sizes and LRs, while also reducing

the need for other regularization techniques due to the inherent regularization effect of the One Cycle Policy.

In this thesis, an LR finder is not used to find the maximum LR but set to 2× 10−3 instead. While this is

suboptimial, since the focus of this work is not to find the best performance, but to test the effects of Proxy

Attention, this choice is made to reduce the number of hyperparameters that need to be tuned. Future researchers

should feel free to experiment with the LR finder to improve the accuracy further.

44

3.2.13 Loss function

The Cross Entropy Loss function is a popular loss function used in multi-class image classification tasks.

Derived from the field of information theory, it uses the concept of entropy to quantifies the discrepancy between

two given probability distributions. In this project, the Cross Entropy Loss is used for training the models.

The formula for computing the loss is given by (x,y) = L = {l1, ..., lN}T where ln = −wyn log exp(xn,yn)

ΣC
c=1exp(xn,c)

, x is

the input, y is the target, C is the number of classes. By evaluating the predicted class probabilities against

the ground truth labels, the loss function captures the dissimilarity between the predicted and actual class

distributions.

3.2.14 Batch Size Finder

To maximize training performance, a batch size finder (Ref 7.5 for diagram) is used to find the optimal batch

size for each model.

The batch size finder algorithm is rather simple. It starts by testing for a small batch size of 2. This batch size

is then successively, either incremented or decremented, based on the current GPU configuration’s ability to

support that batch of data. A random batch of data with the size that is to be tested is generated and passed

through the required model. If the GPU fails to accommodate the current batch of data, the loop terminates,

and the required batch size is obtained. The rest of the steps required to train a network are also performed

on this randomly generated data. This algorithm remains the same for any model, data type, or other further

optimizations applied (such as mixed precision training [71]) and is robust to multiple GPUs being used for

training.

3.2.15 Result Aggregation

The biggest caveat of using Tensorboard is that the logs it generates cannot be directly queried in the interface

itself. To overcome this, a custom script is written to query the logs and generate a DataFrame that combines

all the logs into a single pandas DataFrame. This makes it possible to query the logs and perform any kind of

analysis on them. This script can easily answer specific queries such as "What is the best accuracy across all

the networks for ’gradcam++’, ’dogs dataset’ and ’proxy_threshold = 0.5’?". This makes it possible to easily

compare the performance of different models.

This is done using the event accumulator API that Tensorboard comes with and running over the log folder.

Every type of tag, for example Scalars, Tensors and images are processed separately to be able to store it

in a DataFrame. To prevent unnecessary computation, if a merged log already exists, it is read and used to

identify the new logs that need processing. Once the new logs are processed, they are appended to the existing

DataFrame and saved. This makes it possible to query the logs without reprocessing the entire log folder every

time.

Since the script for aggregating logs is rather useful, it is made publicly available as a Github Gist.

3.2.16 Inference

Inference refers to using a trained model to make predictions on new data. In this project, a large number of

models are trained. A separate script is created to use any of the previously trained models for inference.

This script follows from the result aggregation and can use queries over the dataframe generated in the previous

step. Since the generated dataframe also contains the path to the saved model, this script can use that informa-

tion along with the names of the architecture, dataset and other hyper-parameters to load the required models

easily. The inference script also contains functions for comparing both the accuracies and the explainability of

two pre-trained models given a validation dataset or a list of images.

https://gist.github.com/SubhadityaMukherjee/58cbdf324812175233e91993b720e0bc

45

For a batch of images and given a set of hyperparameters, the script loads two models - one trained with Proxy

Attention and one trained without. The same dataloader is passed through both models to obtain predictions.

EigenGradCAM [28] is used for parts of this evaluation phase to ensure a fair comparison, and since Grad-

CAM++ [14] is used for training, it would not be fair to use it for evaluation as well.

46

CHAPTER 4
RESULTS

In line with the research questions, the evaluation section aims to quantify the performance gains obtained using

the Proxy Attention method. The section will compare the performance of networks trained with and without

Proxy Attention based on classification metrics, and explainability improvements. The complete results can be

found in the Github repository.

4.1 Time to run the Proxy Step
The Proxy Attention step is split into two parts - the first part is the generation of the Proxy Attention maps and

combining them with the original images; the second part is saving the generated images.

The average time to generate the Proxy Attention maps is 9 seconds for approximately 1.2k images when using

GradCAM++ [75] as the XAI method.

Saving the images takes a similar amount of time and could be further optimized using parallelization (which

was not implemented due to time constraints). Thus the total time taken to generate the Proxy Attention maps

adds a neglible overhead compared to the time taken to train the models while providing a performance boost.

It is also to be noted that this time can be further reduced if using a less computationally expensive XAI method.

4.2 Accuracy
This section explores the validation accuracy obtained by the models for different hyperparameters and datasets.

Since the task at hand is a classification task, this measure is a direct comparison of the performance of the

models. These results are an average over multiple runs with the same hyperparameters. Not every model is

trained for every dataset due to time constraints.

4.2.1 Results Per Dataset

This subsection shows the accuracies per model for each dataset. Tabulated results can be found in the appendix.

4.2.2 Tsinghua Dogs and Places Results

This section shows the accuracies per model for the Tsinghua Dogs [66] and Places [65] datasets. The results

are shown in Figure 4.1.

For the Tsinghua Dogs dataset and the Places dataset, we can see that the models trained with Proxy Atten-

tion outperform those trained without Proxy Attention. ResNet50 [27] performs the best while VGG16 [69]

performs the worst on both datasets while ResNet18 and EfficientNetB0 perform similarly.

Interestingly, the performance of VGG16 trained with Proxy Attention is comparable to the performance of

ResNet18 trained without Proxy Attention for both datasets. Since VGG16 performed the worst, this shows

that Proxy Attention can be used to improve the performance of models regardless of how badly they initially

https://github.com/SubhadityaMukherjee/proxy_attention/blob/main/src/results/aggregated_runs.csv

47

performed. In general, the Places is a much harder dataset to classify than the Tsinghua Dogs dataset and thus

the accuracies are lower.

efficientnet_b0
resnet18

resnet50
vgg16

model

0

20

40

60

80

100

ac
cu

ra
cy

72.88% 70.55%
78.53%

58.36%

81.21% 77.39%
83.47%

72.39%

No Proxy
Proxy

(a) Tsinghua Dogs Dataset

efficientnet_b0
resnet18

resnet50
vgg16

model

0

20

40

60

80

100

ac
cu

ra
cy

37.82% 34.54%
41.18%

23.96%

46.06%
41.25%

47.99%

34.15%

No Proxy
Proxy

(b) Places Dataset

Figure 4.1: Comparing Accuracies of Models trained with and without Proxy Attention on the Tsinghua Dogs
and Places datasets

4.2.3 Stanford Dogs and CIFAR100 Results

This section shows the accuracies per model for the Stanford Dogs [63] and CIFAR100 [62] datasets. The

results are shown in Figure 4.2.

Like the previous subsection, we can see that the models trained with Proxy Attention outperform those trained

without Proxy Attention. The VGG16 [69] model is replaced with a ViT model for diversity in the results.

We see that the ViT model performs the worst on both datasets while ResNet50 [27] performs the best. This is

not to say that vision transformers are bad, but rather that in the same amount of training time, the ViT model is

not able to learn as much as the other models. While the ViT initially performed badly, using Proxy Attention

can improve its performance to be comparable to the performance of the other networks. This shows that Proxy

Attention can also be used on ViT models to improve their performance.

4.2.4 Caltech101 and ASL Results

This section shows the accuracies per model for the Caltech101 [64] and ASL datasets. The results are shown

in Figure 4.3.

As before, we can see that the models trained with Proxy Attention outperform those trained without Proxy

Attention but the difference is not as large as the previous datasets. This could be because the Caltech101 and

ASL datasets are much easier to learn than the previous datasets and thus the original models are already at a

high accuracy. That being said, there is still a small improvement in accuracy for the models trained with Proxy

Attention. In the odd case of the ASL dataset, the ResNet18 model trained with Proxy Attention performed

worse than the model trained without Proxy Attention. Maybe this is because the ASL dataset is the easiest

dataset to learn of the ones used in this thesis and thus using Proxy Attention is not necessary and slightly hurt

the model’s performance.

4.2.5 Plant Disease Results

This section shows the accuracies per model for the Plant Disease dataset. The results are shown in Figure 4.4.

The plant disease dataset is also of a similar difficulty to the Caltech101 and ASL datasets and thus the models

https://www.kaggle.com/datasets/grassknoted/asl-alphabet
https://www.kaggle.com/datasets/rajibdpi/plant-disease-dataset

48

efficientnet_b0
resnet18

resnet50

vit_base_patch16_224

model

0

20

40

60

80

100
ac

cu
ra

cy

85.65%

71.41%

92.01%

66.07%

94.20%
85.76%

95.50%

82.93%

No Proxy
Proxy

(a) Stanford Dogs Dataset

efficientnet_b0
resnet18

resnet50

vit_base_patch16_224

model

0

20

40

60

80

100

ac
cu

ra
cy

75.22% 71.00%
78.70%

54.91%

80.91%
76.50%

82.85%
75.65%

No Proxy
Proxy

(b) CIFAR100 Dataset

Figure 4.2: Comparing Accuracies of models trained with and without Proxy Attention on the Stanford Dogs
and CIFAR100 datasets

efficientnet_b0
resnet50

model

0

20

40

60

80

100

ac
cu

ra
cy

94.31% 95.58%97.50% 96.98%

No Proxy
Proxy

(a) Caltech101 Dataset

efficientnet_b0
resnet18

resnet50

model

95

96

97

98

99

100

ac
cu

ra
cy

99.95% 99.91% 99.99%99.86% 99.92% 99.94%

No Proxy
Proxy

(b) Asl Dataset

Figure 4.3: Comparing Accuracies of models trained with and without Proxy Attention on the Caltech101 and
Asl datasets

trained with Proxy Attention did not perform much better than those trained without Proxy Attention. Although

there is some improvement after using Proxy Attention in most cases, the ResNet50 [27] model seemed to do

better when Proxy Attention is not used.

4.2.6 Results Grouped By Schedule

This section explores the validation accuracy obtained for different step schedules. The results are shown in

Figure 4.5. There are three types of schedules tested in this thesis: no proxy, proxy applied after half the

training steps ([20, ’p’,19]), and proxy applied every couple of steps ([5, ’p’, 9, ’p’,9, ’p’,4]). The total number

of training steps is 40 for all schedules with every network trained with and without Proxy Attention being

given the same parameters.

We can see that the models trained with Proxy Attention outperform those trained without Proxy Attention

for all three schedules. The schedule that performed the best is the schedule that applied Proxy Attention every

couple of steps. This could be because the model can learn more from the Proxy Attention module when applied

49

efficientnet_b0
resnet18

resnet50

model

95

96

97

98

99

100

ac
cu

ra
cy

98.90% 98.95% 98.95%98.97% 99.07%
98.85%

No Proxy
Proxy

Figure 4.4: Comparing Accuracies of models trained with and without Proxy Attention on the Plant Disease
dataset

more often. While applying the proxy step in the middle of training is also able to improve the performance of

the model, it can be seen that applying the proxy step multiple times can improve the performance even more.

Tsinghua Dogs
Places256

Stanford Dogs
CIFAR100

Caltech101
PlantDisease

ASL Alphabet

ds_name

0

20

40

60

80

100

ac
cu

ra
cy

5,p,9,p,9,p,9,p,4
20,p,19
No Proxy

Figure 4.5: Comparing Accuracies of models trained with and without Proxy Attention on the ResNet50 [27]
architecture for different step schedules

.

4.2.7 Results Grouped By Proxy Threshold

This section explores the validation accuracy obtained for different Proxy thresholds. The results are shown in

Figure 4.6. The comparison is done for two datasets: the Stanford Dogs dataset [63] and the Tsinghua Dogs

dataset [66]. While the Stanford Dogs dataset is a relatively easy dataset to learn, the Tsinghua Dogs dataset is

a much harder dataset to learn and thus these two datasets are chosen to see how the Proxy Threshold affects

the performance of the model for datasets of different complexities. Since the comparison is done for the Proxy

50

Threshold, different models are chosen to identify the best value across different architectures and datasets.

Thus for these two figures, only comparing the value of the Proxy Threshold is important and not the actual

accuracy of the model.

The results are not conclusive for this comparison and it can be said that the Proxy Threshold remains a hyper-

parameter that needs to be tuned for each dataset. For the EfficientNetB0 [70] trained with Proxy Attention on

the Stanford Dogs dataset[63], the best Proxy Threshold is 0.8, while the others had a similar performance. For

the Resnet18 [27] trained with Proxy Attention on the Tsinghua Dogs Dataset [66], the best Proxy Threshold

is 0.1 and 0.85, while the others had a similar performance. In this case, choosing a value of 0.85 for the Proxy

Threshold would be a good starting point, and further tuning could be done to improve the model’s performance

if needed.

efficientnet_b0
model

90

92

94

96

98

100

ac
cu

ra
cy

94.16 94.16 94.21 94.00

0.1
0.4
0.8
0.85

(a) EfficientNetB0 [70] trained with Proxy Attention on the
Stanford Dogs dataset[63]

resnet18
model

50

60

70

80

90

100

ac
cu

ra
cy 77.49 77.32 77.17 77.45

0.1
0.4
0.8
0.85

(b) Resnet18 [27] trained with Proxy Attention on the Ts-
inghua Dogs Dataset [66]

Figure 4.6: Comparing Accuracies of models trained with Proxy Attention for Different Proxy Thresholds

4.2.8 Results Grouped By Proxy Image Weight

This section explores the validation accuracy obtained for different Proxy image weights. The results are shown

in Figure 4.7. The comparison is done for two datasets: the Stanford Dogs dataset [63] and the Tsinghua Dogs

dataset [66]. While the Stanford Dogs dataset is relatively easy to learn, the Tsinghua Dogs dataset is much

harder to learn and thus these two datasets are chosen to see how the Proxy Image Weight affects the model’s

performance for datasets of different complexities. Since the comparison is done for the Proxy Image Weight,

different models are chosen to identify the best value across different architectures and datasets. Thus for these

two figures, only comparing the value of the Proxy Image Weight is important and not the actual accuracy of

the model.

For the EfficientNetB0 [70] trained with Proxy Attention on the Stanford Dogs dataset[63], the best Proxy

Image Weight is 0.1, while the others had a similar performance except for a weight of 0.2 which performed the

worst. For the Resnet18 [27] trained with Proxy Attention on the Tsinghua Dogs Dataset [66], the best Proxy

Image Weight are 0.4 and 0.8, while the others had a similar performance. While the results are inconclusive,

using a Proxy Image Weight of 0.1 or 0.4 seems a good choice. Further, tuning is always recommended if

required.

51

efficientnet_b0
model

90

92

94

96

98

100
ac

cu
ra

cy

94.26 94.18 94.16 94.04

92.620.1
0.8
0.95
0.4
0.2

(a) EfficientNetB0 [70] trained with Proxy Attention on the
Stanford Dogs dataset[63]

resnet18
model

50

60

70

80

90

100

ac
cu

ra
cy 77.41 77.41 77.35 77.24

0.4
0.8
0.1
0.95

(b) Resnet18 [27] trained with Proxy Attention on the Ts-
inghua Dogs Dataset [66]

Figure 4.7: Comparing Accuracies of models trained with Proxy Attention for Different Proxy Image Weights

4.2.9 Results Grouped By Proxy Image Subset

This section explores the validation accuracy obtained for different Proxy image subsets. The results are shown

in Figure 4.8. The comparison is done for two datasets: the Stanford Dogs dataset [63] and the Tsinghua Dogs

dataset [66]. While the Stanford Dogs dataset is relatively easy to learn, the Tsinghua Dogs dataset is much

harder to learn and thus these two datasets are chosen to see how the Proxy Image Subset affects the model’s

performance for datasets of different complexities. Since the comparison is done for the Proxy Image Subset,

different models are chosen to identify the best value across different architectures and datasets. Thus for these

two figures, only comparing the value of the Proxy Image Subset is important and not the actual accuracy of

the model.

For the EfficientNetB0 [70] trained with Proxy Attention on the Stanford Dogs dataset[63], the best Proxy

Image Subset is 0.2 and 0.95, while the others had a similar performance except for a subset of 0.8 which

performed the worst. For the Resnet18 [27] trained with Proxy Attention on the Tsinghua Dogs Dataset [66],

the best Proxy Image Subset are 0.2 and 0.95, while 0.8 performed the worst.

Tuning the Proxy Image Subset seems to give significant improvements compared to tuning the others, thus it

is recommended to tune the Proxy Image Subset first before tuning the others. A good starting point would be

to use a Proxy Image Subset of 0.2. Further, tuning is always recommended if required. It is also interesting to

note that in the case of the EfficientNetB0 [70] trained with Proxy Attention on the Stanford Dogs dataset[63],

the model already performed quite well, and thus adding more Proxy Images did more harm than good. While

in the case of the Resnet18 [27] trained with Proxy Attention on the Tsinghua Dogs Dataset [66], the model did

not perform as well, and thus adding more Proxy Images did not degrade the performance but rather improved

it.

4.3 Explanability
This section explores the explainability of the models for different hyperparameters and datasets by using a

trained model to generate attention maps for a given input image. The attention maps are compared between

the same network (with the same hyperparameters) trained with and without Proxy Attention. Please refer to

the discussion section 5 for explanations of the results demonstrated in the section.

52

efficientnet_b0
model

90

92

94

96

98

100
ac

cu
ra

cy

94.73

93.72 94.03

0.2
0.8
0.95

(a) EfficientNetB0 [70] trained with Proxy Attention on the
Stanford Dogs dataset[63]

resnet18
model

50

60

70

80

90

100

ac
cu

ra
cy 77.35 77.18 77.52

0.2
0.8
0.95

(b) Resnet18 [27] trained with Proxy Attention on the Ts-
inghua Dogs Dataset [66]

Figure 4.8: Comparing Accuracies of models trained with Proxy Attention for different Proxy Image Subsets

4.3.1 CIFAR 100, ResNet18, EigenGradCAM

This section explores the explainability of the Resnet18 [27] trained with and without Proxy Attention on the

CIFAR100 dataset [62]. The results are shown in Figure 4.9. The attention maps are generated using Eigen-

GradCAM [28].

Here we can see that, for most of the images, there is no difference between the predictions of the Proxy

Attention method and the original prediction. For some of the images, such as the cockroach and the snake, the

original prediction is correct, but the prediction after applying the proxy method was wrong. This shows that

using Proxy Attention does not negatively affect the model’s attention in most cases but occasionally does.

4.3.2 CIFAR 100, EfficientNetB0, EigenGradCAM

This section explores the explainability of the EfficientNetB0 [70] trained with and without Proxy Attention

on the CIFAR100 dataset [62]. The results are shown in Figure 4.10. The attention maps are generated using

EigenGradCAM [28].

For this comparison, it seems the networks predicted the results quite accurately. This also shows that using the

proxy method did not negatively affect the results. For a single case of the wardrobe, the network that did not

use Proxy Attention seemed to place higher attention on the floor while after using the Proxy Attention step, the

model learned to focus on the wardrobe itself. It is to be noted that in the case of the roads, the model trained

with Proxy Attention seemed to make a mistake.

4.3.3 CIFAR 100, ViT , EigenGradCAM

This section explores the explainability of the ViT [1] trained with and without Proxy Attention on the CI-

FAR100 dataset [62]. The results are shown in Figure 4.12. The attention maps are generated using EigenGrad-

CAM [28].

This comparison is for the ViT. Since the transformer network learns the images in patches, and no other

preprocessing step is applied, the attention map is denoted as localized points across the image and not complete

attention like the CNNs before. In this case, it did seem that proxy attention, helped the network focus quite a

bit on the correct regions of the image. For example, in the lion, man, couch, beaver, et cetera. The model had

initially learned the wrong part of the image, but in the case of the proxy intention model, the correct part of

53

cloud beetle plate cockroach woman spider mouse rocket

cloud cloud spider hamster beetle orange skyscraper apple

(a) Without Proxy Attention

cloud beetle plate cockroach woman spider mouse rocket

cloud cloud spider hamster beetle orange skyscraper apple

(b) With Proxy Attention

Figure 4.9: Comparison of attention maps generated by resnet18 trained with and without Proxy Attention on
the CIFAR100 dataset

man girl dinosaur wardrobe road road beaver kangaroo

shrew sweet_pepper cattle orchid flatfish chimpanzee squirrel palm_tree

(a) Without Proxy Attention

man girl dinosaur wardrobe road road beaver kangaroo

shrew sweet_pepper cattle orchid flatfish chimpanzee squirrel palm_tree

(b) With Proxy Attention

Figure 4.10: Comparison of attention maps generated by efficientnet_b0 trained with and without Proxy Atten-
tion on the CIFAR100 dataset

the image is learned. Only in the cloud case does it seem that the model trained with Proxy Attention learned

the wrong part of the image.

54

lion telephone pine_tree man rose couch tulip wolf

cloud girl mountain elephant rose lion beaver shark

(a) Without Proxy Attention

lion telephone pine_tree man rose couch tulip wolf

cloud girl mountain elephant rose lion beaver shark

(b) With Proxy Attention

Figure 4.11: Comparison of attention maps generated by vit_base_patch16_224 trained with and without Proxy
Attention on the CIFAR100 dataset

4.3.4 CIFAR 100, ViT , GradCam++

This section explores the explainability of the ViT [1] trained with and without Proxy Attention on the CI-

FAR100 dataset [62]. The results are shown in Figure 4.12. The attention maps are generated using GradCam++

[14].

The results of this comparison are similar to the one above. In the case of the possum, the man had to try the

model relearnt the attention map correctly. While in the case of the train, it did seem that the model learned to

associate the sky with the presence of a train track.

4.3.5 Tsinghua Dogs, ResNet50 , GradCam++

This section explores the explainability of the ResNet50 [27] trained with and without Proxy Attention on

the Tsinghua dogs dataset [66]. The results are shown in Figure 4.13. The attention maps are generated using

GradCam++ [14].

Both the models in this case are accurate enough for the results to be similar. In the case of the second column

of images, the model trained with Proxy Attention seemed to localize the position of the dogs better. In a few

of the other examples of the model trained with proxy attention, more focus is placed on the faces of the dogs,

which would probably have helped the model recognize the breeds better.

4.3.6 Tsinghua Dogs, ResNet18, EigenGradCAM

This section explores the explainability of the ResNet18 [27] trained with and without Proxy Attention on

the Tsinghua dogs dataset [66]. The results are shown in Figure 4.14. The attention maps are generated using

EigenGradCAM [28].

The results obtained for this comparison are also similar to the ones above. In some cases, though, the model

trained with Proxy Attention seemed to learn the wrong part of the image, even though it had initially got it

55

possum cockroach chair oak_tree skyscraper caterpillar willow_tree train

skunk man wolf baby skunk lawn_mower cattle spider

(a) Without Proxy Attention

possum cockroach chair oak_tree skyscraper caterpillar willow_tree train

skunk man wolf baby skunk lawn_mower cattle spider

(b) With Proxy Attention

Figure 4.12: Comparison of attention maps generated by vit_base_patch16_224 trained with and without Proxy
Attention on the CIFAR100 dataset

5355-n000126-golden_retriever7449-n000128-teddy 2909-n000116-Cardigan2925-n000114-toy_poodle203-n000027-Norfolk_terrier286-n000111-cocker_spaniel2909-n000116-Cardigan203-n000027-Norfolk_terrier

209-n000054-Doberman1324-n000004-malamute420-n000124-Chihuahua2925-n000114-toy_poodle3083-n000117-Bichon_Frise232-n000089-giant_schnauzer231-n000081-silky_terrier3580-n000122-Labrador_retriever

(a) Without Proxy Attention

5355-n000126-golden_retriever7449-n000128-teddy 2909-n000116-Cardigan2925-n000114-toy_poodle203-n000027-Norfolk_terrier286-n000111-cocker_spaniel2909-n000116-Cardigan203-n000027-Norfolk_terrier

209-n000054-Doberman1324-n000004-malamute420-n000124-Chihuahua2925-n000114-toy_poodle3083-n000117-Bichon_Frise232-n000089-giant_schnauzer231-n000081-silky_terrier3580-n000122-Labrador_retriever

(b) With Proxy Attention

Figure 4.13: Comparison of attention maps generated by resnet50 trained with and without Proxy Attention on
the Tsinghua Dogs dataset

correct.

56

235-n000096-Weimaraner2909-n000116-Cardigan 7449-n000128-teddy253-n000105-Cane_Carso205-n000030-Tibetan_mastiff5355-n000126-golden_retriever223-n000074-English_foxhound211-n000068-Saint_Bernard

3336-n000121-chinese_rural_dog216-n000063-Walker_hound2342-n000102-miniature_schnauzer806-n000129-papillon 2909-n000116-Cardigan3083-n000117-Bichon_Frise231-n000081-silky_terrier2594-n000109-Border_collie

(a) Without Proxy Attention

235-n000096-Weimaraner2909-n000116-Cardigan 7449-n000128-teddy253-n000105-Cane_Carso205-n000030-Tibetan_mastiff5355-n000126-golden_retriever223-n000074-English_foxhound211-n000068-Saint_Bernard

3336-n000121-chinese_rural_dog216-n000063-Walker_hound2342-n000102-miniature_schnauzer806-n000129-papillon 2909-n000116-Cardigan3083-n000117-Bichon_Frise231-n000081-silky_terrier2594-n000109-Border_collie

(b) With Proxy Attention

Figure 4.14: Comparison of attention maps generated by resnet18 trained with and without Proxy Attention on
the Tsinghua Dogs dataset

4.4 Improvement in Other Metrics
In this section, we explore the improvement in other metrics apart from accuracy and explainability such as

precision, recall, and F1 score and support.

Consider a network being trained on the Places [65] dataset using EfficientNetB0 [70] and GradCAM++ [14]

as the gradient based XAI technique. We consider the metrics for the worst performing classes by F1-score

before and after the proxy step was applied to see if there is any improvement in the metrics.

We can see from the table 4.1 that there is also an improvement in most of the metrics.

Class Precision (Before) Precision (After) F1-Score (Before) F1-Score (After) Recall (Before) Recall (After) Support (Before) Support (After)
building_facade 0.25 0.12 0.14 0.12 0.10 0.12 71 66

candy_store 0.12 0.57 0.05 0.34 0.03 0.24 29 33

crevasse 0.25 0.40 0.07 0.23 0.04 0.16 26 25

food_court 0.15 0.33 0.16 0.36 0.17 0.39 35 33

gift_shop 0.25 0.41 0.16 0.29 0.12 0.22 34 32

Table 4.1: Metrics Before and After the Proxy Step

57

CHAPTER 5
DISCUSSION

5.1 Research Questions
The section discusses our results concerning the research questions proposed in the study.

• Is it possible to create an augmentation technique that uses Attention maps : From our experiments,

we find that it is possible to use gradient based techniques as an augmentation step to create a proxy

of the attention mechanism. Using Proxy Attention improves performance with a minimal increase in

computation. Thus we can say that this research objective is completely fulfilled.

• Is it possible to approximate the effects of Attention from ViTs in a CNN without changing the
architecture : While Proxy Attention does incorporate the results of gradient based techniques while

training to help guide the networks attention better, we do see that the type of attention exhibited is

not the same as that of a vision transformer. Since the latter uses patches of a fixed size to feed into

the network, generating an attention map is also related to the patch’s size. In the case of CNNs, the

attention map is generated per pixel in the input image. To some extent, it seems more useful to look at

the attention map generated by CNN than that of a vision transformer. We also see that the CNN takes

much less computational resources and time to train than the ViT while having a slightly more useful

attention map.

This being the case, this objective can also said to be completed, but the results are slightly different from

what is initially expected. Future work could tackle this discrepancy by including research quantifying

attention flows in Transformers. [76]

• Is it possible to make a network converge faster and consequently require less data using the out-
puts from XAI techniques : From our results, we see that using the outputs of gradient-based techniques

as part of Proxy Attention has the network converge faster. As for using less data, although the need for

data is not replaced, Proxy Attention improves performance without adding new data or any modifica-

tions to the architecture. Thus we can say that this objective is also fulfilled.

• Does using Proxy Attention impact the explainability positively : From comparing the attention maps,

generated by networks and without proxy attention, we can see that the former does have better expla-

nations. In most cases, using Proxy Attention does help guide the network to the important parts of the

image. In some cases, using our method does make the network focus on the wrong part of the image,

but this happens frequently, and is not an inherent flaw of the method.

Although this does not impact the final performance, some possible reasons of this happening are dis-

cussed below. That being the case, we can also say that this objective is mostly fulfilled, except for the

occasional mistake.

58

5.2 Discussion of Results
The following observations are made based on the results of both the explainability, and the accuracy obtained

for different models trained with and without Proxy Attention on many datasets.

• In general, using Proxy Attention to training model improves performance, regardless of the dataset and

model used.

• Applying the Proxy Attention step multiple times in the training process does seem to improve perfor-

mance, depending on how many times it is applied. But the rate of change of performance is not linear,

and of course applying the proxy step multiple times does increase amount of compute required.

• The Proxy Attention step also seems to improve the results of the ViT and helps it learn to focus on the

right regions of the image faster.

• From the results, we can see that applying the Proxy Attention step to every image that the model pre-

dicted wrong is not always beneficial. One of the hyper parameters is the subset of images that are passed

to proxy attention. It is observed that if a network already has learnt a good representation of the data,

giving it too many images might negatively affect performance. But if optimal performance has not been

reached, then varying the Proxy Image subset parameter seems beneficial.

• Tuning Proxy Weight and Proxy Threshold is unnecessary but can help slightly improve performance.

Using the values we suggested is enough in most cases.

• For easier datasets, using Proxy Attention sometimes degrades the performance and explainability of the

network. Applying the method boosts accuracy for harder tasks and networks that do not initially learn

well.

• In most cases results indicate that models trained with Proxy Attention have improved explainability, for

both CNNs and the Vision Transformer.

5.3 Limitations of this Study
• Better metrics : The metrics used in this study are accuracy and explainability. Although these are the

most common metrics used to evaluate the performance of a model, other metrics can be used to evaluate

the performance of a model. For example, using the uncertainty of the model for each prediction could

be a better means of choosing which images to pass to the proxy attention step. This is not a limitation of

the method, but of the study and can be improved upon in the future.

• Hyperparameters : The research in this paper discusses quite a few hyper parameters. While optimal

values of most of the hyper parameters have been found and discussed, some such as the Proxy Weight

and Proxy Threshold seem to have more subtle effects. Although some recommended values for these

parameters have been discussed, they also seem to rely on the dataset used. That being the case, further

testing these hyper parameters would be required to improve performance on a case-to-case basis. This

further testing is a common part of most deep learning algorithms, but since Proxy Attention is created

to reduce the computational cost of training a neural network, these additional tests do not fully support

the objective.

But on the other hand, we noticed that it is possible to improve performance even with the values we

suggested for these hyperparameters. This means that having to do these additional tests is an optional

part of the algorithm, and depending on the use case and the amount of performance tuning required, it

is possible to use them to further improve performance if necessary.

• Attention : One of the motives of Proxy Attention is to be able to imitate the effects of the attention

mechanism to further improve performance by guiding a CNN based on its mistakes. From our results,

59

we do indeed see that using our method improves the network’s attention and helps it better figure out

the important parts of the image. But, in some cases using Proxy Attention does influence the network

negatively. Although this is not extremely common, and for the most part does not impact performance

all that much it is worth noting that further research is needed in this particular case.

One of the possible reasons that this happens is because the network does learn different representations

at different parts of the training process. If the network initially gets the attention map correct and then

gets it wrong, it might be because at that particular time step, the network has not fully developed a

representation for that class yet. To support the statement, it is valuable to see that even though at the

time steps considered, some of the attention map seem to be wrong, the network’s performance does not

seem to be affected in the long run. For almost all our tests, we did see an increase in performance when

using Proxy Attention.

• Better Scheduling : Unlike data augmentation, the Proxy Attention step is not applied for every epoch.

Since our method relies on understanding the network itself, applying it for every epoch seems counter-

intuitive. It takes any network time to learn, and if the step is applied for every epoch, it might actually

destabilize training. That being the case, we did test multiple schedules with varying intervals of applying

Proxy Attention. From our experiment, we did see that applying our method multiple times does seem

to improve performance but there does not seem to be a linear increase in performance with increasing

number of applications of Proxy Attention.

In the initial stages of training neural networks, the network has not had time to learn better representa-

tion. While in the later stages of training, the network has a better understanding of the data distribution

and can be used to generate better attention maps. That being the case, having a more semi automatic

schedule would be beneficial. This schedule is not tested in this research, but future work could look at

implementing a scheduler based on the network’s performance across training. An algorithm similar to

that of a learning rate scheduler could be used.

5.4 Future Work
While the results of this thesis are promising, there is still a lot of room for improvement. The following are

some of the possible future directions for this work:

• Schedules: Currently, the number of Proxy Steps and the number of images used for the Proxy Step are

fixed. It would be interesting to schedule both based on the validation performance. For example, if the

validation performance is not improving, we can increase the number of Proxy Steps and the number of

images used for the Proxy Step.

• Metrics Testing other metrics such as model uncertainty for each prediction, precision and recall etc

could be a better way to choose which images to pass to the proxy attention step. It would be interesting

to see if these metrics can improve the model’s performance.

• More XAI methods: We have only used a tiny subset of XAI methods for this thesis. It would be

interesting to experiment with more XAI methods (eg: other methods from the literature survey) and see

if they can be used to improve the performance of Proxy Attention.

• Smoothing Attention Maps: The attention maps generated by the XAI methods are noisy. While no

extra smoothing is used in this thesis, it would be useful to experiment with smoothing the attention

maps before using them for the Proxy step. An example of a potentially suitable smoothing method is

Eigen Smoothing [77].

• Better Attention Maps for ViT: This research used the attention maps of the base ViT model but Abnar

60

et al. [76] in their paper, find that the attention maps generated by a ViT are pretty unreliable due to self-

attention, combining different representations across layers of the transformer. While using self-attention

does lead to massive improvements and performance for Transformers, using these attention weights is

an unreliable method of generating proper explanations. Thus, future work could take their work into

account to better compare CNNs and Transformers.

5.5 General Discussion
5.5.1 Data Augmentation

• Why not provide annotations and object position: Datasets that contain annotations and positions are

not easy to compile. For custom tasks, it is quite difficult to obtain such datasets. That being the case,

Proxy Attention is a good alternative as it does not require any extra information.

• Why not apply every epoch like augmentation: Applying Proxy Attention every epoch comes with

certain caveats. Since gradient maps are being computed for multiple images, this process is slightly more

computationally expensive than standard training. Doing so might also lead to overfitting as the network

is given too much feedback. Since Proxy Attention relies on the model’s predictions, giving the network

time to learn is a good idea.

• Isn’t it the same as giving more images to the model: This is somewhat true. Proxy Attention provides

similar benefits to augmentation but with more specific information. An equal number of images are

given to each model in the models tested. Models trained with Proxy Attention and those trained without

it received the same number of images. For example, if the modified image is present, the original image

is not passed to the network to maintain fairness.

5.5.2 Other Domains

• Why is it not SSL: SSL involves generating pseudo-labels in the case of real labels not being available

and Proxy Attention simply uses Gradient based methods to guide the network to the correct parts of the

image. Future research could also explore using Proxy Attention together with SSL.

• Why not use distillation: Proxy Attention is created with the hope of speeding up training with minimal

increase in the usage of computational resources. Distillation refers to using a model already trained

on a similar task to improve the learning process of the current model. While distillation works very

well and is useful in many regards, it goes against the aims of Proxy Attention as training the original

network would have used up even more computational resources. That is not to say that distillation is not

advantageous, but just that it is just not in the scope of this study.

5.5.3 Model Architecture and Attention Modules

• Why not just use a Transformer: The use of Transformers is indeed tested, but they are more com-

putationally expensive and not as easy to train as Convolutional Neural Networks (CNNs). The study’s

objective is to explore whether the effects of the attention module could be approximated using gradient-

based techniques. As a side note though, Proxy Attention, which also works with Transformers and seems

to improve the model’s results. Many studies have proposed attention modules for CNNs (eg: [78]), but

they require specialized architectures.

• Why not modify the network architecture to include attention modules: Proxy Attention is developed

as a general technique that can be applied to any network architecture, not limited to CNNs. Many

surveyed papers required specialized architectures, which can be counterintuitive and not always feasible

to implement. Thus, Proxy Attention offers a more versatile approach for improving performance by only

61

modifying the training process.

5.5.4 Gradient Based Techniques

• Why use a different gradient-based technique for the results: To ensure fairness in the evaluation

process, it is important to use a different gradient-based technique. Neural networks excel at approximat-

ing transformations, so if the same technique is used for both training and evaluation, the network may

learn to approximate the technique itself instead of learning where to look, which would defeat the whole

point of Proxy Attention. Testing with a different technique ensures a fair comparison and avoids bias in

the evaluation.

5.5.5 Hyperparameters

• Why so many hyperparameters: Since Proxy Attention is a novel technique, it necessitated testing

multiple hyperparameters to determine which ones yield the best results. The extensive exploration of

hyperparameters enabled the author to narrow down the search space for future experiments and focus

only on the most effective ones. Varying the hyperparameters also allowed the author to examine the

impact of different components of the pipeline, leading to a better understanding of the overall effects of

using Proxy Attention.

• Why do some of the hyperparameters not seem very sensitive: In certain datasets, the hyperparame-

ters may not exhibit significant effects. This could be attributed to the network already performing well

enough on those datasets, rendering the hyperparameter variations less impactful. While there are the-

oretical expectations of certain effects, such as faster convergence, the practical results may not always

demonstrate a substantial improvement in our studies. But although the effects may not be pronounced,

they still enhance the overall results to a certain degree. If nothing else, they do not seem to have a

negative impact on the results, so they are still worth exploring.

5.5.6 Stability and Training Effects

• Will this destabilize training: Some predictions that are previously classified correctly may become

incorrect when using Proxy Attention. It is also to be noted that this does not seem to occur too frequently,

so it is not a major concern. While this phenomenon does not appear to destabilize the training process,

it does make the network more sensitive to applying Proxy Attention too frequently. The results indicate

that applying Proxy Attention improves performance regardless, but it is not recommended to apply it

every epoch.

• In later iterations, what happens if a correctly predicted image is wrongly classified: Since the

images generated through Proxy Attention are not persistent, the network should be capable of recov-

ering from such misclassifications. In the worst-case scenario, the network will be trained on a slightly

modified image, which is not necessarily detrimental. Moreover, the network has previously encountered

the original image, so it should be able to learn a better representation of the image through subsequent

iterations.

5.5.7 Challenges with External Libraries

Some of the challenges that are faced while using external libraries are as follows:

1. GPU cache: While Ray Tune and Optuna manage resources efficiently, they did not clear the GPU cache

effectively. PyTorch, by default, holds on to the GPU cache and does not release it until the program is

closed for efficiency. This would not be a problem for a single training run, but if many trials are being

https://docs.ray.io/en/latest/tune/index.html
https://optuna.org/

62

run, the cache would quickly fill up and cause the training to crash. This does not imply that using Proxy

Attention makes it impossible to use such libraries but that it is easier to implement a custom solution.

2. Cluster : Both libraries are written to enable running large-scale experiments over multiple machines.

While this would be useful for a large-scale project, it added unnecessary complexity to this project as

all the experiments are run on a single machine.

3. Grid Search : Both libraries mentioned above are designed for hyperparameter tuning and to implement

multiple grid search variants. While this would be useful, it would stop many trials that would eventually

be useful to analyze. In this project, it is important to have results for each of the trials, and since the

author could not find a way to disable the default Early Stopping behaviour as part of the grid search, a

simple trial generation algorithm is created instead.

63

CHAPTER 6
CONCLUSION

In this thesis, we proposed a novel method to use gradient-based techniques as a proxy for attention to improve

the performance of CNNs by modifying the training process. We defined the method and how to implement it

in detail. We experimented with different hyperparameters, tested it on multiple datasets using multiple models,

and found performance and explainability improvements in almost all cases. The limitations, future work, and

challenges faced while working on this thesis are also discussed.

6.1 Lessons Learned
The lessons learned from this thesis are as follows:

• Combining research from different domains to create a novel method: This thesis taught me how to

combine research from different domains to create a novel method. In this case, we combined research

from the domains of XAI and Augmentation to create a novel augmentation technique.

• Hyperparameter Tuning: We performed many experiments with different hyperparameters and models

to test the method’s robustness and find the best configuration. Doing so taught me the importance of

hyperparameter tuning.

• Memory Leaks: We encountered a lot of memory leaks while working on the code for this thesis, and in

the process of fixing them learned how to debug and fix them.

• Functional code vs OOP: We wrote the code for this thesis in a functional style instead of an object-

oriented style as a personal experiment. This made it easy to reuse certain parts of the code and modify

others. Doing so taught me the importance of writing functional code.

• Augmentation: We learned much about augmentation while working on this thesis. We learned about

the different types of boosts, how to implement them, and how to use them to improve the performance

of CNNs.

• XAI: We also learned much about XAI while working on this thesis.

• Training Loop: Previous to this thesis, the author had only used the training loop provided by higher-

level libraries. However, we had to implement the training loop from scratch for this thesis. Doing so

taught the author a lot about the different components of the training loop and how to configure them for

optimal performance and modify them to suit the project’s needs.

64

CHAPTER 7
APPENDIX

7.1 Intuition Figure
Consider the following puzzle. We have all seen similar puzzles that ask you to find something in the image.

For instance here it is to find the lollipop among the icecreams. The usual way we solve puzzles like these is to

first look at a random part of the image, and if we do not find what we are looking for, we move on to the next

part of the image. We repeat this process until we see what we are looking for. This intuition is the basis for

the Proxy Attention method. Instead of the puzzle, we have image datasets, and instead of the lollipop, we have

the class we are trying to find. The intuition is that if the image is classified incorrectly, we can see the part of

the image that is causing the misclassification and down weight it. This is similar to how we would solve the

puzzle. Down weighting can be considered a type of attention, hence the name Proxy Attention.

Figure 7.1: Intuition Figure for Proxy Attention

7.2 Proxy Images Examples
These are some example images generated by Proxy Attention.

7.3 Batch Finder Algorithm
This section shows the pipeline used to find the optimal batch size for training.

7.4 Additional Explanability Results
This section contains additional results for the explainability experiments.

https://www.thesun.co.uk/fabulous/15681738/brainteaser-lollipop-ice-cream/

65

Figure 7.2: Example of Proxy Images 1

66

Figure 7.3: Example of Proxy Images 2

67

Figure 7.4: Example of Proxy Images 3

68

Start

End

FALSE

TRUEOOM Error

batchsize = 2 Dummy input Model

model(input)

loss(target,input)

loss.backward()

optimizer.step()

optimizer.zero_grad()

Mock train
iteration

Figure 7.5: Diagramatic representation of the Batch Size Finder Algorithm

69

cloud beetle plate cockroach woman spider mouse rocket

cloud cloud spider hamster beetle orange skyscraper apple

(a) Without Proxy Attention

cloud beetle plate cockroach woman spider mouse rocket

cloud cloud spider hamster beetle orange skyscraper apple

(b) With Proxy Attention

Figure 7.6: Comparison of attention maps generated by resnet18 trained with and without Proxy Attention on
the CIFAR100 dataset using EigenGradCAM

cloud worm can butterfly castle skunk can flatfish

palm_tree seal beetle dinosaur girl porcupine forest girl

(a) Without Proxy Attention

cloud worm can butterfly castle skunk can flatfish

palm_tree seal beetle dinosaur girl porcupine forest girl

(b) With Proxy Attention

Figure 7.7: Comparison of attention maps generated by resnet18 trained with and without Proxy Attention on
the CIFAR100 dataset using EigenGradCAM

70

worm kangaroo skyscraper man can mouse poppy skyscraper

snail turtle kangaroo sea television tractor kangaroo forest

(a) Without Proxy Attention

worm kangaroo skyscraper man can mouse poppy skyscraper

snail turtle kangaroo sea television tractor kangaroo forest

(b) With Proxy Attention

Figure 7.8: Comparison of attention maps generated by resnet18 trained with and without Proxy Attention on
the CIFAR100 dataset using EigenGradCAM

bottle seal lizard boy flatfish tractor worm possum

castle shark sea motorcycle otter cattle bed woman

(a) Without Proxy Attention

bottle seal lizard boy flatfish tractor worm possum

castle shark sea motorcycle otter cattle bed woman

(b) With Proxy Attention

Figure 7.9: Comparison of attention maps generated by efficientnet_b0 trained with and without Proxy Atten-
tion on the CIFAR100 dataset using EigenGradCAM

71

mountain crab lizard pickup_truck turtle cattle forest hamster

rocket road pickup_truck bridge bottle skunk crab dinosaur

(a) Without Proxy Attention

mountain crab lizard pickup_truck turtle cattle forest hamster

rocket road pickup_truck bridge bottle skunk crab dinosaur

(b) With Proxy Attention

Figure 7.10: Comparison of attention maps generated by efficientnet_b0 trained with and without Proxy Atten-
tion on the CIFAR100 dataset using EigenGradCAM

mushroom chimpanzee elephant baby oak_tree television man apple

cockroach spider beaver chair castle mouse squirrel motorcycle

(a) Without Proxy Attention

mushroom chimpanzee elephant baby oak_tree television man apple

cockroach spider beaver chair castle mouse squirrel motorcycle

(b) With Proxy Attention

Figure 7.11: Comparison of attention maps generated by efficientnet_b0 trained with and without Proxy Atten-
tion on the CIFAR100 dataset using EigenGradCAM

72

lawn_mower bear kangaroo boy castle bicycle train boy

beetle rocket skyscraper train pine_tree shark aquarium_fish road

(a) Without Proxy Attention

lawn_mower bear kangaroo boy castle bicycle train boy

beetle rocket skyscraper train pine_tree shark aquarium_fish road

(b) With Proxy Attention

Figure 7.12: Comparison of attention maps generated by vit_base_patch16_224 trained with and without Proxy
Attention on the CIFAR100 dataset using EigenGradCAM

kangaroo whale squirrel skunk ray rose bridge keyboard

sweet_pepper clock beetle castle oak_tree hamster seal tractor

(a) Without Proxy Attention

kangaroo whale squirrel skunk ray rose bridge keyboard

sweet_pepper clock beetle castle oak_tree hamster seal tractor

(b) With Proxy Attention

Figure 7.13: Comparison of attention maps generated by vit_base_patch16_224 trained with and without Proxy
Attention on the CIFAR100 dataset using EigenGradCAM

73

dolphin sweet_pepper raccoon mushroom poppy plain table motorcycle

bee willow_tree ray raccoon mushroom worm beaver apple

(a) Without Proxy Attention

dolphin sweet_pepper raccoon mushroom poppy plain table motorcycle

bee willow_tree ray raccoon mushroom worm beaver apple

(b) With Proxy Attention

Figure 7.14: Comparison of attention maps generated by vit_base_patch16_224 trained with and without Proxy
Attention on the CIFAR100 dataset using EigenGradCAM

dolphin streetcar forest tiger chair plain road plate

tractor lobster fox cup baby pear camel lizard

(a) Without Proxy Attention

dolphin streetcar forest tiger chair plain road plate

tractor lobster fox cup baby pear camel lizard

(b) With Proxy Attention

Figure 7.15: Comparison of attention maps generated by vit_base_patch16_224 trained with and without Proxy
Attention on the CIFAR100 dataset using GradCAM++

74

plain orange keyboard mountain cattle skunk tank whale

otter maple_tree rose plain chimpanzee tractor train porcupine

(a) Without Proxy Attention

plain orange keyboard mountain cattle skunk tank whale

otter maple_tree rose plain chimpanzee tractor train porcupine

(b) With Proxy Attention

Figure 7.16: Comparison of attention maps generated by vit_base_patch16_224 trained with and without Proxy
Attention on the CIFAR100 dataset using GradCAM++

flatfish palm_tree caterpillar possum bee can crab girl

crab chair tiger house sweet_pepper clock cattle crab

(a) Without Proxy Attention

flatfish palm_tree caterpillar possum bee can crab girl

crab chair tiger house sweet_pepper clock cattle crab

(b) With Proxy Attention

Figure 7.17: Comparison of attention maps generated by vit_base_patch16_224 trained with and without Proxy
Attention on the CIFAR100 dataset using GradCAM++

75

3083-n000117-Bichon_Frise215-n000038-Lhasa225-n000062-black_and_tan_coonhound7449-n000128-teddy253-n000105-Cane_Carso2925-n000114-toy_poodle5355-n000126-golden_retriever209-n000049-kelpie

3083-n000117-Bichon_Frise2909-n000116-Cardigan5355-n000126-golden_retriever7449-n000128-teddy 225-n000082-boxer1936-n000005-Pomeranian226-n000057-wire_haired_fox_terrier340-n000120-Yorkshire_terrier

(a) Without Proxy Attention

3083-n000117-Bichon_Frise215-n000038-Lhasa225-n000062-black_and_tan_coonhound7449-n000128-teddy253-n000105-Cane_Carso2925-n000114-toy_poodle5355-n000126-golden_retriever209-n000049-kelpie

3083-n000117-Bichon_Frise2909-n000116-Cardigan5355-n000126-golden_retriever7449-n000128-teddy 225-n000082-boxer1936-n000005-Pomeranian226-n000057-wire_haired_fox_terrier340-n000120-Yorkshire_terrier

(b) With Proxy Attention

Figure 7.18: Comparison of attention maps generated by resnet50 trained with and without Proxy Attention on
the Tsinghua Dogs dataset using GradCAM++

211-n000058-Sealyham_terrier234-n000091-Appenzeller2909-n000116-Cardigan1121-n000002-French_bulldog5355-n000126-golden_retriever200-n000012-affenpinscher2594-n000109-Border_collie1043-n000001-Shiba_Dog

5355-n000126-golden_retriever7449-n000128-teddy2342-n000102-miniature_schnauzer2909-n000116-Cardigan5355-n000126-golden_retriever214-n000033-Bedlington_terrier224-n000039-Irish_wolfhound798-n000130-pug

(a) Without Proxy Attention

211-n000058-Sealyham_terrier234-n000091-Appenzeller2909-n000116-Cardigan1121-n000002-French_bulldog5355-n000126-golden_retriever200-n000012-affenpinscher2594-n000109-Border_collie1043-n000001-Shiba_Dog

5355-n000126-golden_retriever7449-n000128-teddy2342-n000102-miniature_schnauzer2909-n000116-Cardigan5355-n000126-golden_retriever214-n000033-Bedlington_terrier224-n000039-Irish_wolfhound798-n000130-pug

(b) With Proxy Attention

Figure 7.19: Comparison of attention maps generated by resnet50 trained with and without Proxy Attention on
the Tsinghua Dogs dataset using GradCAM++

76

1936-n000005-Pomeranian210-n000006-Ibizan_hound2594-n000109-Border_collie249-n000101-Maltese_dog7449-n000128-teddy 214-n000019-Leonberg2909-n000116-Cardigan2909-n000116-Cardigan

7449-n000128-teddy 420-n000124-Chihuahua5355-n000126-golden_retriever1043-n000001-Shiba_Dog5355-n000126-golden_retriever225-n000082-boxer 217-n000014-otterhound3336-n000121-chinese_rural_dog

(a) Without Proxy Attention

1936-n000005-Pomeranian210-n000006-Ibizan_hound2594-n000109-Border_collie249-n000101-Maltese_dog7449-n000128-teddy 214-n000019-Leonberg2909-n000116-Cardigan2909-n000116-Cardigan

7449-n000128-teddy 420-n000124-Chihuahua5355-n000126-golden_retriever1043-n000001-Shiba_Dog5355-n000126-golden_retriever225-n000082-boxer 217-n000014-otterhound3336-n000121-chinese_rural_dog

(b) With Proxy Attention

Figure 7.20: Comparison of attention maps generated by resnet50 trained with and without Proxy Attention on
the Tsinghua Dogs dataset using GradCAM++

216-n000017-Lakeland_terrier3083-n000117-Bichon_Frise2342-n000102-miniature_schnauzer1043-n000001-Shiba_Dog3083-n000117-Bichon_Frise1121-n000002-French_bulldog227-n000070-groenendael2909-n000116-Cardigan

209-n000043-dhole 258-n000104-Black_sable7449-n000128-teddy 1324-n000004-malamute211-n000025-African_hunting_dog1324-n000004-malamute219-n000066-Irish_water_spaniel206-n000007-Border_terrier

(a) Without Proxy Attention

216-n000017-Lakeland_terrier3083-n000117-Bichon_Frise2342-n000102-miniature_schnauzer1043-n000001-Shiba_Dog3083-n000117-Bichon_Frise1121-n000002-French_bulldog227-n000070-groenendael2909-n000116-Cardigan

209-n000043-dhole 258-n000104-Black_sable7449-n000128-teddy 1324-n000004-malamute211-n000025-African_hunting_dog1324-n000004-malamute219-n000066-Irish_water_spaniel206-n000007-Border_terrier

(b) With Proxy Attention

Figure 7.21: Comparison of attention maps generated by resnet18 trained with and without Proxy Attention on
the Tsinghua Dogs dataset using EigenGradCAM

77

5355-n000126-golden_retriever3580-n000122-Labrador_retriever1160-n000003-Siberian_husky226-n000064-borzoi1121-n000002-French_bulldog203-n000027-Norfolk_terrier2192-n000088-Samoyed2909-n000116-Cardigan

561-n000127-miniature_pinscher1043-n000001-Shiba_Dog258-n000104-Black_sable249-n000101-Maltese_dog2192-n000088-Samoyed1324-n000004-malamute2909-n000116-Cardigan 7449-n000128-teddy

(a) Without Proxy Attention

5355-n000126-golden_retriever3580-n000122-Labrador_retriever1160-n000003-Siberian_husky226-n000064-borzoi1121-n000002-French_bulldog203-n000027-Norfolk_terrier2192-n000088-Samoyed2909-n000116-Cardigan

561-n000127-miniature_pinscher1043-n000001-Shiba_Dog258-n000104-Black_sable249-n000101-Maltese_dog2192-n000088-Samoyed1324-n000004-malamute2909-n000116-Cardigan 7449-n000128-teddy

(b) With Proxy Attention

Figure 7.22: Comparison of attention maps generated by resnet18 trained with and without Proxy Attention on
the Tsinghua Dogs dataset using EigenGradCAM

3580-n000122-Labrador_retriever7449-n000128-teddy3336-n000121-chinese_rural_dog2594-n000109-Border_collie5355-n000126-golden_retriever3580-n000122-Labrador_retriever2909-n000116-Cardigan2925-n000114-toy_poodle

224-n000060-Rottweiler1043-n000001-Shiba_Dog233-n000072-Bouvier_des_Flandres231-n000077-bull_mastiff2594-n000109-Border_collie2909-n000116-Cardigan2594-n000109-Border_collie2909-n000116-Cardigan

(a) Without Proxy Attention

3580-n000122-Labrador_retriever7449-n000128-teddy3336-n000121-chinese_rural_dog2594-n000109-Border_collie5355-n000126-golden_retriever3580-n000122-Labrador_retriever2909-n000116-Cardigan2925-n000114-toy_poodle

224-n000060-Rottweiler1043-n000001-Shiba_Dog233-n000072-Bouvier_des_Flandres231-n000077-bull_mastiff2594-n000109-Border_collie2909-n000116-Cardigan2594-n000109-Border_collie2909-n000116-Cardigan

(b) With Proxy Attention

Figure 7.23: Comparison of attention maps generated by resnet18 trained with and without Proxy Attention on
the Tsinghua Dogs dataset using EigenGradCAM

78

BIBLIOGRAPHY

[1] Alexey Dosovitskiy et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at

Scale. June 3, 2021. DOI: 10.48550/arXiv.2010.11929. arXiv: 2010.11929 [cs]. URL: http:

//arxiv.org/abs/2010.11929 (visited on 10/21/2022). preprint.

[2] Ashish Vaswani et al. Attention Is All You Need. Dec. 5, 2017. DOI: 10.48550/arXiv.1706.03762.

arXiv: 1706.03762 [cs]. URL: http://arxiv.org/abs/1706.03762 (visited on 10/21/2022).

preprint.

[3] Michael Poli et al. Hyena Hierarchy: Towards Larger Convolutional Language Models. Apr. 19, 2023.

DOI: 10.48550/arXiv.2302.10866. arXiv: 2302.10866 [cs]. URL: http://arxiv.org/abs/2302.

10866 (visited on 05/11/2023). preprint.

[4] Jasmijn Bastings and Katja Filippova. The Elephant in the Interpretability Room: Why Use Attention as

Explanation When We Have Saliency Methods? Oct. 12, 2020. arXiv: 2010.05607 [cs]. URL: http:

//arxiv.org/abs/2010.05607 (visited on 05/18/2023). preprint.

[5] Zhuang Liu et al. “A ConvNet for the 2020s”. Mar. 2, 2022. DOI: 10.48550/arXiv.2201.03545.

arXiv: 2201.03545 [cs]. URL: http://arxiv.org/abs/2201.03545 (visited on 05/24/2022).

[6] ADELMAN. Sensory System I: Vision and Visual Systems. Birkhäuser, Dec. 19, 2013. 129 pp. ISBN:

978-1-4899-6647-6. Google Books: vGn5BwAAQBAJ.

[7] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional Networks: Visu-

alising Image Classification Models and Saliency Maps. Apr. 19, 2014. arXiv: 1312.6034 [cs]. URL:

http://arxiv.org/abs/1312.6034 (visited on 11/18/2022). preprint.

[8] Bolei Zhou et al. “Learning Deep Features for Discriminative Localization”. In: 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, June 2016, pp. 2921–2929. ISBN: 978-1-4673-

8851-1. DOI: 10.1109/CVPR.2016.319. URL: http://ieeexplore.ieee.org/document/7780688/

(visited on 02/20/2023).

[9] Ramprasaath R Selvaraju et al. “Grad-CAM: Visual Explanations From Deep Networks via Gradient-

Based Localization”. In: (), p. 9.

[10] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks. Nov. 28,

2013. DOI: 10.48550/arXiv.1311.2901. arXiv: 1311.2901 [cs]. URL: http://arxiv.org/abs/

1311.2901 (visited on 11/28/2022). preprint.

https://doi.org/10.48550/arXiv.2010.11929
https://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2302.10866
https://arxiv.org/abs/2302.10866
http://arxiv.org/abs/2302.10866
http://arxiv.org/abs/2302.10866
https://arxiv.org/abs/2010.05607
http://arxiv.org/abs/2010.05607
http://arxiv.org/abs/2010.05607
https://doi.org/10.48550/arXiv.2201.03545
https://arxiv.org/abs/2201.03545
http://arxiv.org/abs/2201.03545
http://books.google.com/books?id=vGn5BwAAQBAJ
https://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://doi.org/10.1109/CVPR.2016.319
http://ieeexplore.ieee.org/document/7780688/
https://doi.org/10.48550/arXiv.1311.2901
https://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901

79

[11] Haofan Wang et al. Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Net-

works. Version 2. Apr. 13, 2020. arXiv: 1910.01279 [cs]. URL: http://arxiv.org/abs/1910.01279

(visited on 02/16/2023). preprint.

[12] Ramprasaath R. Selvaraju et al. Grad-CAM: Why Did You Say That? Jan. 25, 2017. arXiv: 1611.07450

[cs, stat]. URL: http://arxiv.org/abs/1611.07450 (visited on 02/20/2023). preprint.

[13] Jost Tobias Springenberg et al. Striving for Simplicity: The All Convolutional Net. Apr. 13, 2015. DOI:

10.48550/arXiv.1412.6806. arXiv: 1412.6806 [cs]. URL: http://arxiv.org/abs/1412.6806

(visited on 11/18/2022). preprint.

[14] Aditya Chattopadhay et al. “Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep

Convolutional Networks”. In: 2018 IEEE Winter Conference on Applications of Computer Vision

(WACV). 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe,

NV: IEEE, Mar. 2018, pp. 839–847. ISBN: 978-1-5386-4886-5. DOI: 10.1109/WACV.2018.00097.

URL: https://ieeexplore.ieee.org/document/8354201/ (visited on 02/20/2023).

[15] Narine Kokhlikyan et al. Captum: A Unified and Generic Model Interpretability Library for PyTorch.

Sept. 16, 2020. DOI: 10.48550/arXiv.2009.07896. arXiv: 2009.07896 [cs, stat]. URL: http:

//arxiv.org/abs/2009.07896 (visited on 04/04/2023). preprint.

[16] Daniel Smilkov et al. SmoothGrad: Removing Noise by Adding Noise. June 12, 2017. DOI: 10.48550/

arXiv.1706.03825. arXiv: 1706.03825 [cs, stat]. URL: http://arxiv.org/abs/1706.03825

(visited on 11/28/2022). preprint.

[17] Lorenz Richter et al. “VarGrad: A Low-Variance Gradient Estimator for Variational Inference”.

In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020,

pp. 13481–13492. URL: https : / / proceedings . neurips . cc / paper / 2020 / hash /

9c22c0b51b3202246463e986c7e205df-Abstract.html (visited on 02/20/2023).

[18] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks. June 12,

2017. DOI: 10.48550/arXiv.1703.01365. arXiv: 1703.01365 [cs]. URL: http://arxiv.org/abs/

1703.01365 (visited on 03/24/2023). preprint.

[19] Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How Important Is a Neuron? May 30, 2018.

DOI: 10.48550/arXiv.1805.12233. arXiv: 1805.12233 [cs, stat]. URL: http://arxiv.org/

abs/1805.12233 (visited on 11/28/2022). preprint.

[20] Christian Szegedy et al. Going Deeper with Convolutions. Sept. 16, 2014. DOI: 10.48550/arXiv.1409.

4842. arXiv: 1409.4842 [cs]. URL: http://arxiv.org/abs/1409.4842 (visited on 04/29/2023).

preprint.

[21] Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: Randomized Input Sampling for Explanation of Black-

box Models. Sept. 25, 2018. arXiv: 1806.07421 [cs]. URL: http://arxiv.org/abs/1806.07421

(visited on 02/20/2023). preprint.

[22] Taiki Oyama and Takao Yamanaka. “Influence of Image Classification Accuracy on Saliency Map Esti-

mation”. In: CAAI Transactions on Intelligence Technology 3.3 (2018), pp. 140–152. ISSN: 2468-2322.

DOI: 10.1049/trit.2018.1012. URL: https://onlinelibrary.wiley.com/doi/abs/10.1049/

trit.2018.1012 (visited on 10/03/2022).

https://arxiv.org/abs/1910.01279
http://arxiv.org/abs/1910.01279
https://arxiv.org/abs/1611.07450
https://arxiv.org/abs/1611.07450
http://arxiv.org/abs/1611.07450
https://doi.org/10.48550/arXiv.1412.6806
https://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
https://doi.org/10.1109/WACV.2018.00097
https://ieeexplore.ieee.org/document/8354201/
https://doi.org/10.48550/arXiv.2009.07896
https://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
https://doi.org/10.48550/arXiv.1706.03825
https://doi.org/10.48550/arXiv.1706.03825
https://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
https://proceedings.neurips.cc/paper/2020/hash/9c22c0b51b3202246463e986c7e205df-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9c22c0b51b3202246463e986c7e205df-Abstract.html
https://doi.org/10.48550/arXiv.1703.01365
https://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1703.01365
https://doi.org/10.48550/arXiv.1805.12233
https://arxiv.org/abs/1805.12233
http://arxiv.org/abs/1805.12233
http://arxiv.org/abs/1805.12233
https://doi.org/10.48550/arXiv.1409.4842
https://doi.org/10.48550/arXiv.1409.4842
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1806.07421
http://arxiv.org/abs/1806.07421
https://doi.org/10.1049/trit.2018.1012
https://onlinelibrary.wiley.com/doi/abs/10.1049/trit.2018.1012
https://onlinelibrary.wiley.com/doi/abs/10.1049/trit.2018.1012

80

[23] Fred Hohman et al. Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attri-

bution Summarizations. Sept. 2, 2019. arXiv: 1904.02323 [cs]. URL: http://arxiv.org/abs/1904.

02323 (visited on 02/20/2023). preprint.

[24] Housam Khalifa Bashier Babiker and Randy Goebel. An Introduction to Deep Visual Explanation.

Mar. 15, 2018. arXiv: 1711.09482 [cs, stat]. URL: http://arxiv.org/abs/1711.09482 (visited

on 02/20/2023). preprint.

[25] Masahiro Mitsuhara et al. “Embedding Human Knowledge into Deep Neural Network via Attention

Map”. Dec. 19, 2019. arXiv: 1905.03540 [cs]. URL: http://arxiv.org/abs/1905.03540 (visited

on 10/03/2022).

[26] Marcella Cornia et al. “Predicting Human Eye Fixations via an LSTM-Based Saliency Attentive Model”.

In: IEEE Transactions on Image Processing 27.10 (Oct. 2018), pp. 5142–5154. ISSN: 1941-0042. DOI:

10.1109/TIP.2018.2851672.

[27] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition. 2016, pp. 770–778.

[28] Mohammed Bany Muhammad and Mohammed Yeasin. “Eigen-CAM: Visual Explanations for Deep

Convolutional Neural Networks”. In: SN Computer Science 2.1 (Jan. 20, 2021), p. 47. ISSN: 2661-8907.

DOI: 10.1007/s42979-021-00449-3. URL: https://doi.org/10.1007/s42979-021-00449-3

(visited on 05/31/2023).

[29] Suorong Yang et al. Image Data Augmentation for Deep Learning: A Survey. Apr. 18, 2022. arXiv:

2204.08610 [cs]. URL: http://arxiv.org/abs/2204.08610 (visited on 05/31/2023). preprint.

[30] Zhun Zhong et al. “Random Erasing Data Augmentation”. In: Proceedings of the AAAI Conference on

Artificial Intelligence 34.07 (Apr. 3, 2020), pp. 13001–13008. ISSN: 2374-3468, 2159-5399. DOI: 10.

1609/aaai.v34i07.7000. URL: https://aaai.org/ojs/index.php/AAAI/article/view/7000

(visited on 10/21/2022).

[31] Pengguang Chen et al. GridMask Data Augmentation. Jan. 13, 2020. DOI: 10.48550/arXiv.2001.

04086. arXiv: 2001.04086 [cs]. URL: http://arxiv.org/abs/2001.04086 (visited on 03/31/2023).

preprint.

[32] Krishna Kumar Singh et al. Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised

Localization and Beyond. Nov. 6, 2018. DOI: 10.48550/arXiv.1811.02545. arXiv: 1811.02545

[cs]. URL: http://arxiv.org/abs/1811.02545 (visited on 03/27/2023). preprint.

[33] Hongyi Zhang et al. Mixup: Beyond Empirical Risk Minimization. Apr. 27, 2018. DOI: 10.48550/

arXiv.1710.09412. arXiv: 1710.09412 [cs, stat]. URL: http://arxiv.org/abs/1710.09412

(visited on 03/27/2023). preprint.

[34] Sangdoo Yun et al. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Fea-

tures. Aug. 7, 2019. DOI: 10.48550/arXiv.1905.04899. arXiv: 1905.04899 [cs]. URL: http:

//arxiv.org/abs/1905.04899 (visited on 03/27/2023). preprint.

https://arxiv.org/abs/1904.02323
http://arxiv.org/abs/1904.02323
http://arxiv.org/abs/1904.02323
https://arxiv.org/abs/1711.09482
http://arxiv.org/abs/1711.09482
https://arxiv.org/abs/1905.03540
http://arxiv.org/abs/1905.03540
https://doi.org/10.1109/TIP.2018.2851672
https://doi.org/10.1007/s42979-021-00449-3
https://doi.org/10.1007/s42979-021-00449-3
https://arxiv.org/abs/2204.08610
http://arxiv.org/abs/2204.08610
https://doi.org/10.1609/aaai.v34i07.7000
https://doi.org/10.1609/aaai.v34i07.7000
https://aaai.org/ojs/index.php/AAAI/article/view/7000
https://doi.org/10.48550/arXiv.2001.04086
https://doi.org/10.48550/arXiv.2001.04086
https://arxiv.org/abs/2001.04086
http://arxiv.org/abs/2001.04086
https://doi.org/10.48550/arXiv.1811.02545
https://arxiv.org/abs/1811.02545
https://arxiv.org/abs/1811.02545
http://arxiv.org/abs/1811.02545
https://doi.org/10.48550/arXiv.1710.09412
https://doi.org/10.48550/arXiv.1710.09412
https://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1710.09412
https://doi.org/10.48550/arXiv.1905.04899
https://arxiv.org/abs/1905.04899
http://arxiv.org/abs/1905.04899
http://arxiv.org/abs/1905.04899

81

[35] Ekin D. Cubuk et al. “Randaugment: Practical Automated Data Augmentation with a Reduced Search

Space”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW). 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW). Seattle, WA, USA: IEEE, June 2020, pp. 3008–3017. ISBN: 978-1-72819-360-1. DOI: 10.

1109/CVPRW50498.2020.00359. URL: https://ieeexplore.ieee.org/document/9150790/

(visited on 01/16/2023).

[36] Terrance DeVries and Graham W. Taylor. Improved Regularization of Convolutional Neural Networks

with Cutout. Nov. 29, 2017. DOI: 10.48550/arXiv.1708.04552. arXiv: 1708.04552 [cs]. URL:

http://arxiv.org/abs/1708.04552 (visited on 03/27/2023). preprint.

[37] Yunjey Choi et al. “StarGAN v2: Diverse Image Synthesis for Multiple Domains”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 8188–8197. URL:

https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_

Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html (visited on 06/08/2023).

[38] Phillip Isola et al. Image-to-Image Translation with Conditional Adversarial Networks. Nov. 26, 2018.

DOI: 10.48550/arXiv.1611.07004. arXiv: 1611.07004 [cs]. URL: http://arxiv.org/abs/1611.

07004 (visited on 06/08/2023). preprint.

[39] Dan Hendrycks et al. AugMix: A Simple Data Processing Method to Improve Robustness and Uncer-

tainty. Feb. 17, 2020. arXiv: 1912.02781 [cs, stat]. URL: http://arxiv.org/abs/1912.02781

(visited on 01/16/2023). preprint.

[40] Jianhua Lin. “Divergence Measures Based on the Shannon Entropy”. In: ().

[41] Sangdoo Yun et al. “CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Fea-

tures”. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019 IEEE/CVF In-

ternational Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, Oct. 2019, pp. 6022–

6031. ISBN: 978-1-72814-803-8. DOI: 10.1109/ICCV.2019.00612. URL: https://ieeexplore.

ieee.org/document/9008296/ (visited on 02/20/2023).

[42] Devesh Walawalkar et al. Attentive CutMix: An Enhanced Data Augmentation Approach for Deep Learn-

ing Based Image Classification. Apr. 5, 2020. DOI: 10.48550/arXiv.2003.13048. arXiv: 2003.13048

[cs]. URL: http://arxiv.org/abs/2003.13048 (visited on 03/29/2023). preprint.

[43] Geoff French, Avital Oliver, and Tim Salimans. Milking CowMask for Semi-Supervised Image Classi-

fication. June 5, 2020. DOI: 10.48550/arXiv.2003.12022. arXiv: 2003.12022 [cs]. URL: http:

//arxiv.org/abs/2003.12022 (visited on 03/31/2023). preprint.

[44] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. “Cut, Paste and Learn: Surprisingly Easy Synthesis

for Instance Detection”. In: Proceedings of the IEEE International Conference on Computer Vision.

2017, pp. 1301–1310. URL: https : / / openaccess . thecvf . com / content _ iccv _ 2017 / html /

Dwibedi_Cut_Paste_and_ICCV_2017_paper.html (visited on 03/31/2023).

[45] Lianbo Zhang, Shaoli Huang, and Wei Liu. “Intra-Class Part Swapping for Fine-Grained Image Classifi-

cation”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021,

pp. 3209–3218. URL: https://openaccess.thecvf.com/content/WACV2021/html/Zhang_Intra-

Class_Part_Swapping_for_Fine-Grained_Image_Classification_WACV_2021_paper.html

(visited on 03/30/2023).

https://doi.org/10.1109/CVPRW50498.2020.00359
https://doi.org/10.1109/CVPRW50498.2020.00359
https://ieeexplore.ieee.org/document/9150790/
https://doi.org/10.48550/arXiv.1708.04552
https://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1708.04552
https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.html
https://doi.org/10.48550/arXiv.1611.07004
https://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1912.02781
http://arxiv.org/abs/1912.02781
https://doi.org/10.1109/ICCV.2019.00612
https://ieeexplore.ieee.org/document/9008296/
https://ieeexplore.ieee.org/document/9008296/
https://doi.org/10.48550/arXiv.2003.13048
https://arxiv.org/abs/2003.13048
https://arxiv.org/abs/2003.13048
http://arxiv.org/abs/2003.13048
https://doi.org/10.48550/arXiv.2003.12022
https://arxiv.org/abs/2003.12022
http://arxiv.org/abs/2003.12022
http://arxiv.org/abs/2003.12022
https://openaccess.thecvf.com/content_iccv_2017/html/Dwibedi_Cut_Paste_and_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Dwibedi_Cut_Paste_and_ICCV_2017_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Zhang_Intra-Class_Part_Swapping_for_Fine-Grained_Image_Classification_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Zhang_Intra-Class_Part_Swapping_for_Fine-Grained_Image_Classification_WACV_2021_paper.html

82

[46] Jie Qin et al. ResizeMix: Mixing Data with Preserved Object Information and True Labels. Dec. 20,

2020. arXiv: 2012.11101 [cs]. URL: http://arxiv.org/abs/2012.11101 (visited on 03/29/2023).

preprint.

[47] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. “Data Augmentation Using Random Image

Cropping and Patching for Deep CNNs”. In: IEEE Transactions on Circuits and Systems for Video

Technology 30.9 (Sept. 2020), pp. 2917–2931. ISSN: 1051-8215, 1558-2205. DOI: 10.1109/TCSVT.

2019.2935128. arXiv: 1811.09030 [cs]. URL: http://arxiv.org/abs/1811.09030 (visited on

03/30/2023).

[48] Hiroshi Inoue. Data Augmentation by Pairing Samples for Images Classification. Apr. 11, 2018. arXiv:

1801.02929 [cs, stat]. URL: http://arxiv.org/abs/1801.02929 (visited on 03/30/2023).

preprint.

[49] Jin-Ha Lee et al. “SmoothMix: A Simple Yet Effective Data Augmentation to Train Robust Classifiers”.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

2020, pp. 756–757. URL: https://openaccess.thecvf.com/content_CVPRW_2020/html/w45/

Lee_SmoothMix_A_Simple_Yet_Effective_Data_Augmentation_to_Train_Robust_CVPRW_

2020_paper.html (visited on 03/29/2023).

[50] SMOTE: Synthetic Minority Over-sampling Technique | Journal of Artificial Intelligence Research. URL:

https://www.jair.org/index.php/jair/article/view/10302 (visited on 03/31/2023).

[51] Shaoli Huang, Xinchao Wang, and Dacheng Tao. “SnapMix: Semantically Proportional Mixing for Aug-

menting Fine-grained Data”. In: Proceedings of the AAAI Conference on Artificial Intelligence 35.2 (2

May 18, 2021), pp. 1628–1636. ISSN: 2374-3468. DOI: 10.1609/aaai.v35i2.16255. URL: https:

//ojs.aaai.org/index.php/AAAI/article/view/16255 (visited on 03/31/2023).

[52] Jie Cao et al. “ReMix: Towards Image-to-Image Translation With Limited Data”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 15018–15027. URL:

https://openaccess.thecvf.com/content/CVPR2021/html/Cao_ReMix_Towards_Image-to-

Image_Translation_With_Limited_Data_CVPR_2021_paper.html (visited on 03/31/2023).

[53] Nikita Dvornik, Julien Mairal, and Cordelia Schmid. “Modeling Visual Context Is Key to Augmenting

Object Detection Datasets”. In: Proceedings of the European Conference on Computer Vision (ECCV).

2018, pp. 364–380. URL: https://openaccess.thecvf.com/content_ECCV_2018/html/NIKITA_

DVORNIK_Modeling_Visual_Context_ECCV_2018_paper.html (visited on 10/21/2022).

[54] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. “Puzzle Mix: Exploiting Saliency and Local Statis-

tics for Optimal Mixup”. In: Proceedings of the 37th International Conference on Machine Learning.

International Conference on Machine Learning. PMLR, Nov. 21, 2020, pp. 5275–5285. URL: https:

//proceedings.mlr.press/v119/kim20b.html (visited on 04/04/2023).

[55] Xiaofeng Liu et al. “Data Augmentation via Latent Space Interpolation for Image Classification”. In:

2018 24th International Conference on Pattern Recognition (ICPR). 2018 24th International Conference

on Pattern Recognition (ICPR). Beijing: IEEE, Aug. 2018, pp. 728–733. ISBN: 978-1-5386-3788-3. DOI:

10.1109/ICPR.2018.8545506. URL: https://ieeexplore.ieee.org/document/8545506/

(visited on 02/01/2023).

https://arxiv.org/abs/2012.11101
http://arxiv.org/abs/2012.11101
https://doi.org/10.1109/TCSVT.2019.2935128
https://doi.org/10.1109/TCSVT.2019.2935128
https://arxiv.org/abs/1811.09030
http://arxiv.org/abs/1811.09030
https://arxiv.org/abs/1801.02929
http://arxiv.org/abs/1801.02929
https://openaccess.thecvf.com/content_CVPRW_2020/html/w45/Lee_SmoothMix_A_Simple_Yet_Effective_Data_Augmentation_to_Train_Robust_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w45/Lee_SmoothMix_A_Simple_Yet_Effective_Data_Augmentation_to_Train_Robust_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w45/Lee_SmoothMix_A_Simple_Yet_Effective_Data_Augmentation_to_Train_Robust_CVPRW_2020_paper.html
https://www.jair.org/index.php/jair/article/view/10302
https://doi.org/10.1609/aaai.v35i2.16255
https://ojs.aaai.org/index.php/AAAI/article/view/16255
https://ojs.aaai.org/index.php/AAAI/article/view/16255
https://openaccess.thecvf.com/content/CVPR2021/html/Cao_ReMix_Towards_Image-to-Image_Translation_With_Limited_Data_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Cao_ReMix_Towards_Image-to-Image_Translation_With_Limited_Data_CVPR_2021_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/NIKITA_DVORNIK_Modeling_Visual_Context_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/NIKITA_DVORNIK_Modeling_Visual_Context_ECCV_2018_paper.html
https://proceedings.mlr.press/v119/kim20b.html
https://proceedings.mlr.press/v119/kim20b.html
https://doi.org/10.1109/ICPR.2018.8545506
https://ieeexplore.ieee.org/document/8545506/

83

[56] Qijie Zhao et al. “M2Det: A Single-Shot Object Detector Based on Multi-Level Feature Pyramid Net-

work”. In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (01 July 17, 2019),

pp. 9259–9266. ISSN: 2374-3468. DOI: 10.1609/aaai.v33i01.33019259. URL: https://ojs.

aaai.org/index.php/AAAI/article/view/4962 (visited on 05/08/2023).

[57] A. F. M. Shahab Uddin et al. SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better

Regularization. July 27, 2021. arXiv: 2006.01791 [cs, stat]. URL: http://arxiv.org/abs/2006.

01791 (visited on 04/11/2023). preprint.

[58] Chengyue Gong et al. “KeepAugment: A Simple Information-Preserving Data Augmentation Ap-

proach”. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA:

IEEE, June 2021, pp. 1055–1064. ISBN: 978-1-66544-509-2. DOI: 10.1109/CVPR46437.2021.00111.

URL: https://ieeexplore.ieee.org/document/9578546/ (visited on 05/08/2023).

[59] J. Schmidhuber. “A ‘Self-Referential’ Weight Matrix”. In: ICANN ’93. Ed. by Stan Gielen and Bert

Kappen. London: Springer London, 1993, pp. 446–450. ISBN: 978-3-540-19839-0 978-1-4471-2063-6.

DOI: 10.1007/978-1-4471-2063-6_107. URL: http://link.springer.com/10.1007/978-1-

4471-2063-6_107 (visited on 04/26/2023).

[60] Kazuki Irie et al. “A Modern Self-Referential Weight Matrix That Learns to Modify Itself”. In: Proceed-

ings of the 39th International Conference on Machine Learning. International Conference on Machine

Learning. PMLR, June 28, 2022, pp. 9660–9677. URL: https://proceedings.mlr.press/v162/

irie22b.html (visited on 04/26/2023).

[61] Thomas Miconi et al. Backpropamine: Training Self-Modifying Neural Networks with Differentiable

Neuromodulated Plasticity. Feb. 24, 2020. DOI: 10.48550/arXiv.2002.10585. arXiv: 2002.10585

[cs]. URL: http://arxiv.org/abs/2002.10585 (visited on 05/22/2023). preprint.

[62] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: ().

[63] Aditya Khosla et al. “Novel Dataset for Fine-Grained Image Categorization: Stanford Dogs”. In: ().

[64] Fei-Fei Li et al. Caltech 101. DOI: 10.22002/D1.20086.

[65] Bolei Zhou et al. “Places: A 10 Million Image Database for Scene Recognition”. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence 40.6 (June 1, 2018), pp. 1452–1464. ISSN: 0162-8828,

2160-9292, 1939-3539. DOI: 10.1109/TPAMI.2017.2723009. URL: https://ieeexplore.ieee.

org/document/7968387/ (visited on 05/21/2023).

[66] Ding-Nan Zou et al. “A New Dataset of Dog Breed Images and a Benchmark for Finegrained Clas-

sification”. In: Computational Visual Media 6.4 (Dec. 1, 2020), pp. 477–487. ISSN: 2096-0662. DOI:

10.1007/s41095-020-0184-6. URL: https://doi.org/10.1007/s41095-020-0184-6 (visited on

05/21/2023).

[67] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR09. 2009.

[68] Ross Wightman et al. Rwightman/Pytorch-Image-Models: V0.8.10dev0 Release. Zenodo, Feb. 7, 2023.

DOI: 10 . 5281 / zenodo . 7618837. URL: https : / / zenodo . org / record / 7618837 (visited on

05/07/2023).

[69] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image

Recognition”. 2014. arXiv: 1409.1556.

https://doi.org/10.1609/aaai.v33i01.33019259
https://ojs.aaai.org/index.php/AAAI/article/view/4962
https://ojs.aaai.org/index.php/AAAI/article/view/4962
https://arxiv.org/abs/2006.01791
http://arxiv.org/abs/2006.01791
http://arxiv.org/abs/2006.01791
https://doi.org/10.1109/CVPR46437.2021.00111
https://ieeexplore.ieee.org/document/9578546/
https://doi.org/10.1007/978-1-4471-2063-6_107
http://link.springer.com/10.1007/978-1-4471-2063-6_107
http://link.springer.com/10.1007/978-1-4471-2063-6_107
https://proceedings.mlr.press/v162/irie22b.html
https://proceedings.mlr.press/v162/irie22b.html
https://doi.org/10.48550/arXiv.2002.10585
https://arxiv.org/abs/2002.10585
https://arxiv.org/abs/2002.10585
http://arxiv.org/abs/2002.10585
https://doi.org/10.22002/D1.20086
https://doi.org/10.1109/TPAMI.2017.2723009
https://ieeexplore.ieee.org/document/7968387/
https://ieeexplore.ieee.org/document/7968387/
https://doi.org/10.1007/s41095-020-0184-6
https://doi.org/10.1007/s41095-020-0184-6
https://doi.org/10.5281/zenodo.7618837
https://zenodo.org/record/7618837
https://arxiv.org/abs/1409.1556

84

[70] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking Model Scaling for Convolutional Neural Net-

works”. In: International Conference on Machine Learning. PMLR, 2019, pp. 6105–6114.

[71] Paulius Micikevicius et al. “Mixed Precision Training”. 2017. arXiv: 1710.03740.

[72] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. 2014. arXiv: 1412.

6980.

[73] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. Jan. 4, 2019. DOI: 10.

48550/arXiv.1711.05101. arXiv: 1711.05101 [cs, math]. URL: http://arxiv.org/abs/1711.

05101 (visited on 05/09/2023). preprint.

[74] Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast Training of Neural Networks Using

Large Learning Rates. May 17, 2018. DOI: 10.48550/arXiv.1708.07120. arXiv: 1708.07120 [cs,

stat]. URL: http://arxiv.org/abs/1708.07120 (visited on 02/28/2023). preprint.

[75] Aditya Chattopadhyay et al. “Grad-CAM++: Improved Visual Explanations for Deep Convolutional Net-

works”. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Mar. 2018,

pp. 839–847. DOI: 10.1109/WACV.2018.00097. arXiv: 1710.11063 [cs]. URL: http://arxiv.org/

abs/1710.11063 (visited on 10/03/2022).

[76] Samira Abnar and Willem Zuidema. Quantifying Attention Flow in Transformers. May 31, 2020. DOI:

10.48550/arXiv.2005.00928. arXiv: 2005.00928 [cs]. URL: http://arxiv.org/abs/2005.

00928 (visited on 06/13/2023). preprint.

[77] Gildenblat Jacob and contributors. PyTorch Library for CAM Methods. 2021. URL: https://github.

com/jacobgil/pytorch-grad-cam.

[78] Saumya Jetley et al. Learn To Pay Attention. Apr. 26, 2018. DOI: 10.48550/arXiv.1804.02391. arXiv:

1804.02391 [cs]. URL: http://arxiv.org/abs/1804.02391 (visited on 07/05/2023). preprint.

https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1711.05101
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.48550/arXiv.1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120
https://doi.org/10.1109/WACV.2018.00097
https://arxiv.org/abs/1710.11063
http://arxiv.org/abs/1710.11063
http://arxiv.org/abs/1710.11063
https://doi.org/10.48550/arXiv.2005.00928
https://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
https://doi.org/10.48550/arXiv.1804.02391
https://arxiv.org/abs/1804.02391
http://arxiv.org/abs/1804.02391

	Introduction
	Problem Statement
	Motivation
	Context and Novelty
	Contributions
	Challenges
	Research Questions
	Thesis Outline

	State of the Art
	Gradient Based Explanations
	Need For Explainability
	Literature

	Augmentation
	Need for Augmentation
	Literature
	Similar Methods
	Limitations

	Proposed Method
	Proxy Attention
	Implementation
	Hyper Parameters
	Training Biases
	Overview of the Codebase
	Datasets
	Data Loading and Pre-Processing
	Architectures
	Grid Search
	Training Resumption
	Optimizations
	Tensorboard
	Optimizer
	LR scheduler
	Loss function
	Batch Size Finder
	Result Aggregation
	Inference

	Results
	Time to run the Proxy Step
	Accuracy
	Results Per Dataset
	Tsinghua Dogs and Places Results
	Stanford Dogs and CIFAR100 Results
	Caltech101 and ASL Results
	Plant Disease Results
	Results Grouped By Schedule
	Results Grouped By Proxy Threshold
	Results Grouped By Proxy Image Weight
	Results Grouped By Proxy Image Subset

	Explanability
	CIFAR 100, ResNet18, EigenGradCAM
	CIFAR 100, EfficientNetB0, EigenGradCAM
	CIFAR 100, ViT , EigenGradCAM
	CIFAR 100, ViT , GradCam++
	Tsinghua Dogs, ResNet50 , GradCam++
	Tsinghua Dogs, ResNet18, EigenGradCAM

	Improvement in Other Metrics

	Discussion
	Research Questions
	Discussion of Results
	Limitations of this Study
	Future Work
	General Discussion
	Data Augmentation
	Other Domains
	Model Architecture and Attention Modules
	Gradient Based Techniques
	Hyperparameters
	Stability and Training Effects
	Challenges with External Libraries

	Conclusion
	Lessons Learned

	Appendix
	Intuition Figure
	Proxy Images Examples
	Batch Finder Algorithm
	Additional Explanability Results

