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Abstract
Theory of mind involves the cognitive ability to attribute mental states, such as beliefs, intentions or

desires, to oneself and others, acknowledging the potential variations among individuals. This study
explores the influence of game structure on the effectiveness of higher-order theory of mind reasoning
within a simplified version of Pecking Order, a competitive card game developed by Richard Garfield. The
investigation focuses on two distinct game variations, sequential and simultaneous, which shape the overall
game structure through differences in information availability, turn order, and round numbers. Agents
with Zero-Order and First-Order theory of mind capabilities are introduced to assess the effectiveness of
theory of mind reasoning across these variations. Employing simulation theory of mind, these agents
consider opponents’ mental states and predict their behavior by simulating actions based on their
opponents’ positions in the game. By analyzing the impact of game structure on the effectiveness of
higher order theory of mind reasoning, this research provides valuable insights into how game structure
influences the effectiveness of theory of mind reasoning in the context of strategic decision-making games.

1 Introduction

In strategic environments, accurately predicting the
behavior of others is crucial for effective decision-
making and response strategies. Theory of mind,
which involves attributing unobservable mental
states to others, offers a promising approach to
achieve this goal (Barlassina and Gordon, 2017;
de Weerd et al., 2013). This paper explores the
advantages of utilizing theory of mind in the context
of the card game Pecking Order, where the ability
to predict and respond to opponents’ moves can
significantly impact the outcome of the game.

To investigate the effectiveness of theory of
mind in Pecking Order, we employ an agent-based
computational model. Our model incorporates Zero-
Order and First-Order theory of mind, enabling
agents to form beliefs about opponents’ behavior
and attribute similar belief systems to them in the
form of probability distributions. By simulating
opponents’ mental states and predicting their
actions, agents strategically determine which actions
they themselves should take to gain a competitive
advantage and increase their odds of winning.

In the following sections, we provide a
comprehensive analysis of the role and effectiveness
of theory of mind in the Pecking Order game.

Section 2 outlines the game mechanics and objectives
of Pecking Order, providing a foundation for
understanding the strategic interactions involved.
It then goes on to introduce the agents and
their strategies, emphasizing the significance of
theory of mind in shaping their decision-making
processes. Utilizing our agent-based computational
model, we describe the experimental setup in
Section 3, including the parameters, simulations,
and evaluation criteria used in our study.

The results of our evaluations are presented
in Section 4, where we analyze the performance
of agents with varying levels of theory of mind.
Section 5 offers a discussion of the implications
and significance of our findings, considering the
broader context of strategic interactions. Lastly,
in Section 6, we conclude the paper by summarizing
our findings and discussing potential directions for
future research.

Our research aims to contribute to the
understanding of how theory of mind enhances
decision-making processes as a whole by
investigating its advantages and limitations
within the context of Pecking Order. Through
our agent-based computational model, we hope
to provide valuable insights into the role and
effectiveness of theory of mind in strategic
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interactions, shedding light on its impact on game
outcomes and informing future developments in
multi-agent systems.

2 Methods

2.1 Outline of Pecking Order

Pecking Order is a card game in which two players
compete to control ‘perches’ on a board by playing
bird-themed cards of varying strengths. The version
of Pecking Order used for the purposes of this project
is a modified version of the original game by Richard
Garfield (1998).

In this modified version, each player starts with 4
unoccupied perches on their side of the board and 4
numbered cards (1-4). The game consists of multiple
rounds. In each round, both players play one of their
cards face-down on an unoccupied perch on their
side of the board. If both players have played a face-
down card on the same perch location on opposite
sides of the board (either in the current or previous
turns), the cards on that perch are flipped over. The
player with the higher value card on that perch gains
control of it. If equal value cards are played on the
same perch, neither player can gain control of it,
therefore no points are awarded to either player for
that perch. Note that even if a particular player
controls a perch, all cards remain on the board until
the end of the game.
Controlling a perch earns a player points equal

to the perch index (perch 1 = 1 point, perch 2 = 2
points, perch 3 = 3 points, perch 4 = 4 points). A
player without control of a perch gains no points.

The game continues until both players have played
all their cards and all perches are occupied. At
that point, all cards are face-up, and each player
calculates their final score by summing the points
gained from controlling perches. The player with
the most amount of points at the end of the game
claims the victory. Note that if both players have
attained the same number of points at the end of the
game, the player controlling perch 1 will be deemed
the winner.
An example of the starting board state in a

simplified game of Pecking Order is found in Figure
1. Note that neither player is able to see their
opponents hand in an actual game, however each
players cards are presented here for visual clarity.

This project aims to evaluate how game structure
influences the effectiveness of higher order theory
of mind. As such, two variations of the modified
Pecking Order game are considered. In the
sequential variation, players take turns playing their
cards in an ‘I play, you play’ fashion during each
round. In the simultaneous variation, both players
play their cards simultaneously. These variations
affect the amount of information available to each

Figure 1: Starting Board State of Pecking Order

player on their turn and the total number of rounds
played. The sequential variation consists of 8 rounds,
while the simultaneous variation has 4 rounds.

The project models different types of players
(referred to as agents) with varying strategies
or levels of theory of mind. This allows for a
comparison of the effectiveness of higher order theory
of mind reasoning across the two versions of the
Pecking Order game. More information about these
agents and their strategies is provided in section 2.2.

2.1.1 Similarities to Limited Bidding

This project draws inspiration from a game called
Limited Bidding (de Weerd and Verheij, 2011),
which, despite being unrelated, shares similarities
with Pecking Order. In Limited Bidding, players
use numbered tokens instead of cards, and there
is no board. Similar to the simultaneous version
of Pecking Order, players each play one of their
numbered tokens simultaneously during each round.
The player with the highest-valued token in a round
earns a single point.

Although similarities between the two games exist,
Pecking Order and Limited Bidding differ in several
aspects. Limited Bidding has perfect information,
while Pecking Order has imperfect information. In
Limited Bidding, the tokens played by the opponent
are immediately revealed on the same turn they are
played. This allows for immediate knowledge of the
opponent’s remaining tokens during each round. In
Pecking Order, this is not always the case. Cards
played by either player can be revealed in the same
round or much later in the game. Additionally,
points are accumulated after each round in Limited
Bidding, whereas in Pecking Order, they are tallied
at the end of the game. Thus, while the game
structures are similar, Pecking Order introduces
more uncertainty about the opponent’s past actions
and remaining cards compared to Limited Bidding.

In Limited Bidding, assuming common knowledge
of rationality, rational agents play the game
randomly (de Weerd and Verheij, 2011). However,
experiments with human subjects have shown that
humans tend to deviate from complete randomness
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and exhibit patterns in their reasoning and behavior
different to what is predicted by game theory
(Bacharach and Stahl, 2000; Fehr and Gächter,
2000; Henrich et al., 2001; McKelvey and Palfrey,
1992; Stahl and Wilson, 1995). When agents play
against the same opponent multiple times, they can
exploit their opponent’s tendencies and adjust their
strategy to gain an advantage. From a theory of
mind perspective, rational agents in Limited Bidding
assume that their opponent also plays rationally,
which, in this case, means playing randomly. To
prevent providing their opponent with a strategic
advantage, a rational agent in Limited Bidding
would choose to play randomly each turn, assuming
their opponent would do the same.

Furthermore, in Limited Bidding, the absence
of a pure-strategy Nash Equilibrium has been
demonstrated (de Weerd and Verheij, 2011). In
game theory, a Nash Equilibrium occurs when an
agent has no incentive to change its strategy given
its opponent’s strategy. In other words, it is a
state where neither player can gain an advantage by
unilaterally changing their strategy based on their
opponent’s current strategy.

In the context of Pecking Order, suppose a pure
Nash Equilibrium strategy σ exists. In a game where
both players play σ, exactly one will win or both will
draw. In this case, the losing player or the players
suspecting a draw will have an incentive to play
randomly and at least attempt at gaining a chance
to win. Thus, σ is not a pure Nash Equilibrium
strategy for the loser or the players suspecting a
draw.

While a pure strategy Nash equilibrium does not
exist due to the possibility of improving overall
payoff by adjusting strategies, there may exist a
mixed-strategy Nash equilibrium. A mixed-strategy
Nash equilibrium occurs when players randomize
their actions to achieve the highest expected payoff
given their opponent’s mixed strategy. In the case of
Pecking Order, agents can employ mixed strategies
by choosing their actions probabilistically rather
than deterministically.

The potential for a mixed-strategy Nash
equilibrium in Pecking Order arises from the nature
of the game. With imperfect information about
the opponent’s cards and the dynamic nature of
gameplay, players can benefit from randomizing their
actions to introduce uncertainty and prevent their
opponent from exploiting predictable patterns.

In a mixed-strategy Nash equilibrium, each
agent’s mixed strategy is best response to the
opponent’s mixed strategy, ensuring that no player
can unilaterally deviate from their strategy to
improve their expected payoff. This equilibrium
is achieved when the players’ mixed strategies are
optimal responses to each other.

However, determining the specific mixed-strategy

Nash equilibrium in Pecking Order requires detailed
analysis and modeling of the game dynamics,
probabilities, and strategic interactions. It is an
open question and an area of research to explore
the existence and properties of mixed-strategy Nash
equilibria in Pecking Order.

Therefore, while a pure strategy Nash equilibrium
does not exist, the possibility of a mixed-strategy
Nash equilibrium suggests that players can benefit
from employing probabilistic and adaptive strategies
to navigate the complexities of Pecking Order, as
explained further in section 2.2.

While theoretically a mixed-strategy approach
may be beneficial to playing Pecking Order optimally,
in practice, humans often struggle with effectively
randomizing their actions (Bacharach and Stahl,
2000; Fehr and Gächter, 2000; Henrich et al., 2001;
McKelvey and Palfrey, 1992; Stahl and Wilson,
1995). This difficulty in properly randomizing their
choices can lead to sub-optimal outcomes and make
it challenging for players to achieve a true mixed-
strategy Nash equilibrium, which relies on precise
probabilistic calculations and adaptive decision-
making. As a result, players may unintentionally
exhibit predictable patterns, making them more
susceptible to exploitation by their opponents in the
game.

2.1.2 Simulation Theory of Mind

The agents in this project utilize a theory of mind
approach known as simulation theory of mind.
Simulation theory of mind involves predicting an
opponent’s behavior by simulating what oneself
would do in their position (Barlassina and Gordon,
2017). By assuming that their opponent reasons
about the game state in the same way they
do, an agent expects their opponent to take
actions that they themselves would take in that
position. Consequently, agents possess beliefs about
their opponent’s mental states, including beliefs,
intentions, and desires, within the context of Pecking
Order.

When assuming that their opponent shares the
same beliefs, intentions, and desires, an agent
concludes that their opponent aims to win the game
or, at worst, achieve a draw. At each state of
the game, a theory of mind agent (also referred
to as a ToM agent) also forms beliefs about their
opponent’s previous actions and predicts their most
probable future actions. A higher-order ToM agent
may additionally hold beliefs about what their
opponent believes about them. As a result, they
can take actions based on what they believe their
opponent expects them to have done or do in the
future. The level of theory of mind utilization by
these agents is further detailed in the following
section.
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2.2 Agents and their strategies

This study examines strategic decision-making in
the card game Pecking Order by analyzing a diverse
set of agents with different strategies. The agents
include a Random agent, a Levenshtein agent, as
well as Zero-Order and First-Order theory of mind
agents.
By evaluating the agents’ performance against

each other, we gain insights into the effectiveness
of varying levels of theory of mind within Pecking
Order. Subsequent sections will then explore the
agents’ behaviors, decision-making processes, and
outcomes, highlighting the dynamics of strategic
interactions in the game.

2.2.1 Random Agent

During each round, the Random Agent selects an
available card at random and places it on a randomly
selected unoccupied perch. This strategic approach
is reminiscent of the one used by rational agents in
Limited Bidding, as mentioned in section 2.1.1. By
employing random play, the Random Agent aims to
mitigate the possibility of their opponents exploiting
any predictable patterns in their strategy.

The inclusion of the Random Agent in this study
is intended to investigate the potential benefits of
employing a random strategy against ToM agents,
while also serving as a baseline for comparison to
assess the effectiveness of other strategies in the
presence of ToM agents.

Note that the Random Agent’s strategy is highly
exploitable in Pecking Order due to the lack of
intention in its actions. Opponents can readily
devise counter-strategies and take advantage of the
agent’s randomness to improve their own outcomes
as a result.

2.2.2 Levenshtein Agent

The Levenshtein Agent employs a strategy of
generating all possible end-game states, in which
both players have played all their cards and thus all
cards are face up.

During each turn, this agent compares the current
state of the board, including their own perches and
the cards occupying them, with each of the generated
end-game states. The agent utilizes the Levenshtein
similarity metric (Nerbonne et al., 1999), from which
its name is derived, to determine the end-game
states that exhibit the highest similarity to the
current board state. Subsequently, the Levenshtein
Agent evaluates the outcomes associated with those
selected end-game states, taking into account the
winner of each game as well as the final scores
of both players. Comparing face-up cards on the
board is straightforward, as the value and location
of each card can be directly compared to the end-

game states. However, for face-down cards, the
agent considers the occupancy of the associated
perches without directly factoring in the value of
their opponents concealed cards. Since the agent
knows the value of their own face-down cards, they
can factor this into the comparison.
Next, the agent proceeds to filter out any

reachable end-game states that do not lead to a
victory. In cases where no winning states can be
attained from the current board state, the agent
instead focuses on states resulting in a tie, as this
outcome is preferable to a loss.

The Levenshtein Agent then examines the list of
best-matching end-game states, closely resembling
the current board state, and simulates placing each
of its cards on every unoccupied perch in the current
board state. This generates new board states
for each valid combination of a card and perch,
after which the agent can compare these newly
generated states to the each end-game state using the
Levenshtein similarity metric. This process enables
the agent to determine the action that will yield a
board state most closely resembling a winning or
tied state for itself. Subsequently, the agent selects
an action that ideally leads to a more advantageous
outcome given the current state of the board.

In cases where multiple different actions yield the
same similarity value and payoff, the agent randomly
selects one of these actions. If only one action proves
to be advantageous, the agent chooses that action.
Finally, if no actions appear to result in a winning
or tied state, the agent resorts to playing a random
valid action, following a similar approach to the
Random Agent. An example of this agents strategy
is found in Example 1.

The strategy employed by this agent to assess the
value of a particular board state and the value of
playing a specific card on a particular perch serves
as a foundation for the strategies adopted by the
Zero-Order and First-Order ToM agents discussed
in sections 2.2.3 and 2.2.4 respectively.

2.2.3 Zero-Order Theory of Mind Agent

The Zero-Order Agent (referred to as the ToM0

agent from here onwards) evaluates the current
board state and his next best actions in a similar
manner to the Levenshtein Agent. However, this
agent also holds Zero-Order beliefs about the actions
of his opponent. These beliefs are represented as
a list of tuples, with each entry corresponding to
a belief value of a particular card being played on
a particular perch in the form: (card, perch, belief
value). For instance, the tuple (1, 2, 0.23) represents
a 23% belief that the opponent will play card 1 on
perch 2. These beliefs are referred to as Zero-Order
beliefs.
This agent actually maintains two concurrent

belief systems, one for its overall beliefs, and one
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Example 1: Consider a Levenshtein Agent playing their final two cards against a Random Agent
in a sequential game of Pecking Order. It is the Levenshtein agents turn to play, and the current
board state is the following:

Levenshtein Agent 1 4
Random Agent 2 4

In this board state, the Levenshtein agent has played card 1 on perch 1 and card 4 on perch 4. The
Random agent has played card 2 on perch 1 and card 4 on perch 2. Perches 2 and 3 are unoccupied
for the Levenshtein agent and perches 3 and 4 are unoccupied for the Random agent. The Levenshtein
agent begins by finding the Levenshtein similarity between the current board state and all reachable
end-game states. Note that since the Levenshtein agent has no card on perch 2, it does not know
that the Random agent has played card 4 on perch 2. Thus, from the perspective of the Levenshtein
agent, the board state is the following:

Levenshtein Agent 1 4
Random Agent 2 0

where 0 represents a face-down card. The greatest Levenshtein similarity value between the current
board state (from the Levenshtein agent’s perspective) and reachable end-game states is 3, so the
Levenshtein agent only considers end-game states with a Levenshtein similarity value equal to 3.
The agent then filters out all of the most similar reachable end-game states which do not result in a
victory. This leaves the agent with the following two reachable end-game states that result in a victory:

Levenshtein Agent 1 2 3 4
Random Agent 2 4 1 3

Levenshtein Agent 1 3 2 4
Random Agent 2 4 1 3

The Levenshtein agent then simulates playing each of its remaining cards on each of the available
perches in the current board state. This generates four new board states reachable from the current
board state:

Levenshtein Agent 1 2 4
Random Agent 2 0

Levenshtein Agent 1 2 4
Random Agent 2 0

Levenshtein Agent 1 3 4
Random Agent 2 0

Levenshtein Agent 1 3 4
Random Agent 2 0

For each of the simulated board states, the Levenshtein agent finds the greatest Levenshtein similarity
compared to the two winning end-game states it found earlier. All actions that lead to the same
greatest similarity value compared to the end-game states are added to a list. The actions the agent
deems to be the most similar based on Levenshtein similarity in this case are playing card 2 on perch
2 and playing card 3 on perch 3. Since there is more than one ‘good’ action, the agent selects one at
random. In this case, the agent opts for playing card 3 on perch 3. The Random agent then plays
card 1 on perch 4, leading to the following board state:

Levenshtein Agent 1 3 4
Random Agent 2 4 1

At this point, the Levenshtein and Random agents each only have one possible action left, which
determines the final scores of the agents. The final board state results in the Levenshtein agent
winning with a total score of 4 and the Random agent losing with a total score of 3:

Levenshtein Agent 1 2 3 4
Random Agent 2 4 3 1

Example 1: Levenshtein Agent Playing Pecking Order Against a Random Agent
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for its current beliefs. The overall beliefs persist
throughout all games, only being updated at the
end of each game when all cards are revealed. These
beliefs provide the agent with insight into the general
tendencies of its opponent, considering trends across
all previous games rather than the current board
state. It is important to note that the agent’s overall
beliefs are randomly initialized upon instantiation
and as such are updated over the course of numerous
games.

During the game, the agent’s current beliefs are
updated to better adapt to the ongoing game state.
For example, if the opponent plays card 1 on perch
2, it implies that no other cards can be played on
perch 2, and card 1 cannot be played elsewhere.
Therefore, all current beliefs about other cards on
perch 2 are set to zero, and all current beliefs about
card 1 being played on other perches are also set to
zero.

At the beginning of each game, the agent’s
current beliefs are set to its overall beliefs and are
subsequently updated after each round.

When updating its overall beliefs, this agent
incorporates a learning rate specified by the user.
The learning rate determines the speed at which the
agent adjusts its overall beliefs. In other words, a
higher learning rate leads to a greater increase in a
belief when encountering a specific card on a certain
perch.

Using its Zero-Order beliefs, the agent predicts
the values of the opponent’s face-down cards and the
next most probable card the opponent will play on
their next turn based on these beliefs. For instance,
if the opponent has a face-down card on perch 2
and this agent strongly believes that the opponent
is generally likely to play card 1 on perch 2, it will
predict that the opponent’s board state includes
card 1 on perch 2.

Furthermore, this agent takes an additional step of
projecting the opponent’s board state one round in
the future. For instance, if the opponent currently
has no cards on perch 4 and the agent strongly
believes that card 3 is likely to be played on perch 4,
it will project the opponent’s future board state
to include card 3 on perch 4. This projection
of the future board state enables the agent to
proactively choose actions that could potentially
result in more favorable outcomes, based on its
anticipation of the opponent’s likely moves in the
next round. By considering these projections,
the agent aims to strategically position itself and
make informed decisions that align with its beliefs
about the opponent’s future actions. Note that the
predictions of face-down cards and the projected
card to be played on the next round result in a
single ’projected’ board state.

After making predictions and projections, the
ToM0 agent employs the Levenshtein similarity

metric to identify comparable winning board states
and advantageous actions, similar to the Levenshtein
Agent. However, it does so with increased
anticipated certainty by substituting face-down
cards with the most probable card that the agent
believes the opponent will play. Furthermore,
projecting the board state one step into the future
empowers the agent to take preemptive actions.
During each round, when the Levenshtein agent
compares its opponent’s predicted board state
to the final board state, any face-down cards
remain hidden, limiting the available information
for similarity comparisons and potentially reducing
reliability. In contrast, by predicting and projecting
the opponent’s board state, the ToM0 agent
can establish more precise similarity assessments,
enabling it to determine a better action with
increased certainty, at least based on its own beliefs.

2.2.4 First-Order Theory of Mind Agent

The First-Order agent (referred to as the ToM1

agent from here onwards) maintains the same overall
and current Zero-Order beliefs as the ToM0 agent,
but it goes further by also incorporating beliefs about
its opponent’s beliefs, known as First-Order beliefs.
Similar to Zero-Order beliefs, this agent maintains
both overall and current First-Order beliefs. To form
these beliefs, the agent simulates what it would
believe if it were in the position of its opponent.
Thus overall First-Order beliefs are updated based
on the ToM1 agents own cards placed on their own
perches, as this this is what their opponent would
use to update their overall beliefs after each game.
The ToM1 agents current First-Order beliefs are
updated each turn as if the ToM1 agents board
state was being viewed from the perspective of their
opponent. This means that any of the ToM1 agents
cards that would be face-down from the opponents
perspective are considered as such, and current First-
Order beliefs are adjusted accordingly.
It is important to note that the ToM1 agent

has no direct knowledge of whether its opponent
actually possesses any beliefs or instead follows
a predetermined strategy. Therefore, this agent
maintains a First-Order confidence level c1, which
determines the extent to which its First-Order beliefs
influence its decision-making throughout the game.
A higher confidence level means the agents First-
Order beliefs hold a higher weight, while a lower
confidence level means the agents Zero-Order beliefs
hold a higher weight.
To determine the next action to take, the ToM1

agent integrates both its Zero-Order and First-Order
beliefs using the First-Order confidence level and
a belief integration function, inspired by de Weerd
and Verheij (2011) and outlined in section 2.2.5.
When predicting the values of their opponents

face-down cards and projecting their opponents
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Example 2: Consider a ToM0 agent playing their final two cards against a Levenshtein Agent in a
sequential game of Pecking Order. In this example we consider a scenario where these two agents
have already played 25 games against one another, and as such the ToM0 agent has been able to
observe and learn about the tendencies of their opponent. It is the ToM0 agents turn to play, and
the current board state is the following:

ToM0 agent 3 4
Levenshtein Agent 1 4

From the perspective of the ToM0 agent, the board state appears to be the following, where 0s
represent face-down cards:

ToM0 agent 3 4
Levenshtein Agent 0 0

Over the course of the games played, the Levenshtein agent has had a tendency to play towards the
following end-game state:

Levenshtein Agent 1 2 3 4

After each of the previous games played by the agents, the overall Zero-Order beliefs of the ToM0

agent have been updated to reflect what the agent believes their opponent is most likely to play. At
the start of each new game, the ToM0 agents current Zero-Order beliefs are then set to be equal to
the agents overall beliefs. For simplicity, in the game outlined here we will only present the current
Zero-Order beliefs of the ToM0 agent that are greater than 1%:

Current Beliefs
(Card, Perch, Belief Value) (1, 1, 0.141) (2, 2, 0.197) (3, 3, 0.276) (4, 4, 0.386)

To select its next action, the ToM0 agent predicts their opponents face-down cards based on their
current beliefs. In this case, the greatest belief values are for cards 1 and 4 being played on perches 1
and 4 respectively, leading to the following board state prediction:

ToM0 agent 3 4
Levenshtein Agent 1 4

The ToM0 agent then projects the next card the Levenshtein agent is most likely going to play. Since
the belief value of card 3 being played on perch 3 is greater than the belief value of card 2 being
played on perch 2, the ToM0 agents projection of the current board state one round into the future is:

ToM0 agent 3 4
Levenshtein Agent 1 3 4

Using this projected board state, the ToM0 agent follows the same logic as the Levenshtein agent
to select the best action it can play, except it compares the projected board state with reachable
end-game states opposed to using the current board state. This allows the ToM0 agent to more
selectively and proactively determine which winning end-game states are reachable from the currently
projected board state. The best action determined by the ToM0 agent is to play card 1 on perch 4.
The Levenshtein agent takes the action predicted by the ToM0 agent, which results in the following
board state:

ToM0 agent 3 4 1
Levenshtein Agent 1 3 4

In the final round both agents play their remaining cards which results in a victory for the ToM0

agent, after which the ToM0 agent updates their overall beliefs based on their opponents final board
state.

Example 2: ToM0 Agent Playing Pecking Order Against a Levenshtein Agent
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future board states, this agent generates both Zero-
Order and First-Order projections, based on Zero-
Order and First-Order beliefs respectively. This
agent also keeps track of all First-Order board
state projections during each round throughout the
course of a game in order to update its First-Order
confidence level. When the opponents face-down
cards are revealed, this agent then compares the
First-Order projections that they made previously
with the actions taken by their opponent and
updates their First-Order confidence accordingly.

Similar to the ToM0 agent, the ToM1 agent also
utilizes a learning rate to regulate the speed at which
its beliefs are updated upon encountering specific
cards on certain perches.

2.2.5 Belief Adjustment, Belief Integration,
Learning Speed and Confidence Level
Integration

As previously discussed in sections 2.2.3 and 2.2.4,
ToM agents select their actions based on their beliefs
and confidence levels. In this section we provide a
more detailed explanation of how these agent make
use of the learning rate λ to update their beliefs and
confidence levels following the outcome of a game.

When a ToM agent is initialized, all of its beliefs
are initialized randomly. For a ToM0 agent, this
means all Zero-Order beliefs are randomly initialized,
whereas for a ToM1 agent, both their Zero-Order
and First-Order beliefs are randomly initialized. We
assume that the ToM0 agents belief probabilities
for each of their opponents actions are non-zero (1)
and that the belief probabilities of their opponents
actions sum up to 1 (2), taking inspiration from
de Weerd et al. (2013):

b(0)(c, p) ≥ 0 (1)

∑
(c,p)∈(C,P )

b(0)(c, p) = 1 (2)

where (c, p) represents a (card, perch) pair, and
(C,P ) represents the set of all (card, perch) pairs.

After each game is played, a ToM0 agent
updates their overall Zero-Order beliefs by simply
incrementing the current belief values for each (card,
perch) pair played by their opponent in the game by
the learning rate of the agent. After this, the ToM0

agent recalculates the proportionality of the belief
values such that the sum of all belief values equals
1.

For the ToM1 agent, both its Zero-Order and
First-Order beliefs are incremented in the same was
as the ToM0 agent. However it should be noted that
the ToM1 agents First-Order beliefs are updated
based on their own cards and perches, as this is
what the their opponent would use to update their
(assumed) Zero-Order beliefs.

To update its First-Order confidence level c1, the
ToM1 agent makes use of a confidence level updating
function inspired by de Weerd and Verheij (2011):

c1 =

{
(1− λ) · c1, ∀p1 /∈ OP

λ+ (1− λ) · c1, ∀p1 ∈ OP
(3)

where p1 represents First-Order predictions made
by the ToM1 agent and OP represents the cards on
the opponents perches. Following this equation, a
ToM1 agents First-Order confidence level increases
with each correct prediction and decreases with each
incorrect prediction.
In its decision making process, the ToM1 agent

makes use of integrated beliefs, with are calculated
using the belief integration function U , inspired
by de Weerd and Verheij (2011). This function
combines the ToM1 agents Zero-Order beliefs b0

and First-Order beliefs b1 based on the agents First-
Order confidence level c1.
For a given board state s, the function U

determines the integrated beliefs of the agent taking
into account the First-Order predicted action â1(s)
of its opponent. To form its integrated beliefs, the
ToM1 agent considers each of its current beliefs
(b0(c, p)), where (c, p) denotes the (card, perch) pair
suspected to be played by the opponent based under
the current board state s, after which it weighs these
beliefs based on c1. Formally, the belief integration
function is the following:

U(b0, â1(s), c1)(c, p) =

{
(1− c1) · b0(c, p) if (c, p) ̸= â1(s)

c1 + (1− c1) · b0(c, p) if (c, p) = â1(s)
(4)

3 Experimental Setup

To evaluate the effectiveness of the ToM agents
presented in section 2.2 across the two game
structures, the ToM0 and ToM1 agents were paired
up with each of the other agents listed across both
game structures, after which 400 games per pair
were played. After each game, a tally was made
denoting the number of wins, losses and draws for
each pair. These agent pairs and results can be
found in Table 1 in section 4.
The number of games played by each agent pair

was determined using the Wald equation (Gudicha
et al., 2016) to ensure sufficient games for detecting
significant differences in win rates. With an
estimated population proportion of 0.5, indicating
an expected 50% win rate for competing agents,
a sample size of approximately 385 games was
calculated. This sample size accounts for a desired
level of significance of 0.05 (i.e. 95% confidence
level) and a margin of error (E) of 0.05, allowing for
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Example 3: Consider a ToM1 agent playing their final two cards against a ToM1 Agent in a
sequential game of Pecking Order. In this example we consider the same board state as in Example
2 where two agents have already played 25 games against one another, and as such the ToM1 and
ToM0 agents have both been able to observe and learn about the tendencies of their opponent. In
this example we aim to demonstrate how First-Order projections function as this is one of the core
differences between the ToM1 and ToM0 agents. For the purposes of brevity, we will not outline all
beliefs of the ToM0 agent. It is the ToM1 agents turn to play, and the board state is the following:

ToM1 Agent 3 4
ToM0 Agent 1 4

From the perspective of the ToM1 agent, the board state appears to be the following, where 0s
represent face-down cards:

ToM1 Agent 3 4
ToM0 Agent 0 0

After each of the previous games, the overall Zero-Order and First-Order beliefs of the ToM1 agent
have been progressively updated, as demonstrated in Example 2. For simplicity, in the game outlined
here we present simplified Zero-Order and First-Order beliefs of the ToM1 agent:

Current Zero-Order Beliefs
(Card, Perch, Belief Value) (1, 1, 0.141) (2, 2, 0.197) (3, 3, 0.276) (4, 4, 0.386)

Current First-Order Beliefs
(Card, Perch, Belief Value) (2, 1, 0.387) (3, 2, 0.112) (4, 3, 0.268) (1, 4, 0.233)

To select which action to take, the ToM1 agent begins by simulating their opponents perspective of
the board, meaning they predict their own face-down cards using their First-Order beliefs and project
their own side of the board one turn into the future based on these beliefs. Note that each First-Order
projection made this way is kept track of by the ToM1 agent to aid in updating their First-Order
confidence level later on. Based on the First-Order predictions and projections, the ToM1 agent then
determines what they believe their opponent believes to be the best action they can take. Based on
this action, the ToM1 agent generates a new board state with the suspected action their opponent
will take and determines the best action they themself could take, following the same logic as outlined
previously for the Levenshtein and ToM0 agent. In this case, ToM1 agent suspects the ToM0 agent
to believe that the ToM1 agent will play card 2 on perch 1 based on First-Order beliefs. The ToM1

agent then integrates their Zero-Order and First-Order beliefs based on the belief integration function
explain in section 2.2.5. For this example, suppose that the ToM1 agent has a high confidence in
their opponent making use of Zero-Order theory of mind. As a result, the ToM1 agents First-Order
beliefs will hold a higher weight in their decision-making process compared to their Zero-Order beliefs.
Following their integrated beliefs, the ToM1 agent determines that the ToM0 agent may believe that
playing card 3 on perch 2 is the best action to take, as this would lead to a lower payoff for the ToM1

agent opposed to playing card 3 on perch 3. Using this information, the ToM1 agent could then
determine that the best action to take is indeed playing card 2 on perch 1, as regardless of the overall
payoff of the game, through controlling perch 1, even if there is a tie, this agent will still win the
game. This leads to the following board state:

ToM1 Agent 2 3 4
ToM0 Agent 1 3 4

In the final round both agents play their remaining cards which results in a victory for the ToM1

agent, after which the ToM1 agent updates their overall beliefs based on their opponents final board
state as well as comparing their First-Order projections with the final outcome of the game state.

Example 3: ToM1 Agent Playing Pecking Order Against a ToM0 Agent
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adequate statistical power in detecting significant
differences in win rates.
Both the ToM0 and ToM1 agents were assigned

a learning rate of 0.4 in order to strike a balance
in their belief adjustment speed when attempting
to counter their opponents’ actions. Setting a
lower learning rate may cause the agents’ beliefs
to adjust too slowly, prolonging the overall learning
process and potentially leading to multiple losses
and sup-par play before effectively adapting to their
opponents’ strategies. Conversely, a higher learning
rate (close to 1) could result in overreactions to
more recent games and lead to unstable behavior
and beliefs. By opting for a moderate learning
speed of 0.4, the agents could gradually update their
knowledge while maintaining the ability to respond
effectively to the changing circumstances and new
information encountered in each new game.
Upon instantiation, the ToM1 agents were

assigned a confidence level of 0.8, indicating a
strong belief that their opponents were utilizing
Zero-Order ToM . This initial assumption stems
from the absence of direct evidence or prior
knowledge regarding their opponent’s mental content
and reasoning capabilities. By starting with the
Zero-Order assumption, ToM1 agents are able to
establish a foundation for reasoning and decision-
making while observing their opponent’s behaviors.
Throughout the course of multiple games, they
can adjust their confidence level based on their
opponents perceived behaviour. This allows them
to determine the weights of their Zero-Order and
First-Order beliefs and adjust their strategy based
on the emerging patterns and cues displayed by their
opponent.

4 Results

The pairing of the ToM0 and ToM1 agents with the
other listed agents in both game structures resulted
in 400 games being played per pair. After each game,
the number of wins, losses, and draws for each pair
was tallied. The complete set of agent pairs and
their respective outcomes can be found in Table 1.

To provide a clearer visual representation of the
ToM agents’ performance between the two game
structures, Figures 2 and 3 present the percentage
of games won by the ToM0 and ToM1 agents
respectively against each of their opponents across
the sequential and simultaneous versions of the
game.

To assess whether there were significant differences
in win rates between the ToM0 and ToM1 agents
in different game structures, a two-tailed proportion
test was conducted. This test compared the win

Figure 2: ToM0 Agent Winning Percentages Versus
Opponents Between Game Structures

Figure 3: ToM1 Agent Winning Percentages Versus
Opponents Between Game Structures
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Game Structure Agent 1 Agent 2 Agent 1 Win # Agent 2 Win # Draw #
Sequential Zero-Order Random Action 238 142 20
Sequential Zero-Order Levenshtein 331 48 21
Sequential Zero-Order Zero-Order 186 199 15
Sequential Zero-Order First-Order 260 108 32
Sequential First-Order Random Action 220 161 19
Sequential First-Order Levenshtein 54 286 60
Sequential First-Order Zero-Order 201 183 16
Sequential First-Order First-Order 232 154 14
Simultaneous Zero-Order Random Action 216 160 24
Simultaneous Zero-Order Levenshtein 387 10 3
Simultaneous Zero-Order Zero-Order 182 153 65
Simultaneous First-Order Random Action 237 147 16
Simultaneous First-Order Levenshtein 46 284 70
Simultaneous First-Order Zero-Order 186 198 16
Simultaneous First-Order First-Order 246 143 11

Table 1: Agent Pair Performance Across Game Structures

rates across the two game structures for each agent’s
opponents, aiming to detect any notable variations
in performance. The null hypothesis (H0) for this
test is that there is no significant difference in win
rates of the ToM0 and ToM1 agents across the
two game structures. The alternative hypothesis
(Ha) is that there is a significant difference in win
rates of the ToM0 and ToM1 agents across the two
game structures. The tests were performed at a
significance level of α = 0.05. The calculated test
statistics, including the exact win rates, Z-Scores
and p-values for each of the two-tailed proportion
tests conducted can be found in Tables 2 and 3.
Multiple chi-squared tests were also conducted

to explore the relationship between game structure
and win/loss/draw outcomes, considering different
combinations of data. The analysis included
different combinations of Zero-Order and First-
Order win/loss as well as win/loss/draw data. The
results of these tests are summarized in Table 4.

The results reveal a significant association
between game structure and win/loss/draw
outcomes when combining Zero-Order and First-
Order data (χ2 = 6.4074, df = 2, p = 0.04061),
indicating the influence of game structure on the
overall game outcomes of ToM0 and ToM1 agents.
However, analyzing Zero-Order and First-Order

win/loss outcomes does not show a significant
association with game structure for the combined
win/loss performance (χ2 = 1.7226, df = 1, p =
0.1894). This suggests that game structure may not
significantly impact the overall win/loss performance
when considering both Zero-Order and First-Order
outcomes without the inclusion of draws.
Regarding Zero-Order win/loss/draw outcomes,

a significant association with game structure is

observed (χ2 = 6.4074, df = 2, p = 0.04061).
In contrast, no significant association is

found between game structure and First-Order
win/loss/draw outcomes (χ2 = 1.3114, df = 2,
p = 0.5191), indicating that game structure may
not strongly influence the specific win/loss/draw
performance in the context of First-Order theory of
mind agents.
When examining Zero-Order win/loss outcomes,

no significant association with game structure is
observed (χ2 = 2.7984, df = 1, p = 0.09436).
Similarly, no significant association is found between
game structure and First-Order win/loss outcomes
(χ2 = 0.10685, df = 1, p = 0.7438).

In conclusion, these findings suggest a nuanced
relationship between game structure and agent
performance, with the impact on win/loss outcomes
varying depending on the specific combination of
Zero-Order and First-Order data considered as well
as whether or not draws are included in the analysis.

5 Discussion

This study aimed to investigate the performance of
Zero-Order and First-Order theory of mind agents
in sequential and simultaneous game structures of
Pecking Order. By comparing win rates among agent
pairs and conducting statistical tests, we gained
insights into the influence of game structure on the
effectiveness of theory of mind reasoning.
Analyzing the data, we conducted two-tailed

proportion tests to assess the significance of
differences in win rates between the ToM0 and
ToM1 agents in the two game structures. The
results indicated that game structure significantly
affected the performance of the ToM0 agent, with
win rates differing significantly between sequential
and simultaneous games.
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Zero-Order Agent Winning Percentage Across Game Structures
Opponent Random Levenshtein ToM0 ToM1

Game Structure
Sequential 59.5 82.75 46.5 65
Simultaneous 54 96.75 45 63.75

Z-Score (two-tailed proportion test) 1.57 -6.5278 0.2838 0.3691
p-value (two-tailed proportion test) 0.116 0.00001 0.77948 0.71138

Table 2: Zero-Order Agent Winning Percentage Across Game Structures

First-Order Agent Winning Percentage Across Game Structures
Opponent Random Levenshtein ToM0 ToM1

Game Structure
Sequential 55 13.5 50.25 58
Simultaneous 59.25 11.5 46.5 61.5

Z-Scores (two-tailed proportion test) -1.2154 0.8552 1.0612 -1.0093
p-value (two-tailed proportion test) 0.22628 0.38978 0.28914 0.3125

Table 3: First-Order Agent Winning Percentage Across Game Structures

In contrast, the ToM1 agent’s win rates did not
exhibit a significant difference between the sequential
and simultaneous game structures. Incorporating
First-Order beliefs and opponent modeling in the
ToM1 agent’s decision-making process appeared to
provide a more robust strategy that was less sensitive
to changes in game structure.

Furthermore, the findings revealed that turn order
may have an impact on the performance of both the
Zero-Order and First-Order agents. When the Zero-
Order agent played first against the First-Order
agent in the sequential variation of Pecking Order,
it achieved higher win rates. Similarly, when the
First-Order agent played first against the Zero-Order
agent in the same context, it attained higher win
rates. This observation suggests that turn order
may play a role in the effectiveness of theory of
mind reasoning in addition to the game structure
itself. However, to evaluate whether turn order has
a significant impact on the effectiveness of theory of
mind reasoning, further research is required.

The significant association between game
structure and win/loss/draw outcomes, when
combining Zero-Order and First-Order data,
suggests an influence of game structure on agent
performance. However, when considering only
win/loss outcomes, there is evidence of little to no
effect of game structure on the effectiveness of theory
of mind reasoning.

The findings underscore the importance of
incorporating opponent modeling and higher-order
theory of mind in decision-making processes, as
well as considering the influence of game structure
on agent performance. These insights may have
implications for the design of intelligent multi-
agent systems, enabling the development of more
sophisticated and adaptable strategies in dynamic
environments.

To further enhance our understanding, future
research can explore additional game structures and
agent pairings to determine if these may have an
impact. Additionally, investigating the combined
effects of game structure and turn order on agent
behavior and performance can provide insights into
optimal strategies for theory of mind reasoning in
different game contexts.

Lastly with regards to the initial confidence level
and learning rates of the agents, a sensitivity analysis
could be conducted to determine the robustness
and performance of the agents and how these
variations can affect their adaptability, stability, and
overall effectiveness in responding to their opponents’
strategies. By systematically evaluating different
learning rates and confidence levels, the analysis
can provide valuable insights into the optimal
parameters that maximize the agents’ ability to
adjust their strategies and achieve superior gameplay
outcomes.

6 Conclusions

This study analyzes the performance of Zero-Order
and First-Order theory of mind agents in both
sequential and simultaneous game structures of
Pecking Order. By conducting win rate analysis and
statistical tests, we investigated how game structure
affects the performance of agents utilizing theory of
mind.

The results reveal slight variations in agent
performance across game structures, highlighting the
effectiveness of different strategies in the context of
Pecking Order. The Zero-Order agent’s performance
was significantly influenced by game structure, while
the First-Order agent appeared to be less influenced
overall. Turn order also seemed to a play role, with
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Agent Data Chi-Squared (X2) Degrees of Freedom (df) p-value
Zero-Order + First-Order Win/Loss/Draw 6.4074 2 0.04061
Zero-Order + First-Order Win/Loss 1.7226 1 0.1894
Zero-Order Win/Loss/Draw 6.4074 2 0.04061
First-Order Win/Loss/Draw 1.3114 2 0.5191
Zero-Order Win/Loss 2.7984 1 0.09436
First-Order Win/Loss 0.10685 1 0.7438

Table 4: Chi-Squared Analysis Across Game Structures

higher win rates observed when the Zero-Order agent
played first against the First-Order agent and vice
versa, however this requires further investigation to
gain more conclusive results.
This study aimed to make meaningful

contributions to the field of artificial intelligence
and multi-agent systems by investigating the
intricate interplay between game structure and
the utilization of theory of mind. By gaining
a deeper understanding of this relationship, we
can pave the way for the development of more
sophisticated implementations of theory of mind
reasoning in various contexts. These findings
have the potential to extend beyond the realm of
games, offering insights and applications that can
benefit the broader field of artificial intelligence and
multi-agent systems as a whole.
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Fehr, E. and Gächter, S. (2000). Cooperation
and punishment in public goods experiments.
American Economic Review, 90(4):980–994.

Garfield, R. (1998). Pecking order. [Board game].

Gudicha, D. W., Tekle, F. B., and Vermunt, J. K.
(2016). Power and sample size computation for
wald tests in latent class models. Journal of
Classification, 33:30–51.

Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr,
E., Gintis, H., and McElreath, R. (2001). In search
of homo economicus: behavioral experiments in 15
small-scale societies. American Economic Review,
91(2):73–78.

McKelvey, R. D. and Palfrey, T. R. (1992).
An experimental study of the centipede game.
Econometrica: Journal of the Econometric
Society, pages 803–836.

Nerbonne, J., Heeringa, W., and Kleiweg, P. (1999).
Edit distance and dialect proximity. Time Warps,
String Edits and Macromolecules: The Theory
and Practice of Sequence Comparison, 15.

Stahl, D. O. and Wilson, P. W. (1995). On
players models of other players: Theory and
experimental evidence. Games and Economic
Behavior, 10(1):218–254.

13


	Introduction
	Methods
	Outline of Pecking Order
	Similarities to Limited Bidding
	Simulation Theory of Mind

	Agents and their strategies
	Random Agent
	Levenshtein Agent
	Zero-Order Theory of Mind Agent
	First-Order Theory of Mind Agent
	Belief Adjustment, Belief Integration, Learning Speed and Confidence Level Integration


	Experimental Setup
	Results
	Discussion
	Conclusions

