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Abstract

Network congestion games are a class of games that have been extensively studied from both
a game theoretic and mathematical point of view. We develop a mathematical basis for analysing
non-atomic instances of network congestion games, with attention to the proofs behind basic
concepts. We furthermore establish an upper bound on the inefficiency of selfish equilibria.
Having investigated the mathematical theory for this class of games, we analyse a standard
numerical method to compute equilibrium flows. A conjugate based extension is discussed to
remedy slow convergence. The methods are compared by analysis on a model of the city of
Groningen.
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1 Introduction

In this thesis, we develop a broad basis in the theory of network congestion games. As will be formalized later,
network congestion games deal with transport problems. Typical examples of this include urban planning
uses, like analysing road congestion. For example, the framework has been used to analyse the traffic network
in the city of Winnipeg [Florian and Nguyen, 1976]. However, this can also be extended to other problems
like scheduling problems [Zhou and Yang, 2019] or more computer science focused applications like data
sharing [Liu and Wu, 2008, Law et al., 2012].

These kinds of problems are somewhat “new” compared to other mathematical problems. One of the
first mentions of the problem in a more economical setting was made by Pigou in his book on economic
welfare [Pigou, 1920]. This example will be discussed in section 4. A very influential contribution in this
field came with the paper by Beckmann, McGuire and Winsten [Beckmann et al., 1955]. In their work, it was
proven that the user equilibrium model can indeed be formulated in terms of a mathematical optimization
problem. We will revisit their contribution in section 3. After this, Rosenthal proved in 1973 that network
congestion-like games always had a pure Nash equilibrium [Rosenthal, 1973]. Another main source of this
thesis is the work of Roughgarden [Roughgarden, 2005], which will be extensively used to prove inefficiency
bounds for selfish behaviour.

This paper aims to tackle three fundamental ideas in this broad field. Some preliminaries relating to basic
convex analysis, optimization and algorithms can be found in appendix A. As a first problem, we investigate
how to compute equilibria in network congestion games. In section 2 we discuss both selfish equilibria and
user equilibria. A fundamental question in optimization theory is the existence and uniqueness of problems,
which is discussed in the context of our topic as well. Further characterizations of optimal flows in terms of
marginal cost functions are discussed and their connection with Beckmann’s formulation of the optimization
problem to find user equilibrium flows. After establishing how to compute optimal and selfish flows, we ask
ourselves if there is a bound on how bad these selfish flows can be compared to the optimal case. In section
3 we prove that such a bound does indeed exist when we consider polynomial cost functions. Finally, we
investigate how to compute equilibria numerically in section 4. As with any mathematical problem, when
scaling to larger problems it becomes unfeasible to perform all computations manually. We discuss the Frank-
Wolfe algorithm and a conjugate adaptation to speed up convergence. In section 5 we apply these methods
to a model of the road network of the city of Groningen. We compare the speed of convergence of both of
these algorithms, and briefly discuss the results obtained.
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2 Computation and characterizations of equilibria

A natural question to ask is if it is possible to determine optimal flows for an instance I = (G, r, c). A simple
idea might be to compute a flow that minimizes the cost equation (2.1.7). While this gives a mathematically
valid answer to the question, this situation will practically never occur in real life. People will never perfectly
adhere to a prescribed traffic route, if they believe it is not in their own best interest. A more realistic situation
might we where users take the path that is best for them personally. In his paper “Some Theoretical Aspects
of Road Traffic Research” [Wardrop, 1952] Wardrop formulated both these principles as follows;

1. The journey times on all paths are equal, and less than what any single vehicle would experience if
switching to another route,

2. The average (and thus total system cost) journal route cost is at a minimum

We refer to these situations as Wardrop’s first and second principle respectively. In this section we look
at both these notions and develop the mathematical theory behind them. Before we do this however, we go
over some basic definitions that we will use throughout the paper.

2.1 Basic definitions

In this section, we build up the basic definitions used in the analysis of congestion games. The definitions
used here stem from [Roughgarden, 2005] and [Diestel, 2017]. We encode our network as a directed graph
G = (V,E). Here V will be the set of vertices, and E ⊆ V × V is the set of directed edges between the
vertices. We assume that the graph is connected in the sense that any vertex can be reached from another
vertex. On each edge, we assign a nonnegative, continuous and nondecreasing cost function ce(·) : R →
R≥0. Moreover, we assume that the cost on an edge e is only determined by the traffic on the edge e:

∂ce
∂xẽ

= 0 and
∂ce
∂xe
≥ 0, (2.1.1)

for e ∈ E and e ̸= ẽ ∈ E. These conditions give a physical intuition to these functions; The more traffic
on a road, the higher the cost on the corresponding edge (one could see travel time as a cost) and the flow
increases continuously with traffic increase. Of importance in routing games are origin-destination pairs.

Definition 2.1 (Origin-Destination Pairs). Let G = (V,E) be a connected, directed graph encoding the
traffic network. The set of origin-destination pairs (OD-pairs) D is an indexed set consisting of ordered
pairs (a, b) ∈ V × V . That is:

D = {d1, . . . , di, . . . , dN} = {(s1, t1), . . . , (si, ti), . . . (sN , tN )}, (2.1.2)

where N ∈
[
|V |2

]
is the number of origin destination pairs. The sequence (si)i≤N is the sequence of origin

vertices and (ti)i≤N is the sequence of destination vertices.
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We also refer to these pairs as commodities. If we have a single origin-destination pair we call the network
a single commodity network, while we call the network a multicommodity network if there is multiple origin-
destination pairs. As a physical interpretation of these origin-destination pairs, we can imagine that the graph
G encodes the road network of a city, where each node inV represents either a source of traffic, an intersection
of roads or a goal for traffic to reach. One possible origin destination pair could then be a neighbourhood
and a shopping centre.

This definition also gives merit to our assumption that the graph G is connected. Suppose that G was
disconnected. Then, we can have two cases. First, it could be that all the OD-pairs are in the same connected
component. In this case, the other part of the graph does not contribute to the problem. Thus it suffices to
consider the graph G̃ = G \ D where D is the disconnected component that did not contain any origin or
destination nodes. In the other case where some of the pairs are not in the same connected component, the
problem would be impossible to solve. More precisely, suppose thatD = {d1} = {(s1, t1)} where s1 and t1

are not in the same connected component. Then, whatever nonzero traffic rate we assign it will be impossible
to solve the problem since there is no path between s1 and t1.

Definition 2.2 (Traffic rate). Let G = (V,E) be a connected directed graph. On this graph, define a set of
origin-destination pairs D. The traffic rate ri corresponding to the OD-pair di ∈ D is a positive real number
which represents the amount of traffic to be diverted from si to ti.

For ease of notation, we usually refer to the traffic rates as a vector r ∈ RN which has positive entries
ri corresponding to the traffic rate of the i-th origin destination pair. To connect this back to the previous
example, the rate demand could for example be the number of people that live in the previously mentioned
neighbourhood that shop at this shopping center.

Of course, when talking about routing over a network a natural way of formalizing the possible routes
belonging to a commodity is that of a path on a graph.

Definition 2.3 (Path set). A directed path on a directed graph G = (V,E) is a graph H ̸= ∅ with distinct
vertices x0, . . . , xk and edges e0, . . . ek−1 such that ei is an edge between xi and xi+1. For a network G,
with commodities D, denote Pi (which we assume to be non-empty) as the set of directed paths from si to
ti. The path set P is then the union of these sets,

P =
N⋃
i=1

Pi. (2.1.3)

Next, we need to define a way to measure how much traffic flows over a given path.

Definition 2.4 ((Feasible) flow). A flow is a nonnegative vector f with entries indexed by paths P ∈ P ,
indicating how much traffic gets routed over any possible path on the network G. A flow is called feasible if
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it routes the prescribed amount of traffic for each commodity. That is, a flow f is feasible if for all i∑
P∈Pi

fP = ri. (2.1.4)

This definition can be naturally extended to a flow on edges. Namely, the flow on an edge e ∈ E is given
by

fe =
∑

P∈P s.t. e∈P
fP . (2.1.5)

Using these definitions, we can finally formalize the notion of a routing game.

Definition 2.5 (Instance of a routing game). An instance of a routing game is a triple I = (G, r, c) where
G = (V,E) is a connected directed graph encoding the network and r and c are a vector of traffic rates and
a vector of cost functions respectively.

Example 2.6 (Example of instance). Consider the following networkG as in figure 1, with origin destination
pair d1 = (s1, t1) and r1 = 1. The triple I = (G, r1, c), with c = (2x+ 1, 5x+ 3, 0.5x+ 1, 4x+ 1, x+ 2)

forms an instance of a routing game.

v1

v2

t1s1
r1 = 1

2x
+
1

4x
+
15x

+
3

x
+
2

1
2x+ 1

Figure 1: Example of an instance of a routing game

The set of possible paths P will be the set of paths between s1 and t1. Therefore, we have that

P = {(s1, v1, t1), (s1, v2, t1), (s1, v1, v2, t1)}.

A feasible flow could then be f = (13 ,
1
3 ,

1
3) or f = (1, 0, 0). △

Next, we provide a few notions that have to do with the cost of flows.

Definition 2.7 (Cost of path and cost of flow). The cost of a path corresponding to a flow f is given by

cP (f) =
∑
e∈P

ce(fe), (2.1.6)
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whereas the cost of a flow is given by

C(f) =
∑
P∈P

cP (f)fP . (2.1.7)

The cost of a flow is also referred to as social cost since it can be seen as the total cost that everyone on the
network experiences [Dı́az et al., 2017].

We note that we can also write the cost of a flow in terms of flow on edges.

Proposition 2.8. The cost of a flow can be written as:

C(f) =
∑
e∈E

ce(fe)fe. (2.1.8)

Proof. The proposition follows quite easily using the fact that we can swap finite sums, keeping in mind the
indices:

C(f) =
∑
P∈P

cP (f)fP =
∑
P∈P

(∑
e∈P

fP · ce(fe)

)

=
∑
e∈E

ce(fe)

 ∑
P∈P

s.t. e∈P

fP

 =
∑
e∈E

ce(fe)fe,

where the second equality follows from definition 2.4 and the final equality follows from equation 2.1.5.

Example 2.9. Consider again the instance (G, r1, c) from example 2.6. Consider the feasible flow given by
the flow f = (13 ,

1
3 ,

1
3). In figure 2 we give the network with on edge specified the flow on that edge under

this flow vector. We can then compute the cost of this flow as

C(f) =
∑
e∈E

ce(fe)fe =
2

3

(
2 · 2

3
+ 1

)
+

1

3

(
1

3
+ 2

)
+

1

3

(
1

2
· 1
3
+ 1

)
+

1

3

(
5 · 1

3
+ 3

)
+

2

3

(
4 · 2

3
+ 1

)
=

121

18
.

Instead, taking f = (1, 0, 0) we simply get

C(f) =
∑
e∈E

ce(fe)fe = 1 · (2 · 1 + 1) + 1 · (1 + 2) = 6.

△
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v1

v2

t1s1
r1 = 1

2
3

2
3

1
3

1
3

1
3

Figure 2: Flows on edges with f = (13 ,
1
3 ,

1
3)

Another notion will we use is that of a marginal cost function.

Definition 2.10 (Marginal cost function). Let ce(fe) be a cost function for an edge e ∈ E. Then, the
marginal cost function is defined as:

c∗e(x) =
d

dx
(ce(x) · x) = c′e(x) · x+ ce(x). (2.1.9)

The notion of a marginal cost has a nice interpretation. Namely, consider a case where we slightly in-
crease flow of traffic on an edge. In this case, the marginal cost will give us the cost experienced by this
traffic and also the increase in congestion caused by this traffic.

We finally note that here we consider nonatomic congestion games. That is, we consider a game with an
infinite number of “players” that all control an infinitesimal amount of traffic. In the atomic case we have a
finite number of players that all control larger amount of traffic. Practically speaking, in a nonatomic game
we can freely split traffic in whatever way we desire, since each player controls a negligible amount of traffic.

2.2 Wardrop’s second principle: System optimal equilibria

We first examine the second case, which is also referred to as a system optimal or SO flow assignment. In this
case, we strive for a distribution of flow that is more desirable from a societal aspect [Angelelli et al., 2021].

Given an instance (G, r, c) with N origin-destination pairs, we wish to minimize the social cost. That is,
we want to find f∗ so that:

C(f∗) = min
f

C(f) =
∑
P∈P

cP (f)fP . (2.2.1)

This equation does not describe the full problem however. Recalling the previous section, we require that each
flow is non-negative and we require that correct amount of traffic is routed between each origin-destination
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pair. Therefore, the full problem will be given by:

min
f

C(f) =
∑
P∈P

cP (f)fP

subject to: fP ≥ 0 ∀P ∈ P,∑
P∈Pi

fP = ri ∀ 0 ≤ i ≤ N.

(SO)

We first investigate the existence of a solution to this problem. For this, we can use Weierstrass’ Theorem as
given in theorem A.12. Note that we can equivalently write the problem (SO) as a minimization problem
over a constraint set:

min
f∈F

C(f),

where F is the set of feasible flows:

F =

f ∈ R|P|, so that fP ≥ 0 ∀P ∈ P,
∑
P∈Pi

fP = ri ∀ 0 ≤ i ≤ N

 . (2.2.2)

It suffices to argue that the set F is compact, since the function C is continuous as long as each ce is. By
Weierstrass’s theorem as in theorem A.12 the problem will then admit a solution.
Note first the set F is bounded. For any vector f = (fP1 , . . . , fPK

) with K = |P|, we have that fPj ≤ ri

with Pj ∈ Pi. Furthermore, each entry can be bounded from below by zero. Therefore,

0 ≤ ||f ||2 ≤
√∑

i≤N

r2i .

The last inequality gives the worst case scenario where we route all traffic over a single path for each
OD-pair. If we were to split traffic, say equally over two paths, the norm would become smaller, since√(

1
2ri
)2

+
(
1
2ri
)2

=
√

1
2r

2
i ≤

√
r2i . Moreover, the set is closed since it is its own closure. The boundary

of the set is formed by fp = 0 for all P ∈ P and fP = ri for all P ∈ Pi and for all i ≤ N . It is possible for
fP to be zero or to be equal to ri, and thus these boundaries are contained in the set F . Therefore, the set is
closed. By combining the fact that F ⊂ R|P| and the fact that F is closed and bounded, we know the set F
is compact. Since F is compact, the problem (SO) has at least one solution.

Example 2.11. Consider the network as given in figure 3. On this network, we are given a single OD-pair
(s1, t1), with an assigned traffic rate r1 = 1. The problem (SO) can then be formulated as:

min
f

C(f) = f1 + f2

subject to: f1, f2 ≥ 0

f1 + f2 = 1

9



s1 t1

1

1

r1 = 1

Figure 3: Instance where uniqueness cannot be guaranteed

where we denote f1 as the flow on the top edge and f2 as the flow on the bottom edge. Clearly, this implies
C(f) = f1 · 1 + f2 · 1 = 1 by using the constraint that f1 + f2 = 1. Thus, we can assign any flow and we
will always find that C(f) = 1. As an example both the flow f = (1, 0) and the flow f = (13 ,

2
3) would lead

to system optimal solutions, but are not the same flow. △

This behaviour is to be expected. First note the set of feasible flows is convex. Take two feasible flows
f, f̃ . Then, any convex combination is also feasible. Namely,∑

P∈Pi

(λfP + (1− λ)f̃P ) = λ
∑
P∈Pi

fP + (1− λ)
∑
P∈Pi

f̃P = λri + (1− λ)ri = ri.

Moreover, the new flow will only consist of positive entries, since λ ∈ [0, 1] and thus the signs are not altered
when making a convex combination. The cost function we obtained in the example is however not strictly
convex, but only convex. Therefore, by proposition A.13 we can only guarantee a unique local minimum.
Summing up this discussion, we get the following proposition.

Proposition 2.12. The problem (SO) has a solution. If the function ce(fe)fe is convex for all e ∈ E and if
f, f̃ are two solutions then we have that C(f) = C(f̃). Moreover, if the function ce(fe)fe is strictly convex
then the problem has a unique global minimum.

The convexity requirement is for example satisfied for the class of polynomials with non-negative con-
stants, as we will see in our discussion on the price of anarchy.
A nice characterization of an optimal flow can be formulated as a variational inequality involving the marginal
cost functions [Nisan et al., 2007, Chapter 18].

Proposition 2.13. Let I be an instance of a routing game with commodities D = {d1, d2, . . . , dN}, so that
each function ce(fe)fe is convex. Then, the following are equivalent:

1. The flow f∗ is optimal;

2. For every commodity di and every pair of paths P, P̃ ∈ Pi with f∗
P > 0: c∗P (f

∗) ≤ c∗
P̃
(f∗)

Proof. Before proving the statement, we take a closer look at the problem (SO).To find the system optimum,
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we solve the problem
min
f

C(f) =
∑
P∈P

cP (f)fP

subject to: gP (f) = −fP ≤ 0 ∀P ∈ P,

hi(f) =
∑
P∈Pi

fP − ri = 0 ∀ 1 ≤ i ≤ N.

Therefore, the Lagrangian function related to this problem is:

L(f, λ, µ) =
∑
P∈P

cP (f)fP +
N∑
i=1

λihi(f) +
∑
P∈P
−µP fP

=
∑
e∈E

ce(fe)fe +
N∑
i=1

λihi(f) +
∑
P∈P
−µP fP .

In particular we see that hi and gP are linear functions in f and by assumption the functions ce(fe)fe are
convex. By proposition A.16 a feasible flow f∗ is then optimal if and only if it satisfies the KKT conditions.
We compute the gradients of the functions C, gP and hi. First, by the chain rule we have that:

(∇C(f))P =
∑
e∈E

∂C

∂fe

∂fe
∂fP

.

By using the relation between an edge flow and a path flow as in equation (2.1.5):

∂fe
∂fP

=

1 if e ∈ P

0 if e /∈ P.

Therefore, the sum collapses to just the edges in our path P . The gradient of C then becomes:

(∇C(f))P =
∑
e∈P

∂C

∂fe
=
∑
e∈P

d

dfe
(ce(fe)fe) =

∑
e∈P

c∗e(fe) := c∗P (f).

For the function hi(f) we have that:

(∇hi)P =

1 if P ∈ Pi
0 if P /∈ Pi,

and finally for gP (f) we compute:

(∇gP )P̃ =

−1 if P = P̃

0 if P ̸= P̃ ,

for any P̃ ∈ P .
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(1 =⇒ 2) Let f∗ be optimal. Therefore, there exist Lagrange multiplier vectors µ∗ and λ∗ so that

∇C(f∗) +
N∑
i=1

λ∗
i∇hi(f∗) +

∑
P∈P

µ∗
P∇gP (f∗) = 0,

with µP ≥ 0 and −fPµP = 0. Consider a path P ∈ Pi so that f∗
P > 0. By the condition above this implies

that µP = 0. For this P we must then have that:

c∗P (f) + λ∗
i = 0 ⇐⇒ c∗P (f) = −λ∗

i .

For any other path P̃ ∈ Pi, we must have that:

c∗
P̃
(f∗) + λ∗

i − µ∗
P̃
= 0.

But then,
c∗
P̃
(f∗) = c∗P (f

∗) + µ∗
P̃
≥ c∗P (f

∗),

since µ∗
P̃
≥ 0.

(2 =⇒ 1) Suppose now that for every commodity di and every pair of paths P, P̃ ∈ Pi with fP1 > 0

we have that c∗P (f∗) ≤ c∗
P̃
(f∗). It then suffices to find Lagrange multiplier vectors λ∗, µ∗ so that:

∇fL(f
∗, λ∗µ∗) = 0

µ∗
P gP (f

∗) = 0.

Let P ∈ Pi be so that fP > 0. Drawing inspiration from the previous implication, for any path P̃ ∈ Pi we
set:

λ∗
i = c∗P (f

∗), µ∗
P̃
= c∗P (f

∗)− c∗
P̃
(f∗).

Then, by the same computation we have that:

(∇fL(f
∗, λ∗µ∗))P̃ = c∗

P̃
(f∗)− c∗P (f

∗) + c∗P (f
∗)− c∗

P̃
(f∗) = 0.

It remains to check that the multipliers µ are non-negative and µP̃ gP̃ (f
∗) = 0. The non-negativity of µ is

guaranteed by the assumption that c∗P (f∗) ≤ c∗
P̃

whenever fP > 0. For the other condition, note that if
P̃ = P we have µ∗

P̃
= 0. If this does not hold, we distinguish two possibilities:

1. If fP̃ = 0, then µ∗
P̃
gP̃ (f

∗) = −µ∗
P̃
f∗
P̃
= 0;

2. If fP̃ ̸= 0, by assumption we find that c∗P (f∗) = c∗
P̃
(f∗). Specifically, we have that c∗P (f∗) ≤ c∗

P̃
(f∗)

and c∗P (f
∗) ≥ c∗

P̃
(f∗) by using the fact that for every pair of paths P, P̃ with fP > 0 we have

c∗
P̃
(f∗) ≤ c∗P (f

∗) ≤ c∗
P̃
(f∗). But then, we have that µP̃ f

∗
P̃
= (c∗P (f

∗)− c∗
P̃
(f∗))f∗

P̃
= 0
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Therefore, these choices of λ∗, µ∗ satisfy the KKT conditions and therefore f∗ is optimal.

2.3 User equilibria

While the previous section gives a good mathematical way of analysing the problem it certainly does not
give a satisfying way to look at this problem. Clearly, it is impossible to assign all traffic over certain routes
in real life. Instead it is more realistic to look at Wardrop’s first principle. Namely, that the journey times
on all paths are equal, and less than what a single vehicle would experience if switching to another route.
Formalizing this mathematically leads to the following definition [Cominetti et al., 2012].

Definition 2.14. Let I be an instance of a routing game and let f be a feasible flow. The flow f satisfies
Wardrop’s first principle if:

fP > 0 =⇒ cP (f) = min
P∈Pi

cP (f),

for all paths P and commodities i. That is, a path is only taken if it gives the least cost.

Intuitively, the idea behind this is to simulate selfish behaviour in drivers. Each driver gets knowledge of
how much traffic is on each path, and chooses the path that is cheapest to take for them. They do not take in
to account how to make the overall cost lower for everyone. As a small aside, the first principle might remind
the reader of a Nash Equilibrium [Petrosyan and Zenkevich, 1996].

Definition 2.15 (Nash Equilibrium). Let G be a game with a payoff function H depending on a strategy
s = (x1, . . . , xi, . . . , xn). Then, the game is at Nash Equilibrium for the strategy s if for any deviation of a
single player, which gives the strategy s′ = (x1, . . . , x

′
i, . . . , xn), we have that:

H(s) ≥ H(s′). (2.3.1)

In our context, the payoff function for each player might be the negative of the cost they experience when
travelling between the origin destination pairs.

In this section we wish to find a way to compute the equilibrium flow in this situation, like we did for the
system optimal flow. We start by looking back at proposition 2.13.If we look at the second statement, this
embodies exactly what we define a Wardrop equilibrium to be, except we look at the marginal cost function
instead of the normal cost function on an edge. This leads to the following condition for a flow to be a
Wardrop equilibrium [Roughgarden, 2005].

Proposition 2.16. A flow f is optimal for the instance I = (G, r, c) if and only it is a user equilibrium for
the instance Ĩ = (G, r, c∗).

From this, we can look for a formulation which helps us compute these equilibria. Notice that proposition
2.13 holds regardless of function in the sum, but still subject to the constraints. Therefore, we look for a
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function so that its derivative is equal to the cost function on an edge. That is, we wish to find he so that:

h′e(fe) = ce(fe),

for all e. Using the fundamental theorem of calculus, the function

he(fe) =

∫ fe

0
ce(t) dt,

works here. We begin by proving a simple lemma that gives us a guarantee that each of the functions he is
convex.

Lemma 2.17. Let g(·) be an integrable, non-decreasing function. Then, the function

f(x) =

∫ x

0
g(t)dt, (2.3.2)

is convex. Moreover, if g(·) is strictly increasing, then f(x) is strictly convex. Furthermore, ifx = (x1, . . . , xN ) ∈
RN
+ (that is, a vector in RN with non-negative entries) and h(x) =

∑N
i=0 xi then the function

f(x) =

∫ h(x)

0
g(t)dt, (2.3.3)

is convex.

Proof. Let f(x) =
∫ x
0 g(t)dt where g(t) is non-decreasing. Then, f ′(x) = g(x) and f ′′(x) = g′(x) ≥ 0.

Therefore, f(x) is convex.
For the second statement, define

f(x) = f(x1, . . . , xN ) =

∫ ∑
0≤i≤N xi

0
g(t)dt.

Then,

(∇f(x))j = g

 ∑
0≤i≤N

xi

 , 0 ≤ j ≤ N

(∇2f(x))j,k = g′

 ∑
0≤i≤N

xi

 ≥ 0, 0 ≤ j, k ≤ N.

Thus, the Hessian is a positively scaled version of the matrix with entry 1 everywhere:

∇2f(x) = g′

 ∑
0≤i≤N

xi

1N×N .
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To check for positive (semi)-definiteness, we compute the eigenvalues of the matrix M = 1N×N .Since this
matrix has rank(M) = 1, we must have that the matrix has eigenvalue λ = 0 with multiplicity N − 1,
since the eigenspace corresponding to the 0 eigenvalue is exactly the kernel. By the rank-nullity theorem,
this space is n− 1 dimensional. Therefore, the multiplicity of this eigenvalue will be n− 1. Since tr(M) =∑N

i=0 λi = 0 + · · ·+ 0 + λN and clearly tr(M) = N , we have λn = N . Combining this with the fact that
g′(x) ≥ 0, Thus, λi ≥ 0 for all i and so the matrix is positive semi-definite. By proposition A.7 the function
f is thus convex.

We stress that even if the functions g are strictly increasing, the function f will not be strictly convex
because the zero eigenvalues persist.

The following theorem then gives us a way to compute user equilibria [Cominetti et al., 2012,
Beckmann et al., 1955].

Theorem 2.18. Consider an instance I = (G, r, c). The vector f ∈ R|P| is a Wardrop equilibrium if and
only if it solves the problem:

min
f

Z(f) :=
∑
e∈E

∫ fe

0
ce(t)dt

subject to
∑
P∈Pi

fP = ri ∀i

fe =
∑
P∈P

s.t. e∈P

fP

fP ≥ 0

(UE)

Proof. Similar to the system optimum case, we note that the set of feasible flows is compact, and the function
Z(f) is continuous under the assumption that all cost functions are continuous. Therefore, by Weierstrass’s
theorem A.12 the function Z(f) achieves its minimum on the set of feasible flows. By lemma 2.17, Z(f) is
convex in fe since the sum of convex functions is convex. Since fe is defined by a sum of path flows, it is
also convex in fP by using the second statement of the same lemma. By construction we can now apply the
same logic as in the proof of theorem 2.13. Note that instead now we have:

(∇Z(f))P =
∑
e∈E

∂Z

∂fe

∂fe
∂fP

=
∑
e∈E

ce(fe) = cP (f).

We do not perform all steps of the proof here, since they are identical to the ones in the proof of theorem
2.13. We find that the flow f satisfies the problem (UE) equilibrium if and only if it satisfies the fact that if
fP > 0, then cP (f) ≤ cP̃ (f) for all P, P̃ ∈ Pi and all i. This however is exactly equivalent to the definition
of a Wardrop equilibrium.

Having established existence of solutions, uniqueness follows as well [Cominetti et al., 2012].
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Proposition 2.19. Let I = (G, r, c) be an instance. Then, the edge flow f∗ = (fe)e∈E corresponding to a
user equilibrium is unique, while a path flow assignment need not be unique.

Proof. By lemma 2.17 the function Z(f) as in (UE) is strictly convex in fe, which implies there is a unique
global minimum f∗ = (fe)e∈E by proposition A.13. However, by the same lemma the function is only
convex in the path flows, which does not yield a unique minimum, but still gives a global minimum.

To reassure the reader, even though the path flows are not unique, the cost associated with them is in fact
unique.

Proposition 2.20. Let f, f̃ be two path flow vectors that satisfy the problem (UE). Then, C(f) = C(f̃).

Proof. First, we show that if f and f̃ are two flows satisfying (UE) then ce(fe) = ce(f̃e) [Nisan et al., 2007].
First, notice that since f and f̃ minimize Z(f), they are both global minima by proposition 2.19. Thus,
Z(f) = Z(f̃). Moreover, for any convex combination λf + (1− λf̃) we must also have that:

Z(λ(f) + (1− λ)f̃) ≤ λZ(f) + (1− λ)Z(f̃),

since Z(f) is convex in the path flows. But f and f̃ are global minima, so we also have the reverse inequality:

Z(λf + (1− λ)f̃) ≥ Z(f̃) = λZ(f) + (1− λ)Z(f̃),

since Z(f) = Z(f̃). Thus, Z(λf + (1 − λ)f̃) = λZ(f) + (1 − λ)Z(f̃). Therefore, the function Z is in
fact linear between f and f̃ , but this means that each of the integrals has to be linear between fe and f̃e for
all e ∈ E. However, if the integral is linear between fe and f̃e, this must mean that the function is constant
between fe and f̃e. Therefore, ce(fe) = ce(f̃e).
The proposition now follows by writing out the definition fo the cost of a flow:

C(f) =
∑
P∈P

cP (f)fP =
∑
i

∑
P∈Pi

CifP

=
∑
i

Ci

∑
P∈Pi

fP =
∑
i

Ciri

=
∑
i

Ci

∑
P∈Pi

f̃P =
∑
P∈P

cP (f̃)f̃P = C(f̃).

The first equality follows by the optimality condition derived in theorem 2.18. By this condition the path
cost of a flow will only depend on the OD-pair we are looking at. The fourth equality follows by the flow
constraint f satisfies, and the final equality follows since cP (f̃) = cP (f) by the argument above. If the cost
on edges is the same, then so is the cost on paths by summing over all edges in the path.

Example 2.21 (Braess’ Paradox). Consider the instances I1 on the left and I2 on the right of figure 4. We
investigate the user equilibria for both of these instances.
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Figure 4: Braess’s paradox

First, let us consider the left network. In this case, we have two different paths we can take to go from s1

to t1. Namely, P1 = {s1, v1, t1} and P2 = {s1, v2, t1}. However, notice that the cost functions on the top
path and the bottom path are the same. Since this is the case, we would expect the flow corresponding to a
user equilibrium to split equally. Recalling that in a user equilibrium the cost along each path should be the
same, the only way for a flow to achieve this in this system is to split equally.
To check this computationally we compute the solution to the minimization problem as follows. Set the flow
on the top path equal to x and the flow on the bottom edge equal to y. Then, we wish to solve:

min
(x,y)

Z(x, y) :=

∫ x

0
50 + 11tdt+

∫ y

0
50 + 11t dt = 50x+

11

2
x2 + 50y +

11

2
y2

subject to x+ y = 6, x, y ≥ 0.

Using the constraint, we find that y = 6− x and so the objective function can be simplified to:

Z̃(x) = 50(x+ y) +
11

2

(
x2 + (6− x)2

)
= 300 +

11

2
(2x2 − 12x+ 36).

Computing the first and second derivative,

Z̃ ′(x) = 11(2x− 6), Z̃ ′′(x) = 22 > 0

Since Z̃ ′′ > 0, any critical point will be a local minimum of the function. Clearly, the root of the derivative
is at x = 3, and so the flow on the top path will be 3. Since x+y = 6, we find that x = y = 3 on this network.

For the second network, we have three paths. First, P1 and P2 still exist, but we add another path P3 =

{s1, v1, v2, t1}. One could view this as a local authority building a new road to try and help traffic flow. Set
the flow on this route equal to z. First, let us build the objective function. In figure 5 the flows on each edge
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are drawn. Combining this with the cost functions on each edge the cost function will be given by:

F (x, y, z) =

∫ x+z

0
10t dt+

∫ x

0
50 + tdt+

∫ z

0
10 + t dt+

∫ y

0
50 + t dt+

∫ y+z

0
10t dt

= 5(x+ z)2 + 50x+
x2

2
+ 10z +

z2

2
+ 50y +

y2

2
+ 5(y + z)2

= 5(x2 + 2xz + z2) + 50x+
x2

2
+ 10z +

z2

2
+ 50y +

y2

2
+ 5(y2 + 2yz + z2)

=
11

2
x2 +

11

2
y2 +

21

2
z2 + 10xz + 10yz + 50y + 50x+ 10z.

v1

v2

t1s1
r1 = 6

x
+
z

y
+
zy

x

z

Figure 5: Flows on edges with f = (x, y, z)

The gradient of this function is then equal to:

∇F (x, y, z) =

 11x+ 10x+ 50

11y + 10z + 50

21z + 10x+ 10y + 10

 .

Using the Lagrange multiplier method, we compute the minimum of F subject to g(x, y, z) = 0, with
g(x, y, z) = x+ y + z − 6, and check that the solution is non-negative. Indeed, solving the system:

∇F (x, y, z) + λ∇g(x, y, z) = 0, g(x, y, z) = 0 ⇐⇒


11 0 10 1

0 11 10 1

10 10 21 1

1 1 1 0



x

y

z

λ

 =


−50
−50
−10
6

 .

gives the solution x = y = z = 2 and λ = −92.
Having computed both equilibrium flows, let us now compare the social cost of each of these flows. For the
first network, we find:

C1(x, y) = (50 + 11x)x+ (50 + 11y)y =⇒ C1(3, 3) = 498.
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For the second network, we use proposition 2.8 to compute that:

C2(x, y, z) = 10(x+ z)2 + (50 + x)x+ (10 + z)z + (50 + y)y + 10(y + z)2 =⇒ C2(2, 2, 2) = 552.

What we can see is that adding an edge makes traffic worse, in the sense that the new cost is higher than the
original cost. Making this even more extreme, if we were to make the middle edge have cost c(z) = 0 instead
of c(z) = 10 + z, the problem still persists [Roughgarden, 2005]. △

The above example is not just a theoretical exercise however. Several examples of this happening in urban
planning exist [Bagloee et al., 2019]. For example, in New York the very congested 42nd street was closed
off for earth day in 1990. Remarkably, the closure of this street not only did not lead to any major traffic
jams, but even improved traffic flow on streets surrounding the blocked off road [Kolata, 1990].
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3 Price of anarchy

3.1 Introduction

The term price of anarchy was first used by Koutsoupias and Papadimitriou to describe the inefficiency of a
selfish equilibrium in a network game [Koutsoupias and Papadimitriou, 2009]. The term has a wider use in
game theory and economics, extending beyond the use we have in this paper. In this section we study the price
of anarchy in network routing games. We follow the theory proposed by Roughgarden [Roughgarden, 2005].
Whenever a result from Roughgarden is used, we give its location in brackets for the reader to find in the
literature. We first give a definition of the price of anarchy:

Definition 3.1 (Price of anarchy, 2.3.1). Let I = (G, r, c) be an instance of a routing game. Consider a user
equilibrium f and a system optimum f∗. Then, the price of anarchy of I is

ρ(I) =
C(f)

C(f∗)
, (3.1.1)

with the understanding that 0/0 = 1.

Note that by proposition 2.20, if f and f̃ are user equilibria then C(f) = C(f̃) and so the price of
anarchy is well-defined.

In this section, we prove the following theorem:

Theorem 3.2 (Bound on price of anarchy with polynomial cost functions, 3.5.1). Let I be an instance
with cost functions from the set

Cp =

{
f ∈ C2(R,R) such that f(x) =

p∑
i=0

aix
p, ai ≥ 0

}
. (3.1.2)

Then,

ρ(I) ≤
(
1− p(p+ 1)

− p+1
p

)−1
. (3.1.3)

We tackle this problem in two steps. First, we prove that if p = 1, then ρ(I) ≤ 4
3 . After this, we expand

the built up theory and prove the more general result.

3.2 Price of anarchy for linear cost functions

Consider an instance I = (G, r, c), with each ce having the form ce(fe) = aefe + be with ae, be ≥ 0. First,
we note that the cost function corresponding to these edge costs is convex. Indeed, we have that:

C(f) =
∑
e∈E

ce(fe)fe =
∑
e∈E

aef
2
e + befe. (3.2.1)

Convexity of the cost function now follows from the following proposition:
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Proposition 3.3. Let f be a polynomial of degree n, with non-negative coefficients. Then, the function f is
convex on the interval [0,∞).

Proof. Let f(x) =
∑n

i=0 aix
i. Then f ′(x) =

∑n
i=1 iaix

i−1 and f ′′(x) =
∑n

i=2 i(i − 1)aix
i−2. Since

x ≥ 0, and ai ≥ 0 for all i, we have that f ′′(x) ≥ 0. Thus, by applying proposition A.7 in the one
dimensional case, we find that f is convex.

First, we provide a result that we will use extensively.

Proposition 3.4 (Adapted from 2.4.4). Let f∗ be a feasible flow for the instance I = (G, r, c) where each
of the functions ce(x)x is convex. Then, the following are equivalent:

1. The flow f∗ is optimal;

2. For all i and paths P1, P2 ∈ Pi with f∗
P1

> 0:

c∗P1
(f∗) ≤ c∗P2

(f∗); (3.2.2)

3. For any feasible flow f : ∑
P∈P

c∗P (f
∗)f∗

P ≤
∑
P∈P

c∗P (f
∗)fP ; (3.2.3)

4. For all feasible flows f : ∑
e∈E

c∗e(f
∗
e )f

∗
e ≤

∑
e∈E

c∗e(f
∗
e )fe. (3.2.4)

Proof. We prove that 1 ⇐⇒ 2 =⇒ 3 ⇐⇒ 4 =⇒ 1.
(1 ⇐⇒ 2) This statement is exactly proposition 2.13.
(2 =⇒ 3): Define the function H(f) =

∑
P∈P c∗P (f

∗)fP , which can be interpreted as the cost of a path
on a network with paths having cost functions c∗P (f∗) (which are independent of the flow). Note that H is
minimized by the flow that routes all traffic over the cheapest path. We see this since c∗P ≥ 0. However,
(assuming 2) the flow that achieves this is precisely f∗.
(3 ⇐⇒ 4): This is the same statement as proposition 2.8.
(4 =⇒ 1) : Let f and f∗ be feasible flows. Then, since each function c∗e(x)x is assumed to be convex, we
find that:

C(f) =
∑
e∈E

ce(fe)fe ≥
∑
e∈E

ce(f
∗
e )f

∗
e +

∑
e∈E

c∗(fe)(fe − f∗
e ).

But we assumed that
∑

e∈E c∗e(f
∗
e )f

∗
e ≤

∑
e∈E c∗e(f

∗
e )fe so the last term will be positive. Thus,

C(f) ≥ C(f∗) +
∑
e∈E

c∗(fe)(fe − f∗
e ) ≥ C(f∗),

which implies that the flow f∗ is optimal.
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In fact, this proposition holds more generally. The implications 2 ⇐⇒ 3 ⇐⇒ 4 hold for any convex
function he(fe). Instead of c∗ we would then find h′e(fe). For the specific choice he(fe) = ce(fe)fe we
can add the first implication as well. By this line of reasoning, if we set he(fe) =

∫ fe
0 ce(x)dx, we would

find the same proposition, except now h′e(fe) = ce(fe) and the first implication would be that f∗ is a user
equilibrium. If we apply the above theorem to our instance with linear cost functions, we find the following
result.

Proposition 3.5 (Adapted from 3.2.1). Let I be an instance with only linear cost functions. Then

1. A feasible flow f is a user equilibrium for I if, and only if for all i and si − ti paths P1, P2 ∈ Pi, with
fP1 > 0 ∑

e∈P1

aefe + be ≤
∑
e∈P2

aefe + be; (3.2.5)

2. A feasible flow f∗ is optimal for I if, and only if for all i and si − ti paths P1, P2 ∈ Pi with fP1 > 0∑
e∈P1

2aef
∗
e + be ≤

∑
e∈P2

2aef
∗
e + be. (3.2.6)

Proof.

1. This is the result of theorem 2.18 (or a direct reformulation of the definition of a user equilibrium).

2. This is the relation (1 ⇐⇒ 2) in proposition 3.4 after summing. Let f∗ be optimal. Then for all i
and paths P1, P2 ∈ Pi ith f∗

P1
> 0 the marginal cost of f∗ on P1 is less than or equal to the marginal

cost on P2. In our case, we have that:

c∗e(x) =
d

dx

(
aex

2 + bex
)
= 2aex+ be.

Thus, we have that:
c∗Pi

(f∗) =
∑
e∈Pi

c∗e(f
∗) =

∑
e∈Pi

2aef
∗
e + be.

Applying part 2 of proposition 3.4 gives the desired inequality.

After establishing this result, we proceed as follows:

1. We form a relation between the marginal cost and the cost of a flow, and we show that if f is optimal
for I = (G, r, c), then f

2 is optimal for the instance Ĩ = (G, r2 , c);

2. We then establish lower bounds on cost functions for instances with altered rate demand vectors;

3. Combining these results, we establish the desired result in theorem 3.2 for p = 1.

First, we have the following simple lemma:
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Lemma 3.6 (3.2.3). Suppose I is an instance with only linear cost functions and f is a user equilibrium.
Then,

1. c∗e

(
fe
2

)
= ce(fe) for all edges e;

2. The flow f
2 is optimal for the instance Ĩ = (G, r2 , c).

Proof.

1. Note that c∗e(x) = ce(x) + c′e(x)x = 2aex+ be. Therefore, we have that

c∗e

(
fe
2

)
= 2ae

(
fe
2

)
+ be = aefe + be = ce(fe).

2. Note that since f is a user equilibrium, we know by theorem 3.5 that we must have that for all i and
si − ti paths P1 and P2 ∈ Pi with the flow on P1 being nonzero∑

e∈P1

aefe + be ≤
∑
e∈P2

aefe + be.

Moreover, we have that the flow f
2 is feasible for the instance Ĩ , since we only changed the demand

rates. But then we see that we have∑
e∈P1

2ae

(
fe
2

)
+ be =

∑
e∈P1

aefe + be

≤
∑
e∈P2

aefe + be =
∑
e∈P2

2ae

(
fe
2

)
+ be.

And thus the flow f
2 is optimal by part 2 of theorem 3.5.

Another straightforward result is the following.

Lemma 3.7 (3.2.4). The cost of the flow f
2 is at least 1

4C(f)

Proof. We compute

C

(
f

2

)
=
∑
e∈E

(
ae

(
fe
2

)
+ be

)
fe
2
≥
∑
e∈E

(
ae

(
fe
2

)
+

be
2

)
fe
2

=
∑
e∈E

1

2
(aefe + be)

fe
2

=
1

4

∑
e∈E

(aefe + be) fe =
1

4
C(f),

where the inequality holds since be ≥ 0.

The main result that we will use is somewhat similar in nature to the previous lemma, except we now
make the route demand larger.
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Proposition 3.8 (3.2.5). Let I be an instance with linear cost functions and let f∗ be optimal for I . Then, for
all δ > 0, if f is feasible for the instance Ĩ = (G, (1 + δ)r, c) then,

C(f) ≥ C(f∗) + δ
∑
e∈E

c∗(f∗
e )f

∗
e . (3.2.7)

Proof. Let I = (G, r, c) be an instance with optimal flow f∗ and fix δ > 0. Suppose that f is feasible for
the instance Ĩ = (G, (1 + δ)r, c). By proposition 3.3, we know that for all edges e the function ce(fe)fe =

aef
2
e + befe is convex in fe. Therefore,

ce(fe)fe ≥ ce(f
∗
e )f

∗
e + c∗e(f

∗
e )(fe − f∗

e ),

since c∗e(fe) = d
dfe

(ce(fe)fe). Summing over all edges gives us that

C(f) =
∑
e∈E

ce(fe)fe ≥
∑
e∈E

ce(f
∗
e )f

∗
e +

∑
e∈E

c∗e(f
∗
e )(fe − f∗

e )

We focus on the second sum on the right hand side of the inequality. Since f∗ is optimal for I , for any other
feasible flow f we have by propoition A.14 that∑

e∈E
c∗e(f

∗
e )f

∗
e ≤

∑
e∈E

c∗e(f
∗
e )fe.

Moreover, the flow f
1+δ is feasible for I , since f is feasible for the instance Ĩ = (G, (1 + δ)r, c). The above

inequality then gives that ∑
e∈E

c∗e(f
∗
e )f

∗
e ≤

1

1 + δ

∑
e∈E

c∗e(f
∗
e )fe.

Rewriting this inequality gives that:

1

1 + δ

∑
e∈E

c∗e(f
∗
e )fe −

∑
e∈E

c∗e(f
∗
e )f

∗
e ≥ 0

1

1 + δ

(∑
e∈E

c∗e(f
∗
e )fe − (1 + δ)

∑
e∈E

c∗e(f
∗
e )f

∗
e

)
≥ 0

1

1 + δ

(∑
e∈E

c∗e(f
∗
e )(fe − f∗

e )− δ
∑
e∈E

c∗e(f
∗
e )f

∗
e

)
≥ 0∑

e∈E
c∗e(f

∗
e )(fe − f∗

e ) ≥ δ
∑
e∈E

c∗e(f
∗
e )f

∗
e
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Combing with 3.2 we find that

C(f) ≥
∑
e∈E

ce(f
∗
e )f

∗
e +

∑
e∈E

c∗e(f
∗
e )(fe − f∗

e )

= C(f∗) +
∑
e∈E

c∗e(f
∗
e )(fe − f∗

e )

≥ C(f∗) + δ
∑
e∈E

c∗e(f
∗
e )f

∗
e

With all of these results, we can now prove the first main result of this section.

Theorem 3.9 (Price of anarchy for linear cost functions, 3.2.6). Let I be an instance with linear cost
functions. Then,

ρ(I) ≤ 4

3
(3.2.8)

Proof. Let I = (G, r, c) be an instance with only linear cost functions and let f be a user equilibrium for
this instance. Then, by part 2 of lemma 3.6 we have that the flow f

2 is optimal for the instance Ĩ = (G, r2 , c).
Notice that r = (1+ 1) · r2 and thus if f∗ is feasible for the instance I by proposition 3.8 with δ = 1 we find
that for the cost of f∗ we have

C(f∗) ≥ C

(
f

2

)
+
∑
e∈E

c∗e

(
fe
2

)
fe
2

Combining this with 3.7 we find that

C(f∗) ≥ 1

4
C(f) +

1

2

∑
e∈E

c∗e

(
fe
2

)
fe

And finally, applying part 1 of 3.6 we arrive at the fact that:

C(f∗) ≥ 1

4
C(f) +

1

2

∑
e∈E

c∗e

(
fe
2

)
fe

=
1

4
C(f) +

1

2

∑
e∈E

ce(fe)fe =
3

4
C(f)

And so,
C(f)

C(f∗)
≤ 4

3

Since, we assumed that f∗ is any feasible for I the above inequalities must also hold for the system optimal
flow, which proves the theorem.
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3.3 Price of anarchy for general polynomials

Now that we have established an upper bound for affine cost functions, we wish to do the same for general
polynomial functions. As mentioned before we assume to be working with functions from the set:

Cp =

{
f ∈ C2(R,R) such that f(x) =

p∑
i=0

aix
p, ai ≥ 0

}
. (3.3.1)

To start our discussion, we give the following definition motivated by the Pigou example, which we will see
later.

Definition 3.10 (Anarchy value, 3.3.1). Let I be an instance with cost functions from the set C. The anarchy
value of the function c ∈ C:

α(c) = sup
x,r≥0

rc(r)

xc(x) + (r − x)c(r)
. (3.3.2)

with the understanding that 0/0 = 1. The anarchy value of the set C is the supremum of the anarchy values
of all costs in C. That is:

α (C) = sup
0̸=c∈C

sup
x,r≥0

rc(r)

xc(x) + (r − x)c(r)
. (3.3.3)

The anarchy value can be interpreted as the price of anarchy of a specific instance. Consider a single
commodity instance with two edges. On the top edge, we take the cost to be constant 1 while on the bottom
we take some function c(·). Then, take the traffic rate to be the positive real number r so that c(r) = 1.1

Then, the user equilibrium will have cost rc(r), since all traffic will flow over the bottom edge. Thus, we
have f = (0, r). The optimum case however, will have cost:

min
x

xc(x) + (r − x)

We see this as follows. Let the flow split into two variables y and x flowing over the top and bottom edge
respectively. These variables must satisfy the constraint x + y = r. But then, we must have y = r − x.
Therefore, the cost function will become

C(f) =
∑
e∈E

ce(fe)fe = (r − x) · 1 + xc(x).

Suppose that x minimizes this cost. The flow in this case is then f∗ = (r− x, x) Then, the price of anarchy
of this instance is precisely the fraction in equation 3.3.2. Namely,

ρ(I) =
C(f)

C(f∗)
=

rc(r)

(r − x)c(r) + x · c(x)
(3.3.4)

The anarchy value is then the least upper bound on these values, for any x and r. To prove the upper bound
from the theorem we proceed as follows. First, we find a simple way to compute the anarchy bound for any

1If such a number does not exist, we can always scale the function c by a factor to ensure existence.
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function. Then, we show that the anarchy value in fact is an upper bound for the price of anarchy. After this,
we argue that for cost functions in Cp we find the upper bound as in theorem 3.2 and that this gives a tight
bound by means of an example.

If we look at the expression for the anarchy value of even a single value, we are dealing with a supremum
over 2 variables. We could make this work, however it is not really a practical way to compute the anarchy
value. Thankfully, to aid us in computing the anarchy value we have the following proposition:

Proposition 3.11 (3.3.2). Let c(·) be aC1 cost function and assume that the associated marginal cost function
is convex. Then,

α(c) = sup
r≥0

(λµ+ (1− λ))−1 (3.3.5)

where λ ∈ [0, 1] is a solution to c∗(λr) = c(r) and µ = c(λr)
c(r) .

Proof. Fix r ≥ 0 and define the function f(λ) = c∗(λr)− c(r). Notice that

f(0) = c∗(0)− c(r) = c(0)− c(r) ≤ 0

f(1) = c∗(r)− c(r) = rc′(r) ≥ 0

Since c is assumed to be non-decreasing and continuous. By the intermediate value theorem there exists
λ ∈ [0, 1] so that f(λ) = 0 [Abbott, 2015, Chapter 4]. Thus, there exists a λ so that c∗(λr) = c(r). As
we outlined above the anarchy value is the price of anarchy in a two link network. Setting x = λr ≤ r in
the example attached to equation 3.3.4 we obtain a feasible flow f = (r − λr, λr), which is optimal by the
equivalence 1 ⇐⇒ 2 of proposition 3.4. The price of anarchy of this instance will then be:

ρ(I) =
rc(r)

λr · c(λr) + (r − λr)c(r)

=
1

λ c(λr)
c(r) + (1− λ) c(r)c(r)

= (λµ+ (1− λ))−1

The price of anarchy can then be obtained by taking the supremum over all r, since the variable x is now
replaced by λr. That is,

α(c) = sup
r≥0

rc(r)

λr · c(λr) + (r − λr)c(r)
= sup

r≥0
(λµ+ (1− λ))−1

The only difficulty we still have is computing a value of λ that works here. As we will see later however,
this process is not too difficult when considering polynomial functions. To finally put together the connection
between the anarchy value and the price of anarchy we show that the anarchy value provides an upper bound
on the price of anarchy.

27



Theorem 3.12 (Adapted from 3.3.6, 3.3.7). Let C be a set of cost functions and I = (G, r, c) an instance
where the cost functions come from the set C. Then,

ρ(I) ≤ α(C) (3.3.6)

Proof. We proceed like in the proof of theorem 3.9. That is, take f∗ to be an optimal flow and f a user
equilibrium. First, we note that we can establish the following relation:

α(C) = sup
0 ̸=c∈C

sup
x,r≥0

rc(r)

xc(x) + (r − x)c(r)
≥ rc(r)

xc(x) + (r − x)c(r)
∀x, r ≥ 0,∀c ∈ C

Therefore,

α(C) ≥ rc(r)

xc(x) + (r − x)c(r)

⇐⇒ xc(x) + (r − x)c(r) ≥ rc(r)

α(C)

⇐⇒ xc(x) ≥ (x− r)c(r) +
rc(r)

α(C)

for all c ∈ C and x, r ≥ 0. In particular, setting x = f∗
e and r = fe we find that

C(f∗) =
∑
e∈E

fece(fe)

≥
∑
e∈E

(f∗
e − fe)ce(fe) +

∑
e∈E

ce(fe)fe
α(C)

≥
∑
e∈E

ce(fe)fe
α(C)

=
C(f)

α(C)
.

The second inequality can be found as follows. By using the note after proposition 3.4, we found that f is a
user equilibrium if and only if: ∑

e∈E
ce(fe)fe ≤

∑
e∈E

ce(fe)f
∗
e ,

for any feasible flow f∗ ∈ F . Therefore, if f is a user equilibrium, we must have that:

(f∗
e − fe)ce(fe) ≥ 0

for some feasible flow f∗, since all terms here are assumed to be positive. In particular, this flow f∗ could
be the system optimal flow. Moving around the terms, we obtain that:

C(f)

C(f∗)
= ρ(I) ≤ α(C)

Now that we know that the anarchy value upper bounds the price of anarchy and we have a way to compute
it we move on to proving the main theorem of this section.
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Theorem 3.2 (Bound on price of anarchy with polynomial cost functions, 3.5.1). Let I be an instance
with cost functions from the set

Cp =

{
f ∈ C2(R,R) such that f(x) =

p∑
i=0

aix
p, ai ≥ 0

}
. (3.1.2)

Then,

ρ(I) ≤
(
1− p(p+ 1)

− p+1
p

)−1
. (3.1.3)

Proof. First, we note that it suffices to show that α(C) =
(
1− p(p+ 1)

− p+1
p

)−1
. After this we show that

this bound cannot be improved upon by means of an example.
To compute the anarchy value, we note that we can consider just the cost functions of the form c(x) = axi

for some a > 0 and i ≤ p. We see this, since we can simply split the cost function over a single edge into
multiple edges, so that the cost of these edges adds up to the original edge cost as in figure 6.

v w

v n1 wnp

∑p
i=0 aix

i

a0 . . . apx
p

Figure 6: Splitting a single edge into multiple with the same total cost

Therefore, we assume that c(x) = axi and we will see that the result we obtain does not depend on a

and will be largest when i = p. As this function is convex on [0,∞) and differentiable, we can compute the
value of α(c) using proposition 3.11. We compute

c∗(x) = c(x) + xc′(x) = axi + x · aixi−1 = a(i+ 1)xi

Fixing r ≥ 0 we wish to solve c∗(λr) = c(r) for some λ ∈ [0, 1]. Therefore,

c∗(λr) = c(r) ⇐⇒ a(i+ 1)(λr)i = ari

⇐⇒ (i+ 1)λi = 1 ⇐⇒ λ = (i+ 1)−1/i

Moreover, we have that λ ∈ [0, 1] for i ∈ Z+ (that is, if i is a positive integer) since:

λ =
1

i
√
i+ 1

≤ 1

i+ 1
≤ 1,

and clearly λ > 0. If i = 0, then any value of λ ∈ [0, 1] satisfies c∗(λr) = c(r). Having found this value for
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λ we compute that:

µ =
c(λr)

c(r)
=

aλiri

ari
= λi =

1

1 + i

Both λ and µ are independent of both r and a. This gives that:

α(c) = (µλ+ (1− λ))−1 =
(
λi+1 + (1− λ)

)−1

=
(
(i+ 1)−(i+1)/i + (i+ 1)−(i+1)/i

(
(i+ 1)(i+1)/i − (i+ 1)

))−1

=
(
(i+ 1)−(i+1)/i

(
1 + (i+ 1)(i+1)/i) − i− 1

))
=
(
1− i(i+ 1)−

i+1
i

)−1

Finally, we note that α(c) is increasing in i. Setting y = i(i+ 1)−
i+1
i and defining

f(i) = (1− y(i))−1

we can use the chain rule to compute that:

f ′(i) =
df

dy

dy

di
= (1− y)−2dy

di
.

Since the first term is positive (since y > 0) we focus on the second.

y = i(i+ 1)−
i+1
i ⇐⇒ ln(y) = ln(i)−

(
1 +

1

i

)
ln(i+ 1)

1

y

dy

di
=

1

i
+

ln(i+ 1)

i2
−
(
i+ 1

i

1

i+ 1

)
dy

di
= y

(
1

i
+

ln(i+ 1)

i2

)
> 0

Since i ≥ 1. Therefore f ′(i) > 0 and α(c) will be largest if i is largest. Noting that i ≤ p we get our desired
result:

α(C) =
(
1− p(p+ 1)

− p+1
p

)−1

The nonlinear Pigou network shows us that we cannot improve on this bound.

Example 3.13 (Nonlinear Pigou example, 2.5.4). Consider the networks given in figure 7. The left network
was first studied (albeit not directly) by economist Pigou in 1920 [Pigou, 1920]. However, we discuss a non-
linear variant (where p ≥ 1) of this problem like in the right network. We claim that this network has price

of anarchy exactly
(
1− p(p+ 1)

− p+1
p

)−1
.
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x
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r1 = 1
s1 t1

xp

1

r1 = 1

Figure 7: Pigou’s example of traffic flow

First let us compute the system optimal solution. Denote the flow as f = (x, y) where there are x units
of traffic on the lower edge, and y units of traffic on the top edge. Therefore, we wish to find a solution f to
the problem:

minC(x, y) = xp+1 + y

subject to x, y ≥ 0, x+ y = 1

From the second constraint, we find that y = 1− x. Therefore, we want to minimize C(x) = xp+1 + 1− x

with respect to x. Using the first order optimality condition, we find that C ′(x) = (p + 1)xp − 1 is zero
when x = (p+ 1)−1/p. It follows y = 1− x = 1− (p+ 1)−1/p. The total cost of the system optimum flow
is thus:

C(x, y) = (p+ 1)−(p+1)/p + 1− (p+ 1)−1/p

= 1− (p+ 1)−1/p
(
1− (p+ 1)−1

)
= 1− (p+ 1)−1/p

(
p

p+ 1

)
= 1− p(p+ 1)−1/p− 1 = 1− p(p+ 1)

− p+1
p

Like we found before.

To find the user equilibrium, we use the problem UE. That is, we wish to solve

min z(x, y) =

∫ x

0
tpdt+

∫ y

0
dt =

1

p+ 1
xp+1 + y

subject to x, y ≥ 0, x+ y = 1

Again, noting y = 1− x the objective function can be minimized using the first order optimality condition.

z(x) =
1

p+ 1
xp+1 + 1− x =⇒ z′(x) = xp − 1

z′(x) = 0 ⇐⇒ x = 1
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And therefore f∗ = (x, y) = (1, 0). We could have argued this directly from the graph as well. Notice that
since we only have to transport 1 total unit of traffic, and p ≥ 1 the bottom edge will always be cheaper to
choose for this unit of traffic than the top edge. Therefore, we can also expect this to give us a flow of 1 unit
on the lower edge.

Combining these two results, the price of anarchy of this instance will be

ρ(I) =
1

1− p(p+ 1)−(p+1)/p
= α(C)

where C is the set of polynomials of degree p. Thus, since we have shown this instance has price of anarchy
equal to α(C), the upper bound given in theorem 3.2 is tight. △

32



4 Numerical computation of equilibria

In this section, we discuss two numerical algorithms to find user equilibria for instances of network conges-
tion games. We first discuss the Frank-Wolfe algorithm, which is a simple algorithm to compute minima for
convex problems. We discuss the implementation, convergence rate and drawbacks of using this method.
After this, we consider an alternative method that adapts the plain Frank-Wolfe method to increase conver-
gence speed. This adaptation still uses the fundamental ideas of the Frank-Wolfe algorithm, but combines it
with a conjugate based method.

4.1 The Frank-Wolfe Algorithm

A commonly used algorithm to numerically compute the user equilibria of an instance of a routing game is
the Frank-Wolfe algorithm [Gonzalez-Calderon et al., 2011]. Suppose we wish to compute the solution x to
the problem:

min
x∈F

f(x),

where f(x) is assumed to be convex and L−smooth, and the feasible set F is a compact and convex subset
of an inner product space X , with inner product ⟨·, ·⟩ [Jaggi, 2013, Frank and Wolfe, 1956]. We can use
algorithm 1 to compute a solution x∗.

Algorithm 1 Frank-Wolfe algorithm with line search

Input: x0 ∈ F , ϵ
k ← 0
while convergence criterion > ϵ do
sk ← argminy∈F ⟨y,∇f (xk)⟩
αk ← C, with C ∈ [0, 1]
xk+1 ← xk + αk(sk − xk)
k ← k + 1

end while
x∗ ← xk

Output: x∗

We go over the algorithm step by step.
As a first step, we need to find a descent direction. To find a descent direction, we solve a linear sub-

problem: We find the minimum of the linearization of f at the current iterate. By Taylor’s theorem, we have
that:

f(x) ≈ f(xk) +∇f(xk) · (x− xk) = f(xk) + ⟨∇f(xk), x− xk⟩ ,

up to a quadratic error term. To find the search direction, we minimize both sides of this relation to get an
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estimate of where the minimum of f is:

argmin
x∈F

f(x) ≈ argmin
x∈F

f(xk) + ⟨∇f(xk), x− xk⟩

= argmin
x∈F

f(xk) + ⟨x,∇f(xk)⟩ − ⟨xk,∇f(xk)⟩

= argmin
x∈F

⟨x,∇f(xk)⟩ ,

where the last equality follows since f(xk) and ⟨xk,∇f(xk)⟩ do not depend on x. Therefore, these terms
cannot influence where the minimum occurs. Setting sk := argminx∈F ⟨x,∇f(xk)⟩ the descent direction
is then sk − xk. Figure 8 shows this process [Jaggi, 2013].

Figure 8: Visualization of the direction finding problem

After finding the desired search direction, we need to determine the step size to use. There is multiple
ways to do this, that have slightly different speeds of convergence [Braun et al., 2022]

1. Line search: Find the step size αk so that αk = argmint∈[0,1] f(xk + t(s− xk)). This guarantees we
take the step size so we decrease our function the most. This method is in general more expensive to
use, since an auxiliary problem needs to be solved.

2. Constant step size: Setting αk = 2
k+3 . This step might not give as good of a convergence speed the

first option, however does have the advantage of a simpler implementation.

It is important to note that both of these methods enjoy the same convergence rate. Further algorithms for
finding step sizes do exist, however the two methods above are simple and have an intuitive motivation on
why to use them (see for example [Bertsekas, 2016, appendix C]).

After having determined both a search direction and a step size, we update via xk+1 = xk +α(sk−xk).
Notice that since sk, xk ∈ F , and αk ∈ [0, 1], we know that xk+1 is also in F since it is a convex combination
of two elements in the convex set F . By induction xn ∈ F for all n ≥ 0.
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As for the convergence rate of this algorithm, we have the following [Braun et al., 2022].

Theorem 4.1 (Convergence rate of the FW-algorithm). Let f : C ⊆ X → R be a convex and L−smooth
function, where the set C is a compact and convex subset of an inner product space X , with diam(C) = D.
Then for any iterate xk of algorithm 1 using step size α0 = 1, αk = 2

k+3 for k ≥ 1 or αk = 2
k+2 ,

f(xk)− f(x∗) ≤ 2LD2

k + 3
, (4.1.1)

for all k ≥ 1. That is, to achieve an accuracy of ϵ > 0, the algorithm requires at least 2LD2

ϵ − 3 iterations.

Proof. We only discuss the caseα0 = 1, αk = 2
k+3 here, since the other case is similar. By theL-smoothness

of f , we have that:

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2.

Using that xk+1 = xk + αk(sk − xk) this reduces to:

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk + αk(sk − xk)− xk⟩+
L

2
∥xk + αk(sk − xk)− xk∥2

= αk⟨∇f(xk), sk − xk⟩+
α2
kL

2
∥sk − xk∥2

≤ αk⟨∇f(xk), sk − xk⟩+
α2
kLD

2

2
.

Recalling that sk minimizes ⟨∇f(xk), x⟩ over all x ∈ F , it must in hold that:

⟨∇f(xk), sk⟩ ≤ ⟨∇f(xk), x∗⟩

Combining this with the fact that f(x∗) − f(xk) ≥ ⟨∇f(xk), x∗ − xk⟩ by the convexity of f , the chain of
inequalities ultimately becomes:

f(xk+1) ≤ f(xk) + αk⟨∇f(xk), sk − xk⟩+
α2
kLD

2

2

f(xk+1) ≤ f(xk) + αk⟨∇f(xk), x∗ − xk⟩+
α2
kLD

2

2

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗) + αk(f(x
∗)− f(xk)) +

α2
kLD

2

2

Or equivalently:

ϵk+1 ≤ (1− αk)ϵk +
α2
kLD

2

2
,

where ϵn = f(xn) − f(x∗). Note that the above holds for any αk ∈ [0, 1]. We now prove the theorem by
induction on k, using the above inequality.
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For the base case when k = 0, taking α0 = 1 suffices. In this case. the above inequality gives that:

ϵ1 ≤
LD2

2
=

2

3 + 1
LD2

as the theorem suggests. Assume that the statement holds for some k = t. Then for k = t+1, the established
inequality gives reads:

ϵt+1 ≤
(
1− 2

t+ 3

)
ϵt +

2

(t+ 3)2
LD2,

By using the induction hypothesis, we find that:

ϵt+1 ≤
(
1− 2

t+ 3

)
2LD2

t+ 3
+

2

(t+ 3)2
LD2

=
2LD2

t+ 3
− 4LD2

(t+ 3)2
+

2LD2

(t+ 3)2

= 2LD2

(
t+ 2

(t+ 3)2

)
=

2LD2

t+ 4

(
(t+ 2)(t+ 4)

(t+ 3)2

)
It remains to show that the factor on the right is less than one. We have:

(t+ 2)(t+ 4) = t2 + 6t+ 8 < t2 + 6t+ 9 = (t+ 3)2,

and so the fraction is indeed less than one. Therefore,

ϵt+1 ≤
2LD2

(t+ 1) + 3
,

and so the statement also holds for k = t+ 1. By induction, the statement thus holds for all k ≥ 1. Suppose
we wish that ϵk is less than some ϵ > 0. Then, we find that:

ϵ ≤ 2LD2

k + 3
⇐⇒ k ≥ 2LD2

ϵ
− 3

Thus, to achieve an accuracy of ϵ, we require at least 2LD2

ϵ − 3 iterations.

Having established that the algorithm indeed converges to the desired minimum function value, let us
now investigate how to solve the linear sub-problem to find the search direction. Recall from the proof of
theorem 2.18 that if Z(f) is the objective function to find a user equilibrium and f is indexed by the paths
(P1, . . . , Pk), then:

∇Z(f) = (cP1(f), . . . , cPk
(f)).

We can now state the following.

Proposition 4.2. Let Z(f) be the target function to find a user equilibrium as in theorem 2.18, corresponding
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to an instance I = (G, r, c). Consider the problem:

min
f∈F
⟨f,∇Z(fk)⟩, (4.1.2)

with the standard inner product on Rn. Here F is the set of feasible flows, and fk is an iterate of the Frank-
Wolfe algorithm. Then, the solution to this problem is given by the all-or-nothing assignment based on the
cost of the previous flow.

Proof. Writing out the full inner product, we find that:

⟨f,∇Z(fk)⟩ =
∑
P∈P
∇Z(fk)fP =

∑
P∈P

cP (fk)fP .

Notice now that this is the cost of a flow f for an instance where the cost of each path is fixed as cP (fk). In
this case, since each cost function is constant, the marginal cost is the same as the normal cost. Moreover,
since the cost functions on each path are constant, so are the costs on each edge, and thus the costs ce(fe) are
constant2. This gives that each function ce(fe)fe is convex. By proposition 2.13, we find that a flow f∗ is
optimal for this instance if and only if for every commodity i and every pair of paths P, P̃ ∈ Pi with the flow
on f∗

P > 0, we have that c∗P (f∗) ≤ c∗
P̃
(f∗) ⇐⇒ cP (fk) ≤ cP̃ (fk). Therefore, if f∗ is optimal and routes

any flow on the edge P it must strictly be cheaper to do this than take any other path. Noting that all costs
are constant however, this completely rules out taking two different path to find an optimal flow (as long as
their cost is different). Indeed, take two different paths P and P̃ with costs cP (fk) < cP̃ (fk) and suppose
for contradiction that fP > 0 and fP̃ > 0. By the above logic, this means that:

cP (fk) ≤ cP ∗(fk),

cP̃ (fk) ≤ cP ∗(fk),

for all paths P ∗ ∈ Pi. However these two inequalities cannot both hold assuming that cP (fk) < cP̃ (fk),
since both P, P̃ are elements of Pi. Therefore, we cannot have two paths routing flow at the same time.
Thus, the optimal flow will be the one that routes all traffic over the cheapest path based on the flow fk. If
we have two paths with the same cost, it does not matter which path we choose. Therefore, the solution to
the problem in (4.1.2) is given as an all-or-nothing assignment for the cheapest path.

After finding a suitable search direction we now need to find an optimal step size. Given an iterate xk

and a search direction sk we wish to find αk so that:

αk = argmin
t∈[0,1]

Z (xk + t(sk − xk)) . (4.1.3)

That is, the step size we compute gives the best decrease in our target function Z. Let xk ∈ R|V |×|V | be the
2This implicitly uses the fact that the cost functions are increasing in fe and so cannot even cancel out any

contribution of any other edge.
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matrix that contains the flow on each edge at iteration k of the Frank-Wolfe algorithm3. If fe is the flow on
edge (i, j) ∈ E, then (xk)(i,j) = fe. Since [0, 1] is a compact set, by the same argument as given in theorem
2.18 the function Z(xk + t(sk − xk)) achieves its minimum with respect to t. In this case, the function in
equation (4.1.3) can be minimized using the first order optimality condition (assuming α ∈ (0, 1)). Define
g(t) = Z(xk + t(sk − xk)). Then:

g′(t) =
d

dt
[Z(xk + t(sk − xk))] :=

d

dt
[Z(Xk(t))] =

∑
(i,j)∈E

d

dt

∫ Xk(t)(i,j)

0
c(i,j)(z)dz

=
∑

(i,j)∈E

c(i,j)(Xk(t)(i,j))(sk − xk)(i,j),

where we denote the edges by their matrix entries (i, j). Using the bisection method, we can then find the
minimum of this function g′(t), to find the minimum of g. Of course, this may fail if there are multiple min-
ima, or maxima. In our case however, this will not happen since we shall generally use standard polynomial
functions for which we can guarantee a unique minimum. If the bisection method fails to find a root, the
minimum will occur oat α = 0 or α = 1. This is a simple extra test case that only requires two function
evaluations. In particular, if α = 0, we have that the current iterate xk is already the minimum value of Z.

Another question to ask ourselves is what an appropriate convergence criterion might be. For
this, we consider the relative gap at each iteration. The relative gap is defined to be the following
[Mitradjieva and Lindberg, 2013]:

RGk =
UBk −BLBk

|BLBk|
, (4.1.4)

where

UBk = Z(xk + αksk),

BLBk = max{BLBk−1, Z(xk) + ⟨∇Z(xk), sk − xk⟩} := max{BLBk−1, Lk(sk)}

where Lk is the linearization of Z at the current iterate xk. Suppose that x∗ is a minimum of the function Z.
Then, we have that Z(x∗) ≤ Z(xk + αksk) = Z(xk+1) for any iterate xk+1. Therefore, the function values
at the iterates xk will always form an upper bound to the minimal function value. Furthermore, we see that
since sk is a solution to (4.1.2), it follows that:

⟨∇Z(xk), sk − xk⟩ = ⟨∇Z(xk), sk⟩ − ⟨∇Z(xk), xk⟩

≤ ⟨∇Z(xk), xk⟩ − ⟨∇Z(xk), xk⟩ = 0.

3We transform our problem into computing edge flows, since by proposition 2.19 the assignment of a user equilib-
rium is unique with respect to the edge flows. We store the edge flows in a matrix, similar to a standard adjacency
matrix of a graph.
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This then implies that for the linearization used in the BLBk term,

Lk(sk) = Z(xk) + ⟨∇Z(xk), sk − xk⟩ ≤ Z(xk) ≤ Z(x∗).

Therefore, Lk(sk) forms a lower bound for the optimal function value. The relative gap thus represents the
relative difference between the best found linearization value and the function value at the current iterate. In
particular, by multiplying the relative gap by 100%, we find the percentage increase from the best lower bound
to the current upper bound. As we move towards the minimum value, we therefore expect the relative gap to
vanish. A sufficient criterion for convergence when comparing networks is the requirement thatRGk < 10−4

[Boyce et al., 2004].
The full algorithm can now be outlined in a the following steps [Gonzalez-Calderon et al., 2011]

1. Import the instance; Import the graph with the cost functions on each edge, the origin-destination
pairs and the traffic rates. The cost functions are stored in a cost matrix. This matrix is similar to the
adjacency matrix of a graph, except we have the cost on each edge as its entries. That is:

C(i,j) =

c(i,j)(x) if (i, j) ∈ E

0 else,

where C is the cost matrix.

2. Find all paths between the given OD-pairs.

3. Start the Frank-Wolfe algorithm by finding a first feasible vector based on an all-or-nothing assignment
based on zero flow. That is, x0 is formed by taking all the cheapest path assuming there is no flow on
each edge.

4. Update a separate cost matrix that stores the current cost on each edge.

5. While the relative gap is more than a given tolerance we do the following steps:

6. Perform an all-or-nothing assignment based on the cost of the previous iteration to find a search direc-
tion sk

7. Find the step size that minimizes Z(xk+α(sk−xk)), by using the bisection method. Else, use a static
step size.

8. Update xk+1 = xk + αk(sk − xk) and update the cost matrix to correspond with the new edge flow.
Increase the iteration counter and return to step 6.

To compute the system optimal flow, we recall an earlier result. We can use proposition 2.16 and compute
the user equilibrium of the instance (G, r, c∗), which corresponds to the system optimum of the original
instance. Using both the user equilibrium and the system optimal flow, we can then compute the price of
anarchy of an instance as well.
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To check the correctness of our implementation, we compute the price of anarchy for the nonlinear Pigou
instance from example 3.13. The code is implemented on Python and can be viewed at the link given here 4.

Figure 9: Error of the numerically computed price of anarchy and the analytically computed price of anarchy

We see that the difference is very small for most values of p, which gives us assurance our implementation
of the algorithm is correct.

4.2 Conjugate Frank-Wolfe

While the above gives promising results, there is a drawback to using the above algorithm. The following
example highlights this issue.

Example 4.3. Consider the least squares problem of finding a vector x ∈ RN so that the distance ∥w − x∥2

is minimal, for some other point w ∈ RN [Lawphongpanich et al., 2009]. Suppose we further constrain the
problem so that x ∈ X ⊂ RN for some convex polytope X . That is, X is the finite intersection of half-
spaces. In particular, this implies that for any x ∈ X , we must satisfy some matrix inequality Ax ≤ b and,
without loss of generality we can assume that x ≥ 0 (otherwise we can flip signs in A and b).

Since we have that X is convex and ∇f(x) = −2(w − x) and ∇2f(x) = 2I ≥ 0, we have a convex
problem. Suppose we wish to find the solution using the above proposed Frank-Wolfe algorithm. At iteration
k, we have found an approximate solution xk. To find xx+1 we need to find the next search direction. To do
this, we find the solutions sk to the problem:

min
y
∇f(xk) · y = −2(w − xk) · y

subject to Ay ≤ b, y ≥ 0.

Noticing that this is the standard form for a linear program, we know the solution has to occur at a vertex
of our polytope [Pardalos, 2009]. Geometrically, the solution vertex is the vector that gives the smallest dot

4https://colab.research.google.com/drive/1MYsnkSm3Ky2zB3k03fViSCRhwVZyc2fL?usp=sharing
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product with the vector−2(w−x). By noting u ·v = ||u|| ||v|| cos(θ), this means we wish to have the cosine
of the angles between these two vectors as negative as possible, which occurs if the vectors are pointing in
opposite directions and the norm is as small as possible.

Figure 10: Search directions for the sketched problem, leading to zigzagging.

In figure 10 this process is drawn out for a polygon with extreme points E1, E2 and E3. As we can see,
the solution x∗ is the projection of w onto the polytope. This leads to excessive zigzagging since we choose
the search direction in opposite directions successively. This can lead to very slow convergence when the
solution is near the boundary. △

To remedy this problem, one can implement many different variations on the original algorithm from the
previous section. Examples can be found in [GuéLat and Marcotte, 1986, Arezki and Van Vliet, 1990]. The
first paper proposes a method that is based on allowing negative backtracking steps, by generating a direction
opposite to the Frank-Wolfe step normally generated, while the second uses the corners of the trajectory like
in a momentum based method.

In this paper we discuss a more recent method based on a conjugate gradient-like iteration
[Mitradjieva and Lindberg, 2013]. First, we define what it means for two vectors to be conjugate.

Definition 4.4 (Conjugate vectors). Two vectors u, v ∈ RN are conjugate with respect to the matrix A ∈
RN×N if uTAv = 0. If A is positive definite, the map ⟨·, ·⟩A : RN × RN → R, (u, v) 7→ u TAv, forms an
inner product on RN .

When performing a conjugate gradient method, we generate a set of search directions {v1, . . . , vn}, so
that each of these directions is conjugate with respect to the last. That is, we look for constants βk so that
vk = ∇f(x) + βkvk−1. The constant βk gives us that vk is conjugate to vk−1 with respect to the Hessian
matrix of f . If the conjugate gradient method is applied to a quadratic form xTAx− bTx for some positive
definite matrix A ∈ RN×N , the method will converge in at most N steps. We therefore make a quadratic
approximation to the general function f , which leads to the choice of making the vectors conjugate with
respect to the Hessian H [Luenberger and Ye, 2016].

41



In our case, we get the added benefit that our Hessian is a diagonal matrix with respect to the edge flow
variables:

Z(f1, . . . , fn) =

n∑
i=1

∫ fi

0
ci(t)dt.

(∇Z)j = cj(fj), (∇2Z)(j,k) =

c
′
j(fj) if j = k

0 if j ̸= k.

The simplicity of the Hessian can help with efficient computation of vectors Hv by exploiting the diagonal
structure of H .

To apply this method to our problem we follow the scheme proposed by Mitradjieva and Lindberg
[Mitradjieva and Lindberg, 2013]. Suppose we have found the current iterate xk, using the rule

xk = xk−1 + τk−1d
CFW
k−1 ,

where dCFW
k−1 = sCFW

k−1 − xk−1 is the descent direction and τk−1 is the step size. Moreover, suppose that at
each iteration we still solve the linear sub-problem to find the “Frank-Wolfe direction” vector yFW

k . For this
method, we wish to find a new descent direction

dCFW
k = dFW

k + βkd
CFW
k−1 . (4.2.1)

Here the constant βk makes the new direction conjugate to the previous with respect to the Hessian of the
objective function evaluated at the current iterate xk. Let d̄k−1 denote the residual search direction: d̄k−1 =

(1− τk−1)d
CFW
k−1 . Up to changing our step size τk, we may choose dCFW

k = sCFW
k −xk, for some sCFW

k =

αks
CFW
k−1 + (1− αk)y

FW
k . We can see this in figure 11 by constructing dCFW

k as in equation (4.2.1). This
leads to a vector in the same direction as sCFW

k . By appropriately scaling τk, we can choose sCFW
K to be on

the line between the previous search direction and the Frank-Wolfe point.

Figure 11: Construction of the descent direction for the conjugate Frank-Wolfe method
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This choice leads to a descent direction as follows:

dCFW
k = sCFW

k − xk = αks
CFW
k−1 + (1− αk)y

FW
k − x

= α(sCFW
k−1 − yFW

k ) + yFW
k − xk = α(sCFW

k−1 − yFW
k ) + dFW

k

= αk(s
CFW
k−1 − xk) + (1− α)dFW

k

= αkd̄k−1 + (1− αk)d
FW
k = dFW

k + αk(d̄k−1 − dFW
k )

It now remains to find a suitable αk. Recall that we wish to make dCFW
k and dCFW

k−1 conjugate. From figure
11 it suffices to make dCFW

k and d̄k−1 conjugate, since dCFW
k−1 is parallel to dCFW

k−1 . Thus we get that:

0 = d̄ T
k−1Hkd

CFW
k .

By using the derived expression for dCFW
k we can isolate the conjugate step size αk:

0 = d̄ T
k−1Hkd

CFW
k

= d̄ T
k−1Hk(d

FW
k + αk(d̄k−1 − dFW

k ))

αkd̄
T
k−1Hk(d

FW
k − d̄k−1) = d̄ T

k−1Hkd
FW
k

αk =
d̄ T
k−1Hkd

FW
k

d̄ T
k−1Hk(d

FW
k − d̄k−1)

:=
Nk

Dk

This however does not tell the full story. For one that it is possible for dk−1 = 0 vanish, which occurs when
τk−1 = 1. Then, then xk = sCFW

k−1 , and thus d̄k−1 = 0. In this case, αk would be undefined. To get around
this problem, we slightly alter the definition of αk. Let 0 < δ < 1 be some small constant. We set:

αk =


Nk
Dk

if Dk ̸= 0, Nk
Dk
∈ [0, 1− δ]

1− δ if Dk ̸= 0, Nk
Dk

> 1− δ

0 else.

(4.2.2)

If Dk = 0, we find that either d̄k−1 = 0 or that dFW
k = d̄k−1. In both of these cases, we do not need

an extra conjugate step. In the first case, the direction is trivially conjugate to the previous direction. In the
other case, we have that by the descent direction derivation dCFW

k = dFW
k , which we would like to avoid in

order to avoid the same zigzagging as before. Similarly, we wish to avoid α = 1, since then dCFW
k = d̄k−1

which gives us no new descent direction.

After determining the step size for the conjugate direction, the step size τk will still be determined by
means of the bisection method. Implementing the method using δ = 0.01, we apply the same test as we
did for the normal Frank-Wolfe method. We compute the price of anarchy for the nonlinear Pigou example
for different powers of p. The results are given in figure 12. Similar to the normal method, the difference is
small and thus we can conclude that the method converges to the right solutions.
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Figure 12: Difference between analytically computed price of anarchy and numerically found price of anarchy
using the conjugate iteration
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5 Case study: Morning traffic in Groningen

In this section, we want to apply all our gathered knowledge to analyse a model of Groningen, which simu-
lates morning traffic going into the city and surrounding areas. First, we compare the convergence speed of
the normal Frank-Wolfe algorithm and the conjugate Frank-Wolfe iterations. After this, we briefly analyse
the results obtained and compute the price of anarchy of this network.

5.1 Description of the model

Suppose we take a graph network as shown in figure 13 (a large version of the network is given in appendix
B along with full results of the simulations). The red nodes indicate either an origin node or a destination
node, while the gray nodes indicate intersections. Based on the real life situation we distinguish three types of
edges; a good edge with fast flowing traffic, a neutral edge, and a bad edge with slow traffic that can jam easily.

Figure 13: Graph network laid over map of Groningen [Michelin, 2023]

To find a suitable model for the roads in these edges we use a standard function that describes traffic flow
as given by the United States Bureau of Public Roads [United States. Bureau of Public Roads, 1964]:

c(x) = c0

(
1 + α

(
x

ρ

)β
)
. (5.1.1)

As a standard, we take α = 0.15 and β = 4. In this equation, the constants c0 and ρ represent the base travel
time at zero flow and the practical capacity of the road respectively. At flow x = ρ the cost sees an uptick
after which the cost gets higher and higher. This point can be seen as the point at which traffic jams might
start forming, or where people have to slow down to let traffic merge for example. A schematic plot can be
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found in figure 14. For each road, we adapt the above cost function slightly to represent the flow on each type
of edge. To determine the cost at zero flow, we look at the speed limit prescribed on each of the roads and
compute how long it would take to traverse a distance of 5 kilometres. This distance was chosen according to
the approximate road length of each edge in figure 13. After this, we determine a suitable practical capacity,
which we scale to the traffic rates we use. Of course, the outer ring road should not have as many traffic jams
as the inner city roads do and therefore will have a differing practical capacity.

ρ

c0

x

c(
x
)

Figure 14: The cost function as in equation (5.1.1)

If we assume the good edge has an average speed of 100 kmh−1, the neutral edge an average speed of
60 kmh−1 and the bad edge an average speed of 30 kmh−1, we can derive the cost at no flow from this.
Of course, not every road is the exact same. To compensate for this we introduce two normally distributed
random variables C1 and C2 that will act as multiplicative factors for both the base travel time and the
practical capacity. In particular, we will take C1, C2 ∼ N (µ, σ) = N (1, 0.05). That is, we assume that C1

and C2 follow a normal distribution centered at 1, with standard deviation 0.05. These constants give that
P(0.9 ≤ C ≤ 1.1) ≈ 0.95. Therefore, the cost functions we use are:

cgood(x) = 3C1

(
1 + 0.15

(
x

700C2

)4
)

cmedium(x) = 5C1

(
1 + 0.15

(
x

650C2

)4
)

cbad(x) = 10C1

(
1 + 0.15

(
x

600C2

)4
)
.

(5.1.2)

To arrive at workable model we make a few assumptions. First, we assume that the maximum length of a
path between origin-destination pairs is 8 vertices long (including the beginning and end). We do this, since
otherwise we would get paths that give unrealistic shapes. One would never cross the city two or three times
just to end up at a neighbouring vertex.

We generate the rate demand vectors as follows: Define the vertices 0, 4, 6, 11, 18 and 28 to be origin
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vertices and vertices 2, 8, 12, 13, 20, 22 and 26 to be destination vertices. From these two sets we make all
possible pairs, which forms the set of OD-pairs:

D = {(0, 2), (4, 2), . . . , (18, 26), (28, 26)} (5.1.3)

The rate between assigned to each of these pairs is based on traffic data gathered by the municipality of
Groningen [Team OpenData Groningen, 2023]. We use the locations given in the data file, and assume one
third of all traffic listed visits in the morning. That is, (in order of origin vertex):

r = (1200, 1600, 1400, 600, 4000, 3000) (5.1.4)

Each origin destination pair then receives an equal amount of traffic. Since there are 7 destination vertices,
we divide all above traffic numbers by 7 and distribute them equally across each pair. After computing all the
paths, we have that we are looking at a model with 94 variables (the edge flows), subject to 94 non-negativity
constraints and 42 flow conservation constraints, which have 1653 path flow variables.

5.2 Numerical results

First, let us compare the convergence speeds of the normal Frank-Wolfe method to that of the conjugate
Frank-Wolfe method. According to [Mitradjieva and Lindberg, 2013], when using standard test networks the
conjugate iteration performed better by a factor of about 10. When comparing this to the network described
above, we find a similar result. The progression of the relative gap is given in figure 15. The conjugate
iteration finds an equilibrium in 200 iterations, while the normal iteration reaches the same relative gap
in 4226 iterations. This is a factor of approximately 21 better. When comparing the maximum absolute
difference between the two flows we find an error of approximately 7.9.

Figure 15: Error comparison CFW and FW method
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Concluding that the conjugate method is indeed much faster, while not being very different from the
standard iteration we proceed the analysis with this method. Zooming in on the center of town, we visualize
the results in figure 16. We draw the edge flows with a linear color gradient with a fully green edge being
the lowest edge flow and a fully red having the highest edge flow. The thickness is similar except here we
display the edge cost. Therefore, the best case scenario is a thin green arrow, while the worst case scenario
is a big red arrow.
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Figure 16: User equilibrium for the center of town

From this, we can see that (relative to the other edges in the center of town) especially the edges between
vertices 25 and 21, 16 and 12, and 7 and 8 are pretty congested. We note that not much can be done about the
edges to vertices 8 and 12, since these are destination vertices. One could think about altering the network a
little so that some traffic from node 25 is diverted.

Computing the total cost of the user equilibrium flow, we have that:

C(f) =
∑
e∈E

ce(fe)fe ≈ 655, 579.23

To compute the system optimal flow, we apply proposition 2.16. To this end, we compute the marginal
cost functions. For the general cost function as given in (5.1.1), we have that:

c∗(x) =
d

dx
(xc(x)) =

d

dx

(
c0

(
x+ α

xβ+1

ρβ

))
= c0

(
1 + α(β + 1)

(
x

ρ

)β
)

We then apply the same algorithm to the new instance Ĩ = (G, r, c∗). Again, the results can be found
in appendix B. If we look at the same image of the city center as in figure 16 we see that there are slight
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differences in the distribution of traffic.
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Figure 17: System optimum for the center of town

For one, the system optimal solution depicted in figure 17 uses two more edges that the user equilibrium.
Moreover, the arrows are generally larger than in the UE case, which could imply that there is a move even
distribution of traffic. Indeed, looking at the results in table 2 compared to table 1 we can see that some of the
edge flows in the UE case are much larger, while some do not differ that much. If we compute the net flow
change for this subgraph, we find that this comes down to a difference of approximately −595.12. That is,
the flow is a net 595 higher in the system optimal case, when we use the convention that a change towards the
user equilibrium is positive and a shift towards the system optimal case is negative. Intuitively, this makes
sense. In the user equilibrium case, it is beneficial to try to avoid high cost edges as much as possible. In
the center of town there are a lot of small, tight roads which have a “worse” cost function in the sense that
the cost increases more for a small increase in traffic compared to a better cost function. The system optimal
case will likely involve spreading traffic more equally, which would also need to put more traffic on paths a
selfish player would like to avoid.

Computing the cost of the optimal flow like before we find that:

C(f∗) =
∑
e∈E

ce(f
∗
e )f

∗
e ≈ 640, 538.16

which is about 15,000 lower than in the user equilibrium case. Computing the price of anarchy for the
network, we find that:

ρ =
C(f)

C(f∗)
=

655, 579.23

640, 538.16
≈ 1.02.

That is, the cost of a user equilibrium is approximately 2% worse than that of a system optimal flow. We
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notice that this is in fact a lot better than the worst-case bound provided by equation
Finally, we compare the error progression of computing the system optimum and the user equilibrium.

Figure 18: Error progression when computing a user equilibrium

We see that the same convergence rate O
(
1
k

)
persists, like we found in theorem 4.1 for the system

optimal case. This is further backed up by the results found in the paper by Mitradjieva and Lindberg
[Mitradjieva and Lindberg, 2013].

A possible reason for the large difference in iteration count could be the following. Recall from theorem
4.1 that we have that:

f(xk)− f(x∗) ≤ 2LD2

k + 3
.

Note that D does not change between the two problems, since the constraints are the exact same. The only
thing we changed is the cost function. Therefore, we expect the difference to come from an increase in the
smoothness constant L. Indeed, recalling that the gradient of the objective function is just the vector of cost
functions, we find that:

(∇Z(x)−∇Z(y))i = c0,i

[
1 + αi

(
xi
ρi

)βi
]
− c0,i

[
1 + αi

(
yi
ρi

)βi
]

= c0,iαi
xβi
i − yβi

i

ρi
.

Notice that this function is L-smooth for some L, as the feasible set F is compact and the objective function
Z is of smoothness class C∞. By theorem A.10 there exists some L so that the function is L-smooth on F
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Furthermore, notice that:

(∇Z∗(x)−∇Z∗(y))i = c0,i

[
1 + αi(βi + 1)

(
xi
ρi

)βi
]
− c0,i

[
1 + αi(βi + 1)

(
yi
ρi

)βi
]

= c0,iαi(βi + 1)
xβi
i − yβi

i

ρi
.

Therefore,
∥∇Z∗(x)−∇Z∗(y)∥ = (βi + 1)∥Z(x)− Z(y)∥ ≤ (βi + 1)L.

By the same argument as for implies that the marginal objective function is (βi+1)L-smooth. By numerically
checking this by taking random vectors x, y ∈ F , and computing

∥∇Z(x)−∇Z(y)∥
∥x− y∥

for both Z and Z∗. We can then take the largest value of this, and this should give a good approximation
of L. If we compute the ratio between these factors, we indeed find that this ratio is approximately equal
to 4 + 1 = β + 1. By applying our error bound, we can expect that the convergence could be 5 times as
slow. Comparing the number of iterations, we find that this ratio is about the same, namely, 1047

200 ≈ 5.2. Of
course, the error bound only gives an upper bound, and thus in fact the actual result might be better. The
above analysis does however give a plausible reason as to why finding a system optimal flow might be slower
than a user equilibrium when using the same network and demand vectors.
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6 Conclusion

In this thesis, we developed a broad mathematical foundation for the field of non-atomic congestion games.
We did this by answering three fundamental questions: How to compute selfish and optimal flows, how bad
are selfish flows compared to optimal flows and how can we numerically compute these flows? After in-
troducing basic notation, we focused on the computation of both user equilibria and system optimal flows.
We combined well known results to give a condensed, yet detailed derivations of the optimization prob-
lems related to computing these equilibria. Furthermore, existence and uniqueness of these problems was
established.

Having determined how to compute both the optimal and user equilibrium flows, we discussed the results
of Roughgarden on upper bounds on the price of anarchy in polynomial instances. Along the way, a few
technical lemmas were established relating the costs of optimal flows and the costs of user equilibria.

Finally, we analysed a standard numerical method to compute selfish flows in network congestion games.
The Frank-Wolfe algorithm was shown to have a linear rate of convergence. This was then compared to
the conjugate version of the same algorithm. Consistent with the literature, we found that this gives a large
improvement over the standard method, while maintaining the same convergence rate. To test this, a model
of Groningen was implemented and briefly analyzed.

6.1 Further research suggestions

As noted, this thesis only gives a broad foundation in the topic of network congestion games. Therefore,
there are a lot of different topics that we did not discuss here.

A first topic that could be looked at further is the extension of the work presented here to atomic con-
gestion games. Like mentioned in section 2, in an atomic congestion game we consider a finite number of
players which each have a larger share of traffic they control. This is in contrast to the case we consider in
this thesis, where we have an infinite number of players. It is known that there exist similar optimization
problems for finding a user equilibrium in these games. One can then also look at finding upper bounds on
the inefficiency of these optima [Nisan et al., 2007].

Building on this, in both atomic and non-atomic congestion games, there is still current research going
on in probability based assignment and more generally in probability based instances. One extension of the
work proposed in this thesis to this framework is that of a stochastic user equilibrium [Cominetti et al., 2012].
Here, we consider the cost of an edge to be modelled as c̃e = ce + εe where εe is a random variable such
that E(ϵe) = 0. The path flow for on a path P ∈ Pi corresponding to some origin-destination pair di is then
defined as:

fP = ri P(c̃P ≤ c̃P̃ , ∀P̃ ∈ Pi).

One can then again examine existence and uniqueness in these games. It could be of interest to look at the
price of anarchy in these instances. Another further extension of this can be by looking at Bernoulli dis-
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tributed rate demands as done in [Cominetti et al., 2023]. In these types of games, we consider a standard
atomic congestion game, where each player participates with a given probability pi. In the paper it is shown
that we can still extract information about the price of anarchy. One could then consider extending this to
inhomogeneous probabilities.

After this brief discussion on atomic congestion games, there is also a lot of work that can still be done in
other fields. One of which is that of taxation and subsidizing. As was seen in section 3, the price of anarchy
can be unbounded for general instances of polynomial routing games. Currently, research is done in apply-
ing extra costs, or subsidizing players when using certain edges. The goal of this is to guarantee the price of
anarchy of the actual network does not tend towards the upper bound, but more towards the optimal factor
of 1. In [Brown and Marden, 2018] it is shown that it is theoretically possible to steer a user equilibrium
arbitrarily close towards the cost of a system optimal flow. One could then investigate how to find a robust
method to find an optimal toll design, while also taking into account the willingness of people to pay these
tolls.

As with any topic in numerical analysis there is always a search for faster or better numerical algorithms.
This is no different here. In this thesis, we discussed the (conjugate) Frank-Wolfe methods, which are ex-
amples of path-based assignment methods. There exist examples of origin-based models that might scale
better (in terms of memory usage), since the number of origin-destination pairs is in general smaller than the
number of paths in a network [Bar-Gera, 2002]. While adaptations of this formulation were shown to not
perform better on the test networks considered in the paper establishing the conjugate Frank-Wolfe method,
it is worth investigating if this formulation indeed leads to better memory usage or if there is an adaptation
possible that yields better or similar performance.
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Appendices

A Preliminaries

A.1 Convex analysis and constrained optimization

We first go over some definitions from convex analysis and constrained optimization theory that we are reused
throughout the paper. The theory here is adapted from [Moklyachuk, 2020] and [Bertsekas, 2016].
We start with recalling some basic notions from convex analysis. After this we move on to discussing the
existence and uniqueness of minimizers of functions. Finally, we discuss the Lagrange multiplier method to
find these minimizers. To begin, let us define what a convex set is.

Definition A.1 (Convex set). A set X ⊆ RN is convex if for all x, y ∈ X we have that

λx+ (1− λ)y ∈ X ∀λ ∈ (0, 1). (A.1.1)

This definition says that a set X is convex if for any two points we can draw a straight line between them
so that all points on this line lie in X .

Example A.2. The left set drawn here is convex, while the one on the right is not. △

x1

y1

x2

y2

x y

Figure 19: Two examples of sets, one of which is convex while the other is not

As an example of a standard proof to show a set is convex, we have the following proposition which we
will see reappear later on.

Proposition A.3. The set X = {x | Ax ≤ b} is a convex set. Here, the inequality signifies that for all i we
have that (Ax)i ≤ bi.

Proof. Take x, y ∈ X arbitrary and let λ be a constant in (0, 1). Consider the element λx + (1 − λ)y. We
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check that this term satisfies the condition to be an element of X .

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay

≤ λb+ (1− λ)b = b

Since x, y ∈ X . Therefore λx+ (1− λ)y ∈ X as well, and thus the set X is convex.

Similar to a convex set, we can define what it means for a function to be convex.

Definition A.4 (Convex function). Let X ⊆ RN be a convex set. A function f : X → R is convex if for all
x, y ∈ X we have that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ (0, 1) (A.1.2)

If the inequality above is strict, we say that f is strictly convex.

Just like in the definition of a convex set, we have a visual interpretation for this definition as well. Namely
a function f is convex over a set X if its graph between any x, y ∈ X is below the chord connecting x and
y.

Example A.5. Consider the function f(x) = x2. It can easily be shown that f is convex on all of R, for
example using some of the methods we will describe later. If we draw the graph of f , we can see that indeed
it also satisfies the geometric interpretation given above. Since f is a convex function, the chord will always
be above the graph for any x ̸= y. △

−2 −1 1 2

1

2

3

4

0

x

y

Figure 20: The function f(x) = x2 satisfies the geometric interpretation of definition A.4

It is easy to see that the sum of convex functions is yet another convex function. Another useful charac-
terization we will use often is the following.

Proposition A.6. Let X ⊆ RN be a convex set. Consider a function f : X → R that is differentiable over
X . Then, f is convex over X if and only if for all x, y ∈ X , f(x) ≥ f(y) +∇f(y) · (x− y).
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We only prove the left to right direction since we mainly use this direction.

Proof. Since f is convex, we have that:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

⇐⇒ f(λx+ (1− λ)y)− f(y) ≤ λ(f(x)− f(y))

⇐⇒ f(λ(x− y) + y)− f(y)

λ
≤ f(x)− f(y)

When we take λ→ 0, we find that the left hand side is exactly the directional derivative of f in the direction
of the vector x− y, evaluated at y [Stewart et al., 2021]. Therefore,

f(y) +∇f(y) · (x− y) ≤ f(x)

Rearranging then gives the desired inequality.

Finally, another characterization is given by the following proposition.

Proposition A.7. Let f be twice continuously differentiable. If the Hessian of f , ∇2f(x), is positive semi-
definite for all x ∈ X , then f is convex. Similarly, if ∇2f(x) is positive definite for all x ∈ X then the
function f is strictly convex.

Proof. By Taylor’s theorem we have that for any x, y ∈ X there exists a point ξ ∈ X so that:

f(x) = f(y) +∇f(y) · (x− y) +
1

2
(x− y) · ∇2f(ξ)(x− y)

But since the Hessian is positive semi-definite, the last term is a non-negative constant. Therefore,

f(x) ≥ f(y) +∇f(y) · (x− y)

Applying proposition A.6 we find that f is convex. Similarly, proposition A.6 works for strictly convex
functions, as long as the inequality there is strict (and x ̸= y). Therefore, the second statement follows
similarly.

Another standard definition in optimization theory is that of L−smoothness.

Definition A.8. Let f : X ⊆ RN → R be continuously differentiable, and let x, y ∈ X . Then f isL−smooth
if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (A.1.3)

In fact, this is equivalent to the following well known result.
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Theorem A.9 (Descent lemma). A continuously differentiable function f : X → R is L-smooth if and only
if for all x, y ∈

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2. (A.1.4)

A nice test for smoothness can be formalized in the following:

Theorem A.10. Let f : X ⊂ RN → R be a twice continuously differentiable function over a compact,
convex set X . Then, f is L−smooth for some constant L > 0.

Proof. First, we generalize the mean value theorem to functions with target space RM [Pugh, 2015, p. 288].
To this end, we consider a function g : X → RM . Define h : [0, 1] → R via t 7→ ⟨u, g(x + t(y − x))⟩ for
any unit vector u ∈ RM . Here, we assume we use the standard inner product on RM . Then, by the single
variable mean value theorem, there exists an s ∈ (0, 1) so that h(1)− h(0) = h′(s). Therefore,

⟨u, g(y)− g(x)⟩ = h(1)− h(0) = h′(s) = ⟨u,Dgx+t(y−x)(y − x)⟩

≤ ∥u∥
∥∥Dgx+t(y−x)

∥∥∥y − x∥ =
∥∥Dgx+t(y−x)

∥∥∥y − x∥,

whereDgx+t(y−x) is the Jacobian of g evaluated atx+t(y−x) and the inequality follows by using the Cauchy-
Schwarz inequality. To establish the final result, we note that since the inequality holds for any arbitrary unit
vector u, we can take the unit vector in the same direction as g(y) − g(x), so that ⟨u, g(y) − g(x)⟩ =

||u||||g(y)− g(x)|| cos(0) = ∥g(y)− g(x)∥, so that finally,

∥g(y)− g(x)∥ ≤ ∥Dgξ∥∥y − x∥

Taking g = ∇f : RN → RN , we find that over the set X ,

∥∇f(y)−∇f(x)∥ ≤ ∥Hξ∥∥y − x∥,

where H is the Hessian of the map f . Recalling that the set X is compact, we notice that ∥Hξ∥ maps a
point ξ to a real number. Furthermore, this map is continuous, since the function f is twice continuously
differentiable. By theorem A.12, which we discuss momentarily, it must therefore attain a maximum and
minimum on the set, and thus can be uniformly bounded by a constant L. Combining all inequalities we find
that for all x, y ∈ X:

∥∇f(y)−∇f(x)∥ ≤ ∥Hξ∥∥y − x∥ ≤ L∥y − x∥

Next, we formalize what it means to achieve a minimum value.

Definition A.11. A vector x∗ is a local minimum of the function f : X ⊆ RN → R if there exists an ϵ > 0

such that:
f(x∗) ≤ f(x) ∀x ∈ X with ∥x− x∗∥ < ϵ (A.1.5)
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A vector x∗ is a global minimum of f over X if f(x∗) ≤ f(x) for all x ∈ X .

Having defined both a local and global minima, we now ask ourselves when a function has a minimum.
The following theorem gives us an answer to this question.

Theorem A.12 (Weierstrass’ Theorem). Let X be a nonempty and compact subset of RN and let f : X →
R be continuous at all points of X . Then, the set of minima and the set of maxima of f over X are nonempty
and compact.

In fact, we only need lower-subcontinuity for the above result to hold. If we assume that the function f

is (strongly) convex over a convex set X , we can say a little more.

Proposition A.13. Let X be a compact convex subset of RN . If f : X → R is convex then any local
minimum over X is also a global minimum over X . Moreover, if f is strongly convex then f has a unique
global minimum over X .

The above proposition follows quite easily by directly applying the definition of a convex function.
Finally, we briefly go over optimality conditions for constrained optimization problems. First, consider

the problem:
min
x∈X

f(x)

where X is a convex constraint set and f is convex over X . Then, the following proposition gives a necessary
and sufficient condition for a point x∗ to be a global minimum over X .

Proposition A.14. Let X be a convex set and let f : RN → R be convex over X . If f is continuously
differentiable, then ∇f(x∗)(x − x∗) ≤ 0 for all x ∈ X is a necessary and sufficient condition for a vector
x∗ ∈ X to be a global minimum for f over X .

Proof. Since f is convex, it holds that f(x) ≥ f(x∗) +∇f(x∗) · (x− x∗) ≥ f(x∗), since the second term
was assumed to be positive for all x. Therefore, f(x∗) is a global minimum. For the other direction, assume
for contradiction that ∇f(x∗) · (x− x∗) < 0. Then, by recalling the definition of the directional derivative
we have that:

lim
h↓0

f(x∗ + h(x− x∗))− f(x∗)

h
< 0

For h small enough, we then must have that f(x∗ + h(x − x∗)) ≤ f(x∗). But that contradicts the fact that
f(x∗) was assumed to be a global minimum. Therefore∇f(x∗) · (x− x∗) ≥ 0.

Consider now the following problem:

min f(x)

subject to hi(x) = 0, i = 1, . . . ,m

gj(x) ≤ 0, j = 1, . . . , r,

(P)

for functions hi, gj : RN → R. For any feasible point x (that is if x satisfies the given constraints) we denote
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the set of active inequality constraints by

A(x) = {j | gj(x) = 0} (A.1.6)

A point x∗ is called regular if the set

V = {∇hi(x∗),∇gj(x∗) | i = 1, . . . ,m and j ∈ A(x∗)} (A.1.7)

is linearly independent. The Lagrangian function of the problem (P) is defined as

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

n∑
j=1

µigj(x) (A.1.8)

The vectors λ and µ are called Lagrange multiplier vectors. A necessary condition for optimality is given by
the Karush-Kuhn-Tucker conditions.

Theorem A.15 (KKT conditions for optimality). Let x∗ be a regular local minimum of (P). Then, there
exist unique vectors λ∗, µ∗ so that:

∇xL(x
∗, λ∗, µ∗) = 0

µ∗
j ≥ 0 for j = 1, . . . , r

µ∗
jgj(x

∗) = 0 for j = 1, . . . , r

(A.1.9)

Moreover, if f, g, h ∈ C2, then:
yT∇2

xxL(x
∗, λ∗, µ∗)y ≥ 0 (A.1.10)

for all y ∈ V ⊥, where V is the set of gradients as used in the definition of regularity.

However, if we assume that f, gj are convex differentiable functions and that λ∗, µ∗ satisfy the KKT
conditions, then the condition that∇xL(x

∗, λ∗µ∗) = 0 is also sufficient. Moreover, if the constraint functions
hi are linear and the functions gj are concave (that is, −gj is convex) then we can disregard the regularity
of the solution x∗ [Bertsekas, 2016]. In particular, any affine transformation is both convex and concave.
Namely, take g(x) = Ax+ b so that gj(x) = (Ax+ b)j . Then,∇g(x) = AT and∇2g(x) = 0. Thus, using
proposition A.7 we have that g is convex. However for−g(x) = −Ax− b, we have the same and so g is also
concave. Summing this up, we get the following proposition.

Proposition A.16. Let f be a convex differentiable function, and let hi, gj be linear functions. Consider the
problem (P). Then, a point x∗ is a local minimum of (P) if and only if there exist vectors λ∗, µ∗ so that

∇xL(x
∗, λ∗, µ∗) = 0

µ∗
j ≥ 0 for j = 1, . . . , r

µ∗
jgj(x

∗) = 0 for j = 1, . . . , r

(A.1.11)
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A.2 Numerical algorithms

We discuss two basic algorithms that are used in the computation of equilibria as presented in section 4. First,
we discuss the bisection method to find roots of single variable functions. After this, we discuss a simple
path-finding algorithm to find all paths between two nodes in a graph.

A.2.1 The bisection method

Consider a function f : R→ R, with a root on the interval [a, b]. To find this root, we can use the bisection
method [Epperson, 2013]. The bisection method, as the name suggests is based on halving the interval
[a, b] at each successive iteration, making sure to keep the root in the next interval. We choose to use the
bisection method because of its simplicity and the fact it only relies on f(x) and not any of its derivatives.
If we have access to derivatives of the function f and it would not be too expensive to use these other root-
finding algorithms include Newton’s method or for example a fixed point based algorithm [Epperson, 2013].
An outline of the bisection method to find the root x∗ of a function f(x) in the interval [a, b] is given in
Algorithm 2.

Algorithm 2 Bisection method

Input: a, b, f(x), ϵ
c← a+b

2
if f(a)f(b) < 0 then
while ∥f(c)∥ > ϵ do
if f(a)f(c) < 0 then
b← c

else if f(b)f(c) < 0 then
a← c

end if
end while
x∗ ← c

else
return

end if
Output: x∗

Note we have to include the first if statement to check if the endpoints have different signs to guarantee
a root. By the intermediate value theorem [Abbott, 2015], a continuous function f has a root in [a, b] if
f(a) < 0 < f(b) or f(a) > 0 > f(b). In each iteration, we half the current interval, and check in which of
the two parts the root is contained. We continue with this interval and apply the same procedure.
As for the convergence rate, we can state the following theorem.

Theorem A.17 (Convergence of the bisection method). Let [a, b] ⊂ R be an interval containing a root x∗

of the function f(x). Set cn = an−1+bn−1

2 as the approximate root, where ai, bi and ci are generated by the
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bisection method. Then,

|x∗ − cn| ≤
(
1

2

)n

= (b− a) (A.2.1)

Proof. First, notice that bn − an is the length of the working interval at the nth iteration. Therefore, it holds
that bn − an ≤ 1

2(bn−1 − an−1). By recursion:

bn − an ≤
(
1

2

)n

(b0 − a0) =

(
1

2

)n

(b− a).

But then,

|x∗ − cn| ≤
1

2
(bn−1 − an−1) ≤

(
1

2

)n

(b− a)

where the first inequality follows since the root is somewhere on either the interval [an−1, cn] or [cn, bn−1],
and cn is the middle of the interval [an−1, bn−1].

An important example where the bisection method can fail is the following.

Example A.18 (Failure of the bisection method).
Consider the function f(x) = (x − a)2 for some
a ∈ R. Clearly the function has a root at x = a.
However, since f(x) > 0 for all x ̸= a, we cannot
guarantee the existence of a root using the interme-
diate value theorem. Unless we pick our searching
interval so that x = a is exactly the middle point, the
bisection method will fail to find this root. △

−1 0 1 2 3

1

2

3

4

x

f
(x
)

Figure 21: The function (x− 1)2 has a root at x = 1.

Luckily, we can get around this problem in our implementation, as we shall see in section 4.1.

A.2.2 Path-finding: Breadth-first search

A natural problem when considering traffic problems is finding all possible routes between two nodes. When
we model our traffic network in a graph, we can use a breadth-first search algorithm to determine all paths
between two given nodes in a graph [Skiena, 2008]. Again, even though this might not be the most efficient
algorithm, its use here comes from its simplicity. In essence the algorithm works as follows. Start at the first
node and move to another connected node. From this node, repeat the process, until we hit either a dead end
or we reach the destination node. Once we do this, we backtrack to the previous node and move to another,
not yet visited node. If we keep doing this until we have exhausted all nodes in the graph, we find all paths
between the two vertices. The pseudo-code can be found in algorithm 3.
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Algorithm 3 Breadth-First search between nodes u ∈ V and v ∈ V

Input: G = (V,E), u ∈ V , v ∈ V , curPath = [ ], visited = [ ]
Append u to curPath and visited
if u = v then

Print curPath and remove u from curPath and visited
return

end if
for x ∈ V do
if (u, x) ∈ E then
BFS(G, x, v,curPath,visited)

end if
end for

B Appendix: Model of Groningen and numerical results

In what follows, we adopt the same convention as established in section 6. We visualize the results in a
graph network, where the color gradient represents the amount of flow, while the arrow size represents the
cost. A gray arrow means that the flow on that edge is less than 10% of the maximum flow on the network.
First, a large copy of the network is given in figure 22. After this in tables 1, 2 and 3 the full results of
the computation of the user equilibrium, system optimum and the difference between the two equilibria are
given. Along with this, the social costs are given. Finally, a graphical representation of these flows is given
in figure 23 and 24. The first shows the user equilibrium flow, while the second shows the system optimal
flow. Here we adopt the same conventions as established in section 6 when drawing the graphs. The color
of the edges denote the amount of flow on the edges, while the size denotes the cost of an edge. An edge is
made gray whenever it carries less than 10% of the maximal flow.

65



0

1

2

8

4

6

22

13

12

20

28

26

18

11

10

15

16

19

17

21

25

24

23

14

5

9

7

3

27

Figure 22: Network as used in section 6
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Edge Flow Cost

(0,1) 1200.0 7.525

(1,2) 1457.947 10.105

(1,10) 311.547 4.89

(2,3) 600.0 3.133

(2,7) 448.613 5.649

(3,2) 674.447 3.265

(3,4) 428.571 2.849

(3,8) 477.373 10.214

(4,3) 980.391 4.75

(4,5) 256.383 3.06

(4,9) 365.903 4.621

(4,14) 834.292 7.57

(5,4) 408.397 3.097

(5,22) 1247.986 7.441

(6,5) 1400.0 12.053

(7,2) 601.934 5.933

(7,8) 861.83 15.764

(7,12) 522.217 10.188

(7,16) 261.304 4.903

(8,12) 60.308 8.888

(9,8) 182.935 10.343

Edge Flow Cost

(9,13) 182.968 9.35

(10,1) 569.495 5.332

(10,15) 311.547 5.612

(11,7) 1086.194 10.704

(11,15) 170.005 5.027

(12,8) 107.928 8.89

(12,13) 572.654 11.257

(13,8) 115.956 10.044

(13,12) 350.96 9.881

(14,13) 767.992 6.399

(14,22) 457.903 2.928

(15,10) 569.495 6.143

(15,11) 656.2 5.865

(15,16) 985.011 10.15

(16,7) 712.477 6.461

(16,12) 896.312 16.613

(16,19) 742.857 3.663

(17,12) 536.499 11.329

(17,13) 123.577 10.216

(18,15) 1729.153 44.015

(18,19) 2270.847 48.295

Edge Flow Cost

(19,16) 1105.331 5.884

(19,20) 1484.489 12.431

(19,23) 1057.143 12.095

(20,17) 660.076 11.115

(20,19) 633.259 3.223

(20,21) 571.429 11.306

(20,24) 200.0 3.017

(21,13) 505.44 10.939

(21,20) 628.571 11.882

(21,22) 1000.0 10.847

(22,14) 391.603 2.888

(22,21) 628.571 6.167

(23,26) 1685.714 50.51

(24,20) 1132.324 6.424

(24,23) 628.571 5.979

(25,20) 505.094 10.487

(25,21) 934.011 20.832

(27,24) 1560.895 11.601

(28,25) 1439.105 23.42

(28,27) 1560.895 15.88

Social Cost 655,579.23

Table 1: User equilibrium flow and cost for the given network
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Edge Flow Cost

(0,1) 1200.0 7.525

(1,2) 1444.236 9.843

(1,10) 342.697 4.91

(2,3) 649.944 3.217

(2,7) 314.434 5.553

(3,2) 571.482 3.094

(3,4) 393.532 2.828

(3,8) 526.223 10.461

(4,3) 841.292 3.847

(4,5) 172.94 3.054

(4,9) 741.897 5.709

(4,14) 761.372 6.851

(5,4) 523.92 3.172

(5,22) 1049.022 5.21

(6,5) 1400.0 12.053

(7,2) 634.374 6.029

(7,8) 723.949 12.34

(7,12) 668.233 11.121

(7,16) 143.038 4.877

(8,12) 181.798 8.898

(8,13) 193.07 10.065

(9,8) 340.504 10.523

(9,13) 401.393 9.537

(10,1) 586.933 5.394

Edge Flow Cost

(10,11) 0.2 5.091

(10,15) 342.563 5.636

(11,7) 1105.454 11.121

(11,10) 0.284 5.091

(11,15) 170.777 5.027

(12,8) 94.008 8.889

(12,13) 595.457 11.528

(12,17) 0.804 10.369

(13,8) 375.899 10.388

(13,12) 247.022 9.711

(13,14) 99.784 4.893

(13,17) 166.311 10.224

(14,4) 0.051 5.222

(14,13) 576.716 5.372

(14,22) 560.518 3.034

(15,10) 586.715 6.216

(15,11) 676.315 5.973

(15,16) 995.576 10.364

(16,7) 749.704 6.82

(16,12) 797.872 13.998

(16,19) 656.57 3.441

(17,12) 481.061 10.99

(17,13) 268.836 10.288

(17,20) 167.115 9.336

Edge Flow Cost

(18,15) 1745.267 45.497

(18,19) 2254.733 47.017

(19,16) 1065.532 5.503

(19,20) 1302.859 8.558

(19,23) 971.43 10.042

(20,17) 749.897 12.304

(20,19) 383.605 2.95

(20,21) 639.391 12.011

(20,24) 285.771 3.028

(21,13) 539.256 11.158

(21,20) 547.973 11.114

(21,22) 900.278 8.944

(22,14) 276.129 2.854

(22,21) 547.973 5.801

(23,19) 44.913 4.941

(23,26) 1685.714 50.51

(24,20) 1062.639 5.659

(24,23) 759.197 6.967

(25,20) 663.791 11.572

(25,21) 800.144 16.184

(27,24) 1536.065 11.059

(28,25) 1463.935 24.752

(28,27) 1536.065 15.08

Social Cost 640,538.16

Table 2: System optimal flow and associated cost for the given network
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Edge Flow Cost

(1,2) 13.711 0.262

(1,10) -31.149 -0.02

(2,3) -49.944 -0.083

(2,7) 134.18 0.096

(3,2) 102.965 0.171

(3,4) 35.04 0.021

(3,8) -48.85 -0.247

(4,3) 139.098 0.903

(4,5) 83.443 0.005

(4,9) -375.994 -1.087

(4,14) 72.919 0.719

(5,4) -115.523 -0.075

(5,22) 198.964 2.231

(7,2) -32.44 -0.096

(7,8) 137.882 3.424

(7,12) -146.017 -0.933

(7,16) 118.267 0.026

(8,12) -121.49 -0.01

(8,13) -193.07 -10.065

(9,8) -157.568 -0.18

(9,13) -218.426 -0.186

(10,1) -17.438 -0.062

(10,11) -0.2 -5.091

Edge Flow Cost

(10,15) -31.015 -0.024

(11,7) -19.26 -0.417

(11,10) -0.284 -5.091

(11,15) -0.771 -0.0

(12,8) 13.919 0.001

(12,13) -22.804 -0.271

(12,17) -0.804 -10.369

(13,8) -259.943 -0.344

(13,12) 103.938 0.171

(13,14) -99.784 -4.893

(13,17) -166.311 -10.224

(14,4) -0.051 -5.222

(14,13) 191.276 1.028

(14,22) -102.615 -0.106

(15,10) -17.22 -0.074

(15,11) -20.115 -0.108

(15,16) -10.565 -0.215

(16,7) -37.227 -0.359

(16,12) 98.44 2.615

(16,19) 86.287 0.222

(17,12) 55.438 0.339

(17,13) -145.259 -0.072

(17,20) -167.115 -9.336

Edge Flow Cost

(18,15) -16.113 -1.482

(18,19) 16.113 1.278

(19,16) 39.799 0.381

(19,20) 181.63 3.873

(19,23) 85.713 2.053

(20,17) -89.821 -1.189

(20,19) 249.654 0.273

(20,21) -67.962 -0.705

(20,24) -85.771 -0.011

(21,13) -33.817 -0.219

(21,20) 80.598 0.768

(21,22) 99.722 1.903

(22,14) 115.474 0.034

(22,21) 80.598 0.366

(23,19) -44.913 -4.941

(24,20) 69.685 0.765

(24,23) -130.626 -0.988

(25,20) -158.697 -1.086

(25,21) 133.867 4.648

(27,24) 24.83 0.542

(28,25) -24.83 -1.332

(28,27) 24.83 0.8

Social Cost 15,041.07

Table 3: Difference between UE and SO flow. A positive value means the value is higher in the UE case and
vice versa
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Figure 23: Model of Groningen, UE

70



0

1

2

8

4

6

22

13

12

20

2826

18

11

10

15

16

19

17

21

25

24

23

14

5

9

7

3

27

Figure 24: Model of Groningen, SO
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