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In the past number of decades, several models have been put forth to explain the cognitive mechanisms
behind associative recognition. These models have grown more intricate over time, with brain imaging
techniques such as EEG and MEG providing a clearer picture of the nature and duration of the individual
stages that comprise the associative recognition process. Our study aimed to identify those same stages
using pupillary data, which we collected and then analysed through a combination of hidden semi-Markov
models and generalized additive mixed models. We also hoped to investigate the usefulness of pupillary
data as a cognitive analysis tool, particularly in terms of its ability to identify discrete processing stages.
The resulting models were broadly comparable to those produced by earlier studies, thereby supporting
the applicability of pupillary data in this and similar fields.

1 Introduction

Associative recognition is the act of recalling the
relationship between multiple items, in addition to
the items themselves. Several theories as to the
associative recognition process have been posited
(Anderson & Bower, 1973; Anderson, 2007), and
in more recent years such theories have been re-
fined and scrutinized through the use of various
neuroimaging techniques (Borst & Anderson, 2015;
Borst et al., 2016). The goal of this particular study
is to examine associative recognition in terms of
pupil size, and in so doing assess the applicability
of pupillary data as an analytical tool.

1.1 Associative Recognition

There have been numerous attempts to identify the
various processing stages that comprise associative
recognition. Early studies relied on behavioural
(Anderson, 1983) and fMRI data (Sohn et al.,
2005), culminating in an ACT-R model capable
of approaching associative recognition tasks in
much the same way as humans (Anderson, 2007).
This model offered a general understanding of the
associative recognition process and its component
stages, though its level of temporal detail was
limited by the data on which it was based.

The ACT-R model suggested four stages in
total, beginning with ”encoding”. This occurs
during the perception of an item and refers to it
being stored as information in the brain. Encoding
is followed by ”associative retrieval”, during which
a person searches their memory for an existing item
that matches the newly perceived one. This stage
is typically the longest of the four. Afterwards the
relatively brief, self-explanatory ”decision” and
”response” stages take place.

More recently, EEG data - with its finer tempo-
ral resolution - was used to further elaborate upon
the ACT-R model (Borst & Anderson, 2015). This
resulted in the identification of an additional stage,
”familiarity”, which coincides with the end and be-
ginning of encoding and associative retrieval, re-
spectively. This overlap stands in contrast to the
serial stages proposed by the ACT-R model, pro-
viding strong evidence in favour of the dual-process
theory of associative recognition (Yonelinas, 2002).

In brief, the dual-process theory suggests that as-
sociative recognition consists of two memory oper-
ations: ”familiarity” is when an item is assessed on
the basis of having previously been seen, whereas
the longer ”recollection” is when the association be-
tween two items is gauged. These two approaches to
recognition appear to involve some degree of over-
lap, with recollection beginning before the famil-
iarity stage has fully concluded. Single-process the-
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ory, on the other hand, suggests that familiarity
and recollection are part of one overarching stage
(Gillund & Shiffrin, 1984).
A more recent relevant study, and the one from

which our own research most heavily draws inspi-
ration, involved the use of MEG data (Borst et al.,
2016). The temporal and spatial detail provided
by MEG data presented an exciting opportunity to
verify the preceding ACT-R and EEG models. The
MEG model of associative recognition is indeed the
most detailed of the three, suggesting a total of six
stages. As with previous models it indicates that
encoding occurs first, and that the decision and
response stages occur last. It also points to three
distinct stages within the interim, namely ”famil-
iarity”, ”recollection” and ”representation”. These
stages take place one after the other, although the
MEG model offers a clear understanding of the ex-
tent to which they overlap. The ”lexical and seman-
tic access” part of the encoding stage, for instance,
occurs at roughly the same time as familiarity and
at the beginning of recollection. The majority of
the representation stage, to give another example,
takes place in tandem with the decision stage.
Ideally, the pupillary responses gathered in the

course of our own research would paint a similarly
detailed picture of the associative recognition pro-
cess. Our results should also offer some indication
as to the usefulness of pupillary data in decon-
structing this and other cognitive functions.

1.2 Pupil Dilation

For decades, pupil size has been widely accepted
as an indicator of cognitive activity (Hess & Polt,
1964). Our pupils increase in size (dilate) during
periods of concentration or arousal and decrease
in size (constrict) when we relax (Hoeks & Levelt,
1993). Our intent, therefore, was to have partici-
pants perform an associative recognition task and
track their pupil size throughout. We predicted that
the pupillary changes would point to distinct stages
within the associative recognition process which,
in turn, would allow for further verification of the
most widely accepted associative recognition mod-
els.
Another aspect of pupil dilation, and one which

presents wholly distinct research possibilities when
compared to the previously discussed methods of
data collection, is intensity. An analysis of the

brain’s activity with MEG can reveal a great deal
about the role of specific brain regions, as well as
the duration of their activation. Pupillary data is
inferior in both regards, providing no insight as to
the brain’s behaviour (and, as such, no insight as
to the exact nature of individual stages) and fail-
ing to account for the possibility of dual-processing
(i.e.: overlapping stages). The degree to which the
pupil’s size increases, however, is indicative of cog-
nitive effort (Kahneman, 1973), thereby allowing
for a more comprehensive view of the associative
recognition process.

1.3 Current Study

In summary, our objective was to have participants
perform an associative recognition task and track
their pupillary responses. The task required par-
ticipants to learn and recall word pairs, and con-
sisted of a training phase (during which the word
pairs are learned) and a testing phase (during which
their memory is tested and the relevant data is col-
lected).

Once a sufficient amount of data had been col-
lected it underwent pre-processing, after which it
was used to train a number of hidden semi-Markov
mixed models (HsMMs) and generalized additive
mixed models (GAMMs). We used the former to
identify associative recognition stages, while the
latter mapped each pupillary response to those
stages (Wood, 2017). These models allowed us to
intuitively analyse our results as well as draw com-
parisons between ours and previous research. This,
in turn, provided some insight as to the usefulness
of pupillary data in this and similar research fields.

Finally, it is important to make a distinction be-
tween the above analysis method - conceived and
developed by Joshua Krause - and previous at-
tempts at pupil de-convolution. Hoeks & Levelt
(1993) argued that pupil dilation is a function of
”attentional pulses”, which are themselves asso-
ciated with cognitive events. They reasoned that
such a function could be calculated, thereby allow-
ing a given pupillary response to be de-convolved
in terms of its component events. Wierda et al.
(2012) later expanded upon this additive approach,
presenting a method by which longer intervals
of pupillary activity could be examined and de-
convolved. Krause’s method marks a significant de-
parture from those and similar de-convolution tech-
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niques: through the use of the aforementioned mod-
els, pupillary responses can be broken down into a
number of processing stages. These stages can then
be examined in terms of their duration and general
pupillary response, thus offering a greater level of
detail than could be obtained through more con-
ventional processes.

2 Methods

The experiment was comprised of a training and
testing phase. During the training phase partici-
pants learned 32 word pairs, consisting of 16 short
word pairs and 16 long word pairs. During the test-
ing phase participants were asked to distinguish be-
tween target and non-target word pairs, with the
latter encompassing incorrect pairings of individ-
ual target words (”re-paired foils”) and entirely
new word pairs (”new foils”). Long word pairs did
not appear during testing. Training and testing oc-
curred on the same day, though participants were
encouraged to take a break in between phases.

In addition to the probe type of each word pair
we manipulated and examined the effects of fan, or
the number of pairs that a particular target word
appeared in, on experimental performance. The po-
sition of the words within each pair remained con-
sistent throughout.

2.1 Participants

The experiment was conducted with 25 partici-
pants (13 male, 11 female and 1 undisclosed, with
ages ranging from 20 to 26 and with a mean age
of 21.48), as well as a pilot participant whose data
was excluded from our final results. A 26th par-
ticipant attempted the experiment while wearing
colour contact lenses, which caused the eye-tracking
apparatus to require frequent adjustment and pre-
vented them from finishing the experiment’s test-
ing phase. Participants were henceforth asked not
to wear colour contact lenses.

Each participant was a student of the University
of Groningen and gave their consent by filling out
a form just prior to the experiment. Participants
were paid €16 for taking part.

2.2 Materials

Each participant was assigned a unique pool of 136
word pairs and tested with word pairs drawn from
that pool. The pools themselves were derived from
the 464 word list used in Borst et al. (2013). This
list was comprised solely of nouns with word fre-
quencies between 2 and 100 occurrences per million,
and with minimum imageability ratings of 300. Half
of the words on the list were between 4 and 5 let-
ters in length, and it was with these short words
that we constructed the required pools for each of
our 25 participants.

During the training phase participants were pre-
sented with 16 target word pairs, as well as 16 long
word pairs. These long words were chosen at ran-
dom from the long word half of the aforementioned
list and ranged between 7 and 8 letters in length.
All 16 long word pairs were the same for each par-
ticipant. As participants were not assessed on their
recognition of the long word pairs, their inclusion
during the testing phase was primarily intended to
reproduce the level of learning difficulty in Borst et
al. (2013) and Borst et al. (2016). We also predicted
that a mix of short and long word pairs would in-
crease task engagement.

Each 136 word pair pool was used to create 13
blocks for the experiment’s testing phase. These
blocks, in turn, contained 40 word pairs: the 16
target and 16 re-paired foil pairs were consistent
across all 13 blocks, but each one featured 8 dif-
ferent new, non-target word pairs drawn from the
pool.

2.3 Procedure

Training and testing were conducted on the same
day. The training phase itself consisted of two
stages, the first of which involved participants be-
ing shown each of their 16 target word pairs and
the 16 long word pairs. Participants were instructed
to learn each word pair that appeared. They were
also advised to make a connection between the two
words so as to better remember them. Word pairs
appeared on screen for 5000ms and were each fol-
lowed by a 500ms blank screen, with the latter pre-
venting participants from being overwhelmed by
stimuli and allowing them a reasonable opportu-
nity to commit each item to memory. After every
pair had been presented, participants were notified
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that the second stage of training would begin when
they were ready. During this stage, participants
were shown the first word from one of the previ-
ously learned pairs. They were instructed to type
the word (or words, in the case of the fan 2 pairs)
that they had seen the prompt word appear with.
In the event of an incorrect response, participants
were shown the correct word(s) for 2500ms before
being presented with the next prompt. After all
the prompt words had appeared once, participants
were again shown the words to which they had re-
sponded incorrectly and, again, provided with the
correct word(s) for 2500ms if incorrect in their an-
swer. This process was repeated until participants
had responded correctly to each word. Participants
were made to complete this second training stage
three times before moving on to testing.
The testing phase required participants to per-

form a recognition task with 13 different blocks of
40 word pairs each, as well as an initial practice
round featuring a smaller block of 10 word pairs
(comprised of 4 target, 4 re-paired foil and 2 non-
target pairs). Participants were shown each word
pair - each preceded by a 500ms fixation cross - and
instructed to respond quickly and accurately. Par-
ticipants were asked for their dominant hand prior
to the beginning of the experiment; right-handed
participants were told to press ’J’ if they recognised
a given word pair as a target and ’K’ if not, with
left-handed participants being told to press ’F’ if
they recognised a word pair and ’D’ if not.
Each response was followed by a 2000ms hash

mask (with the length of the mask matching the
length of the stimuli) to allow their pupil dilation
to return to (or approach) base-line levels. Finally
they were shown feedback in the form of ”Correct”
or ”Incorrect” for 1000ms and a fixation dot for
another 2000ms.
Participants were permitted to take a break be-

tween each block. During testing they remained
seated and with their heads placed on a headrest,
with the positions of the headrest and experimen-
tal display remaining consistent between every it-
eration of the experiment.

2.4 Data Collection and Preprocess-
ing

Performance and eye-tracking data were collected
from each participant via OpenSesame (Mathôt et

al., 2012; Peirce, 2007, 2009): the number of oc-
currences of each prompt word (per block) was
recorded during the training phase, and partic-
ipants had their response times and accuracy
recorded during the testing phase. The testing
phase also saw the application of the Eyelink
Portable Duo, with which we recorded the diameter
of their right pupils over the course of the experi-
ment. This data was recorded at a rate of 500Hz.
The angle of the Eyelink apparatus was adjusted
for each participant so that their pupils were in fo-
cus, although the parameters for the accompanying
Eyelink software were kept constant; these parame-
ters included calibration pacing interval, which was
set to 1000. The position of the headrest also went
unchanged, though participants were encouraged to
adjust its height so that they were seated comfort-
ably for the experiment’s duration.

The Eyelink was calibrated to a sufficient level
before the beginning of the testing phase and again
whenever the Eyelink lost track of the participant’s
pupil, usually after they had left and re-entered its
field of vision. The calibration process consisted of
two repetitions of the same procedure, the first be-
ing purely to re-calibrate the Eyelink and the sec-
ond to verify that it could effectively track the pupil
under those new calibration settings: participants
were required to look at nine points on the screen,
one after another, with the Eyelink automatically
detecting when participants had looked at a partic-
ular point and then transitioning to the next. After
a successful calibration participants were asked to
confirm their readiness, whereupon the experiment
was resumed by the experimenter.

The eye-tracking data required some modifica-
tion before it could be properly analysed: we re-
moved any fixations outside the range of the exper-
imental screen’s resolution (namely 1920x1080), as
well as any blinks that occurred during recording.
This was first attempted manually, with each re-
sponse to each individual trial being checked for
blinks after initial automatic cleaning. Blinks regu-
larly went undetected during the automatic clean-
ing procedure, thereby requiring several hours of
manual verification and removal per participant.
It was decided to adjust the scope of the au-
tomatic cleanup and set the padding to 125ms,
vastly improving the effectiveness of the automatic
cleaning process - for clarification, ”padding” refers
to the range of removed data on either side of
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a detected blink. After a participant’s pupillary
data had been cleaned it underwent a relatively
brief manual check, with further adjustments be-
ing made to the data as necessary. Next the data
was baselined to 200ms so as to compare pupil sizes
for and between each participant. Finally the data
was downsampled from a rate of 500Hz to 50Hz.

2.5 Analysis

The Markov-switching Spline Models toolbox, de-
veloped by Joshua Krause, provided the founda-
tion for our data analysis. We used semi Markov-
switching de-convolving generalized additive mixed
models to deconstruct the pupil dilation time-
course (i.e.: change in pupil dilation over time) for
each trial into a specified number of stages. The
first part of this deconstruction process involved
HsMMs, which identified the individual stages
within each time-course. We then used splines to
estimate the overall response for each stage, and
had GAMMs penalize those response estimates on
the basis of their having been overfitted.
We examined the stages proposed by each of

our models, as well as their predicted pupillary re-
sponses, in order to assess their suitability. We ex-
perimented with a range of stage numbers (3 to 7,
inclusive) with the remainder of the models’ other
parameters being kept largely uniform; foremost
among these parameters is the number of chains,
which was set to 5 early in our analysis process.
Chains refer to the number of separate runs made

by a single model. A model with a chain variable
of two, for example, will make two attempts to
de-convolve the provided pupillary response data
into the specified number of stages. These attempts
(and their corresponding predictions) are each pe-
nalized based on the likelihood of overfitting having
occurred. The least penalized, best fitting predic-
tion is then chosen as the ”best chain” and the rest
are effectively discarded.
We used the pupillary response data from all

25 participants in training our models. That be-
ing said, our initial models drew on data from a
single condition (e.g.: fan 1 targets, fan 2 re-paired
foils) and were trained with responses from fewer
than 25 participants. This allowed us to train and
compare them relatively quickly. Later models were
trained using all of our accrued pupillary data, with
the exception of responses belonging to the new foil

condition. This is simply because no recognition oc-
curs during this particular condition.

3 Results

3.1 Behavioural

3.1.1 Training

With respect to the training phase we recorded the
average number of repetitions of each word pair
before it was fully learned - or rather, before par-
ticipants matched the prompt word with its correct
pairing(s). This number varied between blocks and
between conditions, being highest during the first
block and especially high in the case of fan 2 word
pairs (see the leftmost panel of Fig. 3.1).

3.1.2 Testing

During the testing phase we recorded the response
times (Fig. 3.1, middle panel) and error rates (Fig.
3.1, rightmost panel) of each participant, in ad-
dition to their pupillary data. Note that response
times of more than 2 seconds were excluded from
our final dataset, our reasoning being that only re-
sponses given under that threshold represent gen-
uine recognition. The response times of incorrect
responses were excluded on this same basis.

New foils were responded to the most quickly,
on average. Across the remaining conditions, fan
2 word pairs elicited noticeably higher response
times than their fan 1 counterparts. It should be
noted, however, that response times were higher
for both fan types in the re-paired foil condi-
tion when compared to the target condition. Hav-
ing performed a one-way ANOVA, both fan (F (1)
= 1197.1, p<0.01) and probe type (F (3)=136.2,
p<0.01) were found to have a statistically signifi-
cant effect on response times. These results would
suggest that the fan of a particular word pair had
more of an impact on the speed of its process-
ing than the probe type, and that re-paired foils
required more effort to identify than target word
pairs.

Similar conclusions can be derived from the av-
erage error rates. New foils were responded to the
most accurately. Fan 1 word pairs across both of the
other conditions were responded to less accurately,
with fan 2 word pairs across both conditions being
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Figure 3.1: Behavioural results, from left to right: training, testing phase response times and
testing phase error rates

responded to least accurately of all. For both fan
types, targets elicited slightly more errors on av-
erage than re-paired foils. As with response time,
these results indicate that new foils are the least de-
manding condition and that fan has a larger impact
on accuracy than word pair type. Notably, targets
were identified less accurately than re-paired foils
across both fan 1 and fan 2. A one-way ANOVA
showed that both fan (F (1)=405.75, p<0.01) and
probe type (F (3)=16.66, p<0.01) had a statisti-
cally significant effect on error rate.

3.2 Pupillary

Pupil diameter was measured over the course of
each trial. Once processed (i.e.: once blinks and
other artifacts were removed) and baselined, each
pupillary response was grouped together according
to its condition. This allowed us to train a model
on one specific word pair type, as well as calculate
the average pupillary response for each condition.
As evidenced by Fig. 3.2, the overall pattern of the
pupil’s diameter change is consistent across condi-
tions. The key difference between them is the de-
gree to which they cause the diameter to change,
with fan 2 target word pairs eliciting the greatest
increases and new foils eliciting the lowest. These
results are consistent with the notion that pupil size
is an indicator of cognitive effort, and suggest that
our pupillary data is generally reliable.

3.3 Model

Our data analysis produced five comparable mod-
els, each having been trained using the entirety
of our processed pupillary response data and set

to a different number of stages. These models de-
convolved each pupillary response, thereby allowing
us to calculate the average, general pupillary re-
sponse - and the individual stages comprising said
response - according to each model (see Fig. 3.4
for an example). We also extracted the predicted
pupillary response for each condition according to
each model (Fig. 3.5). This proved especially use-
ful in gauging the accuracy of a given model, as the
issues of overfitting and underfitting became rela-
tively clear when comparing a model’s predictions
to the pupillary response for each condition accord-
ing to the collected data. Finally we obtained the
average duration of each stage within each of our
models (Fig. 3.3). Although lacking start and end
points - thereby preventing us from investigating
stage overlap - these durations were exceptionally
useful in comparing ours to existing models.

All five of our models include an initial stage to
account for stimulus onset (see the light blue, left-
most stage in each bar in Fig. 3.3). This stage falls
outside the scope of the associative recognition pro-
cess and can therefore be ignored. Our models also
share a brief final stage.

The predicted pupillary responses for each con-
dition according to the three stage model are sig-
nificantly less detailed when compared to our data,
notably lacking any initial dip in diameter. The four
stage model is similarly imprecise, with its average
stage durations proving particularly revealing: its
first two stages are of roughly the same duration
and followed by a very long third stage. This is
a stark contrast to the ACT-R model (also com-
prised of four stages) which posited that the sec-
ond stage, associative retrieval, is by far the most
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Figure 3.2: Average pupillary response (change in pupil diameter) over time, for each condition

time-consuming.

The predicted pupillary responses of the five
stage model do include an initial decline in diam-
eter and are generally more detailed than those of
the preceding two models. It further bears some
similarity to the five stage EEG model. Its stages
(excluding the brief final stage) are generally com-
parable in length, and the same can be said of the
stages outlined by the EEG model.

The predicted responses of the six stage model
are again more detailed, though only slightly so.
Of greater interest are the average stage durations,
which correspond somewhat to those of the six
stage MEG model. The first and second stages,
those being the encoding and familiarity stages in
the context of the MEG model, are relatively short.
They are followed by the comparatively long third
stage, whose MEG counterpart is the similarly long
”recollection”. According to the MEG model the
final three stages (namely representation, decision
and response) are of about the same duration. Our
six stage model instead indicates that the fourth
and sixth are extremely brief, with the fifth having
a comparable average duration to that of the third.

Lastly, the seven stage model is something of an
outlier. Its average durations suggest that a brief
stage occurs immediately following stimulus onset.

It also lacks the equally brief fourth stage which
appears in the six stage model, instead indicating
that the fourth, fifth and sixth stages are of com-
parable length. In general, the seven stage model
disrupts the pattern established by the preceding
four: the three to six stage models appear to cap-
ture the same broad stage duration structure, with
each model separating the stages of its predecessors
into smaller, more detailed parts. The seven stage
model, by comparison, presents a series of stages
that bear little resemblance to even the six stage
model’s. Its predicted pupillary responses (bottom
right panel, Fig. 3.5) are also quite distinct in their
behaviour.

4 Discussion

The goals of our study were to examine the asso-
ciative recognition process, and in so doing assess
the relevance of pupillary data. This assessment ne-
cessitates that our findings - and particularly our
models - be compared to the relevant, pre-existing
research.

The results of our experiment were as expected,
and largely align with the findings of similar stud-
ies (Borst et al., 2016): fan 2 word pairs generally
required more effort than their fan 1 counterparts,
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Figure 3.3: Average stage durations for our five models, per condition
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Figure 3.4: Predicted pupillary response for each individual stage, according to the six stage model
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Figure 3.5: Pupillary responses for each condition, according to (from left to right, starting on
the top row): data, three stage model, four stage model, five stage model, six stage model, seven
stage model
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both in terms of encoding and recollection. New
foils were almost always identified as such. On av-
erage, re-paired foils required slightly more time to
respond to than targets while the latter were more
frequently misidentified than the former.
As outlined earlier in this paper, pupillary data

offers nothing with respect to the precise cognitive
function of a particular stage. For that reason our
models are best viewed through the lens of previ-
ous research. It is apparent, when comparing our
final five models to the MEG model of associative
recognition, that many of them are insufficiently
detailed. Our three, four and five stage models, like
the earlier ACT-R model, merge stages and thus
oversimplify many aspects of the associative recog-
nition process. Our seven stage model exhibits a
tendency to overfit - likely a result of its having to
find more stages than are present. This overfitting
is best evidenced by the predicted responses of the
seven stage model, some of which feature a decrease
in diameter at 1000ms not visible in the actual data.
Our six stage model, perhaps predictably, is the
most well-behaved and aligns most closely with the
aforementioned MEG model.
The similarities between the two extend beyond

their having an identical number of stages: al-
though our own model fails to account for the pos-
sibility of overlapping stages, it does provide the
order in which they begin as well as their average
duration. With this information we can draw com-
parisons between the stages in the six stage model
and those of the MEG model which, despite the
occasional overlap, also begin at different times in
the associative recognition process.
Although there are obvious differences between

the two, both our model and the MEG model
suggest that recollection and decision-making are
among the longest stages, and that the visual en-
coding (and lexical and semantic access) stage is
longer than the ensuing familiarity stage. Further-
more, the durations and overall behaviour of our
six stage model’s stages are as one would expect
- provided that those stages are indeed similar in
nature to those occurring in the MEG model. The
response stage is exceedingly brief (due to the low
mental effort involved) while the visual encoding
and recollection stages are highly sensitive to the
type of word pair being looked at, increasing quite
noticeably when dealing with fan 2 items.
In summary, the results of our six stage model

align somewhat with the prevailing MEG model.
This, in conjunction with the predictable behaviour
of our model’s stages, would suggest that pupillary
data is a suitable indicator of the internal processes
that occur during associative recognition. Our con-
clusion, therefore, is that pupillary data presents
a viable alternative (or accompaniment) to more
widespread brain-analysis tools. We imagine that
future research will better exploit the unique ad-
vantages of pupillary data, providing an elevated
degree of insight as to mental effort in addition
to the temporal and spatial detail captured by the
likes of EEG, fMRI and MEG.
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