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Abstract: Associative Recognition is a cognitive task that can help shed light on the stages
required for information processing. It has been studied from multiple perspectives, yet there is
still no clear definition for the exact structure of its processing stages. Additionally, the manner
in which the intensity level of mental effort impacts different stages has not yet been dealt
with. It is known that the human pupil provides information regarding cognitive processes, its
size increasing with mental effort. Here we applied a new approach employing Hidden semi-
Markov Model combined with a Generalized Additive Mixed Model (HsMM-GAMM) to perform
pupillary deconvolution on the data from an associative recognition experiment. Based on the
results, we proposed an additional model of associative recognition. Results show a significant
effect of fan on both response time (RT) and error rate (ER), while the effect of probe type is
only significant on RT. Employing HsMM-GAMMs in the pupillary response analysis to create
a new model for associative recognition provides insight into the variability and duration of the
processing stages of the cognitive task through the lens of mental effort. The resulting model
that proved to be the most probable is comprised of six stages and is closest in behaviour to a
previously proposed MEG model. While recovering a sensible stage structure, the HsMM-GAMM
model is not without fault. The greatest downsides of the chosen architecture were its lack of
specificity, which influenced the manner in which it assigned intensity level of mental effort to
specific stages, as well as its modelling of some individual stage responses as having negative
amplitudes.

1 Introduction

The stage structure underlying human cognitive
processing of inputted information has been a mat-
ter of interest and debate in the scientific commu-
nity for more than a century (Donders, 1868/1969;
Sternberg, 1969). Donders (1868/1969) was the first
to consolidate the idea that information processing
is a stage-based mechanism. Such mechanisms are
apparent in numerous processes, namely solving a
differential equation. There are certain steps — or
stages — that need to be completed to reach the
answer. Thus, Donders (1868/1969) brought into
question three major issues concerning the stages
underlying information processing: the matter of

identifying them, their timing and the factors that
impact them. He advanced an initial approach —
the subtractive model — intended to formulate an
answer to some of the questions. The model com-
pares the Response Time (RT) of tasks hypothe-
sized to share all but one stage, to infer the dura-
tion of said stage.

In his overview of the predecessors of experimen-
tal psychology, Boring (1929) made it clear that
behavioural responses were found to consist of such
stages. Reducing information processing to a mere
succession of encoding, cognitive processing, and
response elicitation, provides insight into the task
consisting of at least three stages. Nevertheless, this
is a rather rudimentary division of the process. A
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more substantial approach was later formulated by
Sternberg (1969), an approach that would eventu-
ally become the root for numerous other studies
attempting to find answers to the questions for-
mulated by Donders (1868/1969). Sternberg (1969)
proposed an additive factors method highlighting
that various manipulations on RT provide insight
into the presence of different stages. For instance,
manipulating two variables — or factors — that are
independent of each other attests to the presence
of two distinct stages that have been influenced by
them. This becomes apparent with the difference
in RT, which is a summation of stages’ duration.
Hence, the difference in RT between manipulations
of the same added variables pinpoint discrepan-
cies between the separate stages affected by each
of them. Yet, RT manipulations alone simply be-
speak the collective duration of all stages, lacking
an actual delimitation between the individual ones
(Borst, Schneider, Walsh, & Anderson, 2013).
As a solution, neuroimaging techniques have

been used to distinguish between different stages,
approximate their duration, and pinpoint their con-
tent and localization on the cerebral cortex (e.g.
Anderson, Zhang, Borst, & Walsh, 2016; Borst,
Ghuman, & Anderson, 2016; Sohn et al., 2005). As
such, functional MRI (fMRI), electroencephalogra-
phy (EEG) and magnetoencephalography (MEG)
provide valuable input towards defining the struc-
ture of stages underlying information processing.
Of these, MEG provides the highest temporal reso-
lution and the most information regarding the cor-
tical localization of such stages (Borst et al., 2016).
Nonetheless, the intensity of mental effort elicited
by different stages has not been the focus of these
approaches, which paid close attention to delimit-
ing the duration of different stages.
On the other hand, pupillary responses do pro-

vide insight into the intensity of mental effort re-
quired for a task, pupil size increasing with mental
effort (Hess & Polt, 1964). More so, the pupil re-
acts to different events — or stages — generating a
response to each (Hoeks & Levelt, 1993). Howbeit,
the pupillary response is itself slow, its response
to an event has a slow increase that peaks one sec-
ond after the elicited event (Hoeks & Levelt, 1993).
Pupil deconvolution breaks the pupil dilation time
course into separate functions associated with these
event-specific responses, underlining the intensity
of mental effort associated with each stage (Hoeks

& Levelt, 1993). Moreover, transforming the pupil-
lary time course using pupil deconvolution provides
a high-temporal resolution assessment of cognitive
stages in information processing (Wierda, van Rijn,
Taatgen, & Martens, 2012).

Yet, these past approaches to implementing pupil
deconvolution fail to take into account differences
between subjects or trials relative to the timing of
the stages. The purpose of the current study is,
thereafter, to fill this gap using a new approach
(Krause, Borst, & van Rij, 2023) to performing
pupil deconvolution. Together with pupillometry, it
will be employed to analyse the intensity of mental
effort apparent in the cognitive processing stages
of associative recognition. The latter has been ex-
tensively studied in the past (e.g. Anderson et al.,
2016; Borst et al., 2016), allowing for a pertinent
comparison between the findings of the current
study and previous ones. Concurrently, the study
looks to evaluate the structure of the aforemen-
tioned stages as revealed by the human pupillary
response.

1.1 Pupil Diameter Deconvolution

Pupil deconvolution has initially been proposed by
Hoeks and Levelt (1993) as a method of divid-
ing the pupillary time course into separate func-
tions associated with each event-specific response
elicited. Their model assumes each of these event-
specific responses has an attentional pulse. These
pulses then form a sequential system, each vary-
ing in temporal distribution, as well as amplitude.
Additionally, the system has a constant-duration
impulse response that is described by an Erlang
gamma function. It, in turn, consists of the indi-
vidual impulse responses of the attentional pulses,
which are presumed to be identical, except for a
particular amplification factor for each. Thus, the
convolution of the inputted sequential system and
the general impulse response output the predicted
pupillary response assumed by Hoeks and Levelt’s
(1993) model. It takes the form of a vector having
time as a dimension, and the pupil diameter’s de-
viation from the baseline as values. The system is
assumed to be linear, with the same event always
generating the same pupillary response. Figure 1.1
captures the convolution process of the pupillary
response (orange) from each of the event-specific
responses (black). These events are each generated
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from an attentional pulse (green) with a set ampli-
tude and place in the time frame.

Figure 1.1: The pupillary response (orange)
as the convolution of event-specific responses
(black). These responses are each generated
from an attentional pulse (green). The pink lines
mark the Stimuli Onset (vertical) and the base-
line (horizontal).

Furthermore, Wierda et al. (2012) extended the
previous model to account for the pupil’s delayed
response to each event. They propose a model
which provides a high-temporal resolution assess-
ment of cognitive stages. To this end, they ad-
vance an optimization algorithm, which minimizes
the difference between the recorded and predicted
pupillary time courses. It is intended to capture
the strength associated with the attentional pulse
of each event, using the temporal locations vector
of pulses. More so, the linear drifts in the data
are accounted for with a slope which Wierda et al.
(2012) estimate. This allows for longer pupillary
responses to be analyzed. Concurrently, using the
temporal locations of attentional pulses to deter-
mine the temporal resolution allows for an analysis
that accounts for the delayed pupillary response.
Howbeit, both models compute the predicted

pupillary response for different conditions using the
averaged data over all subjects. This approach does
not take into account that the same response to a
specific event might occur at different moments for
different subjects, or even for different trials. Ad-
ditionally, the task chosen by Wierda et al. (2012)
had stimuli be presented every 100 ms. This led
to the potential events of every pupillary response

being spaced every 100 ms, resulting in an overlap
between the events of consecutive responses. With
the data being averaged over all subjects, the afore-
mentioned overlap is bound to have influenced the
outcome of the model.

To account for these issues Krause et al. (2023)
propose an approach that combines Hidden semi-
Markov Models (HsMM) with Generalized Addi-
tive Mixed Models (GAMM). Hidden Markov Mod-
els (HMM) simulate a system which is always in
one of its states. At times, the system transitions
to a new state (Rabiner, 1989). As such, the sys-
tem simulated by the model will be, in this case, the
pupillary response, while the states are the event-
specific responses or cognitive processing stages.
The duration of each stage is variable, which mo-
tivates the use of the variable-duration HMM —
HsMM (Yu, 2010). Concurrently, GAMM are func-
tion approximators which capture non-linear re-
lationships between covariates (time) and signals
(pupillary time course). These are used to recon-
struct the shape of the pupillary time course from
the different functions associated with each stage,
generating the predicted pupillary response of each
individual trial.

1.2 Associative Recognition

Associative recognition is a cognitive recall task
which involves judging whether two items have
been previously experienced together. The current
study employs the task structure as proposed by
Borst et al. (2013), where participants had to study
a list of word pairs. This was followed by a recall
task where they had to judge whether presented
word pairs have been studied together, separately,
or if they were studied at all. In order to provide an
accurate response, participants needed to have both
item and associative information. That is, a correct
response required knowing whether the words were
studied, and how these were studied, respectively.
Namely, the response is impacted by the fan of the
pair - the number of distinctive studied pairs the
words in that specific probe appear in. As fan in-
creases, RT has been found to increase as well (An-
derson & Reder, 1999), thus the time for recalling
a word increases with the number of episodic asso-
ciations it has with other words in memory (Borst
et al., 2013).

Numerous structural models of associative recog-
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nition and its underlying stages have been pro-
posed in the past couple of decades (Anderson,
2007; Anderson & Reder, 1999; Borst & Ander-
son, 2015; Borst et al., 2016). One that, as of late,
has proven to yield a rather simplistic decompo-
sition of the stages underlying associative recogni-
tion is the computational process model developed
in the cognitive architecture Adaptive Control of
Though-Rational (ACT-R; Anderson, 2007). While
the most simple, this model has explained the pat-
terns found in most data, offering a much more
detailed analysis than allowed by either behaviour
or fMRI (Borst et al., 2016). Thereafter, as seen
in the top part of Figure 1.2, the ACT-R model
assumes a sequential stage system to describe the
cognitive mechanisms underlying associative recog-
nition. That is, an initial encoding stage of the
perceived stimuli, sensitive to physical features of
the stimuli such as size. The encoded information
is then used to perform associative retrieval, the
second stage assumed by the ACT-R model. This
stage is known to be influenced by the fan type of
a pair. Seeing as, during the learning phase, the
stimuli pairs are stored as sole information chunks
in memory (Anderson & Reder, 1999), the model
now retrieves from memory the closest match to the
encoded pair. Once retrieval is done, the decision-
making stage follows, where the participants deter-

mine whether the perceived stimuli have been stud-
ied together or not. This is done by comparing the
stimuli pair to the retrieved pair from memory. As
such, this stage is influenced by the probe type of
the stimuli: target — studied pair —, re-paired foil
— non-studied pair, but which consists of studied
words —, or new foil — non-studied pair consisting
of new words. Lastly, the ACT-R model assumes
the motor response is the last stage of the process,
occurring once the decision has been made.

The more complex EEG Model (Borst & Ander-
son, 2015) is constructed using a stage-discovery
method employing HsMM on EEG data to iden-
tify specific stages and their duration through their
neural signature. This allows for a more explicit
analysis of the data than the inferences done on
behavioural and fMRI data, on which the ACT-
R model (Anderson, 2007) is based. As captured
in the centre of Figure 1.2, the EEG model as-
sumes an additional stage, compared to the ACT-R
model. Familiarity does not consist of any informa-
tion being retrieved from memory, but is a rather
fast and automatic sense of how known — or famil-
iar — an item is. This stage begins before encoding
is complete and lasts until after the retrieval stage
has begun. It is influenced by the early fan effect,
pinpointing a swifter initial recognition of words
appearing in higher fan probes. With this process

Figure 1.2: The processing stages of associative recognition as described by the ACT-R model
(Anderson, 2007) (top), the EEG model adapted by Borst and Anderson (2015) (centre), and the
MEG model proposed by Borst et al. (2016) (bottom).
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beginning during encoding, words with a higher
number of occurrences are rapidly recognised. This
model also proposes the late fan effect to impact
the retrieval stage, with probes of a lower fan be-
ing easier to recall.
The last model, the MEG one (Borst et al., 2016),

assumes the most complex stage structure. The
MEG data the model is based on provides both a
high-temporal resolution (which fMRI data lacks),
and a good spatial resolution (missing from EEG
data). This allows for the spatiotemporal dynam-
ics of associative recognition to be analysed using
a multivariate classifier, along with non-parametric
cluster analyses. The finer representations of the
activity in the cortex, thus, justify the higher com-
plexity of the MEG model. As captured in the
bottom part of Figure 1.2, this model divides the
encoding stage of the previous two models into
two parts: Visual Encoding and Lexical & Seman-
tic Access. The former is associated with the ini-
tial encoding of the visual stimuli as it appears
on the screen, while the latter concerns process-
ing the meaning of the words in the current probe.
This stage is thought to start before familiarity,
last throughout it, and end during recollection. The
current recollection stage is the counterpart of the
associative retrieval stages from the previous two
models. An additional representation stage is as-
sumed, where the recalled pair is stored during
the decision stage, before the response. This pair
is then compared to the stimuli during the deci-
sion stage. Ultimately, the aforementioned stage is
now thought to last throughout the entire response
stage.

1.3 Aim

This study will implement a HsMM-GAMM model
for pupil deconvolution to analyse the underly-
ing cognitive stage structure of associative recog-
nition. Accordingly, it aims to observe whether the
model implementing HsMM-GAMM will produce
a similar stage structure to those observed in the
previous associative recognition models (Anderson,
2007; Borst & Anderson, 2015; Borst et al., 2016).
More so, it seeks to distinguish which of these mod-
els proves to be the most probable representation
of the stage structure underlying the studied cogni-
tive task. Furthermore, the effect of fan and probe
type on the intensity of mental effort required in

the stages of familiarity, recollection and decision-
making will also be analysed.

The stage structure of Associative Recognition
as reflected by the HsMM-GAMM model is hy-
pothesised to reflect the structure captured in the
previous three models, holding a similar number
of stages. Additionally, fan and probe type, are
also thought to impact the level of mental effort
required by the stages of familiarity, recollection
and decision-making. It is hypothesised that men-
tal effort increases as the fan increases. Higher fan
items are thought to be associated with increased
pupil dilation as a response to the familiarity and
recollection stages. On the other hand, it is hypoth-
esised that mental effort increases when there is a
match at the item level, but not at the associative
level. It is believed that re-paired foils will be as-
sociated with increased pupil dilation, compared to
targets, as a response to the recollection and deci-
sion stages.

2 Methods

2.1 Participants

This study gathered a total of 26 participants, how-
beit, one had to be excluded as they were unable to
complete the testing phase of the experiment. This
was owing to the constant need for eye-tracker cal-
ibration resulting from the participant’s coloured
contacts. More so, one of the remaining participants
failed to fill in the demographics data form. Of the
remaining 24 participants, 11 were women, one pre-
ferred not to mention their gender and the rest were
men. Their mean age was 21.46 with an age range of
20-26. 21 of them were right-handed, while the rest
were left-handed. All participants were Bachelor’s
or Master’s students at the University of Groningen
and were approached personally for recruitment.
All signed informed consent forms prior to partic-
ipating in the study and received monetary com-
pensation of 16 euros each for partaking in a single
one and a half hours session.

2.2 Stimuli

The stimuli consisted of short (four or five letters
long) noun word pairs divided into three distinct
types, referred to as probes — targets, re-paired
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foils & new foils. Targets were 16 word pairs, with
eight pairs corresponding to each of the two fan
conditions — Fan 1 & Fan 2. Thus, every word in a
Fan 1 target pair exclusively occurred in that spe-
cific target probe, while all words in a Fan 2 target
pair were coupled with one other Fan 2 word in
a distinctive target probe. Likewise, re-paired foils
consisted of 16 word pairs, equally split between
the two fan conditions — eight for each. Fan 1 re-
paired foils were generated by conjoining two words
that appeared in different Fan 1 target probes. Sim-
ilarly, Fan 2 re-paired foils comprised two words oc-
curring in different Fan 2 target probes, each word
appearing in two independent Fan 2 re-paired foil
probes. Howbeit, new foils amounted to 104 word
pairs, each word distinct from the ones used in tar-
gets and re-paired foils. All words in a new foil
probe appeared only in one such pair. The targets
were the only ones used during training, while all
probe types were used during testing. In contrast
to Borst et al. (2013), this study focused on short
word pairs to account for the prospective confound-
ing variable of eye movement that long word pairs
ought to bring forth. Nevertheless, long word pairs
were still used in the training phase, as well as the
practice block of the testing phase. As such, an ad-
ditional 16 long (seven or eight letters) word pairs
were used during training. The practice block of
the testing phase was designed with four of the
long pairs learned, four pairs designed to mirror
re-paired probes and two pairs with new words,
matching the style of new foils. Withal, if all short
word pairs were novel for each participant, the 24
long word pairs were unchanged across all. Being
primely interested in the effect of probe and fan
type, five conditions were determined by the short
probes, in a 2 x 2 design — probe (target and re-
paired foil) and fan (Fan 1 and Fan 2) type —,
together with the one condition for new foils.
All probe types were generated from 260 words

originally selected by Borst et al. (2013) from the
MRC Psycholinguistic Database (Coltheart, 1981).
Each of the words had a base imageability rating
of 320 and a frequency between two and 97 occur-
rences per million. Of the total 260, 28 were long
words, with a mean word frequency of 28 occur-
rences per million (SD = 30.6), a mean imageability
rating of 509 (SD = 86.1) and a mean word length
of 7.3 letters (SD = 0.4). The remaining 232 were
short words, having a mean word frequency of 24.3

occurrences per million (SD = 22.1), a mean im-
ageability rating of 539.3 (SD = 55.3) and a mean
word length of 4.5 letters (SD = 0.5). The short
words were randomly divided, for each participant,
in a study list (of 24 words) and a new foil list (of
208 words), whereas the long words were divided
once for all participants in the same two lists (24 in
study and four in new foil). The two short word lists
were matched for all participants on word length,
frequency, and imageability based on six t-tests, all
with p > .1, analogous to the method used by Borst
et al. (2013). Each study list was generated such
that all words began with a different three-letter
sequence. Study lists were used to generate targets
and re-paired foils, while the others generated new
foil probes. While the first 20 pairs of short word
lists were identical to those used by Borst et al.
(2013), five new ones had to be generated for the re-
maining participants. The two long word lists were
kept consistent across participants, being acquired
from the generated word pair list of the first par-
ticipant of Borst et al. (2013). Thus, all long word
targets from Borst et al.’ (2013) first participant list
were used, while four pairs from their re-paired foil
list and four from the new foils one were randomly
selected.

2.3 Materials

Both phases of the experiment were implemented
using the OpenSesame software (Mathôt, Schreij,
& Theeuwes, 2012). All prompts had a white back-
ground, with a resolution of 1920x1080 px. All text
in both phases was placed in the centre of the
screen, written in black, size 18 px, using Arabic
font for the word pairs in the training phase and
Mono font for the instructions of the training phase
and all throughout the testing one. Word pairs were
presented at approximately 1.09 degrees of visual
angle — both horizontal and vertical — for short
pairs, and 1.75 horizontal degrees of visual angle
and 1.09 vertical degrees for long word pairs, re-
spectively. To ensure the consistency of the pupil
dilatation samples, four bounds were set for the
gaze location of the participant’s left eye. Thus,
if the left eye’s gaze was outside of a 75 px wide
square positioned in the centre of the screen, the
experiment would trigger a calibration sequence of
the eye tracker.

Turning to physical materials, if the training
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Figure 2.1: The structure of a trial of the testing phase.

phase simply required the use of a computer (desk-
top and keyboard), the testing phase made use of
additional apparatus. In order to collect the eye-
tracking data, the EyeLink Portable Duo was used
to record the diameter of the participants’ left pupil
at a sampling rate of 500 Hz. During recording, par-
ticipants placed their heads on a headrest to ensure
that they would move as little as possible. The ex-
periment was conducted in an eye-tracking lab at
the University of Groningen. The room was free of
any auditory or visual distractors, having no win-
dows, the researcher and participant being the sole
individuals inside during the experiment.

2.4 Procedure

The experimental procedure closely followed that
of Borst et al. (2013), allowing for some changes
that fostered the switch to an eye-tracking-based
study. As such, each participant took part in one
individual one-and-a-half-hour session for both the
training and testing phase of the experiment. Be-
fore starting the experiment participants read an
information sheet describing the course of the ex-
periment, signed the informed consent form and
filled in a demographic data form with their age,
gender and handedness.
The training phase was split into two parts: ac-

quisition and consolidation. During the acquisition
phase, each of the 32 word pairs used during train-
ing were presented one word above the other for
5000 msec followed by a 500 msec blank screen.
All participants were instructed to make an initial
effort to remember the pairs when reading them.
Once the acquisition phase was done, the consoli-
dation one started. The latter consisted of a cued

recall task where participants were prompted with
all of the 48 words that appeared in the pairs stud-
ied during acquisition. Hence, one trial consisted
of a randomly selected word from the target pool
appearing on the screen, the participants being re-
quired to recall their one (for Fan 1 pairs) or two
(for Fan 2 pairs) associated words. The response
was bounded by no time constraints. If the correct
response was provided, then the next trial started,
otherwise, a 2500 msec feedback, that took the form
of the word together with the expected response,
appeared on the screen. More so, in case the re-
sponse to the current trial was incorrect, the word
appeared once again at the end of the block until
the correct response was provided. One block con-
sisted of the basis 48 trials and the repeated incor-
rect trials. The consolidation phase of the training
consisted of three such blocks of trials, lasting for
approximately 30 minutes.

Once the training phase was completed, the par-
ticipants moved on to the testing phase, with the
option to take a break between the two. Before
starting the testing phase each participant assumed
a comfortable position, placing their index and mid-
dle fingers on either the J and K keys — if they
were right-handed or ambidextrous — or the D and
F keys — if they were left-handed. Additionally,
the eye tracker required one initial calibration prior
to the beginning of this phase. The testing phase
consisted of one practice block of ten trials and 13
testing blocks of 40 trials each, lasting for approxi-
mately one hour. If needed, participants could take
breaks between each of the blocks. The practice
block made use of long word pairs, two for each of
the five conditions, that were kept the same for all
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participants. Each testing block used short word
pairs, eight for each of the five conditions, that
appeared in random order. Thereafter, each con-
dition corresponded to 104 of the total number of
trials for each participant. All target and re-paired
foil probes appeared once during each block — 13
times throughout the entire testing phase —, while
eight randomly selected distinct new foil probes ap-
peared in each block — each new foil pair appeared
once throughout the testing phase.
The structure of a trial is captured in Figure 2.1.

Thus, each trial began with a fixation cross posi-
tioned at the centre of the screen for 500 msec. In
case the participant’s left eye gaze was no longer
in the preset bounds, the eye tracker would trig-
ger a calibration sequence during the fixation. If
such a sequence was triggered, the fixation period
was repeated. Following the fixation, one word pair
would appear on the screen — one word above the
other. The participants were instructed to press ei-
ther the J or F key — depending on their handed-
ness — if the word pair had been studied during
the training phase, or the K or D key — depend-
ing on their handedness — if the pair had not been
studied. Withal, the participants were encouraged
to respond promptly and accurately. The response
triggered a hash mask — matching the length of
both words — of 2000 msec, which allowed for the
delayed pupillary response to the stimulus to be
accurately captured before the feedback was pre-
sented (Wierda et al., 2012). The feedback — Cor-
rect/Incorrect — was presented for 1000 msec, fol-
lowed by a fixation dot. The latter appeared for
2000 msec, to allow for the pupil dilation levels to
return to baseline following feedback onset.

2.5 Pre-processing

From the behavioural testing data, all trials with
an RT exceeding 20,000 ms were excluded for anal-
ysis. A trial having such a long RT was considered
as containing unreliable data. Five such trials were
excluded from the analysis. Of the remaining data,
the RTs and Error Rates were analysed. Further-
more, all trials with an incorrect response were also
excluded from the analysis of RT. Similar to the
training data, the RTs and Error Rates of the test-
ing phase were first aggregated within participants,
and afterwards between participants.
To pre-process the eye-tracking data, the EDF

files generated by the eye-tracker were converted
to ASC files. This was done using the EyeLink
Data Viewer software packages (SR Research). The
ASC file format was then the one used for pre-
processing. The eye-tracking data has been fur-
ther pre-processed using the R framework (R Core
Team, 2021), along with the following R pack-
ages: dplyr (Wickham, François, Henry, Müller, &
Vaughan, 2023), eyelinker (Barthelme, 2021), plyr
(Wickham, 2011), & PupilPre (Kyröläinen, Por-
retta, van Rij, & Järvikivi, 2019).

Hence, the eye-tracking data has initially been
cleaned of unnecessary rows, aligned to the Stim-
ulus Onset message, while incorrect trials were re-
moved. Next, the blinks have been removed from
the data. Lastly, the data has been baselined us-
ing normalization, with a window of -100 ms to 0
ms, and downsampled to 50 Hz. In preparation for
the model, the data from all participants has been
saved in different files, one for each condition, one
containing all data and one with all data, except for
new foil trials. The five trials excluded from the be-
havioural testing data for having RTs higher than
20,000 ms were also excluded from the eye-tracking
data, as well as the incorrect trials. More so, for
each trial only data from stimulus onset to 2000
ms after the trial’s RT was included.

2.6 HsMM-GAMM model

The general model (Krause et al., 2023) fits a num-
ber of HsMM chains consisting of a set number
of states for the system. These states represent
the number of processing stages, or event-specific
responses elicited by the pupil, that are assumed
to occur during associative recognition. While the
HsMM chains are fitted, GAMMs are used to ap-
proximate the shape of each of the event-specific
responses. Each HsMM chain is fitted for a set num-
ber of iterations, so as to reach convergence. Out
of all of the fitted HsMM chains of the model, the
one that reached the highest log-likelihood at the
last iteration was selected as the best one for that
model, its results being used for analysis.

The ran model architecture assumes that each
event-specific response has the exact same shape
for all trials, all being gamma Erlang functions.
What varies between trials for this model is that
each event-specific response is shifted in time be-
tween trials. This fixed response shapes model has
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been initially run for three to seven states, using
five chains and 100 iterations. This architecture was
run once for each number of states on the dataset
containing all the data, except for new foil trials.
Concurrently, four other models were run with the
same number of chains and iterations for each num-
ber of states, on each of the four individual data sets
of the conditions. Thus, five fixed response shapes
models were run for each of the five numbers of
states - general, Fan 1 targets, Fan 2 targets, Fan 1
re-paired foils, and Fan 2 re-paired foils. The four
condition-specific models were run for each num-
ber of stages to verify whether these four or the
general model were better predictors of the state
durations and pupillary response. Figure 2.2 cap-
tures the predicted pupil dilation time course of
one experimental trial, its event-specific responses,
and its original counterpart as predicted by the gen-
eral fixed response shapes model using five chains
and 100 iterations for 6 states. Out of the five gen-
eral fixed response shapes models, the one which
had the mean predicted pupillary responses of each
condition and the general response most similar to
their original counterparts, was selected.

Figure 2.2: The pupillary response of one trial
with its predicted response and each of the
event-specific responses as predicted by the gen-
eral fixed response shapes model using five
chains and 100 iterations for 6 states.

3 Results

3.1 Behavioural

3.1.1 Training

As indicated by Borst et al. (2013), the frequency of
the target probes being presented during the three
blocks of cued recall of the training phase indicates
the learning rate of the targets. The minimum fre-
quency value is one, with each target appearing at
least once during each of the training blocks – indi-
cating that the participants learned a pair after a
single display. The training data was initially aggre-
gated within participants, and afterwards between
participants, to compute the mean frequency per
block for each of the four conditions — combina-
tions of Fan and Length. Looking at the left-hand
side of Figure 3.1, the mean frequency decreases
with each Block for both Fan conditions, as well as
both Length conditions. Figure 3.1 (left) also cap-
tures a difference in means between the two Fan
conditions, ultimately highlighting a clear effect of
Block and Fan, replicating Borst et al. (2013).

A repeated measures ANOVA having Fan, Block,
and Length as factors was run on the aggregated
training data, to verify the significance of the pre-
viously observed differences in frequency means. A
significant large main effect of Block, F (2, 48) =
52.29, MSE = 168.11, p < .001, η2p = .69, was cap-
tured in the training data, the mean frequency sig-
nificantly decreasing with each block. A significant
large main effect of Fan was also captured, F (1, 24)
= 52.17, MSE = 63.25, p < .001, η2p = .68, with
Fan 2 targets having a significantly higher mean
frequency than Fan 1 ones, which decreased across
blocks. This decrease is in line with the significant
large interaction between Fan and Block, F (1, 24)
= 29.55, MSE = 27.32, p < .001, η2p = .55. These
three significant effects capture the learning pro-
cess of the targets during the cued recall task of
the training phase.

3.1.2 Testing

Similar to the training data, the RTs and Error
Rates of the testing phase were first aggregated
within participants, and afterwards between par-
ticipants for analysis.

The centre of Figure 3.1 captures the mean RT
for all conditions, with differences between the two
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Figure 3.1: Behavioural results of the training phase on the left, RT of the testing phase in the
centre, and the Error Rate of the testing phase on the right. All error bars indicate Standard
Error (SE).

Fan conditions of both targets and re-paired foils.
There are also differences between all three Fan
1 conditions and the two Fan 2 conditions, deter-
mined by the probe types. A repeated measures
ANOVA with Fan and Probe Type as factors was
run on the aggregated RT means of targets and re-
paired foils to verify the significance of the previ-
ously observed differences. A significant main effect
of Probe Type over the RT means was found, F (1,
24) = 18.96, MSE = 767353, p < .001, η2p = .44.
Having a large effect size, it is clear that RT for
re-paired foils is significantly higher than for tar-
gets. The test also captured a main large effect of
Fan over RT, F (1, 24) = 26.64, MSE = 679501,
p < .001, η2p = .53, Fan 2 probes being asso-
ciated with significantly higher RT, compared to
Fan 1 probes. This is in line with previous research
on associative recognition (e.g. Borst & Anderson,
2015; Borst et al., 2016). However, unlike previous
research, the interaction between Fan and Probe
Type did not have a significant effect on RT, F (1,
24) = 0.79.

A repeated measures ANOVA with Fan and
Probe Type as factors was also run on the aggre-
gated Error Rates of targets and re-paired foils.
Only a main large significant effect of Fan over Er-
ror Rates was captured, F (1, 24) = 19.80, MSE
= 1410.70, p < .001, η2p = .45, Fan 2 probes be-
ing linked to significantly higher Error Rates, than
those connected to Fan 1 probes. The outcome of
this test is also mostly in line with previous re-
search, seeing as the main effect of Probe Type on

Error Rate found by Borst et al. (2016) was only
marginally significant.The right-hand side of Figure
3.1 clearly captures the highly significant difference
between the two Fan conditions on Error Rates.

These behavioural results do still capture re-
paired foils taking longer to be identified than tar-
gets, and Fan 2 items being more difficult to man-
age than Fan 1 items. Still, the effect of Fan on RT
and Error Rate was proportional between Probe
Types, no significant interaction being captured be-
tween the two Independent Variables (IVs).

3.2 Eyetracking

The pre-processed eye-tracking data were initially
aggregated within subjects. From this data, one
other aggregation procedure was performed. The
data was aggregated within the five conditions of
the study, the mean pupillary responses for each
condition being captured in Figure 3.2.

Across conditions the qualitative pattern in pupil
dilation is similar. To be more exact, they all start
from stimulus onset with a small dip in dilation,
followed by an increase in diameter that reaches its
peak somewhere between 1000 and 2000 ms. After
reaching the peak, all time courses show a decrease
in pupil size and a tendency to return to baseline.
The decline itself is the delayed pupillary response
to the mask appearing on the screen, all declines
occurring during the mask period. as indicated by
Figure 3.2. The following increases, and dips, in
pupil sizes seem to be generally similar across con-
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Figure 3.2: The general mean pupillary response
averaged over participants and conditions. All
error bars indicate SE.

ditions. With the main difference between them be-
ing their amplitudes, these can be linked to the an-
ticipation of the feedback appearing on the screen.
The differences in the amplitudes of the new peaks
can be explained by all time courses starting the
second ascent after about the same duration of
time, very close to the end of the mask period. This
duration being associated with a similar decrease in
pupil size between conditions, the second ascent of
each condition is relatively proportional to the am-
plitude of their first peak.

Focusing on the differences between the mean
pupillary responses of the five conditions as seen
in Figure 3.2, it is relatively clear that the mean
response of the New Foils (orange) is quite differ-
ent from the rest. It has the lowest peak out of all
responses, which could be associated with the low-
est intensity of mental effort required to provide a
response to the stimulus out of all conditions. Its
descent also starts rather early, compared to the
other four, which can be expected, considering that
the mean RT was also lowest for this condition.

Looking at the other four responses, some pat-
terns can be observed in the behaviour of their first
bumps in relation to the two IVs of the study: Fan
and Probe Type. The two mean responses of the
targets (pink and blue) have a faster and more
abrupt initial ascent, than those two of the re-
paired foils (green and olive). Additionally, the am-

plitude of the initial peaks of target time courses
are considerably higher than those of the re-paired
foils. This difference in amplitude highlights an
overall higher level of intensity of mental effort be-
ing associated with providing a response to the
targets, than to re-paired foils. Nevertheless, re-
paired foils are typically perceived as the more
complicated condition ( e.g. Borst et al., 2013).
This increased amplitude in target peaks might also
stem from cognitive processing stages being com-
pleted faster for targets than for re-paired foils,
their individual responses being moved closer to-
gether and summed to form general response peaks
with greater amplitudes. Thus, this observation ce-
ments the need to look at event-specific responses,
rather than the general pupillary time courses to
analyse the intensity of mental effort elicited in each
condition.

Figure 3.3: Zoom in on the initial ascent of the
condition mean pupillary responses captured in
Figure 3.2.

Turning to the differences between the two Fan
conditions, Fan 1 responses (blue and olive) seem to
have slightly faster and more abrupt initial ascents
than those of Fan 2 responses (pink and green),
as captured in Figure 3.3. Concurrently, Fan 1 re-
sponses have their descents distinctly earlier and
much more abrupt compared to Fan 2 responses.
This latter difference pinpoints that responses to
Fan 2 pairs require a longer duration of increased
mental effort compared to responses to Fan 1 pairs.
Ultimately, the motor response provided by the
participants mark different moments in the pupil-
lary time courses of each Fan condition. Fan 1 re-
sponses appear closer to the beginning or center
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of the initial peaks of the pupillary timecourses,
while for Fan 2 responses, the start of the decline is
marked by the participants providing their motor
response to the stimulus.

3.3 HsMM-GAMM model

As explained in the Methods, five fixed response
shapes models were run for three to seven states on
a dataset containing all target and re-paired foil tri-
als. The results are shown in Figure 3.4. It should
be noted that all subplots have a turquoise stage
at the beginning of each mean stage duration rep-
resentation, which is associated with the duration
elapsed between stimulus onset and the beginning
of the first stage. Figure 3.5 captures the mean
pupillary response shapes predicted by each of the
models, as well as the original pupillary responses.
Looking at each of the five models in Figure 3.5,

it is clear that the five- and six-stages ones seem
to have the mean predictions closest to the original
responses. The first two models have their predic-
tions display behaviour that is far too general, mak-
ing the predicted condition responses simply look
like either variations of one Erlang gamma function
— the three stages model —, or the convolution
of two such functions — the four stage one. The
seven-stage model, on the other hand, captures be-
haviour that is not even there, with an additional
early smaller peak in the response at around 750
ms. Between the five and six stages models, the lat-
ter seems closer to the original responses, mirroring
the elongated duration of the Fan 2 peaks. These
differences can also be seen in Figure 3.4. The first
two models have far too general of a stage duration
distribution, the second state, starting far too late
for all means. The general behaviour of their stage
distribution stems from the models attributing the
differences between conditions to random stages,
or even incorporating more than one actual pro-
cessing stage in one state. The seven-stage model
displays an estimated stage duration structure that
is, as expected, far too intricate. The start of the
second stage now occurring a little too early, not
even 100 ms after stimuli onset. In previous mod-
els of associative recognition, the second processing
stage starts at least 200 ms after stimulus onset
(Borst & Anderson, 2015; Borst et al., 2016). Fi-
nally, the five- and six-stage models appear to dis-
play the most plausible mean estimated state du-

Figure 3.4: The average duration of each state
in the five fixed response shapes general models.
These averages are presented for the general re-
sponses, as well as for each condition.
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Figure 3.5: The mean pupillary responses as predicted by each of the five general fixed response
shapes models. Each figure contains the mean response for each condition, as well as the general
mean response over all trials. The figure on the bottom right-hand side contains the original mean
pupillary responses, as obtained from the participants’ data.

Figure 3.6: The average duration of each state in the six-stages fixed response shapes general
models (left). These averages are presented for the general responses, as well as for each condition.
The average duration of each state as captured by the six-stages fixed response shapes condition-
specific models (right). The General Response bar is the same in both plots, being taken from the
general model.
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Figure 3.7: The mean pupillary responses as predicted by the condition-specific fixed response
shapes models for 6 stages (left). The mean pupillary responses as predicted by the 6 stages
general fixed response shapes model (centre). The original mean pupillary responses, as obtained
from the participants’ data (right).

Stages Effect

Repeated Measures ANOVA

F (1, 24) MSE p η2p

1 Fan 15.78 502 < .001 .40

2

Fan 7.02 11.37 .014 .23

Probe Type 7.64 17.75 .011 .24

Interaction between
Fan and Probe Type

6.29 5.46 .019 .21

3
Fan 29.25 3498 < .001 .55

Probe Type 14.31 33.60 < .001 .37

4 Fan 3.57 0.56 .071 .13

5
Fan 25.36 1891.30 < .001 .51

Probe Type 27.62 332.80 < .001 .54

Table 3.1: The results of the repeated measures ANOVAs performed over the duration of the
states of the general six-stage fixed response shapes model.
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Figure 3.8: The mean response elicited by each
state in the six-stage general fixed response
shape model, the predicted mean response and
the original mean response.

ration distributions. Between the two, the six-stage
one seems, once again, to be the closest to previ-
ous associative recognition models, the five-stage
one having the second stage — most probably as-
sociated with familiarity in both models — start
relatively late around 300 ms.

Keeping that in mind, it seems the six-stage gen-
eral model has the closest mean predictions to the
original data, as seen in Figure 3.5. The mean pre-
dictions by condition of this model were also com-
pared to those of the four fixed response shapes
6-stage condition-specific models. The comparison
between the mean estimated states duration is cap-
tured in Figure 3.6. It is clear that the mean esti-
mates of the condition-specific models do not cap-
ture any clear patterns between conditions, in the
way the general model means do. This is not only
the case for the six-stage condition-specific mod-
els but for all condition-specific ones, regardless of
the number of stages. A figure capturing the state
duration distribution of all general and condition-
specific models can be found in the appendix (Fig-
ure .2). Turning to Figure 3.7, it can be seen that
the condition-specific mean pupillary time courses
capture the increased amplitude of Fan 2 peaks,

compared to that of Fan 1 peaks, which the gen-
eral model does not catch. However, this increase in
Fan 2 peak amplitudes is quite exaggerated in the
condition-specific models, both predictions having
their peaks well above their corresponding original
responses. The Fan 1 mean predictions are rela-
tively similar between the condition-specific mod-
els and the general model, with the former cap-
turing the difference between the two amplitudes
slightly better than the latter. Nevertheless, the 6-
stages general model seems to provide a far bet-
ter overall estimation of the original results, than
the condition-specific models. The mean pupillary
responses from all condition-specific models are
shown in a figure in the appendix(Figure .3).

Having selected the 6-stages general model as
having the closest predictions to the original model,
the significance of the differences between the dura-
tion of the states in each condition has been anal-
ysed. Six repeated measures ANOVAs have been
run, having Fan and Probe Type as factors, one
for the duration of each stage. The statistical re-
sults of these analyses can be found in Table 3.1. A
significant main effect of Fan over the duration of
the first stage was captured, Fan 2 pairs having a
significantly longer duration of the first stage, com-
pared to Fan 1 pairs. Over the duration of the sec-
ond stage, a significant main effect of Fan, one of
Probe Type, and a significant interaction between
the two was found. The analysis of the third stage
revealed a significant main effect of Fan, and a sig-
nificant main effect of Probe Type. Additionally,
a marginally significant main effect of Fan on the
duration of the fourth state was found. Lastly, a sig-
nificant main effect of Fan and one of Probe Type
were found over the duration of the fifth state. No
other significant effects were captured between the
duration of the states in each condition.

The mean pupillary response elicited by each
state as predicted by the six-stage general fixed re-
sponse shapes model is highlighted in Figure 3.8. It
can be seen that some states elicit responses with
higher amplitudes than others, these states being,
in theory, linked to a higher intensity of mental ef-
fort.
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4 Discussion

4.1 General discussion

The present study aimed to implement a HsMM-
GAMMmodel (Krause et al., 2023) for pupil decon-
volution to analyse the underlying cognitive stage
structure of associative recognition as revealed by
pupil dilation. If the stage structure of associative
recognition, and the temporal distribution of these
stages, have been previously studied using neu-
roimaging techniques (e.g. Anderson et al., 2016;
Borst et al., 2016; Sohn et al., 2005), the intensity
of mental effort elicited by different stages has not
yet been brought into focus.

Pupil size increases as a function of mental effort,
different events eliciting different responses from
the pupil (Hoeks & Levelt, 1993). As such, pupil
size is believed to shed light on the level of inten-
sity of mental effort evoked by the cognitive pro-
cessing stages underlying associative recognition.
Accordingly, in order to analyse the level of inten-
sity of mental effort elicited by each stage, pupil
deconvolution employing HsMM-GAMMs (Krause
et al., 2023) was used to decompose the pupil-
lary time courses. Additionally, associative fan and
probe type were manipulated to provide further in-
sight into how they affect the intensity level of men-
tal effort elicited by different stages.

Before focusing on what the eye tracking analysis
may reveal, one remark shall be made regarding the
behavioural results. While these were all generally
in line with previous studies, all RT means for the
testing phase were higher than those recorded in
the past (Borst et al., 2016, 2013). All of the means
were about 200 ms higher than those recorded by
Borst et al. (2016). This may prove to capture a
certain delay in the temporal distribution of all
processing stages, compared to the temporal distri-
bution captured in previous associative recognition
models. This delay may be a result of the inclusion
of the mask as a trial component, which ultimately
elongated the duration of the trials themselves as
well. Concurrently, another explanation for the de-
lay might have been the participants’ anticipation
of long-word pairs as probes, which were included in
the training, but not in the testing phase. The pos-
sibility of encountering long-word pairs may have
led the participants to be more cautious before re-
sponding, causing the overall delay in RTs.

4.2 Model

Five fixed response shapes general models were run
to identify which number of stages (from three to
seven) is most probable to describe the analysed
cognitive task through the intensity of mental ef-
fort elicited by each stage. Twenty other condition-
specific models were also run — four for each num-
ber of stages — to this end. The condition-specific
models were found to lack any connection between
the ones with the same number of stages in the
patterns displayed by their stage structures. This
effect may have been a result of the condition-
specific models picking up on patterns or effects
that were not actually there. As such, the afore-
mentioned patterns were computed by the models
to only fit the current model, and not the corre-
sponding ones, with the same number of stages.
Thus, the general models are believed to capture a
more probable cognitive stage structure represen-
tation.

Among these fixed response shapes general mod-
els, the one modelling six stages is the one con-
sidered to be most probable. Its generated mean
pupillary responses by condition, and mean general
response, were the ones that looked most similar to
their original counterparts. Once selected, the six-
stage general model also revealed to have its stage
duration distribution most similar to that found
in previous models (Anderson, 2007; Borst & An-
derson, 2015; Borst et al., 2016), cementing their
validity.

A decomposition of the stage structure of the
general response of the six-stage model can be seen
on the left-hand side of Figure 4.1. It must be men-
tioned that the stages as captured by the HsMM-
GAMM may last longer than captured in Figure
4.1. The model captures the stages as states that
end once the next state begins. In actual fact, mul-
tiple stages are bound to occur simultaneously, fol-
lowing a dual-processing model of recognition (e.g.
Rugg and Curran, 2007), as captured in previ-
ous studies (Borst & Anderson, 2015; Borst et al.,
2016). Accordingly, the HsMM-GAMM model rep-
resentation as seen on the left side of Figure 4.1,
soundly captures the beginning of each cognitive
processing stage, without properly marking their
end.

Focusing further on the model’s stage duration
distribution, it seems to be most similar to that
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Figure 4.1: The average duration of each state in the 6 stages fixed response shapes general model
for the general response (left). The MEG associative recognition model proposed by Borst et al.
(2016) (right).

revealed by the MEG model (Borst et al., 2016),
as seen on the right-hand side of Figure 4.1. Keep-
ing in mind the overall delay in the duration of the
eye-tracking model, its first stage seems to corre-
spond with both the Visual Encoding and Lexical
& Semantic Access stages of the MEG model. This
can be seen as an overall Encoding stage of the
eye-tracking model. The second stage of the eye-
tracking model finds its correspondence in the Fa-
miliarity stage of the MEG model, while the third
and fourth stages are clearly connected to Rec-
ollection and Representation. Thereafter, the last
two stages of the eye-tracking model can be linked
to the Decision and Response stages of the MEG
model respectively.

While the two models can be associated, it is
clear that there are still some discrepancies between
the two. Aside from the overall delay in stage tem-
poral distribution, these differences ought to arise
since the eye-tracking one models the stage dura-
tion as a function of mental effort, rather than cor-
tical activation, as modelled by the MEG one. This
difference is most apparent when looking at the De-
cision and Response stages. Both Decision stages
start at around 950-1000 ms, yet, the MEG one
ends at about 1300 ms, while the eye-tracking one
may last until 1500-1550 ms. Thus, the eye-tracking

model shows the Decision stage to last longer than
the MEG one, since the former models its stages as
a function of the intensity of mental effort. On the
other hand, the Response stage starts at about 1150
ms and ends at 1300 ms for the MEG model, while
for the eye-tracking one, it starts at about 1500 ms
and lasts until 1550 ms. The difference between the
duration of the two stages in both models under-
lines the difference in the level of intensity of men-
tal effort elicited by the two. As such, the Decision
stage is linked to a high level of intensity of mental
effort, while the Response stage relates to quite a
low level one. The low level of intensity of mental
effort elicited by the last stage of the eye-tracking
model may further pinpoint that once the decision
has been taken, enacting the motor response con-
nected to it does not require much mental effort.

Looking at the differences between the duration
of each state in each condition of the eye-tracking
model, it is noticeable that all but two stages are
significantly different between conditions, based on
Fan or Probe Type, or even both (Table 3.1). Those
two states are the fourth and sixth one, associated
with the Representation and Response stages re-
spectively. The fourth one did capture a marginally
significant main effect of Fan, which reminds of
previous findings. Borst et al. (2016) underlined
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their found significant main effect of Fan to impact
the cortical activation strength associated with the
Representation stage based on the strength of the
memory. Yet, it seems Fan does not quite signif-
icantly impact the duration of this stage, as cap-
tured by the HsMM-GAMM model, in relation
to the intensity level of mental effort, with both
Fan 1 and Fan 2 recalled pairs generally requir-
ing the same level for representation. Following up,
the Response stage seems to require the same low-
intensity level of mental effort regardless of Fan or
Probe Type.

4.3 Associative Fan

Fan was thought to impact the level of mental effort
required by the Familiarity and Recollection stages,
intensity level of mental effort increasing with the
associative fan. However, the two Fan conditions
have a significant effect on four stages of the eye-
tracking model, as found using HsMM-GAMM —
the Encoding, Familiarity, Recollection and Deci-
sion stages.
The effect of Fan on the first state of the eye-

tracking model, associated with an Encoding stage,
might appear surprising, considering the Visual En-
coding and Lexical & Semantic Access stages were
found to be influenced by the word length of the
pair by Borst et al. (2016). This effect might actu-
ally be explained by the later start of the Familiar-
ity stage for Fan 2 pairs, compared to Fan 1 pairs,
instead of a longer-lasting Encoding stage for Fan
2 pairs.
The second state, associated with the Familiarity

stage, is also impacted by the Fan conditions, with
Fan 2 items underlining longer second states, com-
pared to Fan 1 items. This effect correlates with the
early-fan effect as highlighted by Borst et al. (2016),
Fan 2 items being easier to recognise, yet with more
pairs being activated, which might explain an in-
crease in the duration of the stage as modelled by
mental effort. More so, the significance of the inter-
action between Fan and Probe Type indicates that
the Fan effect on the Familiarity stage was larger
for re-paired foils than for targets. This significant
interaction highlights that the early Fan effect lasts
longer for re-paired foils than for targets.
The difference between conditions in the third

state of the model, linked to the Recollection stage,
is also shaped by the difference in the associative

fan. The higher the fan, the longer the duration of
the third state, that is, the longer the recollection
of the associative information. With Fan 2 items
belonging in more pairs, these take longer to be
recollected. This effect is in line with the previously
pinpointed late fan effect (e.g. Borst et al., 2016),
which seems to have the same effect on the duration
of the Recollection stage both when it is modelled
as a function of cortical activation, and one of the
intensity level of mental effort. This effect is also
in line with the formulated hypothesis, stating that
the duration of the recollection stage increases with
the Fan.

The last state where the Fan has a significant
effect is the fifth one in the eye-tracking model,
the Decision stage lasting longer for Fan 2 pairs
than for Fan 1 pairs. While previous studies have
not found Fan to impact this cognitive processing
stage (e.g. Borst et al., 2013; Borst et al., 2016), the
fifth state of the HsMM-GAMM model is signifi-
cantly impacted by it. Considering that the states
of the model are not directly equivalent to process-
ing stages, it is quite probable that this apparent ef-
fect of Fan on the fifth state is tied to the previously
found Fan effect on the Representation stage (Borst
et al., 2016). If this effect was only found to be
marginal on the fourth state of the HsMM-GAMM
model in this study, it could be that the strength
of the memories, as impacted by the Fan, to be
captured in the Decision stage of the eye-tracking
model, rather than the Representation one.

4.4 Probe Type

Probe Type has been hypothesised to have an effect
on the Recollection and Decision stages. Neverthe-
less, the analysis of the difference between condi-
tions of the eye-tracking model found Probe Type
to have an effect on one more additional stage,
along with the two previously mentioned, the Fa-
miliarity stage. This stage was found to be influ-
enced by Probe Type only when comparing new
foils to targets/re-paired foils in the past (Borst &
Anderson, 2015). However, new foil trial data was
not included in this analysis, this stage being now
seemingly influenced by Probe Type when compar-
ing targets to re-paired foils.

The second stage of the current HsMM-GAMM
model lasts longer for re-paired foils, compared to
targets. This is not in line with previous findings,
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where the Familiarity stage was only impacted by
the associative Fan (e.g. Borst et al., 2013; Borst
et al., 2016). Even so, it must be reiterated that
the end of the second state does not necessarily
mark the end of the Familiarity stage in the eye-
tracking model. What it surely does, is mark the
beginning of the Recollection stage. Therefore, this
significant effect, might, in actuality, show that the
Recollection stage starts earlier for targets than for
re-paired foils. The former is easier to recognise, as
target pairs have been shown more often, especially
during training, when re-paired foils were not.
Accordingly, the third state of the model cap-

tured a Probe Type effect between the different
conditions, with the third state lasting longer for
re-paired foils, compared with targets. This further
highlights that the Recollection stage, as modelled
by the intensity level of mental effort, lasts longer
for re-paired foils than for targets. Yet, the qual-
itative analysis of the original pupillary responses
found targets to have higher amplitudes for the ini-
tial peaks. This may ultimately indicate that tar-
gets last less to be recalled, even if they take a
higher intensity level of mental effort to be recalled
than re-paired foils. Thereafter, the difference in
duration is, in fact, in accordance with previous
findings (Borst et al., 2013).
The effect of Probe Type on the duration of

the fifth state of the HsMM-GAMM model, associ-
ated with the Decision stage, resembles the pattern
found for the Recollection stage. Thus, re-paired
foils display a longer-lasting duration of the De-
cision stage as modelled by mental effort, with a
lower amplitude of the peaks in the original pupil-
lary responses, compared to targets. Similar to pre-
vious findings (Borst et al., 2016, 2013), the deci-
sion for targets does take less time, yet it requires
more mental effort.

4.5 HsMM-GAMM for Pupil De-
convolution

HsMM-GAMM using fixed response shapes for the
event-specific responses composing predicted pupil-
lary responses proves to show promise as a method
for pupil deconvolution. The observed effects over
the states of the selected model are generally in
line with previous studies on the cognitive process-
ing stages underlining associative recognition. Sup-
porting the MEG model of Borst et al. (2016) as be-

ing the most plausible, the selected HsMM-GAMM
sheds light on far more than what previous models
of associative recognition have found, the relation
of the duration of the stages to the intensity level
of mental effort required to perform the selected
cognitive task.

Nonetheless, the HsMM-GAMM approach is not
without any fault. Most importantly, the utilized
approach only takes into account different event-
specific responses differing in their temporal distri-
bution between subjects and trials. This may prove
to be an insufficient modelling approach, consider-
ing a significant main effect of Fan was found be-
tween conditions in almost all states. Thereafter,
this method of deconvolution may not be specific
enough to correctly assign the intensity level of
mental effort to specific stages in its current ar-
chitecture. To this end, a more extensive HsMM-
GAMM approach ought to consider the shape of
the same event-specific response to also vary be-
tween subjects and trials. Even so, for a more in-
depth and well-rounded analysis of the impact of
Fan and Probe Type on the intensity level of mental
effort elicited by different stages, a model assuming
that only for certain states the event-specific re-
sponses have different shapes between conditions
should be implemented.

Additionally, the HsMM-GAMM approach cur-
rently models some events as having negative am-
plitudes. This would, therefore, indicate that cer-
tain states, associated with stages such as Recol-
lection as seen in Figure 3.8, elicit a response with
a negative intensity level of mental effort. More-
over, these negative responses seem to have ampli-
tudes as great as the positive ones, both being quite
larger than the amplitudes found in the original
pupillary response. Thereafter, these positive and
negative responses are seemingly modelled so as to
somewhat cancel each other out in order to form a
predicted response similar to the original one. This
behaviour of the model does not seem to resemble
a veracious approach to pupil deconvolution, high-
lighting a need for a change in the implementation
of the approach.
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Kyröläinen, A.-J., Porretta, V., van Rij, J., &

Järvikivi, J. (2019). PupilPre: Tools for
preprocessing pupil size data. Retrieved from
https://CRAN.R-project.org/package=

PupilPre (Version 0.6.2, updated 2020-03-
08)

Mathôt, S., Schreij, D., & Theeuwes, J. (2012).
Opensesame: An open-source, graphical ex-
periment builder for the social sciences. Be-
havior research methods, 44 (2), 314–324.

R Core Team. (2021). R: A language and envi-
ronment for statistical computing [Computer
software manual]. Vienna, Austria. Retrieved
from https://www.R-project.org/

Rabiner, L. R. (1989). A tutorial on hidden markov
models and selected applications in speech
recognition. Proceedings of the IEEE , 77 (2),
257–286.

Rugg, M. D., & Curran, T. (2007). Event-related
potentials and recognition memory. Trends
in cognitive sciences, 11 (6), 251–257.

Sohn, M.-H., Goode, A., Stenger, V. A., Jung, K.-
J., Carter, C. S., & Anderson, J. R. (2005).
An information-processing model of three
cortical regions: Evidence in episodic mem-
ory retrieval. NeuroImage, 25 (1), 21–33.

Sternberg, S. (1969). Memory-scanning: Mental
processes revealed by reaction-time experi-
ments. American scientist , 57 (4), 421–457.

Wickham, H. (2011). The split-apply-combine
strategy for data analysis. Journal of Statis-
tical Software, 40 (1), 1–29. Retrieved from
https://www.jstatsoft.org/v40/i01/

Wickham, H., François, R., Henry, L., Müller,
K., & Vaughan, D. (2023). dplyr: A
grammar of data manipulation [Com-
puter software manual]. Retrieved from
https://CRAN.R-project.org/package=

dplyr (R package version 1.1.1)
Wierda, S. M., van Rijn, H., Taatgen, N. A., &

Martens, S. (2012). Pupil dilation deconvolu-
tion reveals the dynamics of attention at high
temporal resolution. Proceedings of the Na-
tional Academy of Sciences, 109 (22), 8456–
8460.

Yu, S.-Z. (2010). Hidden semi-markov models. Ar-
tificial intelligence, 174 (2), 215–243.

20



Figure .2: The average
duration of each state in
the five fixed response
shapes general models.
These averages are pre-
sented for the general
responses, as well as for
each condition. (left) The
average duration of each
state in the fixed response
shapes condition-specific
models. All condition-
specific models with the
same number of stages are
grouped in the same plot.
(right) The General Re-
sponse bar is the same in
plots with the same num-
ber of stages, being taken
from the corresponding
general model.
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Figure .3: The mean pupillary responses as predicted by each of the condition-specific fixed re-
sponse shapes models. Each figure contains the mean response for each condition-specific model
with the same number of stages. The figure on the bottom right-hand side contains the original
mean pupillary responses, as obtained from the participants’ data.
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