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A B S T R A C T

We made a self-supervised model with a pretext-task based on geo-
metric transformations. Our model is based on RotNet, a model that
predicts image rotations by Gidaris et al. [GSK18]. We implemented
our model in TensorFlow, and were able to reproduce their results
for rotation. The rotation model cannot be used for all datasets, for
example datasets with a lot of top-down images or images of round
objects. Therefore, we modified our network to predict the scale of an
image. In order for our scale model to work, the used dataset needs
to have a defined scale, that is, all images are taken from the same
distance. We see the patterns that show the pretext task learns some
useful features. However, we also see that for most experiments the
gap with supervised is bigger for our scale model than for our ro-
tation model. Most promising is that our scale model closes the gap
with supervised learning during our experiment with a low amount
of labelled data.
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1
I N T R O D U C T I O N

In recent years, supervised deep neural networks, especially convo-
lutional neural networks [LeC+98], have shown to obtain impressive
results on image classification (e.g. [He+16]). However, it can be dif-
ficult to construct a good dataset, the images need to be of decent
quality and there should not be too many outliers. Moreover, a lot
of human-annotated labels are needed in order for these networks
to perform well. Especially in the medical field, where experts are
needed to label the data, it can be very expensive to collect enough
labels for a supervised network to perform well.

Research is done to improve the unsupervised methods, in order to
obtain good results without labels. However, we would like to benefit
from supervised learning with smaller datasets too. A well-known
method to help with this is transfer learning [PY10]. If this method is
used with supervised learning, the model is first trained on a large,
already labelled, dataset. For example, ImageNet [Den+09] is often
used for this purpose. The obtained knowledge is then transferred to
a new network that will be trained on the small dataset. Because a
lot of the more basic information is learned on the big dataset, the
model can use the limited data from the small dataset to learn the
details specific to the final task. Due to the nature of neural networks,
transfer learning will work best when the two datasets are similar.

A more novel method is self-supervised learning, which uses su-
pervised networks on unlabelled datasets [JT20]. The idea of self-
supervised learning is older, but due to large unsupervised datasets
being available it became a popular topic for research around 2018

[Gui+23]. The first self-supervised methods often had as motivation
to learn invariances [Ran+07], or a model that can be used for a lot of
different tasks without a lot of human time for designing [Ahm+08].
Self-supervised networks learn a pretext-task for which the labels can
be automatically generated. For example, a network by Larsson et al.
uses the original pictures as labels and the black and white version as
input [LMS17]. The network has to learn how to colourize the image,
and in order to do this the network will learn to detect what objects
are in the image. Some other pretext tasks include solving jigsaw
puzzles [NF16], or predicting the applied data augmentation [JF18].
Although self-supervised learning can be used as an unsupervised
method, it is often combined with transfer learning and a labelled
dataset. It can also be used with a dataset that has human-annotated
labels for only a small part of the data. The pretext-task is then trained
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2 introduction

on the whole dataset, and the final part is trained on the labelled part
of the dataset.

1.1 scope of thesis

Our research is based on a network called RotNet by Gidaris et al.
[GSK18]. Their model is self-supervised, and learns as pretext task
to predict the applied rotation to an image. The intuition behind the
model is that it has to learn what is depicted on the image in order to
determine whether this image is rotated. They have promising results,
however the model cannot be used for datasets that do not have a
natural ’upright’ position. For example top-down images and images
of round objects. Gidaris et al. mention their model could be used
with other geometric transformations, but they also explain why they
think rotation works best. In this thesis we re-implement RotNet and
expand upon it to use scale instead of rotation.

In Chapter 2 we will explore self-supervised learning in more de-
tail. In Chapter 3 we look at the theory behind RotNet and explain
how we expand on their research by using scale as well. In Chapter 4

we show that we are able to reproduce the results from RotNet with
our own model. Moreover we show the results of our scale experi-
ments and explain the conditions for a dataset that can be used.



2
B A C K G R O U N D

In this chapter we discuss the state of the art of self-supervised learn-
ing. First a general introduction is given and then an in-depth expla-
nation is given for some methods, based on the categories these meth-
ods can be divided into. We have used the extensive survey on self-
supervised learning from Jing and Tian as a guideline [JT20]. They
divide the self-supervising networks into four categories: generation-
based, context-based, free semantic label-based, and cross modal-
based. However, since we focus solely on images in combination with
image classification as the downstream task, we will only look into
generation- and context-based methods. We refer to their paper for a
more extensive overview on self-supervised learning. Note that some
other papers use different categories.

Before we look at the state of the art of self-supervised learning, we
introduce some of the terms used around self-supervised learning. In
order to use supervised learning we do need labels, however instead
of human-annotated labels, self-supervised learning uses pseudo labels
that can be automatically generated. The network is then trained on
these pseudo labels, and this is called the pretext task or proxy task. A
good pretext task lets the network capture visual features which will
be relevant for the downstream task. In our case, the downstream task
is always image classification.

As mentioned in the introduction chapter, our motivation to look
into self-supervised learning is based on the enormous amounts of
human-annotated labels that are needed for supervised learning. We
want to make use of the techniques and good results found in su-
pervised learning without the drawback of needing all these human-
annotated labels. A good pretext-task is chosen in such a way that
the network learns useful features while learning to solve the pre-
text task. The network is basically tricked into learning something
else while training on the pretext task. Many pretext tasks have been
shown to give good results.

2.1 generation-based methods

Generation-based methods learn from pretext-tasks that involve im-
age generation. These models mostly consist of two cases, for both
the pseudo label is usually the original image. In the first case, some-
thing is removed from the image and the model has to generate the
missing parts. In the second case, something extra is generated and
the image has to recognise what parts are not from the original image.
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4 background

The intuition behind these methods is that the model has to learn to
interpret the objects in the image in order to fill in the missing pieces.
Hence, it could learn useful features for the downstream task.

A Generative Adversarial Network (GAN) framework was pro-
posed by Goodfellow et al. [Goo+14]. This framework consists of
two models that are simultaneously trained; a generator and a dis-
criminator. The generator captures the data distribution and gen-
erates new images similar to the images in the dataset. The dis-
criminator then classifies the image to be either generated or from
the dataset. The two networks are thus opposing each other, hence
the name adversarial. One application is for example StyleGAN
[Kar+20], where the generator is used for the popular website www.

thispersondoesnotexist.com to generate non-existing faces. When
GANs are used for self-supervised learning, often the discriminator
is used as basis for the downstream task. Some examples are crack
detection by Zhang et al. [ZZC20], or artefacts detection by Jenni et al.
[JF18]. A survey by Qi et al. focuses on self-supervised learning with
adversarial pre-training [QS22].

Another generation-based method that uses adversarial learning is
image inpainting by Pathak et al. [Pat+16]. In this method a part of
the image is removed and has to be generated by the network. The
adversarial loss is combined with a reconstruction loss that compares
the generated image to the ground-truth, the removed part of the
original image. In Figure 1 an example is shown where the centre of
the image is removed. In Figure 1b we see that a human artist can
interpret the surrounding and hence fill in the missing part. In the
network output we see that the network also interprets the entire im-
age, it does not just give an interpolation. This can be seen specifically
at the row of windows, the network has added an additional window
in the middle, which does not touch any of the edges of the missing
part. This makes the method suitable as pretext-task, because it learns
to interpret the whole image.

(a) Network input (b) Human artist (c) Network prediction

Figure 1: Example of image inpainting task. Given an image
with a missing region (a), a human artist has no trouble in-
painting it (b). Automatic inpainting predicted by the network
in [Pat+16] (c). This figure is reproduced based on [Pat+16].

www.thispersondoesnotexist.com
www.thispersondoesnotexist.com


2.2 context-based methods 5

One generation-based method that does not use adversarial train-
ing is image colourization by Larsson et al. [LMS17]. The image
colourization method gives the network a gray-scale image as input
and it has to generate the colour. Here, the intuition is again that
the network has to understand the objects and context of the image
in order to make a good prediction of the colours. Zhang et al. also
use image colourization as a pretext task for self-supervised learning
[ZIE16]. Although image colourization can work without adversar-
ial training, the two methods can also be combined, as proposed by
Treneska et al. [Tre+22].

2.2 context-based methods

Context-based methods have a pretext-task based on the context of
the image. Specifically, we look at the spatial context. Most of the
methods we have seen so far make use of the context features in the
image, but we call a model context-based if the context features are
the main focus. Although generation-based methods have proven to
be useful in self-supervised learning, they are often computationally
expensive.

One context-based method is solving jigsaw puzzles. Doersch et
al. take patches from the image, give the location of one patch and
let the model predict the relative position of another patch [DGE15].
An example is shown in Figure 2, the position of the face is given
and the model has to predict the location of the ear. This model is
designed in such a way that it learns to recognize the parts of the
object in the image and cannot solve the task trivially. There are for
example gaps between the patches and the position of the patches
have some randomization, such that the model cannot connect the
lines or patters too easily. Moreover, normalization is done for each
patch separately, such that the statistics are not too similar along the
borders. A variant of this method is done by Chen et al., in their work
small patches are swapped and the network has to learn to restore

Figure 2: Example of a jigsaw puzzle pretext task. In this ex-
ample the position of the face is given and the model has to pre-
dict the location of the ear. This figure is reproduced based on
[DGE15].



6 background

the image [Che+19]. Similarly, Noroozi et al. take 9 patches from an
image and give them shuffled to the network, the model then has to
predict the order of all the patches [NF16]. They later combine jigsaw
puzzles with clustering to obtain even better results [Nor+18].

Other context-based method often use geometric transformations.
For example Dosovitskiy et al. train their model to recognize for any
transformed image from which original image it was constructed
[Dos+14]. In order to do this they take a subset of the dataset, and
make a class for each of those images, consisting of the original im-
age and a lot of transformed images. Some of the applied transforma-
tions are translation, scaling, rotation, change to the colour, or a com-
bination. Chen et al. use a combination of random crop and colour
distortion, but instead of making classes they use contrastive learn-
ing [Che+20]. A paper by Purushwalkam et al. explains why these
methods with aggressive augmentation are very successful, they con-
clude it is partially due to learning a lot of invariances [PG20]. There
are also methods based on only one transformation. For example, Gi-
daris et al. train a model to predict image rotations [GSK18]. One of
the advantages of this model is that it does not need special rules to
make sure the model does not solve the task in a trivial manner.



3
M E T H O D O L O G Y

In this chapter we explain the structure of the model used in this
project. Furthermore, we discuss the options and challenges in choos-
ing a transformation for the pretext task. Lastly, we will introduce the
datasets that we have used in the experiments.

3.1 model

Our model is based on the paper and implementation by Gidaris
et al. [GSK18]. We decided to re-implement their method ourselves
in order to fully understand how the algorithm works and how we
can adapt it later on. One major difference is that our model is
implemented with TensorFlow, where their model is implemented
with PyTorch. This results in different values for some of the hyper-
parameters, due to differences of implementation between PyTorch
and TensorFlow. The structure of our implementation is modular,
such that we can easily choose a different transformation, dataset
or network. We will give a short overview of some of the choices
we made. For a more in-depth explanation we refer to the code and
the corresponding readme file. Our implementation can be found at
https://github.com/TanjaDV/MasterThesis.

Our model is trained to perform image classification in two
parts.The pretext task learns the geometric transformations, and the
downstream task learns the final classification. The model learns by
minimizing a loss function. We use for both tasks the categorical cross-
entropy loss. This needs a probability distribution as input, so we will
first transform the output of the model using a softmax function. Cat-
egorical cross-entropy loss measures how different two probability
distributions are. The loss value depends, among other things, on the
used weight decay and cannot easily be compared between experi-
ments. Therefore, we report here the more intuitive accuracy score.

Gidaris et al. conclude that keeping all transformations of an image
in the same batch improves results and we also follow this guideline
[GSK18]. We shuffle the batch such that the network does not always
process images and their transformations together and in the same
order. The model is then trained to recognize the applied rotation.
After learning the pretext-task we also want to train on the original
image classification. For this we use transfer learning. We take part
of the pretext model and lock the weights which means we can no
longer train these layers, then we add a few dense layers which are

7
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8 methodology

trainable. The downstream task is then trained on these layers using
the human-annotated labels.

3.1.1 Rotation

The paper of Gidaris mentions that their algorithm could be used
with any geometric transformation, but they think rotation works
best. They give several reasons for this, the first being that rotations
are usually well-defined. That is, most natural images have a clear
definition of being ’upright’. Secondly, by using flip and transpose
operations, rotations of multiples of 90 degrees can be applied with-
out visual artefacts on square images. Lastly, they expect learning to
recognize rotation is a good pretext-task, because the model has to
identify the objects in the image in order to determine the rotation. In
that way it learns useful information for the downstream task.

Although rotation can be very useful, there are datasets that con-
tain images where rotation is not well-defined. These include for ex-
ample top-down images and images with a lot of round objects. More-
over, there can be datasets where it can learn the rotation in a trivial
manner, for example if there is always a visible horizon line in the top
half of the picture. So our rotation model is limited in the datasets it
can be used for. Therefore we want to explore the possibilities with
other transformations.

3.1.2 Other transformations

We can modify the network to train on other transformations, how-
ever that does not mean it will prove to be an useful pretext task. The
examples Gidaris et al. give are rotation and scale, and image trans-
formations that change the aspect ratio, i.e. non-uniform scale. Other
examples of transformations include translation and shear. However,
there are also more complicated transformations, i.e. projection to a
different shape.

So, what would make a transformation suitable for our network?
We want a transformation that can be learned by a neural network,
which is the case for most if not all transformations. It has to be a
transformation that is easy to compute and that does not give a lot of
visual artefacts, so we want to keep the transformation simple. Last
but not least, it has to learn something useful for the downstream task.
It is not easy to know what transformations will work as a pretext
task.

Combining this information, we decided to look into scale. This is
an easy operation, and together with rotation a basis for a lot of other
transformations. So knowing more about scale will also give useful
information for future research on other transformations.
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(a) original, 1:1 (b) scale 3:4 (c) scale 1:2 (d) scale 1:4

Figure 3: Example of applied scales on an EuroSAT image. Scale
1:4 is also scaled up.

3.1.3 Scale

Scale is not as well-defined as rotation. As humans we can easily de-
termine whether an image is rotated. For scale however, it is usually
impossible to see if it is zoomed from the original image, because
an image could also be taken closer to the object. So, we do need
some additional information to make scale well-defined. If we would
look at images of people and give the additional information that the
original scale always consists of an image with the whole body de-
picted, then we could easily tell the photo was zoomed a lot if we see
a picture which shows only a head. For humans it will be difficult to
determine how much it was zoomed in, but we know that is easier
for a computer. Moreover, we do not ask for a continuous scale, we
will have discrete options. Thus, in order to use scale as pretext task
we need a dataset which consists of pictures that have the same orig-
inal scale in terms of pixel size. That is, all pictures are taken from
the same distance. These include for example datasets with satellite
images or microscopic images.

There are multiple ways to scale an image. We use uniform scale,
so the image is scaled with the same percentage horizontally and
vertically. To scale an image we crop the image down to the middle
part. Then the different scaled images will all be resized to the same
size. To reduce visual artefacts we try to only scale the images down.
We have experimented a little with different options for scales and
found the combination {1 : 1, 3 : 4, 1 : 2, 1 : 4} to give the best result.
An example of the four scales is shown in Figure 3.

3.2 dataset descriptions

In this section we describe the datasets that are used in the experi-
ments. CIFAR-10 is used for the rotation experiments and EuroSAT
for the scale experiments.
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Figure 4: CIFAR-10 classes as shown in CIFAR-10 documenta-
tion.

Figure 5: EuroSAT classes as depicted in [Hel+19].

3.2.1 CIFAR-10

CIFAR-10 is a labelled dataset that consists of 60.000 coloured im-
ages of animals and vehicles [KH+09]. It consists of the 10 following
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. See Figure 4 for example images of the classes. The im-
ages are 32x32 and evenly split among the classes. So each class has
6.000 images. There are 50.000 training images and 10.000 test images.

3.2.2 EuroSAT

EuroSAT consists of 27.000 satellite images divided over 10 classes
[Hel+19]. See Figure 5 for the classes and some example images.
Each class contains 2.000 to 3.000 images. So, they are not evenly
split among the classes. The images are 64x64 pixels. We use the RGB
images, which have a spatial resolution of 10 meters per pixel. This
dataset does not have a test set. We have chosen this dataset because
satellite pictures are made from a set distance. Moreover, the dataset
is similar to CIFAR-10 in number of classes and size of images, so it
is expected to work with the same network architecture.



4
E X P E R I M E N T S A N D R E S U LT S

In this chapter we will go over the experiments that we performed
and show the results. In the experiment setup we explain the set-
tings that are the same for all experiments. To test whether our self-
supervised network learns useful features, we compare it with a su-
pervised network and a randomly initialized network, this is also ex-
plained in the experiment setup. The next section shows the results of
the hyperparameter search for these three settings, and gives the first
conclusions about the effectiveness of our network. Lastly, we show
the results of two experiments that explore the effect of only using
a subset of the labelled data for the downstream task and the effect
of the performance of the pretext task. Because we know the rotation
experiments should be reproducible we do every experiment first for
rotation to make sure our implementation was working as expected.

4.1 experiment setup

We strive to keep the settings similar throughout the experiments. We
use the same architecture for all experiments and use the same values
for the hyperparameter searches. Furthermore, all experiments run
for 100 epochs and the learning rate is scheduled to be divided by
five on the epochs 30, 60, and 80. They can be stopped before reaching
epoch 100 if the validation loss does not improve for 35 epochs.

All rotation experiments are run on the CIFAR-10 dataset and use
the four rotations that according to Gidaris et al. yield the best result.
These rotations are

{0◦, 90◦, 180◦, 270◦}.

For the scale experiments we use the EuroSAT dataset. These experi-
ments use the four scales

{1 : 1, 3 : 4, 1 : 2, 1 : 4},

as explained in the methodology.

4.1.1 Architecture

In the paper by Gidaris et al. the architecture is changed between
experiments, which makes it harder to compare and understand the
results. Here, we use the same architecture for all experiments and
downstream models.

We use a network called network-in-network (NIN) that consists
of blocks of layers [LCY13]. Based on an experiment from Gidaris et

11



12 experiments and results

Pretext-task Downstream-task

Weights Trainable Weights

Supervised random yes trained

Self-supervised trained no trained

Random initialization random no trained

Table 1: An overview of how the weights are trained for the three
training settings; supervised, self-supervised, and random initial-
ization.

al. we use 4 blocks for the pretext task, and the feature vectors are
extracted from the end of the second block. For the downstream task
we train 2 dense layers with size 200 on the feature vectors. To do so,
we lock the weights of the two blocks after training the pretext task
and train only the two dense layers for the downstream task.

In order to learn more about the performance of our network, we
compare it with a supervised network and a randomly initialized
network. The supervised model takes the same architecture of the two
blocks and the two dense layers, but it trains all of the layers at once.
The random initialization is similar to the self-supervised setting in
that the weights of the first two blocks are locked and only the two
dense layers are trained during the downstream task. However, the
two blocks are not trained during the pretext task, we use the random
initialization weights of these layers. This way, we can clearly see if
the pretext task feature vectors improved upon the random feature
vectors. See Table 1 for an overview of the three training settings.

4.1.2 Hyperparameter search

For each experiment we do a hyperparameter search to find the best
model. The hyperparameter search is performed on all combinations
of the parameters given in Table 2. So, the model is trained 27 times.
As mentioned before, the training is only stopped when the valida-
tion loss does not improve for 35 epochs.

The search for optimal parameters for the self-supervised network
is a bit more challenging. The network consists of 2 networks, the
pretext task and downstream task, and ideally we would optimize

Weight decay (WD) 0.1 0.01 0.001

Momentum (M) 0.9 0.09 0.009

Learning rate (LR) 0.1 0.01 0.001

Table 2: The hyperparameter values used for the hyperparameter
search.
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both networks. However it is not trivial to optimise the pretext task,
because the best network in terms of accuracy might not produce the
best feature vector for the downstream task. So, the ideal parameter
search would have to try every combination of parameters for pre-
text and downstream task. This means the experiment should be run
27× 27 = 729 times, which would take too long to train. Therefore
we decided to always use the same parameters for pretext task and
downstream task.

4.2 performance of the network

In this section we look at the results of the network and the hyperpa-
rameter search. As mentioned in the experiment setup, we perform a
hyperparameter search with the parameters in Table 2 for the three
training settings in Table 1. For the hyperparameter searches, we only
show the combination of parameters that yields the best result. How-
ever, we discuss some of the patterns we find when looking at all
results. The full overview of these results can be found in the Ap-
pendix.

4.2.1 Rotation

CIFAR-10 has a defined test set, and from the remaining data we
select a random, stratified subset of 20% as validation set. We make
a validation set once and use it for all CIFAR-10 experiments. During
the hyperparameter search we choose the validation accuracy of the
epoch with the lowest validation loss.

In Table 3 the results and chosen hyperparameters are shown. We
see that the self-supervised network performs significantly better
than the random initialization, so the model learns useful features.
Moreover, the validation accuracy of the self-supervised network is
close to the supervised network.

The full hyperparameter search overview is shown in Figure 8 in
the Appendix. We see that the hyperparameters that give good re-
sults for self-supervised learning also give good results for super-
vised learning.

WD M LR Validation accuracy

Supervised 0.01 0.9 0.01 87.79

Self-supervised 0.01 0.09 0.1 85.48

Random initialization 0.01 0.9 0.001 70.58

Table 3: The chosen parameters during the hyperparameter
search for rotation, with corresponding validation accuracy. The
validation set is 20% from the training set.
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Method Test Accuracy

Supervised 87.51

Self-supervised 84.97

Random Initialization 69.17

Supervised NIN [GSK18] 92.80

RotNet + conv [GSK18] 91.16

Random Init. + conv [GSK18] 72.50

RotNet + non-linear [GSK18] 89.06

Table 4: A comparison of the test set accuracy of our network
and RotNet on CIFAR-10. Our results are close to the results of
Gidaris.

We use the network weights of the validation experiments to eval-
uate the test set. Specifically, we use the weights of the epoch with
the lowest validation loss. Those results are shown together with the
the results from Gidaris et al. in Table 4. We see that all our results
are slightly lower than those of the validation set, so our validation
set could be easier than the test set. The comparison of Gidaris et al.
uses a convolutional neural network for the downstream task, the bot-
tom result has similar architecture to our model. We managed to get
close to the results of Gidaris et al., and the difference in performance
between self-supervised, supervised, and random is similar. We con-
clude that our rotation pretext-task performs well and learns useful
features for the downstream task.

4.2.2 Scale

The EuroSAT dataset does not have a test set, therefore we use 5-
fold cross-validation. Here the validation accuracy is taken from the
last epoch, and we show the mean and standard deviation. We stop
training for a setting if one of the folds has a validation accuracy
lower than a set limit. We scale as explained in Section 3.1.3.

The results of the three training settings are given in Table 5. We
see that the self-supervised setting performs slightly better than the
random initialization setting, however the gap with supervised is a
lot bigger. The EuroSAT paper has a classification accuracy of 98.57
[Hel+19]. Note that we cannot compare it directly due to the lack of
a test set, but our supervised network gets close to this result.

Another conclusion we take from the result is that all training set-
tings have completely different hyperparameters that give the best
result. Moreover, they are also different compared to the best param-
eters for rotation. The full overview of the hyperparameter search is
shown in the Appendix, Figure 9. We see that the pattern of what



4.3 less labelled data for the downstream task 15

5-fold accuracy

WD M LR Mean STD

Supervised 0.1 0.9 0.001 97.13 0.13

Self-supervised 0.01 0.09 0.01 86.37 0.41

Random initialization 0.001 0.9 0.01 83.71 0.71

Table 5: Results of the hyperparameter search for EuroSAT.

parameters work well is a lot more varying than for rotation. For ex-
ample, when we take the best hyperparameters from self-supervised
and look at the supervised result for those, we have an accuracy of
only 92 percent. So, the model seems quite sensitive to these hyper-
parameters.

Moreover, looking at the results, we see that random already per-
forms very well at almost 84 percent, so this dataset might be too easy
for self-supervised learning to have impact.

We conclude that scale does not work as well as rotation. However
it is still better than random initialization, so it learns some useful
features. And it might be partially due to a dataset that is too easy.

4.3 less labelled data for the downstream task

One of the main advantages of self-supervised learning is the ability
to train the pretext task on a large unlabelled dataset, while using
a small labelled dataset to train the downstream task. In this experi-
ment we simulate this situation by training the downstream task on
a stratified subset of the dataset. The downstream task and the su-
pervised and random network are trained on several subsets of the
dataset, and the validation set stays the same. We train the pretext
task on all training data, and it does not see the validation set.

4.3.1 Rotation

In this experiment we use the test set as given by the CIFAR-10

dataset to determine the accuracy. Furthermore, for each setting we
use the hyperparameters that gave the best result for the full dataset,
as shown in Table 3. The subsets we used are

{1, 0.6, 0.2, 0.1, 0.02, 0.004},

where the smallest subset results in 200 training images, so 20 im-
ages per class. The results are shown in Figure 6. We see that
self-supervised does perform even better than supervised for small
datasets used for the downstream task. This demonstrates that the
pretext task provides a good feature vector that does not need a lot
of human-annotated labels to learn the downstream task.
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691 18 54 20 22 4 7 13 124 47

25 770 4 7 5 1 14 5 56 113

102 5 529 51 124 62 68 40 12 7

36 6 76 494 62 184 73 40 16 13

32 4 75 73 605 36 53 96 15 11

14 3 59 168 57 603 26 59 7 4

13 8 44 47 39 24 804 9 9 3

16 3 38 57 84 70 15 680 10 27

104 47 10 10 5 6 5 0 765 48

35 119 6 17 6 5 5 6 42 759

Predicted label

(a) self-supervised
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575 35 51 35 23 20 14 22 164 61

59 549 8 40 15 11 24 23 63 208

93 28 332 93 149 83 115 48 41 18

62 35 83 262 101 227 124 59 19 28

46 15 144 94 353 62 136 111 25 14

37 14 89 173 92 401 72 84 23 15

26 28 87 57 116 49 574 35 8 20

44 20 43 70 103 98 49 487 16 70

155 75 13 20 11 37 15 14 591 69

66 200 14 36 16 17 25 24 53 549

Predicted label

(b) supervised

Table 6: Confusion matrix for rotation, subset 0.02. The class
labels are in alphabetical order.
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Figure 6: Less labeled data used for downstream task on rotation.

Looking at the confusion matrices for subset 0.02 in Table 6, we see
the pattern is similar for supervised and self-supervised. For both,
images from all classes are most often correctly predicted to be from
that class. However, there are some small difference in the perfor-
mance between classes. For example, the cats prove to be difficult,
they are often predicted to be a dog, and vice versa. However, the
airplane class, of which the rotation is not always well-defined, has a
nice result. So, we can conclude the model has a normal challenge in
distinguishing classes that are similar when we do not give it many
labels, but it does not seem to have additional issues surrounding
rotation.

4.3.2 Scale

In this experiment we use a validation set, with 20 percent of the
EuroSAT dataset. Furthermore, for each setting we use the hyperpa-
rameters that gave the best result for the full dataset, as shown in
Table 5. The subsets used are

{1, 0.6, 0.2, 0.1, 0.05, 0.01},

so the smallest subset results in 216 training images with 16-24 images
per class. The results are shown in Figure 7. We see the same pattern
as with rotation, when subsets get smaller, the accuracy goes down
faster for the supervised network. The difference in accuracy is a lot
more when using the whole dataset, so it is promising that even here
we see a similar result for small datasets. Moreover, we again see that
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Figure 7: Less labeled data used for downstream task on scale.

the result for random stays a lot higher than we saw for rotation,
which might confirm the EuroSAT dataset being too easy.

Looking at the confusion matrices in Table 7, we see the supervised
and self-supervised model again agree on what classes are more diffi-
cult. Although some classes barely suffer from having less labels, for
example the Sea & Lake class, images from all classes are classified
most often as the correct class.

4.4 effect of performance of the pretext task

In this experiment we look at the effect of the performance of the
pretext task. Does a better result for the pretext task result in better
feature vectors, and thus a better result for the downstream task?

We test this by training the downstream task on the feature vector
produced by the pretext task during multiple epochs. Gidaris et al.
perform this experiment by taking fixed epochs, however we noticed
that the validation accuracy of our pretext task model fluctuates too
much for this. We take the epochs that give increased performance for
the pretext task, and we always include the last epoch. The following
pseudocode shows how the epochs are chosen.

SET value = 0

FOR each epoch

IF validation accuracy of this epoch > value

SET value = validation accuracy of this epoch + 0.02

ADD epoch to list

END IF

END FOR
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A
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461 2 29 23 1 18 37 0 14 15

0 559 6 2 0 29 0 0 0 4

23 6 369 30 15 16 89 39 10 3

38 0 27 227 35 18 56 53 46 0

1 0 1 3 463 0 5 26 1 0

5 15 22 8 0 311 13 6 17 3

34 0 89 24 19 13 288 25 8 0

0 0 3 1 17 0 7 570 2 0

44 18 26 77 10 30 9 17 261 8

6 10 5 0 0 8 0 0 4 567

Predicted label

(a) self-supervised

A
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436 3 18 24 2 19 55 1 27 15

0 538 5 1 0 32 0 0 2 22

14 3 418 19 19 20 81 13 8 5

36 1 33 194 38 22 67 46 63 0

0 0 3 7 469 0 4 16 1 0

11 21 24 6 0 274 14 2 45 3

34 0 64 19 9 15 337 12 10 0

0 0 2 8 7 0 5 576 2 0

34 29 28 54 11 65 15 9 250 5

8 7 2 0 0 0 0 0 2 581

Predicted label

(b) supervised

Table 7: Confusion matrix for scale, subset 0.05. The class labels
are in alphabetical order.
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Figure 8: Effect of the performance of the pretext task on rotation.

In the results we then plot for each of these epochs the pretext
task accuracy, and the corresponding downstream task accuracy. For
this experiment we use the hyperparameter values that gave the best
result during our hyperparameter search.

4.4.1 Rotation

The results for our rotation experiment are shown in Figure 8. For
this experiment we use the whole dataset, so the accuracy displayed
is on the test set. Moreover, the evaluated pretext task epochs are
{0, 8, 16, 19, 30, 60, 99}. We see the downstream model improves a lit-
tle bit for improved pretext accuracy. However, random initialization
has an accuracy of 69.17 on the test set, so even training the pretext
task for a few epochs gives already a better result than random.

4.4.2 Scale

For this experiment we use the same validation set as before, using
20 percent of EuroSAT. The evaluated epochs are {0, 1, 3, 4, 8, 20, 99}.
The results are shown in Figure 9a. The downstream task accuracy
seems very stable, however we have to keep in mind that the random
initialization is already at 83.71 percent. Hence, we cannot make a
lot of conclusions from this graph. Therefore, we added a zoomed in
graph in Figure 9b. Here, we again see that the first epochs of training
give the fastest improvement, and training the pretext task better only
slightly improves the downstream results.
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(a) scale

(b) zoomed in scale

Figure 9: Effect of the performance of the pretext task on scale.





5
C O N C L U S I O N A N D F U T U R E W O R K

In this chapter we draw conclusions, look at the limitations of our
work, and give some ideas for future work.

5.1 conclusion

We looked into self-supervised learning and rebuilt a network based
on a rotation pretext task by Gidaris et al. [GSK18]. We were able to
reproduce their results and added a scale pretext task to our network.
We can see potential for self-supervised learning with scale, but the
results are not as good as for rotation. Moreover, we found that scale
can only be useful for very specific datasets where all pictures are
taken from the same distance. Since the rotation network cannot be
used for top-down images, we believe our scale network could still
have added value.

5.2 limitations

In our implementation we made some choices that could have re-
sulted in a lower result. For example, we limit our hyperparameter
search to always use the same value for the pretext task and down-
stream task, it is possible we could find a better setting without this
restriction. Another example of a limiting choice are the parameters
for the less labelled data experiments. We use the setting that worked
best for the whole dataset. However, a new hyper parameter search
might result in other settings that work better for a smaller dataset.

A limitation that we found for self-supervised learning with one ge-
ometric transformation in general, is that they only work for specific
datatest where the chosen transformation is well-defined.

5.3 future work

In the discussion of our scale experiments we mention the random
initialization already gives good results. This could indicate that the
EuroSAT dataset is not challenging enough for our self-supervised
network to be useful. Therefore, it would be interesting to try our
scale network on a different dataset. In addition to datasets with satel-
lite images, we could try a dataset with microscopic images, which
are also taken from a set distance. Another thing that we could ex-
plore is the effect of a dataset with bigger images. This could also

23
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give us the opportunity to experiment with other combinations of
scales.

Furthermore, for both rotation and scale we could combine our
datasets with a bigger unlabelled dataset. This way we can see if we
get the same results as in our simulation with only using a subset of
the dataset for the downstream task.

We would also be interested to use the geometric transformation
shear, which is a combination of rotation and scale. Since scale does
learn some useful features, the combination might improve the results
on CIFAR-10.

Lastly, another idea is to combine our work with a paper that builds
upon RotNet by Feng et al. [FXT19]. They split the feature vector in
two, a rotation related part (RotNet), and a rotation unrelated part.
They show improved results, especially for the rotation agnostic im-
ages, for example round objects or top-down images. So, maybe their
idea could make our model less sensitive to specific datasets.
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weight momentum learning Validation accuracy

decay rate self-supervised supervised random

0.1 0.9 0.1 0.1000 0.1000 0.1000

0.1 0.9 0.01 0.3679 0.7353 0.4087

0.1 0.9 0.001 0.5033 0.8571 0.5854

0.1 0.09 0.1 0.2447 0.1525 0.2165

0.1 0.09 0.01 0.6722 0.8560 0.5766

0.1 0.09 0.001 0.6625 0.7410 0.6439

0.1 0.009 0.1 0.2320 0.1885 0.2393

0.1 0.009 0.01 0.6745 0.8260 0.5627

0.1 0.009 0.001 0.6499 0.7349 0.6422

0.01 0.9 0.1 0.7159 0.7710 0.5562

0.01 0.9 0.01 0.8490 0.8779 0.6840

0.01 0.9 0.001 0.6851 0.7315 0.7058

0.01 0.09 0.1 0.8548 0.8691 0.3821

0.01 0.09 0.01 0.7018 0.7433 0.6937

0.01 0.09 0.001 0.6342 0.6792 0.6487

0.01 0.009 0.1 0.8522 0.8671 0.6591

0.01 0.009 0.01 0.6982 0.7394 0.6876

0.01 0.009 0.001 0.6342 0.6721 0.6383

0.001 0.9 0.1 0.8436 0.8570 0.6376

0.001 0.9 0.01 0.7648 0.8060 0.6569

0.001 0.9 0.001 0.6748 0.7161 0.6784

0.001 0.09 0.1 0.7747 0.8191 0.6622

0.001 0.09 0.01 0.6826 0.7239 0.6746

0.001 0.09 0.001 0.6277 0.6774 0.6417

0.001 0.009 0.1 0.7684 0.8188 0.6266

0.001 0.009 0.01 0.6745 0.7148 0.6780

0.001 0.009 0.001 0.6232 0.6693 0.6309

Table 8: Hyperparameter search results for rotation on CIFAR-
10. The chosen settings are highlighted.
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weight momentum learning Validation accuracy

decay rate self-supervised supervised random

0.1 0.9 0.1 0.1111 0.1111 0.1111

0.1 0.9 0.01 0.1111 0.1111 0.3763

0.1 0.9 0.001 0.3789 0.9713 0.6137

0.1 0.09 0.1 0.1111 0.1111 0.287

0.1 0.09 0.01 0.4393 0.97 0.6387

0.1 0.09 0.001 0.8451 0.9217 0.8005

0.1 0.009 0.1 0.1111 0.1111 0.2613

0.1 0.009 0.01 0.4761 0.9711 0.6419

0.1 0.009 0.001 0.8441 0.9152 0.7874

0.01 0.9 0.1 0.1111 0.1111 0.3333

0.01 0.9 0.01 0.6722 0.9652 0.7963

0.01 0.9 0.001 0.8594 0.9246 0.8325

0.01 0.09 0.1 0.7130 0.961 0.7015

0.01 0.09 0.01 0.8637 0.9243 0.8268

0.01 0.09 0.001 0.8369 0.8817 0.8124

0.01 0.009 0.1 0.6950 0.9614 0.6494

0.01 0.009 0.01 0.8608 0.9226 0.8269

0.01 0.009 0.001 0.8429 0.8728 0.8114

0.001 0.9 0.1 0.6967 0.9543 0.5189

0.001 0.9 0.01 0.8484 0.953 0.8371

0.001 0.9 0.001 0.8510 0.9063 0.836

0.001 0.09 0.1 0.8352 0.9539 0.8203

0.001 0.09 0.01 0.8585 0.9046 0.8321

0.001 0.09 0.001 0.8416 0.8767 0.8159

0.001 0.009 0.1 0.8462 0.9511 0.8275

0.001 0.009 0.01 0.8578 0.9015 0.8322

0.001 0.009 0.001 0.8385 0.8691 0.8151

Table 9: Hyperparameter search results for scale on EuroSAT.
The chosen settings are highlighted. The validation accuracy dis-
played is the mean of 1-5 folds. When the accuracy is lower than
certain value, we do not train more folds. This value is 0.95 for
supervised, 0.84 for self-supervised, and 0.8 for random.
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