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Abstract

Orbifolds and sub-Riemannian manifolds are generalizations of the concept of manifold. Orbifolds
generalize manifolds by incorporating singularities, while sub-Riemannian manifolds exclude
specific geodesics and restrict movement to chosen subsets. In this thesis we discuss the
possibility to define a sub-Riemannian structure on an orbifold. First, we sketch a method
to define sub-Riemannian structure on the regular part of an orbifold, similar to the known
construction of sub-Riemannian structures on lens spaces. However, problems for the horizontal
distribution occur around the singularities on the orbifold. It turns out that a sub-Riemannian
distribution on an orbifold is well-defined around the singular points if it is equivariant with
respect to the actions on the orbifold. As a result we define sub-Riemannian structures on
orbifolds obtained by reflections, rotation and the (p, q)-Hopf action and find geodesics in these
cases. We also sketch an extension of a result by Herr, to find a sub-Riemannian structure on
any closed cyclic 3-orbifolds.

3



4



Contents

Introduction 7

1 Sub-Riemannian Geometry 11

1.1 Sub-Riemannian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Pontryagin extremals in the Hamiltonian setting . . . . . . . . . . . . . . . . . . 14

1.3 Sub-Riemannian Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Sub-Riemannian geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Abnormal extremals and contact distributions . . . . . . . . . . . . . . . . . . . 22

1.6 Exponential map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Sub-Riemannian structure on a principal G-bundle 27

2.1 Sub-Riemannian structures of bundle type . . . . . . . . . . . . . . . . . . . . . 27

2.2 Sub-Riemannian geodesics on a principal G-bundle . . . . . . . . . . . . . . . . 28

2.3 Examples of sub-Riemannian principal bundles . . . . . . . . . . . . . . . . . . . 35

3 Orbifolds 41

3.1 Orbifold structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Developable orbifolds and examples . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Tangent bundles, differential forms and Riemannian orbifolds . . . . . . . . . . . 49

4 Sub-Riemannian Orbifolds 51

4.1 Cartan decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Lens spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Singular examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5



6 CONTENTS

4.4 Contact orbifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Conclusion and outlook on further research 71

A Differential Geometry 73

A.1 Symplectic structure on the cotangent bundle . . . . . . . . . . . . . . . . . . . 73

A.2 Poisson geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B Group actions 77

C Mathematica Code 81

C.1 Heisenberg geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.2 Reflection geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.3 Rotation geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Introduction

In the field of differential geometry, group actions on manifolds have been and are thoroughly
studied. We know from the ‘Quotient manifold theorem’ that if a Lie group G acts smoothly,
freely and properly on a smooth manifold M , then the quotient M/G is a smooth manifold. For
example, we can create a circle by letting the group Z freely, properly and smoothly act on R
by translation. Similarly, we can construct a 2-torus by letting Z× Z act on R2 by translation.
But what would happen if we let go of the assumption that the action is free? This leads to the
notion of a developable orbifold, which is the quotient of a manifold M by a discrete group Γ
acting properly on M .

As an example of a developable orbifold, one can consider the Z/nZ-action on R2 by rotation.
If we assume we have polar coordinates (r, θ) on R2, the action is given by (r, θ) 7→ (r, θ + 2π

n
).

Under the quotient by this action, all vectors in R2 that differ by an angle 2π
n

are identified.
After the identification what remains is a cone with angle 2π

n
. This cone has a tip, which is

the place where the origin of R2 is mapped onto itself n times. At such a point we no longer
have a smooth manifold structure, hence we call the point singular. In general, we can think of
developable orbifolds as a generalization of the concept of manifold that contain some of these
singular points. For the case n = 3 the construction of the cone is illustrated in figure 1, here
the red lines are being ‘folded’ onto each other.

Figure 1: Cone orbifold obtained from Z/3Z-action on R2, the red lines are identified under the
quotient, the origin in R2 becomes a singular point.

Instead of considering a global quotient on a manifold, we can also consider a seperate action on
each chart. In general, orbifolds are then topological spaces that are locally homeomorphic to
Rn/Γ for a discrete group Γ acting properly on Rn. Orbifolds appear in various disguises in both
algebraic and differential geometry. They are also of interest in Mathematical Physics, since
they model how symmetries act on given spaces. Orbifolds also appear in the mathematical
study of music theory (see for example [1]).

An orbifolds is also an interesting object in its own right. One question one can ask is if the
constructions and results we have for manifolds generalize to orbifolds. It turns out that many
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8 INTRODUCTION

theorems and constructions on manifolds, have an analogy for orbifolds. For example, one
can generalize the theory for Riemannian manifolds to Riemannian orbifolds and for instance
the famous Gauss-Bonnet theorem has an analogous Gauss-Bonnet theorem for orbifolds [2,
Theorem 4.3.16]. One structure on manifolds that does not yet have an analogy on orbifolds is
sub-Riemannian geometry.

Sub-Riemannian manifolds are a generalization of Riemannian manifolds in which one cannot
move freely. To illustrate this, consider a car that has to parallel park as in figure 2. In a
Riemannian setting, the shortest path would be for the car to shift to the right. However, we
know that the wheels of a car simply cannot rotate that way. Given the constraints on the
wheels, we want to find the shortest path the car can take in order to parallel park. If the car
moves on a manifold M , the constraints on the wheels give us a tangent subbundle Dq ⊆ TqM
for each q ∈M . The subbundle is called a distribution. The paths for the car that are possible
are described by the curves γ : [0, T ] →M that have a tangent vector γ′(t) in the distribution
Dγ(t) for all t ∈ [0, T ]. These paths will be called horizontal curves. On the distribution we can
define a metric, called the sub-Riemannian metric, which induces a notion of distance and length.
Under this notion of length, the ‘shortest’ path is called a sub-Riemannian geodesic. With some
modifications, many sub-Riemannian geodesics can be obtained from Hamilton’s equations for
the so-called sub-Riemannian Hamiltonian, this is a variation of the regular Hamiltonian found
in classical mechanics.

Figure 2: Parallel parking problem

One key difference between Riemannian and sub-Riemannian geometry is that there exist
abnormal geodesics for some cases in sub-Riemannian geometry. These are the shortest paths
under the sub-Riemannian metric that do not show up as solutions to Hamilton’s equations.
Studying abnormal minimizers is a large part of research into sub-Riemannian geometry.

In this thesis we discuss the relation between sub-Riemannian geometry and orbifold theory.
In general, we do not know whether it is possible to define a sub-Riemannian structure on an
orbifold. We sketch the problems you run into when defining a sub-Riemannian structure on an
orbifold. However, we will see that in case of a reflection or rotation action on some manifold, we
can obtain an orbifold with a sub-Riemannian structure. A similar result will be shown for the
so called (p,q)-Hopf action, which is a variation of the classical Hopf action. To our knowledge
these results were not shown in literature before. Moreover, we will sketch a result from [3] that
shows that on a closed and cyclic 3-dimensional orbifold, there always exists a contact form ξ
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with ker(ξ) the contact distribution. From this we show there exists a sub-Riemannian structure
coming from the contact distribution can be defined, and does not admit abnormal geodesics.

Before we studied the problem of sub-Riemannian structures on orbifolds, we also studied the
already studied cases of sub-Riemannian structures on Prinicpal G-bundles and homogeneous
spaces in the hope of using some of these techniques for orbifolds. For context of defining
sub-Riemannian structures on quotient spaces and possible future research we included a detailed
explanation of sub-Riemannian structures on prinicpal G-bundles as described in [4].

The outline of the thesis is as follows: In Chapter 1 we give the basic definitions and results
from sub-Riemannian geometry. We discuss sub-Riemannian geodesics and how to find them
using the sub-Riemannian Hamiltonian. Next, we discuss contact distributions and prove that
no abnormal minimizers can exist in these cases.

In chapter 2 we define sub-Riemannian structures on a principal G-bundle π : Q→M . We show
that if there exists a ‘metric of constant bi-invariant type’ on Q, then we have a closed form
formula for all normal sub-Riemannian geodesics on Q. As examples we discuss sub-Riemannian
structures on Lie groups, homogeneous spaces, the ‘falling cat problem’ and the Hopf action.

We introduce all necessary results and definition for orbifold theory in Chapter 3. For this we
first define orbifolds in general, after which we specify to developable orbifolds. Moreover, we
discuss how to construct a tangent bundle, differential form and Riemannian metrics on an
orbifolds.

In chapter 4 we give the results of this thesis. First, we study the sub-Riemannian structure on
Lens spaces. Lens spaces are in general not orbifolds, but the techniques for Lens spaces can be
extended to the non-singular parts of orbifolds. Then we define sub-Riemannian structures on
quotients of R3 under reflective actions, a cyclic action and the (p, q)-Hopf action. After this we
sketch a result that shows that we can define a sub-Riemannian structure on any cyclic closed
3-orbifold.

We also added an Appendix on group actions. In this section we define all the terms and
theorems we used from group theory.
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Chapter 1

Sub-Riemannian Geometry

In this chapter we discuss the basic theory of sub-Riemannian geometry. In section 1.1 we will
discuss the definition of a sub-Riemannian structure and horizontal curves. Next, we will define
normal and abnormal Pontryagin extremals (section 1.2) and the sub-Riemannian Hamiltonian
(section 1.3), in order to compute sub-Riemannian geodesics in section 1.4. When we define
geodesics, we will find that there can exist abnormal geodesics. We will prove that these
abnormal geodesics cannot exist in the case of a so called contact distribution. The definitions
and results will be stated in 1.5. Finally, we discuss an analogous construction of the exponential
map in sub-Riemannian geometry in section 1.6. Most of the material in this chapter can be
found in [5].

Notation Throughout this chapter M will be a smooth connected n-dimensional manifold
unless stated otherwise. We also fix a notation for the projection π : T ∗M →M .

1.1 Sub-Riemannian geometry

In this section, we give the definition of a sub-Riemannian structure on a manifold. After the
definition we define lengths and distances induced by such structures. Moreover, we state and
explain the Chow-Rashevskii theorem. Before, we can give the definition of a sub-Riemannian
structure we need to define distributions.

Definition 1.1. Let M be a smooth n-dimensional manifold. A distribution on M is a family
of vector subspaces Dq ⊂ TqM for every point q ∈ M . We say the distribution is regular of
rank k if the subspaces Dq are all of dimension k. A distribution D is said to be smooth if
at every point q ∈M there exists a neighbourhood U such that there exist smooth vector fields
X1, . . . , Xk : U → TM such that for all x ∈ U

Dx = span{X1(x), . . . , Xk(x)}.

One can also think of a regular distribution of rank k as a rank k-subbundle of the tangent bundle.
In this thesis we assume all distributions to be smooth and regular. Using this assumption we
can at least locally write every distribution as the span of vector fields X1, . . . , Xk. Moreover,
notice that because our rank k distribution is smooth and regular at each point q ∈M there

11



12 CHAPTER 1. SUB-RIEMANNIAN GEOMETRY

exists an open neighbourhood U on which there exist a family of differential 1-forms η1, . . . , ηn−k

such that for all x ∈ U we have Dx = ker (η1)|x ∩ · · · ∩ ker
(
ηn−k

)
|x. A proof of this fact can be

found in [6, Lemma 19.5].

We also define a specific kind of distribution, called a bracket-generating distribution.

Definition 1.2. Consider a distribution Dq = span{X1(q), . . . , Xk(q)} on M . The Lie algebra
generated by the distribution is defined as:

Lieq (Dq) := span{[X1, . . . , [Xj−1, Xj]], Xi(q) ∈ Dq, j ≥ 1}.

The distribution Dq is called bracket-generating if Lieq (D) = TqM for all q ∈M .

Remark 1.3. Let us now sketch why bracket-generating distributions are important to us. In
contrast to bracket generating distributions, we have involutive distributions. A distribution D
is called involutive if for any two vector fields X, Y on D we have [X, Y ] = 0. By Frobenius
theorem ([6, Theorem 19.12]), we know that every involutive distribution is in fact completely
integrable. From this point of view a bracket-generating distribution can also be called a
completely non-integrable distribution. In this context completely integrable means that
all maximal connected integral manifolds of D form the leaves of a folitation. In other words, if
we have an initial position on a leaf of the foliation, we cannot leave the leaf via a curve that
is tangent to the distribution. This would mean that not all points on the manifold can be
connected via curves that are tangent to the distribution. In a bracket-generating distribution
this is not the case, and we find curves connecting any two points that are tangent to the
distribution. In figure 1.1a an involutive distribution is shown. The leaves of the folitation are
given by the ‘layers’. If we start on a given layer, we can never move from one layer to another.
In the bracket-generating distribution shown in figure 1.1c, we see that we can actually move
from one layer to another while staying within the distribution.

We consider a few examples of distributions.

Example 1.4. 1. On R3 at the point (x, y, z) the distribution { ∂
∂x
, ∂
∂y
} is of rank 2. It is

involutive and not bracket-generating, since [ ∂
∂x
, ∂
∂y
] = [ ∂

∂x
, ∂
∂x
] = [ ∂

∂y
, ∂
∂y
] = 0.

2. On R3 we can define the Heisenberg distribution 1. This is a rank 2 distribution
generated by the vector fields X = ∂

∂x
− y

2
∂
∂z

and Y = ∂
∂y

+ x
2

∂
∂z
. We find [X, Y ] = ∂

∂z
,

hence it follows that that the Heisenberg distribution is bracket generating. A drawing of
this distribution is shown in 1.1b.

3. On R2n+1 for n ∈ N with coordinates (x1, . . . , xn, y1, . . . , yn, z) we can define a so-called
contact form 2α = dz+

∑n
i=1 xidyi ∈ Ω1(R2n+1). Its kernel generates a distribution D that

is spanned by the vector fields ∂
∂yi

and ∂
∂xi

+yi
∂
∂zi

for i = 1, . . . , n. The distribution is called
the contact distribution. One can check that this distribution is bracket generating.
For the case R3 this distribution is shown in figure 1.1c.

4. On R4 we can define the Engel distribution. Consider coordinates (x, y, z, w) on R4, then
we define the rank 2 distibution D = span{X, Y } with X = ∂

∂x
+ z ∂

∂y
+ w ∂

∂z
and Y = ∂

∂w
.

1The Heisenberg distribution is closely related to the Heisenberg group and algebra and the isoperimetric
problem the connection can be found in [7, Chapter 1]

2A Contact form on a (2k + 1)-manifold M is a 1-form ξ such that ξ ∧ (ξ)
k ̸= 0.
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The Engel distribution can also be written as D = ker(η1) ∩ ker(η2) with η1 = dz − wdx
and η2 = dy − zdx. One can check that this distribution is also bracket-generating.

△

(a) Involutive distribution (b) Heisenberg distribution (c) Contact distribution

Figure 1.1: Three different distributions (pictures taken from [8], [9] and [10])

Now that we have the definition of a distribution, we can give a formal definition of sub-
Riemannian geometry.

Definition 1.5. A sub-Riemannian structure on a smooth connected manifold M is given
by a bracket-generating distribution D with an inner product g on D. A sub-Riemannian
manifold consists of the triple (M,D, g).

From now on, unless stated otherwise, we assume that any sub-Riemannian manifold is given
by (M,D, g) for M a smooth connected n-dimensional manifold, D a smooth regular rank k
distribution, and g a metric on D.

In general, we want that the distribution encodes a way to restrict the directions we can move
in. This leads to the notion of horizontal curves.

Definition 1.6. Given a sub-Riemannian structure (M,D, g) a horizontal curve is a curve
γ : [0, T ] →M such that γ′(t) ∈ Dγ(t) for all t ∈ [0, T ].

In other words, these are the curves that stay tangent to the distribution, and hence are the
paths that are restricted by the distribution.

Figure 1.2: A horizontal curve with a distribution (Figure taken from [10])
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Remark 1.7. Let (M,D, g) be a sub-Riemannian manifold with a local frame for the distribution
Dq = span{X1, . . . , Xk}. We notice that for any horizontal curve γ : [0, T ] →M we can write
the tangent map as

γ′(t) =
k∑

i=1

ui(t)Xi(γ(t)) (1.1)

for some L1-functions u1, . . . , uk called the control functions.

The notion of horizontal curves makes it possible to define lengths of a horizontal curve
γ : [0, T ] →M as follows.

ℓ(γ) :=

∫ T

0

√
g(γ′(t), γ′(t))dt. (1.2)

Analogously, to the Riemannian case we find distances between two points is found by considering
the infimum of the lengths of horizontal curves connecting the two points.

Definition 1.8. Let (M,D, g) be a sub-Riemannian manifold. For points x1, x2 ∈M we define
the Carnot-Carathéodory distance dSR as

dSR(x1, x2) = inf{ℓ(γ)|γ : [0, T ] →M is a horizontal curve, γ(0) = x1, γ(T ) = x1}.

Using this terminology, we can formalize remark 1.3.

Theorem 1.9 ([5, Theorem 3.31]). [Chow-Rashevskii’s theorem] Let (M,D, g) be a sub-
Riemannian manifold, then

1. (M,dSR) is a metric space such that for x1, x2 ∈ M we have dSR(x1, x2) < ∞, i.e. each
two points can be connected by a horizontal curve;

2. the topology induced by (M,d) is equivalent to the manifold topology.

Remark 1.10. Some authors do not assume the distribution to be bracket-generating in the
definition of a sub-Riemannian manifold, in this case the bracket-generating assumption should
be added in order for Theorem 1.9 to hold.

1.2 Pontryagin extremals in the Hamiltonian setting

In this section we define normal and abnormal length minimizers in a terms of Hamiltonian
vector fields. Suppose we have a horizontal curve γ on a sub-Riemannian manifold (M,D, g).
Recall that in equation 1.1, we wrote the tangent map as γ′(t) =

∑k
i=1 ui(t)Xi(γ(t)) for some

L1-functions ui. Using this we associate to γ a time-dependent vector field

u⃗t =
k∑

i=1

ui(t)Xi.
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The integral curve of the vector field u⃗t starting at γ(0) is the curve γ(t). Consider the flow
Φ(t) of u⃗t. Using the pullback we define the flow on the cotangent bundle as

(
Φ(t)−1

)∗
: T ∗

qM → T ∗
Φ(t)(q)M.

We first want to find a vector field in X(T ∗M) generating (Φ(t)−1)
∗
. In order to do this we

need a way of lifiting vector fields from M to T ∗M . Smooth vector fields on a manifold M
are in one-to-one correspondence with smooth functions in C∞(T ∗M) that are linear on the
fibers of T ∗M . To see this, we note each vector field Y on M can be associated with a function
fY : T ∗M → R, where fY (λ) = ⟨λ, Y (q)⟩ for λ ∈ T ∗M , q = π(λ) and ⟨·, ·⟩ is the pairing of
vectors and covectors. Using this specific lift of vector fields, we can define the Poisson bracket
on vector fields as follows.

Definition 1.11. The Poisson bracket is a map

{·, ·} : C∞ (T ∗M)× C∞ (T ∗M) → C∞ (T ∗M)

defined by
{fX , fY } = f[X,Y ]

for fX , fY and f[X,Y ] functions in C
∞ (T ∗M) associated to the vector fields X, Y, [X, Y ] ∈ X(M)

as defined above.

In coordinates (q, p) on T ∗M we can compute that

{f, g} =
n∑

i=1

∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi

for f, g ∈ C∞ (T ∗M). Using the Poisson bracket we can define the Hamiltonian vector field.

Definition 1.12. Given a function F ∈ C∞ (T ∗M) we define the Hamiltonian vector field
as XF = {F, ·}.

Theorem 1.13. [5, Proposition 4.12] Let u⃗t =
∑k

i=1 ui(t)Xi be a time-dependent vector field
with flow Φ(t). The flow (Φ(t)−1)

∗
on T ∗M is generated by the Hamiltonian time-dependent

vector field Xh on T ∗M . Here Xh = {h, ·} for the smooth function

h(λ) = ⟨λ, u⃗t(q)⟩ ∈ C∞T ∗M,

with q = π(λ).

Let us give an example of the Hamiltonian vector field for a specific distribution.

Example 1.14. Let us consider the Heisenberg distribution from 1.4 and compute Xh. At a
point q = (x, y, z) ∈ R3 we first compute the time-dependent vector field u⃗t for the distribution
to be

u⃗t(q) = u1(t)

(
∂

∂x
− y

2

∂

∂z

)
+ u2(t)

(
∂

∂y

)
= u1(t)

∂

∂x
+ u2(t)

∂

∂y
+
(
u2(t)

x

2
− u1(t)

y

2

) ∂

∂z
.
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Take an arbitrary covector λ = (x, y, z, px, py, pz) ∈ T ∗R3. Then the function h ∈ C∞(T ∗M) is
given by

h(λ) = ⟨λ, u⃗t(q)⟩

= pxu1(t) + pyu2(t) +
(
u2(t)

x

2
− u1(t)

y

2

)
pz.

The Hamiltonian vector field related to h is

Xh(λ) = {h(λ), ·}

= u1(t)
∂

∂x
− 1

2
u2(t)pz

∂

∂px
+ u2(t)

∂

∂y
+

1

2
pz

∂

∂py
+

(
1

2
u2(t)x−

1

2
u1(t)y

)
∂

∂z
.

To see that the projection of the flow of this vector field indeed yields the curve γ(t) and satisfies
Equation (1.1), we make the following computation. Consider an integral curve λ(t) of the
vector field Xh and project it to a curve γ(t) = π(λ(t)) on R3. The tangent vector of this curve
is

γ′(t) = dπ (Xh(λ))

= u1(t)
∂

∂x
+ u2(t)

∂

∂y
+
(
u2(t)

x

2
− u1(t)

y

2

) ∂

∂z

= u⃗t(γ(t)).

△

Let us reformula the vector field Xh and the function h in Theorem 1.13 in a more convenient
way. Define hi(λ) := ⟨λ,Xi(q)⟩ for q = π(λ). Then we write:

h(λ) = ⟨λ,
k∑

i=1

ui(t)Xi(q)⟩

=
k∑

i=1

ui(t)hi(λ),

In the same way the vector field Xh is given by

Xh(λ) = {h(λ), ·}

=

{ k∑
i=1

ui(t)hi(λ), ·
}

=
k∑

i=1

ui(t)Xhi

where Xhi
the Hamiltonian vector fields associated to the functions hi. Using the Hamiltonian

vector field, we can define Pontryagin extremals.

Theorem 1.15 ([5, Theorem 4.20], Hamiltonian characterization of Pontryagin extremals).
Consider the length-minimizing horizontal curve γ(t) with γ′(t) = u⃗t(γ(t)) on M . There exists a
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curve λ : [0, T ] → T ∗M with π(λ(t)) = γ(t) and λ′(t) =
∑k

i=1 ui(t)Xhi
(λ(t)) satisfying one of

the following two conditions:

(N) hi(λ(t)) = ui(t);

(A) hi(λ(t)) = 0.

Using this theorem, we can define Pontryagin extremals.

Definition 1.16. The curve λ : [0, T ] →M as defined in theorem 1.15 is called a Pontryagin
extremal. If λ satisfies condition (N) then it is called a normal extremal, and when λ
satisfies condition (A) then it is called an abnormal extremal. If we find a geodesic that is
a projection of a normal Pontryagin extremal, we call it a normal geodesic. Similarly, for
abnormal Pontryagin extremals.

1.3 Sub-Riemannian Hamiltonian

Our goal is to compute geodesics in the sub-Riemannian setting. For a Riemannian manifold
(M, g) we know how to find the geodesics, first one determines the Lagrangian L : TM → R given
by L(q, v) = 1

2
gq(v, v) for the metric gq at the point q = (q1, . . . , qn) ∈M and v = (v1, . . . , vn) ∈

TqM . From the Lagrangian one either solves the Euler-Lagrange equations given by d
dt

(
∂L
∂v

)
= ∂L

∂q
.

Otherwise, one can find the Hamiltonian H : T ∗M → R defined by the Legendre transform
H(q, p) =

∑n
i=1 pivi − L(q, v) for p = (p1, . . . , pn) ∈ T ∗M and solve Hamilton’s equations given

by

q̇ =
∂H

∂p
ṗ = −∂H

∂q
.

However, on a sub-Riemannian manifold (M,D, g) both methods no longer work. This is because
the metric is not defined on the whole tangent bundle, but only on the distribution. Moreover,
since we only consider curves that are tangent to the distribution, there will be an infinite
number of vectors in the tangent bundle that do project to the same curve which we do not
take the Legendre transform over. In figure 1.3 the vectors projecting to the same curve are
shown in red.

Figure 1.3: Red vectors all project to the horizontal curve γ(t), but do not lie in the distribution
D.
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To resolve these problem, we consider a Legendre-like transform, namely we consider all possible
functions u = (u1, . . . , uk) such that the vector u⃗t(q) =

∑k
i=1 uiXi(q) ∈ Dq for all q ∈M . Usin

this we find the Lagrangian

L(q, u⃗t(q)) =
1

2
gq(u⃗t(q), u⃗t(q)).

If we assume the local frame X1, . . . Xk are orthonormal, we find gq(u⃗t(q), u⃗t(q)) becomes |u|2.
If we denote u = (u1, . . . , uk), we find L(q, gq(u⃗t(q)) =

1
2
|u|2. Using a Legendre-like transform,

which maximizes over u instead of v we define a sub-Riemannian Hamiltonian as follows.

Definition 1.17. The sub-Riemannian Hamiltonian is the function H : T ∗M → R given
by

H(λ) = supu

(
⟨λ, u⃗t(q)⟩ −

1

2
|u|2
)

where the supremum is taken over all controls u and q = π(λ).

We can rewrite the sub-Riemannian Hamiltonian in such a way that we do not need the
supremum.

Proposition 1.18. [5, Prop 4.22] The sub-Riemannian Hamiltonian can be written as

H(λ) =
1

2

k∑
i=1

⟨λ,Xi(q)⟩2

where q = π(λ).

Remark 1.19. Notice that we can only state Definition 1.17 and Proposition 1.18 when the
local frame for Dq is orthonormal with respect to the sub-Riemannian metric on Dq. When
the frame is not orthonormal, we can either write a sub-Riemannian Hamiltonian via the
so-called cometric as in [4, Proposition 1.5.5.] or apply a Gram-Schmidt process (conform [11,
Proposition 11.3]) to make the frame orthonormal. If we already have an orthogonal frame, we
can rescale the sub-Riemannian metric to make the frame also orthonormal. In the rest of this
thesis we assume that the local frame for the distribution is orthogonal, unless stated otherwise.

Next we relate normal Pontryagin extremals to the vector field XH = {H, ·}. We show that
the normal Pontryagin extremals are integral curves of the vector field generated by the
sub-Riemannian Hamiltonian H.

Theorem 1.20. [5, Theorem 4.25] A curve in the cotangent space of M given by λ : [0, T ] →
T ∗M is a normal extremal if and only if it is a solution to

λ′(t) = XH(λ(t)).

Moreover, given a normal extremal, the corresponding normal extremal trajectory γ(t) = π(λ(t))
is smooth and has constant speed satisfying

1

2
∥γ′(t)∥2 = H(λ(t))

for all t ∈ [0, T ].
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In order to find the sub-Riemannian geodesics, we need an analogous set of equations to the
Hamilton equations for a Riemannian Hamiltonian. If we write the sub-Riemannian Hamiltonian
vector field in coordinates (q1, . . . , qn, p1, . . . , pn) on T

∗M we obtain:

XH =
k∑

i=1

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
.

Comparing this to λ′(t), which in coordinates is given by λ′(t) =
∑k

i=1 q̇i(t)
∂
∂qi

+ ṗi(t)
∂
∂pi
,

we find that

q̇(t) =
∂H

∂p
and ṗ(t) = −∂H

∂q
(1.3)

which are precisely the Riemannian Hamilton’s equations, but now for the sub-Riemannian
Hamiltonian.

The following corollary gives us a way of parametrizing the normal trajectories by arclength.

Corollary 1.21. [5, Corollary 4.27] A normal trajectory γ(t) is parametrized by arclength if
and only if its associated Pontryagin extremal lift λ(t) is contained in the level set H−1(1/2).

Proof. Notice that for a normal Pontryagin extremal we have H(λ(t)) = 1
2
∥γ′(t)∥2 for the

normal trajectory γ(t) = π(λ(t)). Notice that if γ(t) is parametrized by arclength we find that
∥γ′(t)∥ = 1, which is the case if and only if H(λ(t)) = 1

2
. So we find λ(t) ∈ H−1(1

2
). □

1.4 Sub-Riemannian geodesics

In this section we define sub-Riemannian geodesics and we state that projections of normal
Pontryagin extremals are indeed always sub-Riemannian geodesics. Let us first define what we
mean by a sub-Riemannian geodesics.

Definition 1.22. A horizontal curve γ : [0, T ] →M parametrized by arclength is a geodesic if
for all t ∈ [0, T ] there exists some interval [a, b] ⊂ [0, T ] around t such that

ℓ
(
γ|[a,b]

)
= d (γ(a), γ(b)) .

Here ℓ and d are the length and distance of horizontal curves as defined in Section 1.1. In other
words, γ(t) locally minimizes the length for all t ∈ [0, T ].

In order to state the theorem that normal Pontryagin extremals always project to sub-Riemannian
geodesics, we need some technical notions.

Fix a smooth function f ∈ C∞(M) then define the smooth submanifold

L0 := {dfq : q ∈M} ⊆ T ∗M.



20 CHAPTER 1. SUB-RIEMANNIAN GEOMETRY

Note that the projection π|L0 : T
∗M →M is a diffeomorphism, because for each point q ∈M we

defined a unique covector field dfq ∈ L0. Hence, we know dim(L0) = dim(M) = n as manifolds.
Assume that the flow of XH is complete (i.e. defined for all t ∈ R)and denote the flow of the
Hamiltonian vector field XH by etXH . Considering the image of L0 under the flow, we obtain

Lt := exp(XHt)L0

for all t ∈ [0, T ]. The collection of spaces Lt for each t defines a manifold

L := {(t, etXHλ0) ∈ R× T ∗M : λ0 ∈ L0, t ∈ [0, T ]}.

Using this terminology, we can state the main theorem saying that all normal extremals project
to sub-Riemannian geodesics.

Theorem 1.23. [5, Theorem 4.62] Let f ∈ C∞(T ∗M). Consider the manifold Lt for f such
that the restriction π|Lt is a diffeomorphism for all t ∈ [0, T ]. If λ0 ∈ L0, then the normal
trajectory

γ(t) := π ◦ exp(tXH)(λ0) (1.4)

is a strict length minimizer among all horizontal curves between γ(0) and γ(T ).

Let us present two examples of sub-Riemannian minimizers, one normal and one abnormal case.

Example 1.24 (Heisenberg distribution). Consider the Heisenberg distribution D(x,y,z) =
span{X, Y } = span{ ∂

∂x
− y

2
∂
∂z
, ∂
∂y

+ x
2

∂
∂z
} on R3 like in example 1.4. Notice that X and Y

are orthogonal under the standard inner product of R3. Hence, we know from 1.18 the sub-
Riemannian Hamiltonian for λ = (x, y, z, px, py, pz) ∈ T ∗M is given by

H(λ) =
1

2
⟨λ, ∂

∂x
− y

2

∂

∂z
⟩2 + 1

2
⟨λ, ∂

∂y
+
x

2

∂

∂z
⟩2.

From this we find that the sub-Riemannian Hamilton equations are given by the set of equations:



x′(t) = px − y
2
pz

y′(t) = py +
x
2
pz

z′(t) = −y
2

(
px − y

2
pz
)
+ x

2

(
py +

x
2
pz
)

p′x(t) = −pz
2

(
py +

x
2
pz
)

p′y(t) =
pz
2

(
px − y

2
pz
)

p′z(t) = 0.

(1.5)

Solving these equations can be done using the Mathemematica code in Appendix C.1. This
code finds both the analytic and the numerical solution to the system of equations in 1.5. A
plot of a sub-Riemannian geodesic for the Heisenberg distribution is shown in figure 1.4.
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Figure 1.4: Sub-Riemannian geodesic for the Heisenberg distribution.

△

A similar computation can be made for the parallel parking problem as mentioned in the
introduction. For the explicit computation see [4] or [10].

Example 1.25 (Abnormal curve). Let us give an example of a length minimizer that is
an abnormal geodesics. This example was taken from [12]. Consider the distribution D =
span{X, Y } with X(x,y,z) =

∂
∂x

and Y(x,y,z) = (1− x) ∂
∂y
x2 ∂

∂z
on R3. It turns out that

[X, Y ] = − ∂

∂y
+ 2x

∂

∂z
[X, [X, Y ]] = 2

∂

∂z

and all other bracket are zero. We note that X, Y, [X, Y ] are linearly independent if x ̸= 0 and
x ̸= 2, while X, Y, [X, [X, Y ]] are linearly independent if x ̸= 1. Hence, together X, Y, [X, Y ]
and [X, [X, Y ]] span the tangent space for all points (x, y, z) ∈ R3. Therefore, the distribution is
bracket-generating and by Theorem 1.9, we know every two points are connected by a horizontal
curve. Moreover, we find that for the metric g = dx2 + ((1− x)2 + x4)−1(dy2 + dz2) the frame X
and Y are orthonormal. Therefore, by Theorem 1.18 we find the sub-Riemannian Hamiltonian
for λ = (x, y, z, px, py, pz) ∈ T ∗R3 is of the form

H(λ) =
1

2
p2x +

1

2

(
(1− x)py + x2pz

)2
.

Hamilton’s equations are given by



x′(t) = px
y′(t) = ((1− x)py + x2pz)(1− x)
z′(t) = x2((1− xpy + x2pz)
p′x(t) = ((1− x)py + x2pz) (py − 2xpz)
p′y(t) = 0
p′z(t) = 0.

(1.6)
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In [12, Proposition 1] it is shown that the curve γ : [a, b] → R3 defined by t 7→ (0, t, 0) is a
length minimizer when b− a ≤ 2

3
. We want to show that in this case the system (1.6) is not

satisfied for λ(t) = π(γ(t)), and hence γ is an abnormal geodesic for this distribution. Since
γ(t) = π(λ(t)), we find x(t) = z(t) = 0 and the system (1.6) reduces to



x′(t) = px
y′(t) = py
z′(t) = 0
p′x(t) = p2y
p′y(t) = 0
p′z(t) = 0.

(1.7)

From this, we find that since x(t) is constant, we have px(t) = 0 and hence py(t) = 0. But then
we find that y′(t) = 0, in other words y(t) is constant. However, for the curve γ(t) = (0, t, 0) we
know that y(t) is not constant. Therefore, γ(t) does not satisfy the system (1.6) and hence it is
not a normal sub-Riemannian geodesic of the distribution D. △

1.5 Abnormal extremals and contact distributions

In this section we discuss abnormal sub-Riemannian geodesics. Thusfar, we have seen that
we can characterize normal geodesics as the projections of normal Pontryagin extremals or as
solutions of the sub-Riemannian Hamiltonian. Computing abnormal minimizers is not as easy.
Moreover, we mention that not every sub-Riemannian structure admits abnormal geodesics
([4]). Therefore, it would be useful to have a result that tells us whether there exist abnormal
geodesics. We will present one such result, which tells us that in the case of contact distribution
in dimension three (like discussed in 1.4) there are no abnormal minimizers to be found. Before
we state this, we want to characterize abnormal geodesics. For this characterization we will
use characteristic curves. First, we will characterize normal extremals again, after which we
continue with abnormal extremals. This new characterizataion will be crucial to state the non
existence result of abnormal minimizers for a contact structure in dimension three.

Definition 1.26. Let M be a smooth manifold with a 2-form σ. A smooth curve γ : [0, T ] →M
is a characteristic curve for the form σ if, for almost every t ∈ [0, T ], we have

γ′(t) = ker(σγ(t)).

Using the terminology of characteristic curves, we first give a new characterization for normal
extremals.

Theorem 1.27 ([5, Proposition 4.30], Normal extremals via Characteristic curves). Let H be
the sub-Riemannian Hamiltonian and assume that c > 0 is a regular value of H. Then a smooth
curve on H−1(c) is a characteristic curve for the standard symplectic form ω|H−1(c) if and only
if the curve is a reparametrization of a normal extremal trajectory.

Now, we want to state a similar theorem for abnormal extremals. Recall that according to 1.15
an abnormal minimizer was defined as a non-vanishing solution to the system of equations
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λ′(t) =

∑k
i=1 ui(t)Xhi

(λ(t))

hi(λ(t)) = 0.
(1.8)

In particular, we have that every abnormal extremal is contained in the zero level set of the
sub-Riemannian Hamiltonian H−1(0). In order to define characteristic curves on H−1(0), we
need that H−1(0) is a submanifold. However, 0 is never a regular value of H. In order to solve
this problem, we need the regularity assumption we already made for our distributions.

Since we assumed that H is the sub-Riemannian Hamiltonian associated to a regular sub-
Riemannian structure, we find by the constant-rank level set theorem ([6, Theorem 5.12]) that
each level set of H is a properly embedded submanifold of codimension r in M . This assumption
makes it possible to talk about characteristic curves in the submanifold H−1(0) of T ∗M .

Theorem 1.28 ([5, Proposition 4.34], Abnormal extremals via Characteristic curves). Let H
be a sub-Riemannian Hamiltonian associated to a sub-Riemannian structure. A smooth curve
on H−1(0) is a characteristic curve for ω|H−1(0) if and only if it is a reparametrization of an
abnormal extremal.

We now need to relate the level sets of the Hamiltonian back to the distribution D we defined
on our manifold. In general we can think of H−1(0) as the subspace of covectors that annihilate
the distribution, i.e.

H−1(0) = {λ ∈ T ∗M : ⟨λ, v⟩ = 0 : v ∈ Dπ(λ)} = D⊥.

Let us pick a basis ω1, . . . , ωk for D⊥ with ωi ∈ Ω1(T ∗M). Then following remark A.3 we find
λ =

∑n
i=1 hiωi for hi : TM → R as in Equation 1.8. The canonical symplectic form becomes

ω|D⊥ =
k∑

i=1

dhi ∧ ωi + hidωi. (1.9)

1.5.1 Contact sub-Riemannian structure

In the previous section we have characterized abnormal extremals in terms of characteristic
curves on the level set H−1(0) for a sub-Riemannian Hamiltonian H associated to a regular
sub-Riemannian structure. We will now use this result to show that on a contact distribution
no abnormal extremals can exist.

Definition 1.29. Let M be a 3-dimensional manifold. A distribution D = ker ξ of corank one
is called a contact distribution if
xi ∧ dξ ̸= 0.

We can then state the following theorem.

Theorem 1.30. [5, Theorem 4.38] Let M be a 3-dimensional manifold with a distribution
D = ker ξ of corank one. All nontrivial abnormal extremal trajectories are contained in the
Martinet set
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M := {q ∈M : (ξ ∧ dξ)|q = 0}.

In particular, if the distribution is a contact distribution the Martinet set is empty and no
nontrivial abnormal extremal trajectories exist.

Before we can prove this result, we first need the following lemma.

Lemma 1.31. Let M be an 2n-dimensional manifold for n ∈ Z with a two-form ω ∈ Ω2(M).
Then ω is non-degenerate on M if and only if ∧nω ̸= 0.

Proof. First, the equivalence is proven from right to left by contraposition. Take an arbitrary
point q ∈M . Assume ω is degenerate, then there exists v ∈ TN such that ω(u, v) = 0 for all
u ∈ TqN . Therefore,

∧n ω(v, u1, . . . , u2n−1) = 0.

Conversely, assume that ω is non-degenerate and consider some local coordinates (x1, . . . , x2n).
Then ω must be of the form:

ω =
2n∑

i,j=1

cijdxi ∧ dxj.

For ω to be non-degenerate we need that dxi ∧ dxj is included for every 1 ≤ i, j ≤ 2n. Since
suppose that dxl ∧ dxr for 1 ≤ l, r ≤ 2n is not included, then ω( ∂

∂xr
, u) = 0 for all u ∈ TqN ,

which contradicts the non-degeneracy. Moreover, cij ̸= 0 as the form ω is nonvanishing. We can
now compute that

n∧
ω = Cdx1 ∧ · · · ∧ dx2n,

where C =
∏2n

i,j=1 c
ij ̸= 0. Since the wedge product of all basis vectors is non-zero, this proves

the implication from left to right. □

Now we can prove the theorem.

Proof of theorem 1.30. From theorem 1.28 any abnormal extremal λ ∈ T ∗M is a characteristic
curve of the symplectic form ω|D⊥ . On D⊥ we have that λ = h1ω1 + h2ω2 + h3ω3, where ω1, ω2

and ω3 form a basis for D⊥. Here we take without loss of generality that ω1 = ξ with D = ker(ω).
We notice that hi(λ) = 0 for λ ̸= 0. On D⊥ we have ⟨λ, v⟩ = 0 for v ∈ Dπ(λ) = ker(ξ). In other
words, we find that using the fact that v ∈ ker(ω1)

0 = ⟨h1ω1 + h2ω2 + h3ω3, v⟩
= ⟨h2ω2, v⟩+ ⟨h3ω3, v⟩

Hence, h2 = 0 and h3 = 0, since ω2 and ω3 are nontrivial. Moreover, we find h1 ̸= 0. Using this,
we find that the symplectic form is given by

ω|D⊥ = dh1 ∧ ξ + h1dξ. (1.10)
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For λ(t) to be an abnormal extremal with extremal trajectory γ(t), we need that γ′(t) ∈ ker(ω|D⊥)
for γ(t) non-trivial. Therefore, we need that ω|D⊥ is degenerate. By lemma 1.31 we find that
ω|D⊥ is degenerate if and only if (ω ∧ ω)|D⊥ = 0. Computing this form, we obtain:

(ω ∧ ω)|D⊥ = 2h1 ∧ ξ ∧ dξ.

For this form to vanish, we need that ξ ∧ dξ = 0, because h0 ≠ 0. Therefore, we conclude
that for λ(t) to be an abnormal extremal is equivalent to requiring that ξ ∧ dξ = 0 along the
associated trajectory γ(t). This is precisely equivalent to γ(t) being in the Martinet set M.

We notice that in case D is a contact distribution, then the Martinet set is empty because
ξ ∧ dξ ̸= 0. Hence, in this case no abnormal minimizers exist. □

Contrary to the contact case, we find that on even dimensional manifolds with a distribution of
codimension one there always exist abnormal extremals.

Proposition 1.32. Let M be an even dimensional manifold with a constant rank distribution
of codimension one, then there always exist abnormal extremals.

Proof. Let n be an even number. Notice that if dimDq = n−1, then we can find the dimensions
of the subbundles D ⊆ TM and D⊥ ⊆ T ∗M to be:

dimD = dimM + rankD
= n+ n− 1

= 2n− 1

dimD⊥ = dimM + rankD⊥

= n+ 1.

Since ω is a symplectic linear form, we know that it must be skew-symmetric. Any skew-
symmetric map has even rank. Hence, by the rank-nullity theorem applied to the linear map
ω|D⊥ , we find

n+ 1 = dimD = dimkerω|D⊥ + dim imω|D⊥ .

Since, n+ 1 is odd and the image of the form is even, we need that the kernel of ω|D⊥ is odd,
and hence non-trivial. Therefore, there always exists some non-trivial characteristic curve for
ω|D⊥ , which implies there exists an abnormal extremal trajectory by theorem 1.28. □

1.6 Exponential map

In Riemannian geometry, we define the exponential map to be the map that sends each tangent
vector to a corresponding geodesic. To be more precise, if on a Riemannian manifold (M, g),
we consider a point q ∈ M and a tangent vector v ∈ TqM , then exp : TqM → M is defined
as expq(v) = γv(1). Here γv is the unique curve through the point q with tangent vector v.
Each Riemannian geodesic can be written as γv(t) = exp(tv). Analogously, we want to define a
similar construction for sub-Riemannian manifolds. This is however not always possible since
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it might be that the vector v ∈ TqM does not lie in the admitted distribution. This is the
same issue as we had before while defining the Legendre transform. In other words, there are
in infinte number of vectors v ∈ TqM that project to the geodesic γv, so the exponential map
would not be well-defined. Similarly as for the sub-Riemannian Lagrangian (See section 1.3)
this problem can be solved by lifting to the cotangent bundle. Consider the set of curves λ(t) in
T ∗
qM solving the Hamiltonian system

λ′(t) = XH(λ(t))

such that the solution λ(t) is well-defined on the interval [0, 1]. Each such curve has an intial
covector λ0 = λ(0). Consider the set of these initial covectors λ0 and denote is A. Taking the
set A as the domain, the following definition of the exponential map is well-defined.

Definition 1.33. Let q ∈ M . The sub-Riemannian exponential map based at q is the
map expq : A →M defined by exp(λ0) = π ◦ eXH (λ0).

Intuitively this definition means that we look at the image of an initial covector under the flow
of the sub-Riemannian Hamiltonian vector field XH , and project this to the base space. It
remains to show this construction yields the normal extremal trajectories. To show this, we first
need to prove a lemma about the flow.

Lemma 1.34 ([5, Lemma 8.35], Homogeneity of the exponential map). Let H be the sub-
Riemannian Hamiltonian. Then for every covector λ ∈ T ∗M and any constant α ∈ R>0 we
have

eXH t(αλ) = αeαXH t(λ)

for all t ∈ R>0.

Using this lemma we can state that the exponential map, maps normal extremals to normal
geodesics.

Lemma 1.35. Let λ(t) be a normal extremal that satisfies the initial condition λ(0) = λ0 ∈ T ∗
q0
M .

Then the normal extremal path γ(t) = π(λ(t)) satisifies γ(t) = expq0(tλ0).

Proof. By definition, we have expq0 (tλ0) = π
(
eXH (tλ0)

)
. Then using the homogeneity property

in 1.34, we find π
(
eXH (tλ0)

)
= π

(
etXH (λ0)

)
. By definition of the flow, we have etXH (λ0) = λ(t).

Therefore, π
(
etXH (λ0)

)
= π(λ(t)) = γ(t). □

The homogeneity property in lemma 1.34 has another nice consequence.

Corollary 1.36. The level set H−1(1
2
) of the sub-Riemannian Hamiltonian H is diffeomorphic

to the cylinder of normalized covectors Λq0 ⊆ T ∗
q0
M .

The proof of this fact can be found in [5, Remark 8.37]. But to give some intuition, we know
that if we start with a normalized covector it must lay within a circle. Then by the homogeneity
property we find that if we increase time the covector stays with in the circle but can move in
some direction, namely vertically to the distribution (if the rank of the distribution is less than
the dimension of the manifold).



Chapter 2

Sub-Riemannian structure on a
principal G-bundle

In this chapter we discuss how we can find a sub-Riemannian structure on a principal G-
bundle π : Q → M . It turns out that we can give a closed form expression for the normal
sub-Riemannian geodesics on Q, if there exists a Riemannian metric of so-called ‘constant
bi-invariant type’ on the space Q. The statement and proof of this result are the content of
section 2.2. This will allow us to give sub-Riemannian structures on some examples like Lie
groups and homogeneous spaces in section 2.3. Moreover, it will be useful if we want to define a
sub-Riemannian structure for the famous Hopf-fibration in section 2.3.1. We initially studied
Sub-Riemannian principal bundles to see if we could extend techniques from this proof to
sub-Riemannian structures on orbifolds, this turned out not to be possible within the scope of
the thesis. We still include it for potential future research. This section is heavily inspired by
[4] and [13].

2.1 Sub-Riemannian structures of bundle type

First we need some notions of differential geometry. Let π : Q → M be a submersion of
manifolds. The fiber through q ∈ Q is the submanifold Qm := π−1(m) for m = π(q) ∈M . By
the implicit function theorem the fiber is a submanifold.

Definition 2.1. The vertical space Vq is the tangent space to fiber through q, i.e.

Vq = Tq(Qm) = ker(dπq).

The collection of all vertical spaces is called the vertical distribution V ⊆ TQ.

The distribution V is an integrable distribution since Vq = Tq(Qm) for each point q ∈ Qm

(and Qm ⊆ Q and immersed submanifold). As we are interested in completely non-integrable
distributions, we consider its complement as follows.

Definition 2.2. An Ehresmann connection for π : Q→M is a distribution H ⊆ TQ which
is everywhere transversal to the vertical distribution V, i.e. for every q ∈ Q

27
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Vq ⊕Hq = TqQ. (2.1)

A connection on a principal G-bundle can be thought of as a choice of horizontal complement
to the tangent bundle on Q. We will refer to the distribution H as the horizontal distribution
or the sub-Riemannian distribution. On the horizontal distribution H we want to give a
sub-Riemannian metric.

Lemma 2.3. The map r = dπq|Hq : Hq → Tπ(q)M is a linear isomorphism.

Proof. Because π is a submersion dπq : TqQ→ Tπ(q)M is a surjective linear map with kernel Vq.
Hence, we find that by the first isomorphism theorem TqQ/Vq

∼= Tπ(q)M . On the other hand,
we know that by the Ehresmann connection we have that TqQ = Vq ⊕Hq. So, TqQ/Vq

∼= Hq.
Therefore, we find that Hq

∼= Tπ(q)M via r. □

Using the previous lemma, we can use that given a Riemannian metric g on M , the pullback
metric r∗g under r = dπq|Hq : Hq → Tπ(q)M yields a metric on Hq. In this way we obtain a
sub-Riemannian metric on the underlying distribution Hq.

Definition 2.4. For a given submersion π : Q→M with a metric g onM , the triple (Q,H, r∗g),
as constructed above, is called the induced sub-Riemannian structure. If π : Q→M is a
principal G-bundle then we call the metric r∗g on H a metric of bundle type.

Given a curve on M , we want to be able to lift it to Q, and preferably to H. This can be done
via a horizontal lift.

Definition 2.5. Let c : [0, 1] →M be a path starting at m in M , then the horizontal lift of c
through q ∈ Qm is defined to be the unique curve γc : [0, 1] → Q which starts at q, is tangent to
H, and projects to c (i.e. π ◦ γc = c).

Then we find that from a Riemannian metric on Q, we can make a sub-Riemannian metric via
the following definition.

Definition 2.6. Let π : Q → M a submersion with horizontal distribution H. We say that
a Riemannian metric on Q is compatible with the induced sub-Riemannian metric on Q if
TQ = V ⊕H is an orthogonal splitting, i.e. H = V⊥ under the Riemannian metric.

2.2 Sub-Riemannian geodesics on a principal G-bundle

For the rest of this chapter let π : Q→M be a Principal G-bundle and g the Lie algebra of G.
Using the structure of this principal bundle we want to compute sub-Riemannian geodesics on
Q. In Chapter 1, we have seen that a convenient way to find sub-Riemannian geodesics is to
compute a sub-Riemannian Hamiltonian. In [4] the following definition is made.

Definition 2.7. Suppose we have a principal G-bundle π : Q → M . Let g be a Riemannian
metric on M , with Hamiltonian HR : T ∗M → R. Given a projection Pr : T ∗Q → T ∗M we
define the sub-Riemannian Hamiltonian induced by the Riemannian Hamiltonian on M as

HSR = HR ◦ Pr.
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We note that the distribution related to the sub-Riemannian structure on Q is then given by
the horizontal lifts of an orthogonal frame for the Riemannian structure on M . The projection
Pr : T ∗Q → T ∗M is however not obvious. Using the Ehresmann connection, we find that
TQ = H ⊕ V. Dualizing, yields T ∗Q = H∗ ⊕ V∗. Let us denote the projection onto the first
factor by pr1 : T ∗Q → H∗. Now, it remains to find a map from H∗ to T ∗M . Consider any
element f ∈ H∗

q , this is a linear map f : H∗
q → R, from this we want to construct a map

Tπ(q)M → R. Consider any vector v in Tπ(q). These vectors have a unique horizontal lift hqv on
Hq. Then we define the map pr2 : Hq → Tπ(q)M by pr2(f)(v) = f(hqv). Combining the maps
pr1 and pr2 we obtain the map Pr : T ∗Q→ T ∗M defined by pr2 ◦ pr1 as desired.

Let us fix a metric of bundle type on a principal G-bundle π : Q→M . Moreover, let g be the
Lie algebra of G. We will state a result that relates the sub-Riemannian geodesics on Q to the
Riemannian geodesics of M . For this we will first need some notions from Riemannian geometry
and Lie theory. First of all let us lift the action on Q to its tangent bundle.

Definition 2.8. The infinitesimal generator of the group action of G on Q is the map
σq : g → TqQ defined by

σq(ξ) =
d

dt

∣∣∣∣
t=0

q expG(ξt)

for q ∈ Q and ξ ∈ g.

Lemma 2.9. [11, Proposition 27.8] For a principal G-bundle π : Q→M we have σq : g → Vq
is a linear isomorphism.

Because we can identify Vq with g, we can define a connection 1-form.

Definition 2.10. Given a horizontal space H on π : Q → M a connection 1-form A ∈
Ω1(Q; g) is a G-equivariant g-valued 1-form on Q such that A(σq(ξ)) = ξ and A(ξ) = 0 for
ξ ∈ H.

Every connection H on a principal G-bundle comes with such a connection 1-form, since we
can construct it as the projection Aq : TqQ→ Vq such that Hq = ker(Aq) for all q ∈ Q. Notice
that the condition A(σq(ξ)) = ξ is well-defined then since A(σq(ξ)) ∈ Vq ∼= g by 2.9. Conversely,
given such a connection 1-form A, we can give the horizontal space Hq = ker(A).

Let us define a Riemannian metric ⟨·, ·⟩ on Q that is G-invariant 1, then

Definition 2.11. The bilinear form

Iq(ξ, η) = ⟨σqξ, σqη⟩,

for ξ, η ∈ g, is called the moment of inertia tensor at q.

Using the moment of inertia tensor, we can define the main condition for our principal bundles
to have normal geodesics of a specific form.

Definition 2.12. [13] The Riemannian metric ⟨·, ·⟩ on Q is said to be of constant bi-invariant
type if its moment of inertia tensor Iq does not depend on the point q ∈ Q.

1Let α : G×M → M be a group action G-action on a manifold M . We call a Riemannian metric β G-invariant
if β(dα(v), dα(w)) = β(v, w).
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Example 2.13. Let G be a connected matrix Lie group that acts on itself by right-translation
Rg(q) = qg. For q ∈ G and ξ ∈ g. Consider a G-invariant Riemannian metric β on G. We find
the infinitesimal generator is given by

σq(ξ) =
d

dt
|t=0q exp(tξ)

=
d

dt
|t=0q

(
I + tξ +

(tξ)2

2
+ . . .

)
= qξ.

The moment of inertia tensor for arbitrary ξ, η ∈ g is given by

Iq(ξ, η) = βq(σqξ, σqη)

Consider any other point p ∈ G. Then we know that p = qg for some g ∈ G we have

Ip(ξ, η) = Iqg(ξ, η)
= βqg(qgξ, qgη)

= βq(qξ, qη).

Here the last equality follows by the G-invariance of β. Hence, we find that Iq does not depend
on the point q. △

These definitions allow us to state the following theorem which relates the Riemannian to the
sub-Riemannian geodesics.

Theorem 2.14. [4, Theorem 11.2.5] Let π : Q→M be a principal G-bundle with a Riemannian
metric of constant bi-invariant type on Q. Let H be the Ehresmann connection with connection
1-form A ∈ Ω1(Q; g). Take expR to be the Riemannian exponential map, so that γR(t) = expR(tv)
is the Riemannian geodesic through q ∈ Q with tangent vector v ∈ TqQ. Then any horizontal
lift of the projection π ◦ γR is a normal sub-Riemannian geodesic on Q given by

γ(t) = expR(tv) expG(−tA(v)).

Moreover, all normal geodesics on Q can be obtained in this way.

To give some intuition behind this statement, given a Riemannian geodesic γR on Q we can
find a sub-Riemannian geodesic by first projecting to the base M , π ◦ γR. Then we apply a
horizontal lift to get a a curve on Q again. The way to apply the horizontal lift is to consider
the inverse of the flow of the vector field A(v) projected to the Lie group G.

The proof of this theorem can be found in [4, Section 11.2], we include it here for clarity and to
provide some extra level of detail in some of the terse parts of the original proof.

Let us write HR for the Riemannian Hamiltonian, HSR the sub-Riemannian Hamiltonian and
HG for the vertical part of HR with respective flows ΦR,ΦSR and ΦG. Then we can write

HR = HSR +HG. (2.2)

For the proof we need to prove four lemma’s.
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Lemma 2.15. Any bi-invariant function Poisson commutes with any right-invariant function 2

on T ∗G. Similarly, for left-invariant functions.

Proof. Let the Lie group G act on itself by right translation Rg(h) = hg. The infinitesimal
generators for the right translation are given by the left-invariant vector fields h 7→ (dLh)e ξ,
where ξ ∈ g, Lh is the left translation action on G, and dLh : g → TgG is the derivative of the
left translation action at the identity e. Similarly, the infinitesimal generators of the left actions
are given by the right-invariant vector fields.

Given a tangent vector ξ ∈ g we can extend it to a right-invariant vector field ξr by setting

ξr(g) := dRg(ξ).

The following computation confirms that this vector field is indeed right-invariant. Consider a
point s ∈ G, let an element g ∈ G act on s to get the point q = sg ∈ G, then we compute

dRh (ξ
r)q = dRh (dRg) (ξ)s

= d (Rgh) (ξ)s

= ξrsgh

= ξrqh.

Hence, the vector field ξr is right-invariant. A similar construction can be made for the
left-invariant vector field ξl.

Consider coordinates (q, p) on Q. We define the momentum maps JR corresponding to Lg as
follows

Jξ
R(q, p) := p(ξl(g)q)

= p (dLg(ξq)) .

In other words, the momentum map is given by lifting the action on G to T ∗G, hence we have
that JR(q, p) = dL∗

g(p). Similarly, we can write JL = dR∗
g(p).

On T ∗G we want to compute the Poisson bracket on the cotangent bundle, this bracket is
defined in detail in Appendix A.2. In order to do this, we need to find a general form for
left-, right- and bi-invariant functions on T ∗G. To find this form we will make use of the fact
that the quotient T ∗G/G, formed by letting G act on T ∗G by the lift of the left-translation,
is diffeomorphic to g∗. Here, we consider without loss of generality the left-action. To see the
afformentioned diffeomorphism, note that the trivialization of T ∗G by left-translation is given
by

λ : αg ∈ T ∗
gG 7→ (g, T ∗

e Lg(αg)) = (g, JR(αg)) ∈ G× g∗

such that the cotangent lift of the left-translation on G is given by the G-action on G × g∗

defined by

g · (h, µ) = (gh, µ) (2.3)

2A function f : T ∗G → R is right-invariant if R∗
gf = f for Rg the right multiplication by g ∈ G
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for g, h ∈ G and µ ∈ g∗. Hence, T ∗G is diffeomorphic to (G× g∗) /G, which in turn is
diffeomorphic to g∗ since G does not act on g∗, as can be seen in (2.3). We note that the
momentum map JR : T ∗G→ T ∗G/G is the canonical projection map.

Now, we find a general form for left-invariant functions. Consider a basis {e1, . . . , en} on g with
a corresponding dual basis {ε1, . . . , εn}. Under the projection JR this dual basis gives rise to
a basis consisting of left-invariant functions {ε1l , . . . , εnl } where εil = Jei

R for any i ∈ {1, . . . , n}.
Therefore, any left-invariant function can be written as f = f1ε

1
l + · · ·+ fnε

n
l . Similarly, we can

find such a basis for right-invariant functions. Taking a right invariant function h : T ∗G→ R,
we find

{εil, h} = {Jei
R , h} = 0,

since Jei
R is acting from the right on h, which was assumed to be right-invariant. If we consider h

to be bi-invariant then it is also right-invariant, hence we find {εil, h} = 0. Now, let us consider
any left-invariant function φ : T ∗G→ R, then φ = φ1ε

1
l + · · ·+ φnε

n
l . Then we find

{φ, h} =
n∑

i=1

φi{εil, h} = 0

by using the Leibniz identity and the bilinearity for the Poisson bracket. A similar computation
shows the same result for right-invariant functions. □

Lemma 2.16. For a bi-invariant metric β on a Lie group G, the geodesics through the iden-
tity coincide with the one-parameter subgroup of G. More explicitly stated: the Riemannian
exponential map expR and expG : g → G coincide, i.e.

expG(tξ) = expR(tξ)

for ξ ∈ g.

Proof. Consider the Hamiltonian related to the metric β given by H : T ∗G → R. The
Hamiltonian H will be bi-invariant because the metric is bi-invariant. In terms of the basis
{ε1r, . . . , εnr }, discussed in the proof of Lemma 2.15, we find

H = Hijε
i
rε

j
r.

For any vector field η on G, we consider the momentum function Pη : T
∗G→ R defined as

Pη(q, p) = p(η(q)) = Jη(q, p)

for (q, p) ∈ T ∗G. Hence, εir = PEi
where {E1, . . . , En} is a basis for left-invariant vector fields

corresponding to the basis vectors ei. In terms of the position variable q and the momentum
variable PEi

= εir we find Hamilton’s equations to be as follows:

q̇i =
n∑

j=1

Hijε
j
rEj, (2.4)

ṖEi
= ε̇ir

= {εir, H},
= 0.

(2.5)
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where the last equality follows from using lemma 2.15, the fact that H is bi-invariant and the
right-invariance of εr. Let us consider a geodesic γ : [0, 1] × G → G on G that starts at the
identity element, i.e. γ(0) = I, and a tangent vector ξ(q) =

∑
j=1Hijε

j
rEj(q) for any q ∈ G.

Then by Hamilton’s equations, we know for a geodesic γ that it can be written as γ′(t) = γ(t)ξ,
where ξ is constant by the momentum part (Equation (2.5)) of the Hamilton’s equations. Solving
this equation, we find:

expR(tξ) = γ(t) = expG(tξ).

Which proves the lemma. □

Lemma 2.17. The Hamiltonians HR, HSR and HG Poisson commute pairwise.

Proof. First, we prove that HSR and HG Poisson commute. Recall that we have a principal
G-bundle π : Q → M . Consider an open set U ⊆ M . It suffices to prove this statement in a
locally trivialized neighbourhood N = π−1(U) with local trivialization πU : π−1(U) → U ×G.
The local trivialization induces the diffeomorphism

T ∗Q|N ∼= T ∗ (U ×G) ∼= T ∗U × T ∗G.

Since T ∗U and T ∗G have canonical Poisson structures, we can give T ∗Q|N the product Poisson
bracket structure {·, ·}T ∗Q|N which can be identified (locally) with

{·, ·}T ∗U + {·, ·}T ∗G

as discussed in Appendix A.2. Consider coordinates (q, p) on T ∗U and (g, µ) on T ∗G. Notice that
we have T ∗G is diffeomorphic to G× g∗. The Hamiltonian restricted on T ∗G does not depend
on (q, p) and because of the G-invariance of the metric β on Q we have that the Hamiltonian is
given by β∗ which only depends on µ, i.e.

HG(q, p, g, µ) = β∗(µ).

Similarly, noticing that HSR is given by a function f : T ∗Q→ R only depending on q, p and µ
since the metric is G-invariant, i.e.

HSR(q, p, g, µ) = f(q, p, µ).

If we now compute the bracket using β∗ and f and the afforementioned Poisson bracket we find

{HSR, HG}T ∗Q|N = {f, β∗}T ∗Q|N

= {f, β∗}T ∗U + {f, β∗}T ∗G

= {f, β∗}T ∗G.

Here, the last equality follows because β∗ is constant on T ∗U , and hence the Poisson bracket will
vanish. Take n = dim(G). Since f is bi-invariant (this follows from the fact it does not depend on
G), we can similarly to what was done in the proof of lemma 2.15 write f =

∑n
i=1 fi(q, p)µ

n
r ,for
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some right invariant basis {µ1
r, . . . , µ

n
r } for g∗. Hence, we compute using the bilinearity of the

Poisson bracket,

{f, β∗}T ∗G = {
n∑

i=1

fi(q, p)µ
i
r, β

∗}T ∗G

=
n∑

i=1

fi(q, p){µi
r, β

∗}T ∗G

= 0.

Here the last equality follows from Lemma 2.15 and the fact that β∗ is a bi-invariant function
on T ∗G. Therefore, we find that

{HSR, HG} = 0. (2.6)

For the other two commutation relations, notice that HR = HSR +HG, hence, we find

{HR, HG} = {HSR +HG, HG}
= {HSR, HG}+ {HG, HG}
= 0.

Similarly we find {HR, HSR} = 0. This proves the lemma for the local trivialization N . Proving
this for all local trivializations and gluing together yields the global result. □

Lemma 2.18. Any integral curve in T ∗Q related to the Hamiltonian vector field XHG
projects

to a curve of the form q expR(tξ) for some ξ ∈ g.

Proof. Let us again consider a local trivialization of T ∗Q given by π−1(U) → U ×G for an open
set U ⊆M . This trivialization induces the diffeomorphism T ∗Q|N ∼= T ∗U × T ∗G. The flow ΦG

of the Hamiltonian vector field XHG
, will only change over time in T ∗G. Therefore, let us write

ΦG(t)(q, p, g, µ) = (q, p,Φβ(t)(q, µ)) .

Here, let Φβ(t) : T ∗G → T ∗G denote the flow associated to β∗. Notice that if we project
Φβ(t)(q, µ), we get by lemma 2.16 that

π (Φβ(t)(g, µ)) = expG(tξ) = expR(tξ)

for some ξ ∈ g. So we obtain

π (ΦG(t)(q, p, g, µ)) = q expR(tξ)

as desired. □

Using the lemma’s above, the main theorem can be proven.

Proof of theorem 2.14. Consider the Riemannian exponential map expR : TqQ → Q for some
q ∈ Q as in definition 1.33. Then a Riemannian geodesic can be written as γR(t) = expR(tv)
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for v ∈ TqQ. Using equation (2.2) we find that HSR = HR −HG. Using 2.17 we know that the
flows related to the Hamiltonian vector fields for the Hamiltonians HSR, HG and HR commute.
Hence, we find

ΦSR(t) = ΦR(t) ◦ ΦG(−t).

Consider the projection prQ : T ∗Q → Q. Then we find the normal geodesic γSR(t) can be
written as prQ (ΦSR(t)). In other words we can compute as follows,

γSR(t) = prQ (ΦSR(t))

= prQ (ΦR(t) ◦ ΦG(−t))
= γR(t) expG(−tξ),

where the last equality folllows from lemma 2.18. Since the sub-Riemannian geodesics γSR must
be horizontal, we find that ξ = A(v) for some the connection 1-form A ∈ Ω1(Q, g) and some
v ∈ g. Expressing the Riemannian geodesic in exponetial form this shows the formula

γSR(t) = expR(tv) expG(−tA(v)).

Since any normal sub-Riemannian geodesic can be expressed as the projection of the sub-
Riemannian Hamiltonian flow (Theorem 1.20), we find that all normal geodesics on Q can be
obtained as above. □

2.3 Examples of sub-Riemannian principal bundles

Using the techniques from the previous section we give a few larger classes of examples.

Example 2.19 (Lie groups). Consider a compact Lie group G with a closed subgroup K ⊂ G.
Let K act on G from the right, that is Rg : K → G such that Rg(k) = gk. This action yields a
principal K-bundle G → G/K. Define a K-invariant Riemannian metric β on G of constant
bi-invariant type. Consider the Lie algebra k of K. Let (Rg)∗ (k) be the vertical space Vg at the
point g ∈ G. The horizontal space is defined as the orthognal with respect to β given by

Hg = V⊥
g = {v ∈ TgG : β(v, k) = 0 for all k ∈ Vg}.

Since we have a Riemannian metric of bi-invariant type, Theorem 2.14 yields a sub-Riemannian
structure on G with distribution Hg. In order to find a closed form for the normal sub-
Riemannian structure we need to find the connection 1-form. We want to find a projection
A : TgG→ Vg such that Ag(σq(ξ)) = ξ for all ξ ∈ TgG and Ag(ξ) = 0 for ξ ∈ Hg. We note that
any ξ ∈ TgG can be written as a vector ξv + ξh, with ξh ∈ Hg and ξv ∈ Vg. Define the map A to
be the orthogonal projection: Ag(ξ) = ξv. Then for ξ ∈ g we have A(ξ) = 0 since ξ = ξh. Using
this result, for any ξ = ξv ∈ Vg:

Ag(ξ) = Ag(ξv + ξh) = Ag(ξv) + Ag(ξh) = Ag(ξv).
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Because σg(ξ) ∈ TgG, we have σg(ξ) = σg(ξ)v + σg(ξ)h, hence A(σg(ξ)) = σg(ξ)v ∈ Vq. Using
the isomorphism from Lemma 2.9, we find that σg(ξ)v = ξv = ξ as desired. So A is indeed a
connection 1-form. Using this form, and the exponential maps exp : g → G and expK : k → K
we find the normal sub-Riemannian geodesics through g ∈ G are given by

γ(t) = expG(tξ) expK(tA(ξ)). (2.7)

for any ξ ∈ Hg. △
Example 2.20 (Homogeneous spaces). Consider the bundle π : G→ G/K from example 2.19.
If we consider a closed subgroup H ⊂ G that commutes with K, i.e. HK = KH, then we can
quotient by H on both sides of π. We obtain a new Principal K-bundle G/H → G/(H ×K).
Notice that the projection G→ G/H is a Riemannian submersion. So the metric β on G gives

rise to a metric β̃ on G/H. Since we still consider the K-action this metric will be of constant
bi-invariant type and the connection 1-form will not change. However, we do need to assume
that ξ is orthogonal to the Lie algebra of H: h in order for the flow to be defined on G/H
instead of G. The normal sub-Riemannian geodesics on G/H will be of the form (2.7). △

Both the Lie group and the homogeneous space cases give rise to many examples which can be
found in [4, Section 11.3]. We discuss two additional exampls, first the falling cat problem.

Example 2.21 (Falling cat problem). Let us consider a falling cat. As is commonly known
a cat will always land on its feet independent of its starting position and orientation. From a
physics point of view this is strange however, since a cat cannot simply rotate itself in midair as
this this would violate the conservation of angular momentum. Instead, it follows from biological
research that a cat can rotate its front-half and its back-half separately. Hence, first rotating its
front-half and then its back-half rotates the cat while adhering to the conservation of angular
momentum. This process is illustrated in figure 2.1.

To find the most efficient way for the cat to fall and ‘change its shape’ we can find the geodesics
in the configuration space of this model. Mathematically, the very simplified model will be
as follows. The configuration space is given by Q = SO(3) × SO(3) × R3. The two copies of
SO(3) give the orientation of the front- and back-halves of the cat and R3 the positon of the
cat. The group of rigid-body rotations and translation is defined by G = SE(3) ∼= SO(3)⋊R3,
we let this act on Q. We note that SE(3) acts freely and properly on Q hence we get a principal
SE(3)-bundle given by

SE(3) → Q→ Q/ SE(3).

Note that S = Q/ SE(3) is isomorphic to SO(3). The space S will be called the shape space of
the cat, and it describes the one half of the cat relative to the other half of the cat. On Q let
us define a bi-invariant (pseudo-)Riemannian metric β, for the falling cat problem we can for
example choose to minimize the length of paths with respect to the metric kinetic energy. Using
theorem 2.14 we know the form of the normal sub-Riemannian geodesics on Q if the metric
is of constant bi-invariant type. We note that SE(3) is a matrix Lie group, with matrix Lie
algebra se(3). Hence, using Example 2.13 the infinitesimal generator is given given by σq(ξ) for
ξ ∈ se(3)

The moment of inertia tensor for arbitrary ξ, η ∈ se(3) is given by

Iq(ξ, η) = β(σqξ, σqη)

= β(ξq, ηq)
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Figure 2.1: Falling cat [15]

Since ξq and ηq are both in Tq SE(3), they are invariant under rotations and translation. Hence,
changing the point q does not change I(ξ, η). Therefore, we find that the metric β must be of
constant bi-invariant type. Hence the normal sub-Riemannian geodesics through q ∈ Q are of
the form

γ(t) = exp(tξ) exp(−tA(ξ))

where ξ ∈ TqQ and A is the connection 1-form related to the horizontal distribution one would
choose. This would, dependent on the chosen horizontal distribution (which would need to
incorporate the fact that the angular momentum needs to be preserved), indeed give the observed
rotating motion. A more detailed explanation and result can be found in [16]. △

2.3.1 Sub-Riemannian Hopf action

Consider the Hopf action

S1 → S3 π−→ S2

Notice that S3 := {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1}. The map π is given by

π(z0, z1) =
(
2z0z1, |z0|2 − |z1|2

)
.

One can check that π(z0, z1) ∈ S2 := {(z, x) ∈ C×R : zz+x2 = 1} by a computation. Using that
the Lie group U(1) = {z ∈ C : zz = 1} is diffeomorphic to S1 we can consider the Hopf action
as a principal U(1)-bundle. Using the results in section 2.2 we will find the sub-Riemannian
geodesics on S3 from the Hopf action, by checking that the Riemannian structure on S3 is of
constant bi-invariant type. This can be done using a similar construction as for Lie groups in
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Example2.19. Then a horizontal distribution can be found using the Riemannian metric on
S3. However, for this example we want to find the distribution using a slightly other way. The
result is borrowed from [17].

As we have seen in section 2.2 in order to find a horizontal distribution H we first need to find
the vertical distribution and consider its orthogonal complement. In this case, we consider the
vertical space to be the tangent space of the action that is obtained by the right multiplication
of an element in S1 on S3. To find this vertical space note that the space S3 can be realized as
the set of unit quaternions, i.e. S3 = {q ∈ H : ∥q∥ = 1} where ∥q∥ = qq. The multiplicative
structure of H yields a right S1-action on S3 defined by Rp(x) := x · p. In coordinates the right
action is defined by

Rp(x) = (x0p0 − x1p1 − x2p2 − x3p3) + (x1p0 + x0p1 − x3p2 + x2p3) i+

+ (x2p0 + x3p1 + x0p2 − x1p3) j + (x3p0 − x2p1 + x1p2 + x0p3) k

with x = x0 + x1i+ x2j + x3k, p = p0 + p1i+ p2j + p3k ∈ S3. The tangent map of Rp(x) is given

by (dRp(x))
T , which as a matrix is defined as


p0 p1 p2 p3
−p1 p0 −p3 p2
−p2 p3 p0 −p1
−p3 −p2 p1 p0

 .

If we calculate the action on the standard basis of R4 we obtain the following four vector fields

N(p) = p0∂p0 + p1∂p1 + p2∂p2 + p3∂p3
V (p) = −p1∂p0 + p0∂p1 − p3∂p2 + p2∂p3
X(p) = −p2∂p0 + p3∂p1 + p0∂p2 − p1∂p3
Y (p) = −p3∂p0 − p2∂p1 + p1∂p2 + p0∂p3

Notice N(p) is the normal vector to S3 at p ∈ S3 with respect to the standard inner product on
TR4. The vector V (p) will be our vertical space Vp in the language of 2.2.

Lemma 2.22. The set {X(p), Y (p), V (p)} form an orthonormal basis for TpS
3.

Proof. Note that the vectors X(p), Y (p) and V (p) lie in TpS
3 because they are orthogonal to the

normal vector N(p) at p. Since dimTpS
3 = 3 and we have three linearly independent vectors

we find that {X(p), Y (p), V (p)} form an basis for TpS
3. We note that by computing their inner

products we can see that the vector {X(p), Y (p), V (p)} are orthogonal and all have norm 1.
Therefore, {X(p), Y (p), V (p)} form an orthonormal basis for TpS

3. □

We notice that we can split TpS
3 = V (q)⊕V (q)⊥ = V (q)⊕ (span{X(p), Y (p)}). So let us define

the horizontal distribution H = span{X, Y } on S3. The distribution H is bracket generating
since

[X, Y ] = 2V.
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Notice that equivalently we can also get a distribution if we take X or Y the vertical space, and
we consider the orthogonal complement of these.

We can also define H = ker(ω) where ω is the 1-form corresponding to the vector field V . We
find

ω = −p1dp0 + p0dp1 − p3dp2 + p2dp3.

Lemma 2.23. H is a contact distribution.

Proof. We want to show that ω ∧ dω ̸= 0. Note

dω = 2dp0 ∧ dp1 + 2dp2 ∧ dp3.

Then we compute

ω∧ dω = −2p3dp0∧ dp1∧ dp2+2p2dp0∧ dp1∧ dp3− 2p1dp2∧ dp3∧ dp0+2p0dp2∧ dp3∧ dp1 ̸= 0.

Therefore, ω is a contact form and H is a contact distribution. □

SinceH is a contact distribution, theorem 1.30 gives us that there are no singular sub-Riemannian
geodesics on H. We will now use the construction for sub-Riemannian structures on principal
bundles to give explicit sub-Riemannian geodesics on S3. First, let us show that the metric on
S3 is of constant bi-invariant type. The Lie algebra of U(1) is given by u(1) = {z ∈ C : z = −z}.
Since z = −z implies that z has no real part we can write ξ = iα for ξ ∈ u(1) and α ∈ R.
Consider q ∈ S3 then the infinitesimal generator for the action σ : u(1) → TqS

3 is given by

σq(ξ) = iqα,

conform the computation inExample 2.13.

The moment of inertia tensor is then given by

Iq (ξ, η) = ⟨σq(ξ), σq(η)⟩
= ⟨qξ, qη⟩
= ⟨iqα, iqβ⟩
= −αβ⟨q, q⟩
= −αβ

for ξ = iα and η = iβ in u(1), α, β ∈ R and ⟨·, ·⟩ the Riemannian metric on S3 induced by
the standard inner product on R4. The last equality follows because q ∈ S3. Hence, Iq does
not depend on q. Therefore, the Riemannian metric on S3 is of constant bi-invariant type.
This means that we have an explicit form of the sub-Riemannian geodesics in terms of the
Riemannian geodesics of S3.

To find the sub-Riemannian geodesics on S3 we need the connection 1-form A ∈ Ω1(S3, u(1)).
The form A is given by σ−1|Vq

: Vq → u(1) and defined by A(v) = i⟨v, V (q)⟩ for q ∈ S3 and

v ∈ TqS
3 (i.e. the projection of v onto the space V (q)).
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We recall that the Riemannian geodesics on S3 starting at p are given by the great circles
γR(t) = (z0(t), z1(t), z2(t)) with γR(0) = p and γ′R(0) = v. Using theorem 2.14 the fact that the
metric on S3 is of constant bi-invariant type yields that the sub-Riemannian geodesics are given
by

γ(t) =
(
z0e

−it⟨v,V (p)⟩, z1e
−it⟨v,V (p)⟩z2e

−it⟨v,V (p)⟩)
where γ(0) = p and γ′(0) = v.



Chapter 3

Orbifolds

In this chapter we introduce the second important topic of this thesis: orbifolds. Orbifolds, then
called V-manifolds, were first described in 1956 by Satake [18]. In 1980, Thurston gave orbifolds
their name in [19]. As an intuition one can think about orbifolds as manifolds with isolated
singularities. They are the quotient manifolds of discrete groups acting properly on each chart
of the manifold. In this section, we will first describe orbifolds structures in general (section
3.1). Then in section 3.2 we will present ‘developable’ orbifolds, which roughly speaking are
manifolds that are quotiented by a discrete group. Finally, in section 3.3, we describe orbifold
tangent spaces, differential forms and Riemannian metrics. In this chapter we use some theory
about group actions, for convenience this is summarized in appendix B. The material in this
section was mostly found in [20], [19] and [21].

3.1 Orbifold structure

Let Q be a paracompact 1 Hausdorff topological space with an open cover U = {Ui}i∈I which is
closed under finite intersections. Let us fix a positive integer n.

Definition 3.1. An n-dimensional smooth orbifold chart associated to an open set Ui ∈ U
is given by a triple

(
Ûi,Γi, φi

)
where

� Ûi is a connected open subset of Rn;

� Γi is a finite group acting effectively and smoothly by diffeomorphism on Ûi;

� φi : Ûi → Ui is a continuous surjective map that induces a homeomorphism fom Ûi/Γi

onto Ui.

Definition 3.2. If Γi acts effectively on Ûi, then the orbifold chart is said to be reduced or
effective.

In general not every orbifold chart is reduced, however for this thesis we assume that our charts
are always effective.

1Paracompact means that every open cover has a locally finite refinement, i.e. every point has a neighbourhood
that intersects only finitely many sets in the cover.

41
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Similar to the manifold case, we want to give a compatibility condition on the orbifold charts to
create atlasses. For orbifolds, this is done in a similar way to the manifold case, but we need

to keep track of the group actions. Consider two orbifold charts
(
Ûi,Γi, φi

)
and

(
Ûj,Γj, φj

)
corresponding to two subsets Ui and Uj such that Ui ⊆ Uj.

Definition 3.3. An embedding between orbifold charts is a pair

(
φ̂ij, λ̂ij

)
:
(
Ûi,Γi, φi

)
→
(
Ûj,Γj, φj

)
consisting of a smooth embedding φ̂ij : Ûi ↪→ Ûj and an injective group homomorphism λij :
Γi → Γj such that φ̂ij is λij-equivariant

2.

The definition of an embedding allows us to give the following definition of an atlas.

Definition 3.4. An orbifold atlas A on Q associated to U is a collection of orbifold charts{(
Ûi,Γi, φi

)}
i∈I

which satisfy the following local compatibility condition. Given two charts(
Ûi,Γi, φi

)
and

(
Ûj,Γj, φj

)
there exists an open set Uk ⊆ Ui ∩ Uj with an associated orbifold

chart
(
Ûk,Γk, φk

)
that embeds in

(
Ûi,Γi, φi

)
and

(
Ûj,Γj, φj

)
.

Figure 3.1: Pictorial explanation of an orbifold atlas.

Definition 3.5. If U ′ is another open cover of Q that refines U , we say that the associated atlas
A′ refines A if every orbifold chart in A can be embedded in some orbifold chart of A. We call
two atlasses compatible if they have a common refinement.

The compatibility gives rise to an equivalence relation on orbifold atlasses. Similar to the
manifold case, every orbifold atlas is contained in in a unique maximal orbifold atlas. We can

2The statement φ̂ij is λij-equivariant means that for γ ∈ Γi we have φ̂ij(γx) = λij(γ)φ̂ij(x) for x ∈ Ûi.
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then redefine the compatibility condition by saying two orbifold atlasses are compatible if and
only if they are contained in the same maximal orbifold atlas. As for manifolds, we mostly work
with the maximal orbifold atlas.

Definition 3.6. A smooth n-dimensional orbifold Q is a paracompact Hausdorff space Q with
an equivalence class of orbifold atlasses.

Remark 3.7. It is possible to have more than one (non-equivalent) orbifold structures on the
same topological space Q. Orbifolds are not smooth manifold, and also not in general topological
manifolds. Except for dimension two the underlying topological space Q need not have the
structure of a topological manifold [20, Example 2.38].

Let us state a few technical results that will be used later.

Theorem 3.8. [21] Given two embeddings of orbifold charts λ, µ :
(
Û ,Γ, φ

)
↪→
(
V̂ , H, ψ

)
,

there exists a unique h ∈ H such that µ = h · λ.

Proof. For a proof of this theorem see the appendix of [22]. □

This implies the following corollaries. Both proofs can also be found in the Appendix of [22].

Corollary 3.9. An embedding of orbifold charts λ :
(
Û ,Γ, φ

)
↪→
(
V̂ , H, ψ

)
induces an injective

group homomorphism λ̃ : Γ ↪→ H.

Corollary 3.10. Consider an embedding λ :
(
Û ,Γ, φ

)
↪→
(
V̂ , H, ψ

)
. If there exists h ∈ H

such that λ(Û) ∩ h ◦ λ(Û) ̸= ∅, then h lies in the image of λ. In other words, λ(Û) = h ◦ λ(Û).

Orbifolds could be thought of as manifolds with singularities. But how do we obtain these
singularities? In order to answer this question we need to talk about isotropy groups of an
orbifold.

Definition 3.11. For an orbifold Q = (Q,U), pick x ∈ Q. If
(
Û ,Γ, φ

)
is any orbifold chart

around x and y ∈ Û such that φ(y) = x, the local group/isotropy group at x is defined as

Γx := {γ ∈ Γ : γ · y = y}.

This means the isotropy group of a point on an orbifold, is given by the isotropy group on the
chart in Rn. We need to check the isotropy group is indeed well-defined.

Lemma 3.12. The isotropy group is well-defined. In other words, it does not depend on the
chosen chart and it is independent of the chosen lift.

Proof. First we show that the istoropy group does not depend on the chosen chart. Suppose

we use a different chart
(
V̂ , H, ψ

)
around x. By the compatibility of charts we know there

must exist a chart
(
Ŵ ,K, µ

)
together with embeddings λ1 :

(
Ŵ ,K, µ

)
↪→
(
Û ,Γ, φ

)
and

λ2 :
(
V̂ , H, ψ

)
such that the inclusions Ŵ ↪→ Û and Ŵ ↪→ V̂ are equivariant. Using lemma

3.9 we get injective group homomorphisms λ̃1 : Ky ↪→ Γy and λ̃2 : Ky ↪→ Hy. To see these
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homomorphisms are also surjective, we note that by the definition of the isotropy group there
exists γ ∈ Γy such that λ1(Ŵ )∩ γ ◦ λ1(Ŵ ) ̸= ∅. By 3.10 we find that γ must lie in the image of

λ, hence λ̃1 is a surjection. Therefore, we find Ky is isomorphic to Γy. Similarly, one can show

that λ̃2 is an isomorphism of groups, so Ky is isomorphic to Hy. Consequently, Hy is isomorphic
to Γy, so the isotropy group does not depend on the chosen chart.

Secondly, we need to show the isotropy group for a point x ∈ Q is independent of the chosen

lift y ∈ Û for
(
Û ,Γ, φ

)
a local chart around x. Suppose we pick y′ ∈ Û such that x = φ(y′).

Since y and y′ both lie in the same chart there exists γ ∈ Γ such that y′ = γ · y. Therefore,
Γy = Γγ·y′ = γ · Γy′ . Hence, Γy is conjugate to Γy′ . So the definition of the isotropy group is up
to conjugation.

Together, the above show that the isotropy group is well-defined. □

Definition 3.13. A point x ∈ Q is called singular if its isotropy group is non-trivial. Non-
singular points will be called regular. Let us denote the set of singular points in Q by Σ and
the set of regular points by Qreg.

In the next section we will see examples of these singularities. An orbifold Q with empty singular
set is a smooth manifold. For some group actions we find that an orbifold becomes a smooth
manifold. If for example the group acts freely or trivially then the isotropy group is trivial, and
hence the orbifold chart is a smooth manifold chart.

Proposition 3.14. Let Q = (Q,U) be a smooth orbifold. If for each orbifold chart (widehatUi,Γi, φi)
the groups Γi act trivially or freely on Ui, then the orbifold Q is a smooth manifold.

The singular points on an orbifold are isolated. In other words, there exists no region where we
cannot contain a singular set in its own open set.

Proposition 3.15. [20, Proposition 2.8] The singular set of an orbifold is closed and nowhere
dense.

From the previous proposition we note that Qreg = Q \ Σ must be a dense open set of Q, and
therefore can be endowed with a manifold structure.

3.2 Developable orbifolds and examples

In general orbifolds are spaces that locally look like Rn/Γ, however they can also appear as
global quotient of a manifold. In this section we prove that if we take a manifold and let a
discrete group act on it properly, then the quotient space will have an orbifold structure. After
we have seen the proof, we give a few examples of orbifolds.

Theorem 3.16. Let Γ be a discrete group acting properly on a manifold M . The quotient space
M/Γ has a natural orbifold structure.

Proof. Define the space Q :=M/Γ. Note that because the action is proper, by proposition B.13
Q is a Hausdorff space. Let us construct an orbifold atlas for Q. Consider the quotient map
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q :M → Q. Take a class [x] ∈ Q and a lift x̂ ∈M such that q(x̂) = [x]. Moreover, consider the
isotropy group Γx̂ := {γ ∈ Γ : γ · x̂ = x̂}. Using Proposition B.13(iii) each x̂ ∈ M admits an

open neighbourhood Ûx̂ which is invariant under Γx̂ and such that

{γ ∈ Γ :
(
γ · Ûx̂

)
∩ Ûx̂ ̸= ∅} = Γx̂.

In other words the open set Ûx̂ is disjoint from all translations by elements of Γ that are not in

Γx̂. The first open sets in the open cover of Q are defined as Ux = q
(
Ûx̂

)
. The quotient map

q|Ûx̂
: Ûx̂ → Ux is a homeomorphism.

Since M is a smooth manifold, we can pick an maximal atlas Û for M . Using the method above,
we can associate an open set U to each Û ∈ Û . Together, these open sets U form an open cover
U for Q. The orbifold charts in this atlas U will be of the form

(
Ûx̂,Γx̂, q|Ûx̂

)
.

To make this an orbifold covering we need that U is closed under intersections. To do this
let us add all finite intersections of Ux’s to U and show that these intersections indeed form
valid orbifold charts. Take arbitrary points x1, . . . , xk ∈ Q, where k ∈ Z>0, such that the finite
intersection of associated orbifold charts is nonempty, i.e.

I = Ux1 ∩ · · · ∩ Uxk
̸= ∅.

We need to show that I is indeed a valid orbifold chart. Let Ûx̂i
be the open set in M associated

to Uxi
, for i = 1, . . . , k. Consider the set q−1 (Ux1 ∩ · · · ∩ Uxk

) ⊆M . Since Γ is a discrete group,
it acts on q−1 (Ux1 ∩ · · · ∩ Uxk

) by permuting its connected components, so there must be some
γ1, . . . , γk ∈ Γ such that

Î := γ1 · Ûx̂1 ∩ . . . γk · Ûx̂k
̸= ∅.

So we can take Î as the chart for I. The group acting on it is given by:

γ1Γx̂1γ
−1
1 ∩ · · · ∩ γkΓx̂k

γ−1
k .

The chart map is given by q|Î . Together, the above make I into a valid orbifold chart.

Next, we need to show U is indeed an atlas, or in other words that the charts are indeed
compatible. Take two element U and V in U such that V ⊆ U . We want to show these charts
embed nicely into each other. Pick a point x ∈ V and let x̂ ∈ q−1(x). Using the construction

from above, we construct an open set Ûx̂ associated to U and the isotropy group Γx̂. Moreover,
construct a set V̂x̂ such that it contains x̂. To show the embedding, it suffices to show V̂x̂ ⊆ Ûx̂,
as in both charts the chart maps and the isotropy groups are the same at x̂. To show the
inclusion, assume by contradiction there exists p̂ ∈ V̂x̂\Ûx̂. Notice that q(p̂) = p ∈ V ⊂ U . By

construction, we know that there exists an element γ ∈ Γx̂ such that γ · p̂ ∈ Û ∩ V̂ . Notice that
both Ûx̂ and V̂x̂ are invariant under the action of Γx̂. Hence, the intersection Ûx̂ ∩ V̂x̂ is invariant
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under the Γx̂-action. Therefore, γ · p̂ = p̂ so p̂ ∈ Ûx̂ ∩ V̂x̂. Which is a contradiction, hence
V̂x̂ ⊆ Ûx̂. So the chart V embeds into the chart U . Since U and V where chosen arbitrarily we
find that each two charts in U are compatible, proving that U forms an orbifold atlas for Q. □

We can now summarize the content of Theorem 3.16 in the following definition.

Definition 3.17. An orbifold is called developable if it is the quotient of a proper action of a
discrete group Γ on a manifold M .

To see what is happening for developable orbifolds, let us work out a simple example in detail.

Example 3.18 (Reflection orbifold). Consider the action α : Z/2Z × R2 → R2 defined by
(n, (x, y)) 7→ ((−1)nx, y). The space Q = R2/(Z/2Z) found by this action is the half plane
{(x, y) ∈ R2 : x ≥ 0}. Let us make an inconvenient choice of open cover on Q (otherwise the
example would be trivial) given by

U1 := [0, 1)× R and U2 := (0,∞)× R.

These sets are open in R2 under the subspace topology. Let us construct orbifold charts
associated to this open cover.

Û1 := {(x, y) ∈ R2 : x < 1} and Û2 := {(x, y) ∈ R2 : x > 0}
.

Consider the map φ̂1 : Û1 → Û1 defined by

φ1(x, y) =

{
(x, y) if x ≥ 0

(0, y) if x ≤ 0
.

This is a continuous and surjective map. We see that Û1/(Z/2Z) = [0, 1) × R which is

homeomorphic (identical) to U1. Similarly, we can define φ2 : Û2 → U2 by φ2(x, y) = (x, y),

which is continuous and surjective. Moreover, Û2/(Z/2Z) = (0,∞) × R is homeomorphic
(identical) with U2. To make this open cover into an atlas we need to make sure it is closed
under finite intersections. That means we need to construct an orbifold chart for U1 ∩ U2. We
know U1 ∩ U2 = (0, 1)× R. Notice that the lift of the open set is given by

Û1 ∩ U2 = Û1 ∩ Û2 = (0, 1)× R.

The orbifold chart for U1 ∩ U2 will be given by ((0, 1)× R,Z/2Z, Id). This means we can
construct an atlas

U := {
(
Û1,Z/2Z, φ1

)
,
(
Û2,Z/2Z, φ2

)
,
(
Û1 ∩ Û2,Z/2Z, Id

)
}.

To check this is indeed an atlas, we need to show that all charts are compatible. To show this,

we need that for
(
Û1,Z/2Z, φ1

)
and

(
Û2,Z/2Z, φ2

)
there exists an open set U3 ⊆ U1 ∩U2 such
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that its orbifold chart
(
Û3,Z/2Z, φ3

)
embeds into

(
Û1,Z/2Z, φ1

)
and into

(
Û2,Z/2Z, φ2

)
.

Take U3 = U1 ∩ U2, as was just shown this open set has an orbifold chart
(
Û1 ∩ Û2,Z/2Z, Id

)
.

The inclusions ι1 : U1 ∩ U2 ↪→ U1 and ι2 : U1 ∩ U2 ↪→ U2, give us two embedings:

(ι1, Id) :
(
Û1 ∩ Û2,Z/2Z, Id

)
↪→
(
Û1,Z/2Z, φ1

)
(ι2, Id) :

(
Û1 ∩ Û2,Z/2Z, Id

)
↪→
(
Û2,Z/2Z, φ2

)

where both ι1 and ι2 are trivially equivariant with respect to Id. Therefore, U is an orbifold
atlas for Q, so we have an orbifold Q = (Q,U). We note that the line {(0, y) ∈ R2} is the
singular set of this orbifold, since for each point (0, y) the isotropy group is given by

Γ(0,y) = {γ ∈ Z/2Z : γ · (0, y) = (0, y)}
= {0, 1 ∈ Z/2Z},

which is non-trivial. △

We can think of many more developable orbifolds. We list two more examples.

Example 3.19. Consider the plane R2 with polar coordinates (r, θ) and the discrete group
Γ = Z/nZ. Let the Γ-action on R2 be defined as

γ · (r, θ) = (r, θ +
2πγ

n
).

In other words, the Γ-action rotates each vector in R2 by 2π/n around the origin. The quotient
R2/ (Z/nZ) is a developable orbifold by Theorem 3.16. We notice that the isotropy group Γ(r,θ)

is trivial for all points (r, θ) ∈ R2, except when r = 0. This yields one singular point. The
orbifolds R2/ (Z/nZ) will have the form of a cone in which the tip has angle 2π

n
. This orbifold

was already shown in figure 1 in the introduction. Let us note this example can be extended to
R3. The orbifold R3/ (Z/nZ) will be a cone over the projective space RP2. △

Example 3.20. Consider a 2-torus T2 in R3 centered at the origin. Let Γ = Z/2Z and let it
act on T2 by rotating by an angle π around an axis of R3. There are four points of intersection
between the torus and the axis of rotation: p̃, q̃, r̃ and s̃. These points will be mapped onto
themselves by the action, and hence have isotropy group Z/2Z. The resulting orbifold T2/ (Z/2Z)
will have the four singular points (corresponding to the intersections with the axis of rotation)
and will have the shap of a ‘pillow case’. The orbifold is shown in figure 3.2.
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Figure 3.2: Pillow case orbifold obtained from rotation action on T2 (figure is taken from [20]).

△

Next we give an example of a non-developable orbifold.

Example 3.21 (Zn-Teardrop). Let n be a positive integer. Consider an atlas for the sphere S2

U := {(U1, φ1), (U2, φ2)} = {({S}, φ1), (S
2 \ {S}, φ2)}

where {S} denotes the southpole of S2. We can then consider an orbifold with charts

{Û1,Γ1, φ1} = {R2,Z/nZ, φ1} and {Û2,Γ2, φ2} = {R2, {e}, φ2}. Here Z/nZ acts on R2 by
rotation, i.e. for polar coordinates on R2 we have the action (n, (r, θ)) 7→ (r, θ + 2π

n
). Moreover,

we consider φ1(0) = O. In this case we do not have to worry about intersections, since U ∩V = ∅.
The orbifold obtained from this will look as in figure 3.3.

Figure 3.3: Z/nZ-Teardrop [20]

The only singular point is given by O since the isotropy group at this point is
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ΓO = Γ0

= {γ ∈ Z/nZ : γ · 0 = 0}
= Z/nZ

is non-trivial. We remark that this orbifold is non-developable i.e. it cannot be represented
as a manifold quotiented by a proper action of a discrete group. To show this we need more
algebraic topolopgy on orbifold as introduced in [20, Example 2.36]. △

3.3 Tangent bundles, differential forms and Riemannian

orbifolds

As is the case for manifolds, we can define tangent spaces and tangent bundles on orbifolds.
Generalizing the tangent bundle on an orbifold to a so called orbibundle yields a large number
of geometric structures that can be defined on an orbifolds. In this section we sketch the
construction of a tangent bundle for a developable orbifold with an underlying differentiable
manifold.

First, we define the tangent bundle as described in [20]. Consider a developable orbifold
Q = M/Γ, where M is a differentiable manifold. By definition the action α : Γ×M → M is
smooth. The smoothness of the action makes it possible to lift the action from M to TM . Take
a point (x̂, v) ∈ TM , then for all γ ∈ Γ we define the action

γ · (x̂, v) = (α(γ, x̂), dαx̂(x̂, γ)(v)) .

Using this action, we can define the tangent bundle of Q to be the quotient TQ = TM/Γ.
Because the lifted action is also proper, Theorem 3.16 implies the space TQ has an orbifold
structure.

Remark 3.22. The definition as stated here is only valid for developable orbifolds. However,
in the non-developable case this construction can be done on each orbifold chart seperately and
we can ‘glue’ the charts together to obtain the tangent bundle. For this construction we refer
the reader to [20, Section 2.6].

Pick a point x ∈ Q with a lift x̂ ∈ M . The fiber of TQ above a point x ∈ Q turns out to be
isomorphic to Tx̂M/Γx. We define the tangent cone at x ∈ Q denoted by TxQ to be Tx̂M/Γx.
From this definition, we infer that a tangent vector of Q is an equivalence class in TxQ.

Lemma 3.23. For a developable orbifold Q the tangent cone TxQ is a vector space if and only
if x is non-singular.

Proof. We note TxQ is isomorphic to Tx̂M/Γx, this space is a vector space if and only if the
isotropy group Γx is trivial. By definition Γx is trivial if and only if x is not a singular point. □

Analogously to the manifold case, we can, for example, define vector fields on orbifolds.
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Definition 3.24. For an orbifold TQ with projection π : TQ → Q, we define a vector field
on Q to be a section of TQ, i.e. a smooth orbifold map X : Q → TQ such that π ◦X = id.

Using similar constructions as for the tangent bundle, one can for example also define the
cotangent bundle T ∗Q, the k-th exterior bundle

∧k Q and the (j, i)-tensor bundle
⊗i

j Q, which
all have an orbifold structure. Two interesting constructions that can be made from these are
the following.

Definition 3.25. A differential k-form on an orbifold Q is a section of the bundle
∧k T ∗Q.

The set of all k-forms on Q is denoted Ωk(Q).

One could also think of a differential k-form on an orbifold as a family of Γ-invariant differential
k-forms on each orbifold chart that are equal on the intersection of the charts. Similarly, to the
manifold case one can define the exterior derivative, which is a map d : Ωk → Ωk+1. The precise
construction can be found in [2, Section 3.4]. From these construction we can define symplectic
and contact orbifolds analogously to the manifold case. Having these geometric structures on
orbifolds will be relevant in section 4.4.

Similarly as for differential froms, the (j, i)-tensor bundle
⊗i

j Q yields a way to construct

Riemannian metrics on an orbifold. For this we follow [2, Section 4]. A section of
⊗i

j Q will be
an (i,j)-tensor field on the orbifold Q. Hence we can define Riemannian metrics.

Definition 3.26. On an orbifold Q, a Riemannian metric is a positive definite, symmetric
tensor field g ∈

⊗2
0 (Q). We define a Riemannian orbifold as the pair (Q, g).

As is the case for differential forms, we can think of Riemannian metrics on orbifolds as a family
of Γ-invariant Riemannian metrics on each chart. If we have a Riemannian metric on an orbifold
Q, then for a chart

(
Û ,Γ, φ

)
we have a Riemannian metric on Û . The metric induces an inner

product ⟨·, ·⟩x := gx(·, ·) on TxQ for all x ∈ Q. This means that on a Riemannian orbifold (Q, g)
we can define the length of a piecewise smooth curve γ : [a, b] → Q to be

ℓ(γ) =

∫ b

a

√
⟨γ′(t), γ′(t)⟩.

Analogously to the Riemannian manifold case, we can define connections and in particular the
Levi-Civita connection ∇. Using this construction, we can define Riemannian geodesics on an
orbifold.

Definition 3.27. A smooth curve γ : [a, b] → Q is a geodesic if it locally lifts to chart where
the curve satisfies the geodesic equation ∇γ′γ′ = 0.

As in the Riemannian case we find any locally length minimizing curve is a geodesic. For a
more detailed exposition of Riemannian orbifolds we refer the reader to [20, Section 2.6], [2,
Section 4] or [23].



Chapter 4

Sub-Riemannian Orbifolds

Now that we have seen sub-Riemannian geometry and orbifolds, one might wonder whether we
can define a sub-Riemannian structure on an orbifold. This is in general not possible, however
in some cases we can give a sub-Riemannian structure on an orbifold. The main problem will be
to define a distribution on an orbifold that is well-defined around singular points. In this chapter
we sketch the problems one runs into when defining sub-Riemannian orbifolds and give one way
of resolving problem, in the specific case where the distribution is equivariant with respect to the
action. We will also give examples of cases in which we can define a sub-Riemannian structure
on an orbifold. We will also sketch on general result which allows us to find sub-Riemannian
structures on cyclic closed 3-orbifolds.

Before, we can dive into the sub-Riemannian orbifolds, we first consider sub-Riemannian
structures on ‘lens spaces’. We will show that lens spaces are in general not orbifolds, but they
are a good model for what happens on orbifolds at points that are not singular. On Lens spaces
we define a so-called Cartan decomposition, which is a way of generating a distribution on an
orbifold with some interesting properties.

4.1 Cartan decomposition

The first goal is to define sub-Riemannian structures on lens spaces. Before we can do this,
we need to first define sub-Riemannian structures on three-dimensional matrix Lie groups,
specifically SU(2). These turn out to be example of k⊕p-manifolds, which are simple Lie groups
admitting a Cartan decomposition. Most results in this section can be found in [24].

Let us assume all Lie groups and algebras mentioned consist of matrices, moreover consider all
Lie algebras to be finite dimensional over a field F of characteristic zero, in our case C. First we
need some definitions from Lie theory.

Definition 4.1. A Lie algebra is called simple if it is a non-Abelian Lie algebra without
nontrivial proper ideals 1. A Lie group is called simple if it is a connected non-Abelian Lie
group without nontrivial connected normal subgroups, in other words if its Lie algebra is simple.
A semisimple Lie algebra is a direct sum of simple Lie algebras.

Remark 4.2. We note that any simple Lie algebra is semisimple.

1An ideal is a subalgebra i ⊆ g such taht [g, i] ⊆ i.
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Definition 4.3. Consider a Lie algebra g over a field F, then the symmetric bilinear form
Kil : g× g → F defined by

Kil(x, y) = Tr (ad(x) ad(y))

is called the Killing form.

Proposition 4.4. [25, Theorem 5.1] A Lie algebra g is semisimple if and only if its Killing
form is nondegenerate.

Definition 4.5. A Lie algebra g is called compact if there exists a compact Lie group G such
that TeG is isomorphic to g.

Proposition 4.6. [26, Proposition 6.6] Let g be a semisimple Lie algebra, then g is compact if
and only its Killing form is negative definite.

In order to define a distribution on a simple Lie group we consider a decomposition of semisimple
Lie algebras.

Definition 4.7. A decomposition of a semisimple Lie algebra g of the form g = k⊕ p is called
a Cartan decomposition if it satisfies

[k, k] ⊆ k, [p, p] ⊆ k, [k, p] ⊆ p, (4.1)

where k and p are subspace of g.

Proposition 4.8. [26, Chapter 7]. Any semisimple real Lie algebra admits a Cartan decompo-
sition.

For the purpose of this section it is enough to consider simple Lie algebras and groups. Using
the Cartan decomposition we can endow each simple Lie group with a specific sub-Riemannian
structure.

Definition 4.9. Let G be a compact simple Lie group with Lie algebra g. Consider the Cartan
decomposition g = k⊕ p. Consider the distibution Dq = qp at the point q ∈ G endowed with a
Riemannian metric β given by

βq(v1, v2) = ⟨g−1v1, g
−1v2⟩

where ⟨·, ·⟩ := αK(·, ·)|p for K the Killing form restricted to p and α ∈ R<0.The triple (G,D, g)
is called a k⊕ p-manifold.

Here the choice for a negative α is made to make sure that the metric is positive definite
following 4.6. The distribution Dq is defined by considering p, which is a subspace of TeG. We
can translate p to any other tangent space on the manifold by considering the derivative of the
left-translation Lg(x) = gx for g, x ∈ G. Therefore, we find Dq = (Lq)∗ (p).

Remark 4.10. In case G is not compact, we need to assume k is the maximal compact subalgebra
of g. We define a maximal compact subalgebra of g as a compact subalgebra of g that is not
properly contained in any other compact subalgebra. The existence of the maximal compact
subalgebra in the Cartan decomposition of a (possibly) non-compact Lie group G is discussed
in [26, Prop 7.4]. The choice of the maximal compact subalgebra is made in order to define a
distribution that is non-compact. In this case following 4.6, we know that the Killing form is
positive definite. Therefore, α must be a positive scaling instead.
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It turns out that k⊕ p-manifolds have some nice properties. First of all, we can show that the
Pontryagin maximum principle, as stated in Theorem 1.15 on a right-invariant k⊕ p-manifold G
gives rise to a completely integrable 2 Hamiltonian system. This integrability gives rise to a
closed form formula for normal geodesic. Given a normal geodesic γ : [0, T ] → G, at the the
point γ(0), there is a vector v ∈ Tγ(0)G by the right-invariance of G, we know we can write
v ∈ g. So, we can write v = Ak + Ap for Ak ∈ k and Ap ∈ p. The closed form of the normal
geodesics becomes:

γ(t) = e−Akte(Ak+Ap)tγ(0). (4.2)

A derivation of this formula and a proof of the complete integrability of the of the Hamiltonian
system can be found in [27, Appendix B]. But let us mention that it is a reformulation of the
formula for normal sub-Riemannian geodesics on Lie groups we have seen in Example 2.19.

Secondly, we can show that on a k⊕ p-manifold abnormal minimizers can exist, however they
will never be global length-minimizers (i.e. the geodesic will never be optimal). The proof of
this fact is presented in [27, Appendix C].

4.2 Lens spaces

Using the Cartan decomposition described in the previous section, we can give a few interesting
examples of sub-Riemannian structures. First, we construct an example on the Lie group
SU(2). Defining a specifc action on SU(2) we construct Lens spaces. We will transfer the
sub-Riemannian structure on SU(2) to Lens spaces, which yields a more general technique
manifolds with a free action.

4.2.1 Special unitary matrices

Consider the Lie group SU(2), which is defined as

SU(2) :=

{(
a b

−b a

)
∈ GL(2,C) : |a|2 + |b|2 = 1

}
.

The Lie algebra of SU(2) can be computed as

su(2) :=

{(
ia b

−b −ia

)
∈ GL(2,C) : a ∈ R, b ∈ C

}
.

This Lie algebra has a basis of the form

p1 :=
1

2

(
0 1
−1 0

)
p2 :=

1

2

(
0 i
i 0

)
k :=

1

2

(
i 0
0 −i

)
,

2In this context completely integrable mean that for each degree of freedom there is a constant of motion.
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with commutation relations

[p1, p2] = k, [p2, k] = p1, [k, p1] = p2. (4.3)

We notice that SU(2) is a simple Lie group. Let us define a sub-Riemannian structure on SU(2).
In general we can find that the Killing form on su(n) is given by

Kil(x, y) = 2nTr(xy)

for x, y ∈ su(n). Hence, on su(2) we find that Kil(x, y) = 4Tr(xy) for x, y ∈ su(2). Using the
commutation relations (4.3) we have a Cartan decomposition for su(2) as follows,

k = span{k} and p = span{p1, p2}.

We notice that Kil(pi, pj) = −2δij, where δij denotes the Kronecker delta. Let us define the
metric as

⟨·, ·⟩ := −1

2
Kil(·, ·)|p.

The set {p1, p2} form an orthonormal frame with respect to this metric. We can define a
distribution at g ∈ SU(2) using the formula

∆(g) = gp

and endow it with a sub-Riemannian metric

βg(v1, v2) = ⟨g−1v1, g
−1v2⟩.

The triple (SU(2),∆, β) forms a sub-Riemannian k⊕ p-manifold.

Using the fact that SU(2) is a k ⊕ p-manifold, we know from the general form of its normal
sub-Riemannian geodesics from equation (4.2). In 1.36 we find that the initial covector of a
normal geodesic through a point q0 ∈ SU(2) lies in the cylinder ∆q0 . In coordinates we take
the intitial covector λ(θ, c) = cos(θ)p1 + sin(θ)p2 + ck. The coefficients in (4.2) are given by
Ak = ck and Ap = cos(θ)p1 + sin(θ)p2. Then the normal geodesics are given by

γ(t) = e(cos(θ)p1+sin(θ)p2+ck)te−ckt.

A more concrete form for the geodesics can be obtained by noticing that SU(2) is diffeomorphic
to the sphere S3 which is embedded in C2. Hence, we write γ(t) as a vector in C2. From [24]

we find the expression γ(t) =

(
a
b

)
with
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a =
c sin

(
ct
2

)
sin
(√

1 + c2 t
2

)
√
1 + c2

+ cos

(
ct

2

)
cos

(√
1 + c2

t

2

)
+ i

(
c cos

(
ct
2

)
sin
(√

1 + c2 t
2

)
√
1 + c2

− sin

(
ct

2

)
cos

(√
1 + c2

t

2

))
,

b =
sin
(√

1 + c2 t
2

)
√
1 + c2

(
cos

(
ct

2
+ θ

)
+ i sin

(
ct

2
+ θ

))
.

(4.4)

Let us remark that for other three-dimensional Lie groups such as SO(3) and SL(2) we can find
a general form for normal geodesics in a very similar way. The full computations can be found
in [24, Section 3].

4.2.2 Sub-Riemannian Lens spaces

Using the sub-Riemannian structure for SU(2) we can construct a sub-Riemannian structure on
three-dimensional Lens spaces. Lens spaces will give us a way of defining a sub-Riemannian
structure on regular parts of orbifolds. First, we define Lens spaces.

Definition 4.11. Consider coprime integers p, q ∈ Z and the unit three-sphere S3 ⊆ C2. We
define the Z/pZ-action on S3 given by

(z1, z2) 7→
(
e2πi/pz1, e

2πiq/pz2
)
. (4.5)

The quotient space formed by this action is called a Lens space denoted by L(p, q).

In this definition lens spaces are compact three-manifold 3, but are not in general homogeneous
spaces or Lie goups. Therefore, the techniques described in 2.3 are not applicable. However,
since the Z/pZ-action is free the lens space will have no orbifold singularities. To see that the
action is free, notice that the only way (z1, z2) is fixed by the action, is when e2πi/p = 1 and
e2πiq/p = 1. So 1/p and q/p should be integers. The only way in which this can be is if p = 1,
but then we act by the identity element of Z/pZ. Hence, the action is free.

One convenient way to think about lens spaces, is to consider the action on SU(2) instead of S3.
In order to see this, we notice that SU(2) and S3 are diffeomorphic via the map

(
a
b

)
7→
(
a b

−b a

)
.

The Z/pZ-action can then be described as

(
z1 z2
−z1 z2

)
7→
(
e2πi/p 0
0 e2πiq/p

)
.

3This definition can be generalized to higher dimensions by considering the action for more coprime integers
on higher dimensional spheres.
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Let us now define a sub-Riemannian structure on L(p, q). Using Theorem B.16 the canonical
quotient map π : SU(2) → L(p, q) is a local diffeomorphism. Therefore, using lemma B.15, we
know the tangent map π∗ is a local linear isomorphism. Using this construction, we can make
a correspondence between the sub-Riemannian structure (SU(2),∆, β) defined in section 4.2.1
and a sub-Riemannian structure on L(p, q).

Theorem 4.12. [24, Proposition 9] The sub-Riemannian structure on SU(2) induces a sub-

Riemannian structure
(
L(p, q), ∆̃, β̃

)
via the quotient map q : SU(2) → L(p, q). Here we

have

(i) For [g] ∈ L(p, q), the distribution is given by the two-dimensional subspace of T[g]L(p, q):

∆̃[g] := π∗ (∆h)) with a representative h ∈ [g].

(ii) The sub-Riemannian metric is given by the smooth positive definite inner product defined
as

β̃[g] (π∗(v), π∗(w)) := βh(v, w)

for h ∈ [g] and v, w ∈ Th SU(2).

In order to prove this lemma, we need the following lemma.

Lemma 4.13. [24, Proposition 10] For two representatives h1, h2 ∈ [g] for g ∈ L(p, q), the map
φ : p → p defined by

(
p1
p2

)
7→

(
cos 2π(q−1)

p
sin 2π(q−1)

p

− sin 2π(q−1)
p

cos 2π(q−1)
p

)(
p1
p2

)
= A

(
p1
p2

)

is a bijection, an isometry with respect to the inner product on ∆̃[g] and the identity

d

dt
|t=0h1e

tη =
d

dt
|t=0h2e

tφ(η) (4.6)

holds for all η ∈ p.

Proof. The fact that φ is a bijection follows because the matrix A is invertible. In order to
check φ is an isometry, it suffices to check that A∗A = I for A∗ the Hermitian of A. Lastly, we
show equation (4.6) holds. Consider η = np1 +mp2 ∈ p, rewriting yields

tη =
t

2

(
0 n+ im

im− n 0

)
.

We note that (tη)2 = −x2I for x = t
2

√
n2 +m2 and I the identity matrix. Now, we can compute

the exponential by splitting it in even and odd terms as follows:
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etη = I + tη +
t2η2

2!
+
t3η3

3!
+
t4η4

4!
+ . . .

=

(
1− x2

2!
+
x4

4!
− . . .

)
I +

(
1− x2

3!
+
x5

5!
− . . .

)
tη

= cos(x)I +
sin(x)

x
tη

= cos

(
t

2

√
n2 +m2

)
I +

sin
(√

n2 +m2
)

x

(
0 n+ im

im− n 0

)
.

If we now pick some h =

(
a b

−b a

)
in SU(2), we find

hetη =

(
a cos

(√
n2 +m2 t

2

)
− b sin

(√
n2 +m2 t

2

)
n−im√
n2+m2

b cos
(√

n2 +m2 t
2

)
− a sin

(√
n2 +m2 t

2

)
n+im√
n2+m2

)
.

Here, we use the identification of SU(2) with S3. Consider ηi = nip1 +mip2 for i = 1, 2. Since

h1, h2 are both representatives in the equivalence class [g], we have h2 =

(
e2πi/p 0
0 e2πiq/ph1

)
.

Take h1 =

(
a1 b1
−b1 a1

)
Using this, we find

h1e
tη1 =

a1 cos
(√

n2
1 +m2

1
t
2

)
− b1 sin

(√
n2
1 +m2

1
t
2

)
n1−im1√
n2
1+m2

1

b1 cos
(√

n2
1 +m2

1
t
2

)
− a1 sin

(√
n2
1 +m2

1
t
2

)
n1+im1√
n2
1+m2

1


and

h2e
tη1 =

e2πi/pa1 cos
(√

n2
2 +m2

2
t
2

)
− e2πiq/ph1b1 sin

(√
n2
2 +m2

2
t
2

)
n2−im2√
n2
2+m2

2

e2πiq/ph1b1 cos
(√

n2
2 +m2

2
t
2

)
− e2πi/pa1 sin

(√
n2
2 +m2

1
t
2

)
n2+im2√
n2
2+m2

2


=

a1 cos
(√

n2
2 +m2

2
t
2

)
− e2πi(q−1)/ph1b1 sin

(√
n2
2 +m2

2
t
2

)
n2−im2√
n2
2+m2

2

h1b1 cos
(√

n2
2 +m2

2
t
2

)
− e2πi(1−q)/pa1 sin

(√
n2
2 +m2

1
t
2

)
n2+im2√
n2
2+m2

2

 .

Taking the derivative and setting t = 0, we find that equation (4.6) holds if and only if
n2
1+m

2
1 = n2

2+m
2
2, n1− im1 = e2πi(q−1)/p(n2− im2) and n1+ im1 = e2πi(1−q)/p(n2− im2). These

three equations are equivalent to requiring that e2πi(q−1)/p(n1 + im1) = n2 − im2, which is the
case if and only if η2 = φ(η1) which was true by assumption. □

Proof of Theorem 4.12. Since, π : SU(2) → L(p, q) is a local diffeomorphism, the tangent map
at a point g ∈ SU(2) given by π∗ : Tg SU(2) → Tπ(g)L(p, q) is a local linear isomorphism by
lemma B.15. Given the distribution ∆g = gp on SU(2) is a 2-dimensional subspace, the space

∆̃[g] = π∗|g (∆g) will be a 2-dimensional subspace in Tπ(g)L(p, q). We notice that ∆g is bracket

generating, since [p1, p2] = k. Hence, ∆̃[g] is also bracket generating, since
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[π∗(p1), π∗(p2)] = π∗ ([p1, p2]) = π∗k

by the naturality of the Lie bracket. The fact that β̃[g] (π∗(v), π∗(w)) is a smooth positive-definite
inner product, follows because βh(v, w) is a smooth positive-definite inner product on SU(2). It
remains to show that the sub-Riemannian structure is well-defined. This will be shown in the
following two claims.

Claim 1. The distribution ∆[g] is well-defined: For every representatives h1, h2 ∈ [g] we have

π∗|h1 (∆h1) = π∗|h2 (∆h2) .

Claim 2. The inner product ⟨π∗(v), π∗(w)⟩[g] is well-defined: For every h1, h2 ∈ [g] and v1, w1 ∈
Th1 SU(2), v2, w2 ∈ Th2 SU(2) such that π∗|h1(v1) = π∗|h1(w1) and π∗|h2(v2) = π∗|h2(w2), then
we have ⟨v1, w1⟩h1 = ⟨v2, w2⟩h2.

Lemma 4.13 tells us that if we have some paths h1e
tη1 and h2e

tη2 that are equivalent on L(p, q)
under the equivalence relation, then under the quotient their tangent vectors are projected onto
the same vector. In particular, we find that starting in p, we do not escape this distribution.
This implies claim 1. The second claim follows from a similar argument and using the fact that
φ is an isometry. Therefore, we obtain a well-defined sub-Riemannian structure on L(p, q) as
desired. □

Using the construction above, we find that SU(2) and L(p, q) are locally isometric. Therefore,
if we project the normal sub-Riemannian geodesics on SU(2) given in equation (4.4), we find
the normal sub-Riemannian geodesics on L(p, q). An interesting question one can ask, is what
potential abnormal minimizers would look like on L(p, q). The abnormal minimizers on SU(2)
are not optimal, would the abnormal minimizers on L(p, q) also be non-optimal? Currently, we
do not know, but this might be interesting for future research.

4.3 Singular examples

Now that we know what sub-Riemannian structures on Lens spaces look like, we wonder how
to extend this to orbifolds. The following remark is crucial for the construction. Suppose
we have a sub-Riemannian manifold (M,D, g). If let a discrete group Γ act on M freely and
properly, we can consider the space M/Γ. This is in general not an orbifold, but we can give
a sub-Riemannian structure on it in the same way as we did for lens spaces. In other words,
we can lift the distibution Dx for x ∈M to a distribution q∗(Dx) on Tq(x)M/Γ and find the the
sub-Riemannian geodesics by projecting the sub-Riemannian geodesics on M to MΓ.

However, a developable orbifold is not obtained by a free action. If the action is not free, we
have seen singularities occur. In this section we discuss a method to develop a sub-Riemannian
structure in these singular cases.

We note that any orbifold is ‘locally free’. In other words, at all points in our orbifold the
isotropy group is trivial, except for some isolated singularities 3.15. This means that at the
non-singular points we can use the construction above to lift the sub-Riemannian structure of
the underlying manifold to the developable orbifold. At the singular points however, there occur
some problems that need to be solved.
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Consider a singular point y ∈ M/Γ. The first problem that occurs is that for a discrete
group Γ a non-free Γ-action on a manifold M , the quotient map π :M →M/Γ is not a local
diffeomorphism around y. This implies that, for a point in q−1(y) ⊂ M , the lifted quotient
π∗ : Tq−1(y)M → TyM/Γ is no longer a local is linear isomorphism. Therefore, the tangent space
TyM/Γ is not a vector space.

A second problem that occurs is that given a path γ on M , the induced path π(γ) on M/Γ is
not unique. Since for two different representatives µ1, µ2 of M/Γ, we can have µ1 = π(γ) = µ2.
This means that we cannot lift our sub-Riemannian structure on M to a unique sub-Riemannian
structure on M/Γ. As an example, in the cone described in Example 3.19 we find that for n = 3,
there are 3 paths on R2 that describe a path over the tip of the cone on R2/ (Z/3Z). These
paths are represented by three pairs of colours.

Figure 4.1: A sketch of three curves on R2 that all lift to the same curve on the cone.

In special cases we can solve this problem. These special cases are the cases when the distribution
is equivariant under the action. Consider an action α : G×M →M , with a lift α∗(x) : TeΓ →
TxM for x ∈ M and e the unit element in Γ. This induces a quotient map π : M → M/Γ,
with a lift q∗ : TM → T (MΓ). Moreover, take a distribution Dx ⊆ TxM for x ∈M . Then the
distribution is called equivariant if

π∗ (α∗ (Dx) (g)) = π∗
(
Dα(x,g)

)
(4.7)

for every x ∈M and g ∈ Γ.

If a distribution is equivariant, we can define the sub-Riemannian structure on M/Γ by lifting
the sub-Riemannian structure on M via the quotient on the non-singular points. Because
of the equivariance, the distribution will stay consistent around the singularity. We try to
give some intuition for this. Let us fix an arbitrary element g ∈ γ. On a point x ∈ M we
have a distribution Dx. If we let g act on the point x we find a new point α(g, x) ∈ M with
a distribution Dα(g,x). The equivariance requirement means that if we act on a point in the
base M , then the distribution on the tangent bundle follows along via the lifted action. If
we now consider the projection q : M → M/Γ, then we know that q(α(g, x)) = q(x). By the
equivariance requirement, we find that the distribution at q(α(g, x)) and q(x) must also be the
same when projected to Tq(x)M/Γ. Therefore, the distribution will remain well-defined around
a singular point.

We will now give a few examples in which the distribution is equivariant around the singularity.
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4.3.1 Reflections

Consider the Z/2Z-action on R3, α : Z/2Z× R3 → R3 defined by

(x, y, z) 7→ (x,−y,−z).

This corresponds to a reflection in the x-axis. The quotient space R3/(Z/2Z) is a developable
orbifold, in which the singular stratum is the x-axis because at the point (x, 0, 0) the isotropy
group is non-trivial for all x ∈ R. We denote the canonical quotient map π : R3/(Z/2Z) → R3.

Consider the distribution D = ker(ξ) for ξ = dz + xdy the standard contact form on R3. This
distribution is generated by the vector fields

X =
∂

∂x
+ y

∂

∂z
Y =

∂

∂y
.

We can check the equivariance as follows, α∗(vx, vy, vz) = (vx,−vy,−vz), hence

α∗(X(x,y,z))) =
∂

∂x
− y

∂

∂z
α∗(Y(x,y,z))) = − ∂

∂y
.

On the right-hand side we find

Xα(x,y,z) =
∂

∂x
− y

∂

∂z
Yα(x,y,z) =

∂

∂y
.

Noticing that projecting all equations by π∗, we identify the axes ∂
∂y

and − ∂
∂y
, and ∂

∂z
with − ∂

∂z
,

i.e. π∗(− ∂
∂y
) = ∂

∂y
and π∗(− ∂

∂z
) = ∂

∂z
. Therefore,

π∗
(
α∗(X(x,y,z)))

)
=

∂

∂x
+ y

∂

∂z
= π∗

(
Xα(x,y,z)

)
and similarly,

π∗
(
α∗(Y(x,y,z)))

)
=

∂

∂y
= π∗

(
Yα(x,y,z)

)
.

Therefore, in this case the distribution is equivariant with respect to the reflective action α. This
means, we can project the sub-Riemannian structure of R3 onto R3/(Z/2Z). We notice the frame
{X, Y } for D is orthogonal with respect to the standard inner product on R3. Therefore, using
proposition 1.18, we can write the sub-Riemannian Hamilonian for λ = (x, y, z, px, py, pz) ∈ T ∗M
as

H(λ) =
1

2
⟨λ,X⟩2 + 1

2
⟨λ, Y ⟩2

=
1

2
(px + ypz)

2 +
1

2
p2y

Notice that the distribution is a contact distribution. Therefore, by Theorem 1.30 we do not
have to look for abnormal minimizers. The sub-Riemannian geodesics for this structure will
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(a) Reflection on xy-plane (b) Reflection on yz-plane (c) Reflection on xz-plane

Figure 4.2: Geodesics from all perspectives on R3/(Z/2Z).

be the normal sub-Riemannian geodesics for R3, but if they hit the y- or z-axis then they will
be reflected. Using Mathematica we can compute the geodesic flow and plot it. The code is
included in Appendix ?? In a figure this looks as follows.

We now reflected in the x-axis, but many more reflections are possible in Euclidean spaces. For
example, one could show in a very similar way that the vector fields X, Y are also equivariant
under the Z/2Z-action (x, y, z) 7→ (−x, y, z). The sub-Riemannian Hamiltonian will be the
same as before, however the geodesics will be reflected in a different way. Let me also note that
not all reflections are allowed, for example if we consider the Heisenberg distribution which is
generated by

X =
∂

∂x
− y

2

∂

∂z
Y =

∂

∂y
+
x

2

∂

∂z
.

If we now consider the action (x, y, z) 7→ (−x, y, z), we find

α∗
(
Y(x,y,z)

)
=

∂

∂y
+
x

2

∂

∂z
̸= ∂

∂y
− x

2

∂

∂z
= Yα(x,y,z).

In this case we find that for the canonical quotient map π, π∗(− ∂
∂x
) = ∂

∂x
, however this is not

the case for ∂
∂y

or ∂
∂z
, hence the equivariance condition is not satisfied.

Sub-Riemannian structures on Euclidean spaces quotiented by a reflection can also be defined
for higher dimensions, given we have a distribution. For example, consider R4 with coordinates
(x, y, z, w). On R4 we can define the Engel distribution which is generated by the vector fields

X =
∂

∂x
+ z

∂

∂y
+ w

∂

∂z
Y =

∂

∂w
.

This distribution is spanned by orthogonal vector fields and is bracket generating. If we consider
the antipodal action (x, y, z, w) 7→ (−x,−y,−z,−w) on R4, then we find

α∗(Xx,y,z,w) = − ∂

∂x
− z

∂

∂y
− w

∂

∂z
α∗(Yx,y,z,w) = − ∂

∂w
.

And,

Xα(x,y,z,w) =
∂

∂x
− z

∂

∂y
− w

∂

∂z
Yα(x,y,z,w) =

∂

∂w
.
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Under the quotient map π : R4 → R4/(Z/2Z) we find that π∗(± ∂
∂x
) = ∂

∂x
, π∗(± ∂

∂y
) = ∂

∂y
,

π∗(± ∂
∂z
) = ∂

∂z
, π∗(± ∂

∂w
) = ∂

∂w
. Therefore, we find that the Engel distribution on R4 is

equivariant with respect to the antipodal action. In this case the sub-Riemannian Hamiltonian
will be given by

H(λ) =
1

2
(px + zpy + wpz)

2 +
1

2
p2w

for λ = (x, y, z, w, px, py, pz, pw).

4.3.2 Rotation

In example 3.19, we have seen that the cyclic Z/nZ-action (r, θ) 7→ (r, θ + 2π
n
) on R2 generates

a conic orbifold. If we apply the same action to R3, we get the action α : Z/nZ × R3 → R3

defined by (r, θ, z) 7→ (r, θ + 2π
n
, z). Taking the quotient of R3 with respect to this action yields

an orbifold Q that is a cone over RP2, i.e. we get a series of cones of which the tops form a line.
If we want to define a sub-Riemannian structure on the orbifold Q, we need a good distribution.
Let us consider the following contact form ξ = dz + r2dθ on R3 in cylindrical coordinates. To
check this is a contact form we notice that ξ ∧ dξ = 2rdz ∧ dr ∧ dθ is non-zero for r ̸= 0. Then
the distribution ker(ξ) is spanned by the vector fields

X =
∂

∂z
− 1

r2
∂

∂θ
Y =

∂

∂r
.

Now, we check this distribution is equivariant under the cyclic action α. We notice that
dα(vr, vθ, vz) = (vr, vθ, vz). Hence,

α∗(X(r,θ,z)) =
∂

∂z
− 1

r2
∂

∂θ
and α∗ (Xr,θ,z) =

∂

∂r
.

On the other hand, the action on the base yields,

Xα(r,θ,z) =
∂

∂z
− 1

r2
∂

∂θ
and Yα(r,θ,z) =

∂

∂r
.

Hence, the equivariance condition is satisfied.

The reason the equivariance is satisfied is because our distibution is orthogonal to the tangent
vector of the action, hence acting on the distribution means that we move it to another point.
However, since the distribution does not depend on the coordinate θ it is invariant with respect
to the action. So we find the equivariance as desired.

If we want to find the sub-Riemannian geodesics on Q, we need to find the Hamiltonian. The
frame {X, Y } for the distribution is orthogonal, hence using proposition 1.18, we find that for
λ = (r, θ, z, pr, pθ, pz) ∈ T ∗R3 we have
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H(λ) =
1

2
⟨λ,X⟩2 + 1

2
⟨λ, Y ⟩2

=
1

2

(
pz −

pθ
r2

)2
+

1

2
p2r

The geodesics on for example R3/(Z/4Z) will be the sub-Riemannian geodesics of R3 for the
distribution D, but when the geodesic hits either the x- or the y-axis, it will not continue but
come out at the other axis. The following figure shows an example of this.

Figure 4.3: Sub-Riemannian geodesics on the (x, y) plane of R3/(Z/4Z)

We see that in this figure the sub-Riemannian geodesic bounces between positive x and y axes.
The Mathematica code to generate this plot is included in Appendix C.3.

4.3.3 (p,q)-Hopf action

This example was heavily inspired by [28]. Consider the (p, q)-Hopf action α : S1 × S3 → S3

defined by

eit · (u, v) =
(
eitpu, eiqtv

)
.

In order to find a distribution on S3 we consider the vector field along the action. The span of
the vector field we obtain will be our vertical space, while its orthogonal the distribution. The
vector field Z along this action is given by

Z =
d

dt
|t=0e

it · (u, v)

=
d

dt
|t=0

(
eiptu, eiqtv

)
= (ipu, iqv).
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Consider u = x1 + ix2 and v = x3 + ix4, then (x1, x2, x3, x4) are coordinates on R4. We can
write the normal vector as N = x1∂x1 + x2∂x2 + x3∂x3 + x4∂x4 . In a similar way, we can write

Z = −px2∂x1 + px1∂x2 − qx4∂x4 + qx3∂x4 .

The vertical space will be given by V = span{Z}, the horizontal space and distribution is given
by D = V⊥. In order to find two vector fields that span D, we search for vector fields X, Y such
that

⟨X,Z⟩ = ⟨X,Z⟩ = ⟨Y, Z⟩ = ⟨Y, Z⟩ = 0

with respect to the standard inner product on R4. Finding X and Y is an underdetermined
problem, so there is no unique solution we can find. One solution we can find is the following:

X =


−x1(x23 + x24)
−x2(x23 + x24)
x3(x

2
1 + x22)

x4(x
2
1 + x22)

 Y =


qx2(x

2
3 + x24)

−qx1(x23 + x24)
−px4(x21 + x22)
px3(x

2
1 + x22)

 . (4.8)

For X and Y we find that ⟨X, Y ⟩ = 0, hence the frame is orthogonal. Let us now show that
D = span{X, Y } satisfies the equivariance condition (4.7) with respect to the (p, q)-Hopf action.

First, we compute the derivative of α in suitable coordinates. The action α at x = (x1, x2, x3, x4) ∈
S3 is given by

α(eit, (x1, x2, x3, x4)) =


cos(pt)x1 − sin(pt)x2
sin(pt)x1 + cos(pt)x2
cos(qt)x3 − sin(qt)x4
sin(qt)x3 + cos(qt)x4



Consider the tangent vector v = (vx1 , vx2 , vx3 , vx4) in TxS
3 then the derivative is given by

α∗(vx1 , vx2 , vx3 , vx4) =


cos(pt)vx1 − sin(pt)vx2

sin(pt)vx1 + cos(pt)vx2

cos(qt)vx3 − sin(qt)vx4

sin(qt)vx3 + cos(qt)vx4

 .

Therefore, we find

α∗
(
X((x1,x2,x3,x4))

)
=


− cos(pt)x1(x

2
3 + x24) + sin(pt)x2(x

2
3 + x24)

− sin(pt)x1(x
2
3 + x24)− cos(pt)x2(x

2
3 + x24)

cos(qt)x3(x
2
1 + x22)− sin(qt)x4(x

2
1 + x22)

sin(qt)x3(x
2
1 + x22) + cos(qt)x4(x

2
1 + x22)
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and,

Xα(x1,x2,x3,x4) =


−(cos(pt)x1 − sin(pt)x2)((cos(qt)x3 − sin(qt)x4)

2 + (sin(qt)x3 + cos(qt)x4)
2)

−(sin(pt)x1 + cos(pt)x2)((cos(qt)x3 − sin(qt)x4)
2 + (sin(qt)x3 + cos(qt)x4)

2)
(cos(qt)x3 − sin(qt)x4)((cos(pt)x1 − sin(pt)x2)

2 + (sin(pt)x1 + cos(pt)x2)
2)

(sin(qt)x3 + cos(qt)x4)((cos(pt)x1 − sin(pt)x2)
2 + (sin(pt)x1 + cos(pt)x2)

2)



=


− cos(pt)x1(x

2
3 + x24) + sin(pt)x2(x

2
3 + x24)

− sin(pt)x1(x
2
3 + x24)− cos(pt)x2(x

2
3 + x24)

cos(qt)x3(x
2
1 + x22)− sin(qt)x4(x

2
1 + x22)

sin(qt)x3(x
2
1 + x22) + cos(qt)x4(x

2
1 + x22)


Since, Xα(x) = α∗ (Xx), we find that π∗

(
Xα(x)

)
= π∗ (α∗ (Xx)) as desired. Similarly, the result

holds for Yx. Therefore, we find that the distribution Dx is equivariant under the (p, q)-Hopf
action, so we can define a sub-Riemannian structure on S3/S1.

Given the orthogonal frame {X, Y } for D we want to find the sub-Riemannian geodesics. First,
we show that no abnormal geodesics exist. Let us consider the 1-form ξ = −px2dx1 + px1dx2 −
qx4dx3 + qx3dx4 on R4. If we consider the inclusion i : S3 ↪→ R4, then i∗ξ defines a 1-form on
S3. We notice that

i∗ξ ∧ di∗ξ = i∗(ξ ∧ dξ).

Since, ξ∧dξ ≠ 0, we find i∗ξ is a contact form on S3. We find that D = ker(i∗ξ), therefore D is a
contact distribution so by theorem 1.30 there are no abnormal geodesics for this sub-Riemannian
structure.

Since the frame is orthogonal, we know from 1.18 that the Hamiltonian for

λ = (x1, x2, x3, x4, px1 , px2 , px3 , px4)

is given by

H(λ) =
1

2
⟨λ,X⟩2 + 1

2
⟨λ, Y ⟩2

=
1

2
(−x1(x23 + x24)px1 − x2(x

2
3 + x24)px2 + x3(x

2
1 + x22)px3 + x4(x

2
1 + x2)px4)

2

+
1

2
(qx2(x

2
3 + x24)px1 − qx1(x

2
3 + x24)px2 − px4(x

2
1 + x22)px3 + px3(x

2
1 + x22)px4)

2

The equations of motion from this Hamiltonian can be obtained from Hamilton’s equations.
Using these equations of motion we can find sub-Riemannian geodesics on S3/S1 under the
(p, q)-Hopf action.

Let me also remark on an example that does not work. We know that a lens space L(p, q) is not
in an orbifold, but if we pick p and q not coprime, then the lens space action 4.5 is no longer free.
Hence, we find an orbifold with singularities. We note that the distribution on L(p, q) coming
from the k⊕ p-structure on SU(2) is not equivariant with respect to the lens space action. In
general, we have not been able to find a distribution on such a non-coprime lens space. But this
is an interesting question for future research.

Now that we have some examples of sub-Riemannian structures on orbifolds, we can look at
more general cases. In general, to our knowledge, it is not clear how to give each orbifold a sub-
Riemannian structure. However, in some specific cases we can give construct sub-Riemannian
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structures on a larger class of examples at once. In the two forthcoming secitons, we will give
constructions to define sub-Riemannian structures on cyclic 3-orbifolds and on compact orbifolds
that admit a closed 2-form.

4.4 Contact orbifolds

In this section, we will sketch a result from [3] which states that on every closed cyclic developable
3-orbifold there exists a contact structure. This contact structure, as we have seen in 1.5, gives
rise to a distribution in the tangent bundle of the orbifold. In this section we first need to study
what contact structures on an orbifold would look like. In order to define a contact structure on
each cyclic 3-orbifold, we will need a construction similar to the Giroux correspondendence for
manifolds [29]. The Giroux correspondendence tells us that on each compact oriented 3-manifold
we can define a so called open book decomposition, and that every open book decomposition
admits a contact structure. We will first define open book decomposition and then give an
analogous result for orbifolds. We do not prove the results in general, but we summarize and
explain some of the steps as a pointer for future research.

In this section we work specifically on cyclic 3-orbifolds, which we define as follows.

Definition 4.14. An orbifold Q with an atlas {
(
Ûi,Γi, φi

)
} is of cyclic type if the groups Γi

are either trivial or cyclic 4.

In what follows it will be useful to know the topological structure of the singular locus of a
three-dimensional cyclic orbifold. Consider a 3-orbifold Q with underlying manifold Q.

Corollary 4.15. [3, Chapter 2] The singular locus Σ of a cyclic orbifold Q is a link.

In order to give an analogous construction to the Giroux correspondendence for manifolds, we
need to define contact structures on orbifolds.

Definition 4.16. [3, Definition 2.3.1] Let Q be an orbifold with orbifold atlas {Ûi,Γi, φi}i∈I .
An orbifold contact structure ξ on Q consists of a family of Γi-invariant

5 contact forms on
each chart, such that they define the same contact form on the overlap of charts. An orbifold
with such a contact structure is called a contact orbifold.

Example 4.17. As an example, we can consider the developable orbifold R3/(Z/nZ). This
orbifold is obtained from the cyclic action α defined in section 4.3.2. The standard contact form
on R3 is given by ξ = dz + r2dθ. We can compute for cyclic coordinates on R3, for a vector field
X on R3 that

(α∗ξ)(r,θ,z) (X) = ξα(x)(dα(r,θ,z)X) = ξ(r,θ,z)(X).

Hence, ξ defines a contact structure on the cone R3/(Z/nZ). △
4A group is cyclic if it is isomorphic to Z/nZ for some integer n.
5For a group Γ and Γ-action α on a manifold M , a differential form ω ∈ Ω(M) is called Γ-invariant if α∗ω = ω.
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4.4.1 Open book decompositions

The next step towards a Giroux correspondence for orbifolds is to define open books. In this
section, let us first consider open books on a smooth manifold M . For this we first need the
definition of a fibration and the homotopy lifting property.

Definition 4.18. [30, Definition 8.1] Definition 8.1. Let X,E and B be topological spaces
p : E → B be a continuous map and let A ⊆ X be a topological subspace. We say that p has the
homotopy lifting property for (X,A) if for any commutative square of continuous maps

X × {0} ∪ A× I E

X × I B

incl p
h

there exists a continuous map h : X × [0, 1] → E making both triangles commutative.

Definition 4.19. [30, Definition 8.2] Let E and B be topological spaces, the map p : E → B is
a fibration if it has the Homotopy lifting property with respect to all spaces X.

As an example covering maps are fibrations. Moreover, the Hopf-fibration defined in section 2.3.1
is one of the most famous examples of a fibration. Using fibrations an open book decomposition
of a smooth manifold can be defined as follows.

Definition 4.20. Let M be a closed 3-manifold. An open book decomposition on M is a
fibration f :M/L→ S1, where L ⊆M is a link in M such that L has a tubular neighbourhood
L × D2 with f |L×D2\{0} given by f(θ, r, φ) = φ with θ the coordiantes along L and (r, φ) the

coordinates on D2. The link is called the binding and the closure of the fibers Pφ = f−1(φ) are
called the pages with as boundery the binding, i.e. ∂Pφ = L.

Examples of open book decompositions can be found in [29].

Figure 4.4: A sketch of an open book decomposition (picture taken from [31])

The notion of an open book decomposition can be extended to an orbifold as follows.



68 CHAPTER 4. SUB-RIEMANNIAN ORBIFOLDS

Definition 4.21. [3, Definition 3.4.1.] An open book decomposition (B, f) of the cyclic
3-orbifold Q with singular link L, and a fibration f : (Q \B) → S1 whose fibers f−1(θ) are
interior of compact two-orbifolds Σθ with boundary B.

One of the key ingredients for defining a sub-Riemannian structure on a cyclic 3-orbifold is the
following result.

Theorem 4.22. [3, Theorem 3.4.1.] Every cyclic 3-orbifold has an open book decomposition

These open book decompositions on an orbifold admit a contact structure, the definition is a
slight variation on the definition for manifolds.

Definition 4.23. [3, Definition 3.2.1.] An open book (B, f) on a contact 3-orbifold (Q, ξ)
supports the contact structure if, after some isotopy of ξ through contact structures, there is a
contact form α on Q such that α is positive on B and dα is the area form on every page.

The second key ingredient for contact structures on cyclic 3-orbifolds is given by the next result.

Theorem 4.24. [3, Theorem 4.1.2.] Every open book decomposition on a closed cyclic 3-orbifold
supports a contact structure.

Together, Theorem 4.22 and Theorem 4.24 imply the result summarized in the following corrolary.

Corollary 4.25. [3, Corollary 4.1.5.] Every closed cyclic 3-orbifold admits a contact structure.

Given a contact structure ξ on a cyclic closed 3-orbifold Q, we can define the contact distribution
D = ker(ξ) on Q. This yields a sub-Riemannian structure in general. Hence, we can formulate
the following corollary.

Corollary 4.26. Every cyclic closed developable 3-orbifold admits a contact sub-Riemannian
distribution.

Let us note that this is only an existence result, so not every contact form on Q will yield a
distribution. This point can be illustrated by the following example.

Example 4.27. Consider the cyclic action α(r, θ, z) = (r, θ + 2π
n
, z) on R3 and the standard

contact form ξ = dz − 1
2
(xdy − ydx) = dz − r2dθ on R3. In example 4.17 we have shown that

(R3/(Z/nZ), ξ) defines a contact orbifold. If we consider the distribution D = ker(ξ), then we
can find the frame

X =
∂

∂x
− 1

2
y
∂

∂z
Y =

∂

∂y
+

1

2
x
∂

∂z
.

Rewriting this frame in cylindrical coordinates, we obtain

X = cos(θ)
∂

∂r
− sin(θ)

r

∂

∂θ
− r sin(θ)

2

∂

∂z
Y = sin(θ)

∂

∂r
+

cos(θ)

r

∂

∂θ
− r cos(θ)

2

∂

∂z
.

However, checking the equivariance condition (4.7), we find
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dα
(
X(r,θ,z)

)
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ)
− r sin(θ)

2

and

Xα(r,θ,z) = cos

(
θ +

2π

n

)
∂

∂r
−

sin
(
θ + 2π

n

)
r

∂

∂θ
−
r sin

(
θ + 2π

n

)
2

∂

∂z

Since the canonical quotient π : R3 → R3/(Z/nZ) is only applied at the tangent level, we do not
apply the quotient on the base space. In other words, we find π∗

(
Xα(r,θ,z)

)
≠ π∗

(
dα
(
X(r,θ,z)

))
.

Therefore, we conclude that the distribution generated by X and Y is not well-defined on
the orbifold R3/(Z/nZ) eventhough the distribution satisfied the relation at the contact form
level. △
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Conclusion and outlook on further
research

In this thesis we have studied sub-Riemannian structures on orbifolds. First of all we have given
all relevant definitions and theorems related to sub-Riemannian geometry and orbifold theory.
Next, we have defined what a sub-Riemannian structure on the regular part of a developable
orbifold looks like. We found that if the quotient map q :M →M/Γ is a local diffeomorphism,
then we can lift a distribution toM to a unique distribution onM/Γ. At the singular points this
gave problems, since there the tangent space was no longer a vector space and the lift of curves
from M to M/Γ was no longer well-defined. In order to fix this, we defined a sub-Riemannian
structure around a singular point to be an equivariant distribution with respect to the action
on M . We gave examples of sub-Riemannian structures on orbifolds obtained by rotation,
reflections and the (p, q)-hopf action on R3. Moreover, we sketched a general existence result for
sub-Riemannian structures on closed cyclic 3-orbifolds.

One problem that we run into with these results is that the construction of an equivariant
distribution was done by hand. This means that we do not have a method to construct an
equivariant distribution for a given orbifold. Especially, when working on higher dimensional
orbifolds it would be essential to have a concrete way of finding an equivariant distribution.
One proposed method is to use a method similar to how one finds a horizontal distribution on a
principal G-bundle. Finding such a method and generating more examples would be good topic
for future research. Using higher dimensional examples, one could also study the dimensions
of the singular strata better and consider for what dimensions one could or could not define a
sub-Riemannian distribution.

A second way we left unexplored, was to define sub-Riemannian geometry on groupoids. A
groupoid is a generalization of a group in a more categorical language. It turns out that orbifolds
are equivalent to ‘proper étale groupoids’. More on this topic is for example explained in [32].
It turns out that sub-Riemannian structures are defined on Lie groupoids (as we found in [33]).
An interesting direction of study could be to see if we can use the sub-Riemannian structure on
Lie groupoids, to get sub-Riemannian structures on proper étale Lie groupoids, and hence on
orbifolds. In some cases this has already been studied. One could for example define an Engel
structure on a contact 3-orbifold in this way (see for example [34]).

Shortly said, we could easily have spend another year studying this topic, and we hope to do so
in the future!
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Appendix A

Differential Geometry

A.1 Symplectic structure on the cotangent bundle

If we want to consider T ∗M as the phase space for some (sub-Riemannian) Hamiltonian dynamics,
it is convenient to do this in the language of symplectic geometry. The goal of this section
is to define a symplectic structure on T ∗M . This construction is relevant if we talk about
contact distributions and characteristic curves in section 1.5. The material discussed in this
section is borrowed from [5, Section 4.2]. First, we define the tautological 1-form, which makes
a correspondence between position and momentum variables.

Definition A.1. For any covector λ ∈ T ∗M and ω ∈ Tλ (T
∗M) the tautological 1-form

s ∈ Ω1 (T ∗M) given by s : T ∗M → Tλ (T
∗M) is defined by s(λ) = sλ such that

⟨sλ, ω⟩ = ⟨λ, π∗ω⟩.

Here, π : T ∗M →M is the canonical projection.

From this 1-form we can make a closed 2-form by taking the exterior derivative.

Definition A.2. The canonical symplectic form on T ∗M is defined by

σ = ds ∈ Ω2 (T ∗M) .

Let us find an expression for this form in canonical coordinates (q, p) on T ∗M . In these
coordinates we have that λ =

∑n
i=1 pidqi and v ∈ Tλ (T

∗M) can be expressed as a linear
combination of basis vectors of the tangent space, i.e.

v =
n∑

i=1

αi
∂

∂pi
+ βi

∂

∂qi
.

Hence, we find π∗v =
∑n

i=1 βi
∂
∂qi

. We get
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⟨sλ, v⟩ = ⟨λ, π∗v⟩

= ⟨
n∑

i=1

pidqi,

n∑
i=1

βidqi⟩

=
n∑

i=1

piβi

=
n∑

i=1

pi⟨dqi, v⟩

= ⟨
n∑

i=1

pidqi, v⟩.

Comparing the inner product, we find that sλ =
∑n

i=1 pidqi. So in coordinates we find that
sλ = λ, which is why we speak of the tautological 1-form. The canonical symplectic form is
then given by

σλ := dsλ =
n∑

i=1

dpi ∧ dqi. (A.1)

It remains to show that σ is indeed a symplectic form. By construction σ is a closed 2-form
(d2 = 0). In coordinates we can see that σ is non-degenerate because it is equal to the standard
symplectic form on R2n.

Remark A.3. In some cases it is convenient to start with only a basis η1, . . . , ηn on T ∗M . In
this case we find λ = sλ =

∑n
i=1 λiηi. Then the canonical symplectic form becomes:

σ := ds =
n∑

i=1

dλi ∧ ηi + λidηi. (A.2)

A.2 Poisson geometry

In this section we give the basic definition of a Poisson structure and Poisson structures on
symplectic manifolds, coadjoint orbits and on products of Poisson manifolds.This material was
found in [14] and [35], here one can also find the omitted proofs.

Definition A.4. Let M be a smooth manifold. A Poisson structure on M is a R-bilinear
bracket {·, ·} : C∞(M) × C∞(M) → C∞(M) such that for f, g, h ∈ C∞(M) the following
properties hold:

� Antisymmetry: {f, g} = −{g, f};

� Jacobi identity: {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0;

� Leibniz rule: {f, gh} = {f, g}h+ g{f, h}.

The pair (M, {·, ·}) is called a Poisson manifold.
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Using this definition, we can show that the Poisson bracket as defined in 1.11 is indeed a Poisson
bracket on the contangent bundle. We give three constructions of Poisson structures on spaces
we need throughout the thesis.

Example A.5 (Symplectic manifolds). Let (M,ω) be a symplectic manifold. We can define a
Poisson bracket {·, ·} : C∞ × C∞ → C∞ on (M,ω) by

{f, g} = ω(Xf , Xg).

Here the map f ∈ C∞(M) induces a vector field Xf ∈ X (M) as the unique vector field Xf that
satisfies ιXf

ω = −df , for ι the interior multiplication. The uniqueness of this vector field is
ensured by the nondegeneracy of the symplectic form.

Since, we have already seen that for any smooth manifold M the cotangent bundle T ∗M is a
symplectic manifold, we find that any cotangent bundle of a smooth manifold admits a Poisson
structure. △

Example A.6 (Coadjoint orbits). Consider a Lie group G with a Lie algebra g Its dual g∗ has
a natural Poisson structure given by

{f, g}(µ) = ⟨µ, [dµf, dµg]⟩

for µing∗ and ⟨µ,X⟩ the pairing of the linear functional µ with the vector field X. This structure
is called the Lie-Poisson bracket. △

Example A.7 (Products of Poisson structures). Consider two Poisson manifolds (M1, {·, ·}1)
and (M2, {·, ·}2). The manifold M1 × M2 has a unique Poisson structure {·, ·}. Consider
f, g ∈ C∞(M1 ×M2). For any m1 ∈ M1 and m2 ∈ M2 consider the inclusions im1 : M2 ↪→
M1 ×M2 defined by im1(x) = (m1, x) and likewise the inclusion im2 :M1 ↪→M1 ×M2 given by
im2(x) = (x,m2). Then the product Poisson structure is defined by

{f, g}(m1,m2) = {f ◦ im2 , g ◦ im2}1(m1) + {f ◦ im1 , g ◦ im1}2(m2).

△
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Appendix B

Group actions

In this appendix we define group actions and list a few important properties for studying
orbifolds. We start by stating some definitions, for these we assume that G is a group (with
unit e) and X is a space.

Definition B.1. An action of G on X is a map

α : G×X → X

defined by (g, x) 7→ γ · x such that, for all x ∈ X

1. α(gh, x) = g · (h · x) for all g, h ∈ G

2. α(e, x) = x

For such an action, X is called a G-space.

If we impose some structure on X we can define several types of actions of G.

Definition B.2. G acts on X by homeomorphism (resp. diffeomorphism) if for each
g ∈ G the map x 7→ g · x is a homeomorphism (resp. diffeomorphism) of X.

Definition B.3. Let X and Y be G-spaces. A map f : X → Y is called G-equivariant if for
all x ∈ X and all g ∈ G, we have

f(g · x) = g · f(x).
Definition B.4. The orbit of a point x ∈ X is the set

G· = {g · x : g ∈ G} ⊂ X.

Using the action of G on X we can define an equivalence relation on X given by x ∼ y if and
only if x and y belong to the same orbit, i.e. y = hx for some h ∈ G. We can then consider the
space of equivalence classes X/G.

We now list a few properties an action α : G×X → X can have.
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Definition B.5. The elements of G which leave an element x ∈ X fixed form a subgroup called
the isotropy group at x, and is denoted

Gx := {g ∈ G : gx = x}.

Definition B.6. A point x ∈ X is called a fixed point of the action if the isotropy group at
x is the whole group, i.e. Gx = G. Let us denote the set of all fixed points of the aciton by XG.

Definition B.7. A subset Y ⊂ X is called G-invariant if g · Y = Y for every g ∈ G.

Definition B.8. The action of G on X is effective if no element of the group, except the
identity element, fixes all the elements of the space, i.e. g · x = x implies g = e.

Definition B.9. The action is called free if no point of X is fixed by an element of G other
than the identity. In other words, Gx = {e} for all x ∈ X.

Definition B.10. For an effective action α : G×X → X a point x ∈ X is called singular if
the the isotropy group is non-trivial. The collection of all singular points in X is denoted ΣG

and will be called the singular set.

Notice that an effective action that is also free, hence cannnot have any singular points.

Definition B.11. We call the action α proper if the map G × X → X × X defined by
(g, x) 7→ (x, g · x) is proper (i.e. premimage of every compact set is compact).

One way to check an action is proper is via the following lemma.

Lemma B.12. If G is a topological group endowed with the discrete topology, the action G on
X is proper if and only if for any compact sets K1, K2 ⊆ X, the set

{g ∈ G : g ·K1 ∩K2 ̸= ∅}

is finite.

This allows us to state the following theorem.

Proposition B.13. [20, Proposition 1.1] The action of a discrete group Γ on a locally compact
topological space X is proper if and only if the following conditions hold

i the quotient X/Γ is Haussdorf under the quotient topology

ii each x ∈ X has finite isotropy group

iii each x ∈ X has a Γx-invariant neighbourhood U such that

{γ ∈ Γ : γ · U ∩ U ̸= ∅} = Γx.

Now that we have defined proper group actions, we will use this to prove an important fact
about proper and free group actions yielding a local diffeomorphism as quotient map for the
action. Quoting verbatim from [6] we define local diffeomorphisms as follows.
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Definition B.14. If M and N are smooth manifolds, a map F : M → N is a local diffeo-
morphism if every point p ∈ M has a neighbourhood U such that F (U) is open in N and
F |U : U → F (U) is a diffeomorphism.

Local diffeomorphisms are useful for us because of the following result.

Lemma B.15. [6, Proposition 3.6(d)] Let M and N be smooth manifolds and F :M → N a
(local) diffeomorphism, then the tangent map dFp : TpM → TF (p)N is a (local) isomorphism.

This result is of great importance to define a sub-Riemannian structure on the regular part of
an orbifold, in combination with the following result.

Theorem B.16. Given a group Γ that acts freely on a manifold M , we know that the quotient
map q :M →M/Γ is a local diffeomorphism.
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Appendix C

Mathematica Code

C.1 Heisenberg geodesics

Using NDSolve we find and plot the solutions to the system of Ordinary Differential Equations
1.5.

Secondly, using DSolve, we find the analytic solutions.

C.2 Reflection geodesics

We use NDSolve to solve and plot the solution to the Hamilton Equations for an orbifold
generated by reflection (x, y, z) 7→ (x,−y,−z) on R3. This code was used to plot Figure
4.2. The WhenEvent command is used to plot the sub-Riemannian geodesics on the quotient
R3/ (Z/2Z).
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C.3 Rotation geodesics

We use NDSolve to solve and plot the solution to the Hamilton Equations for an orbifold
generated by reflection (r, θ, z) 7→ (r, θ + 2π

4
, z) on R3. This code was used to plot Figure

4.3. The WhenEvent command is used to plot the sub-Riemannian geodesics on the quotient
R3/ (Z/4Z).
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