

Learning the Kalman
Filter Parameters: an
Expectation-
Maximization Approach
Master Research Project Applied
Mathematics

Student: L.H. Kriouar

First supervisor: Prof. Dr. M.A. Grzegorczyk

Second assessor: Dr. W.P. Krijnen

Applied Mathematics

2023, July 14

Abstract

The Kalman filter has been proven to be an optimal hidden-state estimator of a (linear) state-space model with
Gaussian noise terms. In this thesis, we consider the Kalman filter in mathematical depth and derive the forming
equations. We derive backward corrections on the produced estimates, also known as Kalman smoothing. Fur-
thermore, we review estimations of the parameters of the underlying state-space model through the expectation-
maximization algorithm and consider asymptotic theory of the resulting maximum likelihood estimates. We apply
the methodology to simulations and an example from literature, before moving on to forecasting of stock prices,
which we model in a state-space sense. The main result of this thesis is the implementation of a more flexible
EM algorithm for the Kalman filter, compared to existing libraries, in Python. We also observed that although the
chaotic nature of stock prices, the Kalman filter provides accurate estimates of the underlying hidden state.

1

Contents

1 Introduction 4

2 Theory 6
2.1 Mathematical Preliminaries . 6

2.1.1 Hidden Markov Models . 6
2.1.2 Statistical Properties . 7
2.1.3 Linear Time-Invariant Systems . 9
2.1.4 Notation . 9

2.2 The Kalman Filter . 10
2.2.1 Introduction . 10
2.2.2 The Filtering Equations . 14
2.2.3 Probabilistic Origins . 19

2.3 Kalman Smoother . 22
2.3.1 The Smoothing Equations . 22
2.3.2 The Smoothed Autocovariance . 24

2.4 Expectation-Maximization . 24
2.5 Learning the Kalman Filter Parameters with an EM Approach: the EMKF algorithm 28

2.5.1 The Expected Log-Likelihood of the Complete Data . 28
2.5.2 The Log-Likelihood of the Measurements . 31
2.5.3 The Parameter Update Equations . 31
2.5.4 Summary . 36
2.5.5 Partial Optimization . 37

2.6 Asymptotic Theory and Confidence Intervals . 37
2.6.1 Estimation of the Fisher Information Matrix . 38

3 Methods 41
3.1 Data Description . 41
3.2 Simulated Data . 41
3.3 Example . 41
3.4 Approach . 41
3.5 Software Implementation . 44

4 Applications 46
4.1 Simulations . 46

4.1.1 Simulation 1 . 46
4.1.2 Simulation 2 . 49

4.2 Example . 52
4.3 Forecasting Stock Prices . 53

4.3.1 Exploratory Analysis . 53
4.3.2 Modelling, Estimation & Results . 57
4.3.3 Forecasting . 66

5 Conclusion 69

6 Discussion 70

References 72

A Matrix Calculus 73

B Script 76

2

Preface

Working on this Master research project throughout the whole academic year has been a wonderful experience.
A priori, I did not imagine how interested and passionate I would have been about Kalman filtering as I am while
writing this preface. Together with applying the EM algorithm to the Kalman filter setting, I am glad to present to
you what has become my Master thesis in Applied Mathematics.

The upcoming work is of course not solely accomplished by myself. First of all, I would like to humbly thank
my supervisor, Prof. Dr. M.A. Grzegorczyk for not only the excellent guidance and support during the project, but
also for introducing the topic of Kalman filtering. Secondly, as a second assessor, Dr. W.P. Krijnen has also been
involved above average and I would also like to thank him for his care and guidance throughout the year.

I also want to thank my friends and family for all the support and interest in this project. As a mathematician, you
do not expect your friends nor your family to have a gasp of what you are exactly doing, but the people around
me have always been interested in what I was doing, which kept me motivated throughout the academic year.
A special thanks to my peer and best friend, J.H.C. van Ekelenburg, who was always available for some critical
discussions about the subject and process. Especially from a systems and control point of view, he was really help-
ful in gaining insights in the mathematics behind e.g. the Kalman filter. Additionally, I want to thank my friend,
J.H.G. Jeung, for taking some time to verify the linguistics of the thesis.

As the author of this thesis, I hope you, the reader will enjoy reading this thesis as much as I have enjoyed writing it.
The Kalman filter’s background is a very interesting field to explore and I hope this work will serve as confirmation.

In the memory of my late grandfather, who passed away in 2019. I would have loved for you to see me graduate.

My regards,

Lotvi Kriouar

3

1 Introduction

Time series analysis has been a part of statistics for decades. Methods for statistical inference as well as forecasting
in a machine learning framework are rewarded for their performance. From simple examples as autoregressive
methods (e.g. AR, ARIMA or ARMAX models) to advanced methods as the field of neural networks (e.g. long
short-term memory), there are lots of modelling techniques which can be applied to time series data today.

One of these methods is the notion of state-space models (or systems). By denoting the observed time series by zt ,
where t is the time index, we can introduce the following formulation of a state-space model:

X t = FX t−1 +wt , (1)

Zt = HX t + vt .

Here X t is called the state of the system. It is assumed that the observed time series zt is influenced by the so-
called hidden state X t . By ’hidden’, we mean that x t cannot be observed and is regarded as an internal process.
The system (1) becomes stochastic by incorporating the noise terms wt and vt . By the structure of (1), one could
think of this model as a continuous counterpart of a hidden Markov model, where the dependency relations are
described analogously (Figure 1).

The Kalman filter has been proven to serve as an optimal estimator of the hidden state x t [9]. Starting from
an initial condition x̂0, the Kalman filter propagates state estimations through time with minimal variance. Op-
timality of the Kalman filter requires Gaussian white noise terms and several independence assumptions. The
filter has a predict-update nature. That is, after predicting the next hidden state x t+1, it incorporates the current
measurement zt+1 to update this prediction. Furthermore, the Kalman smoother provides backward recursions to
correct the hidden state estimates produced by the Kalman filter, which enables us to reduce the filter’s variance
even more. After its introduction, the Kalman filter has been covered in great detail in [1, 3, 5, 6, 11, 16].

However, one downfall of the Kalman- filter and smoother is that they both require knowledge of the system’s
parameters (e.g. F and H in (1)), while there are occasions where these parameters are, or at least partially,
unknown. Fortunately, parameter estimation methods for state-space models have been introduced in e.g. [5,
16]. In this thesis, we explore and apply the expectation-maximization (EM) algorithm to the Kalman filter setting.
That is, we propose an EM based estimation procedure for (a subset of) the parameters in (1), which results in the
so-called EMKF algorithm. Furthermore, by studying the asymptotic theory of the resulting maximum likelihood
estimators, we are able to derive their confidence intervals.

In this thesis, we are interested in finding out about the performance a learned Kalman filter through the EMKF
algorithm on real-world data. Therefore, we apply the Kalman filter to stock price data as a forecasting method.
Before we do so, we perform simulations on the implentend EMKF algorithm as a proof of concept.

The main result of this thesis is a rather flexible EMKF algorithm implementation in Python. Compared to the
existing em method from the pykalman library, the EMKF algorithm implemented by the author has the follow-
ing additional options:

– While the em method only performs a predefined number of iterations, the EMKF algorithm written by the
author actually optimizes the parameter estimates in terms of convergence to stationary point of the log-
likelihood of the measurements (the observed data in the Kalman filter setting). A priori, one does generally
not know how many iterations it would take to achieve maximum likelihood estimates. Therefore, it would
be beneficial to keep track of the likelihood function and terminate the algorithm whenever this function
has converged to a stationary point. To avoid potential overfitting and to limit computation times, the user
of the function sets a maximum number of iterations to perform.

– Additional to the log-likelihood increase, the user can choose to define convergence of the EMKF algorithm
in terms of the difference in parameter estimates as well. That is, if the parameter estimates deviate too low
from the previous estimates, then convergence is achieved. In this way, one does not only have convergence
of the log-likelihood of the measurements, but stable parameter estimates are guaranteed as well.

4

– The user can manually set the thresholds regarding the log-likelihood increase and the difference in param-
eter estimates. In this way, the user of can define their own degree of convergence of the EMKF algorithm.

We also provide a framework on how to numerically approximate the Hessian matrix of the log-likelihood of the
measurements w.r.t. to the unknown parameters. In this way, one could also find out whether the stationary point
of the log-likelihood of the measurements corresponds to a (local) maximum or a saddle point of this likelihood
function.

The construction of the EMKF algorithm has already been accomplished in 1982 [15]. However, up to the best
knowledge of the author, the EMKF algorithm has not been applied to forecasting stock prices yet. Therefore, the
obtained results are hard to put into perspective. Forecasting using the Kalman filter in general is done in e.g. [13].

The remainder of this thesis is structured as follows. In Section 2, we cover the theoretical framework relevant
for this thesis. The core subjects in this section are the Kalman filter, the Kalman smoother and the EM algorithm.
In Section 3, we explain how the theoretical framework can be translated into a method to approach real-world
data. Next, in Section 4, we perform the simulations and stock price forecasting. In Section 5, we conclude our
findings and finally, in Section 6, we review the methods and results in this thesis.

5

2 Theory

The underlying methodology of Kalman filtering relies on fields such as probability theory, linear algebra and (ma-
trix) calculus. In this section, we consider the Kalman filter in mathematical detail. Besides deriving the equations
defining the filter, we also verify these equations from a conditional density viewpoint. Next, we consider the
Kalman smoother, which serves as a correction of the estimates produced by the Kalman filter, given the entire
data. Also, we explain how one could infer about the unknown parameters of the Kalman filter by the expectation-
maximization (EM) algorithm. We derive the EM algorithm for the Kalman filter/smoother to introduce the EMKF
algorithm and finish this section with considering the asymptotic theory of the resulting maximum likelihood es-
timates.

The remainder of this section is structured as follows: in Section 2.1, we cover mathematical preliminaries which
are useful in understanding what follows. Section 2.2 is devoted to the Kalman filter, while the Kalman smoother
is explained in Section 2.3. Next, in Section 2.4, we consider the expectation-maximization algorithm and we
combine everything in Section 2.5 to derive an expectation-maximization algorithm for estimation of the Kalman
filter parameters. Finally, we review asymptotic theory of these estimators in Section 2.6.

2.1 Mathematical Preliminaries

We initiate this theory section with an overview of relevant mathematical preliminaries. It is assumed that the
reader has basic knowledge of linear algebra, probability theory, statistics and calculus. In Appendix A, we extend
the basic calculus knowledge by covering several properties from matrix calculus, which are relevant in Section 2.5.

2.1.1 Hidden Markov Models

A Hidden Markov model (HMM) is a statistical model that is useful when we model an observable process Z that
is believed to be influenced by a hidden process X [18]. We often refer to X as the hidden state. The hidden state
X is assumed to possess the Markov property, which is defined as follows.

Definition 1 (Markov Property). Let X = {X t}Tt=0 be a stochastic process. X is said to possess the Markov property
if the distribution of X t (t ∈ {0, . . . , T}) only depends on X t−1. That is, conditioned on X t−1, X t is independent of
all previous states. Formally, we have

P(X t = x t |X t−1 = x t−1, . . . , X0 = x0) = P(X t = x t |X t−1 = x t−1)

The Markov property refers to a memoryless stochastic process. If we assume that the hidden Markov model has
an initial hidden state X0, we start observing data at t = 1 and we let Z = {Zt}Tt=1 and X = {X t}Tt=0, the model
(and (1)) could be visualized as the Bayesian network in Figure 1.

X0 X1

Z1

X2

Z2

XT

ZT

Figure 1: The hidden Markov model considered in this thesis

Figure 1 also shows the conditional independence structures within the model: we assume that the current obser-
vation Zt is independent of all previous observations, conditioned on the current hidden state X t . Hidden Markov
models are particularly a popular choice when both the observations and the hidden states are discrete random
variables. However, some methodology exists for the continuous case, where the HMMs are called continuous
hidden Markov models (CHMMs). For the continuous case, statistical inference is not as far developed as in the
discrete case. However, the Kalman filter is an example of inference for a CHMM. For more text on hidden Markov
models and certain applications, the reader is referred to [18].

6

2.1.2 Statistical Properties

This section is devoted to stating some statistical properties which are used throughout the upcoming derivations.
Lemma 1 returns in Section 2.3 while deriving the Kalman smoother equations.

Lemma 1. Let X and Y be n- and m-dimensional random vectors respectively such that X and Y are jointly
distributed by

�

X
Y

�

∼Nn+m

��

µX
µY

�

,
�

ΣX ΣX Y

Σ⊤X Y ΣY

��

.

Then, for the marginal distribution of X and the conditional distribution of X |(Y = y), we have

X ∼Nn(µX ,ΣX),

X |(Y = y)∼Nn

�

µX +ΣX YΣ
−1
Y (y −µY),ΣX −ΣX YΣ

−1
Y Σ

⊤
X Y

�

.

Proof. Let µ =
�

µX
µY

�

and Σ =
�

ΣX ΣX Y

Σ⊤X Y ΣY

�

. We first derive the marginal distribution of X , before deriving the

conditional distribution X |(Y = y).

To obtain the marginal distribution of X , consider the linear transformation

X = A
�

X
Y

�

,

where A=
�

In 0m×m

�

. Here, 0m×m is defined in Table 1. Since the Gaussian distribution is invariant under linear
transformations, X is Gaussian distributed as well. Its mean and variance are computed by

E(X) = E
�

A
�

X
Y

��

= Aµ= µx ,

Var(X) = Var
�

A
�

X
Y

��

= AΣA⊤ =
�

Σx ΣX Y

�

A⊤ = Σx .

Hence, we have X ∼Nn(µX ,ΣX). By taking A=
�

0n×n Im

�

, one could prove Y ∼Nm(µY ,ΣY).

For the conditional distribution of X |(Y = y), consider the following LDU decomposition of Σ, obtained by per-
forming block Gauss-Jordan elimination.

Σ=
�

In ΣX YΣ
−1
Y

0m×n Im

��

Σx −ΣX YΣ
−1
Y Σ

⊤
X Y 0n×m

0m×n Σy

�

�

In 0n×m

Σ−1
y Σ

⊤
X Y Im

�

.

Note the appearance of the Schur complement of Σy in the second (block) matrix. Note that the inverse of Σ is
given by

Σ−1 =

�

In 0n×m

−Σ−1
y Σ

⊤
X Y Im

�

�

Σx −ΣX YΣ
−1
Y Σ

⊤
X Y 0n×m

0m×n Σy

��

In −ΣX YΣ
−1
Y

0m×n Im

�

. (2)

Denote the densities of (X , Y)⊤, X and X |(Y = y) by fX ,Y (x , y), fX (x) and fX |Y (x |y) respectively. Then, the

definition of conditional probability reads fX |Y (x |y) =
fX ,Y (x , y)

f y(y)
. We compute

fX |Y (x |y) =
fX ,Y (x , y)

f y(y)

=
(2π)−1/2(n+m)|Σ|−1/2 exp

�

−
1
2

��

x
y

�

−µ
�⊤

Σ−1
��

x
y

�

−µ
�

�

(2π)−1/2m|ΣY |−1/2 exp
�

− 1
2 (y −µY)

⊤Σ−1
y (y −µY)
�

= (2π)−1/2n (|Σ|/|ΣY |)
−1/2 exp

�

−
1
2

�

��

x
y

�

−µ
�⊤

Σ−1
��

x
y

�

−µ
�

− (y −µY)
⊤Σ−1

Y (y −µY)

��

.

7

For the product of the determinants, we have

|Σ|/|ΣY |=
|Σ|
�

�

�

�

In 0n×m
0m×n ΣY

�

�

�

�

|ΣY |=
�

�

�

�

In 0n×m
0m×n ΣY

�

�

�

�

=

�

�

�

�

Σ

�

In 0n×m
0m×n Σ−1

Y

�

�

�

�

�

=

�

�

�

�

ΣX ΣX YΣ
−1
Y

Σ⊤X Y Im

�

�

�

�

=
�

�ΣX −ΣX YΣ
−1
Y Σ

⊤
X Y

�

� .

Using (2), one can show that

��

x
y

�

−µ
�⊤

Σ−1
��

x
y

�

−µ
�

− (y −µY)
⊤Σ−1

Y (y −µY) =

�

x −
�

µx +ΣX YΣ
−1
Y (y −µY)
��⊤ �

ΣX −ΣX YΣ
−1
Y Σ

⊤
X Y

�−1 �
x −
�

µx +ΣX YΣ
−1
Y (y −µY)
��

.

Hence, we have

fX |Y (x |y) = (2π)−1/2n
�

�ΣX −ΣX YΣ
−1
Y Σ

⊤
X Y

�

�

−1/2 ·

exp
�

−
1
2

�

x −
�

µx +ΣX YΣ
−1
Y (y −µY)
��⊤ �

ΣX −ΣX YΣ
−1
Y Σ

⊤
X Y

�−1 �
x −
�

µx +ΣX YΣ
−1
Y (y −µY)
��

�

,

which characterizes the Nn

�

µX +ΣX YΣ
−1
Y (y −µY),ΣX −ΣX YΣ

−1
Y Σ

⊤
X Y

�

distribution. Hence, we conclude that

X |(Y = y)∼Nn

�

µX +ΣX YΣ
−1
Y (y −µY),ΣX −ΣX YΣ

−1
Y Σ

⊤
X Y

�

.

Lemma 2 is used to compute the expected log-likelihood of the complete data for the expectation-maximization
algorithm in Section 2.5.

Lemma 2. Let X and Y be n-dimensional random vectors and let A∈ Rn×n. Then,

E
�

X⊤AY
�

= E(X)⊤AE(Y)) + Tr (ACov(Y, X)).

Proof. We compute

E
�

X⊤AY
�

= E
�

Tr
�

X⊤AY
��

X⊤AY is a scalar-valued random variable

= E
�

Tr
�

AY X⊤
��

Cyclic property of the trace operator

= Tr
�

AE
�

Y X⊤
��

Trace- and expectation operator are linear

= Tr
�

A
�

Cov(Y, X) +E(Y)E(X)⊤
��

= Tr (ACov(Y, X)) + Tr
�

AE(Y)E(X)⊤
�

= Tr (ACov(Y, X)) + Tr
�

E(X)⊤AE(Y)
�

= E(X)⊤AE(Y) + Tr (ACov(Y, X)).

8

2.1.3 Linear Time-Invariant Systems

State-space models are in fact a wide class of model formulations. In this thesis, we focus a particular class of
state-space models: (discrete) linear time-invariant (LTI) systems. We provide a short introduction to the reader. A
LTI system is formulated as follows.

Σ :
ẋ(t) = Ax(t) + Bu(t)
y(t) = C x(t) + Du(t)

(3)

Here, x : T → X is called the state of the system, u : T → U is called the input, while y : T → Y is called the
output. For convenience, we rather describe u, x and y as vectors rather than functions of t (i.e. x(t) ∈ X).
Usually, and in this thesis, T = R+, X ⊆ Rn, U ⊆ Rm and Y ⊆ Rp where n, m, p ∈ N.

If we write x(t0) = x0 and assume that the initial condition x0 is given, we can solve (3) for the state x us-
ing the variation of constants formula [17]. The solution is given by

x(t) = eAt x0 +

∫ t

0

eA(t−τ)Bu(τ)dτ, (4)

where the integral of the matrix is taken entry-wise. To evaluate this integral, recall the definition of the matrix
exponential [17], which reads

eAt =
∞
∑

k=0

tkAk

k!
,

which arises from the multivariate variant of the power series definition of et .

An important property of a system as Σ, which comes back in Section 2.6, is the notions of observability. Ob-
servability is related to being able to reconstructing the state of a LTI system, by observing the output. Loosely
speaking, a LTI system is called observable if there is no possible combination of two realizations of the state with
a common input value u which produce the same output value y . The Kalman rank test for observability can be
employed to verify observability of a system.

Lemma 3 (Kalman rank test for observability). Consider the LTI system given by Σ. The system Σ is observable
if and only if we have

rank









C
CA
...

CAn−1









= n.

Hence, observability is satisfied whenever the so-called observability matrix of Σ has full column rank (and vice
versa). A similar result is available whenever the system is discrete as in (1) [17]. Here, we replace C by H and
A by F .

2.1.4 Notation

Besides the notation conventions that are used within this thesis, the upcoming sections also introduce lots of
variables which might cause some confusion. Hence, we finish this section on preliminaries with two tables,
which should provide a clear overview of the notation in this thesis.

0n n-dimensional vector of zeros
0n×m n-by-m matrix of zeros

Table 1: Notation conventions within this thesis

9

x t/X t The hidden state

x̂−t A priori hidden state estimate (Kalman filter)

x̂ t A posteriori hidden state estimate (Kalman filter)

x̃ t Correction of hidden state estimate (Kalman smoother)

e−t Error of x̂−t
et Error of x̂ t

P−t Covariance matrix of e−t (Kalman filter)

Pt Covariance matrix of et (Kalman filter)

P̃t Correction of covariance matrix of et (Kalman smoother)

zt/Zt The measurements

Ṽt,t−1 Lag-1 autocovariance of X t (Kalman smoother)

Table 2: Most important variables within this thesis

Also, for readability of the derivations, conditional probabilities are abbreviated throughout this thesis. This means
that the random variable X |(Y = y) is written as X |Y , unless indicated otherwise.

Furthermore, from Section 2.2.3 onwards, the hidden states and measurements are written as either random
variables (X t and Zt), while their realizations are written as x t and zt respectively. For simplicity, we write x t and
zt in the first two sections of Section 2.2. This is done because we aim to provide a rather intuitive introduction
to the Kalman filter, which is more difficult when formal notation is used.

2.2 The Kalman Filter

The Kalman filter serves as one of the core methods in this thesis. Also known as linear quadratic estimation), the
predict-update algorithm predicts the next hidden state and uses the current measurement (history) to update
this prediction. Under several assumptions, the Kalman filter is an optimal filter in the sense of being a minimal
variance unbiased estimator (MVUE). We gently introduce the topic first (Section 2.2.1), before moving on to the
actual mathematical derivations in Section 2.2.2. Next, we look at the Kalman filter from a more probabilistic
view in Section 2.2.3.

2.2.1 Introduction

Consider the LTI system Σ defined by (3). Note that the functions x , u and y are continuous functions of time
t, which makes the whole system Σ continuous. However, because of the shape of the Kalman filter, we aim to
work with state-space models which are a discretized version of Σ. To this end, consider an equidistant grid of
time points {t}Tt=0 and let ∆t be the distance between these time points. If we assume that A, B, C and D in Σ
(c.f. (3)) are constant matrices and that u is constant during each time step (i.e. u(t + τ) = u(t) ∀τ ∈ (0,∆t)),

10

we are able to compute

x(t + 1) = x(t +∆t)

= eA(t+∆t)x0 +

∫ t+∆t

0

eA(t+∆t−τ)Bu(τ)dτ Plugging in (4)

= eA∆t eAt x0 +

∫ t

0

eA(t+∆t−τ)Bu(τ)dτ+

∫ t+∆t

t

eA(t+∆t−τ)Bu(τ)dτ

= eA∆t

�

eAt x0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

�

+

∫ t+∆t

t

eA(t+∆t−τ)dτBu(t) u constant along time steps

= eA∆t x(t)−
∫ 0

∆t

eAsdsBu(t) s = t +∆t −τ

= eA∆t x(t) +

∫ ∆t

0

eAsdsBu(t).

Let F = eA∆t and G =
∫∆t

0 eAsds. Then, the discretization of (3) is given by

x t+1 = F x t + Gut , x t = x(t), (5)

which is the state-space model formulation which we work with throughout this section. Here, F is called the state
transition matrix. This formulation has several practical applications in fields as autonomous vehicles, airplane
tracking as well as the financial world. However, in many cases, a deterministic equation such as (5) fails to com-
pletely describe the behaviour of the state x t . This follows from the fact that it is likely to encounter imperfections
during the process which (5) fails to incorporate. Think of bumps in the road a autonomous vehicles drives on,
an airplane going through a gust or a stock price crash due to events happening in the world. Assuming that these
things happen randomly, we could capture these imperfections in terms of adding a component of Gaussian white
noise to (5). Recall that white noise is a sequence of independent random variables with zero mean and finite
variance. Usually, we obtain the system given by

x t = F x t−1 + Gut−1 +wt−1, wt−1 ∼Nn(0n,Q), (6)

where Q ∈ Rn×n1. The term wt is called the process noise. The system propagates the state x t through time with
initial condition x0. The initial state x0 could either be fixed or Gaussian distributed i.e. x0 ∼Nn(ξ,Λ).

Since (6) represents x1 as a linear combination of x0 (a variable considered to be either fixed or a Gaussian
random variable) and the Gaussian noise variable w0, x1 is Gaussian distributed. Hence, for t ∈ {2, . . . , T}, x t
is a linear combination of two Gaussian distributed random variables. This implies that under the presence of
Gaussian noise in (6), the state is Gaussian distributed. This is actually one of the assumptions for optimality of
the Kalman filter [9].

In certain applications, the state of (6) is not (fully) observable i.e. we cannot measure (some of) the compo-
nents of x t (this refers to the notion of (continuous) hidden Markov models in Section 2.1). We refer to these
components (or the entire state vector x t) as hidden states. For the sake of simplicity, from now on, x t is referred
to as the hidden state. Assume that at each time step, we obtain measurements zt ∈ Rp (p ∈ N) which gives us
information about x t . They are related by the following equation, which we refer to as the measurement equation:

zt = H x t + vt , vt ∼Np(0p, R), (7)

where H ∈ Rp×n and R ∈ Rp×p2. H is called the measurement matrix. The term vt is called the measurement noise,
which is included in (7) because we assume measurements to be noisy. Also, note that, as similar to the hidden
state, the measurements follow a Gaussian distribution.

1There are occasions where Q is allowed to be time-dependent i.e. wt ∼Nn(0,Q t).
2Just as for the process noise covariance matrix Q, R is allowed to be time-dependent.

11

As an example for the relation between measurements and the hidden state, consider a GPS tracker of an air-
plane which is not necessarily fully accurate (e.g. due to the large velocity of the airplane).

Example. Suppose that we are modelling the trajectory and the velocity of an airplane by (6), which are the
components of our hidden state x t . Assume that F and G are known. ut could e.g. denote the torque. If we
obtain a measurement of the location of the airplane at any time step, we have that zt is a measurement of the
first component of our state. Hence, we have H =

�

1 0
�

.

This example states that there are occasions where we measure components of the hidden state directly. For other
cases, measurements could be linear combinations of the hidden state. These relations are defined by the shape
of H.

The goal of Kalman filtering is to use the measurements zt (t ∈ {1, . . . , T})3 to estimate the hidden state x t .
Typically in a statistical/machine learning framework, estimation is subject to a certain loss function. This loss
function quantifies the ’goodness’ of a given estimate: a smaller loss indicates a better estimate. Consider the
squared error as the loss function i.e. L : Rn→ R, which is defined by

L(y) = (x − y)⊤(x − y) = ||x − y||2,

for any estimate of x , denoted by y ∈ Rn. The usual approach in statistics/machine learning is to minimize the
expected loss, or risk, which is given by

R(y) = E(L(y)) = E
�

(x − y)⊤(x − y)
�

. (8)

If we assume that x follows a Gaussian distribution with mean y , then its covariance matrix is given by:

Σx = E
�

(x − y)(x − y)⊤
�

.

Note that if we take the trace of Σx , we obtain

TrΣx = E(L(y)) = R(y),

since the trace of an outer product of two vectors equals their inner product. Note that this equality only holds
if y is the mean of the Gaussian distributed random variable x . In Section 2.2.3, we show that the a posteriori
estimates produced by the Kalman filter are the means of the distribution of the hidden state4.

Now, we fix t and consider x t . Denoting our estimate of x t by x̂ t , (8) becomes

R(x̂ t) = E
�

(x t − x̂ t)
⊤(x t − x̂ t)
�

,

which is exactly the (total5) variance of our estimate. Hence, this means that the aim of Kalman filtering is to
produce an estimate of the hidden state x t with minimal variance (if we consider the squared error loss function).

Everything that we have discussed so far is actually described formally by the Wiener problem [9], which is stated
as follows.

Problem 1 (Wiener problem). Consider the dynamic model

x t = F x t−1 + Gut−1 +wt−1,

zt = H x t + vt
, t ∈ {1, . . . , T} (9)

where F ∈ Rn×n, G ∈ Rn×m, H ∈ Rp×n, x t ∈ Rn, ut ∈ Rm, zt ∈ Rp, wt−1 ∼ Nn(0n,Q) and vt ∼ Np(0p, R) where
Q ∈ Rn×n and R ∈ Rp×p. Given the measurements {zt}Tt=1, find an estimate x̂ t of x t for all t with initial condition
x̂0 which minimizes the risk.

3Usually, we start obtaining measurements about the hidden state x t from t = 1 onwards with x0 as an initial condition.
4In fact, they are the means of a conditional distribution of the hidden state, but we omit this here for the sake of simplicity.
5 ’total’ in the sense that we sum over the variances of individual components of the estimate vector.

12

Since we are talking about minimizing the risk, we refer to the estimate described above as ’optimal’. The Kalman
filter is the optimal solution to the Wiener problem under certain assumptions. Hence, under these assumptions,
which we consider below, the Kalman filter does not only produce an estimate of the hidden state, any other
estimate of the hidden state has a larger variance.

The first assumption of the Kalman filter is that the hidden state x t (and the measurements, something we con-
sider in depth in Section 2.2.3) follow a normal (Gaussian) distribution. Although we already verified this by the
presence of Gaussian noise terms, it is worth mentioning again. Secondly, x t is assumed to be independent of the
future process noise wτ and the measurement noise vκ for any times t,τ,κ ∈ {1, . . . , T} with τ > t. A similar
assumption holds for the measurements zt , but additional with κ ̸= t. Under these assumptions and the dynamics
given by (9), the Kalman filter produces estimates of x t with minimal variance.

As mentioned in the Introduction, the Kalman filter consists of an prediction step and an update step. In the
prediction step, we predict the value of the state at the next time step. In the update step, we adjust our pre-
diction obtained in the prediction step. We denote the prediction made in the prediction step by an a priori
estimate x̂−t . The adjusted prediction (resulting from the update step) is denoted by the a posteriori estimate x̂ t .
An schematic overview of the procedure of Kalman filtering is shown in Figure 2.

Figure 2: A schematic overview of the Kalman filter. Here, the time t is denoted by n. The figure is retrieved
from kalmanfilter.net

If we aim to minimize the (total) variance of our hidden state estimates (read ’risk’), we need to keep track of the
error between the prediction of the state and its true value. To this end, we define the a priori error e−t = x̂−t − x t .
The a posteriori error is given by et = x̂ t − x t . Note that here, x t is not known.

Note that minimizing the variance of our hidden state estimates makes the most sense if we are able to pro-
duce unbiased estimates (i.e. E(x̂ t) = E(x t)) of these hidden states. If we e.g. would have produced an (a
posteriori) estimate with a bias, minimal variance would not yield an estimate in optimal sense (we could apply
a translation to our estimate, but let us avoid that). However, unbiasedness of both (a priori and a posteriori)
hidden state estimates is ensured by the construction of the Kalman filter if the initial condition x̂0 is unbiased.
After defining the Kalman filter explicitly, we state and prove this result in Proposition 1.

For now, we assume that both hidden state estimates are unbiased. From this, it directly follows that E(e−t) =
E(et) = 0. This implies that the covariance matrices of the error estimates are given by

P−t = E
�

e−t e−⊤t

�

, Pt = E
�

et e
⊤
t

�

Another consequence from the unbiasedness of the Kalman filter estimates that arises here is that P−t and Pt are
not only the covariance matrices of the a priori and a posteriori errors, but also of the hidden states. This is in fact
a significant result, which we use throughout the remainder of this section.

Now that we have motivated and partially introduced the Kalman filter, we move on to its construction.

13

https://www.kalmanfilter.net/kalman1d.html

2.2.2 The Filtering Equations

We now derive the five equations which form the Kalman filter. To this end, suppose that we are at time t ∈
{1, . . . , T}. This means that we know what our a priori and a posteriori hidden state estimates, x̂−t and x̂ t are up
to, but excluding, t. Furthermore, we have obtained measurements z1, . . . , zt−1. With this knowledge, the first
Kalman filter equation is similar to (5) and is called the state extrapolation equation.

Definition 2 (State Extrapolation Equation). Let F, G, x and u be as in Problem 1. Suppose that x̂ t and ut are
known. The state extrapolation equation is then given by

x̂−t+1 = F x̂ t + Gut .

The state extrapolation equation is used to predict the state at the next time step, assuming the system is fully
deterministic (i.e. the process noise wt is ignored).

Apart from keeping track of the state extrapolations, we aim to keep track of the uncertainty of these extrap-
olations as well. To do so, also assume that up to time t, we know what both estimates for the error covariance
matrices, P−t and Pt are. We compute

P−t+1 = E
�

e−t+1e−⊤t+1

�

= E
�

(x̂−t+1 − x t+1)(x̂
−
t+1 − x t+1)

⊤�

= E
�

(F x̂ t + Gut − (F x t + Gut +wt))(F x̂ t + Gut − (F x t + Gut +wt))
⊤� Plugging in (9) and Definition 2

= E
�

(F(x̂ t − x t)−wt)(F(x̂ t − x t)−wt)
⊤�

= E
�

(F(x̂ t − x t)−wt)((x̂ t − x t)
⊤F⊤ −w⊤t)
�

= E
�

F(x̂ t − x t)(x̂ t − x t)
⊤F⊤ − F(x̂ t − x t)w

⊤
t −wt(x t − x̂−t)

⊤F⊤ +wt w
⊤
t

�

= FE((x t − x̂−t)(x t − x̂−t)
⊤)F⊤ − FE((x t − x̂−t)w

⊤
t)−E(wt(x t − x̂−t)

⊤)F⊤ +E(wt w
⊤
t)

= F Pt F
⊤ − FE(x t − x̂−t)E(w

⊤
t)−E(wt)E((x t − x̂−t)

⊤)F⊤ +Q e−t and wt are independent

= F Pt F
⊤ − 0n×n − 0n×n +Q E(wt) = 0

= F Pt F
⊤ +Q.

This prediction equation is known as the covariance extrapolation equation and is the second equation of the
Kalman filter.

Definition 3 (Covariance Extrapolation Equation). Let F and Q be as in Section 2.2.1. Suppose that Pt is known.
Then, the covariance extrapolation equation is given by

P−t+1 = F Pt F
⊤ +Q.

Note that since ABAT is symmetric if B is symmetric (where A and B are matrices of suitable dimensions) and Q
is symmetric, meaning that the covariance extrapolation equation ensures that P−t remains symmetric over time.
Also, since Pt is implicitly assumed to be positive definite and Q is positive definite, P−t remains positive definite
throughout the filtering process. Now that we know how to predict the (uncertainty of the) state at time t+1, we
move on to updating our predictions (recall the predict-update nature of the Kalman filter from Section 2.2.1).

Suppose that we have predicted our next state x̂−t+1, together with its covariance matrix P−t+1. We move for-
ward in time i.e. t → t + 1. Note that this also means x̂−t+1 → x̂−t and P−t+1 → P−t . Right after this forward move,
we collect our measurement zt about the true state x t , which are related by (9).

As discussed in Section 2.2.1, the goal of Kalman filtering is to minimize the state estimator’s variance. The
total variance of the a priori state estimate x−t equals the trace of P−t (since the off-diagonal elements denote
covariances and are not of interest in the minimization problem). Hence, whenever this trace is small, we aim
to put faith in our predictions. However, it could be the case that the total variance of our measurement noise R
(c.f. (7)) is smaller than Tr P−t . This implies that our measurements tend to be more accurate than our a priori

14

hidden state estimates. Hence, whenever updating our prediction x̂−t , we tend to move towards our measurement
value if Tr R is smaller than Tr P−t and vice versa. We define the innovation by zt − H x̂−t , which is the difference
between the measurement value and the (deterministic) prediction of our measurement value, based on x̂−t . If
our a priori estimates are precise, the innovation should be small and vice versa. Let the updated estimate of the
hidden state be a linear combination of the a priori estimate and the innovation. By assigning a weight to the
innovation, we are able to quantify how much we want to incorporate the innovation into the update equation.
The weight assigned to the innovation is called the Kalman gain and denoted by Kt ∈ Rn×p6. The Kalman gain is
actually computed in the third Kalman filter equation, but for now, assume it is known. This enables us to describe
the fourth KF equation, the state update equation, in the following manner.

Definition 4 (State Update Equation). Suppose that x̂−t , H and zt are known. Then, the state update equation
is given by

x̂ t = x̂−t + Kt(zt −H x̂−t),

where Kt is the Kalman gain.

The state update equation plays an important role in deriving the fifth (and last) KF equation: the covariance
update equation. We first rewrite the state update equation (using the measurement equation) by

x̂ t = x̂−t + Kt(zt −H x̂−t)
= x̂−t + Kt(H x t + vt −H x̂−t),

which we use to rewrite our a posteriori error expression by

et = x̂ t − x t

= x̂−t + Kt(H x t + vt −H x̂−t)− x t

= (In − Kt H) x̂
−
t + (Kt H − In)x t + Kt vt

= (In − Kt H)(x̂
−
t − x t) + Kt vt

= (In − Kt H)e
−
t + Kt vt

Using this, we compute

Pt = E(et e
⊤
t)

= E
�

�

In − Kt H)e
−
t + Kt vt

� �

In − Kt H)e
−
t + Kt vt

�⊤�

= E
��

(In − Kt H)e
−
t + Kt vt

� �

e−⊤t (In − Kt H)
⊤ + vT

t K T
t

��

= E
�

(In − Kt H)e
−
t e−⊤t (In − Kt H)

⊤ + (In − Kt H)e
−
t v⊤t K⊤t + Kt vt e

−⊤
t (In − Kt H)

⊤ + Kt vt v
⊤
t K⊤t
�

= (In − Kt H)E
�

e−t e−⊤t

�

(In − Kt H)
⊤ + (In − Kt H)E

�

e−t v⊤t
�

K⊤t + KtE
�

vt e
−⊤
t

�

(In − Kt H)
⊤ + KtE
�

vt v
⊤
t

�

K⊤t
= (In − Kt H)P

−
t (In − Kt H)

⊤ + (In − Kt H)E
�

e−t
�

E
�

v⊤t
�

K⊤t + KtE (vt)E
�

e−⊤t

�

(In − Kt H)
⊤ + KtRK⊤t

E(vt v
T
t) = R

= (In − Kt H)P
−
t (In − Kt H)

⊤ + 0n×n + 0n×n + KtRK⊤t E(vt) = 0

= (In − Kt H)P
−
t (In − Kt H)

⊤ + KtRK⊤t ,

which is exactly the covariance update equation.

Definition 5 (Covariance Update Equation). Suppose that P−t , H and R are known. Then, the covariance update
equation is given by

Pt = (In − Kt H)P
−
t (In − Kt H)

⊤ + KtRK⊤t ,

where Kt is the Kalman gain.

6We use the subscript t, because the Kalman gain could differ in time.

15

By similar reasoning regarding that P−t remains symmetric and positive definite over time (right after Definition 3),
the same holds for Pt .

Remark. There exists a simpler formulation of the covariance update equation which could be derived by plugging
in the upcoming definition of the Kalman gain:

Pt = (In − Kt H)
−1P−t .

However, symmetry and positive definiteness are not ensured by this equation. Also, this update equation tends
to be numerically unstable [11].

Let us return to the Kalman gain Kt . Recall that it measures our faith in our state predictions (and hence, also
our measurements). If we e.g. consider the state update equation, note that for Kt = 0, x̂ t = x̂−t . This means that
Kt = 0n×p corresponds to us fully trusting our prediction.

Recall that the total variance of the error of the state estimator x̂ t equals Tr Pt , which is the quantity we want
to minimize. By controlling the Kalman gain, we can actually achieve this optimality. In other words, Kt should
minimize the hidden state estimator’s variance. We now derive the corresponding formula for Kt , using the co-
variance update equation. We first rewrite this equation by

Pt = (In − Kt H)P
−
t (In − Kt H)

⊤ + KtRK⊤t
= (In − Kt H)P

−
t (In −H⊤K⊤t) + KtRK⊤t

= (P−t − Kt HP−t)(In −H⊤K⊤t) + KtRK⊤t
= P−t − P−t H⊤K⊤t − Kt HP−t + Kt HP−t H⊤K⊤t + KtRK⊤t
= P−t − P−t H⊤K⊤t − Kt HP−t + Kt(HP−t H⊤ + R)K⊤t ,

which we use, together with the linearity of the trace operator, to compute the trace of Pn by

Tr Pt = Tr
�

P−t − P−t H⊤K⊤t − Kt HP−t + Kt(HP−t H⊤ + R)K⊤t
�

= Tr P−t − Tr (P−t H⊤K⊤t)− Tr (Kt HP−t) + Tr
�

Kt(HP−t H⊤ + R)K⊤t
�

= Tr P−t − 2Tr (Kt HP−t) + Tr
�

Kt(HP−t H⊤ + R)K⊤t
�

, (10)

where the last line follows from the fact that Tr A= Tr A⊤ for any square matrix A. Now, if we want to minimize
(10) w.r.t Kt , two issues arise:

– How do we define the (partial) derivative of a scalar function w.r.t. a matrix?

– How do we differentiate the trace of a matrix?

Both issues are solved in Appendix A (Definition A.1 and Lemma A.1). Let us optimize Pt w.r.t. the Kalman gain
Kt . First, note that HP−t H⊤ + R is symmetric, since (HP−t H⊤)⊤ = H(P−t)

⊤H⊤ = HP−t H⊤, since P−t is symmetric
(c.f. the reasoning right after Definition 3). Also, R is symmetric by the definition of a covariance matrix, and the
sum of two matrices is symmetric as well. With this in mind, we compute

∂

∂ Kt
Tr Pt =

∂

∂ Kt

�

Tr P−t − 2Tr (Kt HP−t) + Tr
�

Kt(HP−t H⊤ + R)K⊤t
��

= 0− 2(HP−t)
⊤ + 2Kt(HP−t H⊤ + R)

= −2
�

P−t H⊤ − Kt(HP−t H⊤ + R)
�

.

We set
∂

∂ Kt
Tr Pt = 0 and solve

−2
�

P−t H⊤ − Kt(HP−t H⊤ + R)
�

= 0⇔

P−t H⊤ − Kt(HP−t H⊤ + R) = 0⇔

Kt(HP−t H⊤ + R) = P−t H⊤⇔

Kt = P−t H⊤
�

HP−t H⊤ + R
�−1

,

provided this inverse exists. This equation is exactly the third KF equation: the Kalman gain.

16

Definition 6 (Kalman Gain). Assume that P−t , H and R are known. Then, the Kalman gain is given by

Kt = P−t H⊤
�

HP−t H⊤ + R
�−1

.

Regarding the existence of the inverse of HP−t H⊤+R, note that by similar reasoning as for P−t and Pt , HP−t H⊤+R
is positive definite as well. Hence, it is invertible, meaning that the existence of the inverse of this matrix is guar-
anteed.

Let us consider the Kalman gain in more detail. Recall that the Kalman gain minimizes the total variance of
our a posteriori hidden state estimate in the covariance update equation. This is in line with our discussion about
minimizing the risk in Section 2.2.1. Intuitively speaking, the Kalman gain is computed as

Kt =
uncertainty in a priori estimate

uncertainty in a priori estimate+ uncertainty in measurement
.

That is, the Kalman gain measures our faith in our a priori state estimate, compared to our faith in our measure-
ments. Whenever the first is large (i.e. low uncertainty), the Kalman gain should result in an a posteriori state
estimate which is close to our priori state estimate. Vice versa, whenever we put more faith in our measurements,
the Kalman gain gives a rather large contribution to the innovation in the state update equation. Observe that this
behaviour is contained in the definition of the Kalman gain. If the uncertainty in our a priori state estimate x̂−t is
small, then the entries of P−t are small. In the (entry-wise) limiting case, we have

lim
P−t →0

Kt = 0,

lim
R→0

Kt = lim
R→0

P−t H⊤
�

HP−t H⊤ + R
�−1

= P−t H⊤
�

HP−t H⊤
�−1

= H−1
L P−t H⊤
�

HP−t H⊤
�−1

= H−1
L ,

where H−1
L is the left-inverse of H (i.e. H−1

L H = Ip). When we plug these limiting cases into the state update
equation, we obtain

x̂ t = x̂−t + 0(zt −H x̂−t) = x̂−t ,

for P−t → 0. For R→ 0, we have

x̂ t = x̂−t +H−1
L (zt −H x̂−t)

= x̂−t +H−1
L zt − x̂−t

= H−1
L zt

= H−1
L (H x t + vt)

= H−1
L (H x t + 0) vt ∼Np(0, R) with R→ 0

= x t

Hence, if the measurements are noise-free, the state update equation gives a estimate equal to the true hidden
state realization. To conclude, the Kalman gain updates the state estimate and its covariance matrix based on the
ratio between uncertainty about our a priori estimate and the measurement uncertainty.

Now that we have derived the equations which form the Kalman filter, let us consider a brief summary. Given
a set of measurements {zt}Tt=1 and an initial condition for the (a posteriori) state estimate x̂0, the Kalman filter
propagates the state estimate, together with its error covariance matrix, for t ∈ {1, . . . , T} by the following five
equations.

17

State extrapolation equation x̂−t = F x̂ t−1 + Gut−1

Covariance extrapolation equation P−t = F Pt−1F⊤ +Q

Kalman gain Kt = P−t H⊤
�

HP−t H⊤ + R
�−1

State update equation x̂ t = x̂−t + Kt(zt −H x̂−t)

Covariance update equation Pt = (In − Kt H)P−t (In − Kt H)⊤ + KtRK⊤t

Table 3: The five equations which form the Kalman filter

A more detailed schematic overview of the Kalman filter than in Figure 2 is given in Figure 3.

Figure 3: A detailed overview of the Kalman filter. Here, n denotes t, so x̂n,n−1 denotes x̂−t and x̂n,n denotes x̂ t .
The figure is retrieved from kalmanfilter.net

Now that we have characterized the Kalman filter, let us review the unbiasedness of the state estimators, something
we already have discussed in Section 2.2.1.

Proposition 1. The a priori- and a posteriori state estimates x̂−t and x̂ t are unbiased if x̂0 is unbiased.

Proof. Suppose that x̂0 is unbiased. x̂−t is an unbiased estimator of x t if E(x̂−t) = E(x t). Similarly, x̂ t is unbiased
if E(x̂ t) = E(x t). We show that this holds for all t ∈ {1, . . . , T} by mathematical induction.

By the state extrapolation equation, we compute x̂−1 = F x̂0 + Gu0, so we have

E(x̂−1) = E(F x̂0 + Gu0)
= FE(x̂0) + Gu0

= FE(x0) + Gu0,

since x̂0 is an unbiased estimator for x0. From (9), we have x1 = F x0 + Gu0 +w0. Hence,

E(x1) = E(F x0 + Gu0 +w0)
= FE(x0) + Gu0 +E(w0)
= FE(x0) + Gu0 E(w0) = 0

= E(x̂−1).

Hence, x̂−1 is an unbiased estimator for x1. By the state update equation, we have x̂1 = x̂−1 + K1(z1 − H x̂−1). We

18

https://www.kalmanfilter.net/alphabeta.html

compute

E(x̂1) = E(x̂−1 + K1(z1 −H x̂−1))
= E(x̂−1) + K1E(z1 −H x̂−1)
= E(x1) + K1E(H x1 + v1 −H x̂−1) x̂−1 is unbiased

= E(x1) + K1(H(E(x1)−E(x̂−1)) +E(v1)))
= E(x1) + K1(H(E(x1)−E(x1)) + 0) E(v1) = 0

= E(x1) + K10

= E(x1).

Hence, for t = 1, x̂−t and x̂ t are both unbiased estimators for x1. Now, suppose that for any τ ∈ {2, . . . , T −1}, x̂−τ
and x̂τ are unbiased. Similarly as for t = 1, the computations show that x̂−τ+1 and x̂τ+1 are unbiased estimators
for xτ+1. This concludes the induction step.

Hence, by mathematical induction, we conclude that x̂−t and x̂ t are unbiased estimators for x t ∀t ∈ {1, . . . , T}.

2.2.3 Probabilistic Origins

In Section 2.2.2, we have derived the five equations that form the Kalman filter. We now dive deeper into the
probabilistic aspect. To this end, we again consider the Wiener problem. We alter our notation by describing
the hidden states and measurements as the random variables X t and Zt respectively7, while their realizations
are denoted by x t and zt respectively. We assume that, conditioned on the current measurement history, X t is
normally distributed8. However we already mentioned it in Section 2.2.1, but it plays a key role in the upcoming
derivations, we again point out that X t , the future process noise wt and the measurement noise vt are assumed
to be independent. The same holds for the measurement random variables Zt w.r.t. future wt and not current vt .
Furthermore, we denote the probability density function (pdf) of a random variable Y by fY (y).

Suppose that we are at time t − 1 and we have just collected the measurement zt−1. From a Bayesian point
of view, we are interested in the pdf of X t−1, conditioned on the current measurement history and how we can
propagate this to time t, after observing zt . Before we continue, we define Zt = (Z1, . . . , Zt)⊤ ∈ Rt p, which is a
t p-dimensional stacked random vector, and denote its realization by zt = (z1, . . . , zt) ∈ Rt p. This enables us to
write e.g. the conditional density of X t |(Zt = zt). Recall that conditionals are abbreviated throughout this thesis,
meaning that we write the preceding as X t |Zt .

We assume that X t−1|Zt−1 ∼ Nn(x̂ t−1, Pt−1). We are able to verify this assumption by mathematical induction
if we assume X0 ∼Nn(x̂0, P0) (note that at time t = 0, we do not have collected any measurement, so there is no
measurement history to condition on). What follows actually counts as the induction step, meaning that such an
inductive proof could be completed by verifying by e.g. propagating from time 0 to time 1 (after collecting our
first measurement).

We want to propagate from time t − 1 to time t after observing zt . We decompose this into two steps: prop-
agating from time t − 1 to time t before observing zt , which we denote by t−, and propagating from time t− to
time t, right after collecting the measurement zt . We start with the first propagation, meaning that we aim to
learn about the pdf of X t |Zt−1. Recall the dynamics of the hidden state, given by (9):

X t = FX t−1 + Gut−1 +wt−1.

Since X t is a linear combination of random variables X t−1 and wt−1 (Gut is considered to be fixed and is therefore
not relevant in the derivation), X t |Zt−1 is Gaussian if (X t−1, wt−1)|Zt−1 is jointly Gaussian distributed. By the
definition of conditional probability, we have

fX t−1,wt−1|Zt−1
(x t−1, wt−1|zt−1) =

fX t−1,wt−1,Zt−1
(x t−1, wt−1,zt−1)

fZt−1
(zt−1)

.

7Note that X t and Zt correspond to a given time point, following the properties of a Markov chain.
8Note that we already argued this less formal in Section 2.2.1.

19

Since wt−1 is assumed to be independent of X t−1 and Zt−1, we have fX t−1,wt−1,Zt−1
(x t−1, wt−1,zt−1) =

fX t−1,Zt−1
(x t−1,zt−1) fwt−1

(wt−1), which gives

fX t−1,wt−1|Zt−1
(x t−1, wt−1|zt−1) =

fX t−1,Zt−1
(x t−1,zt−1) fwt−1

(wt−1)

fZt−1
(zt−1)

= fX t−1|Zt−1
(x t−1|zt−1) fwt−1

(wt−1),

which is Gaussian, since X t−1|Zt−1 is assumed to be Gaussian and wt−1 is defined as Gaussian and the product of
two Gaussian random variables is Gaussian. Hence, X t |Zt−1 is Gaussian distributed random variable. Its mean is
given by

E(X t |Zt−1) = E(FX t−1 + Gut−1 +wt−1|Zt−1)
= FE(X t−1|Zt−1) + Gut−1 +E(wt−1|Zt−1)
= F x̂ t−1 + Gut−1 +E(wt−1) wt is independent of Zt

= F x̂ t−1 + Gut−1 + 0= x̂−t .

Note the appearance of the state extrapolation equation in the last line. Similarly as in the derivation of the
covariance extrapolation equation (Section 2.2.2), the covariance matrix of X t |Zt−1 is given by

E
�

(X t − x̂−t)(X t − x̂−t)
⊤|Zt−1

�

= P−t .

Hence, we have X t |Zt−1 ∼Nn(x̂−t , P−t). We take the conditional mean of X t |Zt−1, x−t , as our estimate of X t at time
t−. This is in line with the choice of our a priori state estimate in Section 2.2.2.

Now, we move on to the second propagation, from t− to t. This implies that we have collected our measure-
ment zt , so instead of conditioning on Zt−1, we now condition on Zt . We have

fX t |Zt
(x t |zt) =

fX t ,Zt
(x t ,zt)

fZt
(zt)

=
fX t ,Zt−1,Zt

(x t ,zt−1, zt)

fZt−1,Zt
(zt−1, zt)

Zt = (Zt−1, Zt)⊤

=
fZt |X t ,Zt−1

(zt |x t ,zt−1) fX t ,Zt−1
(x t ,zt−1)

fZt |Zt−1
(zt |zt−1) fZt−1

(zt−1)

=
fZt |X t ,Zt−1

(zt |x t ,zt−1) fX t |Zt−1
(x t |zt−1) fZt−1

(zt−1)

fZt |Zt−1
(zt |zt−1) fZt−1

(zt−1)

=
fZt |X t ,Zt−1

(zt |x t ,zt−1) fX t |Zt−1
(x t |zt−1)

fZt |Zt−1
(zt |zt−1)

. (11)

Hence, X t |Zt is Gaussian if each density in (11) is Gaussian.

First, we consider Zt |X t ,Zt−1. Recall the measurement equation given by (9). Since we condition on X t = x t ,
the term H x t becomes fixed. Also, vt is independent of X t and Zt−1, meaning that Zt is a sum of a fixed vector
and a Gaussian-distributed random variable, which implies that Zt |X t ,Zt−1 is Gaussian itself. Its expectation is
computed by

E(Zt |X t ,Zt−1) = E(HX t + vt |X t = x t ,Zt−1)
= E(H x t + vt |Zt−1)
= HE(x t |Zt−1) +E(vt |Zt−1)
= H x t +E(vt) x t is a constant and vt is independent of Zt−1

= H x t + 0= H x t .

20

Its covariance matrix is given by

E
�

(Zt −H x t)((Zt −H x t)
⊤|Zt−1

�

= E(vt v
⊤
t |Zt−1)

= E(vt v
⊤
t) = R. vt is independent of Zt−1

Hence, Zt |(X t ,Zt−1)∼Np(H x t , R). The second density in the numerator of (11) is that of X t |Zt−1, which is already
shown to be Gaussian.

Now, consider Zt |Zt−1. Recall that Zt is a linear combination of X t and vt . Hence, Zt |Zt−1 is Gaussian if (X t , vt)|Zt−1
is jointly Gaussian. By, again, the definition of conditional probability, we have

fX t ,vt |Zt−1
= fvt |X t ,Zt−1

(vt |x t ,zt−1) fX t |Zt−1
(x t |zt−1)

= fvt
(vt) fX t |Zt−1

(x t |zt−1) . vt is independent of both X t and Zt−1

Since both densities on the RHS are Gaussian, (X t , vt)|Zt−1 is also Gaussian. Its expectation is given by

E(Zt |Zt−1) = E(HX t + vt |Zt−1)
= HE(X t |Zt−1) +E(vt |Zt−1)
= H x̂−t +E(vt) vt is independent of Zt−1

= H x̂−t + 0= H x̂−t .

Its covariance matrix is given by

E
�

(Zt −H x̂−t)(Zt −H x̂−t)
⊤|Zt−1

�

=E
�

(HX t + vt −H x̂−t)(HX t + vt −H x̂−t)
⊤|Zt−1

�

=E
�

(H(X t − x̂−t) + vt)(H(X t − x̂−t) + vt)
⊤|Zt−1

�

=E
�

(H(X t − x̂−t) + vt)((X t − x̂−t)
⊤H⊤ + v⊤t)|Zt−1

�

=E
�

H(X t − x̂−t)(X t − x̂−t)
⊤H⊤) +H(X t − x̂−t)v

⊤
t + vt(X t − x̂−t)

⊤H⊤ + vt v
⊤
t)|Zt−1

�

=HE(X t − x̂−t)(X t − x̂−t)
⊤|Zt−1)H

⊤ +HE((X t − x̂−t)v
⊤
t |Zt−1) +E(vt(X t − x̂−t)

⊤|Zt−1)H
⊤+

E(vt v
⊤
t)|Zt−1)

=HP−t H⊤ +HE((X t − x̂−t)|Zt−1)E(v⊤t |Zt−1) +E(vt |Zt−1)E(X t − x̂−t)
⊤|Zt−1)H

⊤ + R

=HP−t H⊤ + 0+ 0+ R= HP−t H⊤ + R.

To summarize, we have

Zt |(X t ,Zt−1)∼Np(H x t , R),

X t |Zt−1 ∼Nn(x̂
−
t , P−t),

Zt |Zt−1 ∼Np(H x̂−t , HP−t HT + R).

Substituting these densities into (11) gives

fX t |Zt
(x t |zt) =

|HP−t HT + R|
1
2

(2π)
n
2 |P−t |

1
2 |R|

1
2

exp
�

−
1
2

�

(zt −H x t)
⊤R−1(zt −H x t) + (x t − x̂−t)

⊤(P−t)
−1(x t − x̂−t)−

(zt −H x̂−t)
⊤(HP−t H⊤ + R)−1(zt −H x̂−t)

�

�

(12)

It is not directly obvious that (12) is the density of a Gaussian distribution, since the three determinant terms
before the exponent would have to correspond to a single determinant term involving the actual covariance ma-
trix of X t |Zt . Similarly, the exponent should correspond to the standard Gaussian form, involving the mean and
covariance matrix of X t |Zt . However, [11] proves that this actually is the case, meaning that X t |Zt is Gaussian
distributed. Furthermore, its mean and covariance matrix are given by x̂ t and Pt respectively, which are defined

21

exactly through the state update equation and the covariance update equation, making use of the definition of the
Kalman gain. Again, by taking the expectation of this Gaussian distribution, we obtain x̂ t as our estimate of X t at
time t, which is in line with the a posteriori hidden state estimate in Section 2.2.2.

Hence, to conclude this section, we have shown that under the assumptions of Gaussian states and measure-
ments, together with independence between the states X t and noise variables wt and vt (the same holds for the
measurements Zt), both a priori and a posteriori state estimates x̂−t and x̂ t (respectively) are optimal estimators
for the state in the sense of maximal probability. From this, we can derive 95% confidence intervals for the hidden
state rather straightforward:

x̂ t i − 1.96
p

Pt ii ⩽ X t i ⩽ x̂ t i + 1.96
p

Pt ii , i ∈ {1, . . . , n}, (13)

where 1.96 corresponds to the 95% quantiles of the normal distribution. Note that this confidence interval is
conditioned on the current measurement history zt . If one conditions on the previous measurement history (i.e.
on zt−1) for the current hidden state X t , one would have

x̂−t i − 1.96
q

P−t ii ⩽ X t i ⩽ x̂−t i + 1.96
q

P−t ii , i ∈ {1, . . . , n}.

As mentioned before, under the assumptions of Gaussian distributed hidden states and measurements and
independence between the hidden states/measurements and the noise terms, the Kalman filter is the optimal
solution to the Wiener problem. The filtering process uses the measurement history at time t (zt) to give a MVUE
of the hidden state at time t, denoted by x̂ t . However, could we improve our estimates by incorporating the entire
measurement history zT ? This is a natural question that arises whenever we apply a so-called forward algorithm
as the Kalman filter. To answer this question, we move on to the next topic: Kalman smoothing.

2.3 Kalman Smoother

In the last section, we have introduced and derived the equations of the Kalman filter. We also have dived into
the probabilistic aspects and observed how the Kalman filter propagates the normally distributed (hidden) state
through time. As discussed at the end of Section 2.2, at time t ∈ {1, . . . , T}, we obtain the prior- and posterior
conditional distributions of the state, denoted by X t |Zt−1 and X t |Zt respectively. Since we only condition on the
data (measurements) that we have up to time t/the present (for the updated estimates/posterior distribution),
the Kalman filter is referred to as a forward algorithm (which explains why the Kalman filter is referred to as a
filtering problem) [2].

2.3.1 The Smoothing Equations

Suppose that we have performed Kalman filtering up to time T ∈ N, which is the time step at which we obtain our
final measurement. This implies that we have obtained a posteriori state- and its covariance matrix estimations,
denoted by x̂1, . . . , x̂T and P1, . . . , PT respectively. However, only our final estimates, at time T , are conditioned on
the entire measurement history zT . A natural question that arises if we could, again, update all estimates, but now
based on the entire measurement history. This is exactly the idea behind Kalman smoothing and an explicit pro-
cedure is given by the Rauch-Tung-Striebel (RTS) smoother9. Here, ’smoothing’ stands for estimation of a random
process in the past [2]. The Kalman smoother is a backward algorithm in the sense that it serves as a correction
on the estimates made by a forward algorithm, based on knowledge of the full data. In this section, we derive the
three equations which form the Kalman smoother.

Just as in Section 2.2.3, we are going to derive the Kalman smoother equations through a conditional density-
viewpoint. To this end, we are after the conditional density of X t |ZT (t ∈ {1, . . . , T}). Note we already know the
density of XT |ZT from the Kalman filter, since the estimate of XT is already conditioned on the entire measurement
history. The smoothed hidden state estimates and their covariance matrices are denoted by x̃ t and P̃t respectively.

Suppose that after the procedure of Kalman filtering, we have obtained our hidden state estimates and the co-
variance matrices x̂−1 , . . . , x̂−T , P−1 , . . . , P−T , x̂1, . . . , x̂T and P1, . . . , PT . Note that x̃T = x̂T and P̃T = PT as discussed

9In fact, the RTS smoother is one smoothing procedure for an equidistant time grid.

22

above. Then, for t ∈ {T − 1, . . . , 1} (note the reverse order, because we propagate backwards in time), we aim to
find x̃ t and P̃t .

Suppose that we have arrived at time t ∈ {1, . . . , T − 1} in the smoothing procedure. Hence, we know x̃ t+1
and P̃t+1, so X t+1|ZT ∼Nn

�

x̃ t+1, P̃t+1

�

.

Consider the joint conditional density (X t , X t+1)|Zt , which is given by

(X t , X t+1)|Zt ∼N2n

��

x̂ t
x̂−t+1

�

,
�

Pt Pt F
⊤

F Pt P−t+1

��

,

where the lower left- and upper right blocks of the covariance matrix follow from Cov(X t , X t+1|Zt) = Cov(X t , FX t+
Gut +wt |Zt) = Cov(X t , X t |Zt)F⊤+GCov(X t , ut |Zt)+Cov(X t , wt |Zt) = P⊤t +0+0= Pt F

⊤ since ut is constant and
wt and X t are independent and the property Cov(X t+1, X t |Zt) = Cov(X t , X t+1|Zt)⊤.

Since the hidden state is assumed to have the Markov property (Definition 1), X t |X t+1 is independent of all future
measurements [14]. Hence, we have

fX t |X t+1,Zt
= fX t |X t+1,ZT

.

From this, together with Lemma 1, we find the following conditional distribution of X t :

X t |(X t+1 = x t+1,ZT)∼Nn

�

x̂ t + St(x t+1 − x̂−t+1), Pt − St P
−
t+1S⊤t
�

, (14)

where St = Pt F
⊤(P−t+1)

−1 is called the smoothing gain.

By the definition of conditional probability, we have

fX t ,X t+1|ZT
= fX t |X t+1,ZT

fX t+1|ZT
.

The first density in the RHS is computed in the previous step and the second one is assumed to be already known.
Hence, by Lemma 1, we obtain

X t , X t+1|ZT ∼N2n

�

�

x̂ t + St(x̃ t+1 − x̂−t+1)
x̃ t+1

�

,

�

St P̃t+1S⊤t + Pt − St P
−
t+1ST

t St P̃t+1

P̃t+1S⊤t P̃t+1

��

,

meaning, from Lemma 1, that the marginal distribution X t |ZT is given by

X t |ZT ∼Nn

�

x̂ t + St(x̃ t+1 − x̂−t+1), Pt + St(P̃t+1 − P−t+1)S
⊤
t

�

.

From this, we obtain the following equations for the Kalman smoother:

Smoothing gain St = Pt F
⊤(P−t+1)

−1

State correction x̃ t = x̂ t + St(x̃ t+1 − x̂−t+1)

Covariance correction P̃t = Pt + St(P̃t+1 − P−t+1)S
⊤
t

Table 4: The three equations which form the Kalman smoother

Similarly as for the Kalman filter, we can derive the following 95% confidence interval with the smoothed estimate
i.e. conditioned on zT :

x̃ t i − 1.96
q

P̃t ii ⩽ X t i ⩽ x̃ t i + 1.96
q

P̃t ii , i ∈ {1, . . . , n}. (15)

23

2.3.2 The Smoothed Autocovariance

The Kalman smoother gives us backward recursions to obtain the smoothed estimates x̃ t and its conditional co-
variance P̃t . During the derivation of the EMKF algorithm in Section 2.5, we also need the (smoothed) 1-lag
autocovariance Ṽt,t−1 = Cov(X t , X t−1|ZT). The derivation of the following recursions for Ṽt,t−1 can be found in
[16]. The result is formulated by the following backward recursion for Ṽt,t−1. For t ∈ {T − 1, . . . , 1}, we have

ṼT,T−1 = (In − KT H)F PT−1,

Ṽt,t−1 = PtS
⊤
t−1 + St(Ṽt+1,t − F Pt)S

⊤
t−1

(16)

Combining Kalman filtering with the smoothing procedure as described here usually gives us accurate estimates
of the hidden states x t . However, the output of the Kalman filter/smoother heavily depends on the parameter set
{F, G, H,Q, R}. Although these matrices are usually not difficult to derive in physical processes, in other fields
(e.g. finance), these derivations are not trivial at all. Usually, whenever we know the realizations of the hidden
states, we could easily estimate (e.g. by maximum likelihood) the parameters and vice versa. However, when
knowledge of both is lacking, the situation becomes sort of a ’chicken and egg problem’. A typical approach
to maximum likelihood estimation problems involving missing data (e.g. the hidden state realizations) is the
expectation-maximization algorithm, which we now consider.

2.4 Expectation-Maximization

As discussed in Section 2.3, the Kalman filter/smoother itself is not always enough to infer about the hidden state.
If the dynamics of the underlying system are not explicitly known, we do not know e.g. F and H explicitly. Further-
more, even if they are, the uncertainty of both the process and the measurements, expressed in R and Q, are also
generally hard to know beforehand. One possible solution, which is of interest in this thesis, is to use the concept
of expectation-maximization to not only infer about the hidden states, but about the dynamics simultaneously. In
this section, we dive into the theory about the expectation-maximization algorithm and discuss its convergence
properties.

The expectation-maximization algorithm (EM algorithm) is one of the most widely used algorithms in statistic-
s/machine learning whenever the data is considered to be incomplete [4]. One popular example is the one about
a two-component mixture model [7]. Here, and in many other cases, maximum likelihood (ML) estimation is
hard to perform based on the observed data itself e.g. because its log-likelihood is hard to optimize analytically.
Incomplete data may mean that the data is literally incomplete (e.g. there are some missing observations) or
that it is assumed that the observed data is influenced by some process that is unobservable. It is assumed that
whenever this latent data would be known (observable), maximum likelihood estimation is more straightforward
to execute. In the Kalman filter setting, the observed data are the measurements {zt}Tt=1, while the latent data are
the (realizations of the) hidden states {x t}Tt=0.

[16] proposes the Newton-Rapshon method next to the EM algorithm for maximum likelihood estimation in the
Kalman filter setting. Newton-Rapshon is popular because its convergence rate is rather large, especially com-
pared to the EM algorithm. However, the computational complexity of Newton-Rapshon increases rapidly with
the number of parameters to-be estimated, because it requires computation and inversion of the Hessian of the
log-likelihood of the observed data for each iteration. On the other hand, the computations carried out by the EM
algorithm are rather simple, compared to inversion of a large matrix. Therefore, in the Kalman filter setting, the
EM algorithm is often preferred, but it depends on the dimensions of the hidden state and measurements.

In line with earlier notation, we denote the observed data by Z, while the latent data is denoted by X. Their
realizations are denoted by z and x respectively. The complete data is the collection of the observed- and latent
data, given by T = Z∪ X. Furthermore, we assume that the density of the complete data depends on a collection
of parameters, denoted by θ 10. As before, we denote the density of random variable X by fX . Hence, the density

10The set of parameters defining the distributions of Z and X are also contained in θ .

24

of the complete data is given by fT(t;θ). By the definition of conditional probability, we have

fX|Z;θ =
fZ,X;θ

fZ;θ
=

fT;θ

fZ;θ
⇔

fZ;θ =
fT;θ

fX|Z;θ
⇔

L(θ |z) =
L(θ |t)

L(θ |(x|z))
, (17)

where L(·) denotes the likelihood function. By taking the natural logarithm of (17), we get an equation in terms
of log-likelihoods given by

ℓ(θ ;Z) = ℓ0(θ ;T)− ℓ1(θ ;X|Z)., (18)

where the subscripts on the RHS are meant to distinguish different log-likelihoods. Note that the LHS of (18)
is independent of the missing data X, while the RHS does depend on the missing data. Taking the conditional
expectation of (18) w.r.t. the conditional density of T|Z with parameter set θ ′ yields

ℓ(θ ;Z) = E(ℓ0(θ ;T)|Z,θ ′)−E(ℓ1(θ ;X|Z)|Z,θ ′). (19)

Let us consider (19) in some more detail. Note that taking the expectation w.r.t. T|Z is equivalent to taking the
expectation w.r.t. X|Z. Hence, since the LHS is independent of the missing data, it is treated as a constant in the
considered expectation. Hence, taking the expectation w.r.t X|Z yields the same likelihood again. Note that the
first term in the RHS of (19) is defined as

E(ℓ0(θ ;T)|Z,θ ′) =

∫

x∈X
log fT(z,x;θ) fX|Z(x|z;θ ′)dx. (20)

Since Z is observed and hence, known, θ ′ is assumed to be known and x is marginalized out, the expected log-
likelihood (20) becomes a function of θ .

Note that by the assumptions of EM, maximizing ℓ0(θ ;T) should be more straightforward than maximizing ℓ(θ ;Z).
However, we need the actual realizations of X to be able to maximize ℓ0. Since the data is assumed to be missing,
we need an alternative. This is exactly where E(ℓ0(θ ;T)|Z,θ ′), or the expected log-likelihood of the complete data,
becomes relevant. If we denote the value for θ which maximizes the expected log-likelihood by θ ∗, then it can be
shown that ℓ0(θ ∗;Z)⩾ ℓ0(θ ′;Z). This is justified by Jensen’s inequality [7].

Lemma 4 (Jensen’s inequality). Let Y be a random variable on the (possibly infinite) interval (a, b), a, b ∈ R and
let the function g be differentiable and convex on (a, b). If E(Y) and E(g(Y)) both exist, then

E(g(Y))⩾ g(E(Y)).

Proof. Since g is convex, for any y0 ∈ [a, b], we have

g(y)⩾ g(y0) + (y − y0)g
′(y0) ∀y ∈ (a, b).

As Y ∈ (a, b), E(Y) ∈ (a, b) as well. Hence, by taking y = Y and y0 = E(Y), we obtain

g(Y)⩾ g(E(Y)) + (Y −E(Y))g ′(E(Y)).

By taking the expectation (w.r.t. Y) of the above, we obtain

E(g(Y))⩾ g(E(Y)) + (E(Y)−E(Y))g ′(E(Y)) = g(E(Y)).

An important consequence of Jensen’s inequality is Theorem 1.

25

Theorem 1. Let Y be a random variable with density fY defined by a set of parameters θ . Moreover, let ϕ be the
true parameter. Then, if we take the expectation of log(fY (y)) w.r.t. the density of Y defined by ϕ, we have

E(log(fY (y;ϕ)))⩾ E(log(fY (y;θ))).

Proof. We compute

E(log(fY (y;ϕ)))−E(log(fY (y;θ))) = E
�

− log
�

fY (y;θ)
fY (y;ϕ)

��

.

Since − log y is a convex function, we can apply Jensen’s inequality with g(y) = − log y and Ỹ = fY (y;θ)
fY (y;ϕ) :

E
�

− log
�

fY (y;θ)
fY (y;ϕ)

��

⩾ − log
�

E
�

fY (y;θ)
fY (y;ϕ)

��

= − log

�

∫

y∈SY

fY (y;θ)
fY (y;ϕ)

fY (y;ϕ)dy

�

= − log

�

∫

y∈SY

fY (y;θ)dy

�

= − log(1) = 0, fY is a pdf and the integral is over the sample space of Y .

where Sy denotes the sample space of Y . Hence, we obtain

E(log(fY (y;ϕ)))⩾ E(log(fY (y;θ))).

Let θ ∗ maximize E(ℓ0(θ ;T)|Z,θ ′) i.e.

θ ∗ = argmax
θ∈Θ

{E(ℓ0(θ ;T)|Z,θ ′)},

where Θ is the parameter space of θ . This space depends on the set of parameters one wishes to estimate. Also,
from (18) we have

ℓ(θ ′;Z) = E(ℓ0(θ
′;T)|Z,θ ′)−E(ℓ1(θ

′;X|Z)|Z,θ ′),
ℓ(θ ∗;Z) = E(ℓ0(θ

∗;T)|Z,θ ′)−E(ℓ1(θ
∗;X|Z)|Z,θ ′).

Theorem 1 implies

E(ℓ1(θ
′;X|Z)|Z,θ ′)−E(ℓ1(θ

∗;X|Z)|Z,θ ′)⩾ 0,

since θ ′ is considered to be the true parameter here. This means that

ℓ(θ ∗;Z)− ℓ(θ ′;Z)⩾ E(ℓ0(θ
∗;T)|Z,θ ′)−E(ℓ0(θ

′;T)|Z,θ ′). (21)

Note that the RHS of (21) must be nonnegative, since θ ∗ maximizes E(ℓ0(θ ;T)|Z,θ ′). Hence, we obtain

ℓ(θ ∗;Z)⩾ ℓ(θ ′;Z).

The above result is actually crucial for the EM algorithm to converge: it tells us that if we alternate between com-
puting the expected log-likelihood of the complete data (20) and maximizing this expectation, the log-likelihood
of the observed data does not decrease at any time. It also implicitly tells us why we can maximize ℓ0 instead of
ℓ.

We now state the EM algorithm formally. We first initialize the parameter setting θ̂ (0). Then, at iteration i ∈ N,
we perform two steps:

26

1. Expectation step (E-step): Compute

QEM

�

θ , θ̂ (i)
�

= E(ℓ0

�

θ ;T)|Z, θ̂ (i)
�

.

2. Maximization step (M-step): Compute

θ̂ (i+1) = argmax
θ∈Θ

�

QEM

�

θ , θ̂ (i)
�	

.

Note the subscript ’EM’, which is used to distinghuish the function QEM from the process noise covariance matrix Q.
We alternate between the E-step and the M-step until some (pre-defined) convergence criterion is met. Whenever
that occurs, we terminate the algorithm and we obtain the output θ̂ = θ̂ (i

∗), where i∗ is the iteration number when
convergence is achieved.

The EM algorithm is visualized in Figure 4.

Figure 4: A visualization of several iterations of the EM algorithm. The E-step corresponds to finding the
function QEM (here, denoted by g) which serves as a lower bound for the objective ℓ(θ ; Z). In the M-step, we
maximize this lower bound in θ to update our estimate for θ . The figure is retrieved from people.duke.edu.

Typical stopping criteria for the EM algorithm are:

1. The increase in log-likelihood of the observed data is smaller than a pre-defined threshold i.e. ℓ(θ̂ (i+1);Z)−
ℓ(θ̂ (i);Z)< ε, ε > 0.

2. The new MLE θ̂ (i+1) is not far enough from the current MLE θ̂ (i) i.e. ||θ̂ (i+1)− θ̂ (i)||p < ε. Usually, p ∈ {1,2}.
In this thesis, we take p = 1.

We conclude this section by stating that the EM algorithm yields an increase the log-likelihood of the observed data,
ℓ(θ ;Z) after each iteration. However, convergence to the global maximum of ℓ(θ ;Z) is not guaranteed. The EM
algorithm can yield parameter estimates which in fact corresponds to a local maximum of the likelihood function,
or a saddle point. Generally, the EM algorithm guarantees convergence to a stationary point of the log-likelihood

27

https://people.duke.edu/~ccc14/sta-663/EMAlgorithm.html

of the observed data. Therefore, the algorithm is often executed multiple times with different initializations for
the parameters. The parameters which come from the run which give the largest log-likelihood of the observed
data could then be regarded as maximum likelihood estimates for the true parameters. In Theorem 2, we consider
a method to check whether the output of the EM algorithm to the Kalman filter correspond to a maximum of the
likelihood function.

2.5 Learning the Kalman Filter Parameters with an EM Approach: the EMKF algorithm

This section is devoted to tackle the problem of ignorance about the parameters of a Kalman filter and the real-
izations of the hidden states. We ignore the input term in the dynamics of the Wiener problem in the derivations,
meaning that ut = 0 ∀t ∈ {0, . . . , T}. The parameter set is given by θ = {F,Q, H, R}, assuming that the initial
condition x0 is fixed. If not, we model X0, as before, as a Gaussian distribution: X0 ∼ Nn(ξ,Λ). x̂0 is then taken
as the mean of this distribution i.e. x̂0 = ξ. In this case, the parameter set becomes θ = {F,Q, H, R,ξ,Λ}. The
resulting algorithm is the main algorithm of this thesis and is referred to as Expectation-Maximization for the
Kalman filter (EMKF) algorithm.

Recall the dynamics of the system given by (9). Since X t and Zt are considered to be Gaussian distributed random
variables, we can write

X t |(X t−1 = x t−1)∼Nn(F x t−1,Q),
Zt |(X t = x t)∼Np(H x t , R).

Therefore, by using the definition of the multivariate normal distribution, we have

fX0
(x0) =

1
(2π)n/2|Λ|1/2

exp
�

−
1
2
(x0 − ξ)⊤Λ−1(x0 − ξ)

�

,

fX t |X t−1
(x t |x t−1) =

1
(2π)n/2|Q|1/2

exp
�

−
1
2
(x t − F x t−1)

⊤Q−1(x t − F x t−1)
�

,

fZt |X t
(zt |x t) =

1
(2π)p/2|R|1/2

exp
�

−
1
2
(zt −H x t)

⊤R−1(zt −H x t)
�

.

Define X= (X0, . . . , XT) and Z= (Z1, . . . , ZT) = ZT , where ZT is defined in Section 2.2.3. Their realizations, (z,x)
are referred to as the complete data. Since z are the measurements for the Kalman filter (i.e. what is observed), z
forms the observed data. Hence, intuitively, x is the latent data in our setting, which agrees with the hidden state
methodology.

2.5.1 The Expected Log-Likelihood of the Complete Data

Consider the joint density of (Z,X). By the definition of conditional probablity, we have

fZ,X(z,x) = fZ|X(z|x) fX(x).

By the Markov property of the system, we have

fZ|X(z|x) =
T
∏

t=1

fZt |X t
(zt |x t),

fX(x) = fX0
(x0)

T
∏

t=1

fX t |X t−1
(x t |x t−1).

Hence, the joint density of (Z,X), as the likelihood of the complete data, is given by

fZ,X(z,x) = L(θ |z,x) =
T
∏

t=1

fZt |X t
(zt |x t) fX0

(x0)
T
∏

t=1

fX t |X t−1
(x t |x t−1).

28

From L(θ |z,x), we compute the log-likelihood ℓ0(θ |z,x), where the subscript is used to be consistent with the
notation in Section 2.4. We compute

ℓ0(θ |z,x) = logL(θ |z,x)

=
T
∑

t=1

log fZt |X t
(zt |x t) + log fX0

(x0) +
T
∑

t=1

log fX t |X t−1
(x t |x t−1)

=
T
∑

t=1

log
�

1
(2π)p/2|R|1/2

exp
�

−
1
2
(zt −H x t)

⊤R−1(zt −H x t)
��

+ log
�

1
(2π)n/2|Λ|1/2

·

exp
�

−
1
2
(x0 − ξ)⊤Λ−1(x0 − ξ)

��

+
T
∑

t=1

log
�

1
(2π)n/2|Q|1/2

·

exp
�

−
1
2
(x t − F x t−1)

⊤Q−1(x t − F x t−1)
��

=
T
∑

t=1

�

log
�

1
(2π)p/2|R|1/2

�

−
1
2
(zt −H x t)

⊤R−1(zt −H x t)
�

+ log
�

1
(2π)n/2|Λ|1/2

�

−

1
2
(x0 − ξ)⊤Λ−1(x0 − ξ) +

T
∑

t=1

�

log
�

1
(2π)n/2|Q|1/2

�

−
1
2
(x t − F x t−1)

⊤Q−1(x t − F x t−1)
�

=−
T p
2

log(2π)−
T
2

log |R| −
1
2

T
∑

t=1

(zt −H x t)
⊤R−1(zt −H x t)−

n
2

log(2π)−
1
2

log |Λ|−

1
2
(x0 − ξ)⊤Λ−1(x0 − ξ)−

T n
2

log(2π)−
T
2

log |Q| −
1
2

T
∑

t=1

(x t − F x t−1)
⊤Q−1(x t − F x t−1)

=−
T (n+ p) + n

2
log(2π)−

T
2

log |R| −
1
2

log |Λ| −
T
2

log |Q|−

1
2

T
∑

t=1

(zt −H x t)
⊤R−1(zt −H x t)−

1
2
(x0 − ξ)⊤Λ−1(x0 − ξ)−

1
2

T
∑

t=1

(x t − F x t−1)
⊤Q−1(x t − F x t−1)

=−
T (n+ p) + n

2
log(2π)−

T
2

log |R| −
1
2

log |Λ| −
T
2

log |Q| −
1
2

T
∑

t=1

�

z⊤t R−1zt − z⊤R−1H x t−

x⊤t H⊤R−1zt + x⊤t H⊤R−1H x t

�

−
1
2

�

x⊤0 Λ
−1 x0 − x⊤0 Λ

−1ξ− ξ⊤Λ−1 x0 + ξ
⊤Λ−1ξ
�

−

1
2

T
∑

t=1

(x⊤t Q−1 x t − x⊤t Q−1F x t−1 − x⊤t−1F⊤Q−1 x t − x⊤t−1F⊤Q−1F x t−1

�

. Q−1 is symmetric

=−
T (n+ p) + n

2
log(2π)−

T
2

log |R| −
1
2

log |Λ| −
T
2

log |Q| −
1
2

T
∑

t=1

�

z⊤t R−1zt − 2z⊤R−1H x t+

x⊤t H⊤R−1H x t

�

−
1
2

�

x⊤0 Λ
−1 x0 − 2x⊤0 Λ

−1ξ+ ξ⊤Λ−1ξ
�

−
1
2

T
∑

t=1

(x⊤t Q−1 x t − 2x⊤t Q−1F x t−1 + x⊤t−1F⊤Q−1F x t−1

�

.

Scalars are symmetric

29

Hence, the log-likelihood of the parameter set θ , given the complete data, is given by

ℓ0(θ |z,x) = −
T (n+ p) + n

2
log(2π)−

T
2

log |R|−
1
2

log |Λ|−
T
2

log |Q|−
1
2

T
∑

t=1

�

z⊤t R−1zt−2z⊤R−1H x t+x⊤t H⊤R−1H x t

�

−

1
2

�

x⊤0 Λ
−1 x0 − 2x⊤0 Λ

−1ξ+ ξ⊤Λ−1ξ
�

−
1
2

T
∑

t=1

(x⊤t Q−1 x t − 2x⊤t Q−1F x t−1 + x⊤t−1F⊤Q−1F x t−1

�

Recall from Section 2.4 that in the E-step of the EM algorithm, we aim to find QEM

�

θ , θ̂ (i)
�

, which is defined by
(20) i.e. the expectation of the log-likelihood of the complete data, conditioned on the observed data and current
parameter estimates θ̂ (i) =

�

F̂ (i), Q̂(i), Ĥ(i), R̂(i), ξ̂(i), Λ̂(i)
	

. Hence, we aim to compute

QEM

�

θ , θ̂ (i)
�

= E
�

ℓ0(θ |Z,X)|Z= z, θ̂ (i)
�

.

Let x̃ (i)t and P̃(i)t be the output of the Kalman smoother, given parameter set θ̂ (i). Note that since we are taking an
expectation of the log-likelihood, the realizations z and x are replaced by the corresponding random variables Z
and X. By conditioning on Z = z, the linearity of the expectation operator and its invariance under the transpose
operator, we can write

QEM

�

θ , θ̂ (i)
�

=E
�

ℓ0(θ |Z,X)|Z= z, θ̂ (i)
�

=−
T (n+ p) + n

2
log(2π)−

T
2

log |R| −
1
2

log |Λ| −
T
2

log |Q| −
1
2

T
∑

t=1

�

z⊤t R−1zt−

2z⊤t R−1HE
�

X t |Z= z, ˆ̂
θ (j)
�

+E
�

X⊤t H⊤R−1HX t |Z= z, θ̂ (j)
��

−
1
2

�

E
�

X⊤0 Λ
−1X0|Z= z, θ̂ (j)

�

−

2E
�

X0|Z= z, θ̂ (j)
�⊤
Λ−1ξ+ ξ⊤Λ−1ξ

�

−
1
2

T
∑

t=1

�

E
�

X⊤t Q−1X t |Z= z, θ̂ (j)
�

− 2E
�

X⊤t Q−1FX t−1|Z= z, θ̂ (j)
�

+

E
�

X⊤t−1F⊤Q−1FX t−1|Z= z, θ̂ (j)
��

.

Note that from the results of Section 2.3, we have E
�

X t |Z= z, θ̂ (i)
�

= x̃ (i)t for t ∈ {1, . . . , T}. For t = 0, we have

E
�

X0|Z = z, θ̂ (i)
�

= ξ(i). Similarly, we have Var
�

X t |Z = z, θ̂ (i)
�

= P̃(i)t for t ∈ {1, . . . , T} and Var
�

X0|Z = z, θ̂ (i)
�

=
Λ(i). Also, from Lemma 2, we have

– E
�

X⊤t AX t |Z= z, θ̂ (i)
�

= E
�

X t |Z= z, θ̂ (i)
�⊤

AE
�

X t |Z= z, θ̂ (i)
�

+ Tr
�

AVar
�

X t |Z= z, θ̂ (i)
��

.

– E
�

X⊤t AX t−1|Z= z, θ̂ (i)
�

= E
�

X t |Z= z, θ̂ (i)
�⊤

AE
�

X t−1|Z= z, θ̂ (i)
�

+ Tr
�

ACov
�

X t−1, X t |Z= z, θ̂ (i)
��

.

Note that from (16), we have Cov
�

X t , X t−1|Z= z, θ̂ (i)
�

= Ṽ (i)t,t−1 and hence, Cov
�

X t−1, X t |Z= z, θ̂ (i)
�

=
�

Ṽ (i)t,t−1

�⊤
.

For t ∈ {1, . . . , T}, we obtain

– E
�

X⊤t AX t |Z= z, θ̂ (i)
�

=
�

x̃ (i)t

�⊤
Ax̃ (i)t + Tr
�

AP̃(i)t

�

.

– E
�

X⊤t AX t−1|Z= z, θ̂ (i)
�

=
�

x̃ (i)t

�⊤
Ax̃ (i)t−1 + Tr
�

A
�

Ṽ (i)t,t−1

�⊤�

.

Similarly, for t = 0, we have E
�

X⊤0 AX0|Z = z, θ̂ (i)
�

=
�

ξ(i)
�⊤

Aξ(i) + Tr (AΛ(i)). However, note that E
�

X0|Z =
z, θ̂ (i)
�

= x̃ (i)0 and Var
�

X0|Z= z, θ̂ (i)
�

= P̃(i)0 , meaning that we obtain

E
�

X⊤0 AX0|Z= z, θ̂ (i)
�

=
�

x̃ (i)0

�⊤
Ax̃ (i)0 + Tr
�

AP̃(i)0

�

.

30

Hence, the function QEM

�

θ , θ̂ (i)
�

is given by

QEM

�

θ , θ̂ (i)
�

=−
T (n+ p) + n

2
log(2π)−

T
2

log |R| −
1
2

log |Λ| −
T
2

log |Q| −
1
2

T
∑

t=1

�

z⊤t R−1zt − 2z⊤t R−1H x̃ (i)t +

�

x̃ (i)t

�⊤
H⊤R−1H x̃ (i)t + Tr

�

H⊤R−1HP̃(i)t

�

�

−
1
2

�

�

x̃ (i)0

�⊤
Λ−1 x̃ (i)0 + Tr
�

Λ−1 P̃(i)0

�

− 2
�

x̃ (i)0

�⊤
Λ−1ξ+

ξ⊤Λ−1ξ

�

−
1
2

T
∑

t=1

�

�

x̃ (i)t

�⊤
Q−1 x̃ (i)t + Tr
�

Q−1 P̃(i)t

�

− 2
�

�

x̃ (i)t

�⊤
Q−1F x̃ (i)t−1 + Tr
�

Q−1F
�

Ṽ (i)t,t−1

�⊤�
�

+

�

x̃ (i)t−1

�⊤
F⊤Q−1F x̃ (i)t−1 + Tr

�

F⊤Q−1F Ṽ (i)t,t−1

�

��

.

(22)

Hence, for the EM algorithm for the Kalman filter/smoother, the E-step is to compute the smoothed hidden state-
and its covariance matrix estimates x̃ (i)t , P̃(i)t and the lag-1 autocovariance estimates Ṽ (i)t,t−1 (t ∈ {1, . . . , T}), given

the current parameter set θ̂ (i), which are used to compute QEM as in (22).

2.5.2 The Log-Likelihood of the Measurements

Recall that the EM algorithm guarantees convergence to a (local) maximum of the log-likelihood of the observed
data. Hence, the log-likelihood of the measurements (observed data) is used to determine whether convergence
of the EM algorithm has been achieved (stopping criterion number 1 at the end of Section 2.4). This means that
after each iteration of the EMKF algorithm, we have to evaluate the log-likelihood of the measurements in order
to determine whether the increase in log-likelihood small enough. We now derive this log-likelihood.

The likelihood of the observed data is denoted by L(θ |z) = fZ(z). We factorize this likelihood as

fZ(z) = fZ1,...,ZT
(z1, . . . , zT)

= fZ1
(z1)

T
∏

t=2

fZt |Zt−1
(zt |zt−1). (23)

Note that in Section 2.2.3, we already established that Zt |Zt−1 ∼ Np(H x̂−t , HP−t H⊤ + R). This also holds for Z1,
since Z0 = ; (and hence, the conditional probability becomes a marginal probability). Substituting this result into
(23) gives us, similar as before, the log-likelihood of the observed data z:

ℓ(θ |z) = −
T p
2

log(2π)−
T
2

log
�

�HP−t H⊤ + R
�

�−
1
2

T
∑

t=1

�

zt −H x̂−t
�⊤ �

HP−t H⊤ + R
�−1 �

zt −H x̂−t
�

. (24)

Hence, by evaluating the log-likelihood of the measurements for current parameter estimates θ (i) during each iter-
ation, we can moderate how the log-likelihood increases throughout the EMKF algorithm. Furthermore, by com-
puting the increase in log-likelihood after each iteration (i.e. ℓ

�

θ (i)|z
�

− ℓ
�

θ̂ (i−1)|z
�

), we can determine whether
the algorithm has converged to a (local) maxima of the log-likelihood of the measurements.

2.5.3 The Parameter Update Equations

The M-step is about updating θ = {F,Q, H, R,ξ,Λ} such that QEM is maximized. Hence, we define

θ (i+1) = argmax
θ∈Θ

QEM

�

θ , θ̂ (i)
�

,

where Θ is, as defined in Section 2.4, the parameter space for θ 11. This task obviously means that we have to

11In the Kalman filter/smoother setting, this space will be the Cartesian product of all vector/matrix spaces of the KF parameters. Due to the
condition of symmetry and positive definiteness for the covariance matrices, we refrain from stating this space explicitly due to its complexity

31

solve the equations

∂QEM

∂ F

�

θ , θ̂ (i)
�

= 0 for F,
∂QEM

∂Q

�

θ , θ̂ (i)
�

= 0 for Q,
∂QEM

∂ H

�

θ , θ̂ (i)
�

= 0 for H,

∂QEM

∂ R

�

θ , θ̂ (i)
�

= 0 for R,
∂QEM

∂ ξ

�

θ , θ̂ (i)
�

= 0 for ξ and
∂QEM

∂Λ

�

θ , θ̂ (i)
�

= 0 for Λ.

Let us start with the first equation. Using Lemma A.1, we compute

∂QEM

∂ F

�

θ , θ̂ (i)
�

=
∂

∂ F

�

−
1
2

T
∑

t=1

�

−2
�

�

x̃ (i)t

�⊤
Q−1F x̃ (i)t−1 + Tr
�

Q−1F
�

Ṽ (i)t,t−1

�⊤�
�

+
�

x̃ (i)t−1

�⊤
F⊤Q−1F x̃ (i)t−1 + Tr

�

F⊤Q−1F Ṽ (i)t,t−1

�

��

=−
1
2

T
∑

t=1

�

−2
�

Q−1 x̃ (i)t

�

x̃ (i)t−1

�⊤
+Q−1Ṽ (i)t,t−1

�

+ 2Q−1F x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ 2Q−1F P̃(i)t−1

�

=
T
∑

t=1

�

�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

− F
�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ P̃(i)t−1

�

�

. Q−1 is invertible

Setting
∂QEM

∂ F

�

θ , θ̂ (i)
�

= 0 and solving for F gives

T
∑

t=1

�

�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

− F
�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
− P̃(i)t−1

�

�

= 0⇔

F
T
∑

t=1

�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ P̃(i)t−1

�

=
T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

⇔

F
T
∑

t=1

�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ P̃(i)t−1

�

=
T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

⇔

F =
T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

�

T
∑

t=1

�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ P̃(i)t−1

�

�−1

,

where the inverse on the last line always exists, since x̃ (i)t−1

�

x̃ (i)t−1

�⊤
is positive semi-definite and P̃(i)t−1 is positive

definite, hence their sum is positive definite, which makes it invertible. The first observation follows from the fact
that for any y ∈ Rn \ {0}, we have

y⊤ x̃ (i)t−1

�

x̃ (i)t−1

�⊤
y =
�
�

x̃ (i)t−1

�⊤
y
�⊤ �

x̃ (i)t−1

�⊤
y =
�

�

�

�

�

�

�

x̃ (i)t−1

�⊤
y
�

�

�

�

�

�

2

⩾ 0,

where || · || denotes a norm. Note that it also symmetric, which justifies the transposition on the third line. Also,

any outer product has rank 1, x̃ (i)t−1

�

x̃ (i)t−1

�⊤
is singular for n> 1, meaning that the inequality above is not strict.

Hence, the update equation for F̂ is given by

F̂ (i+1) =
T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

�

T
∑

t=1

�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ P̃(i)t−1

�

�−1

Let

A(i)1 =
T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

and A(i)2 =
T
∑

t=1

�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ P̃(i)t−1

�

.

Then, we can rewrite the update equation for F̂ as

F̂ (i+1) = A(i)1

�

A(i)2

�−1
.

32

We now move on to the update equation for Q̂. Since the expected log-likelihood in (22) mostly involves the
factor Q−1, we chose to go with the typical approach (in ML estimation for covariance matrices) to differentiate
the objective function w.r.t. Q−1 rather than Q. Using Lemma A.1, we compute

∂QEM

∂Q−1

�

θ , θ̂ (i)
�

=
∂

∂Q−1

�

−
T
2

log |Q| −
1
2

T
∑

t=1

�

�

x̃ (i)t

�⊤
Q−1 x̃ (i)t + Tr
�

Q−1 P̃(i)t

�

− 2
�

�

x̃ (i)t

�⊤
Q−1F x̃ (i)t−1+

Tr
�

Q−1F
�

Ṽ (i)t,t−1

�⊤�
�

+
�

x̃ (i)t−1

�⊤
F⊤Q−1F x̃ (i)t−1 + Tr

�

F⊤Q−1F P̃(i)t−1

�

��

=
T
2

Q⊤ −
1
2

T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t − 2
�

x̃ (i)t

�

x̃ (i)t−1

�⊤
F⊤ + Ṽ (i)t,t−1F⊤
�

+ F x̃ (i)t−1

�

x̃ (i)t−1

�⊤
F⊤ + F P̃(i)t−1F⊤
�

=
T
2

Q⊤ −
1
2

T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t − 2
�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

F⊤ + F
�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ P̃(i)t−1

�

F⊤
�

=
T
2

Q⊤ −
1
2

� T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t

�

− 2A(i)1 F⊤ + FA(i)2 F⊤
�

.

Setting
∂QEM

∂Q−1

�

θ , θ̂ (i)
�

= 0 and solving for Q gives

T
2

Q⊤ −
1
2

� T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t

�

− 2A(i)1 F⊤ + FA(i)2 F⊤
�

= 0⇔

Q⊤ =
1
T

� T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t

�

− 2A(i)1 F⊤ + FA(i)2 F⊤
�

⇔

Q =
1
T

� T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t

�

− 2F
�

A(i)1

�⊤
+ FA(i)2 F⊤
�

. A(i)2 is symmetric

By using our current estimate for F
�

F̂ (i+1)
�

, we obtain the following update equation for Q̂:

Q̂(i+1) =
1
T

� T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t

�

− 2F̂ (i+1)
�

A(i)1

�⊤
+ F̂ (i+1)A(i)2

�

F̂ (i+1)
�⊤
�

.

By plugging in the definition of F̂ (i+1) and defining

A(i)3 =
T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t

�

,

we obtain

Q̂(i+1) =
1
T

�

A(i)3 − 2A(i)1

�

A(i)2

�−1 �

A(i)1

�⊤
+ A(i)1

�

A(i)2

�−1
A(i)2

�

A(i)1

�

A(i)2

�−1�⊤
�

=
1
T

�

A(i)3 − 2A(i)1

�

A(i)2

�−1 �

A(i)1

�⊤
+ A(i)1

�

A(i)2

�−1
A(i)2

�

A(i)2

�−1 �

A(i)1

�⊤
�

=
1
T

�

A(i)3 − A(i)1

�

A(i)2

�−1 �

A(i)1

�⊤
�

(25)

=
1
T

�

A(i)3 − F̂ (i+1)
�

A(i)1

�⊤
�

.

Hence, the update equation for Q̂ is given by

Q̂(i+1) =
1
T

�

A(i)3 − F̂ (i+1)
�

A(i)1

�⊤
�

.

33

Note that this estimate is symmetric, which can be observed from (25) (A(i)3 is symmetric). It is less straightforward
to show that Q̂i+1 is positive definite, which lies beyond the scope of this thesis.

Next, we derive the update equation for Ĥ. In a similar approach as for the partial derivative w.r.t. F , we compute

∂QEM

∂ H

�

θ , θ̂ (i)
�

=
T
∑

t=1

�

zt

�

x̃ (i)t

�⊤
�

−HA(i)3 .

Setting
∂QEM

∂ H

�

θ , θ̂ (i)
�

= 0 and solving for H gives, similarly for F̂

H = A(i)4

�

A(i)3

�−1
,

where A(i)4 is given by

A(i)4 =
T
∑

t=1

zt

�

x̃ (i)t

�⊤
.

Note that the inverse of A(i)3 always exists by a similar reasoning as for A(i)2 . Hence, the update equation for Ĥ is
given by

Ĥ(i+1) = A(i)4

�

A(i)3

�−1
.

Next up is the update equation for R̂. As similar to the derivation of Q̂(i+1), we compute

∂QEM

∂ R−1

�

θ , θ̂ (i)
�

=
T
2

R⊤ −
1
2

T
∑

t=1

ztz
⊤
t − 2A(i)4 H⊤ +HA(i)3 H⊤.

Setting
∂QEM

∂ R−1

�

θ , θ̂ (i)
�

= 0 and solving for R gives, similarly for Q̂,

R=
1
T

�

A5 − A(i)4

�

A(i)3

�−1 �

A(i)4

�⊤�

=
1
T

�

A5 − Ĥ(i+1)
�

A(i)4

�⊤�

,

where A5 is given by

A5 =
T
∑

t=1

ztz
⊤
t .

Note that A5 is only dependent on the measurements. Hence, the update equation for R̂ is given by

R̂(i+1) =
1
T

�

A5 − Ĥ(i+1)
�

A(i)4

�⊤�

.

As similar to the structure of the update equation for Q̂, we can observe that R̂ remains symmetric throughout the
EMKF algorithm. Regarding its positive definiteness, we have a similar argument as for Q̂.

Until now, we have derived the update equations of the Kalman filter parameters F, Q, H and R. We now move
on to the update equations for the initial conditions (recall that X0 ∼ (ξ,Λ)). We start with the update equation

34

for ξ̂. Again, using Lemma A.1, we compute

∂QEM

∂ ξ

�

θ , θ̂ (i)
�

=
∂

∂ ξ

�

−
1
2

�

−
�

x̃ (i)0

�⊤
Λ−1ξ− ξ⊤Λ−1 x̃ (i)0 + ξ

⊤Λ−1ξ

��

= −
1
2

�

−
�

x̃ (i)0

�⊤
Λ−1 −
�

Λ−1 x̃ (i)0

�⊤
+ 2ξ⊤Λ−1
�

= −
1
2

�

−
�

x̃ (i)0

�⊤
Λ−1 −
�

x̃ (i)0

�⊤
Λ−1 + 2ξ⊤Λ−1
�

=
�

x̃ (i)0

�⊤
Λ−1 − ξ⊤Λ−1

=
�

x̃ (i)0

�⊤
− ξ⊤. Λ−1 is invertible

Setting
∂QEM

∂ ξ

�

θ , θ̂ (i)
�

= 0 and solving for ξ obviously gives ξ= x̃ (i)0 . Hence, we obtain

ξ̂(i+1) = x̃ (i)0 .

Last, but not least, we derive the update equation for Λ̂. Using Lemma A.1, we compute

∂QEM

∂Λ−1

�

θ , θ̂ (i)
�

=
∂

∂Λ−1

�

−
1
2

log |Λ| −
1
2

�

�

x̃ (i)0

�⊤
Λ−1 x̃ (i)0 + Tr
�

Λ−1 P̃(i)0

�

−
�

x̃ (i)0

�⊤
Λ−1ξ− ξ⊤Λ−1 x̃ (i)0 + ξ

⊤Λ−1ξ

��

=
1
2
ΛT −

1
2

�

x̃ (i)0

�

x̃ (i)0

�⊤
+ P̃(i)0 − x̃ (i)0 ξ

⊤ − ξ
�

x̃ (i)0

�⊤
+ ξξ⊤
�

=
1
2
ΛT −

1
2

�

�

x̃ (i)0 − ξ
��

x̃ (i)0 − ξ
�⊤
+ P̃(i)0)

Setting
∂QEM

∂Λ−1

�

θ , θ̂ (i)
�

= 0 and solving for Λ gives

1
2
ΛT −

1
2

�

�

x̃ (i)0 − ξ
��

x̃ (i)0 − ξ
�⊤
+ P̃(i)0

�

= 0⇔

Λ⊤ =
�

x̃ (i)0 − ξ
��

x̃ (i)0 − ξ
�⊤
+ P̃(i)0 .

By the symmetry of the RHS of the last line and using the current update for ξ̂, we obtain

Λ̂(i+1) =
�

x̃ (i)0 − ξ̂
(i+1)
��

x̃ (i)0 − ξ̂
(i+1)
�⊤
+ P̃(i)0

= (x̃ (i)0 − x̃ (i)0)(x̃
(i)
0 − x̃ (i)0)

⊤ + P̃(i)0

= 0+ P̃(i)0 = P̃(i)0 .

Hence, the update equation for Λ̂ is given by

Λ̂(i+1) = P̃(i)0 .

It turns out that the update equations for ξ̂ and Λ̂ are given by the smoothed estimates of x0 and its error covari-
ance matrix P0 respectively.

This ends the derivation of the EM algorithm for the Kalman filter: the EMKF algorithm. As a stopping crite-
rion, one could use the stopping criteria which are mentioned in Section 2.4. Note that since the Kalman filter
parameters are matrices, the latter stopping criterion should be adapted to the multivariate sense. In this thesis,
we just consider the entry-wise convergence of the parameters. The thresholds should be taken in such a way
that convergence is achieved, which could be a subjective matter. The thresholds which are used in this thesis
are mentioned in Section 3.5. Whenever EMKF terminates, the obtained parameter estimates corresponds to a
stationary point of the log-likelihood of the measurements. In Theorem 2, we show how one could classify the
stationary point.

35

2.5.4 Summary

Let us summarize the algorithm. Starting with initial estimates θ̂ (0) =
�

F̂ (0), Q̂(0), Ĥ(0), R̂(0), ξ̂(0), Λ̂(0)
	

, we apply

the Kalman- filter and smoother to obtain smoothed estimates of the hidden state
¦

x̃ (0)t

©T

t=0
, state/error covari-

ance matrices
¦

P̃(0)t

©T

t=0
and smoothed lag-1 autocovariances

¦

Ṽ (0)t,t−1

©T

t=1
. These estimates are used to update the

parameter estimates according to computing

A(i)1 =
T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t−1

�⊤
+ Ṽ (i)t,t−1

�

, A(i)2 =
T
∑

t=1

�

x̃ (i)t−1

�

x̃ (i)t−1

�⊤
+ P̃(i)t−1

�

, A(i)3 =
T
∑

t=1

�

x̃ (i)t

�

x̃ (i)t

�⊤
+ P̃(i)t

�

A(i)4 =
T
∑

t=1

zt

�

x̃ (i)t

�⊤
, and A5 =

T
∑

t=1

ztz
⊤
t ,

which gives the following update equations:

F̂ (i+1) = A(i)1

�

A(i)2

�−1
,

Q̂(i+1) =
1
T

�

A(i)3 − A(i)1

�

A(i)2

�−1 �

A(i)1

�⊤
�

=
1
T

�

A(i)3 − F̂ i+1)
�

A(i)1

�⊤
�

,

Ĥ(i+1) = A(i)4

�

A(i)3

�−1
,

R̂(i+1) =
1
T

�

A5 − A(i)4

�

A(i)3

�−1 �

A(i)4

�⊤�

=
1
T

�

A5 − Ĥ(i+1)
�

A(i)4

�⊤�

,

ξ̂(i+1) = x̃ (i)0 ,

Λ̂(i+1) = P̃(i)0 .

(26)

The algorithm is formulated in Algorithm 1.

Algorithm 1: Expectation-maximization for the Kalman filter (EMKF)

Given: A time series of observations {zt}Tt=1;
A number of hidden states n ∈ N;
Parameter set θ = {F,Q, H, R,ξ,Λ};
A log-likelihood increase tolerance level ϵℓ;
A parameter difference tolerance level ϵθ
Initialize: Initial parameter setting θ̂ (0) =

�

F̂ (0), Q̂(0), Ĥ(0), R̂(0), ξ̂(0), Λ̂(0)
	

;
i← 0;
while ℓ(i+1) − ℓ(i) > ϵℓ and

�

�θ̂ (i+1) − θ̂ (i)
�

�> ϵθ
a do

E-step
Compute x̂ (i)0 = ξ

(i) and P(i)0 = Λ
(i);

Compute
¦

�

x̂−t
�(i)©T

t=1
,
¦

x̂ (i)t

©T

t=1
,
¦

�

P−t
�(i)©T

t=1
,
¦

P(i)t

©T

t=1
by the Kalman filter with initial conditions

x̂ (i)0 and P(i)0 and parameter setting θ̂ (i) ;

Compute
¦

x̃ (i)t

©T

t=1
,
¦

P̃(i)t

©T

t=1
and
¦

Ṽ (i)t,t−1

©T

t=1
by the Kalman smoother with parameter setting θ̂ (i);

Compute ℓ(i) = ℓ
�

θ̂ (i)
�

�z
�

by (24) using
¦

x̃ (i)t

©T

t=1
;

M-step
Compute θ̂ (i+1) according to (26);
Compute
�

�θ̂ (i+1) − θ̂ (i)
�

� for all entries in θ .
end

aThe difference is taken entry-wise for all parameters

36

2.5.5 Partial Optimization

Note that in some occasions, someone only wishes to optimize a subset of θ , because some parameters are already
known. An occasion which could be suitable is the one where someone only wants to estimate the uncertainties
e.g. Q and R (and maybe P0). The EMKF algorithm could be suitably adapted in the E-step by running the Kalman
filter/smoother with the fixed (known) parameters and the current estimates of the unknown parameters. How-
ever, one should avoid using the fixed parameters in the M-step (e.g. the known value for F to update Q̂), since
this could lead to negative-definite covariance matrices. The right way to update the unknown parameters is to
use A(i)j (j ∈ {1, 2,3, 4}) and A5.

Although the EM(KF) algorithm yields us estimates of the log-likelihood of the measurements, these are only
point estimates. We also want to know how precise our estimates are and therefore aim to learn more about the
uncertainty in these estimates. Fortunately, asymptotic theory about the sampling distributions of the estimates
coming from the EMKF algorithm exists, which we cover in the next section.

2.6 Asymptotic Theory and Confidence Intervals

The asymptotic properties of maximum likelihood estimates obtained from e.g. the EM algorithm (e.g. consistency
and normality) of the Kalman filter have been studied rather generally in [3]. An essential condition is the stability
of the estimated Kalman filter [16]. According to [1], stability of the Kalman filter is related to stability of the
state equation, which is defined as follows.

Definition 7 (Stability). Consider the state equation (6) without the input term. This state equation is called
stable (or causal) if the spectrum of the state transition matrix F lies within the unit circle in the complex plain.
That is,

σ(F) ⊆ {z ∈ C | |z|< 1}.

Recall that the spectrum of a square matrix A is the set of all eigenvalues of A. Hence, when all eigenvalues of F
are smaller than 1 in absolute value, the Kalman filter is said to be stable.

Stability of the filter is important because it yields innovation terms zt − H x̂−t which stabilize as t increases,
meaning that the covariance matrix of these innovations converges to a steady-state and does not depend on t
anymore. This follows from the fact that the error covariance matrix Pt converges to a steady-state error covari-
ance matrix P and the same argument holds for the Kalman gain Kt , which converts to steady-state gain K [16].
The steady-state error covariance matrix P solves the algebraic Ricatti equation

P = F
�

P − PH⊤(HPH⊤ + R)−1HP
�

F⊤ +Q.

Furthermore, K satisfies

PH⊤(HPH⊤ + R)−1,

which looks familiar to the definition of the Kalman gain Kt (Definition 6). [6] argues that an observability (see
Section 2.1) of the system also yields the steady-state properties if the system is not stable, provided that P−1 ≻ P
(i.e. P−1 − P is positive definite), but not necessarily exponentially fast (c.f. Remark 3.3.3 from [6]).

Together with some additional assumptions, asymptotic normality of the parameter estimates of the state-space
model in consideration is justified in e.g. [6, 16, 3]. To this end, define

ψ=















vec(F)
vec(Q)
vec(H)
vec(R)
ξ

vec(Λ)















∈ Rn2+(p+1)n+p2
,

where vec(·) is the vectorization operator. Note that ψ is just a vector containing the elements of θ . Then, we can
state the following result.

37

Theorem 2. Let ψ̂ be a maximum likelihood estimator of ψ. Assume that the following assumptions hold:

1. The system is stable.

2. ψ lies within the interior of the parameter space.

3. All partial derivatives of the log-likelihood of the measurements up to order three exist and are continuous
in the neighbourhood of ψ.

4. ψ is identifiable.

Then, as T →∞, we have

p
T (ψ̂−ψ)

d
−→Nk(0k,I(ψ)−1,

where k ∈ N is the dimension of ψ and I(ψ) denotes the Fisher information matrix of ψ.

For the proof of Theorem 2, the reader is referred to [3]. A couple of remarks:

– Note that we denote the dimension of ψ by k, because we allow for cases where only a subset of the
parameters have to be estimated (see the end of Section 2.5). Hence, the value of k could vary between
situations. However, k ⩽ n2+(p+1)n+ p2. In the case of partial optimization, the dimension of ψ reduces,
but the asymptotic distribution will be of the same dimension as ψ.

– The first assumption in Theorem 2 is called the regularity condition, which could be weakened to e.g. ob-
servability as discussed before. It should be noted that this regularity condition can be adopted to several
types of state-space models [6].

Theorem 2 essentially means that if we manage to find maximum likelihood estimates for the parameters to be
estimated, normality of the sampling distribution is justified if the sample size T is sufficiently large. Then, one
would have

ψ̂∼Nk

�

ψ,
1
T
I(ψ)−1
�

.

The above result can be used to construct (1−α)% confidence intervals for the parameter estimates. One would
typically take an entry on the diagonal of I(ψ)−1 to obtain a confidence interval for the corresponding entry of the
estimated matrix (or ξ, if it is estimated). For example, if the state-transition matrix F is estimated, then the first
n2 entries on the diagonal of I(ψ)−1 are the variances of the sampling distribution of the entries of F̂ (column-
wise, due to the definition of the vectorization operator). Using the general definition of the Fisher information
matrix, in the setting of Kalman filtering, the (expected) Fisher information matrix is defined as follows.

I(ψ) = −E
�

∂ 2

∂ψ∂ψ⊤
ℓ(ψ|z)
�

�

�

�

ψ

�

. (27)

As in the general case, the Fisher information matrix defined above is the negative expectation of the Hessian of
the log-likelihood of the measurements (24) w.r.t. the unknown parameters.

2.6.1 Estimation of the Fisher Information Matrix

In order to obtain (1− α)% confidence intervals for the parameter estimates, one would have to explicitly know
the Fisher information matrix I(ψ). Recall the definition of the Fisher information matrix in (27). Hence, if we
aim to compute the Fisher information for given parameters estimates ψ̂, one would have to compute the Hessian
of the log-likelihood of the measurements.

38

However, if we reconsider (19), [5] shows that the gradient of E(ℓ1(ψ;X|Z)|Z,ψ′)12 (the latter term on the RHS
of (19)) evaluated at ψ= ψ̂ vanishes13, which means that

∂ ℓ(ψ;z)
∂ψ

�

�

�

�

ψ=ψ̂
=
∂QEM(ψ, ψ̂)

∂ψ

�

�

�

�

ψ=ψ̂
, (28)

This result means that evaluated at a maximum likelihood estimate of ψ, the gradient of the log-likelihood of the
observed data equals the gradient of the QEM function computed in the E-step of the EMKF algorithm. A similar
argument holds for the Hessian in (27). Since we already have obtained the partial derivatives of all parameters
in Section 2.5.3, we can compute the RHS in (28) once the EMKF algorithm has converged to maximum likelihood
estimates. The evaluated gradient of QEM is then used to compute the Hessian in (27).

Although the Hessian should be analytically derivable, we numerically approximate it by a Monte Carlo simu-
lation, following the methodology from [12].

Let SQ(ϕ) =
∂QEM(ψ, ψ̂)

∂ψ

�

�

�

�

ψ=ϕ
. Note the difference between SQ and the smoothing gain St (14). Let ∆ =

(∆1, . . . ,∆k) ∈ Rk be a perturbation vector. According to [12], ∆ should satisfy the following criteria ∀i ∈
{1, . . . , k}:

– ∆i has zero expectation and is symmetrically distributed.

– ∆i is uniformly bounded and E (1/∆i)<∞.

– ∆i is independent from and identically distributed as ∆ j∀ j ∈ {1, . . . , k| j ̸= i}.

A typical choice for∆ which satisfies the above criteria is a IID sample from the Bernoulli distribution with proba-
bility 0.5 of attaining−c and c respectively, with c ∈ R a sufficiently small scalar. In this thesis, we take c = 0.0005.
Next, by defining δSQ(ϕ) = SQ(ϕ +∆)− SQ(ϕ −∆), an approximation of the Hessian of the log-likelihood of the
measurements at ϕ is given by

Ĥs(ϕ) =
1
2

�

δSQ(ϕ)

2

�

1/∆1 · · · 1/∆k

�

+

�

δSQ(ϕ)

2

�

1/∆1 · · · 1/∆k

�

�⊤�

. (29)

Note that the second term ensures symmetry of the Hessian estimate. Supposing that we obtain parameter esti-
mates from the EMKF algorithm, denoted by ψ̂, one could approximate the Hessian by the following Monte Carlo
simulation:

1. Set the large number of simulations N ∈ N and the scalar c ∈ R, which should be rather small.

2. Generate a perturbation vector ∆ by sampling ∆i from the Bernoulli distribution mentioned above for i ∈
{1, . . . , k}.

3. Apply (29) with ψ̂ and ∆k.

4. Repeat steps 2-3 by sampling a new perturbation vector∆ independently from the previous one N−1 times.

5. Compute the average of all computed matrices to obtain an approximation of the Hessian of the log-
likelihood of the measurements.

Whenever we have an estimate of the Hessian, we can immediately check whether the estimate ψ̂ is a (local)
maximum of the log-likelihood of the measurements. Recall the second partial derivative test, which states that
at a critical pointψ∗ of the log-likelihood is a (local) maximum if the Hessian evaluated atψ∗ is negative definite.
This means that the eigenvalues of this matrix are all negative. This makes sense, because the Fisher information
matrix is then positive definite, according to (27), which is a requirement of a covariance matrix (in (2)). Hence,

12Note that ψ is just a vectorized form of θ appearing in (19).
13This results assumes that differentiation and integration are interchangeable.

39

estimation of the Fisher information is only valid if the estimate ψ̂ corresponds to a (local) maximum of the log-
likelihood function.

Recall that if the Hessian at ψ∗ also has positive eigenvalues, then, according to the second order partial deriva-
tive test, then the corresponding critical point is a saddle point of the log-likelihood. This means that although
the EM algorithm converged to estimates with zero gradient, it does not correspond to a local maximum of the
log-likelihood14.

Suppose that the obtained approximation of the Hessian matrix, denoted by Ĥ (ψ) is indeed negative definite.
Then, the observed Fisher information matrix is approximated by

I(ψ)≈ −Ĥs

�

ψ̂
�

.

14The second order partial derivative test could also give the conclusion that the critical point is a local minimum, but, theoretically, the
EM algorithm prevents convergence to a local minimum. Hence, we do not consider this case here.

40

3 Methods

As mentioned in the Introduction, the aim of this thesis is to apply the EMKF approach to a (multidimensional)
time series of stock prices (measurements) to forecast their future values. In this section, we argue how the
theoretical framework in Section 2 is translated into suitable prediction methods. In Section 3.1, we describe the
data on which this application is based, before describing our approach in Section 3.4.

3.1 Data Description

We take the stock prices of the following companies from January 1st, 2016 up to August 1st, 2019:

1. Apple

2. Netflix

3. Tesla

4. Google

The data is retrieved from Yahoo Finance, using the yfinance API in Python. For each company, we take the
adjusted closing price each day as its daily observation, giving us 901 observations. A plot of the resulting time
series is given by Figure 5.

Figure 5: The stock price data. Netflix’ stocks are excluded in the right figure due to the difference in scale.

3.2 Simulated Data

As a proof of concept of the EMKF algorithm, we first apply the methodology described in Section 3.4 to a simu-
lated process. We consider two cases. The first one is a state-space model with approximately trivial parameters
(Section 4.1.1), while the second one consists of randomized parameters, which is a more complex state-space
model (Section 4.1.2). The methodology of these simulations is described in their respective sections in Section 4.

3.3 Example

After the simulations are performed in Section 4.1, we consider an example from the literature, aiming to repro-
duce the results. We consider Example 6.8 from [16].

3.4 Approach

We describe how we use the theoretical framework developed in Section 2 to the data to learn about the state-
space model which describes the trajectory of the stock prices.

We are aiming to forecast the stock prices described in Section 3.1 through trend estimation. The standard-
ized stock prices themselves serve as measurements. We standardize the stock prices company-specific, meaning

41

https://finance.yahoo.com

that for each company, we use its specific mean and standard deviation. We are going to investigate how many
trends (from one common trend for all four companies to one trend per company) are needed to provide accurate
predictions. Since we consider four companies, we have p = 4. [5] proposes the decomposition of a trend in
terms of a level µt and a slope βt (t ∈ {1, . . . , T}), which yields the following model formulation:

zt = Hµµt + vt , vt ∼N4(0, R)

µt = µt−1 + βt−1 + εt−1, ε∼Nn(0n,Qε)
βt = βt−1 +ηt−1, η∼Nn(0n,Qη)

, (30)

where zt ∈ R4. Note the additive decomposition of the time series of measurements into trend and noise. Such a
model is called a local linear trend (LLT) model [5]. Since we consider one, two, three and four trends, we have
n ∈ {2, 4,6, 8}. We assume that the vt is independent from the other noise terms appearing in (30). We do allow
εt and ηt to be correlated. Both independence assumptions are made to be in line with the theory behind the

Kalman filter (Section 2.2). By defining x t =
�

µt
βt

�

∈ Rn, we can derive the following state-space formulation of

(30):

x t = F x t−1 +wt−1

zt = H x t + vt

where

F =
�

In/2 In/2
0(n/2)×(n/2) In/2

�

and H =
�

Hµ 0(n/2)×(n/2)
�

∈ Rp×n. (31)

Furthermore, wt =
�

εt
ηt

�

, so wt ∼Nn(0n,Q) where Q ∈ Rn×n.

For n ̸= 8, H will have to be estimated, where initial estimates are stated below. This follows from the fact
that in typical trend modelling, H maps the level of the trend (µt) to the stock price directly (where the difference
between the stock price and the mapping is represented by the noise term vt), see Equation 31. However, typically,
each company’s stock price is modelled its own separate trend (e.g. when n = 8, c.f. [5]). For n ∈ {2,4, 6}, we
aim to estimate the linear combinations of the n/2 trends to estimate each company’s stock price.

The possible presence of seasonal- and cycle components in the stock data is ignored throughout the analysis
for simplicity. One could also argue that those components are incorporated into the model implicitly through the
noise term vt .

Since we aim to develop a forecasting procedure for the stock prices, we partition the data into a training- and
testing phase. The training data is defined for the stock prices zt with t ∈ {1, . . . , Ttrain}, while the measurements
zt with t ∈ {Ttrain + 1, . . . , Ttest} serves as test data. Note that Ttest = 901, which is the total number of obser-
vations. The training set is used to estimate the unknown parameters and the test set is used to evaluate the
model performance. Due to the well-known chaotic behaviour of stock prices, we take Ttrain = 850, which creates
a larger proportion between train- and test data of 80%-20% (or 70%-30%). This allows us to make relatively
short-term predictions, while we are provided with a larger sample of measurements to estimate the parameters.
Since Ttrain = 850, we have the latter 51 observations as test data.

Training phase

The parameters are estimated by the EMKF algorithm. Note that F is known ∀n ∈ {2, 4,6, 8}, while H is only
known whenever n= 8. Hence, we apply the methodology of Section 2.5 to the unknown parameters, which are
denoted by the set θ = {Q, H, R,ξ,Λ} for n ∈ {2, 4,6}. When n = 8, we have θ = {Q, R,ξ,Λ}. Initial parameter
estimates are derived as follows:

Q) Since we do not know the trend a priori, but we know that trends tend to behave rather stable, we take
Q̂(0) = 1

10 In. That is, the trend should not be influenced greatly by the noise term wt , meaning that the
entries of Q should be rather small.

42

H As discussed, for n ∈ {2, 4,6}, H has to be estimated. Due to the defined strucutre of the EMKF algorithm, we
cannot estimate H as shaped in (31): H has to be estimated in its entire dimension. We discuss this below.
We do initialize H as defined. That is, the right block of H in (31) is initialized as zeros. Hµ is initialized as
a p-by-n/2 matrix with entries equal to 2/n. In this way, the initial setting takes linear combinations of all
levels (either one, two or three) with equal weights to estimate the stock prices (measurements).

R) Note that H maps the level of the trend to the stock price itself. Since the measurements are assumed to
be noisy compared to the trend, we propose that R should represent the variance in the stock prices. To be
explicit, we take R̂(0) to be a diagonal matrix with the sample variance of each company’s stock prices in the
training phase on the diagonal in its respective row/column. Note that since the data is standardized, we
automatically have R0 = I4.

ξ) Since the trend models averages the stock price trajectory, we take the initial level as the sample average
of the first 100 measurements. For the one trend-case, we the only level µ0 to be the average of all first
100 measurements. For the two- and three trend-cases, we set all initial levels equal to the average of
all first 100 measurements. Finally, for the four trend-case, we take the first 100 measurements of the
company corresponding to each trend, since we model trends company-specific here. The slopes β0 are
computed analogously and are defined as the slopes of the line segment between the smallest and the
largest measurement, as a function of time.

Λ) It is generally difficult to assign an initial covariance matrix for the error [5]. One typically takes a diffuse
prior (i.e. infinite variance, c.f. [5]), but this lies beyond the scope of this thesis. Instead, in line with the
literature, we propose a rather large initial error covariance matrix i.e. Λ= 100In.

Regarding the estimation of H, we can still map the state X t to the estimated trend for each company by the
mapping Hµµt . To approximate the stock prices themselves, we use the mapping H x t , where x t is the realization
of X t . Note that this is mathematically not completely in line with the model specification in (31), but it enables
us to estimate the trend as linear combinations of the levels µt , which is part of our original goal.

To ensure that convergence to maximum likelihood estimates is achieved, EMKF is ran 100 times (note that this
does not correspond to one run with 100 iterations as a maximum) with randomly perturbed initial parameters
which are described above. For each set of estimates, we check whether convergence is achieved (i.e. whenever
EMKF terminates before the maximum number of iterations is reached). From all of these estimates, we take the
estimates corresponding to the largest log-likelihood value as our parameter estimates. Next, we identify the type
of stationary point by the theory described in Section 2.6. Preferably, we observe that the set of estimates with
the largest observed log-likelihood value of the measurements converged to a critical point and that it is in fact a
local maximum of this log-likelihood function.

From Section 2.6, we have that for maximum likelihood estimates, the evaluated Hessian is an approximation
of the Fisher information matrix, meaning that we can extract the covariance matrix of the asymptotic distribu-
tion of the estimator ψ̂. Hence, we can derive confidence intervals for our maximum likelihood estimates. Note
that this is only possible for parameter estimates which correspond to a (local) maximum of the log-likelihood of
the measurements.

Whenever we have obtained parameter estimates θ̂ , we run the Kalman- filter and smoother with those esti-
mates in order to obtain (smoothed) hidden state estimates x̃ t (t ∈ {0,1, . . . , Ttrain}. These estimates serve as the
estimates for the trend and can be used to approximate the stock prices by the mapping zt − Ĥ x̃ t . We also verify
steady-state behaviour by looking at the innovations Ĥ x̂−t , where the a priori trend estimates x̂−t result from the
Kalman filter. We can also check whether the resulting model is observable by the Kalman rank test (Lemma 3),
using Ĥ.

Testing phase (Forecasting)

To forecast the stock prices, we introduce the online Kalman filter. The online Kalman filter propagates trend
estimations throughout the testing phase, from the initial conditions x̃Ttrain

and P̃Ttrain
, which are the smoothed esti-

mates at the final observation in the training data, obtained from the training phase, together with the estimated

43

parameters from the training phase. Note that for the initial condition of the online Kalman filter, one could also
use the filtered estimates x̂Ttrain

and PTtrain
, since they are equal to the smoothed estimates at t = Ttrain. Essentially,

the online Kalman filter is just the Kalman filter applied to the test data with the described initial conditions.

Forecasts are extracted from x̂−t , t ∈ {Ttrain+ 1, . . . , Ttest}, where Ttest = 901. Since a priori trend estimates do not
incorporate the current stock price, this method is actually valid as a forecasting procedure. By incorporating the
actual stock price in the update step of the Kalman filter, the forecast remain on a similar trajectory as the stock
prices themselves.

The trend forecast is computed similarly as the estimated trend during the training phase: Ĥµµ̂
−
t , where µ̂−t

are the first n/2 entries of x̂−t .

Accuracy measure

To measure the accuracy of the trend/stock price estimations/forecasts, we make use of the mean absolute per-
centage error (MAPE). Denoting ŷ ∈ Rτ as an estimate/forecast of the actual value y ∈ Rτ for some τ ∈ N, the
MAPE is given by

MAPE(ŷ) =
100%
τ

τ
∑

i=1

�

�

�

�

ŷi − yi

yi

�

�

�

�

The MAPE is a relative accuracy measure: it compute the average percentage deviation from the actual values.
We choose for a relative accuracy measure because the stock price data differs in scale among companies. In this
way, we can compare the performance of the learned Kalman filter and the forecasts between companies more
precise, compared to an absolute measure (e.g. the mean squared error).

3.5 Software Implementation

All methods (e.g. the Kalman filter/smoother and the EMKF algorithm) have been implemented in Python, where
the source code is written by the author himself. The functions can be found in Appendix B. While developing
the functions, results have been compared to those obtained from the pykalman library (pykalman.github.io),
which shows identical results regarding the Kalman- filter and smoother.

The EMKF algorithm written by the author gives different results than the em method from the pykalman
library, which follows from the fact that the EMKF function written by the author provides more flexibility regard-
ing the convergence criteria. From now on, we refer to the written EMKF algorithm as the EMKF function. The
additional flexibility is summarized as follows:

– While the em method only perform a predefined number of iterations, EMKF actually optimizes the param-
eter estimates in terms of convergence to stationary point of the log-likelihood of the measurements (the
observed data in the Kalman filter setting). Additionally, the user sets a maximum number of iterations to
perform to avoid potential overfitting and rather long computation times.

– Additionally to the log-likelihood increase user can choose to define convergence of the EMKF algorithm in
terms of the difference in parameter estimates as well in EMKF. That is, if the parameter estimates deviate
too less from the previous estimates, then convergence is achieved. In this way, one does not only has
convergence of the log-likelihood of the measurements, but also stable parameter estimates.

– The user can manually set the thresholds regarding the log-likelihood increase and the difference in pa-
rameter estimates in EMKF. In this way, the user can choose his/her own degree of flexibility of the EMKF
algorithm. Hence, if the user does not need the stable parameter estimate criterion, he/she could set the
tol_params argument rather large (e.g. 100, but 1 should already suffice).

– EMKF provides warnings whenever one of the updated covariance matrices Q, R and/or Λ becomes non-
positive definite, before forcing it to be positive definite (by adding the largest negative eigenvalue to the
diagonal). This could indicate numerical underflow.

44

https://pykalman.github.io/#optimizing-parameters

The standard values for some EMKF arguments are given in Table 5. The user can use their own preferences if
preferred. However, by not providing other values, EMKF uses the values given below.

EMKF Argument Description Standard value
max_it Maximum number of iterations 1000

tol_likelihood Increase in log-likelihood threshold 0.01
tol_params Difference in parameter estimates threshold 0.005

em_vars Parameters to estimate All parameters

Table 5: Standard arguments for the written EMKF function

Just as for the existing em method, one can specify the initial parameter estimates and set the parameters which
need to be estimated (Section 2.5.5). Together with the above additions, EMKFis the most flexible EMKF algo-
rithm which is applicable in Python. Namely, up to the best knowledge of the author, no other EMKF algorithm
currently exists, except for the em method from the pykalman library. There exists variants in R, namely the
EM function from the astsa library [16] and the MARSS function from the MARSS library. While the written
EMKF algorithm competes with the EM function in terms of estimating H (which is not possible in the EM function)
and parameter estimates’ convergence (the EM function only uses convergence in terms of relative log-likelihood
increase), the EM function gives the possiblity to include input terms ut in the estimation procedure. A similar
argument holds for the em method from the pykalman library, which uses the term ’offset’ instead of ’input’.
Regarding MARSS, an extensive comparison has not been made, but the flexiblity is rather similar.

We provide the computational complexity of EMKF for the first simulation in Section 4.1.1 (to be more precise, in
Table 8) in terms of the time it takes to perform 50 iterations of EMKF for different hidden state- and measurement
dimensions n= p and sample sizes T .

45

4 Applications

As mentioned before, the Kalman- filter and smoother have a broad range of applications. Starting from e.g.
random walks, we could move towards autonomous vehicles and visit several relevant applications before arriving
at the core application within this thesis: stock prices. Before we do so, we perform a simulation study and
reproduce an existing example from the literature.

4.1 Simulations

In this section, we consider simulated data to explore practical implementations of the Kalman filter/smoother and
the EM algorithm (for the Kalman filter). We consider two separate cases: one where the state-space model in (9)
consists fixed, ’simple’ parameters, before moving on to a more ’complicated’ one, shaped by randomly generated
parameters.

4.1.1 Simulation 1

We start with the first simulation. Here, n= p = 2 and the state-space model is parameterized by

F = H = I2, Q = R= Λ= 1
10 I2 and ξ= 02. (32)

This means that the state-space model we are considering is formulated as

X t = X t−1 +wt−1, wt−1 ∼N2

�

02, 1
10 I2

�

, X0 ∼N2

�

02, 1
10 I2

�

Zt = X t + vt , vt ∼N2

�

02, 1
10 I2

�

for t ∈ {1, . . . , 100}. Note that this state-space model essentially simulates a random walk for both the hidden state
X t and the measurements Zt . Sampling the initial hidden state from its distribution and propagating through the
system described above in time (while sampling the noise terms from their respective distributions) with T = 100
generates the state- and measurement trajectory shown in Figure 6.

(a) (b)

Figure 6: The simulated true hidden state (Figure 6a) and the simulated measurements (Figure 6b) for the first
simulation.

We acknowledge the hidden state trajectory in Figure 6a as the true hidden state. That is, while we cannot
observe this process, we assume that if we could, this trajectory would be its realization. Note that the Kalman
filter/smoother estimates this trajectory. Let us apply the Kalman filter/smoother to the generated measurements
with x̂0 = ξ and P0 = Λ. The filtered- and smoothed estimates of the true hidden state are shown together with
the actual values in Figure 7. We also include 95% confidence intervals shown by the confidence bands for the
estimates, see (13) and (15).

46

(a) (b)

(c) (d)

Figure 7: Estimation of the hidden state in Figure 6a. The confidence bands of the estimation are given by the
shaded regions.

Overall, the estimates produced by the Kalman- filter (x̂ t) and smoother (x̃ t) seem to be accurate. The true hidden
state is contained in the confidence band for X t for almost all times. Note that from Figures 7a–7b, the estimates
produced by the Kalman smoother appear less oscilating than the filter estimates. Also, the confidence bands from
the smoothed estimates is are smaller than from the estimate produced by the filter. The mean squared errors of
the state estimates are given by

Estimate MSE1 MSE2

Filter 0.058 0.067
Smoother 0.037 0.043

Table 6: Mean squared errors of the state estimates with the true parameters for the first simulation

Observe that the MSEs for the smoothed estimates is smaller than the filtered estimates. This is in line with what
we have discussed in Section 2.3: the Kalman smoother improves the filtered estimates by conditioning the esti-
mate on all measurement history.

Recall from Theorem 2 that the Kalman gain Kt and the state/error covariance matrix Pt converge to a steady
value under certain assumptions. For t = 100, the Kalman gain and error covariance matrix are, rounded to three
decimals given by

K100 =
�

0.618 0
0 0.618

�

, P100 =
�

0.062 0
0 0.062

�

.

The Kalman gain assigns for both components of the state estimates a weight of approximately 0.618 to the in-
novation term zt − H x̂−t . Also, the variances of the (smoothed) estimates produced by the Kalman- filter and

47

smoother are rather small. Verifications show that these smoothed variances are already achieved at t = 7.

Let us apply the EM algorithm with the current parameters as initial estimates. That is, starting from the true
setting, we are wondering if there is a better model in terms of the log-likelihood of the measurements (observed
data). This ’better’ model should then be a better explanation for the observed data. Applying the EMKF algorithm
with initializations given by (32) with the default convergence criteria yields the following parameter estimates:

F̂ =
�

1.003 0.075
0.008 0.968

�

, Q̂ =
�

0.089 −0.022
−0.022 0.072

�

, Ĥ =
�

1.003 −0.025
0.002 0.969

�

R̂=
�

0.071 −0.020
−0.020 0.070

�

, ξ̂=
�

0.301
0.046

�

, Λ̂=
�

0.009 −0.003
−0.003 0.008

�

The model parameters seem to have converged to similar values as the true parameters. EMKF has converged in
14 iterations. Note that some correlations between state- and measurements components have been introduced
since Q and R have nonzero off-diagonal entries. The initial parameters seem to have converged to values which
differ more from their true values. Note that the entries from Λ̂ have become rather small, compared to their
initial values.

The increase in log-likelihood of the measurements is shown in Figure 8.

Figure 8: Log-likelihood of the EM algorithm for the first simulation

Figure 8 shows a steady increase in the log-likelihood of the observed data. When we apply the Kalman- filter and
smoother to the measurements with the optimized parameters, it results in the MSEs in Table 7.

Estimate MSE1 MSE2

Filter 0.056 0.066
Smoother 0.038 0.042

Table 7: Mean squared errors of the state estimates for the first simulation, resulting from the optimized
parameters.

Comparing Tables 6 and 7 tells us that the MSEs before and after applying the EMKF algorithm are similar. Except
for the smoothed estimate of hidden state component 1, the MSEs became smaller after optimizing the parame-
ters. However, on average between components, the original parameters yields a slightly smaller MSE than the
optimized ones for the smoothed estimates (0.03973 versus 0.03980 respectively). This indicates that the EMKF

48

algorithm does not outperform the true parameter setting. However, note that we could only conclude this since
we have fixed a true parameter setting, which generated the true hidden states. Also, note that the EMKF estimates
are based on sample data and that they do not necessarily represent the population of measurements.

To conclude, EMKF shows a steady increase in the log-likelihood of the observed data (measurements) and the
maximum likelihood estimates resulting from applying EMKF with the true parameters as our initializations pro-
duced hidden state estimates that are similarly accurate as the ones with the true parameters, in the MSE sense.

To give the reader an idea of the computational complexity of the EMKF algorithm, Table 8 contains the running
time of the EMKF algorithm as before, but for different sample sizes T and state- and measurement dimension
n and p, where n = p. The timeit function from the timeit library in Python executes 50 iterations of the
EMKF algorithm 100 times for given T, n and p and computes the average running time. The program is executed
on an Apple MacBook Pro 2020 with an Apple M1 CPU and 8 GB RAM.

T
n, p 100 1000 10000
2 1.715s 17.39s 335.17s
3 1.737s 17.92s 251.08s
4 1.771s 18.74s 309.09s
6 1.829s 20.75s 711.69s

Table 8: Computational complexity of 50 iterations of the EMKF algorithm in seconds for several instances.

As one can observe from Table 8, the computational complexity heavily depends on the sample size T , compared to
the hidden state- and measurement dimension n= p. Also, the relevance of the hidden state dimension increases
as the sample size increases. It appears that the EMKF algorithm is generally slower for n = p = 2 than larger
hidden state- and measurement dimension for T = 10000. However, this deviation may follow from the fact that
the computer has been used during this run, while the runs for n ∈ {3,4} have been done overnight.

4.1.2 Simulation 2

The aim of this simulation is to generate realizations of the (true) hidden state x t ∈ Rn and measurements zt ∈ Rp

from a system with known parameters. Then, we apply the EM algorithm to the measurements with small pertur-
bations on the the true parameters as initialization, aiming to (re-)estimate them.

In this study, we select n= 3, p = 2 and generate random parameters up to their constrains. The reader is referred
to Appendix B to see how the parameters are generated. For the covariance matrices, we generate random SPD
matrices, utilizing the make_spd_matrix function from the scikit-learn package. The parameters are,
rounded to three decimals, given by

F =





0.901 0.045 −0.036
0.045 0.881 −0.008
0.033 −0.009 0.905



 , Q =





8.025 · 10−4 −5.330 · 10−4 −4.853 · 10−4

−5.330 · 10−4 1.912 · 10−3 1.443 · 10−3

−4.853 · 10−4 1.443 · 10−3 1.929 · 10−3



 , H =
�

−0.945 0.507 0.076
−0.341 0.577 −0.394

�

R=
�

1.913 · 10−3 6.096 · 10−4

6.096 · 10−4 3.264 · 10−4

�

, ξ=





−0.019
−0.146
−0.039



 and Λ=





0.008 −0.005 −0.005
−0.005 0.019 0.014
−0.005 0.014 0.019



 .

Sampling the initial hidden state x0 ∼ N3(ξ,Λ) and propagating through the system described by the above
parameters in time (the noise terms are sampled from their respective distributions) with T = 1000 generates the
state- and measurement trajectory shown in Figure 9.

49

(a) (b)

Figure 9: The simulated true hidden state (Figure 9a) and the simulated data (Figure 9b).

Observe from Figure 9 that both the true state and measurements are noisy. Let us apply the Kalman- and smoother
to the data and plot the smoothed estimates together with the true value, component wise. This results in Fig-
ure 10.

(a) (b)

(c)

Figure 10: The smoothed estimates with 95% confidence bands for the true hidden state, based on the true
parameter values.

Note that overall, the estimates of x t (t ∈ {0, . . . , 1000}) seem to be precise, although it shows some (small) de-
viations. However, the true hidden state is almost always contained in the confidence intervals, generated by the
distribution of X t |ZT (the smoothed estimates).

The mean squared error between the smoothed estimate and the true sequence of the hidden state are component-
wise given by

50

MSE1 MSE2 MSE3

0.0013 0.0034 0.0032

Table 9: Mean squared errors for the smoothed estimates of the true hidden states, given the true parameters.

We are now interested what kind of impact estimations of the parameters by the EMKF algorithm have on the
component-wise mean squared errors given above. To this end, we slightly perturb the true parameters and use
those perturbations as initial parameter set for the EM algorithm. The algorithm converged according to the
standard convergence criteria in Section 3.5 after 133 iterations. The output is given by

F̂ =





0.815 −0.024 −0.028
0.155 0.873 0.108
−0.059 −0.097 0.954



 , Q̂ =





0.001 −3 · 10−4 −4 · 10−4

−3 · 10−4 0.001 0.001
−4 · 10−4 0.001 0.002



 ,

Ĥ =
�

−1.058 0.487 0.010
−0.318 0.503 −0.307

�

, R̂=
�

0.002 0.001
0.001 4 · 10−4

�

, ξ̂=





−0.029
−0.207
−0.059



 and Λ̂=





3 · 10−5 1 · 10−5 3 · 10−5

1 · 10−5 5 · 10−4 7 · 10−4

3 · 10−5 7 · 10−4 1 · 10−4



 .

Figure 11 illustrates how the estimates converge to this output:

(a)

(b) (c) (d)

(e) (f) (g)

Figure 11: Likelihood convergence of the EMKF algorithm for the simulated data (Figure 11a) and entry-wise
convergence of the parameters (Figures 11b–11g).

51

Figure 11 shows a steady increase in the log-likelihood of the measurements and convergence of the parameters.
However, for ξ (recall that ξ = E(X0)), the values tend to diverge first, before converging to a steady value. The
differences between the maximum likelihood estimates and the true values, together with their Frobenius norms
(for the vector ξ, we take the 2-norm) are given by

∆F = F̂ − F =





−0.087 −0.070 0.008
0.110 −0.008 0.116
−0.092 −0.088 0.049



 , ||∆F ||F = 0.238,

∆Q = Q̂−Q =





−3 · 10−05 2 · 10−04 6 · 10−05

2 · 10−04 −5 · 10−04 −3 · 10−04

6 · 10−05 −3 · 10−04 −2 · 10−04



 , ||∆Q||F = 0.001,

∆H = Ĥ −H =
�

−0.113 −0.020 −0.067
0.023 −0.074 0.087

�

, ||∆H||F = 0.176,

∆R= R̂− R=
�

−3 · 10−06 6 · 10−05

6 · 10−05 7 · 10−05

�

, ||∆R||F = 1 · 10−4,

∆ξ= ξ̂− ξ=





−0.011
−0.061
−0.021



 , ||∆ξ||2 = 0.065,

∆Λ= Λ̂−Λ=





−0.008 0.005 0.005
0.005 −0.019 −0.014
0.005 −0.014 −0.019



 , ||∆Λ||F = 0.036.

Especially Q and R are estimated quite accurately. In F and H, the entry-wise differences seem to be somewhat
larger. However, the Frobenius norms (and the 2-norm for ∆ξ) of all parameter differences indicate accurate
re-estimation of the parameters.

4.2 Example

As a second example of the EMKF algorithm, we consider Example 6.8 from [16], which is a one-dimensional
setting (one-dimensional- state and measurements). The source code of this example from the authors themselves
can be found at github.com. The dynamics are given by the following state-space model, which describes an AR(1)
process:

X t = 0.8X t−1 +wt , wt ∼N (0,1), X0 ∼N (0, 0.122)
Zt = X t + vt , vt ∼N (0,1)

,

with parameter set θ = { f , q2, r2,ξ,λ2} (we consider lower case parameters since the setting is one-dimensional,
which makes the covariance matrices variances, hence the squares). Note that h= 1 is fixed in this example. The
measurements are generated according to this state-space model (as similar to the simulations in Section 4.1) and
are copied from the authors’ source code. The initializations are, rounded to three decimals, given by

f̂ (0) = 0.837, q̂2(0) = 0.634, r̂2(0) = 1.235, ξ̂(0 = 0 and λ̂2(0) = 2.8.

Running the function EM from the astsa library in R (EMKF written by the authors of [16]) gives convergence
in 18 iterations. Let us compare the output of EM to the output of EMKF in Table 10.

52

https://github.com/nickpoison/tsa4/blob/master/textRcode.md#chapter-6

Parameter EM Estimate EMKF Estimate
f 0.796 0.795

q2 0.914 0.922
r2 0.989 0.980
ξ 1.256 1.262
λ2 0.128 0.122

Table 10: Comparison of EMKF estimates from the literature and the source code fromt this thesis

The parameter estimates from Table 10 look rather similar. Note that ξ is badly estimated. We also have en-
countered this in Section 4.1.2, which warns us that estimation of ξ is something to be aware about: it does not
necessarily converge to the true value. Fortunately, this does actually hold for the other parameters in this case.

It is also worth mentioning that the EMKF algorithm has not yet converged according to the standard criteria
in 18 iterations. It takes 25 iterations for EMKF to converge, which follows from the fact that EM only keeps track
of the log-likelihood of the measurements (and hence, not of the convergence of the parameters).

4.3 Forecasting Stock Prices

We now move on to the real-world application of this thesis, in terms of stock price predictions. We apply the
methodology from Section 3.4 to the data in Section 3.1. First, we explore the data in a descriptive sense in
Section 4.3.1, before entering the modelling and estimation phase in Section 4.3.2. Finally, we show the forecast
in Section 4.3.3.

4.3.1 Exploratory Analysis

Let us first explore the data that we have obtained, which is described in Section 3.1 and visualized in Figure 5.
The standardized data is shown in Figure 12.

Figure 12: The standardized data which is used throughout the analysis.

From Figures 5 and 17, all four stock prices show an increasing trend, which would mean that the time series
are non-stationary. To confirm this conjecture, we apply the Augmented Dickey-Fuller (ADF) test to each individual
series with the usual significance level α = 0.05. The ADF test assumes that the data is non-stationary under the
null hypothesis. The alternative hypothesis depends on the situation, but here, it states stationarity. We could
also have tested for trend-stationarity, meaning that the detrented15 series is stationary, but since we do not know

15A detrended series is a time series with the trend component is removed.

53

anything about possible seasonality or cyclic behaviour, we aim the ADF test to be rather general. The results of
the ADF test are provided in Table 11.

Company Statistic Used lag p-value
Apple -2.237 8 0.469
Tesla -1.963 0 0.621

Netflix -2.534 13 0.311
Google -2.524 11 0.316

Table 11: ADF test results.

The used lag in the ADF test determines how many auto-regressive terms are incorporated during the testing pro-
cedure, which is actually an important factor for the results. Fortunately, adfuller from the statsmodels
library automatically computes the lag with minimal AIC of the resulting autoregressive model.

Since all reported p-values are larger than the significance level 0.05, we conclude that the stock price series
are indeed non-stationary. Non-stationarity should not arise any problems during the process of Kalman filtering,
since measurements are not required to be stationary. Also, non-stationarity does imply that the trend of the mea-
surements is non-constant, which justifies the modelling approach where we assume a possibly different level and
slope of the trend at each trading day.

Next, we are interested what insights we could obtain from the detrended series. A popular method for detrending
a time series is to take the first differences, which results in Figure 13.

Figure 13: First differences of each company’s time series

The series of first differences tend to be more stationary than the original series: the first differences seem to
be centered around a constant, zero mean. Although it shows white noise behaviour, we also observe that the
magnitude of the series increases over time (generally from t = 500), indicating that the variance of the process
increases over time, meaning that the stock prices start to oscillate more throughout the training period. Hence,
stationarity would be a strong conclusion to make. However, up to magnitude, the four time series of stock prices
show similar behaviour in terms of first differences.

Recall that we have formulated our model as a additive time series decomposition in a trend and random com-
ponent. Hence, we ignore the possible presence of seasonality and/or cyclic behaviour. We are interested if this

54

modelling assumption is valid by checking whether seasonality is present. Seasonality behaviour means repeated
behaviour of time series within a constant time interval. For example, if we consider a time series which consists
of the amount of rain for each day for several years, we expect seasonal behaviour to occur (e.g. less rainfall
during the summer). For stock prices, this seasonality is generally hard to assign to a fixed interval (e.g. each
day or week), so we consider differencing with different lags: weekly, monthly and annually. When seasonality is
present, we would expect the resulting differenced series to be centered around zero.

We fist consider the weekly differences. On average, there are five working days a week, meaning that the stock
market is open, and hence, generates data, five days a week. Hence, we take the differences of the time series
with lag 5. Note that this procedure is not completely precise due to holidays, but it should give a global overview
of the weekly behaviour of the stock prices, which is given in Figure 14.

Figure 14: Weekly differences of each company’s time series

If we compare this series with the first differences obtained in Figure 13, we still observe the zero mean behaviour
for the weekly differences, but the variance seems to be larger. The increase in variance is less obvious as well.
This would suggest the presence of a seasonal component, especially for the first 500 observations. For Tesla, the
presence of a seasonal component seems less obvious.

Next, we consider the monthly differences. We take a lag of 20 trading days, which is the average training days
within a month. Note that due to the fact that the number of days differ between months and, as similar to the
weekly differences, holidays, this procedure is not complete precise as well. The results are shown in Figure 15.

55

Figure 15: Monthly differences of each company’s time series

Here, we still see the zero-mean behaviour as described before, but less compared to the weekly differences. This
suggests that there is no monthly seasonal component, but not totally absent. However, this is up for discussion.

Finally, we consider the annually differences. There are 260 working days a year, so we take differences with
a lag of 260. Since, additionally, there are leap years, the same argument regarding the preciseness holds, but
note that 2016 is the only leap year contained in the dataset. The annually differences are given by Figure 16.

Figure 16: Annual differences of each company’s time series

We now observe no centered behaviour around zero anymore. This suggest that we have no annual seasonal
component in the time series of stock prices.

Overall, it seems that only on a weekly basis, we have conjectures about a seasonal component. However, it

56

does not seem that a seasonal component must be included in the LLT model, meaning that we proceed with what
we have.

4.3.2 Modelling, Estimation & Results

Now that we have obtained some more insight in the stock price data, we start the modelling and estimation phase.
Recall that we model the stock prices by the LLT model where we investigate how many trends up to four we would
need to optimize model performance. Hence, we consider four cases and show the obtained results. Recall that
F is given in all cases by (31). Also, recall that are our program does not allow us to estimate Hµ ∈ R(n/2)×p

separately, so we have to estimate H ∈ Rp×n.

Single Trend

We start with the case of a single trend (i.e. n = 2). Hence F =
�

1 1
0 1

�

according to (31). We apply the

methodology described in Section 3.4 and obtain the following estimates:

Q̂ =
�

9.665 · 10−4 −9.988 · 10−7

−9.988 · 10−7 1.714 · 10−6

�

, Ĥ =







1.741 20.362
1.350 65.739
1.535 −16.196
1.675 13.444






, (33)

R̂=







0.009 −0.043 −0.013 −0.009
−0.043 0.221 0.064 0.022
−0.013 0.064 0.021 0.019
−0.009 0.022 0.019 0.064






, ξ̂=
�

−0.690
−0.000

�

and Λ̂=
�

2.071 · 10−7 −8.351 · 10−10

−8.351 · 10−10 5.403 · 10−10

�

.

Note that the covariance matrix of the process noise Q is estimated to rather small. This makes sense, because
we expect the trend to move rather deterministic, meaning that the noise term wt should not be influential. Also,
the initial condition for the covariance matrix Λ is estimated even smaller, which is similar to the example in
Section 4.2.

The observability matrix of the resulting state-space model with Ĥ is verified to have rank 2, which is full-
column rank. Therefore, the system is observable. However, the Hessian approximation yields a Hessian which
is not negative definite when evaluated at the parameter estimates. Its eigenvalues are indicated by σ

�

Ĥs

�

⊂
(−761.00, 501.21), meaning that these estimates corresponds to a saddle point of the log-likelihood of the mea-
surements. Hence, we have not obtained maximum likelihood estimates. This follows from the fact that the
Hessian has both positive and negative eigenvalues. Furthermore, Hessian evaluations for all other estimates ob-
tained from different initializations for the EMKF algorithm did not gave us a negative definite Hessian. Hence,
we did not find a local maximum at all, meaning that we cannot consider the asymptotic theory and confidence
intervals for the estimates (in terms of the Fisher information) cannot be obtained.

Let us proceed with the estimates that we have. Although they are not maximum likelihood estimates, they
do give the largest log-likelihood value found. Applying the Kalman- filter and smoother with the parameter esti-
mates in (33) gives the trend- and stock price approximation in Figure 17. Here, we have rescaled all data back
to to the original scale.

57

Figure 17: Trend- and price approximation for one trend. 95% confidence intervals for the trend are
incorporated in the figure, but are too small to be visible.

It seems that the trend describes the average behaviour of all four companies. To quantify the difference between
the predicted price (from the trend) to the actual stock price, we provide the mean absolute percentage errors for
the training data in Table 12.

Company MAPE
Apple 1.827
Tesla 7.639

Netflix 5.439
Google 3.216

Table 12: Mean absolute percentage training errors for the one-trend case.

It seems that the approximations for Tesla are the least accurate.

We now consider the steady-state behaviour of the estimated model. To this end, we compute the innovation
sequence and check whether the a posteriori covariance matrix P and the Kalman gain K have stabilized. We
obtain the following innovation sequence.

Figure 18: The innovation sequence for the one-trend case.

58

We also obtain

Pt →
�

1.600 · 10−5 1.109 · 10−8

1.109 · 10−8 1.386 · 10−8

�

, Kt →
�

3.407 · 10−1 −2.031 · 10−2 3.146 · 10−1 −3.888 · 10−2

7.803 · 10−3 6.813 · 10−3 −1.993 · 10−2 4.646 · 10−3

�

as t → Ttrain.

Although the a posteriori error covariance matrix Pt and the Kalman gain Kt converge to steady values, Figure 18
does not show the steady-state behaviour as described in Theorem 2. However, they remain bounded throughout
the training phase.

Two trends

We now move on to the case where there are two trends (i.e. n = 4). Here, we have F =







1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1






,

according to (31). With the initializations as in Section 3.4, the estimates of the other parameters are given by

Q̂ =







3.726 · 10−2 −3.338 · 10−2 −1.795 · 10−4 −3.163 · 10−4

−3.338 · 10−2 4.186 · 10−2 −1.968 · 10−5 1.480 · 10−4

−1.795 · 10−4 −1.968 · 10−5 6.175 · 10−5 −6.872 · 10−5

−3.163 · 10−4 1.480 · 10−4 −6.872 · 10−5 1.269 · 10−4






, (34)

Ĥ =







0.736 0.542 8.435 5.542
0.571 0.372 −8.143 5.991
0.372 0.511 3.293 3.389
0.647 0.549 16.673 13.976






,

R̂=







1.583 · 10−4 −9.091 · 10−5 9.511 · 10−5 2.057 · 10−4

−9.091 · 10−5 9.560 · 10−4 7.191 · 10−5 9.239 · 10−7

9.511 · 10−5 7.191 · 10−5 8.735 · 10−5 1.385 · 10−4

2.057 · 10−4 9.239 · 10−7 1.385 · 10−4 2.911 · 10−4






,

ξ̂=







−0.709
−1.412
−0.014
0.025






and Λ̂=







1.203 · 10−5 −1.102 · 10−5 −9.183 · 10−8 −6.962 · 10−8

−1.102 · 10−5 1.371 · 10−5 1.894 · 10−9 5.775 · 10−8

−9.183 · 10−8 1.894 · 10−9 3.807 · 10−8 −4.040 · 10−8

−6.962 · 10−8 5.775 · 10−8 −4.040 · 10−8 6.580 · 10−8






.

We observe the same as for the one trend-case, but additionally that the entries for R are smaller now. This sug-
gests that two trends explain the measurements better than one, since the covariance matrix of the measurement
noise is now smaller in magnitude (entry-wise).

We again observe an observability matrix of full rank (rank 4), using Ĥ. Therefore, again, the system is observable.
However, again, the estimated parameters do not correspond to maximum likelihood estimates, since the approx-
imated Hessian is not negative definite. Its eigenvalues are now indicated by σ

�

Ĥs

�

⊂ (−3019.98, 551.71). Since
Ĥs has both positive and negative eigenvalues, the estimated parameters correspond, again, to a saddle point of
the likelihood function of the measurements. Hessian computations for the other converged parameter estimates
also did not yield a local maximum of the likelihood function. Hence, since all estimates correspond to a saddle
point, we cannot consider asymptotic theory nor derive confidence intervals for the estimates in (34), as for the
one trend-case.

We proceed with the estimates that we have. Again, applying the Kalman- filter and smoother with the parameter
estimates (34) gives the trend- and stock price approximations in Figure 19. Just as for the one trend-case, we
have rescaled everything back to its original scale. Also, as explained in Section 3.4, to compute the trend for each
stock price, we pre-multiply µt with Ĥµ, the first two columns of Ĥ for all t ∈ {1, . . . , Ttrain}.

59

Figure 19: Trend- and price approximation for two trends. 95% confidence intervals for the trend are
incorporated in the figure, but are too small to be visible.

The trend line does not show as averaged behaviour as for the one trend-case. This might follow from the fact
that two trends provides more flexibility in estimation, meaning that Kalman filter forces the trend to be closer to
the measurements. This follows from the fact that EMKF has estimated a measurement noise covariance matrix,
R, of small magnitude. The mean absolute percentage errors for the training data are given in Table 13.

Company MAPE
Apple 0.081
Tesla 0.147

Netflix 0.089
Google 0.065

Table 13: Mean absolute percentage training errors for two trends.

Note that the MAPEs are smaller than for the one-trend case. Also, the approximating for Tesla’s stock prices is
again the least accurate in terms of the MAPE.

We now move on to the steady-state behaviour of the estimated model. To this end, we compute the innova-
tion sequence and check whether the a posteriori covariance matrix P and the Kalman gain K have stabilized. We
obtain the following innovation sequence.

60

Figure 20: The innovation sequence for the two trend-case.

We also have

Pt →







9.512 · 10−5 −1.229 · 10−4 1.272 · 10−6 4.753 · 10−7

−1.229 · 10−4 3.545 · 10−4 1.132 · 10−6 3.058 · 10−6

1.272 · 10−6 1.132 · 10−6 4.068 · 10−6 −4.322 · 10−6

4.753 · 10−7 3.058 · 10−6 −4.322 · 10−6 5.096 · 10−6







Kt →







3.022 0.497 −2.764 −0.746
−1.655 −0.396 4.162 −0.203
0.038 −0.056 −0.015 0.011
−0.123 0.060 −0.018 0.099







as t → Ttrain.

For the two trend-case, the innovations are closer to zero than for the one-trend case in their magnitudes, but
steady-state behaviour is still not shown. This means that H x̂−t is generally closer to the measurement than for
the one trend case, which agrees with Figure 19.

Three trends

We now consider the case where we have three trends, which gives us n = 6. We now have F =
�

I3 I3
03×3 I3

�

. As

before, the other parameters are estimated by the EMKF algorithm. The estimates with the largest log-likelihood
value are given by

61

Q̂ =















3.385 · 10−2 4.876 · 10−3 −2.523 · 10−2 −8.138 · 10−4 −4.311 · 10−4 9.581 · 10−4

4.876 · 10−3 2.760 · 10−2 −3.501 · 10−2 −2.230 · 10−4 −6.470 · 10−4 7.627 · 10−4

−2.523 · 10−2 −3.501 · 10−2 6.540 · 10−2 6.825 · 10−4 1.022 · 10−3 −1.470 · 10−3

−8.138 · 10−4 −2.230 · 10−4 6.825 · 10−4 7.659 · 10−5 2.629 · 10−5 −7.648 · 10−5

−4.311 · 10−4 −6.470 · 10−4 1.022 · 10−3 2.629 · 10−5 2.166 · 10−5 −3.834 · 10−5

9.581 · 10−4 7.627 · 10−4 −1.470 · 10−3 −7.648 · 10−5 −3.834 · 10−5 8.811 · 10−5















, (35)

Ĥ =







0.516 0.577 0.425 1.929 0.875 −1.956
0.601 0.151 0.692 −3.266 −0.515 5.040
0.193 0.651 0.530 −0.819 −0.136 0.413
0.394 0.528 0.572 2.315 1.756 −2.689






,

R̂=







1.437 · 10−4 −1.556 · 10−4 6.819 · 10−5 1.574 · 10−4

−1.556 · 10−4 9.520 · 10−4 −2.793 · 10−6 −8.972 · 10−5

6.819 · 10−5 −2.793 · 10−6 8.352 · 10−5 6.564 · 10−5

1.574 · 10−4 −8.972 · 10−5 6.564 · 10−5 1.987 · 10−4






,

ξ̂=















−0.966
−1.099
−0.158
−0.030
0.008
0.014















and Λ̂=















2.064 · 10−5 2.250 · 10−6 −1.473 · 10−5 −7.037 · 10−7 −2.836 · 10−7 7.451 · 10−7

2.250 · 10−6 1.585 · 10−5 −1.976 · 10−5 −9.818 · 10−8 −3.704 · 10−7 4.204 · 10−7

−1.473 · 10−5 −1.976 · 10−5 3.739 · 10−5 5.235 · 10−7 6.092 · 10−7 −9.638 · 10−7

−7.037 · 10−7 −9.818 · 10−8 5.235 · 10−7 8.331 · 10−8 2.087 · 10−8 −7.562 · 10−8

−2.836 · 10−7 −3.704 · 10−7 6.092 · 10−7 2.087 · 10−8 1.900 · 10−8 −3.189 · 10−8

7.451 · 10−7 4.204 · 10−7 −9.638 · 10−7 −7.562 · 10−8 −3.189 · 10−8 8.308 · 10−8















.

We observe estimates of similar magnitude as for the two-trend case. Again, the measurement noise’s covariance
matrix is rather small in magnitude, compared to the one-trend case.

Once again, the state-space system is observable by the Kalman rank test for observability (rank 6, which is full
column rank), using Ĥ. Also, we again failed to obtain maximum likelihood estimates, since the approximated
Hessian of the log-likelihood of the measurements has both positive and negative eigenvalues, evaluated at the
above parameter estimates, meaning that the estimates correspond to a saddle point. Its spectrum is indicated by
σ(Ĥs) ⊂ (−14165.50,711.44). Similar to preceding cases, Hessian computations for other all other parameter es-
timates resulting from the EMKF algorithm did not indicated that we have reached a local maximum of likelihood
of the measurements. Hence, we cannot consider the asymptotic distribution of the parameters nor the confidence
intervals for the parameter estimates.

As before, we proceed with the estimates that we have. Applying the Kalman- filter and smoother with the pa-
rameter estimates (35) gives us the results visualized in Figure 21. Again, we have rescaled everything back to
the original scale. Trend approximation is done in the same way as for the two-trend case.

62

Figure 21: Trend- and price approximation for three trends. 95% confidence intervals for the trend are
incorporated in the figure, but are too small to be visible.

The trend line shows similar behaviour as for the two trend-case, but even closer to the measurements. Let us see
if this is justified by the accuracy of the mean absolute percentage errors, which are given in Table 14.

Company MAPE
Apple 0.076
Tesla 0.158

Netflix 0.076
Google 0.052

Table 14: Mean absolute percentage training errors for the three trend-case

Note that the MAPEs in Table 14 are smaller than for the two trend-case in Table 13, except for Tesla. Unfortu-
nately, this is not explainable from the visualizations, as they visually coincide with the measurements.

We now consider the steady-state behaviour of the estimated model. To this end, we compute the innovation
sequence and check whether the a posteriori covariance matrix Pt and the Kalman gain Kt have stabilized. We
obtain the following innovation sequence.

Figure 22: The innovation sequence for the three trend-case.

63

Figures 20 and 22 are almost indistinguishable from each other, meaning that the two trend- and three trend-case
show very similar innovation sequences. Comparing to the one trend-case, we again observe a smaller upper
bound for the innovations. The steady-state a posteriori error covariance matrix and Kalman gain are given by

Pt →















1.154 · 10−3 3.398 · 10−4 −1.425 · 10−3 −5.314 · 10−4 5.148 · 10−4 −1.882 · 10−4

3.398 · 10−4 1.634 · 10−3 −2.181 · 10−3 −3.183 · 10−4 4.271 · 10−4 −1.037 · 10−4

−1.425 · 10−3 −2.181 · 10−3 4.057 · 10−3 8.665 · 10−4 −9.848 · 10−4 2.869 · 10−4

−5.314 · 10−4 −3.183 · 10−4 8.665 · 10−4 2.782 · 10−4 −2.733 · 10−4 9.794 · 10−5

5.148 · 10−4 4.271 · 10−4 −9.848 · 10−4 −2.733 · 10−4 3.088 · 10−4 −8.615 · 10−5

−1.882 · 10−4 −1.037 · 10−4 2.869 · 10−4 9.794 · 10−5 −8.615 · 10−5 4.780 · 10−5















,

Kt →















2.916 0.618 −1.409 −1.571
1.696 −0.713 1.793 −2.050
−3.224 0.579 −0.044 3.395
0.001 −0.033 −0.100 0.112
−0.052 −0.012 0.014 0.063
0.054 0.033 0.057 −0.137















as t → Ttrain.

It seems that the variances of the steady-state a posteriori error covariance matrix is larger for the three-trend case
is larger than for the two-trend case. This means that the prediction uncertainty of the Kalman filter is larger for
the three trend case, which is reflected in the Kalman gain.

Four trends

Finally, we consider the four trend-case. Here, n = 8. Since we now model each stock price by its own trend, we
have

F =
�

I4 I4
04×4 I4

�

and H =
�

I4 04×4

�

.

The remainder of the parameters are estimated by the EMKF algorithm, that is θ = {Q, R,ξ,Λ}. As before, the
estimates corresponding to the largest log-likelihood are given by

Q̂ =













3.619·10−3 2.815·10−3 1.495·10−3 2.880·10−3 −2.451·10−5 6.397·10−6 −1.478·10−5 −2.394·10−5

2.815·10−3 1.916·10−2 2.682·10−3 3.687·10−3 −4.313·10−7 −1.921·10−4 9.498·10−6 8.315·10−6

1.495·10−3 2.682·10−3 3.140·10−3 2.550·10−3 2.170·10−6 −3.817·10−5 −8.487·10−6 −8.264·10−6

2.880·10−3 3.687·10−3 2.550·10−3 6.870·10−3 1.184·10−5 −6.541·10−5 2.092·10−5 −4.259·10−5

−2.451·10−5 −4.313·10−7 2.170·10−6 1.184·10−5 4.256·10−7 −6.158·10−7 3.434·10−7 6.190·10−8

6.397·10−6 −1.921·10−4 −3.817·10−5 −6.541·10−5 −6.158·10−7 3.124·10−6 −5.943·10−7 −6.919·10−8

−1.478·10−5 9.498·10−6 −8.487·10−6 2.092·10−5 3.434·10−7 −5.943·10−7 4.194·10−7 −5.387·10−8

−2.394·10−5 8.315·10−6 −8.264·10−6 −4.259·10−5 6.190·10−8 −6.919·10−8 −5.387·10−8 4.175·10−7













, (36)

R̂=







1.428 · 10−4 −7.549 · 10−5 9.766 · 10−5 1.492 · 10−4

−7.549 · 10−5 1.007 · 10−3 5.104 · 10−6 1.136 · 10−5

9.766 · 10−5 5.104 · 10−6 1.043 · 10−4 1.039 · 10−4

1.492 · 10−4 1.136 · 10−5 1.039 · 10−4 1.961 · 10−4






,

ξ̂=
�

−1.268 −0.746 −0.952 −1.134 0.001 −0.005 0.001 0.000
�⊤

,

Λ̂=













5.597·10−6 4.020·10−6 2.363·10−6 4.430·10−6 −5.594·10−8 2.661·10−9 −3.731·10−8 −5.435·10−8

4.020·10−6 3.010·10−5 3.963·10−6 5.505·10−6 −1.819·10−8 −3.868·10−7 1.081·10−8 1.989·10−9

2.363·10−6 3.963·10−6 4.793·10−6 3.887·10−6 −1.092·10−8 −6.096·10−8 −3.304·10−8 −2.954·10−8

4.430·10−6 5.505·10−6 3.887·10−6 1.045·10−5 6.253·10−10 −1.019·10−7 1.325·10−8 −9.085·10−8

−5.594·10−8 −1.819·10−8 −1.092·10−8 6.253·10−10 1.227·10−8 7.748·10−9 8.871·10−9 1.061·10−8

2.661·10−9 −3.868·10−7 −6.096·10−8 −1.019·10−7 7.748·10−9 4.373·10−8 8.097·10−10 5.678·10−9

−3.731·10−8 1.081·10−8 −3.304·10−8 1.325·10−8 8.871·10−9 8.097·10−10 1.216·10−8 9.610·10−9

−5.435·10−8 1.989·10−9 −2.954·10−8 −9.085·10−8 1.061·10−8 5.678·10−9 9.610·10−9 1.279·10−8













.

Regarding the parameter estimates, we observe the same as before. Also for the four trend-case, the state-space
system is observable by the Kalman rank test for observability, using Ĥ. We obtain a rank of of the observability
matrix of 8, which is full column rank. However, EMKF again provided estimates which correspond to a sad-
dle point of the log-likelihood of the measurements. Namely, the approximated Hessian of the log-likelihood of
the measurements has both positive and negative eigenvalues, evaluated at the above parameter estimates. Its

64

spectrum is indicated by σ(Ĥs) ⊂ (−600.26, 606.18). Similar to preceding cases, Hessian computations for other
all other parameter estimates resulting from the EMKF algorithm did not indicated that we have reached a local
maximum of log-likelihood of the measurements. Hence, since we do not have maximum likelihood estimates,
we cannot consider the asymptotic distribution of the parameters nor the confidence intervals for the parameter
estimates.

We gain proceed with the estimates that we have. Applying the Kalman- filter and smoother with the param-
eter estimates (36) gives us the results visualized by Figure 23. Again, we have rescaled everything back to the
original scale. Note that we have company-specific trends for the four trend-case.

Figure 23: Trend- and price approximation for four trends. 95% confidence intervals for the trend are
incorporated in the figure, but are too small to be visible.

Figure 23 shows us that for the four-trend case, the trend, the stock price and its approximation by the trend
practically coincide for all four companies. The MAPEs for the training data are given by Table 15.

Company MAPE
Apple 0.068
Tesla 0.152

Netflix 0.097
Google 0.044

Table 15: Mean absolute percentage training errors for the four trend-case.

Note that for the four trend-case, the MAPEs for the training data has slightly dropped, compared to the three
trend-case. However, for Tesla, the MAPE for the two-trend case is still smaller.

The innovation sequence for the four trend-case is shown in Figure 24.

65

Figure 24: The innovation sequence for the four trend-case.

We also have

Pt →













1.351·10−4 −6.269·10−5 9.232·10−5 1.418·10−4 1.692·10−6 −2.477·10−6 1.081·10−6 7.649·10−8

−6.269·10−5 9.476·10−4 1.144·10−5 1.969·10−5 −1.876·10−6 9.845·10−6 −6.440·10−7 1.354·10−6

9.232·10−5 1.144·10−5 9.996·10−5 9.872·10−5 1.313·10−6 −1.685·10−6 1.144·10−6 −1.550·10−7

1.418·10−4 1.969·10−5 9.872·10−5 1.884·10−4 1.733·10−6 −2.094·10−6 1.087·10−6 5.390·10−7

1.692·10−6 −1.876·10−6 1.313·10−6 1.733·10−6 5.312·10−5 4.657·10−6 2.779·10−5 2.924·10−5

−2.477·10−6 9.845·10−6 −1.685·10−6 −2.094·10−6 4.657·10−6 3.588·10−4 3.745·10−6 1.691·10−5

1.081·10−6 −6.440·10−7 1.144·10−6 1.087·10−6 2.779·10−5 3.745·10−6 4.421·10−5 5.541·10−6

7.649·10−8 1.354·10−6 −1.550·10−7 5.390·10−7 2.924·10−5 1.691·10−5 5.541·10−6 8.294·10−5













Kt →























0.969 0.011 −0.017 −0.006
0.050 0.945 0.019 −0.003
−0.017 0.005 0.973 0.001
−0.025 0.007 −0.011 0.985
0.004 −0.002 0.006 0.003
0.011 0.011 −0.016 −0.011
−0.001 −0.001 0.012 0.000
−0.004 0.001 −0.007 0.010























as t → Ttrain.

Figure 24 shows that the bounds for the innovations resulting from the Kalman filter became even smaller for
the four-trend case. However, steady-state behaviour is not observed here, just as for the other cases. Regarding
the steady-state Kalman gain: the entries are smaller in magnitude than for the two- and three trend-cases. This
is reflected in the steady-state a posteriori error covariance matrix: the Kalman filter’s prediction uncertainty is
rather small, indicated by the trace.

Overall, the EMKF-learned Kalman- filter and smoother provides hidden state estimates which could be mapped
to the stock price measurements quite accurately in terms of the MAPE. We now move on to the testing phase,
where we apply the forecasting procedure..

4.3.3 Forecasting

Now that we have been able to estimate the unknown parameters for each case, we can apply forecasting to the
stock prices. We follow the online Kalman filter method in Section 3.4. In Figure 25, one could observe the
estimated trend, the estimated stock price and the actual value for each company.

66

(a) Stock price forecast for one trend.

(b) Stock price forecast for two trends.

(c) Stock price forecast for three trends.

67

(d) Stock price forecast for four trends.

Figure 25: The forecast for all stock prices for each number of trends.

From Figure 25, we observe that for the one trend-case in Figure 25a, the forecast deviates more from the actual
price than whenever we use more trends. For the two trend- and three trend-cases, the forecast seems to similar
and more accurate. Due to the way we have defined H for the four-trend case, the trend coincides with the stock
price forecast. Also, the four-trend forecast seems similar to the two trend- and three trend-cases. In Table 16, we
quantify the accuracy of the forecast in terms of the MAPE. For reference purposes, we also included the training
errors from Tables 12–15.

Company
MAPE

One trend Two trends Three trends Four trends
Train Test Train Test Train Test Train Test

Apple 1.827 1.482 0.081 1.387 0.076 1.339 0.068 1.290
Tesla 7.639 9.038 0.147 2.181 0.158 2.167 0.152 2.269

Netflix 5.439 2.190 0.089 1.803 0.076 1.779 0.097 1.859
Google 3.216 3.018 0.065 1.220 0.052 1.098 0.044 1.113

Table 16: Train- and test MAPEs trend wise

The forecasting errors seems to be the smallest for the three-trend case, except for Apple. For Apple, the test
error is the smallest for the four-trend case. However, an additional trend increases the hidden state dimension
n by two. Since the usage of less trends is less computationally expensive, we would prefer the usage of three
trends over four. However, from Table 8, we have concluded that the hidden state dimension does not heavily
improves the computational effort, compared to the sample size T . Therefore, for interpretability purposes, one
could prefer the usage of four trends over three, since each stock price would have its own trend in that case. The
same holds for the case of one common trend, but note the larger forecasting errors for the usage of one trend.
This is justified by Figure 25 as we have already observed.

To conclude this forecasting section, in terms of forecasting errors and with computational effort in mind, the
three trend-case gives the most accurate predictions in terms of the MAPE. However, if one would prefer to model
each stock price by its own trend, the four trend-case would have been advised.

68

5 Conclusion

In this thesis, we have considered modelling time series in the state-space sense in a detailed manner. We have
derived the five equations forming the Kalman filter and showed why the Kalman filter is an optimal hidden state
estimator under certain assumptions: by minimizing the total a posteriori error variance, the predict-update nature
of the Kalman filter provides optimal hidden state estimates. We have also derived smoothing equations which
corrects the Kalman filter estimates: the Kalman smoother.

Furthermore, by employing the expectation-maximization (EM) algorithm, we could apply its methodology to
the state-space setting to introduce the EMKF algorithm: the EM algorithm applied to the Kalman filter. Here,
the E-step consists of applying the Kalman- filter and smoother with current parameter estimates to obtain the
expected log-likelihood function of the complete data, conditioned on the observed data. In the M-step, we maxi-
mize this function w.r.t. the parameters we wish to estimate. By the nature of the EM algorithm, the log-likelihood
of the measurements monotonically increases throughout the iteration procedure. Finally, we have considered
the asymptotic distributions of maximum likelihood estimates obtained from the EMKF algorithm. It turns out
that for a sufficiently large sample size, the parameter estimates are consistent and attain normality with explicit
knowledge of the mean and covariance matrix. The Fisher information matrix can be estimated by numerically
approximation of the Hessian of the log-likelihood of the measurements.

The main result of this thesis is the construction of the EMKF algorithm in Python by the author itself, which
provides more flexibility than the existing one, which is the em method in the pykalman library: the written
EMKF algorithm actually iterates until the log-likelihood of the measurements has converged to a stationary point
and the difference in parameter estimates stabalizes (or until the maximum number of iterations is reached). In
this way, we are actually able to obtain maximum likelihood estimates. One can manually set the the thresholds
for the convergence criteria. Also, one can initialize the algorithm itself and select the parameters one wishes to
be optimized, which was already possible in the existing EMKF implemntation.

The Kalman- filter and smoother have also been implemented by the author. Simulations show that the written
functions operate as expected, as for the written EMKF function. For the Kalman- filter and smoother functions,
the results are identical to the existing ones in the pykalman library. Furthermore, a comparison with an exam-
ple from literature show the exact same results [16].

We have applied the methodology to real-world stock data in order to forecast their values. To this end, we
have modelled the stock prices by a local linear trend model, which we brought into state-space form. By consid-
ering one up to four trends, we have estimated the model parameters which are unknown by the EMKF algorithm.
Although the forecasting errors are rather small for the usage of more than two trends, the parameter estimates
did not correspond to maximum likelihood estimates: all runs of the EMKF algorithm yielded parameter estimates
which corresponded to saddle points of the log-likelihood of the measurements. Since the Fisher information
matrix cannot be estimated for parameter estimates corresponding to saddle points of the log-likelihood, their
asymptotic distribution could not be identified, meaning that confidence intervals for these estimates are not
available.

69

6 Discussion

The last section of this thesis is devoted to a critical discussion of our approach and findings and suggest further
research on the topic of Kalman filtering and the EMKF algorithm.

Modelling continuous random variables by a Gaussian distribution comes with a rather suitable mathematical
framework. The fact that e.g. the Kalman filter recursions are rather straightforward to derive, follows from the
result that the Gaussian distribution is invariant under linear transformation (that is, a linear combination of Gaus-
sians is Gaussian). However, stock prices are not necessarily Gaussian distributed, while we have assumed them
being so. More accurate results could have been obtained if the actual distributed of the stock prices would have
been analyzed (it could still be Gaussian). One popular choice is to model stock prices by heavy-tail distributions,
which are related to the notion of so-called α-stable distributions (the Gaussian distribution is in fact an α-stable
distribution).

Also, while the Gaussian assumption of the system may be valid, the linearity of the dynamics (in time) for
e.g. stock prices may not. Stock prices are often described as rather chaotic and this may better be modelled
in terms of nonlinear dynamics. Fortunately, the extended Kalman filter already exists, which is the generalization
of the Kalman filter for nonlinear dynamics. For highly nonlinear problems where the performance of the extended
Kalman filter drops, one could use the unscented Kalman filter. This follows from the fact that the extended Kalman
filter is essentially applied to linearizations of the dynamics. The unscented Kalman filter tackles problems this
linearizations could cause.

Furthermore, it would have been beneficial to this thesis to focus more on the stability of the Kalman filter with the
steady-state behaviour in particular. Stability analysis could describe why steady-state for the innovations has not
been reached in the stock price application, while it follows partially from the theoretical framework that steady-
state innovations should have been achieved (but necessarily in exponential time). The state-space formulation
could e.g. have been adjusted to a stable or stabilized system. In the essence, stability of the Kalman filter is of
greater importance as reflected in this thesis.

Next, while we simultaneously estimated ξ and Λ (recall that we assume X0 ∼ Nn(ξ,Λ), it is said by E. Holmes
that [6] and [16] discuss that this is not valid and could lead to poor initial conditions estimates. This is justified
by the results within this thesis. However, the mentioned discussions are not found in the corresponding literature
to consider this in more detail. Two allowable cases that [6] mentions, according to Holmes, are

1. We consider x0 = ξ to be fixed (and omit Λ from our models).

2. We consider ξ and Λ to be known.

[16] argues that one can ξ and Λ could be estimated, but not simultaneously. This would mean that we have to
apply the EMKF algorithm to all unknown parameters, except for ξ or Λ, and apply EMKF again with the obtained
estimates to estimate either ξ or Λ solely. This would mean that in the first iteration, the ignored parameter is
assumed to be known. For further research, one could verify which estimation procedures are valid and develop
a general EMKF framework for estimation of the initial conditions for the Kalman filter.

Regarding the EMKF algorithm, it must be noted that all parameter estimates in Section 4.3 from the EMKF
algorithm corresponded to saddle points of the log-likelihood function of the measurements. Although it makes
sense for a large-dimensional function (note that in the worst case, we are estimating 3n2 + (p+ 1)n+ p2 param-
eter entries) to be non-concave, it is worrying that no local maxima have been found for different values of n. A
possible solution to this problem would be to develop an EM(KF) algorithm which classifies each stationary point
it converges to, identify in which direction(s) of a saddle point the log-likelihood increases and keep iterating in
one that direction(s). In this way, saddle points could be overcome. One might recognize such an approach by
(stochastic) gradient descent with momentum. Then, convergence to a local maximum of the log-likelihood can
be guaranteed, meaning that we obtain maximum likelihood estimates.

Furthermore, although the EM algorithm in general provides a rather simple estimation procedure, its rate of
convergence is small compared to e.g. Newton-Rapshon. Although the state- and measurement dimension are a

70

https://cran.r-project.org/web/packages/MARSS/vignettes/EMDerivation.pdf

great factor in the computational complexity of Newton-Rapshon (Newton-Raphson requires Hessian computation-
s/approximations during each iteration), Newton-Rapshon may find stationary points faster. However, Newton-
Rapshon suffers from the same problems as the EM algorithm regarding convergence to saddle points. For gra-
dient methods, such as gradient descent, methodology exists to overcome saddle points, such as the momentum
procedure mentioned above. Hence, suggestions for further research are designing an EM algorithm (or EMKF
algorithm) which could overcome saddle points or develop gradient based methods for parameter estimation for
the state-space setting.

Other suggestions for future research are:

– If one vectorizes the entire parameter set θ intoψ, analytical derivations of the Hessian of the log-likelihood
of the measurements should be feasible. Due to time constrains, this could not be achieved in this thesis,
but it would be beneficial over numerical approximations to be able to analytically compute the Hessian in
terms of both computational complexity and accuracy.

– Since the online Kalman filter yields explicit parameters for the normality of the forecast values, prediction
intervals should be easy to obtain. This could be employed in future forecasting applications.

71

References

[1] Brockwell, P. J. and Davis, R. A. (2009). Time series: theory and methods. 2nd Edition. Springer-Verlag.
ISBN: 9781441903198.

[2] Brown, R. G. and Hwang, P. Y. (2012). Introduction to Random Signals and Applied Kalman Filtering with
Matlab Exercises. 4th Edition. Wiley. ISBN: 9780470609699.

[3] Caines, P. E. (1988). Linear Stochastic Systems. Wiley Series in Probability and Statistics. Wiley. ISBN:
9780471081012.

[4] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39.1, 1–38. DOI: 10.1111/j.2517-
6161.1977.tb01600.x.

[5] Durbin, J. and Koopman, S. J. (2012). Time series analysis by state space methods. 2nd Edition. OUP Oxford.
ISBN: 9780199641178.

[6] Harvey, A. C. (1990). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge Univer-
sity Press. ISBN: 9780521321969.

[7] Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical learning: data mining,
inference, and prediction. 2nd Edition. Springer. ISBN: 9780387848587.

[8] Kai-Tai, F. and Yao-Ting, Z. (1990). Generalized multivariate analysis. Science Press Beijing and Springer-
Verlag, Berlin. ISBN: 9780387176512.

[9] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engi-
neering 82.1, 35–45. DOI: 10.1115/1.3662552.

[10] Magnus, J. R. and Neudecker, H. (2019). Matrix differential calculus with applications in statistics and
econometrics. 3rd Edition. Wiley. ISBN: 9781119541202.

[11] Maybeck, P. S. (1979). Stochastic models, estimation and control. Vol. 141. Academic Press. ISBN: 0124807011.
[12] Meng, L. (2016). Method for Computation of the Fisher Information Matrix in the Expectation-Maximization

Algorithm.
[13] Morrison, G. W. and Pike, D. H. (1977). Kalman filtering applied to statistical forecasting. Management

Science 23.7, 768–774. DOI: 10.1287/mnsc.23.7.768.
[14] Sarkka, S. (2013). Bayesian Filtering and Smoothing. Vol. 3. Cambridge University Press. ISBN: 9781107619289.
[15] Shumway, R. H. and Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the

EM algorithm. Journal of time series analysis 3.4, 253–264. DOI: 10.1111/j.1467-9892.1982.tb00349.x.
[16] Shumway, R. H. and Stoffer, D. S. (2017). Time series analysis and its applications. 4th Edition. Springer.

ISBN: 9783319524528.
[17] Stoorvogel, A. A., Trentelman, H. L., and Hautus, M. (2012). Control theory for linear systems. Springer.

ISBN: 1852333162.
[18] Visser, I. and Speekenbrink, M. (2022). Mixture and hidden Markov models with R. 1st Edition. Springer.

ISBN: 9783031014406.

72

https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1115/1.3662552
https://doi.org/10.1287/mnsc.23.7.768
https://doi.org/10.1111/j.1467-9892.1982.tb00349.x

A Matrix Calculus

Several derivations in this thesis (e.g. the Kalman gain and the update equations in the M-step of the EM algorithm
for the Kalman filter/smoother) involve differentiation w.r.t. matrices. The concept of differentiating scalar-,
vector- or matrix-valued functions w.r.t. matrices lies within the field of matrix calculus. This section is devoted to
introduce the reader to the scalar-by-matrix derivative. Also, we provide the typical derivatives w.r.t matrices used
in this thesis. We start with the definition of a scalar-by-matrix derivative [8].

Definition A.1 (Scalar-by-matrix derivative). Let f : Rn×n→ R be a scalar function of the matrix X =





x11 · · · x1q
...

. . .
...

xp1 · · · xpq



 ∈

Rp×q. Then, we define the (partial) derivative of f w.r.t. X by

∂ f
∂ X
(X) =







∂ f
∂ x11
(X) · · · ∂ f

∂ x1q
(X)

...
. . .

...
∂ f
∂ xp1
(X) · · · ∂ f

∂ xpq
(X)






. (A.1)

Typical examples of such a function f are f (X) = Tr X or f (x) = ln |X |, where |·| denotes the determinant operator.
An important remarks regarding scalar-by-matrix derivatives is that there exist several conventions in defining the
scalar-by-matrix derivative. The Definition A.1 is the definition of a scalar-by-matrix derivative in the so-called
denominator layout.

[10] considers matrix calculus in detail in the sense of differentials. From the obtained results, several identi-
ties for scalar-by-matrix derivatives can be derived which are needed to derive the update equations of the EMKF
algorithm. They are given in Lemma A.1. We do not prove the whole lemma, the reader is referred to Chapter 9
of [10].

Lemma A.1. Let A∈ Rp×q. Then, we have

1.
∂

∂ A
a⊤Ab =

∂

∂ A
b⊤A⊤a = ab⊤ for any a ∈ Rp and b ∈ Rq.

2.
∂

∂ A
a⊤A⊤BAa = 2BAaa⊤ for any a ∈ Rp and symmetric B ∈ Rp×p.

3.
∂

∂ A
Tr (AB) =

∂

∂ A
Tr (BA) = B⊤ for any B ∈ Rq×p.

4.
∂

∂ A
Tr (ABAT) = AB⊤ + AB for any B ∈ Rq×q. Furthermore, if B is symmetric, then

∂

∂ A
Tr (ABA⊤) = 2AB.

5.
∂

∂ A
Tr (A⊤BAC) = 2BAC for any symmetric B ∈ Rp×p and symmetric C ∈ Rq×q.

6.
∂

∂ A−1
log |A|−1 = A⊤ if p = q and A is invertible.

Proof. We prove statements 3 and 4.

Let A=





a11 · · · a1q
...

. . .
...

ap1 · · · apq



. We first prove the statement 3, before moving on to statement 4.

73

3. Let B =





b11 · · · b1p
...

. . .
...

bq1 · · · bqp



. We compute

AB =





a11 · · · a1q
...

. . .
...

ap1 · · · apq









b11 · · · b1p
...

. . .
...

bq1 · · · bqp





=





∑q
i=1 a1i bi1 · · ·

∑q
i=1 a1i bip

...
. . .

...
∑q

i=1 api bi1 · · ·
∑q

i=1 api bip



⇒

Tr (AB) =
q
∑

i=1

a1i bi1 + . . .+
q
∑

i=1

api bip

=
q
∑

i=1

p
∑

j=1

a ji bi j .

Then, by using (A.1), we obtain

∂

∂ A
Tr (AB) =







∂
∂ a11

∑q
i=1

∑p
j=1 a ji bi j · · · ∂

∂ a1q

∑q
i=1

∑p
j=1 a ji bi j

...
. . .

...
∂
∂ ap1

∑q
i=1

∑p
j=1 a ji bi j · · · ∂

∂ apq

∑q
i=1

∑p
j=1 a ji bi j







=





b11 · · · bq1
...

. . .
...

b1p · · · bqp



= BT .

4. Now, let B =





b11 · · · b1q
...

. . .
...

bq1 · · · bqq



. We compute

ABAT =





a11 · · · a1q
...

. . .
...

ap1 · · · apq









b11 · · · b1p
...

. . .
...

bq1 · · · bqp









a11 · · · ap1
...

. . .
...

a1q · · · apq





=





∑q
i=1 a1i bi1 · · ·

∑q
i=1 a1i bip

...
. . .

...
∑q

i=1 api bi1 · · ·
∑q

i=1 api bip









a11 · · · ap1
...

. . .
...

a1q · · · apq





=







∑q
i=1

∑q
j=1 a1i bi ja1 j · · ·

∑q
i=1

∑q
j=1 a1i bi jap j

...
. . .

...
∑q

i=1

∑q
j=1 api bi ja1 j · · ·

∑q
i=1

∑q
j=1 api bi jap j






⇒

Tr (ABAT) =
q
∑

i=1

q
∑

j=1

a1i bi ja1 j + . . .+
q
∑

i=1

q
∑

j=1

api bi jap j

=
q
∑

i=1

q
∑

j=1

p
∑

k=1

aki bi jak j .

74

Then, by using (A.1) again, we obtain

∂

∂ A
Tr (ABAT) =







∂
∂ a11

∑q
i=1

∑q
j=1

∑p
k=1 aki bi jak j · · · ∂

∂ a1q

∑q
i=1

∑q
j=1

∑p
k=1 aki bi jak j

...
. . .

...
∂
∂ ap1

∑q
i=1

∑q
j=1

∑p
k=1 aki bi jak j · · · ∂

∂ apq

∑q
i=1

∑q
j=1

∑p
k=1 aki bi jak j







=







∑q
j=1 a1 j b1 j +
∑q

i=1 a1i bi1 · · ·
∑q

j=1 a1 j bq j +
∑q

i=1 a1i biq
...

. . .
...

∑q
j=1 ap j b1 j +
∑q

i=1 api bi1 · · ·
∑q

j=1 ap j bq j +
∑q

i=1 api biq







=







∑q
j=1 a1 j b1 j · · ·

∑q
j=1 a1 j bq j

...
. . .

...
∑q

j=1 ap j b1 j · · ·
∑q

j=1 ap j bq j






+





∑q
i=1 a1i bi1 · · ·

∑q
i=1 a1i biq

...
. . .

...
∑q

i=1 api bi1 · · ·
∑q

i=1 api biq





=





a11 · · · a1q
...

. . .
...

ap1 · · · apq









b11 · · · bq1
...

. . .
...

b1q · · · bqq



+





a11 · · · a1q
...

. . .
...

ap1 · · · apq









b11 · · · b1q
...

. . .
...

bq1 · · · bqq





= AB⊤ + AB.

Note that if B is symmetric, then we have

∂

∂ A
Tr (ABAT) = 2AB.

75

B Script

In this section, we show the functions written by the author, including the novel EMKF function. The full script
can be found at github.com. As of the publish date, the repository is not visible to the public yet. The repository
may become available to the public in the future, where it consists of the functions mentioned below. All the
functions are given by:

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 import numpy as np
5 import pandas as pd
6 from sklearn.datasets import make_spd_matrix
7 from sklearn.metrics import mean_squared_error
8 from sklearn.metrics import mean_absolute_percentage_error
9 import matplotlib.pyplot as plt

10

11 import yfinance as yf
12 import statsmodels.api as sm
13 from statsmodels.tsa.stattools import adfuller
14

15 plt.style.use('bmh')
16

17 #Check whether a matrix is positive definite
18 def is_pos_def(x):
19 return np.all(np.linalg.eigvals(x) > 0)
20

21 #Force a matrix to be positive definite if its not
22 def force_SPD(A, c = 1e-10):
23 A = (A + A.T)/2
24 if np.amin(np.linalg.eigvals(A)) < 0:
25 A += (np.abs(np.amin(np.linalg.eigvals(A))) + c)*np.identity(A.shape[0])
26 if np.amin(np.linalg.eigvals(A)) == 0:
27 A += c*np.identity(A.shape[0])
28 return(A)
29

30 def KalmanFilter(F, Q, H, R, z, x_0, P_0):
31 T = len(z)
32 #Check the dimension of the hidden state
33 if isinstance(x_0, np.ndarray) == True:
34 n = len(x_0)
35 else:
36 n = 1
37 #Check the dimension of the measurements
38 if isinstance(z[0], np.ndarray) == True:
39 p = len(z[0])
40 else:
41 p = 1
42

43 #Multidimensional case
44 if n > 1 and p > 1:
45 x_hat_minus = np.empty((1, n))
46 x_hat = np.array([x_0])
47 P_minus = np.empty((1, n, n))
48 P = np.array([P_0])
49 K = np.empty((1, n, p))
50

51 for i in range(T):
52 #State extrapolation equation
53 x_hat_minus = np.append(x_hat_minus, [F @ x_hat[i]], axis = 0)
54

55 #Covariance extrapolation equation
56 P_minus = np.append(P_minus, [F @ P[i] @ F.T + Q], axis = 0)
57

58 #Kalman gain
59 K = np.append(K, [P_minus[i+1] @ H.T @ np.linalg.inv(H @ P_minus[i+1] @ H.T +

R)], axis = 0)
60

76

https://github.com/lotvihk/Master-thesis-Applied-Mathematics.git

61 #State update equation
62 x_hat = np.append(x_hat, [x_hat_minus[i+1] + K[i+1] @ (z[i] - H @ x_hat_minus[

i+1])], axis = 0)
63

64 #Covariance update equation
65 P = np.append(P, [(np.identity(n) - K[i+1] @ H) @ P_minus[i+1] @ (np.identity(

n) - K[i+1] @ H).T + K[i+1] @ R @ K[i+1].T], axis = 0)
66

67 #One-dimensional measurements case
68 elif n > 1 and p == 1:
69 x_hat_minus = np.empty((1, n))
70 x_hat = np.array([x_0])
71 P_minus = np.empty((1, n, n))
72 P = np.array([P_0])
73 K = np.empty((1, n, p))
74

75 for i in range(T):
76 #State extrapolation equation
77 x_hat_minus = np.append(x_hat_minus, [F @ x_hat[i]], axis = 0)
78

79 #Covariance extrapolation equation
80 P_minus = np.append(P_minus, [F @ P[i] @ F.T + Q], axis = 0)
81

82 #Kalman gain
83 K = np.append(K, [P_minus[i+1] @ H.T @ np.linalg.inv(H @ P_minus[i+1] @ H.T +

R)], axis = 0)
84

85 #State update equation
86 x_hat = np.append(x_hat, [x_hat_minus[i+1] + K[i+1] @ (z[i] - H @ x_hat_minus[

i+1])], axis = 0)
87

88 #Covariance update equation
89 P = np.append(P, [(np.identity(n) - K[i+1] @ H) @ P_minus[i+1] @ (np.identity(

n) - K[i+1] @ H).T + R * K[i+1] @ K[i+1].T], axis = 0)
90

91 #One-dimensional case
92 else:
93 x_hat_minus = np.empty(1)
94 x_hat = np.array([x_0])
95 P_minus = np.empty(1)
96 P = np.array([P_0])
97 K = np.empty(1)
98

99 for i in range(T):
100 #State extrapolation equation
101 x_hat_minus = np.append(x_hat_minus, [F * x_hat[i]], axis = 0)
102

103 #Covariance extrapolation equation
104 P_minus = np.append(P_minus, [F ** 2 * P[i] + Q], axis = 0)
105

106 #Kalman gain
107 K = np.append(K, [P_minus[i+1] * H / (H**2 * P_minus[i+1] + R)], axis = 0)
108

109 #State update equation
110 x_hat = np.append(x_hat, [x_hat_minus[i+1] + K[i+1] * (z[i] - H * x_hat_minus[

i+1])], axis = 0)
111

112 #Covariance update equation
113 P = np.append(P, [(1 - K[i+1] * H) ** 2 * P_minus[i+1] + K[i+1] ** 2 * R],

axis = 0)
114

115 x_hat_minus = np.delete(x_hat_minus, 0, axis = 0)
116 P_minus = np.delete(P_minus, 0, axis = 0)
117 K = np.delete(K, 0, axis = 0)
118

119 return(x_hat_minus, P_minus, K, x_hat, P)
120

121 def KalmanSmoother(F, x_hat_minus, P_minus, x_hat, P):

77

122 T = len(x_hat_minus)
123 if isinstance(x_hat[0], np.ndarray) == True:
124 n = len(x_hat[0])
125 else:
126 n = 1
127

128 #Multidimensional case
129 if n > 1:
130 x_tilde = np.array([x_hat[T]])
131 P_tilde = np.array([P[T]])
132 S = np.empty((1, n, n))
133

134 for i in reversed(range(T)):
135 #Smoothing gain
136 S = np.insert(S, 0, [P[i] @ F.T @ np.linalg.inv(P_minus[i])], axis = 0)
137

138 #State correction
139 x_tilde = np.insert(x_tilde, 0, [x_hat[i] + S[0] @ (x_tilde[0] - x_hat_minus[i

])], axis = 0)
140

141 #Covariance correction
142 P_tilde = np.insert(P_tilde, 0, [P[i] + S[0] @ (P_tilde[0] - P_minus[i]) @ S

[0].T], axis = 0)
143

144 #One-dimensional case
145 else:
146 x_tilde = np.array([x_hat[T]])
147 P_tilde = np.array([P[T]])
148 S = np.empty(1)
149

150 for i in reversed(range(T)):
151 #Smoothing gain
152 S = np.insert(S, 0, [P[i] * F / P_minus[i]], axis = 0)
153

154 #State correction
155 x_tilde = np.insert(x_tilde, 0, [x_hat[i] + S[0] * (x_tilde[0] - x_hat_minus[i

])], axis = 0)
156

157 #Covariance correction
158 P_tilde = np.insert(P_tilde, 0, [P[i] + S[0]**2 * (P_tilde[0] - P_minus[i])],

axis = 0)
159

160 S = np.delete(S, len(S) - 1, axis = 0)
161

162 return(S, x_tilde, P_tilde)
163

164 def Lag1AutoCov(K, S, F, H, P):
165 T = len(P) - 1
166 if isinstance(F, np.ndarray) == True:
167 n = F.shape[0]
168 else:
169 n = 1
170

171 #Multidimensional case
172 if n > 1:
173 V = np.array([(np.identity(n) - K[T-1] @ H) @ F @ P[T-1]])
174

175 for i in reversed(range(1, T)):
176 V = np.insert(V, 0, [P[i] @ S[i-1].T + S[i] @ (V[0] - F @ P[i]) @ S[i-1].T],

axis = 0)
177

178 #One-dimensional case
179 else:
180 V = np.array([(1 - K[T-1] * H) * F * P[T-1]])
181

182 for i in reversed(range(1, T)):
183 V = np.insert(V, 0, [P[i] * S[i-1].T + S[i] * (V[0] - F * P[i]) * S[i-1].T],

axis = 0)

78

184

185 return(V)
186

187 def ell(H, R, z, x, P):
188 T = len(z)
189 if isinstance(x[0], np.ndarray) == True:
190 n = len(x[0])
191 else:
192 n = 1
193 if isinstance(z[0], np.ndarray) == True:
194 p = len(z[0])
195 else:
196 p = 1
197

198 likelihood = -T*p/2*np.log(2*np.pi)
199

200 #Multidimensional case
201 if n > 1 and p > 1:
202 for i in range(T):
203 likelihood -= 0.5*(np.log(np.linalg.det(H @ P[i] @ H.T + R)) + (z[i] - H @ x[i

]).T @ np.linalg.inv(H @ P[i] @ H.T + R) @ (z[i] - H @ x[i]))
204

205 #One-dimensional measurements case
206 elif n > 1 and p == 1:
207 for i in range(T):
208 likelihood -= 0.5*(np.log(np.linalg.det(H @ P[i] @ H.T + R)) + (z[i] - H @ x[i

]) ** 2 / (H @ P[i] @ H.T + R))
209 likelihood = likelihood[0][0]
210

211 #One-dimensional case
212 else:
213 for i in range(T):
214 likelihood -= 0.5*(np.log(H**2 * P[i] + R) + (z[i] - H * x[i])**2 / (H**2 * P[

i] + R))
215

216 return(likelihood)
217

218 def EMKF(F_0, Q_0, H_0, R_0, z, xi_0, L_0, max_it = 1000, tol_likelihood = 0.01,
tol_params = 0.005, em_vars = ["F", "Q", "H", "R", "xi", "L"]):

219 T = len(z)
220 if isinstance(xi_0, np.ndarray) == True:
221 n = len(xi_0)
222 else:
223 n = 1
224 if isinstance(z[0], np.ndarray) == True:
225 p = len(z[0])
226 else:
227 p = 1
228

229 #Initialization
230 F = np.array([F_0])
231 Q = np.array([Q_0])
232 H = np.array([H_0])
233 R = np.array([R_0])
234 xi = np.array([xi_0])
235 L = np.array([L_0])
236

237 likelihood = np.empty(1)
238

239 #Multidimensional case
240 if n > 1 and p > 1:
241 A_5 = np.zeros((p, p))
242 for j in range(T):
243 A_5 += np.outer(z[j], z[j])
244

245 for i in range(max_it):
246 if i > 0 and i % 50 == 0:
247 print(f"Iteration {i}")

79

248 #E-step
249 x_hat_minus, P_minus, K, x_hat, P = KalmanFilter(F[i], Q[i], H[i], R[i], z, xi

[i], L[i])
250 S, x_tilde, P_tilde = KalmanSmoother(F[i], x_hat_minus, P_minus, x_hat, P)
251 V = Lag1AutoCov(K, S, F[i], H[i], P)
252

253 likelihood = np.append(likelihood, [ell(H[i], R[i], z, x_hat_minus, P_minus)],
axis = 0)

254

255 #Convergence check for likelihood
256 convergence_count = 0
257 if i >= 1 and likelihood[i+1] - likelihood[i] < tol_likelihood:
258 convergence_count += 1
259

260 #M-step
261 A_1 = np.zeros((n, n))
262 A_2 = np.zeros((n, n))
263 A_3 = np.zeros((n, n))
264 A_4 = np.zeros((p, n))
265

266 for j in range(T):
267 A_1 += np.outer(x_tilde[j+1], x_tilde[j]) + V[j]
268 A_2 += np.outer(x_tilde[j], x_tilde[j]) + P_tilde[j]
269 A_3 += np.outer(x_tilde[j+1], x_tilde[j+1]) + P_tilde[j+1]
270 A_4 += np.outer(z[j], x_tilde[j+1])
271

272 if "F" in em_vars:
273 #Update equation for F
274 F = np.append(F, [A_1 @ np.linalg.inv(A_2)], 0)
275

276 #Convergence check for F
277 if i >= 1 and np.all(np.abs(F[i+1] - F[i]) < tol_params):
278 convergence_count += 1
279 else:
280 F = np.append(F, [F_0], 0)
281

282 if "Q" in em_vars:
283 #Update equation for Q
284 if "F" in em_vars:
285 Q_i = (A_3 - F[i+1] @ A_1.T)/T
286 else:
287 Q_i = (A_3 - A_1 @ np.linalg.inv(A_2) @ A_1.T)/T
288

289 #Check whether the updated estimate for Q is positive definite
290 if is_pos_def(Q_i) == False:
291 print(f"Q NON-SPD at iteration {i}")
292 Q_i = force_SPD(Q_i)
293

294 Q = np.append(Q, [Q_i], 0)
295

296 #Convergence check for Q
297 if i >= 1 and np.all(np.abs(Q[i+1] - Q[i]) < tol_params):
298 convergence_count += 1
299 else:
300 Q = np.append(Q, [Q_0], 0)
301

302 if "H" in em_vars:
303 #Update equation for H
304 H = np.append(H, [A_4 @ np.linalg.inv(A_3)], 0)
305

306 #Convergence check for H
307 if i >= 1 and np.all(np.abs(H[i+1] - H[i]) < tol_params):
308 convergence_count += 1
309 else:
310 H = np.append(H, [H_0], 0)
311

312 if "R" in em_vars:
313 #Update equation for R

80

314 if "H" in em_vars:
315 R_i = (A_5 - H[i+1] @ A_4.T)/T
316 else:
317 R_i = (A_5 - A_4 @ np.linalg.inv(A_3) @ A_4.T)/T
318 #Check whether the updated estimate of R is positive definite
319 if is_pos_def(R_i) == False:
320 print(f"R_{i} NON-SPD")
321 R_i = force_SPD(R_i)
322

323 R = np.append(R, [R_i], axis = 0)
324

325 #Convergence check for R
326 if i >= 1 and np.all(np.abs(R[i+1] - R[i]) < tol_params):
327 convergence_count += 1
328 else:
329 R = np.append(R, [R_0], 0)
330

331 if "xi" in em_vars:
332 #Update equation for xi
333 xi = np.append(xi, [x_tilde[0]], axis = 0)
334

335 #Convergence check for xi
336 if i >= 1 and np.all(np.abs(xi[i+1] - xi[i]) < tol_params):
337 convergence_count += 1
338 else:
339 xi = np.append(xi, [xi_0], 0)
340

341 if "L" in em_vars:
342 #Update equation for Lambda
343 L = np.append(L, [P_tilde[0]], axis = 0)
344

345 #Convergence check for Lambda
346 if i >= 1 and np.all(np.abs(L[i+1] - L[i]) < tol_params):
347 convergence_count += 1
348 else:
349 L = np.append(L, [L_0], axis = 0)
350

351 if convergence_count == len(em_vars) + 1:
352 break
353

354 iterations = i + 1
355

356 #One-dimensional measurements case
357 elif n > 1 and p == 1:
358 A_5 = 0
359 for j in range(T):
360 A_5 += z[j] ** 2
361

362 for i in range(max_it):
363 if i > 0 and i % 50 == 0:
364 print(f"Iteration {i}")
365 # E-step
366 x_hat_minus, P_minus, K, x_hat, P = KalmanFilter(F[i], Q[i], H[i], R[i], z, xi

[i], L[i])
367 S, x_tilde, P_tilde = KalmanSmoother(F[i], x_hat_minus, P_minus, x_hat, P)
368 V = Lag1AutoCov(K, S, F[i], H[i], P)
369

370 likelihood = np.append(likelihood, [ell(H[i], R[i], z, x_hat_minus, P_minus)],
axis = 0)

371

372 convergence_count = 0
373 if i >= 1 and likelihood[i+1] - likelihood[i] < tol_likelihood:
374 convergence_count += 1
375

376 # M-step
377 A_1 = np.zeros((n, n))
378 A_2 = np.zeros((n, n))
379 A_3 = np.zeros((n, n))

81

380 A_4 = np.zeros((p, n))
381

382 for j in range(T):
383 A_1 += np.outer(x_tilde[j+1], x_tilde[j]) + V[j]
384 A_2 += np.outer(x_tilde[j], x_tilde[j]) + P_tilde[j]
385 A_3 += np.outer(x_tilde[j+1], x_tilde[j+1]) + P_tilde[j+1]
386 A_4 += z[j] * x_tilde[j+1]
387

388 if "F" in em_vars:
389 F = np.append(F, [A_1 @ np.linalg.inv(A_2)], 0)
390

391 if i >= 1 and np.all(np.abs(F[i+1] - F[i]) < tol_params):
392 convergence_count += 1
393 else:
394 F = np.append(F, [F_0], 0)
395

396 if "Q" in em_vars:
397 if "F" in em_vars:
398 Q_i = (A_3 - F[i+1] @ A_1.T)/T
399 else:
400 Q_i = (A_3 - A_1 @ np.linalg.inv(A_2) @ A_1.T)/T
401 if is_pos_def(Q_i) == False:
402 print(f"Q_{i} NON-SPD")
403 Q_i = force_SPD(Q_i)
404

405 Q = np.append(Q, [Q_i], 0)
406

407 if i >= 1 and np.all(np.abs(Q[i+1] - Q[i]) < tol_params):
408 convergence_count += 1
409 else:
410 Q = np.append(Q, [Q_0], 0)
411

412 if "H" in em_vars:
413 H = np.append(H, [A_4 @ np.linalg.inv(A_3)], 0)
414

415 if i >= 1 and np.all(np.abs(H[i+1] - H[i]) < tol_params):
416 convergence_count += 1
417 else:
418 H = np.append(H, [H_0], 0)
419

420 if "R" in em_vars:
421 if "H" in em_vars:
422 R_i = float((A_5 - H[i+1] @ A_4.T)/T)
423 else:
424 R_i = float((A_5 - A_4 @ np.linalg.inv(A_3) @ A_4.T)/T)
425

426 R = np.append(R, [R_i], axis = 0)
427 if i >= 1 and np.abs(R[i+1] - R[i]) < tol_params:
428 convergence_count += 1
429 else:
430 R = np.append(R, [R_0], 0)
431

432 if "xi" in em_vars:
433 xi = np.append(xi, [x_tilde[0]], axis = 0)
434

435 if i >= 1 and np.all(np.abs(xi[i+1] - xi[i]) < tol_params):
436 convergence_count += 1
437 else:
438 xi = np.append(xi, [xi_0], 0)
439

440 if "L" in em_vars:
441 L = np.append(L, [P_tilde[0]], axis = 0)
442

443 if i >= 1 and np.all(np.abs(L[i+1] - L[i]) < tol_params):
444 convergence_count += 1
445 else:
446 L = np.append(L, [L_0], axis = 0)
447

82

448 if convergence_count == len(em_vars) + 1:
449 break
450

451 iterations = i + 1
452

453 #One-dimensional case
454 else:
455 A_5 = 0
456 for j in range(T):
457 A_5 += z[j] ** 2
458

459 for i in range(max_it):
460 if i > 0 and i % 50 == 0:
461 print(f"Iteration {i}")
462 #E-step
463 x_hat_minus, P_minus, K, x_hat, P = KalmanFilter(F[i], Q[i], H[i], R[i], z, xi

[i], L[i])
464 S, x_tilde, P_tilde = KalmanSmoother(F[i], x_hat_minus, P_minus, x_hat, P)
465 V = Lag1AutoCov(K, S, F[i], H[i], P)
466

467 likelihood = np.append(likelihood, [ell(H[i], R[i], z, x_hat_minus, P_minus)],
axis = 0)

468

469 convergence_count = 0
470 if i >= 1 and likelihood[i+1] - likelihood[i] < tol_likelihood:
471 convergence_count += 1
472

473 #M-step
474 A_1 = 0
475 A_2 = 0
476 A_3 = 0
477 A_4 = 0
478

479 for j in range(T):
480 A_1 += x_tilde[j+1] * x_tilde[j] + V[j]
481 A_2 += x_tilde[j] ** 2 + P_tilde[j]
482 A_3 += x_tilde[j+1] ** 2 + P_tilde[j+1]
483 A_4 += z[j] * x_tilde[j+1]
484

485 if "F" in em_vars:
486 F = np.append(F, [A_1 / A_2], 0)
487

488 if i >= 1 and np.abs(F[i+1] - F[i]) < tol_params:
489 convergence_count += 1
490 else:
491 F = np.append(F, [F_0], 0)
492

493 if "Q" in em_vars:
494 if "F" in em_vars:
495 Q_i = (A_3 - F[i+1] * A_1)/T
496 else:
497 Q_i = (A_3 - A_1 ** 2 / A_2)/T
498

499 Q = np.append(Q, [Q_i], 0)
500

501 if i >= 1 and np.abs(Q[i+1] - Q[i]) < tol_params:
502 convergence_count += 1
503 else:
504 Q = np.append(Q, [Q_0], 0)
505

506 if "H" in em_vars:
507 H = np.append(H, [A_4 / A_3], 0)
508

509 if i >= 1 and np.abs(H[i+1] - H[i]) < tol_params:
510 convergence_count += 1
511 else:
512 H = np.append(H, [H_0], 0)
513

83

514 if "R" in em_vars:
515 if "H" in em_vars:
516 R_i = (A_5 - H[i+1] * A_4)/T
517 else:
518 R_i = (A_5 - A_4 ** 2 / A_3)/T
519

520 R = np.append(R, [R_i], axis = 0)
521 if i >= 1 and np.all(np.abs(R[i+1] - R[i]) < tol_params):
522 convergence_count += 1
523 else:
524 R = np.append(R, [R_0], 0)
525

526 if "xi" in em_vars:
527 xi = np.append(xi, [x_tilde[0]], axis = 0)
528

529 if i >= 1 and np.abs(xi[i+1] - xi[i]) < tol_params:
530 convergence_count += 1
531 else:
532 xi = np.append(xi, [xi_0], 0)
533

534 if "L" in em_vars:
535 L = np.append(L, [P_tilde[0]], axis = 0)
536

537 if i >= 1 and np.abs(L[i+1] - L[i]) < tol_params:
538 convergence_count += 1
539 else:
540 L = np.append(L, [L_0], axis = 0)
541

542 if convergence_count == len(em_vars) + 1:
543 break
544

545 iterations = i + 1
546

547 likelihood = np.delete(likelihood, 0, axis = 0)
548

549 return(F, Q, H, R, xi, L, likelihood, iterations)
550

551 def grad(F, Q, H, R, xi, L, z, x, P, V, em_vars = ["F", "Q", "H", "R", "xi", "L"]):
552 T = len(z)
553 n = len(x[0])
554 p = len(z[0])
555

556 A_1 = np.zeros((n, n))
557 A_2 = np.zeros((n, n))
558 A_3 = np.zeros((n, n))
559 A_4 = np.zeros((p, n))
560 A_5 = np.zeros((p, p))
561

562 for j in range(T):
563 A_1 += np.outer(x[j+1], x[j]) + V[j]
564 A_2 += np.outer(x[j], x[j]) + P[j]
565 A_3 += np.outer(x[j+1], x[j+1]) + P[j+1]
566 A_4 += np.outer(z[j], x[j+1])
567 A_5 += np.outer(z[j], z[j])
568

569 gradient = np.empty(1)
570

571 if "F" in em_vars:
572 gradient = np.append(gradient, np.ndarray.flatten(A_1 - F @ A_2, order = 'F'),

axis = 0)
573

574 if "Q" in em_vars:
575 gradient = np.append(gradient, np.ndarray.flatten((T * Q.T - A_3 + 2 * A_1 @ F.T -

F @ A_2 @ F.T)/2, order = 'F'), axis = 0)
576

577 if "H" in em_vars:
578 gradient = np.append(gradient, np.ndarray.flatten(A_4 - H @ A_3, order = 'F'),

axis = 0)

84

579

580 if "R" in em_vars:
581 gradient = np.append(gradient, np.ndarray.flatten((T * R.T - A_5 + 2 * A_4 @ H.T -

H @ A_3 @ H.T)/2, order = 'F'), axis = 0)
582

583 if "xi" in em_vars:
584 gradient = np.append(gradient, np.ndarray.flatten((x[0] - xi).T , order = 'F'),

axis = 0)
585

586 if "L" in em_vars:
587 gradient = np.append(gradient, np.ndarray.flatten(np.outer(x[0] - xi, x[0] - xi) +

P[0] , order = 'F'), axis = 0)
588

589 gradient = np.delete(gradient, 0, axis = 0)
590 return(gradient)
591

592 def HessianApprox(F, Q, H, R, xi, L, z, x, P, V, em_vars = ["F", "Q", "H", "R", "xi", "L"
], shift = 0.5, scale = 1000, MC_size = 10000):

593 T = len(z)
594 n = len(x[0])
595 p = len(z[0])
596

597 gen = np.random.default_rng(seed=None)
598

599 d = 0
600 for var in em_vars:
601 d += np.prod(locals()[var].shape)
602

603 Hessian = np.empty((1, d, d))
604

605 for i in range(MC_size):
606 if i % 100 == 0:
607 print(f"Simulation {i}")
608 delta = np.empty(1)
609

610 if "F" in em_vars:
611 delta = np.append(delta, (gen.binomial(1, 0.5, n ** 2) - shift) / scale, axis

= 0)
612 F_per_plus = F + np.reshape(delta[len(delta) - n ** 2:], (n, n), order = 'F')
613 F_per_minus = F - np.reshape(delta[len(delta) - n ** 2:], (n, n), order = 'F')
614 else:
615 F_per_plus = F
616 F_per_minus = F
617

618 if "Q" in em_vars:
619 delta = np.append(delta, (gen.binomial(1, 0.5, n ** 2) - shift) / scale, axis

= 0)
620 Q_per_plus = Q + np.reshape(delta[len(delta) - n ** 2:], (n, n), order = 'F')
621 Q_per_minus = Q - np.reshape(delta[len(delta) - n ** 2:], (n, n), order = 'F')
622 else:
623 Q_per_plus = Q
624 Q_per_minus = Q
625

626 if "H" in em_vars:
627 delta = np.append(delta, (gen.binomial(1, 0.5, p * n) - shift) / scale, axis =

0)
628 H_per_plus = H + np.reshape(delta[len(delta) - p * n:], (p, n), order = 'F')
629 H_per_minus = H - np.reshape(delta[len(delta) - p * n:], (p, n), order = 'F')
630 else:
631 H_per_plus = H
632 H_per_minus = H
633

634 if "R" in em_vars:
635 delta = np.append(delta, (gen.binomial(1, 0.5, p ** 2) - shift) / scale, axis

= 0)
636 R_per_plus = R + np.reshape(delta[len(delta) - p ** 2:], (p, p), order = 'F')
637 R_per_minus = R - np.reshape(delta[len(delta) - p ** 2:], (p, p), order = 'F')
638 else:

85

639 R_per_plus = R
640 R_per_minus = R
641

642 if "xi" in em_vars:
643 delta = np.append(delta, (gen.binomial(1, 0.5, n) - shift) / scale, axis = 0)
644 xi_per_plus = xi + np.reshape(delta[len(delta) - n:], n, order = 'F')
645 xi_per_minus = xi - np.reshape(delta[len(delta) - n:], n, order = 'F')
646 else:
647 xi_per_plus = xi
648 xi_per_minus = xi
649

650 if "L" in em_vars:
651 delta = np.append(delta, (gen.binomial(1, 0.5, n ** 2) - shift) / scale, axis

= 0)
652 L_per_plus = L + np.reshape(delta[len(delta) - n ** 2:], (n, n), order = 'F')
653 L_per_minus = L - np.reshape(delta[len(delta) - n ** 2:], (n, n), order = 'F')
654 else:
655 L_per_plus = L
656 L_per_minus = L
657

658 delta = np.delete(delta, 0, axis = 0)
659

660 grad_per_plus = grad(F_per_plus, Q_per_plus, H_per_plus, R_per_plus, xi_per_plus,
L_per_plus, z, x, P, V, em_vars)

661 grad_per_minus = grad(F_per_minus, Q_per_minus, H_per_minus, R_per_minus,
xi_per_minus, L_per_minus, z, x, P, V, em_vars)

662 delta_inv = 1/delta
663

664 grad_diff = grad_per_plus - grad_per_minus
665 Hessian = np.append(Hessian, [0.5 * (np.outer(grad_diff/2, delta_inv) + np.outer(

grad_diff/2, delta_inv).T)], axis = 0)
666

667 Hessian = np.delete(Hessian, 0, axis = 0)
668

669 return(np.mean(Hessian, axis=0))

86

	Introduction
	Theory
	Mathematical Preliminaries
	Hidden Markov Models
	Statistical Properties
	Linear Time-Invariant Systems
	Notation

	The Kalman Filter
	Introduction
	The Filtering Equations
	Probabilistic Origins

	Kalman Smoother
	The Smoothing Equations
	The Smoothed Autocovariance

	Expectation-Maximization
	Learning the Kalman Filter Parameters with an EM Approach: the EMKF algorithm
	The Expected Log-Likelihood of the Complete Data
	The Log-Likelihood of the Measurements
	The Parameter Update Equations
	Summary
	Partial Optimization

	Asymptotic Theory and Confidence Intervals
	Estimation of the Fisher Information Matrix

	Methods
	Data Description
	Simulated Data
	Example
	Approach
	Software Implementation

	Applications
	Simulations
	Simulation 1
	Simulation 2

	Example
	Forecasting Stock Prices
	Exploratory Analysis
	Modelling, Estimation & Results
	Forecasting

	Conclusion
	Discussion
	References
	Matrix Calculus
	Script

