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Chapter 0

Introduction

Optimal transport theory, as the name suggests, is the study of efficient movement and
allocation of resources. The field can be traced back to the XVIIIth century where the
French mathematician Gaspard Monge aimed to understand how to move soil from
the ground with a given density distribution to construct fortifications described by
another density distribution so as to minimize the total effort [13]. It turns out that
these early ideas play a role in the foundations of the field of linear programming,
the study of optimizing linear functions subject to linear constraints. Moreover, those
same ideas were rediscovered in the early XXth by Leonid Kantorovich and Leonid
Wasserstein while formalizing the notion of distance between density distributions us-
ing tools from functional analysis [23]. Nowadays, the product of these investigations
can be applied in a wide range of areas including economics [7], meteorology [14] and
machine learning [22] to name a few. While optimal transport theory is rooted in
application, it has proven to be equally interesting from a purely mathematical point
of view, connecting seemingly disparate fields such as partial differential equations,
information theory and gradient flows [9].

Another important field that is closely related to optimal transport theory is the study
of dynamical systems. It is known that for integrable Hamiltonian systems, the phase
space is foliated by invariant submanifolds that are diffeomorphic to tori whose dy-
namics are conjugate to rigid rotation [2]. For the near-integrable case, the celebrated
KAM theorem (named after Kolmogorov, Arnold and Moser) states that some in-
variant tori with quasi-periodic dynamics survive when the perturbation is small [16].
A generalization of this notion is captured by Aubry-Mather theory which describes
these invariant orbits for any perturbation using the principle of least action. In the
context of Tonelli Lagrangians, these invariant orbits are described by the Mather and
Aubry sets, which can be seen as solutions to variational problems [6]. These invariant
sets provide valuable insight on the resulting dynamics of the perturbed system and
are intricately linked to the weak solutions of the Hamilton-Jacobi equation [20].

In Chapter 1, we present the foundations of optimal transport theory following In-
troduction to Optimal Transport by Matthew Thorpe [21]. In particular, we begin
by giving a clear formulation of the optimal transport problems considered by Monge
and Kantorovich respectively. Both problems can be described as minimization prob-
lems where the objective function corresponds to the total cost of transportation.
Moreover, we consider the dual Kantorovich problem, a corresponding maximization
problem which provides valuable information about the Kantorovich problem. Lastly,
we provide sufficient conditions for the existence of a solution to the Monge problem
in a Euclidean setting and characterize solutions to the Kantorovich problem in a
general setting.
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In Chapter 2, we present, without proof, a summary of the results from my work [26]
which is based on Action-Minimizing Methods in Hamiltonian Dynamics by Alfonso
Sorrentino [20]. A statement is presented if it relevant in the explanation of the re-
lationship between optimal transportation and Aubry-Mather theory provided in the
bibliographical notes of Chapter 5 in Optimal Transport: Old and New by Cédric
Villani [24]. We begin by defining Tonelli Lagrangians and Hamiltonians on com-
pact manifolds which provide a robust framework describing many known dynamical
systems. Moreover, we consider the corresponding action-minimizing measures and
curves which provide information on the Mather and Aubry sets respectively. Lastly,
we describe a connection between optimal transport and Aubry-Mather theory using
the properties of weak KAM solutions to the Hamilton-Jacobi equation.

I would like to express my deepest gratitude to my supervisor, Marcello Seri, for being
an invaluable source of guidance, encouragement, inspiration and patience throughout
this bachelor project. I am immensely grateful for the opportunity to engage in
thought-provoking conversations in the goal of understanding optimal transportation
and Aubry-Mather theory. I warmly extend my gratitude to Alef Sterk for being an
inspiring teacher interested in becoming my second supervisor. Lastly, I would like to
thank my friends and family for their love and support without which this enterprise
would not be possible.
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Chapter 1

Optimal Transportation

This chapter is based on Introduction to Optimal Transport by Matthew Thorpe [21]
and Optimal Transport: Old and New by Cédric Villani [24].

1.1 Formulating the Optimal Transport Problem

1.1.1 The Monge Problem

The field of optimal transportation can be traced back to the XVIIIth century where
the French mathematician Gaspard Monge set out to determine the most efficient
manner of transporting mass from the ground to construct fortifications during the
Napoleonic wars. In a modern mathematical framework, the initial configuration of
mass in the ground can be represented using a probability measure µ on a measure
space X, whereas the final desired configuration can be seen as a probability measure
ν on a measure space Y . Given measurable sets A ⊆ X and B ⊆ Y , the quantity µ(A)
represents the proportion of the mass contained in the set A in the initial configuration
whereas ν(B) represents the proportion of mass that needs to be transported to the
set B in the final configuration. Using induced measures, we can combine a map
T : X → Y with a probability measure µ on X to construct a new probability
measure T#µ on Y . We say that T transports µ to ν if the induced measure T#µ
coincides with the measure ν.

Definition 1.1. A map T : X → Y is a transport map from µ to ν if

ν(A) = T#µ(A) = µ(T−1(A)) for all measurable sets A ⊆ Y.

Inherent to the problem is a measurable cost function c : X ×Y → [0,+∞] of moving
a unit of mass from a point in X to a point in Y .

X Y

µ

ν

T−1(B)

B

T

c(x, y)

x

y

Figure 1.1: The setup of the Monge formulation of the Optimal
Transport Problem.
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Given a transport map T : X → Y , the total cost of transporting µ to ν can be
computed by integrating the cost function with respect to µ over the space X, where
the second argument in the cost function is replaced by the endpoint T (x).

Definition 1.2. Let T : X → Y be a transport map from µ to ν. The total cost of
transporting µ to ν by T is defined by

M(T ) =

∫
X
c(x, T (x)) dµ(x).

To determine the most efficient way of transporting µ to ν, we minimize the total cost
of transportation over the set of all transport maps from µ to ν. This minimization
problem is known as the Monge problem.

Problem 1.3. Let µ and ν be probability measures on X and Y respectively. The
Monge problem asks to find a transport map from µ to ν minimizing the total cost of
transportation. That is, find a map T † : X → Y satisfying

M(T †) = min
T#µ=ν

M(T ).

Remark 1.4. It may happen that the set of transport maps from µ to ν is empty.
To illustrate, consider the Dirac measures

µ = δx1 and ν =
1

2
δy1 +

1

2
δy2 ,

where x1 ∈ X and y1, y2 ∈ Y are distinct. This implies that

ν({y1}) =
1

2
but µ(T−1(y1)) ∈ {0, 1}.

This means that no transport map can exist from µ to ν. From a different perspective,
this can be seen from the fact that transport maps send the entirety of the mass located
at x1 to either y1 or y2. As a result, it is impossible to achieve the desired configuration
using transport maps since mass is not allowed to split.

µ = δx1

ν = 1
2δy1 +

1
2δy2

1

1
2

1
2

Figure 1.2: Non-existence of a transport map from µ to ν.
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1.1.2 The Kantorovich Problem

The main drawback of the Monge problem is that mass is not allowed to split. Given
a transport map T : X → Y , a point mass located at x ∈ X will be entirely trans-
ported to T (x) ∈ Y . Recall from Remark 1.4 that the Monge problem can lead to
the non-existence of a transport map between suitably chosen discrete measures. As
a result, we relax the optimal transport problem by allowing mass to split.

Instead of considering transport maps, we consider probability measures π on the
product space X × Y where π(A × B) represents the proportion of the mass that is
transported from a measurable set A ⊆ X to a measurable set B ⊆ Y . For consistency,
the proportion of the mass that leaves a measurable set A ⊆ X, which is given by
π(A × Y ), must coincide with µ(A). Similarly, the proportion of the mass that gets
transported to a measurable set B ⊆ Y , which is given by π(X × B), must coincide
with ν(B). We call such measures transport plans from µ to ν.

Definition 1.5. A probability measure π on X×Y is a transport plan from µ to ν if

π(A× Y ) = µ(A) and π(X ×B) = ν(B) for all measurable sets A ⊆ X,B ⊆ Y.

Notation 1.6. We write Π(µ, ν) for the set of all transport plans from µ to ν. In
addition, we write PX : X × Y → X and P Y : X × Y → Y for the projection onto
the space X and Y respectively. By definition, it follows that

PX# π = µ and P Y#π = ν.

µ

ν

µ

ν

X × Y X × Y

π π

Figure 1.3: Transport plans from µ to ν in the case of discrete
measures and absolutely continuous measures respectively.

Remark 1.7. In the case of discrete measures of the form

µ =

m∑
i=1

αiδxi and ν =

n∑
j=1

βjδyj ,

where αi represents the proportion of the mass initially at xi and βj represents the
proportion of the mass to be transported to yj , we have that

m∑
i=1

αi =

n∑
j=1

βj = 1,
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and all transport plans from µ to ν satisfy the conditions

µ(xi) =

n∑
j=1

π(xi, yj) and ν(yj) =

m∑
i=1

π(xi, yj).

In the case where µ and ν are absolutely continuous with respect to the Lebesgue
measure, we have that transport plans satisfy

µ(A) =

∫
X×Y

1A×Y dπ and ν(B) =

∫
X×Y

1X×B dπ.

For an illustration of the conditions satisfied by transport plans, see Figure 1.3.

Remark 1.8. The set of all transport plans Π(µ, ν) is non-empty since the product
measure µ⊗ ν ∈ Π(µ, ν). This follows from the fact that µ⊗ ν is the unique measure
on X × Y satisfying

µ⊗ ν(A×B) = µ(A) · ν(B) for all measurable sets A ⊆ X,B ⊆ Y.

Moreover, the set Π(µ, ν) is convex since, for arbitrary π, η ∈ Π(µ, ν) and t ∈ [0, 1],
we have

(tπ + (1− t)η) (A× Y ) = tπ(A× Y ) + (1− t)η(A× Y )

= tµ(A) + (1− t)µ(A)

= µ(A).

Similarly, we obtain our second condition

(tπ + (1− t)η) (X ×B) = ν(B),

from which we can deduce that tπ + (1− t)η ∈ Π(µ, ν).

Given a transport plan π ∈ Π(µ, ν), the total cost of transporting µ to ν is obtained
by integrating the cost function with respect to π over the product space X × Y .

Definition 1.9. Let π ∈ Π(µ, ν). The total cost of transporting µ to ν is defined by

K(π) =

∫∫
X×Y

c(x, y) dπ(x, y).

To obtain the most efficient way of transporting µ to ν, we minimize the total cost
of transportation over the set of all transport plans from µ to ν. This minimization
problem is known as the Kantorovich problem.

Problem 1.10. Let µ and ν be probability measures on X and Y respectively. The
Kantorovich problem asks to find a transport plan from µ to ν minimizing the total
cost of transportation. That is, find π† ∈ Π(µ, ν) satisfying

K(π†) = min
π∈Π(µ,ν)

K(π).

Remark 1.11. Given a transport map T : X → Y from µ to ν, we can explicitly con-
struct a corresponding transport plan π ∈ Π(µ, ν). By the Radon-Nikodym theorem,
we can construct a measure π on the product space X × Y satisfying

dπ(x, y) = δy=T (x) dµ(x).
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This constructed probability measure π is a transport plan from µ to ν since

π(A× Y ) =

∫
A
δT (x)∈Y dµ(x) = µ(A),

π(X ×B) =

∫
X
δT (x)∈B dµ(x) = µ(T−1(B)) = T#µ(B) = ν(B).

Moreover, by the Fubini-Tonelli theorem, we have

K(π) =

∫∫
X×Y

c(x, y) dπ(x, y)

=

∫
X

∫
Y
c(x, y)δy=T (x) dy dµ(x)

=

∫
X
c(x, T (x)) dµ(x)

= M(T ).

(1.1)

Since the transport maps from µ to ν correspond to a subset of the transport plans
from µ to ν, we obtain

inf
π∈Π(µ,ν)

K(π) ≤ inf
T#µ=ν

M(T ). (1.2)

It turns out that (1.2) still holds even in the absence of minimizers for the Monge
problem. In particular, let ϵ > 0 be arbitrary and suppose that the inequality

M(T †) ≤ min
T#µ=ν

M(T ) + ϵ,

holds for some transport map T † : X → Y . This implies that

inf
π∈Π(µ,ν)

K(π) ≤ inf
T#µ=ν

M(T ) + ϵ.

Since ϵ > 0 was chosen arbitrarily, it follows that (1.2) holds. In the case that the
optimal transport plan π† satisfies

dπ†(x, y) = δy=T †(x) dµ(x),

we have that T † is an optimal transport map and equality is achieved in (1.2) using
(1.1).

In addition, the Kantorovich problem is more versatile in practice compared to the
Monge problem. This can be seen from the fact that Kantorovich problem is a convex
optimization problem since the constraints are convex by Remark 1.8 and the cost
function is typically convex. Moreover, many practical transportation problems can
be modelled using discrete measures.

Example 1.12. Suppose thatm factories produce bread which need to be transported
to n bakeries so as to minimize the total cost of transportation. We write αi for the
proportion of the total bread produced by factory xi and βj for the proportion of the
total bread that needs to be sent to bakery yj . Recall from Remark 1.7 that this
situation can be modelled using discrete measures µ and ν of the form

µ =

m∑
i=1

αiδxi and ν =
n∑
i=1

βjδyj ,
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where the coefficients αi, βj ≥ 0 satisfy

m∑
i=1

αi =

n∑
j=1

βj = 1.

We write cij = c(xi, yj) for the cost of moving a single loaf of bread from factory xi to
bakery yj and πij = π(xi, yj) for the proportion of the total bread that is moved from
factory xi to bakery yj by a transport plan π. By Remark 1.7, the total proportion of
bread that is moved from factory xi needs to be equal to αi and the total proportion
of bread that is received by bakery yj needs to be equal to βj . Thus, we have

π ∈ Π(µ, ν) if and only if πij ≥ 0 and
n∑
j=1

πij = αi and
m∑
i=1

πij = βj .

In the context of discrete measures, the Kantorovich problem asks to find a transport
plan π† ∈ Π(µ, ν) such that

m∑
i=1

n∑
j=1

cijπ
†
ij = min

π∈Π(µ,ν)

m∑
i=1

n∑
j=1

cijπij .

Note that this is a linear programming problem which can be solved using various
linear programming algorithms including the simplex method and entropic regular-
ization methods [15, Sections 3.1 and 4.1]. For a concrete example, suppose that we
have 3 factories producing bread which need to be transported to 6 bakeries according
to the following scheme.

(a) Factories and Bakeries throughout Groningen

Factory Production
1 300
2 400
3 300

Bakery Inventory
1 100
2 100
3 100
4 100
5 500
6 100

(b) Production and Inventory

Furthermore, we assume that the cost function is given by

(cij) =

1 1 1 2 2 3
3 3 2 1 1 3
1 2 3 2 1 1

 .
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By the above discussion, we obtain the probability measures

µ =
3∑
i=1

αiδxi and ν =
6∑
i=1

βjδyj ,

where

α1 = α3 = 0.3, α2 = 0.4, and β1 = β2 = β3 = β4 = β6 = 0.1, β5 = 0.5.

The above coefficients are obtained by dividing the production and inventory capac-
ities by 1000, which corresponds to the total bread in circulation in the economy.
Moreover, transport plans must satisfy

πij ≥ 0 and
6∑
j=1

πij = αi and
3∑
i=1

πij = βj .

The Kantorovich problem asks to find a transport plan π† ∈ Π(µ, ν) such that

3∑
i=1

6∑
j=1

cijπ
†
ij = min

π∈Π(µ,ν)

3∑
i=1

6∑
j=1

cijπij . (1.3)

By applying any linear programming algorithm to (1.3), we obtain a optimal transport
plan

(π†ij) =

0.1 0.1 0.1 0 0 0
0 0 0 0.1 0.3 0
0 0 0 0 0.2 0.1

 ,

which means that that the total amount of bread that needs to be sent from each
factory to each bakery can be obtained by multiplying the entries of π† by 1000,
namely

1000 · (π†ij) =

100 100 100 0 0 0
0 0 0 100 300 0
0 0 0 0 200 100

 .

1.1.3 Existence of Minimizers to the Kantorovich Problem

We now prove the existence of an optimal transport plan in the case that the cost
function is lower semi-continuous and the spaces X and Y are completely separable
metric spaces. Such spaces are called Polish spaces, since they were extensively studied
by Polish mathematicians including Sierpiński, Kuratowski and Tarski among others.
Before proving the claim, we state without proof some classical results from Functional
Analysis and Measure Theory [12, Chapter 2].

Notation 1.13. We write P(X) for the set of Borel probability measures on X and
C0
b (X) for the set of all bounded continuous functions.

Definition 1.14. A finite Borel measure µ on X is tight if for every ϵ > 0 there exists
a compact set K ⊂ X such that µ(X\K) < ϵ. A finite tight measure is also called
a Radon measure. A set Γ of Borel probability measures is tight if all measures in Γ
are tight.

In other words, tight measures are well-approximated from within by compact sets.
Moreover, the notion of tightness guarantees that the measures are "compatible" with
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the topology of the space X. For instance, a measure µ ∈ P(X) may not have a well-
defined support [10]. In the context of a completely separable metric space, such
pathologies do not occur for finite Borel measures.

Theorem 1.15. If X is a completely separable metric space, then every finite Borel
measure on X is tight.

Lastly, we equip the space P(X) with the weak* topology. In the context of probability
measures, the canonical pairing between a probability measure µ and a bounded
continuous function f on X is given by

⟨µ, f⟩ =
∫
X
f dµ.

Definition 1.16. A sequence of probability measures µn ∈ P(X) converges weak*ly
to µ ∈ P(X), written µn

∗
⇀ µ, if∫
X
f dµn →

∫
X
f dµ for all f ∈ C0

b .

The notion of tightness of measures is closely related to compactness in the weak*
topology. The relationship between the two concepts is established by Prokhorov’s
theorem.

Theorem 1.17. Let (X, d) be a completely separable metric space and let Γ ⊂ P(X).
Then, the following statements are equivalent.

1. The set Γ̄ is sequentially compact in P(X) in the weak* topology.

2. The set Γ is tight.

Now that we have introduced all the necessary tools, we are ready to prove the exis-
tence of minimizers to the Kantorovich problem.

Theorem 1.18. Let µ and ν be probability measures on Polish spaces X and Y
respectively. Suppose that c : X × Y → [0,∞] is lower semi-continuous. Then, there
exists a transport plan π† ∈ Π(µ, ν) solving the Kantorovich problem.

Proof. We prove this statement using a standard argument from calculus of variations.
We first prove that the feasible set Π(µ, ν) is compact with respect to the weak*
topology. Therefore, if πn is a minimizing sequence satisfying

K(πn) → inf
π∈Π(µ,ν)

K(π) as k → ∞,

we can extract a converging subsequence converging to π† ∈ Π(µ, ν). Note that such
a minimizing sequence exists by [8, Section 39, Remark 1]. Since the limit of the
subsequence agrees with the limit of the sequence πn, we have that πn

∗
⇀ π†. Since

the cost function c is lower semi-continuous, we can use [4, Theorem A.3.12] to deduce
that K is also lower semi-continuous which implies that

lim
n→∞

K(πn) ≥ K(π†).

Hence, the measure π† is a minimizer to the Kantorovich problem.
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Thus, it remains to be shown that the feasible set Π(µ, ν) is compact in the weak*
topology. From Remark 1.8, we know that Π(µ, ν) is non-empty. Let δ > 0 be
arbitrary. By Theorem 1.15, there exist compact sets K ⊂ X and L ⊂ Y such that

µ(X\K) ≤ δ

2
and ν(Y \L) ≤ δ

2
.

If (x, y) ∈ (X × Y )\(K × L), then either x ̸∈ K or y ̸∈ L. Hence, it follows that
(x, y) ∈ X × (Y \L) or (x, y) ∈ (X\K)× Y . This implies that for any transport plan
π ∈ Π(µ, ν), we have

π((X × Y )\(K × L)) ≤ π(X × (Y \L)) + π((X\K)× Y )

= ν(Y \L) + µ(X\K)

≤ δ.

This shows that the set of transport plans Π(µ, ν) is tight. By Theorem 1.17, we can
deduce that the closure of Π(µ, ν) is compact with respect to the weak* topology.
Thus, it suffices to show that Π(µ, ν) is weak*ly closed. Suppose that πn converges
weak*ly to π ∈ P(X × Y ). That is,∫

X×Y
f(x, y) dπn(x, y) →

∫
X×Y

f(x, y) dπ(x, y) for all f ∈ C0
b (X × Y ). (1.4)

Pick a bounded continuous function f ∈ C0
b (X×Y ) depending only on x. This means

that f(x, y) = f̃(x) for some f̃ ∈ C0
b (X). Since πn ∈ Π(µ, ν), the left-hand side of

Equation (1.4) yields∫
X×Y

f(x, y) dπn(x, y) =

∫
X×Y

f̃(x) dπn(x, y)

=

∫
X
f̃(x) dµ(x).

On the other hand, the right-hand side of Equation (1.4) yields∫
X
f(x, y) dπ(x, y) =

∫
X
f̃(x) dπ(x, y)

=

∫
X
f̃(x) dPX# π(x),

where PX denotes the projection onto X. Thus, we have that∫
X
f̃(x) dµ(x) →

∫
X
f̃(x) dPX# π(x).

Since this holds for all f̃ ∈ C0
b (X), we can deduce that PX# π = µ. The same reasoning

can be used to prove that P Y#π = ν. This shows that π ∈ Π(µ, ν) and the set of
transport plans is weak*ly closed.

Conclusion

In essence, the Monge problem can be viewed as an optimization problem where we
minimize the total cost of transportation over the set of all transport maps. However,
this problem is not always defined for arbitrary initial and final configurations since
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mass is not allowed to split. To remedy this problem, we allow for mass splitting
by considering the Kantorovich problem where transport plans are used instead of
transport maps. We have shown that we can guarantee the existence of a minimizer
to the Kantorovich problem under general conditions.
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1.2 Kantorovich Duality

1.2.1 Informal Proof of Kantorovich Duality

It turns out that the Kantorovich problem admits a dual problem. That is, there
exists a corresponding maximization problem whose solution provides information on
the primal minimization problem. In fact, we show that the duality gap is zero which
means that both problems yield the same optimal value. This is known as strong
duality. We start by providing a statement of the dual problem.

Theorem 1.19. Let µ and ν be probability measures on Polish spaces X and Y
respectively. Let c : X × Y → [0,+∞] be a lower semi-continuous cost function. We
define the function

J : L1(µ)× L1(ν) → R,

(φ,ψ) 7→
∫
X
φ dµ+

∫
Y
ψ dν.

Furthermore, we define the set Φc by

Φc = {(φ,ψ) ∈ L1(µ)× L1(ν) : φ(x) + ψ(y) ≤ c(x, y)},

where the inequality holds for µ-almost all x ∈ X and ν-almost all y ∈ Y . Then, we
have

min
π∈Π(µ,ν)

K(π) = sup
(φ,ψ)∈Φc

J(φ,ψ). (1.5)

Remark 1.20. A maximizer of the Kantorovich dual problem may not exist if the
cost function is sufficiently pathological. Thus, a supremum over Φc is employed in
the dual problem. In Section 1.2.3, we provide sufficient conditions for the existence
of such a maximizer. In practice, most cost functions satisfy these conditions.

Remark 1.21. This Kantorovich dual has an intuitive interpretation which is at-
tributed to L. Caffarelli [25, Chapter 1, 1.1.3]. Suppose that we own a bread manu-
facturing company and we need to transport the bread from the factories to bakeries
spread throughout the city. Recall that the cost of transporting a bread from factory
x to bakery y is c(x, y). Now, a clever shipping company offers to ship the bread from
the factories to the bakeries according to the following price scheme.

• We pay φ(x) for loading the bread into the trucks at factory x.

• We pay ψ(y) for unloading the trucks at bakery y.

To make the offer attractive, the shipping company ensures that we have to pay at most
the cost of transporting the bread ourselves. In other words, we have φ(x) + ψ(y) ≤
c(x, y). However, the Kantorovich duality theorem states that the shipping company
can find a price scheme (φ,ψ) such that the money gained by the shipping company
from the transaction is exactly the cost of transporting the bread to the bakeries
ourselves. In other words, there exist φ,ψ such that φ(x) + ψ(y) = c(x, y).

Proof of Theorem 1.19. The proof relies on a minimax principle which allows us to in-
terchange an infimum and a supremum. This step will be subsequently made rigorous
in Section 1.2.2. Let M+(X × Y ) denote the space of non-negative Radon measures
on the product space X × Y . We start by writing the Kantorovich problem as

inf
π∈Π(µ,ν)

K(π) = inf
π∈M+(X×Y )

(
K(π) +

{
0 if π ∈ Π(µ, ν)

+∞ else

})
. (1.6)
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Observe that{
0 if π ∈ Π(µ, ν)

+∞ else

}
= sup

(φ,ψ)

(∫
X
φ dµ+

∫
Y
ψ dν −

∫
X×Y

[φ(x) + ψ(y)] dπ(x, y)

)
,

where the supremum is taken over all (φ,ψ) ∈ C0
b (X)× C0

b (Y ). This means that the
left-hand side of (1.6) can be expressed as

inf
π∈M+(X×Y )

sup
(φ,ψ)

(∫
X×Y

c(x, y) dπ(x, y) +

∫
X
φ dµ+

∫
Y
ψ dν −

∫
X×Y

[φ(x) + ψ(y)] dπ(x, y)

)
.

Assuming that the order of the supremum and infimum can be interchanged, we can
rewrite the above equation as

sup
(φ,ψ)

inf
π∈M+(X×Y )

(∫
X×Y

c(x, y) dπ(x, y) +

∫
X
φ dµ+

∫
Y
ψ dν −

∫
X×Y

[φ(x) + ψ(y)] dπ(x, y)

)

= sup
(φ,ψ)

(∫
X
φ dµ+

∫
Y
ψ dν − sup

π∈M+(X×Y )

∫
X×Y

[φ(x) + ψ(y)− c(x, y)] dπ(x, y)

)
(1.7)

We now compute the value of the supremum inside the brackets. We distinguish two
cases.

• Suppose that φ(x0) + ψ(y0) − c(x0, y0) > 0 for some (x0, y0) ∈ X × Y . In this
case, we can consider the Borel measure π = λδ(x0,y0). By letting λ → +∞, we
can deduce that the supremum is infinite.

• Suppose that φ(x)+ψ(y)− c(x, y) ≤ 0 for dµ⊗dν-almost every (x, y) ∈ X×Y ,
we see that the supremum is attained for the zero measure π = 0. Hence, we
can conclude that

sup
π∈M+(X×Y )

∫
X×Y

[φ(x) + ψ(y)− c(x, y)] dπ(x, y) =

{
0 if (φ,ψ) ∈ Φc

+∞ else.

Thus, we substitute the above in (1.7) to conclude that

inf
π∈Π(µ,ν)

K(π) = sup
(φ,ψ)∈Φc

J(φ,ψ).

1.2.2 Rigorous Proof of Kantorovich Duality

Note that in the proof of Theorem 1.19, we interchange an infimum and a supremum
without proof. In this section, we make this step rigorous by proving Theorem 1.19
in two steps. We start with the simpler step.

Lemma 1.22. Under the same assumptions as Theorem 1.19, we have

inf
π∈Π(µ,ν)

K(π) ≥ sup
(φ,ψ)∈Φc

J(φ,ψ).

Proof. Let π ∈ Π(µ, ν) be arbitrary. We start by showing that the inequality

φ(x) + ψ(y) ≤ c(x, y). (1.8)



1.2. Kantorovich Duality 15

holds for π-almost every (x, y) ∈ X × Y . Let (φ,ψ) ∈ Φc be arbitrary. Then, there
exist subsets A ⊂ X and B ⊂ Y such that µ(A) = 1 and ν(B) = 1 satisfying

φ(x) + ψ(y) ≤ c(x, y)

for all (x, y) ∈ A×B. Note that

π(Ac ×Bc) ≤ π(Ac × Y ) + π(X ×Bc) = µ(Ac) + ν(Bc) = 0.

This implies that

π(A×B) = π(X ×B)− π(Ac ×B)

= ν(B)− π(Ac × Y ) + π(Ac ×Bc)

= 1− µ(Ac) + π(Ac ×Bc)

= 1.

This means that the inequality φ(x)+ψ(y) ≤ c(x, y) holds for π-almost every (x, y) ∈
X × Y . This allows us to conclude that

K(π) =

∫
X×Y

c(x, y) dπ(x, y) ≥
∫
X×Y

[φ(x) + ψ(y)] dπ(x, y)

=

∫
X
φ dµ+

∫
Y
ψ dν = J(φ,ψ).

(1.9)

By taking the infimum over all π ∈ Π(µ, ν) on the left-hand side of (1.9) and the
supremum over all (φ,ψ) ∈ Φc on the right-hand side of (1.9), we obtain the desired
result.

The proof of the reverse inequality uses a powerful tool from convex analysis called
the Fenchel-Rockafellar duality theorem [25, Theorem 1.9] which relates a primal min-
imization problem to a corresponding dual maximization problem using the Legendre-
Fenchel transform.

Definition 1.23. Let φ : X → R̄ be a real-valued function onX. Then, the Legendre-
Fenchel transforms φ∗ and φ∗∗ are defined by

φ∗ : X∗ → R̄
x∗ 7→ sup

x∈X
(⟨x∗, x⟩ − φ(x)),

φ∗∗ : X∗∗ → R̄
x∗∗ 7→ sup

x∗∈X∗
(⟨x∗∗, x∗⟩ − φ∗(x∗)),

where ⟨·, ·⟩ denotes the canonical pairing between covectors and vectors.

Remark 1.24. The Legendre-Fenchel transform gives rise to the Legendre-Fenchel
inequality

⟨x∗, x⟩ ≤ φ(x) + φ∗(x∗),

where x ∈ X and x∗ ∈ X∗.

Theorem 1.25. Let E be a normed vector space and Θ,Ξ : E → R ∪ {+∞} be
convex functions. Suppose that there exists z0 ∈ E such that Θ and Ξ are both finite
at z0 and Θ is continuous at z0. Then,

inf
z∈E

(Θ(z) + Ξ(z)) = max
z∗∈E∗

(−Θ∗(−z∗)− Ξ∗(z∗)). (1.10)
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Remark 1.26. Note that the supremum on the right-hand side of (1.10) is attained
for some z∗ ∈ E∗.

We now consider the reverse inequality in Lemma 1.27. The proof of this step is much
longer and significantly more involved. We only present the case where X and Y are
compact and the cost function is continuous. The reader may safely ignore the details
of the proof on the first reading. The proof of the statement in complete generality
can be found in [25, pp. 28-32].

Lemma 1.27. Under the same assumptions as Theorem 1.19, we have

inf
π∈Π(µ,ν)

K(π) ≤ sup
(φ,ψ)∈Φc

J(φ,ψ).

The statement is proved in three successive parts, with assumptions of increasing
generality.

1. The spaces X and Y are compact and the cost function is continuous.

2. The spaces X and Y are no longer compact, but the cost function c is still
continuous.

3. The cost function c is only assumed to be lower semi-continuous.

Proof of Lemma 1.27.1. Suppose that X and Y are compact and that the cost func-
tion c is continous. We start by showing that all the conditions in Theorem 1.25 are
satisfied. Let E = C0

b (X × Y ) be equipped with the supremum norm. Then, the
Riesz-Markov-Kakutani representation theorem [18, Theorem 6.19] states that the
dual space E∗ is given by the space of Radon measures M(X × Y ). We define the
functions

Θ : C0
b (X × Y ) → R ∪ {+∞}

u 7→

{
0 if u(x, y) ≥ −c(x, y)
+∞ otherwise,

Ξ : C0
b (X × Y ) → R ∪ {+∞}

u 7→

{∫
X φ(x) dµ(x) +

∫
Y ψ(y) dν(y) if u(x, y) = φ(x) + ψ(y)

+∞ otherwise.

Despite the fact that the representation of u(x, y) = φ(x) + ψ(y) is not unique (for
instance, take φ̃(x) = φ(x) + s and ψ̃(y) = ψ(y) − s where s ∈ R) the map Ξ is still
well-defined.

We first show that Θ is convex. Let u, v ∈ C0
b (X ×Y ) and λ ∈ [0, 1] be arbitrary. We

distinguish two cases.

• If both Θ(u),Θ(v) <∞, we have u(x, y), v(x, y) ≥ −c(x, y) which implies that

λu(x, y) + (1− λ)v(x, y) ≥ −c(x, y).

Hence, we can deduce that

Θ(λu+ (1− λ)v) = 0 = λΘ(u) + (1− λ)Θ(v).
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• If Θ(u) = +∞ or Θ(v) = +∞, we immediately obtain

Θ(λu+ (1− λ)v) ≤ λΘ(u) + (1− λ)Θ(v).

We now show that the map Ξ is convex. Let u, v ∈ C0
b (X × Y ) and λ ∈ [0, 1] be

arbitrary. Again, we distinguish two cases.

• If both Ξ(u),Ξ(v) <∞, we have that

u(x, y) = φ(x) + ψ(y) and v(x, y) = φ̃(x) + ψ̃(y).

By grouping terms that depend on x and y respectively, we obtain

λu(x, y) + (1− λ)v(x, y) = [λφ(x) + (1− λ)φ̃(x)] + [λψ(y) + (1− λ)ψ̃(y)].

By applying the definition of the map Ξ, we get

Ξ(λu+(1−λ)v) =
∫
X
[λφ+(1−λ)φ̃] dµ+

∫
Y
[λψ+(1−λ)ψ̃] dν = λΞ(u)+(1−λ)Ξ(v).

• If Ξ(u) = +∞ or Ξ(v) = +∞, we immediately obtain

Ξ(λu+ (1− λ)v) ≤ λΞ(u) + (1− λ)Ξ(v).

We now check the remaining conditions of Theorem 1.25 with z0 ≡ 1. We see that
both Θ(z0),Ξ(z0) < ∞ and the fact that Θ is continous at z0 ≡ 1 follows from an
ϵ− δ argument.

Let ϵ > 0 be arbitrary. Pick δ = 1
2 . Then, we have

∥u− 1∥∞ < δ ⇒ sup
(x,y)∈X×Y

|u(x, y)− 1| < 1

2
.

Hence, it follows that u(x, y) > 0 for all (x, y) ∈ X × Y . Thus, we obtain

|Θ(u)−Θ(1)| = 0 < ϵ.

Thus, Theorem 1.25 yields

inf
u∈E

(Θ(u) + Ξ(u)) = max
π∈E∗

(−Θ∗(−π)− Ξ∗(π)). (1.11)

By considering the left-hand side of (1.11), we obtain

inf
u∈E

(Θ(u)+Ξ(u)) ≥ inf
φ(x)+ψ(y)≥−c(x,y)
φ∈L1(µ),ψ∈L1(ν)

∫
X
φ(x) dµ(x)+

∫
Y
ψ(y) dν(y) = − sup

(φ,ψ)∈Φc

J(φ,ψ).

By considering the right-hand side of (1.11), we compute the Legendre-Fenchel trans-
form of the functions Θ and Ξ. Since E∗ = M(X × Y ), we note that the canonical
pairing between u ∈ E and π ∈ E∗ is given by

⟨π, u⟩ =
∫
X×Y

u dπ.
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We first compute the Legendre-Fenchel transform of Θ.

Θ∗(−π) = sup
u∈E

(⟨π, u⟩ −Θ(u))

= sup
u∈E

(
−
∫
X×Y

[u−Θ(u)] dπ

)
= sup

u≥−c
−
∫
X×Y

u dπ

= sup
u≤c

∫
X×Y

u dπ.

We distinguish two cases.

• If π ∈ M+(X × Y ) is a non-negative Radon measure on X × Y , it follows that

sup
u≤c

∫
X×Y

u dπ =

∫
X×Y

c dπ.

• If π ∈ M(X × Y )\M+(X × Y ) then taking u→ −∞ yields

sup
u≤c

∫
X×Y

u dπ = ∞.

To summarize, we have

Θ∗(−π) =

{∫
X×Y c dπ if π ∈ M+(X × Y )

+∞ otherwise.

We now compute the Legendre-Fenchel transform of Ξ.

Ξ∗(π) = sup
u∈E

(⟨π, u⟩ − Ξ(u))

= sup
u∈E

(∫
X×Y

u dπ − Ξ(u)

)
= sup

u(x,y)=φ(x)+ψ(y)

(∫
X×Y

u dπ −
∫
X
φ(x) dµ(x)−

∫
Y
ψ(y) dν(y)

)
= sup

u(x,y)=φ(x)+ψ(y)

(∫
X
φ(x) d(PX# π − µ)(x) +

∫
Y
ψ(y) d(P Y# − ν)(y)

)
.

Hence, we obtain

Ξ∗(π) =

{
0 if π ∈ Π(µ, ν)

+∞ otherwise.

Thus, from (1.11), we obtain

− min
π∈Π(µ,ν)

K(π) = max
π∈E∗

(−Θ∗(−π)− Ξ∗(π)) = inf
u∈E

(Θ(u) + Ξ(u)) ≥ − sup
(φ,ψ)∈Φc

J(φ,ψ),

which implies that
min

π∈Π(µ,ν)
K(π) ≤ sup

(φ,ψ)∈Φc

J(φ,ψ).
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Proof of Lemma 1.27.2 and 1.27.3. The proof of these parts is longer and significantly
more involved. For the sake of clarity, these proofs are omitted and can be found in
[25, pp. 28-32].

1.2.3 Existence of Maximizers to the Dual Kantorovich Problem

In this section, we provide sufficient conditions for the existence of a maximizer to the
Kantorovich dual problem. To do so, we introduce a tool pioneered by Rüschendorf
[19] which is similar in structure to the Legendre-Fenchel transform. This tool trans-
forms real-valued functions defined on the initial space X into real-valued functions
defined on the target space Y using the cost function c that inherent to the optimal
transport problem.

Definition 1.28. Let φ : X → R̄ be a real-valued function on X. Then the c-
transforms φc and φcc are defined by

φc : Y → R̄
y 7→ inf

x∈X
(c(x, y)− φ(x)),

φcc : X → R̄
x 7→ inf

y∈Y
(c(x, y)− φc(y)).

Example 1.29. In the context of factories and bakeries, the c-transform φc(y) rep-
resents the best possible price such that we can unload the bread at bakery y since
the cost of unloading the bread satisfies

ψ(y) ≤ c(x, y)− φ(x),

and we are taking the greatest lower bound. Similarly, ψc(x) represents the best
possible price such that we can load the bread at factory x.

For probability measures on Polish spaces, the existence of a minimizer to the Kan-
torovich dual problem follows whenever the cost function can be bounded above by
the sum of two integrable functions, one defined on the initial space and the other on
the target space.

Theorem 1.30. Let µ and ν be probability measures on Polish spaces X and Y
respectively and c : X × Y → [0,∞] be a cost function. Suppose that there exist
integrable functions cX ∈ L1(µ) and cY ∈ L1(ν) such that the inequality c(x, y) ≤
cX(x) + cY (y) holds for µ-almost every x ∈ X and ν-almost every y ∈ Y . Define

M =

∫
X
cX dµ+

∫
Y
cY dν <∞.

Then, there exists (φ†, ψ†) ∈ Φc such that

sup
(φ,ψ)∈Φc

J(φ,ψ) = J(φ†, ψ†),

where the pair (φ†, ψ†) can be chosen such that (φ†, ψ†) = (ηcc, ηc) for some η ∈ L1(µ).

To prove this statement, we start by restricting the pairs (φ,ψ) ∈ Φc that we need to
consider as candidates for the maximizer of the Kantorovich dual problem. Namely,
only c-transform pairs need to be considered.
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Lemma 1.31. Let µ and ν be probability measures on Polish spaces X and Y re-
spectively and c : X × Y → [0,+∞] be a cost function. Then, for all a ∈ R and
(φ̃, ψ̃) ∈ Φc, we have that (φ,ψ) = (φ̃cc − a, φ̃c + a) satisfies the inequalities

J(φ,ψ) ≥ J(φ̃, ψ̃) and φ(x) + ψ(y) ≤ c(x, y),

for µ-almost every x ∈ X and ν-almost every y ∈ Y . Furthermore, if the inequalities

J(φ̃, ψ̃) > −∞ and M < +∞

hold, where M is defined as in Theorem 1.30 and there exist cX ∈ L1(µ), cY ∈ L1(ν)
such that φ ≤ cX and ψ ≤ cY , then the pair (φ,ψ) ∈ Φc.

Proof. It is clear that for all a ∈ R, we have J(φ−a, ψ+a) = J(φ,ψ) for all φ ∈ L1(µ)
and ψ ∈ L1(ν). To show that J(φ,ψ) ≥ J(φ̃, ψ̃), it suffices to show that φ = φ̃cc ≥ φ̃
and that ψ = φ̃c ≥ ψ̃.

Using the fact that φ̃(x) + ψ̃(y) ≤ c(x, y), we can deduce that

ψ(y) = inf
x∈X

(c(x, y)− φ̃(x)) ≥ ψ̃(y),

φ(x) = inf
y∈Y

sup
z∈X

(c(x, y)− c(z, y) + φ̃(z)) ≥ φ̃(x).

where the last inequality is obtained by setting z = x. Moreover, by the definition of
the c-transform, we obtain

φ(x) + ψ(y) = inf
z∈Y

(c(x, z)− φ̃(z) + φ̃c(y)) ≤ c(x, y)

where the last inequality is obtained by setting z = y. Since φ(x)+ψ(y) ≤ c(x, y), to
prove that (φ,ψ) ∈ Φc, it remains to be shown that φ ∈ L1(µ) and ψ ∈ L1(ν). Using
the fact that J(φ,ψ) ≥ J(φ̃, ψ̃), we obtain∫

X
[φ− cX ] dµ+

∫
Y
[φ(y)− cY ] dν = J(φ,ψ)−M ≥ J(φ̃, ψ̃)−M.

By assumption, we know that φ− cX ≤ 0 and ψ− cY ≤ 0. Hence, we can deduce that
both integrals on the left-hand side of the inequality are negative. Thus, it follows
that

∥φ− cX∥L1(µ) + ∥ψ − cY ∥L1(ν) = −
∫
X
[φ− cX ] dµ−

∫
Y
[ψ − cY ] dν

≤M − J(φ̃, ψ̃).

This means that both norms are finite and so φ − cX ∈ L1(µ) and ψ − cY ∈ L1(ν).
Hence, we have shown that φ ∈ L1(µ) and ψ ∈ L1(ν).

Under the same assumptions as Theorem 1.30, we can guarantee the existence of a
maximizing sequence in Φc for the maximization problem in the right-hand side of
(1.5). Moreover, this sequence can be chosen to satisfy an upper bound condition.

Lemma 1.32. Under the same assumptions as Theorem 1.30, there exists a sequence
(φk, ψk) ∈ Φc such that

J(φk, ψk) → sup
(φ,ψ)∈Φc

J(φ,ψ),
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where the sequences φk, ψk satisfy the pointwise upper bounds

φk(x) ≤ cX(x) and ψk(y) ≤ cY (y),

for all k ∈ N, x ∈ X and y ∈ Y .

Proof. Let (φ̃k, ψ̃k) ∈ Φc be a maximizing sequence satisfying

J(φ̃k, ψ̃k) → sup
(φ,ψ)∈Φc

J(φ,ψ) as k → ∞.

Such a maximizing sequence exists by [8, Section 41, Remark 1]. Since we have the
inequalities

0 ≤ sup
(φ,ψ)∈Φc

J(φ,ψ) ≤ inf
π∈Π(µ,ν)

K(π) ≤M <∞,

we can deduce that the sequences φ̃k, ψ̃k can never attain the values ±∞. We define
a new sequence (φk, ψk) = (φ̃cck − ak, ψ̃

c
k + ak) where

ak = inf
y∈Y

(cY (y)− φ̃ck(y)).

By Lemma 1.31, we can deduce that the sequence (φk, ψk) is a maximizing sequence
with (φk, ψk) ∈ Φc if we can show that φk ≤ cX and ψk ≤ cY .

We first show that the sequence (φk, ψk) is well-defined. We do this by showing that
ak ∈ R. Since (φ̃k, ψ̃k) ∈ Φc, we have that for all y ∈ Y ,

φ̃k(x) ≤ c(x, y)− ψ̃k(y).

Since both the cost function c and the sequence ψ̃k(y) are bounded, there exists some
y0 ∈ Y and b0 ∈ R which may depend on k such that

φ̃k(x) ≤ c(x, y0) + b0.

From this, we can conclude that

φ̃ck(y0) = inf
x∈X

(c(x, y0)− φ̃k(x)) ≥ −b0.

This means that we can construct an have an upper bound for ak since

ak ≤ cY (y0)− φck(y0) ≤ cY (y0) + b0 <∞.

To show that ak is bounded below, by assumption, we have

cY (y)−φ̃ck(y) = sup
x∈X

(cY (y)−c(x, y)+φ̃k(x)) ≥ sup
x∈X

(φ̃k(x)−cX(x)) ≥ φ̃k(x0)−cX(x0),

for any x0 ∈ X. This means that

ak = inf
y∈Y

(cY (y)− φ̃ck(y)) ≥ φ̃k(x0)− cX(x0).

We now show that the pair (φk, ψk) satisfies the pointwise upper bounds. Note that

ψk = φ̃ck(y) + ak ≤ cY (y).
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For the second bound, note that

φk(x)− cX(x) = φ̃cck (x)− ak − cX(x)

= inf
y∈Y

(c(x, y)− φ̃ck(y)− ak − cX(x))

≤ inf
y∈Y

(cY (y)− φ̃ck(y)− ak)

= 0.

Thus, we can conclude that
φk(x) ≤ cX(x).

We use Lemma 1.31 and Lemma 1.32 to prove the existence of a maximizer to the
Kantorovich dual problem under the assumptions of Theorem 1.30.

Proof of Theorem 1.30. Let (φk, ψk) ∈ Φc be a maximizing sequence obtained from
Lemma 1.32. We define the sequences

φ
(l)
k (x) = max{φk(x)− cX(x),−l}+ cX(x),

ψ
(l)
k (y) = max{ψk(y)− cY (y),−l}+ cY (y).

Observe that we have
φk ≤ φ

(l)
k and ψk ≤ ψ

(l)
k . (1.12)

Moreover, for a fixed k ∈ N, we have that φ(l)
k and ψ(l)

k are monotonically decreasing
sequences of functions. Furthermore, for all k, l ∈ N, we have the inequalities

−l ≤ φ
(l)
k − cX ≤ 0,

−l ≤ ψ
(l)
k − cY ≤ 0.

(1.13)

Lastly, we obtain

φ
(l)
k (x) + ψ

(l)
k (y) ≤ max{φk(x)− cX(x) + ψk(y)− cY (y),−l}+ cX(x) + cY (y)

≤ max{c(x, y)− cX(x)− cY (y),−l}+ cX(x) + cY (y),
(1.14)

where the last inequality follows from the fact that (φk, ψk) ∈ Φc. Since Lp(µ) is a
reflexive Banach space for all p ∈ (1,∞) and the sequence φ(l)

k is a bounded sequence
for a fixed l ∈ N, we have that the set{

φ
(l)
k

}
k∈N

is weakly compact subset of Lp(µ) for all p ∈ (1,∞). By choosing p = 2, we can
deduce that, there exists a subsequence of φ(l)

k converging weakly to φ(l) ∈ L1(µ). Let
I1 denote the indices of the corresponding weakly converging subsequence of φ(1)

k . By
repeating the above argument with {φ(2)

k }k∈I1 , we have that there exists a subsequence
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of {φ(2)
k }k∈I1 converging weakly to φ(2) ∈ L1(µ). Proceeding inductively, we obtain

φ
(1)
k ⇀ φ(1) along I1 ⊆ N,

φ
(2)
k ⇀ φ(2) along I2 ⊆ I1,

...

φ
(l)
k ⇀ φ(l) along Il ⊆ Il−1,

...

Consider the indices

I = {kn ∈ N : kn is the nth element of In}.

This implies that

φ
(l)
k ⇀ φ(l) ∈ L1(µ) along I ⊆ N for all l ∈ N.

Using the same diagonalization argument, we also deduce that for some subset J ⊆ N
of indices, we have

ψ
(l)
k ⇀ ψ(l) ∈ L1(ν) along J ⊆ N for all l ∈ N.

Since weak limits preserve order, for all l ∈ N, we obtain

cX ≥ φ(1) and φ(l) ≥ φ(l+1),

cY ≥ ψ(1) and ψ(l) ≥ ψ(l+1).

By applying the monotone convergence theorem, we get

lim
l→∞

∫
X
φ(l) dµ =

∫
X
φ† dµ,

lim
l→∞

∫
Y
ψ(l) dν =

∫
Y
ψ† dν,

where φ† and ψ† are the pointwise limits of φ(l) and ψ(l) respectively. We claim that
(φ†, ψ†) is a maximizer to the Kantorovich dual problem. To do so, we show that
(φ†, ψ†) ∈ Φc and J(φ†, ψ†) ≥ J(φ,ψ) for all (φ,ψ) ∈ Φc. To prove the latter, note
that for all l ∈ N, we have

sup
(φ,ψ)∈Φc

J(φ,ψ) = lim
k→∞

J(φk, ψk) ≤ lim
k→∞

J(φ(l)
k , ψ

(l)
k ) = J(φ(l), ψ(l)),

where the inequality follows from (1.12). Thus, we have

sup
(φ,ψ)∈Φc

J(φ,ψ) ≤ lim
l→∞

J(φ(l), ψ(l)) = J(φ†, ψ†).

To prove that (φ†, ψ†) ∈ Φc, we let l → ∞ in (1.14) to deduce

φ†(x) + ψ†(y) ≤ c(x, y).
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It remains to show integrability of φ and ψ. Note that

sup
(φ,ψ)∈Φc

J(φ,ψ)−M ≤
∫
X
[φ† − cX ] dµ+

∫
Y
[ψ† − cY ] dν

≤ 0.

(1.15)

By letting l → ∞ in (1.13), we have that φ† − cX ≤ 0 and ψ† − cY ≤ 0. Thus, we can
deduce that both integrals in (1.15) are finite. Hence, it follows that φ† − cX ∈ L1(µ)
and ψ† − cY ∈ L1(ν). Thus, we conclude φ† ∈ L1(µ) and ψ† ∈ L1(ν).

To prove the last part of Theorem 1.30, we use Lemma 1.31 to deduce that for all
a ∈ R, we have

J(φ†, ψ†) ≤ J((φ†)cc − a, (φ†)c + a) = J((φ†)cc, (φ†)c).

Thus, it suffices to show that the pair ((φ†)cc, (φ†)c) ∈ L1(µ)× L1(ν). We define

a = inf
y∈Y

(cY (y)− (φ†)c(y)).

Using the same argument showing that ak ∈ R in the proof of Lemma 1.32, we have
that a ∈ R. Since a is a lower bound, we have

(φ†)c(y) + a ≤ cY (y).

Moreover, by the definition of c-transform, we have

(φ†)cc(x)−a = inf
y∈Y

(c(x, y)−(φ†)c(y)−a) ≤ inf
y∈Y

(cX(x)+cY (y)−(φ†)c(y)−a) ≤ cX(x).

Using Lemma 1.31, we have ((φ†)cc − a, (φ†)c + a) ∈ L1(µ)× L1(ν). Hence, we have
((φ†)cc, (φ†)c) ∈ L1(µ)× L1(ν).

Conclusion

Since the Kantorovich problem is a convex optimization problem, it is not surprising
that it admits a corresponding dual problem. This maximization problem provides
valuable information about the original minimization problem since the duality gap is
equal to zero. To guarantee the existence of a maximizer, some additional assumptions
on the cost function must be imposed. In this case, the maximizers take the form of
c-transform pairs.
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1.3 Existence and Characterization of Transport

1.3.1 Euclidean Setting

After proving the existence of minimizers to the Kantorovich problem in Section 1.1.3
and the existence of maximizers to the dual Kantorovich problem in Section 1.2.3,
we now characterize the optimality of transport plans in the Euclidean setting. In
particular, we consider probability measures µ and ν on subsets of Rn where the cost
function is given by c(x, y) = 1

2∥x − y∥2. To guarantee that the cost function is
well-behaved, we make some assumptions on the integrability of ∥x∥2 and ∥y∥2.

Definition 1.33. Let µ and ν be probability measures on X,Y ⊆ Rn respectively.
We say that µ and ν have finite second moments if∫

X
∥x∥2 dµ(x) <∞ and

∫
Y
∥y∥2 dν(y) <∞.

Before characterizing the optimality of transport plans, a brief reminder of the neces-
sary tools from convex analysis is provided. More details can be found in [17].

Definition 1.34. Let φ : Rn → R be a convex function. Then, the subdifferential of
φ at x is defined by

∂φ(x) = {y ∈ Rn : φ(z) ≥ φ(x) + ⟨y, z − x⟩ for all z ∈ Rn}.

Moreover, we write
∂φ = {(x, y) ∈ X × Y : y ∈ ∂φ(x)}.

Theorem 1.35. Let φ : Rn → R be a proper, lower semi-continuous convex function.
For all x, y ∈ Rn, we have the characterization

φ(x) + φ∗(y) = x · y if and only if y ∈ ∂φ(x).

Theorem 1.36. Let φ : Rn → R be a convex function. Then, the following statements
hold.

1. The map φ is differentiable almost everywhere with respect to the Lebesgue
measure.

2. If the map φ is differentiable at x, then its subgradient at x is given by

∂φ(x) = {∇φ(x)}.

Theorem 1.37. Let φ : Rn → R ∪ {+∞} be a proper function. Then, the following
are equivalent.

1. The map φ is convex and lower semi-continuous.

2. We have φ = ψ∗ for some proper function ψ : Rn → R.

3. We have φ∗∗ = φ.

Equipped with the tools from convex analysis, we state a characterization for the
optimality of transport plans known as the Knott-Smith criterion. A generalization
to the case where X and Y are Polish spaces equipped with a general cost function is
provided in Section 1.3.2.
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Theorem 1.38. Let µ and ν be probability measures on X,Y ⊆ Rn respectively with
finite second moments. Then, the transport plan π† ∈ Π(µ, ν) is a minimizer to the
Kantorovich problem with cost c(x, y) = 1

2∥x−y∥
2 if and only if there exists a convex,

lower semi-continuous function φ̃ ∈ L1(µ) such that

supp π† ⊆ ∂φ̃,

which is equivalent to y ∈ ∂φ̃(x) for π†-almost every (x, y) ∈ X × Y . Furthermore,
the pair (φ̃, φ̃∗) satisfies

J(φ̃, φ̃∗) = min
(φ,ψ)∈Φ̃

J(φ,ψ),

where the set Φ̃ is defined by

Φ̃ =
{
(φ,ψ) ∈ L1(µ)× L1(ν) : φ(x) + ψ(y) ≥ x · y

}
.

Proof. We start by expressing the Kantorovich problem in the Euclidean context. Let
(φ,ψ) ∈ Φc. Define

φ̃(x) =
1

2
∥x∥2 − φ(x) and ψ̃(y) =

1

2
∥y∥2 − ψ(y).

Since both µ and ν have finite second moments, we have that φ̃ ∈ L1(µ) and ψ̃(y) ∈
L1(ν). Moreover, we have

φ̃(x) + ψ̃(y) =
1

2
∥x∥2 + 1

2
∥y∥2 − φ(x)− ψ(y) ≥ 1

2
∥x∥2 + 1

2
∥y∥2 − 1

2
∥x− y∥2 = x · y

Furthermore, it holds that

φ(x) + ψ(y) =
1

2
∥x∥2 − φ̃(x) +

1

2
∥y∥2 − ψ̃

≤ 1

2

(
∥x∥2 + ∥y∥2 − x · y

)
= c(x, y).

Hence, we have shown that (φ,ψ) ∈ Φc if and only if (φ̃, ψ̃) ∈ Φ̃. Moreover, if

M =
1

2

∫
X
∥x∥2 dµ(x) + 1

2

∫
Y
∥y∥2 dν(y),

it also follows that J(φ̃, ψ̃) = M − J(φ,ψ). Thus, any transport plan π ∈ Π(µ, ν)
satisfies

K(π) =
1

2

∫
X×Y

∥x− y∥2 dπ(x, y) =M −
∫
X×Y

x · y dπ(x, y),

which implies that

M − J(φ̃, ψ̃) = J(φ,ψ) ≤ K(π) =M −
∫
X×Y

x · y dπ(x, y).

Applying Theorem 1.19, we obtain

max
(φ,ψ)∈Φ̃

M−J(φ,ψ) = max
(φ,ψ)∈Φc

J(φ,ψ) = min
π∈Π(µ,ν)

K(π) = min
π∈Π(µ,ν)

M−
∫
X×Y

x·y dπ(x, y),
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which yields

min
(φ,ψ)∈Φ̃

J(φ,ψ) = max
π∈Π(µ,ν)

∫
X×Y

x · y dπ(x, y). (1.16)

Note that if π† minimizes K, then π† also maximizes the integral in the right-hand
side of (1.16) and vice versa. Similarly, if (φ,ψ) ∈ Φc maximizes J, then (φ̃, ψ̃) ∈ Φ̃
minimizes J and vice versa. Using Theorem 1.30, we can further characterize the pair
(φ̃, ψ̃) as

φ̃(x) =
1

2
∥x∥2 − φcc(x) and ψ̃(y) =

1

2
∥y∥2 − φc(y).

This means that
ψ̃(y) =

1

2
∥y∥2 − φc(y)

= sup
x∈X

(
1

2
∥y∥2 + φ(x)− 1

2
∥x− y∥2

)
= sup

x∈X
(x · y − φ̃(x))

= φ̃∗(y),

and
φ̃(x) =

1

2
∥x∥2 − φcc(x)

= sup
y∈Y

(
1

2
∥x∥2 − 1

2
∥x− y∥2 + φc(y)

)
= sup

y∈Y

(
1

2
∥x∥2 − 1

2
∥x− y∥2 + φc(y)

)
= sup

y∈Y

(
1

2
∥x∥2 − 1

2
∥x− y∥2 + 1

2
∥y∥2 − ψ̃(y)

)
= sup

y∈Y

(
1

2
∥x∥2 − 1

2
∥x− y∥2 + 1

2
∥y∥2 − φ̃∗(y)

)
= sup

y∈Y
(x · y − φ̃∗(y))

= φ̃∗∗(x).

In other words, pairs minimizing J are of the expected form (φ̃∗∗, φ̃∗). Using Theorem
1.37, we have that φ̃ is convex and lower semi-continuous with φ̃∗∗∗ = φ̃∗. Thus, we
have shown that

J(φ̃, φ̃∗) = min
(φ,ψ)∈Φ̃

J(φ,ψ), (1.17)

where φ̃ is a proper, convex and lower semi-continuous function.

Now that we have expressed the Kantorovich problem in the Euclidean context, we
prove the Knott-Smith criterion. Let π† ∈ Π(µ, ν) be a minimizer and φ̃ be a proper,
convex, lower semi-continuous function as given in (1.17). By (1.16), we have∫

X
φ̃(x) dµ(x) +

∫
Y
φ̃∗(y) dν(y) =

∫
X×Y

x · y dπ†(x, y),

which can be expressed as∫
X×Y

[φ̃(x) + φ̃∗(y)− x · y] dπ†(x, y) = 0. (1.18)
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Using Remark 1.24, we obtain

x · y ≤ φ̃(x) + φ̃∗(y),

from which we can deduce that the integral in (1.18) is non-negative. This implies
that

φ̃(x) + φ̃∗(y) = x · y for π†-almost every (x, y) ∈ X × Y .

Hence, we can deduce that y ∈ ∂φ̃(x) for π†-almost every (x, y) ∈ X ×Y by Theorem
1.35.

Conversely, suppose that y ∈ ∂φ̃(x) for π†-almost every (x, y) ∈ X × Y where φ ∈
L1(µ) is a proper, convex and lower semi-continuous function. Using Theorem 1.35,
we have that φ̃(x) + φ̃∗(y) = x · y for π†-almost every (x, y) ∈ X × Y . This implies
that ∫

X
φ̃(x) dµ(x) +

∫
Y
φ̃∗(y) dν(y) =

∫
X×Y

x · y dπ†(x, y).

To show that (φ̃, φ̃∗) ∈ Φ̃, it suffices to show that φ∗ ∈ L1(ν). By Remark 1.24, note
that

φ̃∗(y) ≥ x0 · y − φ̃(x0),

for some x0 ∈ X. Define f(y) = x0 · y − φ̃(x0). This means that

∥φ̃∗ − f∥L1(ν) =

∫
Y
[φ̃∗(y)− f(y)] dν(y)

= J(φ̃, φ̃∗)−
∫
X
φ̃(x) dµ(x)−

∫
Y
f(y) dν(y)

≤ J(φ̃, φ̃∗) +

∫
X
|φ̃(x)| dµ(x) +

∫
Y
|f(y)| dν(y)

= J(φ̃, φ̃∗) + ∥φ̃∥L1(µ) +

∫
Y
|x0 · y| dν(y) + |φ̃(x0)|

≤ J(φ̃, φ̃∗) + ∥φ̃∥L1(µ) +
1

2
∥x0∥2 +

1

2

∫
Y
∥y∥2 dν(y) + φ̃(x0)

<∞,

since ν has finite second moments. This means that φ̃∗−f ∈ L1(ν) and so φ̃∗ ∈ L1(ν)
since f ∈ L1(ν). This shows that the pair (φ̃, φ̃∗) ∈ Φ̃. Hence, using (1.16), we obtain
the chain of equalities

min
(φ,ψ)∈Φ̃

J(φ,ψ) = J(φ̃, φ̃∗) =

∫
X×Y

x · y dπ†(x, y) = max
π∈Π(µ,ν)

∫
X×Y

x · y dπ(x, y).

Thus, we have that π† is a minimizer to the Kantorovich problem.

The Knott-Smith criterion is useful in providing sufficient conditions for the exis-
tence and uniqueness of an optimal transport plan under a slight strengthening of the
assumptions on the probability measure µ. This is known as Brenier’s theorem.

Definition 1.39. A probability measure µ does not give mass to small sets if µ(A) = 0
for all measurable sets A ⊆ Rn with Hausdorff dimension at most n− 1 [5].

Theorem 1.40. Let µ and ν be probability measures on X,Y ⊆ Rn respectively with
finite second moments with the added assumption that µ does not give mass to small
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sets. Then, there exists a unique solution π† ∈ Π(µ, ν) to the Kantorovich problem
with cost c(x, y) = 1

2∥x− y∥2 of the form

π† = (Id ×∇φ)#µ which is equivalent to dπ†(x, y) = δy=∇φ(x) dµ(x),

where ∇φ is the gradient of a convex function defined µ-almost everywhere satisfying
(∇φ)#µ = ν. In other words, the map ∇φ is a transport map from µ to ν.

Proof. Suppose that π† is a minimizer to the Kantorovich problem obtained from
Theorem 1.18. By [1, Theorem 5.3.1], we can write

π†(A×B) =

∫
A
π†(B|x) dµ(x),

where {π†(·|x)}x∈X is a family of probability measures on Y . By Theorem 1.38, we
have

supp π†(·|x) ⊆ ∂φ(x) for µ-almost every x ∈ X

for some φ ∈ L1(µ) proper, convex and lower semi-continuous. By Theorem 1.36, we
have that ∂φ(x) = {∇φ(x)} for almost every x ∈ X with respect to the Lebesgue
measure. Since µ does not give mass to small sets, the previous statement also holds
for µ-almost every x ∈ X. This means that

supp π†(·|x) ⊆ {∇φ(x)} for µ-almost every x ∈ X.

Hence, it follows that the measures π†(·|x) = δ∇φ(x) for µ-almost every x ∈ X. Hence,
we can express π† as

π† = (Id ×∇φ)#µ.

Moreover, for a measurable subset B ⊆ Y , we have

ν(B) = π†(Rn ×B)

= (Id ×∇φ)#µ(Rn)
= µ((Id ×∇φ)−1(Rn ×B))

= µ({x ∈ X : (Id ×∇φ)(x) ∈ Rn ×B})
= µ({x ∈ X : ∇φ(x) ∈ B})
= µ((∇φ)−1(B))

= (∇φ)#µ(B),

from which we can deduce that (∇φ)#µ = ν. It remains to be shown that the solution
is unique. Suppose that φ̄ is another convex function with (∇φ̄)#µ = ν. By Theorem
1.38, we have that supp(Id × ∇φ̄)#µ ⊆ ∂φ̄ which implies that (Id × ∇φ̄)#µ is an
optimal transport plan. Moreover, the pair (φ̄, φ̄∗) minimizes J over the set Φ̃. Thus,
we have the identity ∫

X
φ̄ dµ+

∫
Y
φ̄∗ dν =

∫
X
φ dµ+

∫
Y
φ∗ dν.
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We can use the above in combination with the fact that y ∈ ∂φ(x) for π†-almost every
(x, y) ∈ X × Y to obtain∫

X×Y
[φ̄(x) + φ̄∗(y)] dπ†(x, y) =

∫
X×Y

[φ(x) + φ∗(y)] dπ†(x, y)

=

∫
X×Y

x · y dπ†(x, y)

=

∫
X×Y

x · y d(Id ×∇φ)#µ(x, y)

=

∫
X
x · ∇φ(x) dµ(x).

In addition, we also have∫
X×Y

[φ̄(x) + φ̄∗(y)] dπ†(x, y) =

∫
X×Y

[φ̄(x) + φ̄∗(y)] d(Id ×∇φ)#µ(x, y)

=

∫
X
[φ̄(x) + φ̄(∇φ(x))] dµ(x).

Thus, we can deduce that∫
X
[φ̄(x) + φ̄∗(∇φ(x))− x · ∇φ(x)] dµ(x) = 0.

This means that

φ̄(x) + φ̄∗(∇φ(x))− x · ∇φ(x) = 0 for µ-almost every x ∈ X.

By Theorem 1.35, we can deduce that

∇φ(x) ∈ ∂φ̄(x) for µ-almost every x ∈ X,

and so we conclude

∇φ(x) = ∇φ̄(x) for µ-almost every x ∈ X.

Note that Brenier’s theorem can be used to prove the existence and uniqueness of an
optimal transport map from µ to ν in the Euclidean context.

Corollary 1.41. Under the same assumptions as Theorem 1.40, we have that ∇φ is
the unique solution to the Monge problem

1

2

∫
X
∥x−∇φ(x)∥2 dµ(x) = 1

2
inf

T#µ=ν

∫
X
∥x− T (x)∥2 dµ(x).

Proof. Let π† be the unique minimizer to the Kantorovich problem and T † = ∇φ be
the corresponding transport map from µ to ν obtained from Theorem 1.40. Recall
from Remark 1.11 that

min
π∈Π(µ,µ)

K(π) ≤ inf
T#µ=ν

M(T ).
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Using the fact that T †(x) = y for π†-almost every (x, y) ∈ X × Y , we have

M(T †) =
1

2

∫
X
∥x− T †(x)∥2 dµ(x)

=
1

2

∫
X×Y

∥x− T †(x)∥2 dπ†(x, y)

=
1

2

∫
X×Y

∥x− y∥2 dπ†(x, y)

= min
π∈Π(µ,ν)

K(π)

≤ inf
T#µ=ν

M(T ).

Since T † is a transport map from µ to ν, we have

M(T †) = min
T#µ=ν

M(T ),

and so T † is an optimal transport map from µ to ν. Furthermore, this map is unique
by the uniqueness of π†.

Lastly, explicitly determining the optimal transport map in a Euclidean setting is
equivalent to solving a second order, nonlinear partial differential equation.

Corollary 1.42. Under the same assumptions as Theorem 1.40, suppose that µ and
ν are absolutely continuous with respect to the Lebesgue measure, with

dµ

dx
= f and

dν

dy
= g,

where f : X → [0,+∞] and g : Y → [0,+∞] are non-negative measurable functions.
Moreover, assume that T = ∇φ is a C1-diffeomorphism. Then, solving the Monge
problem is equivalent to solving the Monge-Ampère equation

g ◦ ∇φ · det
(
∇2φ

)
= f.

Proof. Since T is a transport map from µ to ν, it follows that∫
X
ψ(T (x)) dµ(x) =

∫
Y
ψ(y) dν(y),

for all non-negative functions ψ : Y → R. By absolute continuity of the measures, we
have ∫

X
ψ(T (x))f(x) dx =

∫
Y
ψ(y)g(y) dy.

Since T is a C1-diffeomorphism, we make a change of variables y = T (x) to obtain∫
X
ψ(T (x))f(x) dx =

∫
X
ψ(T (x))g(T (x))|det(∇T (x))| dx.

Since ψ is an arbitrary non-negative function, these two integrals are equal if and only
if

f(x) = g(T (x))|det(∇T (x))|.
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By Theorem 1.40, we have that T = ∇φ where φ is a convex function. Hence, we
have

(g ◦ ∇φ)(x) det(∇2φ(x)) = f(x).

The absolute value signs can be omitted by convexity of φ since ∇2φ(x) ≥ 0 for all
x ∈ X.

1.3.2 General Setting

In this section, we generalize tools from convex analysis using the cost function inher-
ent to the optimal transport problem to prove a statement similar to the Knott-Smith
criterion in the general setting using an approach developed by Rüschendorf [19]. We
start by recalling the definition of c-transform, which is used as a stepping stone to
proving more sophisticated results.

Definition 1.43. Let φ : X → R̄ be a real-valued function on X. Then, the c-
transforms φc and φcc are defined by

φc : Y → R̄
y 7→ inf

x∈X
(c(x, y)− φ(x)),

φcc : X → R̄
x 7→ inf

y∈Y
(c(x, y)− φc(y)).

Definition 1.44. The map φ : X → R̄ is c-concave if there exists ζ : Y → R̄ such
that φ = ζc. Equivalently, we have φcc = φ.

Definition 1.45. A subset Γ ⊆ X × Y is c-cyclically monotone if for all N ∈ N and
any family (x1, y1), . . . , (xN , yN ) ∈ Γ, it follows that

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1),

where we use the convention yN+1 = y1.

The notion of cyclical monotonicity has an intuitive interpretation in the context of
factories and bakeries. Suppose we pick N arbitrary elements in Γ and any element
(xi, yi) has a factory at xi and a bakery at yi. Given a transport plan, we attempt to
decrease the total cost of transportation by rerouting a unit of bread from y1 to y2
that is closer to x1. This procedure leads to a gain of c(x1, y2)− c(x1, y1). However,
this means that bakery y2 will have an excess of bread in their inventory.

Figure 1.5: The initial transport plan is represented by the solid
arrows. An attempt in improving the total cost of transportation by

rerouting is represented by the dashed arrows.
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Thus, another unit of bread needs to be rerouted to another bakery y3. We proceed
inductively until we reach factory xN rerounting bread to y1, which yields a new
transport plan. This new transport plan decreases the total cost of transportation if

N∑
i=1

c(xi, yi+1) <
N∑
i=1

c(xi, yi).

In essence, c-cyclically monotone sets are optimal in the sense that the total cost of
transportation can never be reduced by rerouting bread to other bakeries.

In the Euclidean setting, recall that the subdifferential of a convex represents the set
of gradients such that the linearization remains below the graph of the function. A
similar notion exists for concave functions where we consider the set of gradients such
that the linearization remains above the graph of the function. This is known as the
superdifferential of a concave function, which can be generalized to a general setting
as follows.

Definition 1.46. Let φ : X → R̄ be a c-concave function. Then, the c-superdifferential
of φ at x is defined by

∂cφ(x) = {y ∈ Y : φ(z) ≤ φ(x) + c(z, y)− c(x, y) for all z ∈ X}.

Moreover, we write
∂cφ = {(x, y) ∈ X × Y : y ∈ ∂cφ(x)}.

It turns out that a similar version of Theorem 1.35 exists for c-superdifferentials. In
particular, the c-superdifferential can be viewed as the set of points in X × Y which
achieve equality in the constraints of the dual Kantorovich problem when we consider
c-transform pairs as in Lemma 1.31. In addition, we have that c-superdifferentials are
c-cyclically monotone sets.

Theorem 1.47. Let φ : X → R̄ be a c-concave function. Then, the c-superdifferential
can be expressed as

∂cφ = {(x, y) ∈ X × Y : φ(x) + φc(y) = c(x, y)}.

Moreover, the c-superdifferential ∂cφ is c-cyclically monotone.

Proof. Since φc(y) ≤ c(x, y)− φ(x), we have that

c(x, y) = φ(x) + φc(y) ⇔ c(x, y) ≤ φ(x) + φc(y)

⇔ c(x, y) ≤ φ(x)− φ(z) + c(z, y) for all z ∈ X

⇔ φ(z) ≤ φ(x) + c(z, y)− c(x, y) for all z ∈ X

⇔ y ∈ ∂cφ(x),



34 Chapter 1. Optimal Transportation

which gives the first result. To show that ∂cφ is c-cyclically monotone, consider N
arbitrary elements (x1, y1), . . . , (xN , yN ) ∈ ∂cφ. Then, we obtain

N∑
i=1

c(xi, yi) =

N∑
i=1

[φ(xi) + φc(yi)]

=
N∑
i=1

[φ(xi) + φc(yi+1)]

≤
N∑
i=1

c(xi, yi+1).

This shows that ∂cφ is c-cyclically monotone.

At last, we consider a characterization of the optimality of transport plans in a general
setting. The statement is a special case of [24, Theorem 5.10] where the cost function is
assumed to be continuous and positive. Moreover, stronger conditions on the functions
bounding the cost function from above are imposed.

Theorem 1.48. Let µ and ν be probability measures on Polish spaces X and Y
respectively and c : X × Y → [0,+∞] be a continuous cost function. Suppose that
there exist cX ∈ C0 ∩ L1(µ), cY ∈ C0 ∩ L1(ν) satisfying c(x, y) ≤ cX(x) + cY (y).
Then, we have

min
π∈Π(µ,ν)

K(π) = max
φ∈L1(µ)

J(φ,φc), (1.19)

and there exists a c-cyclically monotone set Γ ⊆ X × Y such that for all π ∈ Π(µ, ν)
and any c-concave φ ∈ L1(µ),

1. The measure π is optimal in the Kantorovich problem if and only if π(Γ) = 1.

2. The map φ is optimal in the dual Kantorovich problem if and only if Γ ⊆ ∂cφ.

Proof. Note that (1.19) follows by applying Theorems 1.18, 1.19 and 1.30. By Theo-
rem 1.47, we have that the c-superdifferential of a c-concave function is a c-cyclically
monotone set. We define

Γmax =
⋂

φ optimal

∂cφ,

where the intersection is taken over all optimal maps in the Kantorovich dual problem.
We show that Γmax characterizes optimality in both Kantorovich problems.

Let π† ∈ Π(µ, ν) be a minimizer to the Kantorovich problem and (φ,φc) ∈ Φc a
maximizer to the dual Kantorovich problem. It is clear that Γmax ⊆ ∂cφ. On the
other hand, we use (1.19) to obtain∫

X×Y
c dπ† =

∫
X
φ dµ+

∫
Y
φc dν.

Since π† is a transport plan from µ to ν, we deduce that∫
X×Y

[c(x, y)− φ(x)− φc(y)] dπ†(x, y) = 0.
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Using the constraint given by Φc, we can deduce that the integrand is non-negative.
Thus, it follows that the equality

φ(x) + φc(y) = c(x, y),

holds π†-almost everywhere. By Theorem 1.47, we can deduce that supp π† ⊆ ∂cφ for
all optimal maps φ. Hence, it also follows that supp π† ⊆ Γmax, which implies that
π†(Γmax) = 1.

Conversely, suppose that π ∈ Π(µ, ν) satisfies π(Γmax) = 1. Then, it follows that
supp π ⊆ ∂cφ for all optimal map φ. Thus, it follows that∫

X×Y
c dπ =

∫
X×Y

[φ(x) + φc(y)] dπ(x, y) =

∫
X
φ dµ+

∫
Y
φc dν,

from which we can conclude that the transport plan π is a minimizer by Theorem 1.19.
On the other hand, let φ ∈ L1(µ) be a c-concave function such that Γmax ⊆ ∂cφ. For
the moment, we assume that φc ∈ L1(ν) to show that φ leads to a maximizing pair.
Using Theorem 1.47, we can deduce that φ(x) + φc(y) = c(x, y) for π-almost every
(x, y) ∈ X × Y . This implies that∫

X×Y
c(x, y) dπ(x, y) =

∫
X
φ dµ+

∫
Y
φc dν.

Thus, we can conclude that (φ,φc) is a maximizing pair. To show that (φ,φc) ∈ Φc,
it suffices to show that φc ∈ L1(ν). Using the constraint given by Φc, we have that

φc(y) ≤ c(x0, y)− φ(x0),

for some x0 ∈ X. Define f(y) = c(x0, y)− φ(x0). This means that

∥φc − f∥L1(ν) =

∫
Y
f(y)− φc(y) dν(y)

=

∫
Y
f(y) dν(y) +

∫
X
φ(x) dµ(x)− J(φ,φc)

≤
∫
Y
|f(y)| dν(y) +

∫
X
|φ(x)| dµ(x)− J(φ,φc)

=

∫
Y
|c(x0, y)| dν(y) + |φ(x0)|+ ∥φ∥L1(µ) − J(φ,φc)

≤ |cX(x0)|+
∫
Y
|cY (y)| dν(y) + |φ(x0)|+ |φ|L1(µ) − J(φ,φc)

<∞,

since cY is integrable. This means that φc − f ∈ L1(ν) and so φc ∈ L1(ν) since
f ∈ L1(ν). This shows that the pair (φ,φc) ∈ Φc.

Remark 1.49. The same proof can be used to obtain a more general version of
Theorem 1.48 exists where the cost function can take negative values as long as it can
be bounded below.

Remark 1.50. From Theorem 1.48, we see that the set Γmax is a maximal set char-
acterizing optimality. A minimal set characterizing optimality can also be obtained
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by taking
Γmin =

⋃
π optimal

supp π.

We first consider the Kantorovich problem. Suppose that π is an optimal transport
plan. Then, we have that supp π ⊆ Γmin, which implies that π(Γmin) = 1. Conversely,
in the case that π(Γmin) = 1, we can deduce that π(Γmax) = 1 since Γmin ⊆ Γmax.
Hence, we have that π is an optimal transport plan by the proof of Theorem 1.48.

The fact that Γmin characterizes optimality in the dual Kantorovich problem follows
from the proof of Theorem 1.48 and the inclusions Γmin ⊆ Γmax ⊆ ∂cφ for any optimal
map φ.

Conclusion

In the Euclidean setting, we use tools from convex analysis to obtain a character-
ization of optimal transport plans known as the Knott-Smith criterion. Moreover,
Brenier’s theorem provides sufficient conditions for the existence of a transport map
in the Monge problem. Lastly, we use Rüschendorf’s theoretical framework to gener-
alize the tools from convex analysis to deduce a general statement of the Knott-Smith
criterion. This optimality criterion yields two c-cyclically monotone sets which char-
acterize optimality in both Kantorovich problems. The first minimal set consists of
the union of the supports of all optimal transport plans whereas the second maximal
set is defined by the intersection of the c-superdifferentials of all optimal maps in the
dual Kantorovich problem.



37

Chapter 2

Aubry-Mather Theory

In this chapter, we present, without proof, a summary of the results from my work [26]
which is based on Action-Minimizing Methods in Hamiltonian Dynamics by Alfonso
Sorrentino [20].

2.1 Tonelli Lagrangians and Hamiltonians on Compact
Manifolds

2.1.1 Lagrangian Setting

Many problems in classical mechanics come down to solving minimization problems.
In fact, most laws of nature can be stated as variational principles. Arguably, the most
famous such principle is the principle of least action, which states that the trajecto-
ries of a system correspond to the stationary points of the system’s action functional.
This action functional is defined in terms of a Lagrangian, a function encoding the
dynamics of the system from which the equations of motion can be obtained. How-
ever, we can modify the Lagrangian in different ways without changing the equations
of motion. This recurring theme of investigating mathematical objects that remain
preserved under certain transformations is central to Aubry-Mather theory which de-
scribes invariant sets on the tangent bundle providing valuable information about the
dynamics of the system.

Definition 2.1. A Lagrangian on a smooth, compact and connected manifold M
is a function L : TM → R of smoothness class C2. The action functional along a
continuous piecewise C1 curve γ : [a, b] →M is defined by

AL(γ) =

∫ b

a
L(γ(t), γ̇(t)) dt.

Theorem 2.2. The curves γ : [a, b] → M extremizing the action functional AL
correspond correspond to the solutions to the Euler-Lagrange equation

d

dt

∂L

∂v
(γ(t), γ̇(t)) =

∂L

∂x
(γ(t), γ̇(t)). (2.1)

Observe that by applying the time derivative in the left-hand side of (2.1), we obtain

∂2L

∂v2
(γ(t), γ̇(t))γ̈(t) =

∂L

∂x
(γ(t), γ̇(t))− ∂2L

∂v∂x
(γ(t), γ̇(t))γ̇(t).

Hence, it follows that the Legendre condition

det
∂2L

∂v2
̸= 0,
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guarantees the invertibility of the Hessian of the function L in v, which allows us to
define a vector field XL on the tangent bundle such that the solutions of

γ̈(t) = XL(γ(t), γ̇(t))

are precisely the curves satisfying the Euler-Lagrange equation.

Definition 2.3. Suppose that L is a Lagrangian satisfying the Legendre condition.
Then, the vector field XL is called the Euler-Lagrange vector field and its correspond-
ing flow ΦLt is the Euler-Lagrange flow associated with L.

However, note that our current definition for the Lagrangian is too broad to carry out
any meaningful analysis of physical systems. To remain in a general setting, we impose
some conditions which correspond to the properties satisfied by the Lagrangians of
many known systems.

Definition 2.4. A function L : TM → R is a Tonelli Lagrangian if

1. The function L is of smoothness class C2.

2. The Hessian of the function L in v, given by

∂2L

∂v2
(x, v)

is positive definite as a quadratic form for all (x, v) ∈ TM . We say that L is
strictly convex in each fiber.

3. The function L satisfies
lim

∥v∥x→∞

L(x, v)

∥v∥x
= +∞

for all x ∈M . We say that L is superlinear in each fiber.

Remark 2.5. If L is a Tonelli Lagrangian, then strict convexity in each fiber implies
that the Legendre condition is satisfied. Hence, the Euler-Lagrange vector field XL

and its corresponding Euler-Lagrange flow ΦLt are well-defined.

Remark 2.6. Observe that L is superlinear in each fiber if and only if for all x ∈M ,
it follows that for all A ∈ R, there exists B ∈ R such that

L(x, v) ≥ A∥v∥x −B.

In a physical setting, the principle of conservation of energy states that the total
energy of a system is conserved over time. Thus, to give a meaningful definition of
energy in the Lagrangian framework, its time derivative must vanish. In fact, the
energy of a system can be expressed in terms of the Lagrangian as follows.

Definition 2.7. The energy of the system described by a Tonelli Lagrangian L is
defined by

E : TM → R

(x, v) 7→
〈
∂L

∂v
(x, v), v

〉
x

− L(x, v).

Moreover, the level sets of the energy function E are called energy levels.
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Theorem 2.8. The energy of the system described by a Tonelli Lagrangian L is
conserved under the Euler-Lagrange flow. In other words, for all (x, v) ∈ TM and all
t ∈ R, we have

d

dt
E(ΦLt (x, v)) = 0.

Corollary 2.9. The energy levels are compact and invariant under the Euler-Lagrange
flow.

2.1.2 Hamiltonian Setting

For a physical system described by a Lagrangian L, we can shift perspective and apply
the Legendre-Fenchel transform to obtain the Hamiltonian, a function defined on the
cotangent bundle that is intricately linked to the total energy of the system.

Definition 2.10. Let L : TM → R be a Lagrangian. Then, the Hamiltonian corre-
sponding to L is defined by

H : T∗M → R
(x, p) 7→ sup

v∈TxM
(⟨p, v⟩x − L(x, v)) ,

where ⟨·, ·⟩ denotes the canonical pairing between covector fields and vector fields.

We can mirror the properties of Tonelli Lagrangians to define Tonelli Hamiltonians.

Definition 2.11. A function H : T∗M → R is a Tonelli Hamiltonian if

1. The function H is of smoothness class C2.

2. The Hessian of the function H in p, given by

∂2H

∂p2
(x, p),

is positive definite as a quadratic form for all (x, p) ∈ T∗M . We say that H is
strictly convex in each fiber.

3. The function H satisfies

lim
∥p∥x→∞

H(x, p)

∥p∥x
= +∞,

for all x ∈M . We say that H is superlinear in each fiber.

Remark 2.12. Observe that H is superlinear in each fiber if and only if for all x ∈M ,
it follows that for all A ∈ R, there exists B ∈ R such that

H(x, p) ≥ A∥p∥x −B.

However, note that the definition of the Hamiltonian is similar in structure to the
definition of the energy function. In light of this fact, we define a function which
canonically identifies the tangent and cotangent bundles.

Definition 2.13. Let L be a Tonelli Lagrangian. Then, the Legendre transform is a
C1-diffeomorphism defined by

L : TM → T∗M

(x, v) 7→ ∂L

∂v
(x, v).
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In addition, we can restate the Legendre-Fenchel inequality in the context of La-
grangians and Hamiltonians on smooth compact manifolds.

Theorem 2.14. Let L : TM → R be a Lagrangian and H : T∗M → R be the
corresponding Hamiltonian. Then, for all (x, v) ∈ TM and all (x, p) ∈ T∗M , we have

⟨p, v⟩x ≤ L(x, v) +H(x, p),

with equality whenever

p =
∂L

∂v
(x, v).

Remark 2.15. We can use the Legendre-Fenchel equality to describe the energy in
terms of the energy and the Legendre transform as follows.

E(x, v) = H ◦ L(x, v) =
〈
∂L

∂v
(x, v), v

〉
x

− L(x, v).

In other words, the Hamiltonian measures the total energy of the system where the
initial conditions are given by elements in the cotangent bundle. However, something
more can be said about the relationship between Tonelli Lagrangians and Tonelli
Hamiltonians. It turns out that the properties of Tonelli Lagrangians are preserved
under the Legendre-Fenchel transform.

Theorem 2.16. Let L : TM → R be a Tonelli Lagrangian. Then, the corresponding
Hamiltonian H : T∗M → R is a Tonelli Hamiltonian.

Remark 2.17. Given a Tonelli Hamiltonian, we can construct a vector field on the
cotangent bundle described by Hamilton’s equations

XH(x(t), p(t)) =

(
∂H

∂p
(x(t), p(t)),−∂H

∂x
(x(t), p(t))

)
.

Definition 2.18. Suppose thatH is a Tonelli Hamiltonian. Then, the vector fieldXH

is called the Hamiltonian vector field and its corresponding flow ΦHt is the Hamiltonian
flow associated with H.

Remark 2.19. Legendre transform is a conjugacy between the Euler-Lagrange flow
on the tangent bundle and the Hamiltonian flow on the cotangent bundle. Thus, the
following diagram commutes.

TM TM

T∗M T∗M

ΦL
t

L L
ΦH

t

Since the Legendre transform L and the Hamiltonian flow ΦHt are of smoothness class
C1, we can deduce by commutativity that the Euler-Lagrange flow is of smoothness
class C1.

Conclusion

Given a Lagrangian, the equations of motion of the corresponding physical system
can be obtained by considering the solutions to the Euler-Lagrange equation. These
solutions exist whenever the Legendre condition is satisfied. To work in a general
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setting, we assume that the Lagrangians are strictly convex and superlinear in each
fiber. Similar properties can be imposed on the corresponding Hamiltonian. These
assumptions provide the right foundation to study of rich invariants describing the
dynamics of the system.



42 Chapter 2. Aubry-Mather Theory

2.2 Action-Minimizing Measures and Curves for Tonelli
Lagrangians

2.2.1 Action-Minimizing Measures and Mather Sets

We now shift our attention to the minimization of the action functional over different
spaces. For the moment, our objective is to minimize the action over the space
of probability measures on the tangent bundle that are invariant under the Euler-
Lagrange flow.

Definition 2.20. Let L be a Tonelli Lagrangian. Then, the average action of a
probability measure µ ∈ P(TM) is defined by

AL(µ) =

∫
TM

L dµ.

We aim to minimize this quantity over the set of all probability measures that are
invariant under the Euler-Lagrange flow ΦLt .

Definition 2.21. A probability measure µ ∈ P(TM) is invariant if

ΦLt #µ = µ for all A ⊆ TM measurable.

Notation 2.22. We write M(L) for the set of all probability measures µ ∈ P(TM)
that are invariant under ΦLt with finite average action.

Moreover, the set M(L) is non-empty by a classical result of Kryloff and Bogoliouboff
[11] stating that non-empty energy levels contain the support of an invariant measure.

Theorem 2.23. Suppose that k ∈ R and the energy level

E−1(k) = {(x, v) ∈ TM : E(x, v) = k},

is non-empty. Then, there exists a probability measure µ ∈ M(L) supported on the
energy level E−1(k).

We can give a name to invariant measures minimizing the average action over the
space M(L). These measures encode valuable information about the dynamics of the
system.

Definition 2.24. A probability measure µ ∈ M(L) is an action-minimizing measure
of L if it satisfies

AL(µ) = min
µ̃∈M(L)

AL(µ̃).

To perform analysis on the average action, we need to specify a topology on M(L).
Let C0

l (TM) denote the space of continuous functions f : TM → R having at most
linear growth. In other words, functions satisfying

sup
(x,v)∈TM

|f(x, v)|
1 + ∥v∥x

<∞.

We endow M(L) with the vague topology, the weak* topology induced by C0
l (TM).

Namely, this corresponds to the topology where

µn
∗
⇀ µ if and only if

∫
TM

f dµn →
∫

TM
f dµ for all f ∈ C0

l (TM).
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Theorem 2.25. The set M(L) is compact and the average action functional is lower
semi-continuous with respect to the vague topology.

Corollary 2.26. If L is a Tonelli Lagrangian, then there exists an action-minimizing
measure µ of L.

What is interesting is that modifying the Lagrangian by a closed 1-form does not have
any effect on the dynamics of the system. In other words, the Euler-Lagrange flow on
the tangent bundle remains unchanged. We formalize this as follows.

Definition 2.27. Let η be a closed 1-form on M . Then, we can represent η as a
function on the tangent bundle as follows.

η̂ : TM → R
(x, v) 7→ ⟨η(x), v⟩x.

Definition 2.28. Let L be a Tonelli Lagrangian and η be a closed 1-form on M .
Then, the Lagrangian shift of L by η is the function defined by

Lη : TM → R
(x, v) 7→ L(x, v)− η̂(x, v).

Theorem 2.29. Let η be a closed 1-form on M . Then, both L and Lη have the same
Euler-Lagrange flow on the tangent bundle TM .

We can also consider the Hamiltonian corresponding to the Lagrangian shift by a
closed 1-form.

Theorem 2.30. Let L be a Tonelli Lagrangian and η a closed 1-form. Then the
Hamiltonian corresponding to the Lagrangian shift of L by η is given by

Hη : T
∗M → R

(x, p) 7→ H(x, η(x) + p).

However, it turns out that exact 1-forms do not contribute to the average action.

Theorem 2.31. Let L be a Tonelli Lagrangian and µ ∈ M(L). If η is an exact 1-form
on M , then ∫

TM
η̂ dµ = 0.

Thus, shifting the Lagrangian by a closed 1-form has no effect on the dynamics of the
system. Moreover, shifting the Lagrangian by an exact 1-form does not contribute to
the average action. This means that adding exact 1-forms does not change the action-
minimizing measures of the system, but shifts the values attained by the average
action. In light of this fact, we consider families of shifted Lagrangians parametrized
over de Rham cohomology classes.

Notation 2.32. We write ηc for a closed 1-form of cohomology class c ∈ H1(M ;R).

Thus, the need to distinguish action-minimizing measures obtained from different
Lagrangian shifts motivates the following definition.

Definition 2.33. Let ηc be a closed 1-form of cohomology class c. A measure µ ∈
M(L) is a c-action-minimizing measure for L if it satisfies

ALηc
(µ) = min

µ̃∈M(L)
ALηc

(µ̃).
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Remark 2.34. Note that the cohomology class of an action-minimizing measure is in-
dependent not only of the dynamics of the system but also of the measure. Rather, the
cohomology of an action-minimizing measure is intrinsic to the choice of Lagrangian
describing the system. To illustrate, suppose that µ is a 0-action-minimizing measure
for L. Then, the quantity

AL(µ) =

∫
TM

L dµ =

∫
TM

[Lηc − (−η̂c)] dµ,

is minimized. So µ is also a (−c)-action-minimizer for Lηc .

We can thus define a function which maps each cohomology class c to the negative
value of the minimal average action corresponding to the Lagrangian shift by a closed
1-form of cohomology class c. The presence of a negative sign is a matter of convention.

Definition 2.35. Mather’s α-function is a well-defined convex function given by

α : H1(M ;R) → R
c 7→ − min

µ∈M(L)
ALηc

(µ).

We can thus relate Mather’s α-function with c-action-minimizing measures as follows.

Notation 2.36. We write Mc(L) for the subset of c-action-minimizing measures for
L and

Mc = Mc(L) = {µ ∈ M(L) : ALηc
(µ) = −α(c)}.

We are now ready to define the Mather set of cohomology class c.

Definition 2.37. The Mather set of cohomology class c is defined by

M̃c =
⋃
µ∈Mc

supp µ ⊆ TM.

The projection on the base manifold Mc = π
(
M̃c

)
⊆M is the projected Mather set

of cohomology class c.

Theorem 2.38. The Mather set of cohomology class c is non-empty, closed and
invariant under the Euler-Lagrange flow.

2.2.2 Action-Minimizing Curves and Aubry Sets

In this section, we move away from action-minimizing measures and focus on action-
minimization problems over spaces of absolutely continuous curves. Using a similar
idea as in the previous section, we consider Lagrangian shifts by closed 1-forms since
these do not change the Euler-Lagrange flow. To set the scene, we start by fixing two
endpoints x, y ∈M and real numbers a < b. We ask whether there exists an absolutely
continuous curve γ : [a, b] → M with γ(a) = x and γ(b) = y minimizing the action
obtained from the shifted Lagrangian. For notational convenience, we introduce the
following notation.

Notation 2.39. We write AC([a, b],M) for the set of absolutely continuous curves
γ : [a, b] →M . Moreover, for x, y ∈M , we write

C[a,b](x, y) = {γ ∈ AC([a, b],M) : γ(a) = x, γ(b) = y}.

Lastly, for a fixed T > 0, we write CT (x, y) for the set of curves C[0,T ](x, y).
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Theorem 2.40. Let L be a Tonelli Lagrangian and ηc a closed 1-form of cohomology
class c. For all x, y ∈ M and real numbers a < b, there exists a curve γ ∈ C[a,b](x, y)
which minimizes the action

ALηc
(γ) =

∫ b

a
Lηc(γ(t), γ̇(t)) dt.

We can give a name to the minimizing curves obtained from the above theorem.

Definition 2.41. A c-Tonelli minimizer is a curve γ ∈ C[a,b](x, y) minimizing the
action

ALηc
(γ) =

∫ b

a
Lηc(γ(t), γ̇(t)) dt.

Remark 2.42. Note that c-Tonelli minimizers only depend on the cohomology class
of ηc and not on the choice of representative since adding an exact 1-form df to ηc
results in a shift in the values attained by the action. This can be seen from

ALηc+df
(γ) = ALηc

(γ) + f(y)− f(x).

In other words, adding an exact 1-form does not have any effect on the selection
of the minimizing curves. Moreover, Tonelli minimizers exhibit a certain smoothing
property.

Theorem 2.43. Let γ ∈ C[a,b](x, y) be a c-Tonelli minimizer of smoothness class C1.
Then, the curve γ is of smoothness class C2 and satisfies the Euler-Lagrange equation.

Until now, we have considered absolutely continuous curves defined on an interval.
However, we can also consider action-minimizing curves defined on the whole real
line. We can do this in two ways. The first approach considers curves minimizing the
action over any given time length.

Definition 2.44. An absolutely continuous curve γ : R → M is a c-minimizer for L
if for all real numbers a < b, we have

ALη(γ|[a,b]) = minALη(σ),

where the minimum is taken over all curves σ ∈ C[a,b](γ(a), γ(b)).

The second formulation can be viewed as a reinforcement of the first formulation by
adding the condition that the minimum of the action be realized over all absolutely
continuous curves connecting the endpoints, regardless of the time taken.

Definition 2.45. An absolutely continuous curve γ : R → M is a c-time-free mini-
mizer for L if, for all real numbers a < b, we have

ALη(γ|[a,b]) = minALη(σ),

where the minimum is taken over all σ ∈ C[a′,b′](γ(a), γ(b)).

Remark 2.46. Clearly, we have that c-time-free minimizers are also c-minimizers.
What is less obvious is that c-time-free minimizers are sensitive to the vertical shifts
in the Lagrangian. Suppose that γ : [0, T ] → M and σ : [0, T ′] → M are curves
satisfying ∫ T

0
Lη(γ(t), γ̇(t)) dt <

∫ T ′

0
Lη(σ(t), σ̇(t)) dt.
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Define k ∈ R by the inequality

1

T ′ − T

(∫ T ′

0
Lη(σ(t), σ̇(t)) dt−

∫ T

0
Lη(γ(t), γ̇(t)) dt

)
< k.

Then, adding this constant k to the Lagrangian reverses the inequality

ALη+k(γ) ≥ ALη+k(σ).

Some critical notions in the analysis of absolutely continuous curves defined on the
whole real line include the Mañé potential and critical value.

Definition 2.47. Let η be a closed 1-form and k ∈ R. Then, the Mañé potential is
defined by

ϕη,k : M ×M → R ∪ {−∞}
ϕη,k(x, y) = inf

T>0
min

γ∈CT (x,y)
ALη+k(γ).

Definition 2.48. The Mañé critical value is defined by

c(Lη) = sup{k ∈ R : there exists a closed curve γ such that ALη+k(γ) < 0}
= inf{k ∈ R : for all closed curves γ, we have ALη+k(γ) ≥ 0}
<∞.

We now focus on the properties of the Mañé potential and critical value.

Theorem 2.49. Let k ∈ R and x, y, z ∈ M . Then, the Mañé potential satisfies the
triangle inequality

ϕη,k(x, y) ≤ ϕη,k(x, z) + ϕη,k(z, y).

Theorem 2.50. Let x, y ∈M and k < c(Lη). Then, we have

ϕη,k(x, y) = −∞.

Theorem 2.51. Let x, y ∈M and k ≥ c(Lη). Then, the following properties hold.

1. The Mañé potential is finite.

2. The Mañé potential is Lipschitz.

3. The Mañé potential satisfies ϕη,k(x, x) = 0.

4. The Mañé potential satisfies ϕη,k(x, y) + ϕη,k(y, x) ≥ 0.

Theorem 2.52. Let x, y ∈ M be distinct and k > c(Lη). Then, the Mañé potential
satisfies

ϕη,k(x, y) + ϕη,k(y, x) > 0.

In light of these properties, the Mañé critical value can be equivalently expressed in
terms of the Mañé potential.

Corollary 2.53. The Mañé critical value can be equivalently expressed as

c(Lη) = inf{k ∈ R : there exist x, y ∈M with ϕη,k(x, y) >∞}
= sup{k ∈ R : there exist x, y ∈M with ϕη,k(x, y) = −∞}.

We can give a complete characterization of c-time-free minimizers for L+ k in terms
of the Mañé potential.
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Corollary 2.54. An absolutely continuous curve γ : R → M is a c-time-free mini-
mizer for L+ k if, for all real numbers a < b, we have∫ b

a
[Lη(γ(t), γ̇(t)) + k] dt = ϕη,k(γ(a), γ(b)).

We have seen that the case k < c(Lη) is uninteresting since we have that ϕη,k(x, y) =
−∞ for all x, y ∈ M . It turns out that the case k > c(Lη) is also uninteresting since
there always exists a c-time-free minimizer for L + k connecting any two points in
finite time. This notion is captured in the following theorem.

Theorem 2.55. Let x, y ∈ M be distinct and k > c(Lη). Then, there exists T > 0
and γ ∈ CT (x, y) such that

ALη+k(γ) = ϕη,k(x, y).

Remark 2.56. The most interesting case to consider is the case k = c(Lη). This
corresponds to the least possible value of k ∈ R such that c-time-free minimizers can
exist.

Definition 2.57. An absolutely continuous curve γ : R → M is called c-semi-static
for L if, for all real numbers a < b, we have∫ b

a
[Lη(γ(t), γ̇(t)) + c(Lη)] dt = ϕη,c(Lη)(γ(a), γ(b)).

In other words, c-semi-static curves for L are c-time-free minimizers for L + c(Lη).
Since adding a constant to the Lagrangian has no effect on the selection of minimizers,
it follows that c-semi-static curves are also c-minimizers for L and are thus integral
curves to the Euler-Lagrange flow. Recall from Theorem 2.51.4 , that for all (x, y) ∈M
the Mañé potential satisfies

ϕη,c(Lη)(x, y) ≥ −ϕη,c(Lη)(y, x).

This means that for c-semi-static curves, the minimal action required to join x to
y is not necessarily the same as the minimal action required to join y back to x in
absolute value. Thus, we can reinforce the notion of c-semi-static curves to incorporate
the above insight.

Definition 2.58. An absolutely continuous curve γ : R → M is c-static for L if, for
all real numbers a < b, we have∫ b

a
[Lη(γ(t), γ̇(t)) + c(Lη)] dt = −ϕη,c(Lη)(γ(b), γ(a)).

Remark 2.59. Let γ : R →M be a c-static curve. By Theorem 2.51.4, we have that
for all a < b, ∫ b

a
[Lη(γ(t), γ̇(t)) + c(Lη)] dt = −ϕη,c(Lη)(γ(b), γ(a))

≤ ϕη,c(Lη)(γ(a), γ(b)).
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The reverse inequality is obtained by the definition of the Mañé potential. Thus, we
can conclude that for all c-static curves γ, we have∫ b

a
[Lη(γ(t), γ̇(t)) + c(Lη)] dt = ϕη,c(Lη)(γ(a), γ(b)).

In other words, any c-static curve is also a c-semi-static curve and thus also an integral
curve to the Euler-Lagrange flow.

We are now ready to define the Aubry set of cohomology class c.

Definition 2.60. The Aubry set of cohomology class c is defined by

Ãc =
⋃

{(γ(t), γ̇(t)) : γ is a c-static curve and t ∈ R} ⊆ TM.

The projection on the base manifold Ac = π
(
Ãc

)
⊆M is the projected Aubry set of

cohomology class c.

Theorem 2.61. The Aubry set of cohomology class c is non-empty, closed and in-
variant under the Euler-Lagrange flow.

2.2.3 Mather’s Graph Theorems

Until now, we have defined two important sets which describe the dynamics of the
system. On one hand, we investigated Mather sets which consist of supports of action-
minimizing measures. On the other hand, we considered Aubry sets which consist of
orbits of static curves. Recall that energy levels also give information about the dy-
namics of the system. We present an overview of the relationships between these sets
summarized by the commutative diagram below,

M̃c Ãc Ẽc TM

Mc Ac Ec M

(2.65)

π

(2.62)

π π π
(π|M̃c

)−1

(2.67)

(π|Ãc
)−1

(2.68)

where
Ẽc = {(x, v) ∈ TM : E(x, v) = c(Lη)

(2.64)
= α(c)}

denotes the energy level corresponding to the energy α(c) and Ec = π(Ẽc) denotes its
projection onto the base manifold. Theorems 2.67 and 2.68 are known as Mather’s
graph theorems which state that the Mather and Aubry sets can be viewed as graphs
over the manifoldM . In other words, the projection onto the base manifold is bijective
over these sets.

Theorem 2.62. All c-static curves have energy equal to c(Lη). In other words,

Ãc ⊆ Ẽc = {(x, v) ∈ TM : E(x, v) = c(Lη)}.

Remark 2.63. Recall from Theorem 2.61 that the Aubry set Ãc of cohomology class
c is closed and from Theorem 2.23 that the energy level Ẽc is compact. Thus, it follows
from Theorem 2.62 that Ãc is compact.
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Theorem 2.64. The Mañé critical value coincides with Mather’s α-function. In other
words, if η is a closed 1-form of cohomology class c, we have

c(Lηc) = α(c).

Theorem 2.65. A probability measure µ ∈ M(L) is a c-action-minimizing measure
of L if and only if supp µ ⊆ Ãc. In particular, we have M̃c ⊆ Ãc.

Remark 2.66. Note the striking similarity between Theorem 1.38 and Theorem 2.65.
This relationship is investigated further in Section 2.3.

Theorem 2.67. The projection map of the Mather set of cohomology class c onto
the manifold M

π|M̃c
: M̃c → Mc

is injective. Moreover, its inverse

(π|M̃c
)−1 : Mc → M̃c

is Lipschitz.

Theorem 2.68. The projection map of the Aubry set of cohomology class c onto the
manifold M

π|Ãc
: Ãc → Ac

is injective. Moreover, its inverse

(π|Ãc
)−1 : Ac → Ãc

is Lipschitz.

Conclusion

In the case of a Tonelli Lagrangian, we can define two sets which encode valuable
information about the dynamics of the system. The first consists of the supports
of all action-minimizing measures. The second consists of the orbits of all static
curves which are defined in terms of the Mañé potential and critical value. Moreover,
Mather’s celebrated graph theorems state that the projection onto the base manifold
restricted to these sets forms a bijection, which has important dynamical consequences.
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2.3 Optimal Transportation on Compact Manifolds

2.3.1 Weak KAM Theory and the Hamilton-Jacobi Equation

Weak KAM theory can be viewed as a functional analytic perspective of Aubry-Mather
theory. Historically, the field emerged through the study of existence and properties
of solutions to the Hamilton-Jacobi equation

H(x, η(x) + dxu) = k, (2.2)

where H : T∗M → R is a Tonelli Hamiltonian, η is a closed 1-form of cohomology class
c and k ∈ R are given. The Hamilton-Jacobi equation can be viewed as a special case
of the Hamilton-Jacobi-Bellman equation which has numerous applications in dynamic
programming and optimal control [3]. Recall from Theorem 2.30 that considering 1-
forms of different cohomologies corresponds to considering different Lagrangian shifts.
We say that u : M → R is a classical solution to the Hamilton-Jacobi equation if it
is of smoothness class C1 and satisfies (2.2) for all x ∈ M . It turns out that such
solutions can exist for at most one value of k.

Theorem 2.69. There exists a unique k ∈ R which admits a classical solution to the
Hamilton-Jacobi equation.

Moreover, we can consider classical subsolutions to the Hamilton-Jacobi equation.
That is, functions u :M → R of smoothness class C1 satisfying

H(x, η(x) + dxu) ≤ k,

for all x ∈ M . We aim to characterize classical subsolutions to the Hamilton-Jacobi
equation in a manner that is independent of the regularity of the function.

Theorem 2.70. Let u : M → R be a function of smoothness class C1. Then, the
function u is a classical subsolution to the Hamilton-Jacobi equation if and only if for
all a < b and all γ ∈ AC([a, b],M), it holds that

u(γ(b))− u(γ(a)) ≤
∫ b

a
Lη(γ(t), γ̇(t)) dt+ k(b− a).

We can use the inequality in Theorem 2.70 to extend the notion of subsolution to the
Hamilton-Jacobi equation to functions that are continuous rather than of smoothness
class C1. This allows us to bypass the differential present in the Hamilton-Jacobi
equation.

Definition 2.71. Let u : M → R be a continuous function. Then, the function u is
dominated by Lη + k, written u ≺ Lη + k, if for all a < b and all γ ∈ AC([a, b],M), it
holds that

u(γ(b))− u(γ(a)) ≤
∫ b

a
Lη(γ(t), γ̇(t)) dt+ k(b− a).

Similarly as in the case of subsolutions to the Hamilton-Jacobi equation, we aim
to characterize classical solutions to the Hamilton-Jacobi equation in a way that is
independent of the regularity of the solution.

Theorem 2.72. Let u : M → R be a C1 function and k ∈ R. The following are
equivalent.

1. The function u is a classical solution to the Hamilton-Jacobi equation
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2. We have u ≺ Lη + k and for all x ∈ M , there exists an absolutely continuous
curve γx : R →M such that γx(0) = x and for all [a, b] ⊆ R, we have

u(γx(b))− u(γx(a)) =

∫ b

a
Lη(γx(t), γ̇x(t)) dt+ k(b− a).

3. We have u ≺ Lη + k and for all x ∈ M , there exists an absolutely continuous
curve γx : (−∞, 0] →M such that γx(0) = x and for all a < b ≤ 0, we have

u(γx(b))− u(γx(a)) =

∫ b

a
Lη(γx(t), γ̇x(t)) dt+ k(b− a).

4. We have u ≺ Lη + k and for all x ∈ M , there exists an absolutely continuous
curve γx : [0,∞) →M such that γx(0) = x and for all 0 ≥ a < b, we have

u(γx(b))− u(γx(a)) =

∫ b

a
Lη(γx(t), γ̇x(t)) dt+ k(b− a).

Again, we can use Theorem 2.72 to extend the notion of solution to the Hamilton-
Jacobi equation to functions that are continous rather than of smoothness class C1.
This allows us to bypass the differential present in the Hamilton-Jacobi equation.

Definition 2.73. Let u : M → R be a continuous function such that u ≺ Lη + k.
Then, an absolutely continuous curve γ : I → M is (u, Lη, k)-calibrated on I if for
any [a, b] ⊆ I, we have

u(γ(b))− u(γ(a)) =

∫ b

a
Lη(γ(t), γ̇(t)) dt+ k(b− a).

Moreover, it turns out that the unique value of k ∈ R admitting classical solutions
to the Hamilton-Jacobi equation in Theorem 2.69 corresponds to Mather’s α-function
α(c), which coincides with the Mañé critical value c(Lη) by Theorem 2.64. In this
case, the calibrated curves satisfy a stronger property.

Theorem 2.74. Let u : M → R be a continuous function such that u ≺ Lη + k and
γ : [a, b] →M be a (u, Lη, k)-calibrated curve on [a, b]. Then, the following statements
hold.

1. The curve γ is a c-Tonelli minimizer.

2. The curve γ is a c-time-free minimizer if k = α(c).

Remark 2.75. By Theorem 2.43, we can deduce that any (u, Lη, α(c))-calibrated
curve γ is a solution to the Euler-Lagrange equation and is of smoothness class C2.

As in Remark 2.56, it is interesting to study the solutions to the Hamilton-Jacobi
equation in the case where k = α(c). Such functions play an important role in weak
KAM theory since they carry valuable information about the dynamics of the system.
We can give a name to dominated functions in the case k = α(c).

Definition 2.76. Let u : M → R be a continuous function. Then, the function u is
said to be critically dominated if u ≺ Lη + α(c).

Now that we have extended the properties of classical solutions of the Hamilton-
Jacobi equation to continuous functions, we formalize the notion of weak solutions to
the Hamilton-Jacobi equation as follows.
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Definition 2.77. Let u :M → R be a continuous function satisfying u ≺ Lη + k.

1. The function u is a weak KAM solution of the negative type if for each x ∈
M , there exists γx : (−∞, 0] → M such that γx(0) = x and γx is (u, Lη, k)-
calibrated.

2. The function u is a weak KAM solution of the positive type if for each x ∈
M , there exists γx : [0,+∞) → M such that γx(0) = x and γx is (u, Lη, k)-
calibrated.

The main result of weak KAM theory states that we can guarantee the existence of
weak KAM solutions to the Hamilton-Jacobi equation whenever k = α(c). Moreover,
these weak KAM solutions are closely related to the Aubry set defined in Section
2.2.2.

Theorem 2.78. There is a unique value of k ∈ R for which weak KAM solutions of
a positive or negative type may exist. This value coincides with Mather’s α-function
α(c). Moreover, for any u ≺ Lη+α(c), there exist a weak KAM solution of the negative
type u− and a weak KAM solution of the positive type u+ such that u− = u = u+ on
the projected Aubry set Ac.

In light of this, the Aubry set can be equivalently defined from the perspective of
weak KAM theory. Since weak KAM solutions to the Hamilton-Jacobi equation give
to calibrated curves, we can consider the set of initial conditions in the tangent bundle
such that the projected Euler-Lagrange flow yields a calibrated curve.

Definition 2.79. Let u : M → R be a continuous function. The Aubry set of the
function u is defined by

Ĩ(u) = {(x, v) ∈ TM : γ(x,v)(s) = π
(
ΦLs (x, v)

)
is (u, Lη, α(c))-calibrated on R}.

Theorem 2.80. The Aubry set defined in Section 2.2.2 can be equivalently expressed
as

Ãc =
⋂

u≺Lη+α(c)

Ĩ(u).

Remark 2.81. In the case where M = Td is a d-dimensional torus, we can relate the
Aubry set Ãc of cohomology class c defined on the tangent bundle to a KAM torus
Tc of rotation vector ρ defined on the cotangent bundle using the Legendre transform

Ãc = L−1(Tc).

To be precise, a KAM torus Tc of rotation vector ρ is a set of the form

Tc = {(x, c+ du) : x ∈ Td},

where c ∈ Rd and u : Td → R such that the following properties hold.

1. The set Tc is invariant under the Hamiltonian flow ΦHt .

2. The Hamiltonian flow ΦHt on Tc is conjugate to uniform rotation on Td. This
means that there exists a diffeomorphism φ : Td → Tc such that

φ−1 ◦ ΦHt ◦ φ = Rtρ
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holds for all t ∈ R, where the uniform rotation Rtρ is defined by

Rtρ : Td → Td

x 7→ x+ ρt mod Zd.

In other words, the following diagram commutes.

Td Td

Tc Tc

Rt
ρ

L L
ΦH

t

Thus, we see that Aubry sets form a generalization KAM tori and thus can be seen
as a weak form of KAM theory.

2.3.2 Weak KAM Theory as an Optimal Transport Problem

Finally, we illustrate how aspects of optimal transport theory play a background role
in the theory of dynamical systems. Due to a clash in notation, we keep the symbol
c for the cohomology class of a closed 1-form and write c̄ : X × Y → R for the cost
function inherent to the optimal transport problem. We attempt to make precise
the ideas related to Aubry-Mather theory described in the bibliographical notes of
Chapter 5 in [24]. In particular, we investigate how the c̄-cyclically monotone sets
described in Remark 1.50 generalize the Aubry and Mather sets from the theory of
dynamical systems. Throughout this section, we assume that X and Y correspond
to a smooth compact and connected manifold M , η is a closed 1-form of cohomology
class c and the cost function is given by the Mañé potential with k = α(c). Namely

c̄ :M ×M → R
(x, y) 7→ ϕη,α(c)(x, y).

This choice of cost function is motivated by Theorem 2.74 from which it follows that
the right-hand side of the inequality in Definition 2.71 is effectively the Mañé potential.
Using Theorem 2.51.2, we can deduce that the cost function is continuous and The-
orem 2.49 implies that we can bound the cost function above by the sum of two
continuous and integrable functions on M . Note that integrability follows by con-
tinuity of the Mañé potential and by compactness of M . Moreover, we can deduce
that the cost function can be bounded below since the Mañé potential will attain its
minimum value on M ×M . By Remark 1.49, we can use Theorem 1.48 to obtain
two c̄-cyclically monotone sets which characterize the optimality in the Kantorovich
problems, namely

Γmin =
⋃

π optimal

supp π and Γmax =
⋂

φ optimal

∂ c̄φ.

To determine the initial and final measures required to model the above situation
accurately, we need the first set to coincide with the Mather set of cohomology class
c. In other words, the optimal transport plans must correspond to c-action-minimizing
measures. Since Theorem 1.48 is devoid of a smooth structure, we can use Theorem
2.68 to uniquely identify

ι : Ac ×Ac → Ãc

(x, y) 7→ (x, v),
(2.3)



54 Chapter 2. Aubry-Mather Theory

where v ∈ TxM denotes the unique element in the tangent space used to reach y
along a c-static curve. This tangent vector exists by Theorem 2.68. Note that we can
restrict ourselves to the projected Aubry set since points outside the projected Aubry
set do not contribute to the total cost of transportation since there does not exist a
c-static curve joining them. Instead, such points remain stationary by Theorem 2.51.3.

As a result, we must consider an optimal transport problem from µ to µ which mini-
mizes the total cost of transportation over all possible invariant measures µ ∈ M(L).
Recall from Theorem 2.25 that the set of invariant measures M(L) is compact and
the map

M(L) → R

µ 7→ max
(φ,ψ)∈Φc̄

∫
M×M

[φ+ ψ] dµ,

is lower semi-continous with respect to the vague topology since it is the pointwise
supremum of a collection of lower semi-continous functions. Using the proof of The-
orem 1.18, we can deduce that there exists a probability measure µ̄ ∈ M(L) which
minimizes the total cost of transportation. By Theorem 1.19, the corresponding op-
timal transport plan π† is a c-action-minimizing measure.

2.3.3 Optimality of the Aubry Set

Now that we have defined the relevant optimal transport problem, we explicitly show
that the Aubry set defined in Section 2.2.2 corresponds to the set Γmax described
in Remark 1.50. As a stepping stone, it is clear that critically dominated functions
correspond to elements in the constraint in the corresponding dual Kantorovich prob-
lem in Theorem 1.19. Moreover, it turns out that the weak KAM solutions to the
Hamilton-Jacobi equation correspond to optimal maps φ in the Kantorovich dual
problem.

Theorem 2.82. Let u : M → R be a weak KAM solution to the Hamilton-Jacobi
equation with k = α(c) and define φ(x) = −u(x). Then, we have that φc̄(y) = u(y)
and the c̄-transform pair (φ,φc̄) is a maximizer to the dual Kantorovich problem.

Proof. Recall that the c-transform of φ is given by

φc̄(y) = inf
x∈X

(c̄(x, y)− φ(x))

= inf
x∈X

(c̄(x, y) + u(x)) .

Since u is critically dominated, we have that u(y) ≤ u(x)+ c̄(x, y), from which we can
deduce that

u(y) ≤ inf
x∈X

(c̄(x, y) + u(x)) = φc̄(y).

To prove the reverse inequality, suppose that

u(y0) < inf
x∈X

(u(x) + c̄(x, y0)),

for some y0 ∈ Y . Then, we have u(y0) − u(x) < c̄(x, y0) for all x ∈ X. This
contradicts Theorem 2.78 which guarantees the existence of a (u, Lη, α(c))-calibrated
curve passing through y0. Thus, we have shown that u(y) = φc̄(y), which implies that
the equality

φ(x) + φc̄(y) = c̄(x, y),
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holds for all (x, y) ∈ Ac × Ac by Theorem 2.78. Since points outside the projected
Aubry set do not contribute to the total cost of transportation since there does not
exist a c-static curve joining those points, we have that the c̄-transform pair is a
maximizer to the dual Kantorovich problem.

Moreover, we have that calibrated curves correspond to the c̄-superdifferentials of the
weak KAM solutions. In particular, after identifying the product projected Aubry
set with the tangent bundle using (2.3), we obtain the Aubry set of a weak KAM
solution.

Theorem 2.83. Let u : M → R be a weak KAM solution to the Hamilton-Jacobi
equation with k = α(c) and define φ(x) = −u(x). Then, we have

Ĩ(u) = ι(∂ c̄φ).

Proof. Let (x, v) ∈ Ĩ(u) be arbitrary. Then, it follows that

γ(x,v) : R →M

s 7→ π(ΦLs (x, v)).

is a (u, Lη, α(c))-calibrated curve on R. Let t > 0 and define y = γ(x,v)(t). By Theorem
2.68, we can deduce that (x, v) = ι(x, y). Since the curve γ(x,v) is (u, Lη, α(c))-
calibrated, we have

φ(x) + φc̄(y) = c̄(x, y),

from which we can deduce that (x, y) ∈ ∂ c̄φ. Hence, we have shown that (x, v) ∈
ι(∂ c̄φ). For the reverse inclusion, let (x, v) ∈ ι(∂ c̄φ). Again, consider the curve

γ(x,v) : R →M

s 7→ π(ΦLs (x, v)).

By Theorem 2.61, we have Aubry set is invariant under the Euler-Lagrange flow from
which we can deduce that γ(x,v)(s) ∈ ∂ c̄φ(x) for all s ∈ R. Thus, we can deduce that
for all a < b, we have

u(γ(x,v)(b))− u(γ(x,v)(a)) =

∫ b

a
Lη(γ(x,v)(t), γ̇(x,v)(t)) dt+ α(c)(b− a).

Thus, we can conclude that γ(x,v) is (u, Lη, α(c))-calibrated on R. Hence, we have
shown that (x, v) ∈ Ĩ(u).

Corollary 2.84. The set Γmax defined in the proof of Theorem 1.48 corresponds to
the Aubry set after the identification given in (2.3).

Ãc =
⋂

u≺Lη+α(c)

Ĩ(u) = ι

 ⋂
φ optimal

∂ c̄φ

 .

Proof. The first equality coincides with Theorem 2.80. We now show the second
equality. By Theorem 2.78, any critically dominated function admits a weak KAM
solution which yields a maximizer to the dual Kantorovich problem by Theorem 2.82.
On the other hand, it is clear that an optimal map φ to the dual Kantorovich problem
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yields a critically dominated function. By applying Theorem 2.83, we obtain⋂
u≺Lη+α(c)

Ĩ(u) =
⋂

φ optimal

ι(∂ c̄φ).

Since ι is injective, we obtain

⋂
u≺Lη+α(c)

Ĩ(u) = ι

 ⋂
φ optimal

∂ c̄φ

 .

Conclusion

In a sense, classical solutions to the Hamilton-Jacobi equation are rare since they can
only exist whenever the right-hand side coincides with Mather’s α-function. As a
result, weaker solutions are defined in a manner that is consistent with the properties
satisfied by the classical solutions. We have made an attempt at establishing a rela-
tionship between these weak KAM solutions and the optimal maps in a suitably chosen
dual Kantorovich problem. The minimal set characterizing optimality coincides with
the Mather set whereas the maximal set characterizing optimality corresponds to the
Aubry set from the theory of dynamical systems.
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Chapter 3

Conclusion

In this thesis, we investigate the meeting point between optimal transportation and
the theory of dynamical systems.

When it comes to optimal transportation, we have seen that the Monge and Kan-
torovich problems represent cost-minimization problems through different perspec-
tives. The former can be viewed as an optimization problem over the set of transport
maps whereas the latter can be viewed an an optimization problem over the set of
transport plans. However, the Monge problem is not always defined for any given
initial and final configurations since mass splitting is prohibited. On the other hand,
it is known that the Kantorovich problem admits a minimizer under fairly general
conditions. Moreover, since the Kantorovich problem is a convex optimization prob-
lem, it is not surprising that there exists a corresponding dual problem. Solving this
dual maximization problem is equivalent to solving the primal minimization problem
since there is no duality gap. To guarantee the existence of a maximizer, the cost
function must be sufficiently well-behaved. In the Euclidean setting, we employ tools
from convex analysis to obtain a characterization of optimal transport plans known as
the Knott-Smith criterion. Moreover, Brenier’s theorem provides sufficient conditions
for the existence of a transport map in the corresponding Monge problem. Lastly, we
employ Rüschendorf’s theoretical framework to generalize tools from convex analysis
to deduce a general version of the Knott-Smith criterion. This general optimality
criterion yields two c-cyclically monotone sets which characterize optimality in both
Kantorovich problems. The first minimal set consists of the union of the supports of
all optimal transport plans whereas the second maximal set is defined by the inter-
section of the c-superdifferentials of all optimal maps in the dual Kantorovich problem.

When it comes to Aubry-Mather theory, we have seen that for a given Lagrangian,
the equations of motion of the corresponding physical system can be obtained by
considering the solutions to the Euler-Lagrange equation. These solutions exist when-
ever the Legendre condition is satisfied. To guarantee this condition, we work with
strictly convex, superlinear Lagrangians. Similar properties can be imposed on the
corresponding Hamiltonian to obtain rich invariant sets describing the dynamics of
the system. The first consists of the supports of all action-minimizing measures known
as the Mather set. The second consists of the orbits of all static curves known as the
Aubry set. Mather’s celebrated graph theorems state that the projection onto the
base manifold restricted to these sets forms a bijection, which has important dynam-
ical consequences. We have made an attempt at establishing a relationship between
weak KAM solutions to the Hamilton-Jacobi equation and the optimal maps in a
suitably chosen dual Kantorovich problem. The minimal set characterizing optimal-
ity coincides with the Mather set whereas the maximal set characterizing optimality
corresponds to the Aubry set.
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