
Rijksuniversiteit Groningen

Computing Science | Thesis Project

A Tool for Log Generation of Adaptive Business Processes

Author:

Dyllan Cartwright d.p.cartwright@student.rug.nl

Supervisors:

Arash Yadegari
Dimka Karastoyanova

a.yadegari.ghahderijani@rug.nl
d.karastoyanova@rug.nl

Collaborator:

Radu Andrei Sterie r.a.sterie@student.rug.nl

30 July 2023

mailto:d.p.cartwright@student.rug.nl
mailto:a.yadegari.ghahderijani@rug.nl
mailto:d.karastoyanova@rug.nl
mailto:r.a.sterie@student.rug.nl


Contents >_next(log) | Dyllan Cartwright

Contents
1 Introduction 4

1.1 Background and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Adaptive Business Processes . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Log Generation and Synthetic Data . . . . . . . . . . . . . . . . . . 5
1.2.3 Existing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Methodology 8
2.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Technologies of >_next(log) (& ml.log) . . . . . . . . . . . . . . . . . . 9
2.3 Architecture of >_next(log) (& ml.log) . . . . . . . . . . . . . . . . . . 11
2.4 Using >_next(log) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Bonuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Rule Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Keywords / Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Examples / Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Limitations / Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Evaluation 28
3.1 Examples of Adapted Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 + // to parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.4 - // to series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Integration with ml.log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Conclusion 38
4.1 Revisiting Objectives and Evaluations . . . . . . . . . . . . . . . . . . . . . 38
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Auxiliary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A Screenshots of >_next(log) 44

References 50

Page 1



Acknowledgments >_next(log) | Dyllan Cartwright

Acknowledgments
I would like to express my sincere gratitude to all those who have supported
me throughout the process of completing this thesis.

First and foremost, I am immensely grateful to my supervisor, Arash Yadegari,
for their invaluable guidance, expertise, and continuous encouragement. Their
insightful feedback and constructive suggestions have been instrumental in
shaping the direction of this work. But perhaps, I am most grateful for
their genuine kindness and for them (willingly) engaging in meetings that
sometimes took 2+ hours.

Additionally, I would like to acknowledge the contributions/collaborations
made with my colleague (and one of my closest friends) Radu Andrei Sterie.

I would also like to extend my thanks to Kuljit Dhami (another one of my
closest friends), for her invaluable assistance in proofreading my thesis. Her
literary skills are unrivalled (her words) and have been hugely helpful.

Furthermore, I extend my gratitude to the Rijksuniversiteit Groningen itself,
for providing me with the opportunity to pursue my studies and for fostering
an environment of learning and growth. I am grateful for the knowledge and
skills I have gained during my time here.

Finally, I would like to thank my mum for her unwavering support, understanding,
and patience throughout my journey in this city. Her encouragement and
belief in me has been a constant source of motivation. I truly hope she knows
she has been the backbone and inspiration to me completing my education.

Since I can remember, my mum has been the fuel for me to better myself - I
hope with all of my heart to repay her by improving not only my own future
but also hers.

Page 2



Abstract >_next(log) | Dyllan Cartwright

Abstract
This thesis project focuses on the development of >_next(log), a sophisticated
tool for generating logs to be used with adaptive business processes.

The tool aims to provide a user-friendly and intuitive interface, streamlining
the process of log generation for adaptive processes. It minimises the need for
manual intervention or input by incorporating features such as a graphical
user interface for creating a "Rule List", whereby users can adapt business
logs by using their own custom rules. The ultimate goal is to automate the
log generation process and enhance the usability of the application.

Drawing inspiration from previous research done by my supervisors Arash
Yadegari and Dimka Karastoyanova [1, 2], this thesis leverages an approach
for synthetic log generation that focuses on control-flow changes in KPI-based
process adaptations. By allowing users to upload business process logs in
.mxml format and corresponding business process models in .bpmn format,
>_next(log) empowers users to view the uploaded models within the
application. The tool’s most significant feature is the ability for users to
define precise sets of "Rules", which can then adapt the provided logs accordingly.

The generated logs can then be used in conjunction with the ml.log thesis
project by Radu Andrei Sterie to predict and identify (the injected) patterns
in the logs using machine learning techniques [3].

With the use of >_next(log), users can overcome the challenge of limited
access to real-world business data sets, enabling more comprehensive analysis
and understanding of business processes.

Keywords: Process adaptation, Process change, Synthetic data generator,
Event log generation, Business process simulation.

Page 3



Introduction >_next(log) | Dyllan Cartwright

1 Introduction
Business Process Management (BPM) is a multidisciplinary research field
that centers around the modeling, implementation, analysis, and improvement
of business processes. It encompasses various domains and disciplines to
effectively manage and optimize organizational workflows and operations
[4, 5]. A significant part of this research relies on data generated by Business
Process Management Systems (BPMS). However, due to the proprietary
nature of business processes, companies are often reluctant to expose their
process data, leading to a shortage of data for research purposes. This thesis
introduces >_next(log), a tool designed to generate synthetic event logs
for adaptive business processes, thereby providing a solution to this data
shortage.

1.1 Background and Scope
Event logs are essential for analysing data generated by BPMS. These logs
comprise a collection of process traces, where each trace represents a sequence
of events. Each event within a trace contains relevant information, such as
the activity name, activity timestamp, and other attributes (e.g. cost) [6].

Business Process Simulation plays a crucial role in Business Process Management
(BPM) as it enables the analysis and improvement of defined business processes.
This powerful technique offers a wide range of applications, including optimising
customer service, enhancing production lines, and identifying opportunities
for cost savings. By simulating business processes, organisations can gain
valuable insights to drive efficiency, make informed decisions, and continuously
enhance their operations [7]. However, the traditional approach to Business
Process Management, which often involves manual intervention and input,
can be time-consuming and prone to errors. This is particularly true when
it comes to log generation for adaptive processes [8, 9].

The motivation behind the development of >_next(log) is to address
these challenges by automating the log generation process and enhancing the
usability of the application. By doing so, >_next(log) aims to streamline
the process of log generation for adaptive processes, thereby contributing to
the field of business process analysis.

Page 4



Introduction >_next(log) | Dyllan Cartwright

The primary objective of this thesis is to present >_next(log), a tool
designed to generate logs for adaptive business processes. The tool leverages
an approach for synthetic log generation that focuses on control-flow changes
in KPI-based process adaptations. By allowing users to define precise sets
of "Rules", >_next(log) enables the adaptation of provided logs according
to the given rules and BPM.

Furthermore, this thesis aims to showcase the practical application of the
software >_next(log) in conjunction with machine learning techniques to
discover causal rules in the adapted logs, particularly with the ml.log thesis
project by Radu Andrei Sterie. Previous research has already demonstrated
the potential of machine learning in this context [2, 10, 11]. ml.log will use
the generated logs from >_next(log) to attempt to predict and identify
(the injected) patterns.

The scope of this thesis includes the presentation of the architecture and
technologies of >_next(log), the definition of its "Rules" grammar, and the
evaluation of the tool’s effectiveness in generating adaptive logs for business
processes.

1.2 Related Work
1.2.1 Adaptive Business Processes

Adaptive business processes are a critical aspect of modern business operations,
enabling organisations to respond swiftly and effectively to changes in their
operating environment. These processes are designed to be flexible and can
be modified in real-time to meet evolving business needs [12].

1.2.2 Log Generation and Synthetic Data

Log generation and synthetic data play a crucial role in the analysis and
improvement of business processes. Event logs are typically generated by
Business Process Management Systems (BPMS) and contain valuable information
about the execution of business processes. Each event log consists of a set of
process traces, with each trace representing a sequence of events. The data
attached to each event can include the activity name, activity timestamp,
and other event-related attributes, such as cost [6].

Synthetic data, on the other hand, refers to data that is artificially generated

Page 5



Introduction >_next(log) | Dyllan Cartwright

rather than collected from real-world events. In the field of BPM, synthetic
event logs can be used to simulate the execution of business processes, allowing
for the testing and validation of different process models. As stated before,
this can be particularly useful in situations where real-world data is scarce
or sensitive.

1.2.3 Existing Tools

Several papers have explored the generation of artificial event logs, although
mostly for discovering BPMNs from logs, they are still relevant;

1. One approach involves manually creating logs, but this method is time-consuming
and prone to errors [13].

2. Another approach utilises CPN IDE (formerly known as CPN Tools),
a Petri nets editor with simulation capabilities, to generate random
logs based on a given Petri net model. However, this approach requires
writing scripts in Standard ML, which can be challenging [14].

3. Transforming BPMN models to DEVS formalism and simulating them
using DEVS simulation tools is yet another approach, but it involves
additional steps and transformations [15, 16, 17, 18].

4. Other tools such as SecSy focus on generating event logs for security-oriented
information systems, while PLG2 offers configurable toolboxes for event
data generation based on artificial business process models [19, 20, 21].
PLG2 also allows for random evolution of a process model, in order to
generate a slightly different version of it (to simulate concept drifts).

5. BPMN engines like Bizagi (which is considered to be one of the best
BPM tools by users [22]) can also generate event logs, however it is not
free.

6. Another option is BonitaSoft (with an available open-source edition),
which offers graphical representation of business processes using BPMN.
While its intuitive drag-and-drop modeling interface simplifies process
design, the tool’s simulation capabilities are still quite bare, and do not
allow for many probability distributions. [22]

Page 6

https://cpnide.org/
https://sourceforge.net/projects/secsy/
https://plg.processmining.it/
https://www.bizagi.com/en/business-process-simulation
https://www.bonitasoft.com/


Introduction >_next(log) | Dyllan Cartwright

7. Finally, there is BIMP, which is a free online simulator that offers
simplicity through adjustable parameters and probability distributions
when creating simulations. Although it requires a separate modeling
tool to develop the business process model, BIMP allows users to create
fairly customisable simulations (with some limitations).

While all of these tools offer the capability to generate synthetic logs by
defining probability distributions and other parameters, none1 of them seem
to provide the desired feature that allows users to dynamically adapt the
business process during a trace, solely based on user-defined rules applicable
to that specific trace. As will be seen later on, these rules are built upon the
trace’s KPI metrics (eg duration , cost etc).

Given that the tools listed above are available and are good enough for
creating unadapted event logs, >_next(log) takes a different approach by
serving as a complementary module in the pipeline. Rather than reinventing
the wheel, it focuses on enhancing the subsequent step. Hence, users can
generate their initial logs using any preferred method2 and then >_next(log)
becomes a tool for adapting these (initial) logs according to user-defined rules.

While in theory, any generative tool should work, BIMP was chosen as the
primary way to generate logs for this thesis project. Although BIMP has
some implementation limitations and requires additional data processing for
specific use cases, it is straightforward to generate initial event logs. This
makes it a solid starting point for us to create a prototype of >_next(log).

Likewise, the bpmn.io tool will be used in conjuntion with BIMP to create
the BPMNs.

1.3 Objective
Hence, the overarching goal of >_next(log) is to provide users with the
flexibility to generate their initial logs using any preferred method and subsequently
adapt these logs based on user-defined rules, whilst ensuring an intuitive and
coherent UI.

1Bizagi does have a "what-if" analysis feature, which may implement the desired feature,
however, because I don’t have access to it, I can’t be sure.

2Though, as will be seen in the following sections, the initial logs will need to be
generated in MXML format.

Page 7

https://bimp.cs.ut.ee/simulator
https://demo.bpmn.io/new
https://help.bizagi.com/process-modeler/en/what_if_analysis.htm


Methodology >_next(log) | Dyllan Cartwright

2 Methodology
This section delves into the approach and techniques employed in the development
of >_next(log). It begins with a diagram depicting >_next(log)’s
pipeline to generate adapted logs. The supported data formats are discussed,
followed by an exploration of the technologies utilised. The architecture
of >_next(log) is briefly touched upon. Next we cover the usage of
>_next(log), including rule definitions and examples of its implementation.
Finally, the limitations and assertions of the tool are discussed.

2.1 Pipeline

PRIOR GENERATION

POST ANALYSIS

Choose Settings

Upload generated .mxml + .bpmn files

Use Output

Generate Initial Logs

BIMP

... (other tools)

Create BPMN

bpmn.io

... (other tools)

USER

Create Rules

Save Adapted Logs

+ OTHER TOOLS

Figure 1: The Flow/Pipeline of >_next(log)

Page 8



Methodology >_next(log) | Dyllan Cartwright

2.1.1 Data Formats

MXML

The MXML (Mining eXtensible Markup Language) data format is widely
used for representing event logs in the field of process mining. MXML
provides a standardised way to capture and store event data related to
business processes. It includes information such as the process activities,
timestamps, and other relevant attributes. These logs will be used by >_next(log)
as the unadapted logs.

Users can (in theory) generate synthetic MXML files however they want and
it should work with >_next(log), but >_next(log) has only been tested
on logs generated by the BIMP tool.

BPMN

On the other hand, the BPMN (Business Process Model Notation) data
format is designed specifically for modeling business processes. BPMN diagrams
provide a standardised and intuitive way to depict the sequence of activities,
decisions, gateways, and other elements within a business process model (as
XML data).

>_next(log) utilises the uploaded BPMN file to establish correlations
between the logs and the defined "Rules" while also performing basic error
checking. Likewise, >_next(log) is expected to support BPMN files generated
anywhere, but has only been tested using BPMN files made by the bpmn.io
tool.

2.2 Technologies of >_next(log) (& ml.log)
Python was chosen as the backend programming language. Python is a
versatile and widely-used programming language known for its simplicity
and readability. It offers several advantages that made it a suitable choice
for developing the backend of >_next(log):

• Intuitive Development: Python’s clean and expressive syntax makes
it intuitive to work with, allowing for efficient and straightforward
development.

• Extensive Library Ecosystem: Python has a vast collection of

Page 9

https://bimp.cs.ut.ee/simulator
https://demo.bpmn.io/new
https://www.python.org/


Methodology >_next(log) | Dyllan Cartwright

open-source libraries and frameworks, which played a significant role
in the decision to use it for >_next(log). Those libraries provided
ready-made solutions for various tasks, such as data processing, "Rule"
lexing, machine learning techniques found in ml.log and finally, seamless
frontend development.

• Supervisor’s Research: Arash Yadegari’s previous work was also
done in Python.

The frontend of >_next(log) was made with PySide6, a Python binding
for the Qt framework.

The decision to use PySide6 for the UI in >_next(log) was based on
several factors:

• Customisability: PySide6 offers a high level of customisation, allowing
for fine-grained control over UI elements and enabling the creation of
a tailored and cohesive user interface for >_next(log).

This was the most appealing factor for me, I wanted a smooth and
engaging user experience whilst defining "Rules" through the UI - and
PySide6 made this possible.

• Cross-platform Compatibility: Qt, the underlying framework of
PySide6, supports cross-platform development, ensuring that the UI
created with PySide6 can run smoothly on different operating systems,
including Windows, macOS, and Linux.

This was also very important, as we wanted one codebase that worked
(and looked the same) for any OS.

• Documentation: PySide6’s documentation is exceptional and provided
an enjoyable experience during its utilisation. As you may agree,
finding documentation that is enjoyable to read is certainly an uncommon
occurrence.

>_next(log) also used the PLY (Python Lex-Yacc) library. PLY is a
Python implementation of the well-known Lex and Yacc tools, commonly
used for building compilers and parsing tools.

Its benefits included:

• Legal Rule Definition: Most importantly, PLY facilitated the definition

Page 10

https://doc.qt.io/qtforpython-6/index.html
https://www.dabeaz.com/ply/


Methodology >_next(log) | Dyllan Cartwright

of >_next(log)’s formal grammar and hence, the enforcement of
properly structured rules.

• Error Handling: PLY includes built-in error handling mechanisms,
providing informative error messages when encountering syntax errors
or rule violations in the input data.

Finally, the xml library in Python was utilised in >_next(log) to parse
both the MXML and BPMN files.

Note: The libraries, "matplotlib, pandas, scikit-learn, sklvq" were also used
in ml.log, as well as the software graphviz.

2.3 Architecture of >_next(log) (& ml.log)
Our codebase follows a well-structured architecture that is both intuitive and
scalable. It is organised into two main directories: "frontend" and "backend".

In the "frontend" directory, you will find the code responsible for defining
the user interface (UI) using QML (Qt Meta-Object Language). QML is
a declarative language that allows the creation of visually appealing and
interactive UI components.

Both within the "frontend" and "backend" directories, the code is further
divided into "log" and "ml" subdirectories.

Hence, the "frontend/log" directory contains the QML code specific to >_next(log),
focusing on the UI components and functionalities related to log generation,
adaptation, and rule definition. On the other hand, the "frontend/ml" directory
encompasses the QML code specifically related to ml.log.

Moving to the "backend" directory, you will find the "controller.py" file, which
serves as the API between the frontend UI and the underlying functionality
of >_next(log). This file acts as a bridge, facilitating communication and
data exchange between the frontend UI and the backend logic.

The structure of >_next(log)’s codebase is designed to be intuitive and
scalable, allowing for easy maintenance, expansion, and modular development.
This architectural approach separates the concerns of the UI and the backend
functionality, as well as logic related to >_next(log) and ml.log, thus
ensuring a clear separation of responsibilities.

Page 11

https://graphviz.org/


Methodology >_next(log) | Dyllan Cartwright

2.4 Using >_next(log)
This section provides a quick guide on effectively utilising >_next(log)
for generating and adapting business process logs. The following will walk
you through the various pages and functionalities within the software.

You can see screenshots of >_next(log) in the appendix: A.

• Home page: On this page, users can easily upload their .bpmn and
.mxml files. This page serves as the starting point for the log generation
process, allowing users to select the necessary files for adaptation.

• View page: This page provides users with a visual representation
of their uploaded BPM. It enables users to inspect and review the
structure and flow of the process model, aiding in the understanding of
the process when creating rules.

• Rules Editor page: On this page, users can create their rules for log
adaptation. The intuitive interface allows users to define rules based
on specific conditions and actions. After creating the rules, users can
click ‘Parse Rules’ to verify their validity. By clicking ‘Available’, users
can view all the defined events and attributes to facilitate rule creation.

• Save page: This page is where users can generate and save the adapted
logs. Users can specify the desired output file name and save the
adapted logs as a .csv file. Additionally, users have the option to
save the "original" unadapted logs as a separate .csv file, providing
traceability and allowing for debugging purposes if needed.

• Settings page: This page offers users the ability to customise certain
preferences according to their requirements. Users can define the default
folder location for file uploads. If the default folder location setting is
disabled, >_next(log) will remember the last folder used for uploading
files and will open there.

• The Switch Icon: The Switch Icon allows users to toggle between
>_next(log) and ml.log, another tool within the software. This
feature provides users with flexibility and the ability to easily switch
between the two applications.

Page 12



Methodology >_next(log) | Dyllan Cartwright

2.4.1 Bonuses

One of the main goals of this project was that it must be user-friendly,
intuitive, and should provide a seamless automated process for generating
logs for adaptive processes. Hence, the application was designed to streamline
this process and minimise the need for manual intervention or input. >_next(log)
not only meets but also exceeds these expectations for several reasons:

1. Easy file uploading: Uploading .mxml and .bpmn files is a straightforward
process that only requires a few clicks.

Additionally, the tool provides convenient buttons that quickly link
users to the BIMP and bpmn.io tools, simplifying the file selection and
uploading process.

2. Built-in BPM Viewer: >_next(log) includes a built-in BPM
viewer, allowing users to effortlessly check the uploaded BPM when
generating rules. This feature enhances usability and provides users
with a visual representation of the process model.

3. Extensive error checking: >_next(log) incorporates error checking
mechanisms;

• For instance, when uploading files, the tool performs compatibility
checks to ensure the files match. If any inconsistencies are detected,
helpful warnings are displayed to guide users (as seen below).

Page 13

https://bimp.cs.ut.ee/simulator
https://demo.bpmn.io/new


Methodology >_next(log) | Dyllan Cartwright

• Similarly, the parser in >_next(log) is adept and robust at
verifying rule accuracy, providing informative messages when users
make errors. This proactive error checking enhances the user
experience and helps users avoid mistakes.

4. Expanded functionality: >_next(log) has expanded its functionality
significantly beyond the initial project description;

• Originally, the tool only required the skip and insert actions.
However, it now includes additional actions such as + (to parallel
action) and - (to series action).

• Moreover, time shifting capability has been added (with preserved
waiting times).

• Initially, "Cycle Time" and event durations were the only expected
attributes available to create rules with, but now users can utilise
any available attribute. Likewise, multiple quantifiers, including
# , @ , and ! , have been incorporated to further enhance flexibility
in rule creation.

Note: to create a rule using an instance’s "Cycle Time", you could
use the following; if _End@duration ... then ... .

5. Exemplary UI: The user interface (UI) of >_next(log) probably
surpasses expectations. Its intuitive design and user-friendly layout

Page 14



Methodology >_next(log) | Dyllan Cartwright

contribute to a positive user experience. The UI was crafted to provide
users with easy navigation, clear instructions, and an overall efficient
workflow.

2.4.2 Output

The output of >_next(log) is a .csv file that includes the following components;

1. Attribute values: The file has column headers that list all the events
present in the business process model and their associated attributes.
These headers facilitate easy identification and understanding of the
events and their corresponding attributes.

2. Instance path: The .csv file describes the path taken by each instance
within the business process, i.e., it outlines the sequence of events
followed by each (possibly adapted) instance.

3. Rule definitions: For each user-defined rule, a corresponding column
is included in the .csv file. The column name represents the rule
definition. Each cell in the rule column indicates whether the rule
was applied or not for a particular instance. If the rule was applied,
then the cell value is 1; otherwise, it is 0.

It’s important to note that even if a rule’s condition evaluates to true, it
does not guarantee that the rule was applied. For example, in BPM 3,
if a specific instance’s path was ‘_Start->A-> C->_End’ and the rule
stated if A#duration > 515 then skip B; the rule column would
still have a value of 0, regardless of A’s duration exceeding 515.

4. "_Label" column: The "_Label" column in the .csv file represents
a binary representation of all possible combinations of applied rules
for each instance. This column provides a concise summary of the
rules that were actually applied to the instances, allowing for easy
identification of patterns and correlations between different rules.

Likewise, this allows for seamless integration into ML.log.

5. Save original: Finally, >_next(log) also provides the option for
users to save the original (unadapted) logs, primarily for debugging
and traceability purposes.

Page 15



Methodology >_next(log) | Dyllan Cartwright

2.5 Rule Definitions
In this section, we present the formal grammar and syntax for defining rules
within >_next(log) to facilitate the adaptation of business process logs.

These rules are expressed in a Backus-Naur Form (BNF) grammar, providing
a structured and consistent framework for specifying log adaptation criteria.
We will explain the different tokens, terminals and quantifiers used in the
grammar, enabling users to understand and construct their own custom rules
effectively.

2.5.1 Grammar

⟨rules⟩ ::= ⟨rules⟩ ⟨rule⟩ ‘;’ ⟨comment⟩?
| ⟨ε⟩ ⟨comment⟩?

⟨rule⟩ ::= ‘if’ ⟨identifier⟩ ⟨expr⟩ ‘then’ ⟨action⟩
| ‘if’ ⟨rt_expr⟩ ‘then’ ⟨action⟩

⟨expr⟩ ::= ‘#’ ⟨identifier⟩ ⟨equality⟩ ⟨value⟩
| ‘@’ ⟨identifier⟩ ⟨equality⟩ ⟨value⟩

⟨rt_expr⟩ ::= ‘!’ ⟨identifier⟩ ⟨equality⟩ ⟨value⟩

⟨action⟩ ::= ‘skip’ ⟨identifier⟩
| ‘insert’ ⟨identifier⟩ ‘(’ ⟨attributes⟩ ‘)’
| ‘insert’ ⟨identifier⟩
| ⟨parallel_list⟩
| ⟨sequential_list⟩

⟨parallel_list⟩ ::= ⟨parallel_item⟩
| ⟨parallel_next⟩

⟨parallel_item⟩ ::= ⟨identifier⟩ ‘+’ ⟨identifier⟩

⟨parallel_next⟩ ::= ‘+’ ⟨identifier⟩
| ⟨parallel_next⟩ ‘+’ ⟨identifier⟩

⟨seq_list⟩ ::= ⟨seq_item⟩
| ⟨seq_next⟩

⟨seq_item⟩ ::= ⟨identifier⟩ ‘-’ ⟨identifier⟩

Page 16



Methodology >_next(log) | Dyllan Cartwright

⟨seq_next⟩ ::= ‘-’ ⟨identifier⟩
| ⟨seq_next⟩ ‘-’ ⟨identifier⟩

⟨attributes⟩ ::= ⟨attributes⟩ ‘#’ ⟨identifier⟩ ⟨value⟩
| ⟨attributes⟩ ‘#’ ⟨identifier⟩ ⟨distribution⟩
| ‘#’ ⟨identifier⟩ ⟨value⟩
| ‘#’ ⟨identifier⟩ ⟨distribution⟩

⟨distribution⟩ ::= ‘?N’ ‘[’ ⟨value⟩ ⟨value⟩ ‘]’
| ‘?U’ ‘[’ ⟨value⟩ ⟨value⟩ ⟨value⟩ ‘]’

⟨identifier⟩ ::= [a-zA-Z_][a-zA-Z0-9_]*

⟨value⟩ ::= [-]?[0-9]+[‘.’[0-9]+]?

⟨equality⟩ ::= ‘<=’ | ‘>=’ | ‘<’ | ‘>’ | ‘==’ | ‘!=’

⟨comment⟩ ::= ‘//’ [^\n]*

⟨ε⟩ ::= ‘’

2.5.2 Quantifiers

• The ‘#’ (THIS_TOK) is a quantifier which means this event’s

attribute value. Hence, A#duration means the duration of A.

• The ‘@’ (ACCUMULATIVE_TOK) is a quantifier which means the

accumulative attribute value at that event (inclusive).

Hence, C@duration means the total duration of the instance after
event C.

• The ‘!’ (RUNNING_TOTAL_TOK) is a quantifier which means the
total running attribute value during the instance. This

quantifier does not have a event identifier attached to it.

Hence, if !duration > 15 then skip D; means that if at any point
during the instance, if the running total for duration is > than 15, then
skip D. Note: if D has already happened by the time the condition
becomes true, then the rule is ignored.

Page 17



Methodology >_next(log) | Dyllan Cartwright

2.5.3 Keywords / Actions

For the more intricate details, read the "Examples/Implementations" section
2.6 further below.

• The keywords if and then are self-explanatory.

• skip

– This action will skip an event that otherwise would have happened.

Hence, imagine if A#duration > 15 then skip B; with BPM
3 (shown below). If an instance’s A#duration was greater than
15, then the rule will only be ‘applied’ if the instance was going
to choose ‘B’ in the xor gate. If the instance took the path
"_Start->A->C->_End" then the rule will not be applied regardless
of A’s duration.

– Proceeding events’ timestamps will be updated accordingly, they
will be ‘shifted’ to the left by the skipped event’s duration. Waiting
times will be preserved.

– If the skipped event was part of a parallel gateway, then the
proceeding events’ timestamps will be updated accordingly if the
skipped event was the last event to finish in the gateway, otherwise
nothing is changed - of course, this is different per instance.

• insert

– This action will insert the given event right after the event that
triggered it.

Hence, if A#duration > 515 then insert D; will insert D right
after A. If A was in a parallel gateway, then "A->D" is now part
of the same gateway.

– Proceeding events’ timestamps will be updated accordingly, they
will be ‘shifted’ to the right by the inserted event’s duration.
Waiting times will be preserved.

– If the inserted event was part of a parallel gateway, then the
proceeding events’ timestamps will be updated accordingly if the

Page 18



Methodology >_next(log) | Dyllan Cartwright

inserted event was the last event to finish in the gateway (for that
instance).

• + // TO_PARALLEL_TOK

– This action means for all the events in the given chain, turn them
into parallel events.

Hence, if A#resourceCost > 10 then B+C+D; means make the
events B, C, and D parallel.

– The chain needs to be such that the events are (directly) in series.
For example, looking at BPM 2 below, ... B+C is allowed, so is
... B+C+D but ... C+B and ... B+D is not.

• - // TO_SERIES_TOK

– This action means for all the events in the given chain, turn them
into events in series.

Hence, if A#resourceCost > 10 then B-C-D; means make the
events B, C, and D into series. Note: order is important, ie; if you
specify ... then C-D-B then that will be the order taken, where
waiting time will be preserved.

– Likewise, you can only put events in series if they are in parallel,
and all events must be transformed to series. For example, looking
at BPM 5, ... D-E-F is allowed, but .. D-E is not (because F
is missing).

2.5.4 Terminals

• <rules> is your list of rules separated by the ‘;’ token.

• <distribution> is a terminal which allows a user to define an attribute
distribution type when inserting an event, the available ones are;

– ?N (mu sigma) : A normal distribution, with mean µ and standard
deviation σ.

– ?U (min_val max_val step_size) : A uniform distribution with
the given parameters.

Page 19



Methodology >_next(log) | Dyllan Cartwright

– Likewise, there is also a "Fixed Distribution" type, but is not
actually a <distribution> terminal.

– For example, if you are inserting the event B, with the attributes
a1, a2, a3, a4, a5, you could write the rule;

.. insert B (#a1 ?N(20 3) #a2 ?U(10 20 0.2) #a3 10);

This means B will be inserted with attributes a1 following a normal
distribution, a2 with a uniform distribution, a3 will always be 10,
and finally a4 and a5 will be set to 0.

Do note; the attribute #occurred for the inserted event will
always be set to 1 if the event was inserted (otherwise it will
be 0). Likewise, #start_time and #end_time will be created
dynamically (with #start_time being right after the previous
event’s #end_time ). You do not have to do this yourself, these
will happen automatically.

• <identifier> is any identifier using the letters from the Roman alphabet,
underscores and numbers. It must start with a letter or underscore.
These are used for event names and for attribute names.

• <value> is any number, float or integer (positive or negative).

• <comment> is a normal comment, everything after ‘//’ is ignored
(until a newline).

Page 20



Methodology >_next(log) | Dyllan Cartwright

2.6 Examples / Implementations
Suppose we had the following BPMNs;

BPM 2

A B C D E

BPM 3

A
B

C

BPM 4

A

B

C

D

E

BPM 5

A
B

C

D

E

F

G

H

And suppose we had the following rules, where the comments
... // A:1,3; R:2,4 mean that the >_next(log) parser accepted the
rule for BPMs 1 and 3, and rejected the rule for BPMs 2 and 4;

1 if A# duration > 515 then skip B; // A:1 ,2,3,4
2 if B# duration > 515 then insert K; // A:1 ,2,3,4
3 if A# duration > 515 then insert D; // A:2; R:1 ,3,4
4 if A# duration > 515 then B+C; // A:1; R:2 ,3,4
5 if A# duration > 515 then C+B; // R:1 ,2,3,4
6 if A# duration > 515 then B-C; // A:4; R:1 ,2,3
7 if A# duration > 515 then C-B; // A:4; R:1 ,2,3
8 if A# duration > 515 then D-F-E; // A:4; R:1 ,2,3

Page 21



Methodology >_next(log) | Dyllan Cartwright

9 if A# duration > 515 then D-F; // R:1 ,2,3,4
10 if !duration > 1000 then B-C; // A:4; R:1 ,2,3

1: if A#duration > 515 then skip B; // A:1,2,3,4

• BPMs 2; the output works as expected. If the rule’s condition
evaluates to true for that instance, then B will be skipped and all
of the proceeding event’s timestamps will be shifted accordingly,
where waiting times are preserved (you can assume waiting times
are always preserved).

• BPMs 3; the rule will only be applied if the instance was going to
‘choose’ B at the xor gate, otherwise even if A’s duration > 15,
then nothing will happen.

• BPMs 4,5; B will be skipped if the rule’s condition evaluates to
true. And if B was the last event to finish in the parallel gateways,
then the proceeding event’s timestamps will be shifted to the left
(otherwise nothing happens to their timestamps). Of course, this
may be different per instance.

2: if B#duration > 515 then insert K; // A:1,2,3,4

• BPMs 2; the output works as expected. If the rule’s condition
evaluates to true for that instance, then K will be inserted right
after B and all of the proceeding event’s timestamps will be shifted
accordingly.

• BPMs 3; the rule will only be evaluated if the instance ‘chose’ B at
the xor gate, otherwise the rule isn’t even evaluated. Likewise, if
the instance chose B, and B’s duration was > 15 then K is inserted
right after B, with all the proceeding events’ timestamps shifted
accordingly (see BPM 6 below).

• BPMs 4,5; K will be inserted after B (in series but still in the
parallel gateway, see BPM 7 below) if the rule’s condition evaluates
to true. And if K was the last event to finish in the parallel
gateway, then the proceeding event’s timestamps will be shifted
to the right (otherwise nothing happens to their timestamps). Of
course, this may be different per instance.

Page 22



Methodology >_next(log) | Dyllan Cartwright

BPM 6

A
B K

C

BPM 7

A

B

E

K

C

D

3: if A#duration > 515 then insert D; // A:2; R:1,3,4

• BPMs 3; the output works as expected and works as explained
above.

• BPMs 2,4,5; the >_next(log) parser will reject this rule as D
already exists in th BPM.

4: if A#duration > 515 then B+C; // A:1; R:2,3,4

• BPMs 2; The output works as expected, if the rule’s condition
evaluates to true, then the instance’s BPM will look like BPM 8
seen below. Of course, the proceeding event’s timestamps will be
shift to the left accordingly (with waiting time preserved)

• BPMs 3,4,5; the >_next(log) parser will reject this rule as
events B and C are not (directly) in series with each other.

BPM 8

A D E
B

C

5: if A#duration > 515 then C+B; // R:1,2,3,4

• BPMs 2,3,4,5; the >_next(log) parser will reject this rule as
events B and C are not (directly) in series with each other.

6: if A#duration > 515 then B-C; // A:4; R:1,2,3

• BPMs 5; The output works as expected, if the rule’s condition
evaluates to true, then the instance’s BPM will look like BPM 9

Page 23



Methodology >_next(log) | Dyllan Cartwright

seen below. Of course, the proceeding event’s timestamps will be
shift to the right accordingly (with waiting time preserved)

• BPMs 2,3,4; the >_next(log) parser will reject this rule as
events B and C are not in parallel with each other - note how for
BPM 4, the event D is not in the chain.

BPM 9

A B C
D
E
F

G

H

7: if A#duration > 515 then C-B; // A:4; R:1,2,3

• BPMs 5; Like before, the output works as expected. However,
note the order. If the rule’s condition evaluates to true, then the
instance’s BPM will look like BPM 10 seen below. The original
start_time of C is kept and everything is shifted accordingly.

• BPMs 2,3,4; the >_next(log) parser will reject this rule as
events B and C are not in parallel with each other - note how for
BPM 4, the event D is not in the chain.

BPM 10

A C B
D
E
F

G

H

8: if A#duration > 515 then D-F-E; // A:4; R:1,2,3

• BPMs 5; Like before, the output works as expected. If the rule’s
condition evaluates to true, then the instance’s BPM will look like
BPM 11 seen below.

Page 24



Methodology >_next(log) | Dyllan Cartwright

BPM 11

A
B

C
D F E

G

H

9: if A#duration > 515 then D-F; // R:1,2,3,4

• Likewise, >_next(log) will reject this rule for all of the BPMs
for the same reasons described above.

10: if !duration > 1000 then B-C; // A:4; R:1,2,3

• BPMs 2, of course >_next(log) will accept this rule for BPM 2.
Remember, this rule means "if at any point during this instance,
if the running duration value is > 15 then B-C ". Therefore, if the
rule’s condition evaluates to true after B or C has happened, then
this rule is ignored and is not considered to be applied. Likewise,
if the condition evaluates to true before B or C, then the instance’s
BPM adapts into BPM 9.

• Likewise, >_next(log) will reject this rule for all of the other
BPMs for the same reasons described before.

Note: it’s assumed that rules don’t ‘overlap’ each other, i.e., if rule x is
triggered, it has no impact on whether rule y is triggered.

However, in >_next(log), rules are done in sequential order and they will
be applied with each other. Hence, suppose look at the following for BPM 2;

1 if A# duration > 515 then insert F (# duration ?N (400 50));
2 // ^^ Applied like normal
3 if B@duration > 1000 then skip D;
4 // ^^ Is much more likely if the first rule was triggered.

Again, this was assumed to not happen, but nonetheless I think this is
desirable (thus allowing the user to create rules that may trigger other rules).

Page 25



Methodology >_next(log) | Dyllan Cartwright

2.7 Limitations / Assertions
Of course, the software tool >_next(log) possesses several limitations and
assertions that should be taken into consideration before using it;

1. Non-overlapping rules assumption: As stated above, >_next(log)
assumes that the rules defined by the user do not overlap. If there are
overlapping rules, unpredictable or ambiguous outcomes may occur,
potentially affecting the accuracy and reliability of the generated logs.

2. Limited compatibility with input files: While >_next(log)
is designed to work with any input .bpmn (Business Process Model
and Notation) files, it has been primarily created and tested using
files generated with the bpmn.io tool. Similarly, the software should
function with any .mxml files (eXtensible Markup Language for Mining),
but it has been predominantly tested with files produced by the BIMP
tool. It is essential to note that when using other BPMN or generative
MXML tools, there may be minor issues - however, if problems do arise,
they should be quite easy to fix in the code.

3. Assumption about Start and End events: >_next(log) assumes
the standard output format of Start and End nodes/events generated
by bpmn.io. Consequently, the software references these events as
_Start and _End . It is important to adhere to this naming convention.

Therefore, please note: when using bpmn.io, do not change the Start/End
events default names!

Likewise, do not name any events " _Start " or " _End ".

4. Absence of looping in BPMs: The tool assumes that there are
no loops within the Business Process Models (BPMs). If the BPM
contains loops, >_next(log) may not generate accurate adapted logs
or encounter difficulties in processing the model.

5. Recognition of specific gateways: >_next(log) only recognises
parallel and exclusive (XOR) gateways. It does not support other types
of gateways, which may limit the tool’s applicability to BPMs that
utilise different gateway types.

6. No gateway nesting assumption: >_next(log) assumes that
there is no nesting of gateways within the BPMs. This includes the

Page 26

https://demo.bpmn.io/new
https://bimp.cs.ut.ee/simulator
https://demo.bpmn.io/new
https://demo.bpmn.io/new


Methodology >_next(log) | Dyllan Cartwright

presence of series events nested within gateways.

Incorrectly structured BPMs with gateway nesting, as illustrated in
BPMs 12 and 13, may result in unexpected behaviour or errors.

BPM 12

A

C

B
D

E

BPM 13

A

D E

G

F

C

B

While the software may still function in some cases, its performance
and accuracy cannot be guaranteed when encountering nested gateways
as its not been tested.

7. Hardcoded attributes: >_next(log) includes two hardcoded attributes,
namely #occurred and #duration . Consequently, if these attributes
are already defined in the .mxml logs, conflicts may arise. It is important
to avoid using these attributes in the .mxml files to prevent any issues
during log generation.

8. Dependency on specific attributes for duration calculation:
The #duration attribute in >_next(log) is determined by calculating
the difference between the #start_time and #end_time of each instance
defined in the uploaded .mxml logs. Therefore, it is essential to ensure
the presence of these two attributes in every .mxml log for accurate
duration calculations.

Page 27



Evaluation >_next(log) | Dyllan Cartwright

9. Event definitions: As seen in the grammar defined earlier, the naming
of events within the BPM or in the uploaded .mxml files must adhere
to specific naming conventions:

• Event names should consist of only letters, underscores, and numbers.

• Event names must start with a letter or an underscore.

• Hence, event names cannot include spaces, brackets, or any special
characters.

By considering the above limitations, users of >_next(log) can effectively
assess its applicability, and avoid potential issues when generating logs for
adaptive business processes.

3 Evaluation
In this section, we present the evaluation of >_next(log) by showcasing
examples of logs that have been adapted using the tool’s functionalities.
These examples will demonstrate the effectiveness of >_next(log) in modifying
event logs based on user-defined rules.

To provide a comprehensive overview, we will highlight an example for each
type of possible action available in >_next(log) (ie; skip , insert ,
+ // to parallel , - // to series .

Please note that due to the nature of the adapted logs (and their output),
it can be challenging to present them visually on paper or in a limited
space. Therefore, we have selected relatively simple examples that effectively
illustrate the adaptation process and the resulting changes in the event logs.

Likewise, we have selected a subset of interesting traces that specifically
highlight the adaptions performed. These examples serve as representative
cases that demonstrate the capabilities of >_next(log).

As mentioned earlier, all initial logs were generated using BIMP. Where
applicable, we will highlight specific parameters that were used during the
creation of these initial logs using BIMP. Moreover, for simplicity, events will
only have the attributes duration , start_time , end_time , occurred
and hence, we will only create rules based on duration .

Page 28



Evaluation >_next(log) | Dyllan Cartwright

3.1 Examples of Adapted Logs
Note: All duration s are in seconds.

3.1.1 skip

A B

BPM 14: X#duration ∼ N(500, 50) ∀ X ∈ {A,B}.

Rule:

if A#duration > 575 then skip B;

Original:

trace_id A#duration B#duration _End#start_time _End@duration _Path
60 519.159 420.243 2023-07-18T10:55:39.402+00:00 939.402 _Start,A,B,_End
61 471.587 493.18 2023-07-18T10:57:44.767+00:00 964.767 _Start,A,B,_End
72 508.633 523.475 2023-07-18T11:17:12.108+00:00 1032.108 _Start,A,B,_End
30 605.25 476.711 2023-07-18T10:08:01.961+00:00 1081.961 _Start,A,B,_End
51 525.923 454.478 2023-07-18T10:41:20.401+00:00 980.401 _Start,A,B,_End
3 577.222 485.867 2023-07-18T09:22:43.089+00:00 1063.089 _Start,A,B,_End

Adapted:

trace_id A#duration B#duration _End#start_time _End@duration _Path _Label
60 519.159 420.243 2023-07-18T10:55:39.402+00:00 939.402 _Start,A,B,_End 0
61 471.587 493.18 2023-07-18T10:57:44.767+00:00 964.767 _Start,A,B,_End 0
72 508.633 523.475 2023-07-18T11:17:12.108+00:00 1032.108 _Start,A,B,_End 0
30 605.25 0 2023-07-18T10:00:05.250000+00:00 605.25 _Start,A,_End 1
51 525.923 454.478 2023-07-18T10:41:20.401+00:00 980.401 _Start,A,B,_End 0
3 577.222 0 2023-07-18T09:14:37.222000+00:00 577.222 _Start,A,_End 1

Please remember that the tables provided above have undergone filtering,
resulting in the exclusion of numerous traces and columns. This selection
aims to try highlight elements for demonstration purposes.

As we can see, traces 30 and 3 trigger the given rule.

The "_Path" column correctly updates, as does the "_Label" column.

When B was skipped, its duration becomes 0 (as does its start_time
and end_time ).

Finally, note how _End#start_time and _End@duration gets updated
accordingly.

Page 29



Evaluation >_next(log) | Dyllan Cartwright

3.1.2 insert

A

BPM 15: A#duration ∼ N(500, 50).

Rule:

if A#duration > 575 then insert B (#duration ?N(100 10));

Original:

trace_id A#duration B#duration _End#start_time _End@duration _Path
60 357.334 0 2023-07-18T10:45:57.334+00:00 357.334 _Start,A,_End
61 589.791 0 2023-07-18T10:51:29.791+00:00 589.791 _Start,A,_End
62 607.015 0 2023-07-18T10:53:27.015+00:00 607.015 _Start,A,_End
25 539.424 0 2023-07-18T09:50:39.424+00:00 539.424 _Start,A,_End
26 513.635 0 2023-07-18T09:51:53.635+00:00 513.635 _Start,A,_End

Adapted:

trace_id A#duration B#duration _End#start_time _End@duration _Path _Label
60 357.334 0 2023-07-18T10:45:57.334+00:00 357.334 _Start,A,_End 0
61 589.791 95.2714744 2023-07-18T10:53:05.062474+00:00 685.0624744 _Start,A,B,_End 1
62 607.015 109.3324325 2023-07-18T10:55:16.347433+00:00 716.3474325 _Start,A,B,_End 1
25 539.424 0 2023-07-18T09:50:39.424+00:00 539.424 _Start,A,_End 0
26 513.635 0 2023-07-18T09:51:53.635+00:00 513.635 _Start,A,_End 0

Please remember that the tables provided above have undergone filtering,
resulting in the exclusion of numerous traces and columns. This selection
aims to try highlight elements for demonstration purposes.

We see traces 61 and 62 trigger the given rule.

The "_Path" column correctly updates, as does the "_Label" column.

Likewise, notice that when B was inserted, its duration takes a random
value x such that x ∼ N(100, 10).

Finally, note how _End#start_time and _End@duration gets updated
accordingly.

Page 30



Evaluation >_next(log) | Dyllan Cartwright

3.1.3 + // to parallel

A B

BPM 16: A#duration ∼ N(500, 50); B#duration ∼ N(600, 10)

Rule:

if A#duration > 575 then insert A+B;

Original:

trace_id A#duration B#duration B#start_time _End#start_time _End@duration _Path
51 468.458 604.943 2023-07-18T10:32:48.458+00:00 2023-07-18T10:42:53.401+00:00 1073.401 _Start,A,B,_End
90 584.871 595.692 2023-07-18T11:39:44.871+00:00 2023-07-18T11:49:40.563+00:00 1180.563 _Start,A,B,_End
94 518.986 609.704 2023-07-18T11:45:18.986+00:00 2023-07-18T11:55:28.690+00:00 1128.69 _Start,A,B,_End
41 471.941 599.238 2023-07-18T10:16:11.941+00:00 2023-07-18T10:26:11.179+00:00 1071.179 _Start,A,B,_End
80 594.109 592.985 2023-07-18T11:23:14.109+00:00 2023-07-18T11:33:07.094+00:00 1187.094 _Start,A,B,_End

Adapted:

trace_id A#duration B#duration B#start_time _End#start_time _End@duration _Path _Label
51 468.458 604.943 2023-07-18T10:32:48.458+00:00 2023-07-18T10:42:53.401+00:00 1073.401 _Start,A,B,_End 0
90 584.871 595.692 2023-07-18T11:30:00+00:00 2023-07-18T11:39:55.692000+00:00 1180.563 _Start,A,B,_End 1
94 518.986 609.704 2023-07-18T11:45:18.986+00:00 2023-07-18T11:55:28.690+00:00 1128.69 _Start,A,B,_End 0
41 471.941 599.238 2023-07-18T10:16:11.941+00:00 2023-07-18T10:26:11.179+00:00 1071.179 _Start,A,B,_End 0
80 594.109 592.985 2023-07-18T11:13:20+00:00 2023-07-18T11:23:14.109000+00:00 1187.094 _Start,A,B,_End 1

We see traces 90 and 80 trigger the given rule.

The "_Path" column correctly updates, as does the "_Label" column.

Likewise, notice that when A and B were made parallel, A obviously kept
the same start_time (unseen above, but can view in the actual adapted
logs), however B was shifted accordingly.

Note how something interesting happened in the implementation between
trace 90 and 80. Although it may be difficult to observe, in trace 90,
B#end_time occurs later than A#end_time . Consequently, in this specific
case, _End#start_time == ( B#end_time + B#duration ). On the other
hand, in trace 80, A#end_time happens later than B#end_time . Therefore,
in this particular instance, _End#start_time == ( A#end_time + A#duration ).
This would be consistent with however many events you turned into parallel,
and is of course unique to each individual trace. Waiting time would also be
preserved (there is none in this example).

Page 31



Evaluation >_next(log) | Dyllan Cartwright

Please also note that _End@duration remains unchanged - this behaviour
is not a bug! Rather, it is a deliberate design choice. Remember that the
@ symbol represents the accumulative token, indicating the total amount
of an attribute used up to that point. Therefore, even though the adapted
processes may finish earlier, the total duration remains the same. This
functionality is intentional since, for example, if events A and B were parallelised,
the _End@cost (or any other attribute) should rightly remain unchanged,
as that was the amount of that attribute used.

3.1.4 - // to series

A

B

C

BPM 17: X#duration ∼ N(500, 50) ∀ X ∈ {A,B,C}.

Rule:

if A#duration > 575 then C-B;

Original:

trace_id A#duration B#start_time C#start_time _End#start_time _Path
71 520.642 2023-07-18T11:07:00.642 2023-07-18T11:07:00.642 2023-07-18T11:15:58.048 _Start,A,B,C,_End
36 586.43 2023-07-18T10:09:46.430 2023-07-18T10:09:46.430 2023-07-18T10:17:58.612 _Start,A,B,C,_End
37 519.05 2023-07-18T10:10:19.050 2023-07-18T10:10:19.050 2023-07-18T10:18:08.616 _Start,A,B,C,_End
99 578.405 2023-07-18T11:54:38.405 2023-07-18T11:54:38.405 2023-07-18T12:03:59.332 _Start,A,B,C,_End

Adapted:

trace_id A#duration B#start_time C#start_time _End#start_time _End@duration _Path _Label
71 520.642 2023-07-18T11:07:00.642 2023-07-18T11:07:00.642 2023-07-18T11:15:58.048 1556.303 _Start,A,B,C,_End 0
36 586.43 2023-07-18T10:17:58.612 2023-07-18T10:09:46.430 2023-07-18T10:26:10.794 1560.992 _Start,A,C,B,_End 1
37 519.05 2023-07-18T10:10:19.050 2023-07-18T10:10:19.050 2023-07-18T10:18:08.616 1451.61 _Start,A,B,C,_End 0
99 578.405 2023-07-18T12:02:39.537 2023-07-18T11:54:38.405 2023-07-18T12:12:00.464 1620.464 _Start,A,C,B,_End 1

Page 32



Evaluation >_next(log) | Dyllan Cartwright

In the given output, we observe that traces 36 and 99 trigger the specified
rule. The "_Path" column correctly updates, following the order specified in
the rule (e.g., .. C-B ).

Moreover, the "_Label" column appropriately reflects the updates made
according to the rule.

Additionally, it is worth noting that when event B is placed in series (after)
event C, event C retains the same start_time , while event B (and the
"_End" event) are shifted accordingly. This would be consistent with however
many events you turned into series and is unique to each individual trace.
Furthermore, any waiting time is preserved (in this example, there is none).

As mentioned earlier, it is important to reiterate that the _End@duration
remains unchanged despite any adaptations made.

To emphasize, modifying the rule to if A#duration > 575 then B-C;
would yield different results.

3.2 Integration with ml.log
In this section, we discuss the integration of >_next(log) with the ml.log
software. While ml.log is not the focus of my thesis, it is relevant as it serves
as the likely subsequent tool to >_next(log).

The integration involves utilising the adapted logs generated by >_next(log)
as input for log analysis in ml.log. Using machine learning techniques,
ml.log aims to identify and extract patterns / rule injections from the
logs. However, for a more comprehensive analysis and detailed insights, I
encourage you to refer to Radu Andrei Sterie’s paper [3], where ml.log’s
results are extensively discussed.

3.2.1 Dataset 1

Radu Andrei Sterie and I generated three datasets to assess the performance
of ml.log in conjunction with >_next(log). However, for the purpose
of this thesis, my analysis will concentrate solely on dataset 1, offering a
succinct overview of the integration between >_next(log) and ml.log as
well as the resulting insights.

Page 33



Evaluation >_next(log) | Dyllan Cartwright

Below describes how dataset 1 was generated (and then adapted).

A B C D E F

BPM 18: Dataset 1’s BPM; where X#duration ∼ N(500, 50) ∀ X ∈ {A,..,F}.

Rule:

if C#duration > 575 then insert K (#duration ?N(100 15));

Original:

trace_id C#duration D#start_time K#duration _End#start_time _End@duration _Path
184 520.272 2023-07-19T22:02:36.535 0 2023-07-22T22:51:24.642 2877.945 "_Start,A,B,C,D,E,F,_End"
27 576.532 2023-07-18T08:37:50.625 0 2023-07-19T17:25:32.212 2981.662 "_Start,A,B,C,D,E,F,_End"
30 478.811 2023-07-18T09:52:33.449 0 2023-07-19T19:59:50.737 3013.945 "_Start,A,B,C,D,E,F,_End"
167 603.946 2023-07-19T18:43:35.746 0 2023-07-22T20:14:34.943 3018.123 "_Start,A,B,C,D,E,F,_End"

Adapted:

trace_id C#duration D#start_time K#duration _End#start_time _End@duration _Path _Label
184 520.272 2023-07-19T22:02:36.535 0 2023-07-22T22:51:24.642 2877.945 "_Start,A,B,C,D,E,F,_End" 0
27 576.532 2023-07-18T08:39:32.704908 102.079 2023-07-19T17:27:14.291908 3083.741908 "_Start,A,B,C,K,D,E,F,_End" 1
30 478.811 2023-07-18T09:52:33.449 0 2023-07-19T19:59:50.737 3013.945 "_Start,A,B,C,D,E,F,_End" 0
167 603.946 2023-07-19T18:45:20.822520 105.076 2023-07-22T20:16:20.019520 3123.19952 "_Start,A,B,C,K,D,E,F,_End" 1

ml.log took the adapted logs (without knowing the adaption rule) and then
utilised four different machine learning techniques, namely Decision Trees,
Random Forest Classifiers, KNN, and GLVQ. Each technique was tested with
various parameters to explore their performance. However, as stated before,
I won’t go into the parameters and techniques used [3].

3.2.2 Results

Below, I will provide a summary of the results obtained using dataset 1.

This summary will highlight the performance of the four machine learning
techniques provided.

Then we will see if ml.log was able to "extract" the adaption rule.

Page 34



Evaluation >_next(log) | Dyllan Cartwright

Decision Trees:

precision recall f1-score support
class 0 1.00 0.99 0.99 276
class 1 0.92 0.96 0.94 24
macro avg 0.96 0.98 0.97 300
weighted avg 0.99 0.99 0.99 300

Train Accuracy: 1.000; Test Accuracy: 0.987

Random Forest Classifier:

precision recall f1-score support
class 0 1.00 1.00 1.00 276
class 1 1.00 1.00 1.00 24
macro avg 1.00 1.00 1.00 300
weighted avg 1.00 1.00 1.00 300

Train Accuracy: 1.000; Test Accuracy: 1.000

KNN:

precision recall f1-score support
0.0 0.99 1.00 0.99 276
1.0 1.00 0.83 0.91 24
macro avg 0.99 0.92 0.95 300
weighted avg 0.99 0.99 0.99 300

Train Accuracy: 1.000; Test Accuracy: 0.987

GLVQ:

precision recall f1-score support
class 0 0.95 1.00 0.97 276
class 1 1.00 0.33 0.50 24
macro avg 0.97 0.67 0.74 300
weighted avg 0.95 0.95 0.93 300

Train Accuracy: 0.976; Test Accuracy: 0.947

Page 35



Evaluation >_next(log) | Dyllan Cartwright

Figure 19: A Found Decision Tree within ml.log; max_leaf_nodes = 2.

Figure 20: One of the Found Trees using RFC within ml.log.

Page 36



Evaluation >_next(log) | Dyllan Cartwright

Figure 21: Visualisation of the Labels assigned by KNN within ml.log.

Figure 22: Visualisation of the Labels assigned by GLVQ within ml.log.

Page 37



Conclusion >_next(log) | Dyllan Cartwright

Rule Extraction

Hence, upon examining figure 19, it is evident that the "extracted" rule is
indeed correct, aligning with the expected behavior.

Similarly, figure 20 showcases another accurate extracted rule. However, it
is worth noting that additional trees with more nodes were also discovered
in the process. These trees also had perfect accuracy, however, the extra
nodes lacked significance and instead represent random correlations that were
identified.

It is difficult to properly extrapolate rules from KNN, however, ml.log offers
the ability to visualise the labels assigned by KNN. By examining figure 21,
we observe that KNN identifies the importance of C#duration , seemingly
showcasing an invisible - but distinct - boundary at ≈ 575. Consequently,
this enables us to "extract" the presence of a rule associated with this KPI
and threshold value pairing.

Similar to KNN, GLVQ exhibits a similar pattern (figure 22).

Although this was a very trivial setup / dataset, it is worth noting that all
techniques demonstrated very high accuracy.

4 Conclusion
In this concluding section, we summarise the key findings, >_next(log)’s
success, and possible future work.

4.1 Revisiting Objectives and Evaluations
The objective of this thesis was to provide users with the flexibility to
generate initial business process logs using any preferred method and subsequently
adapt these logs based on their own customisable rules, whilst ensuring an
intuitive and coherent user interface.

As demonstrated in the examples of adapted logs presented in section 3.1,
all adapted logs performed as desired, successfully implementing the defined
actions ( insert , skip , - , + ).

As seen in section 3.2 the logs generated for the testing of ml.log also
functioned as expected.

Page 38



Conclusion >_next(log) | Dyllan Cartwright

Additionally, throughout the development process, logs created within the
specified limitations outlined in section 2.7 delivered the intended results.
This confirms that >_next(log) successfully meets its goal of enabling
users to adapt logs. Furthermore, the user-friendly and streamlined UI of
>_next(log) probably surpasses expectations, offering an aesthetic and
enjoyable pipeline. The "Rules Editor" page, supported by a strict grammar,
detects and highlights rule errors fairly well.

Overall, I’d suggest the outcome of this project can be regarded as a success.

4.2 Future Work
Before exploring future work with regards to >_next(log), it is important
to acknowledge that the current capabilities of >_next(log) are limited to
very simple and trivial adaptation options. Hence, it should be obvious that
the tool currently lacks the ability to create complex / realistic adaptations.

However, >_next(log) serves as a proof of concept, demonstrating the
feasibility of developing a tool that enables dynamic log adaptation with
user-defined rules. This should stand as motivation to look into extending it
to handle more sophisticated and realistic adaptation scenarios.

Ultimately, >_next(log) - if expanded upon - would provide a valuable
platform for developers and researchers to accurately test and build tools like
ml.log, where creating a tool like ml.log is the true goal. As such tools
have the potential to revolutionise the field of Business Process Management.

Generating Many Adaptions

Of course, >_next(log) was designed to allow users to not need to code,
and just use the UI to adapt logs. However, the UI and backend have been
designed to be modular, allowing for separate interactions with the backend
through its API. This flexibility opens up possibilities for future work where
users can develop their own scripts to interact with the backend.

One potential application of this approach is the generation of a large number
of slightly different rules by creating all possible combinations. By utilising a
custom script that interacts with the backend of >_next(log), users can
automate the process of generating adaptations for each rule. This would

Page 39



Conclusion >_next(log) | Dyllan Cartwright

enable the generation of thousands of adapted logs in an incredibly efficient
manner, enhancing the scalability and speed of the entire pipeline.

This approach offers significant potential for further exploration and optimisation
in terms of rule generation and adaptation. It provides a way to experiment
with different rule configurations and evaluate the impact of various adaptations
on business process logs.

Below shows a simple (pseudocode) implementation of this:

1 de f main ( ) :
2 v a l s = [ 2 0 , 30 , 40 ]
3 bpmn_file_path = " path_to_bpmn "
4 l og_f i l e_path = " path_to_log "
5 # I n s t a n t i a t e LogApi
6 log_api = LogApi ( bpmn_file_path , log_f i le_path , . . . )
7 f o r v in v a l s :
8 generate_al l_adapt ions ( log_api )
9 # Could make the c a l l s p a r a l l e s i s e d / threaded i f speed an i s s u e

10
11 de f generate_al l_adapt ions ( log_api , bpmn_file_path , log_path , v ) :
12 # Generate r u l e s by loop ing through events , ac t ions , e t c
13 a t t r i b u t e s , event_names = log_api . get_attributes_and_event_names ( )
14 r u l e s = [ ]
15 f o r event_a in event_names :
16 f o r event_b in event_names :
17 f o r a t t r in a t t r i b u t e s :
18 f o r a c t i o n in [ ’ sk ip ’ , ’ i n s e r t ’ , . . . ]
19 i f a c t i o n == ’ sk ip ’ :
20 r u l e = generate_skip_rule ( event_a , event_b , at t r , v )
21 e l i f . . . :
22 . . .
23 . . .
24 re sp = log_api . par se_ru le s ( r u l e )
25 i f r e sp == ’ Accepted ’ :
26 r u l e s . append ( r u l e )
27
28 f o r r u l e in r u l e s :
29 output_fi le_path = f " adapted_logs_{ r u l e } . csv "
30 log_api . g e n e r a t e _ l o g _ f i l e s ( output_fi le_path , r u l e )
31
32 de f generate_skip_rule ( event_a , event_b , at t r , v ) :
33 r e turn f " i f {event_a}#{ a t t r } > {v} then sk ip {event_b } ; "
34
35 # Can a l s o add for −l oops f o r d i f f e r e n t operator types , or
36 # d i f f e r e n t token types (#,@, ! ) e t c

Page 40



Conclusion >_next(log) | Dyllan Cartwright

4.2.1 Improvements

• Process Mining:

Adding a process discovery component to >_next(log) would be
a valuable enhancement as it would eliminate the requirement for a
separate BPMN process model input, thereby improving the tool’s
usability and flexibility. By leveraging existing process discovery algorithms
like PM4PY, >_next(log) could autonomously infer the underlying
process model directly from the given process event logs. Integrating
process mining capabilities into >_next(log) could be relatively straightforward
since the tool already works with process event logs and is well-structured
to accommodate modular development.

• Support for different input/output formats:

Currently, >_next(log) only supports MXML as input, and its output
is only CSV. A future improvement could be to enhance flexibility by
supporting various input/output formats, such as XES, CSV, or other
commonly used formats in the Business Process Management field, see
figure 23.

• Extension of rule grammar and actions:

The rule grammar in >_next(log) could be extended to include more
actions beyond the existing ones. This would allow users to define a
wider range of rule-based adaptations, providing more flexibility and
customization options.

• Enhancement of accepted gateway types:

Currently, >_next(log) only supports XOR and parallel gateways.
An improvement could be to expand the accepted gateway types to
include more advanced types, such as event-based gateways.

• Support for more complicated process structures:

>_next(log) could be enhanced to handle more complicated process
structures, such as allowing nesting or looping in the processes. This
would enable the adaptation of processes with more intricate control
flow patterns, where sub-processes can be defined within main processes
or certain activities can be repeated based on specific conditions. This

Page 41

https://pm4py.fit.fraunhofer.de/documentation#discovery


Conclusion >_next(log) | Dyllan Cartwright

would be one of the hardest improvements, but would make >_next(log)
a lot more realistic.

Finally, more testing, bug fixing, and the addition of (more) error handling
would contribute to the improvement of >_next(log).

PRIOR GENERATION

POST ANALYSIS

Choose Settings

Upload generated files

Use Output

Generate Initial Logs

BIMP

... (other tools)

Create BPMN

bpmn.io

... (other tools)

USER

Create Rules

Save Adapted Logs

+ OTHER TOOLS

Input Preprocessor Preprocess Logs in

multiple Formats

Output Preprocessor

CSV XES MXML

Generate Logs in

multiple Formats

Figure 23: The (Ideal) Flow/Pipeline of >_next(log)

Page 42



Conclusion >_next(log) | Dyllan Cartwright

4.3 Auxiliary Information
Division of Tasks

I was the only student who was formally responsible for this project, so there
were no division of tasks. Although, do note, Radu and I shared code/ideas
throughout, and eventually combined >_next(log) and ml.log into one
program.

Deliverables

• The final thesis.

• Software source code (and/or a compiled program).

• Datasets generated.

All will be emailed to Arash Yadegari, nonetheless, can also be found here.

Grading

• Scientific quality of research and technical contribution: 40%.

• Project management and interpersonal skills: 20%.

• Final presentation: 20%.

• Report/Thesis: 20%.

Ethical Declaration

I hereby declare that this thesis presented herein is the result of my original
research work. I assert that this thesis has not been submitted, either wholly
or partially, for any other academic degree or qualification at any other
university or institution. All sources, including published or unpublished
works, have been duly acknowledged and referenced, except where explicitly
indicated.

Dyllan Cartwright, s3479528, Sunday 30th July, 2023:

if you#reading == here then TY!

Page 43

https://drive.google.com/drive/folders/1fIE7GMAhD8kVXamJtTQIEpRqCuC5IiOz?usp=sharing


Screenshots of >_next(log)>_next(log) | Dyllan Cartwright

A Screenshots of >_next(log)

The Home Page

On this page, users can easily upload their .bpmn and .mxml files.

This page serves as the starting point for the log generation process, allowing
users to select the necessary files for adaptation.

Page 44



Screenshots of >_next(log)>_next(log) | Dyllan Cartwright

The View Page

This page provides users with a visual representation of their uploaded BPM.

It enables users to inspect and review the structure and flow of the process
model, aiding in the understanding of the process when creating rules.

Page 45



Screenshots of >_next(log)>_next(log) | Dyllan Cartwright

The Rule Editor Page

On this page, users can create their rules for log adaptation.

The intuitive interface allows users to define rules based on specific conditions
and actions.

After creating the rules, users can click ‘Parse Rules’ to verify their validity.

By clicking ‘Available’, users can view all the defined events and attributes
to facilitate rule creation.

Page 46



Screenshots of >_next(log)>_next(log) | Dyllan Cartwright

The Save Page

This page is where users can generate and save the adapted logs.

Users can specify the desired output file name and save the adapted logs as
a .csv file.

Additionally, users have the option to save the "original" unadapted logs as a
separate .csv file, providing traceability and allowing for debugging purposes
if needed.

Page 47



Screenshots of >_next(log)>_next(log) | Dyllan Cartwright

The Settings Page

This page offers users the ability to customise certain preferences according
to their requirements.

Users can define the default folder location for file uploads.

If the default folder location setting is disabled, >_next(log) will remember
the last folder used for uploading files and will open there.

Page 48



Screenshots of >_next(log)>_next(log) | Dyllan Cartwright

Switching to ml.log

The Switch Icon allows users to toggle between >_next(log) and ml.log.

The above is ml.log’s home page.

Page 49



REFERENCES >_next(log) | Dyllan Cartwright

References
[1] A. Y. Ghahderijani and D. Karastoyanova, “Synthetic event log generation for

kpi-based process adaptations using simulation,” University of Groningen, 2023.
*Unpublished as of yet.

[2] A. Y. Ghahderijani and D. Karastoyanova, “Applying decision trees as a mean
for correlation identification and learning from adapted business process cases,”
University of Groningen, 2023. *Unpublished as of yet.

[3] R. A. Sterie, “Adaptive business process analysis using machine learning algorithms,”
University of Groningen, 2023. *Unpublished as of yet.

[4] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals of Business
Process Management. Springer Publishing Company, Incorporated, 2018.

[5] M. Weske, Business Process Management: Concepts, Languages, Architectures.
Springer Berlin Heidelberg, 2019.

[6] M. Dumas and J. Mendling, Business Process Event Logs and Visualization,
pp. 398–409. Cham: Springer International Publishing, 2019.

[7] H. A. Malak, “What is business process simulation? why is it important?,” Mar 2023.

[8] P. Henderson, Systems Engineering for Business Process Change: New Directions.
Springer Science & Business Media, 2012.

[9] I. Beerepoot, C. Di Ciccio, and H. A. R. et al., “The biggest business process
management problems to solve before we die,” Computers in Industry, vol. 146,
p. 103837, 2023.

[10] Z. Bozorgi, I. Teinemaa, M. Dumas, M. Rosa, and A. Polyvyanyy, “Process mining
meets causal machine learning: Discovering causal rules from event logs,” in ICPM,
p. 28, 2020.

[11] R. Conforti, M. Rosa, and A. T. Hofstede, “Filtering out infrequent behavior from
business process event logs,” IEEE Transactions on Knowledge and Data Engineering,
2017.

[12] M. Röglinger, J. Pöppelbuß, and J. Becker, “Maturity models in business process
management,” Business Process Management Journal, vol. 18, no. 2, pp. 328–346,
2012.

[13] R. Conforti, M. Dumas, L. Garca-Bauelos, and M. La Rosa, “Beyond tasks and
gateways: discovering BPMN models with subprocesses, boundary events and activity
markers,” in Business Process Management, vol. 8659 of Lecture Notes in Computer
Science, pp. 101–117, Springer International Publishing, 2014.

[14] A. K. A. d. Medeiros and C. W. Günther, “Process mining: using CPN tools to
create test logs for mining algorithms,” in Proceedings of the Sixth Workshop on the
Practical Use of Coloured Petri Nets and CPN Tools (CPN 2005), vol. 576 of DAIMI,
pp. 177–190, University of Aarhus, 2005.

Page 50



REFERENCES >_next(log) | Dyllan Cartwright

[15] B. P. Zeigler, “Hierarchical, modular discrete-event modelling in an object-oriented
environment,” Simulation, vol. 49, no. 5, pp. 219–230, 1987.

[16] D. Cetinkaya, A. Verbraeck, and M. D. Seck, “Model transformation from BPMN to
DEVS in the MDD4MS framework,” in Proceedings of the 2012 Symposium on Theory
of Modeling and Simulation - DEVS Integrative M&S Symposium, TMS/DEVS ’12,
pp. 28:1–28:6, Society for Computer Simulation International, 2012.

[17] H. Bazoun, Y. Bouanan, G. Zacharewicz, Y. Ducq, and H. Boye, “Business process
simulation: transformation of BPMN 2.0 to DEVS models (wip),” in Proceedings of
the Symposium on Theory of Modeling & Simulation - DEVS Integrative, DEVS ’14,
pp. 20:1–20:7, Society for Computer Simulation International, 2014.

[18] S. Boukelkoul and R. Maamri, “Optimal model transformation of BPMN to
DEVS,” in 2015 IEEE/ACS 12th International Conference of Computer Systems and
Applications (AICCSA), pp. 1–8, 2015.

[19] T. Stocker and R. Accorsi, “SecSy: security-aware synthesis of process event logs,”
in Proceedings of the 5th International Workshop on Enterprise Modelling and
Information Systems Architectures, (St. Gallen, Switzerland), 2013.

[20] A. Burattin and A. Sperduti, “PLG: a framework for the generation of business
process models and their execution logs,” in BPM 2010 Workshops, Proceedings of
the Sixth Workshop on Business Process Intelligence (BPI2010), vol. 66 of Lecture
Notes in Business Information Processing, Springer-Verlag, 2011.

[21] A. Burattin, “PLG2: multiperspective processes randomization and simulation for
online and offline settings,” tech. rep., CoRR abs/1506.08415, 2015.

[22] A. P. Freitas and J. L. Pereira, “Process simulation support in bpm tools: The case
of bpmn,” in Proceedings of 2100 Projects Association Joint Conferences – Vol.X
(20XX), 2015.

Page 51


	Introduction
	Background and Scope
	Related Work
	Adaptive Business Processes
	Log Generation and Synthetic Data
	Existing Tools

	Objective

	Methodology
	Pipeline
	Data Formats

	Technologies of next(log) (& ML.log)
	Architecture of next(log) (& ML.log)
	Using next(log)
	Bonuses
	Output

	Rule Definitions
	Grammar
	Quantifiers
	Keywords / Actions
	Terminals

	Examples / Implementations
	Limitations / Assertions

	Evaluation
	Examples of Adapted Logs
	skip
	insert
	to parallel
	to series

	Integration with ML.log
	Dataset 1
	Results


	Conclusion
	Revisiting Objectives and Evaluations
	Future Work
	Improvements

	Auxiliary Information

	Screenshots of next(log)
	References

