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Abstract
Detecting outliers in images is a challenging task for deep-learning models, if the training data con-
tains little or no examples of outliers. Generative adversarial neural networks (GANs) or autoencoders
can be used for this purpose, but usually require a lot of training data. In the MVTec dataset, pure
deep-learning models are outperformed by distance based models, which identify outliers based on
their high distance from samples in the training set. However, a problem with them is that they rely on
pretrained convolutional kernels and are not very explainable. This thesis presents the idea of an in-
trospective energy model, that measures the success of inpainting to detect local anomalies in images.
The approach involves a two-stage process. First, convolution is applied to generate feature maps of
the image. Subsequently, the features of image regions are predicted using the features of surrounding
regions. Inaccurate predictions indicate an outlier. This mechanism initially used Bayesian networks
but was later refined using neural networks. The results demonstrate that introspective energy models
can outperform the state of the art for certain object categories of the MVTec dataset. In a second
experiment convolutional kernels pretrained on the ImageNet dataset were used in an attempt to im-
prove the model further. However, in this case the model performed worse than the state of the art.
This work is relevant because it uses a new mechanism to train convolutional layers one by one. The
model can be trained with little training data and can explain which regions of an image causes it to
be classified as an outlier.
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1 Introduction

Models performing semi-supervised outlier detection aim to discriminate outliers based on the normal
instances in their training data. This category of outlier detection can for example appear in industrial
production, in which the manufacturing process is so optimized that the amount of defect instances is
very small, compared to the defect-free ones. Even in a task in which there are some outliers that can
be used to train a model, it is commonly the case that outliers are diverse and the examples for them
may not be representative for all possible outliers that could occur.

Energy base models (EBMs) can be used for this task. They assign a low energy to an input, if the
input is likely based on some learned distribution and they map an input to a high energy, if it is
unlikely. State of the art energy based models for image data are for example deep convolutional
models with a single unit in the output-layer that describes the energy [1, 2]. The problem with these
models is that they require suitable high energy examples during training. It is usually the case that
low-energy images lay on a very thin manifold and there are much more possible high-energy than
low-energy samples in the image space. Therefore, it is usually not enough to present the models
with random-noise images as examples with high energy. It is possible to generate more useful high
energy examples using sampling with the current model. However, this is computational expensive
and makes them difficult to train [3, 4]. In a similar fashion, generative adversarial networks (GANs)
may also be used to train an energy based model. In this architecture there are two models, a dis-
criminator model and a generator model. The task of the discriminator is to predict the energy of a
presented sample and the task of the generator is to generate high energy examples [5]. In this case
the high energy samples are created using one forward pass of the generator network, which makes
the process more efficient. However, GANs usually need a lot of training examples and it is often
difficult to ensure stable convergence [6].

Alternatively, there are a few types of EBMs that detect high energies indirectly and do not require
any high energy examples during training. A straight forward method of determining the energy of a
sample is to use neighbour distances between an instance and its closest neighbours in the training-
set. A short distance means a low energy. This can work well if all low energy examples look very
similar, but won’t work well for more complex problems. A possible method to improve energy based
models using neighbour distance is to first map them into lower dimensional space with the means of
a pretrained neural network [7, 8]. Models using neighbour distance as a measure of energy perform
very well in MVTec dataset [9] for outlier detection [10].

Finally, autoencoders may be used as energy based models as well. Autoencoders are neural networks
that are trained to reconstruct their input. This can be a hard task because they usually have layers
with a small amount of units as one of the hidden layers which acts as an information bottleneck. A
compressed representation of the input must be learned to be able to reconstruct it. After training an
autoencoder with a training-set of low-energy images, an energy is implicitly determined using the
reconstruction loss [11, 12, 13]. In this case it is a common problem that the autoencoder is able to
generalize too well and is able to reconstruct instances that should have a high energy.

This thesis presents an energy based model called introspective energy model (IEM). This model is
systematically predicting each part of an instance based on the surrounding. The overall idea is to
assign high energies to samples if there is a mismatch between the model’s prediction and what is
actually there. This is not only done for all regions of a sample but also over multiple levels of ab-
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Figure 1: Two images of nuts, one normal and one with a defect. Predicting a normal region of an
image should be easier than predicting a region with a defect.

stractions all at once.

In many cases, image regions of a normal image should be easily predictable based on the surrounding
image regions. On the other hand, an anomaly located somewhere on the image can not be predicted
based on the surrounding image regions. Consider for example the task of predicting the masked
regions in Figure 1. Assuming the model predicting the image region was trained well, the predicted
and actual region should be very similar for the normal nut. If there is a damage located at the masked
image region, the predicted and actual pixels are probably very different.

In an Introspective Energy Model, every image region is predicted using the surrounding. This way
an energy map can be computed over the image showing where in the image an anomaly is located. A
high energy corresponds to a big mismatch between what is predicted and what is there. This energy
map is not only computed on the pixel level but also over multiple layers of higher level representation.
These higher level representations are found through convolutional kernels. Higher level represen-
tations allow to exchange information over larger distances withing an image. By combining and
summing up these energy maps it is possible to assign a hole image a single energy. This is different
to an ”introspective neural network” as described by [14] in which a network is able of self-evaluation.

An easy method is a model that can predict the value of a pixel based on the surrounding 8 pixels. For
some images it may be the case that the value of a pixel is independent of its position within the im-
age given the surrounding pixels (often the case for textures or patterns). In this case the same model
may be used for all pixels. If there is reason to believe that this assumption does not hold, a different
models should be used for each pixel of the image. This method may work well for some problems,
but long distance dependencies can not be modeled. For example, consider such a model trained on
the handwritten digit dataset MNIST [15]. The problem is that there are some logical long-distance
relationships. For example: If there is a loop in the upper part of the image then the lower part of the
image is either part of an ”8” or ”9”. This type of dependencies can not be modeled by just predicting
a pixel based on its immediate neighbours.

In order to capture long distance relationships, convolution can be used to get a map of higher level
features of the image. These higher level features are used to predict each other over larger distances.
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(a) Layer 0 / pixel representation. (b) Layer 1

Figure 2: A visual representation of the sideward pass of nodes in different layers. (a): An indication
of a sideward pass of a single node in layer 0. Nodes represent the pixels. The blue node is predicted
with a model that takes the neighbouring nodes (red) as an input. (b): An indication of a sideward
pass at a position in layer 1. The gray nodes represent the pixels in layer 0. The red and blue nodes
encode the higher level representations that are generated using three convolutional kernels with size
2 by 2 and a stride of 2. Thin gray lines are used to indicate which image region maps to which nodes
in the next layer. The blue nodes are predicted with a model that takes the neighbouring nodes of the
same layer (red) as an input.

For example, a set of convolutional kernel of size 2∗2 generate super-features that correspond to a 4
pixel region within the image. Afterwards, a model is used to predict the values of the super-features
at some position using the values of the surrounding super-features. See Figure 2 for a visualization
of this.

We will refer to the process of determining the higher level features using convolution the forward-
pass and the process of predicting the value of a node using its neighbours the sideward-pass.

This can be repeated over multiple layers. A 2D view of this process over multiple layers is shown in
Figure 3. In general, it should not be the case that the values of a node, as determined by convolution,
depend on the same pixels as their neighbours. This would enable the sideward-pass to reconstruct
the value of a node directly without having to generalize. However, it may be fine if there is a small
overlap in their receptive field.

This thesis discusses three experiments in which different versions of an introspective energy model
are utilized.

• In an first experiment conditional probability tables were used for the sideward-pass. This
means that the pixels and features generated through convolution are treated as variables of a
Bayesian network. This thesis discusses algorithms to find suitable relations between variables
and how the convolutional kernels can be trained in this case. After being trained with the
MNIST dataset [15] the model is used for a semi-supervised outlier task. The results may be
seen as a proof of concept but are not compared to state of the art methods, because training
the model is too computational expensive to use for bigger datasets. The model was also not
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Figure 3: A view of an Introspective energy model from the side. The blue nodes represent the pixels,
the red ones the second layer and the green ones the third layer. The activations of the higher layers
are determined using convolution. This process is indicated with gray lines. The horizontal arrows
indicate the sideward pass in which the activation of a node is predicted using its neighbours. A
neighbour of a node is connected via a horizontal arrow and its value is determined using convolution
on a completely different region of pixels.

able to create Gibbs samples that look like MNIST-images, suggesting that it failed to learn the
distribution of the dataset well.

• In a second experiments, the sideward-pass was performed using small neural networks. It
is discussed how to train the model using gradient descent and how extensive weight sharing
can reduce the need for a lot of training data. With these algorithms, the model was able to
outperform the state of the art in some object categories of the MVTec dataset [9].

• Lastly, an experiment investigates if the pretrained kernels of the AlexNet model [16] can be
used to improve the performance. In this case, only the parameters performing the sideward-
pass needed to be trained. This was improving the performance, but the model lacks behind
compared to other models using transfer learning.

Introspective energy models have the property that they can be trained layer by layer, which makes
learning very stable. They can also be implemented with a large amount of weight sharing which
makes them applicable, even if there is little data. The outputs of an IEM are also relatively explain-
able, because the energy of an input can be attributed to a region of the input.

After going over the relevant background in Section 2, the main part of this thesis discusses three
experiments. The first experiment in Section 3 discusses how to use Bayesian networks with hidden
variables for the MNIST dataset. Afterwards IEMs are trained for the MVTec dataset from scratch in
Section 4 and alternatively with pretrained kernels in Section 5.
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2 Background
Section 2.1 elaborates Bayesian Networks for discrete data, in particular how previous work incor-
porated hidden variables. Hidden variables are important for image tasks, because of the emergent
properties of pixels. Understanding introspective energy models requires a good understanding of how
convolution generates higher level features of an image. Therefore, convolution as used in deep neural
networks is discussed in section 2.2. Afterwards, section 2.3 explains different existing architectures
for energy based models. Introspective energy models can be seen as a form of self-supervised learn-
ing, which is discussed in section 2.4.

2.1 Bayesian Networks

Bayesian networks were initially introduced by [17]. They model the joint probability distribution of
a set of random variables X1, ...,Xn by using their local dependencies. A Bayesian network ⟨G ,Θ⟩
consists of an acyclic directed graph G as well as a set of parameters Θ. The nodes in G represent
variables that each have a domain of discrete states. The parameters Θ are used for the conditional
probability tables (CPT) associated to each variable, that give the probability of the variables states,
given the state of their parents. The state xi of a variable Xi is independent of all its non-decedents
given its parents (local Markov property). This allows to calculate the joint probability by taking the
product of each variables states probability given its parents:

P(x1, ...,xn) =
n

∏
i=1

P(xi|Parents(Xi)) (1)

The number of parameters in Θ needed is linear to the number of variables n but exponential to the
maximum amount of parents k of a variable. This is because the number of rows needed for the CPT
of a variable is equal to the number of unique combination of parent states.

Bayesian networks can predict the posterior probability of any set of variables, given the state of some
other set of variables as evidence. However, inference in Bayesian networks is an NP-hard problem
[18].

2.1.1 Training Bayesian networks

Training a Bayesian network requires some data that contains samples of the variables. When training
a Bayesian network it might be that the graph G is already given or that the parameters as well as the
structure of the graph need to be learned.

Ideally, expert knowledge can be used to determine the dependencies between variables. This means
that only the parameters Θ need to be learned. This can be done simply by determining the probability
of a variable Xi having state xi given that its parents P have state p with:

P(Xi = xi|P = p) =
#(Xi = xi,P = p)+λ

#(P = p)+nλ
(2)

Here #(ϕ) denotes the number of samples in the data that satisfy ϕ, n is the size of Xs domain and λ

is the Laplace correlation. With λ = 0 we have the maximum-likelihood estimation. The maximum-
likelihood estimation can assign a zero-probability to some states and may overfit if the data is not
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perfectly representative. Common choices for λ are 1 or 0.5 [19].

If the dependencies between variables are not known, it is common to find a suitable graph using local
search. This means taking a (random) starting point and adding/removing dependencies one by one.
The local search should optimize some scoring function that measures the goodness of the model. A
commonly used search method is simulated annealing [20]. Local search does not guaranteed to find
the optimal model.

A high scoring model B should maximise the likelihood of the data D given the model: P(D|B) =
∏x∈D P(x|B). However, it should also not overfit. Therefore, a regulation term can be introduced that
deducts from the score the more parameters are used.

A commonly used scoring function is the Bayesian information criterion (BIC):

BIC = k ∗ ln(n)−2∗ ln(P(D|B∗)) (3)

Here, k is the number of parameters used by the model, n is the number of samples in data D and B∗

is the Bayesian network with maximum-likelihood parameter estimation. In an empirical evaluation
by [21] it was reported that the BIC outperformed all other scoring functions.

Structure learning with many variables (hundreds or thousands) struggles based on the large search
space of potential graphs. A method to reduce the search space is to initially reduce the number of
possible parents of each node to a small candidate set [22].

2.1.2 Incorperating hidden variables in Bayesian networks

A hidden variable is a variable with unknown states for the samples in the training data. It is possible
to just ignore them by removing them from the graph and adding a dependency from every parent
of the hidden variable to all of its children. However, incorporating hidden variables can be useful
in order to reduce the number of dependencies. An example that shows how a hidden variable can
reduce the number of dependencies is shown in Figure 4. With reduced amounts of dependencies
there are less parameters to learn which reduces the risk of overfitting.

A common task is to have a variable with a known position in the graph, but its states for the samples
in the data is hidden. In this case the Gibbs sampling or the EM-algorithm can be for example used
to find its states and the values in the CPT [18] [24].

In Gibbs sampling the states for unobserved variables are initially randomly chosen for each sample
in the data D. Afterwards, the state of an unobserved variable in the data xil (the state of variable Xi
in sample l) is chosen and re-sampled based on the probability of the potential new resulting data D′,
given the structure of the graph. This step is repeated over a large amount of iterations. At the end,
the data is assumed to be the average during these iterations.

In the EM-algorithm the parameters in the CPTs are initialized randomly. Afterwards, the expected
data values of the hidden variables in the data are approximated using these parameters. This is the
expectation step. Afterwards, during the maximisation step, the parameters are chosen to maximise
the likelihood of the expected data. The expectation and maximisation step are repeated until conver-
gence. The EM-algorithm is computationally cheaper than Gibbs sampling but is not guaranteed to
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Figure 4: An example showing how hidden variables can simplify Bayesian networks. The number
of relations become smaller with a hidden variable. Figure was taken from [23].

converge to the best possible solution [18].

There is much less work done in incorporating hidden variables in Bayesian networks if the position
in the graph of the hidden variable is unknown [23]. This task is complicated because the search
space of possible graphs needs to be expanded over a large set in which not only dependencies but
also hidden variables are introduced. The number of graphs that can be constructed from n variables is
super-exponential [18]. However, it is possible to reduce the search space by only considering graphs
with a certain characteristic [25].

There has been some work done in finding single hidden variables using semi-cliques to help to guide
the search [26][27]. A semi-clique is a group of nodes that have a lot of dependencies with each other
(based on structure search using the data without hidden variables), which could indicate the presence
of a hidden variable.

Learning a Bayesian network with large amounts of hidden variables with unknown structure is strug-
gling with a large search space. A lot of recent real-world tasks that incorporate hidden variables in
Bayesian networks did not use more than 3 hidden variables [28], [29], [30].

In a paper by [31] a model called ”hierarchical Bayesian network” (HBN) is described. Here, hidden
variables are structured in layers such that the variables in upper layers represent a more compressed
version of the data. Dependencies are going from each hidden variable in the direction of two vari-
ables in the layer below, as well as between variables in the same layer.

Their learning algorithm for HBN is as follows:

• The observed variables are paired, such that the pairs have a high mutual information.

• For each pair a hidden variable is introduced that has a dependency to both. The two most
common value-combinations in the data of each pair is found. The hidden variable for a pair is
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assign value 0 for samples in the data in which the pair has its most common value-combination
and is assigned value 1 for samples in the data in which the pair has its second most common
value-combination. Otherwise the value for the hidden variable is considered missing for a
sample.

• The EM-algorithm is used to find the missing values in the hidden variables and the parameters
that model the relationship between the pairs and the hidden variable.

• Additional layers of hidden variables are introduced, again having two children in the layer
below each.

• Dependencies within layers are added using traditional structure learning.

This method enabled them to incorporate many hidden variables in a Bayesian network. However,
they were only able to use it as a data analysis tool and not to improve the joint probability the
Bayesian network assigns to inputs. They also do not utilize spacial structure in the data, like the
distance between pixels in images.

2.2 Convolution
Convolution is a widely used method for deep-learning models [32]. It is primarily used for image
tasks like image classification, object detection, image recognition and segmentation [33][34][35][36].
Convolution can also be used for 1-dimensional data like audio or temporal diagnostic data [37] or
for 3-dimensional data like videos or point clouds [38][39].

Convolutional kernels for 2-dimensional data were first introduced by [40] as early as 1988. LeCun
was the first using the term ”convolution” for a handwritten recognition task in 1989 [41].

The basic idea for convolution is to have a small feature detector called kernel that slides over the in-
put. This way the output nodes can be organized as a feature-map. A kernel is usually just a matrix of
numbers which are multiplied with their corresponding elements in the input and summed afterwards.
The advantage of this is that features can be extracted while keeping information about their location
and only a little amount of parameters is needed. Multiple kernels may be used for different types
of features. Figure 5 shows the basic concept of applying a convolutional kernel on a 2-dimensional
input. Convolution can also be performed sequentially over multiple layers. In this case the input of
the next convolution is the output of the previous. This way, more and more refined features can be
extracted.

In convolution ”padding” means adding values on the boarder of an input (usually the value 0). This
makes it possible to also extract features right at the image boarders. A ”stride” is the amount of pixels
a kernel is moved each step. This is a common method to make the feature map smaller which also
reduces the number of parameters needed for consecutive layers and makes the process computational
cheaper. A ”receptive field” of a node is the region in the original input that influenced its value. For
example, in Figure 5 the receptive field of a node after the max pooling operation is a 5 by 5 region
in the input.

Convolutional kernels can often be used for transfer learning [42]. This means, using the trained
kernels from a model of an old task for a new task. This is for example useful if there few training
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Figure 5: An example of applying a three by three convolutional kernel on an input. Initially the input
is padded by extending it with zeros on all sides. Afterwards, the convolutional kernel is moved over
the input in steps of two. An additional max-pooling operation is performed in which a four by four
region is replaced by their max value. Figure was taken from [32].

data and the feature-maps created by the pretrained kernels are useful for the new task. Convolutional
models pretrained for classification on large dataset are commonly used for transfer learning [43, 44,
45]. In particular the ImageNet dataset is used for training which has more than 50.000 citations [46].

2.3 Energy Based Models

An energy model Eθ(x) : R D→ R models a data distribution by taking a D-dimensional input x and
assigning low energies to it, if it is familiar and high energies otherwise. It parametrizes a density
pθ(x) as [47]:

pθ(x) =
e−Eθ(x)∫
x e−Eθ(x)

(4)

Here θ is the collection of the models parameters.

It is possible to map this energy to a probability. However, this requires to find the normalization
constant

∫
x e−Eθ(x) which is often impossible if the state space is too large. Nevertheless, the energy

can be used to reason about the input and to accomplish a variety of tasks.

This thesis only concerns energy based models that take images as input. The following sections
describe different types of energy based models. Note that the term ”energy based models” is used
broadly as any model that can take an input and maps it to a value that is low if and only if the pre-
sented input is likely or normal. This includes the discriminators of generative adversarial networks
(GANs) and the loss of autoencoders even though they are not traditionally called ”energy based
models”.

2.3.1 Direct Energy based models

The basic type is a (convolutional) neural network with one output unit [1]. The outputs activation is
trained to correspond to the energy of the input. They require training-sets that include examples of
high and low energies. Their performance can be increased by using pretrained convolutional kernels
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[48].

These models must be presented with high-energy examples during training. It is often not enough to
just use white noise images for this purpose. This is because the images that should have high energies
outnumber the ones with low energies (the ”normal” ones). The model needs to learn the very thin
manifold on which these low energy instances are located. It is common practice to generate the high
energy images using sampling (see section 2.3.5) with the model over multiple iterations. These high
energy examples can be put in an replay buffer for the model to train with [2]. However, a problem
with this is that it is very computational expensive to generate samples. This also makes the models
notoriously difficult to train [3, 4, 2].

Despite these problems they have the advantage that the energy is calculated directly and there is no
need to train multiple objects. This can mean that they require less parameters.

2.3.2 Autoencoders

An autoencoder, first introduced by [49], is a model that aims at reconstructing its input. Formally it
consists of an encoder A : Rp → Rk and decoder B : Rk → Rp. Usually p is (much) bigger than R.
The task is to minimize:

Ex∼Pdata(x)[L(x,B(A(x)))] (5)

Here Ex∼Pdata(x)[] indicates the expectations with samples x taken from the training data and L is a
loss function that measures how well a sample is reconstructed [50].

Energy based models can be (convolutional) autoencoders [11, 12, 13]. A high energy can be associ-
ated with a high reconstruction error [51, 52]. These models do not necessarily require high-energy
examples in their training-set.

A problem with using the reconstruction error as a measure for energy is that the autoencoder may
generalize too well, causing it to reconstruct images well that should have a high energy. To avoid
this, the autoencoder can be heavily restricted. For example by having a very low number of units in
the latent layer.

Another possible method to improve the model is by performing an inpainting task [53]. For example,
the RIAD model [54] is dividing an image x into k by k tiles and a random fraction of these tiles are
obstructed to generate an image x′. Afterwards, the image is passed through an autoencoder and the
energy is the reconstruction loss with respect to the original unmasked image. This process can be
repeated and the energy averaged over multiple runs in which different regions are obstructed. The
hope is that in some of these runs a defect region is completely masked which makes it very unlikely
that the model has a low error for this region. See Figure 6 for a flowchart of this method.

2.3.3 GANs

Generative adversarial neural networks (GANs) [55, 56] are usually used to generate samples that
mimic the instances in their training-set. They are divided into two (convolutional) neural networks,
a generator G and a discriminator D. The generator is taking some noise-vector z as an input and is
outputting an image. The discriminator has to decide whether a sample comes from the training-set
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Figure 6: A Flowchart of how the RIAD model detects outliers. Step 1: An image I is divided into k
by k squares and a set of images is created in which each instance of the set is the image with different
squares being obstructed. Step 2: Each partially masked image is presented to an autoencoder that
tries to generate the original image. Step 3: The generated images are combined to an image Ir. A
local difference between Ir and I is indicated a defect. Figure as shown by [54].

or was created by the generator. Its output is a value between 0 and 1 indicating the probability that
the presented sample comes from the real distribution. Both models are training at the same time with
gradient descent with the objective function of a two player minmax game:

max
D

min
G

Ex∼Pdata(x)[log(D(x))]+Ez∼PD(z)[log(1−D(G(z)))] (6)

Here Ex∼Pdata(x)[] indicates the expectations with samples x taken from the training data and Ez∼PD(z)[]
indicates the expectation with z taken from some noise distribution.

After training, the discriminator can be used to determine the energy of an image as the network is
trained to assign low values to images in the training-set and high values to images different to the
ones in the training-set [5].

In practice the discriminator of a GANs is usually not performing very well for outlier detection
with a small training-set, because they require a lot of training samples and the images that should be
assigned high energies may be very different than the ones created by the generator. They also require
a careful tuning of hyper-parameters to ensure stable convergence [6].

2.3.4 Distance based models

An easy method to determine if an image is unusual and should therefore have a high energy, is to
compare it directly with the normal images in the training-set. This is possible by setting the energy
to the distance between the image and the images in the training-set. This can be for example the dis-
tance with its closed neighbour, the distance to the k nearest neighbours or the Mahalanobis distance
[7, 57].
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There are some problems with this. For example, two images from the same object that is slightly
rotated or shifted can have a large distance to each other. Or imagine the task of having a set of
cat-images in the training-set and the model is supposed to assign high energies to dog-images during
testing. Just comparing distance wont work well in this case, because different cat images may look
very different and a dog and cat image can also look very similar.

This process can be improved by first mapping the images to a lower dimensional space. This can for
example be done with the means of feature bagging, [58], principle component analysis [59], autoen-
coders [60], SVM [61] or by taking the encoding of a pretrained CNN [10, 8].

A bottleneck of this method can be the time complexity, as calculating the distance for a sample may
require a comparison with each training sample. However, patch embedding for localization can be
used to make the time complexity independent of the size of the training-set [57].

2.3.5 Generating samples

On possible use for an energy based model is to generate new samples that also have low energies and
ideally share properties with the training instances. This is usually done using Markov Chain Monte
Carlo sampling (MCMC) [1] like random walk, Gibbs sampling or Langevin sampling. In particular,
Langevin sampling is used for quick convergence [62]:

xk+1 = xk− λ

2
∇xEθ(xk)+ω

k,ωk ∼N (0,λ) (7)

Here, λ is a parameter that needs to be tuned and N (0,λ) is the normal distribution with mean 0 and
standard deviation λ.

The idea is to start with a random image x0 and iteratively change it in the direction of the gradient
in respect to the energy plus some small noise. After enough iterations and a small enough λ the
image will converge to a sample of the energy distribution [63]. The same method can also be used
for image inpaining. In this case only the missing region of pixels is iterativly updated while the other
pixels stay the same [2].

The quality of the generated samples can be evaluated and compared across different models using
the fréchet inception distance(FID) [64] or inception score [65]. The inception score utilizes the In-
ception network which is pre-trained on the ImageNet dataset. Given an image the inception model
outputs a vector that maps the image to the ImageNet classes. The idea is that the generated samples
should be diverse, that is the entropy of the classes assigned by the inception model for the samples
is high. Additionally, the samples should have a high quality. This is evaluated by measuring if the
entropy of the classes the inception model assigns to a sample is high. The FID score also utilizes the
Inception model and evaluates a set of samples by comparing the distribution of extracted features
with the features of real images. The FID score can evaluate samples with respect to any target distri-
bution, not only in respect to the ImageNet dataset.

Note that models using neighbour distance as described in section 2.3.4 can usually not be used to
generate new images using MCMC sampling. This is because the samples would converge to an
image in the training-set.
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Figure 7: The concept of semi-supervised outlier detection. The training-set only contains normal
samples and during testing the outlier need to be separated from the normal.

2.3.6 Outlier detection

Another use for energy based models is outlier detection. After training a model it should map nor-
mal images to low energies and abnormal images to high energies. For testing, an energy threshold
can be chosen such that all images with a higher energy are labeled as outliers. Dependent on how
the threshold is chosen the false positive and false negative rate can variate. A common practice to
evaluate such models is by reporting the AUROC curve.

Outlier detection can be categorized into supervised, anomaly detection, semi-supervised anomaly
detection and unsupervised anomaly detection [66]. In supervised anomaly detection the training
data contains labeled defective and defect-free samples. In unsupervised outlier detection the training
samples are not labeled and contain normal as well as outlier images. Semi-supervised learning
methods are only provided with defect-free samples during training (see Figure 7).
Energy based models are especially useful because they also work for semi-supervised outlier detec-
tion where the training-set contains only normal images and the testing-set contains normal as well
as outliers [67]. In this case it would not be possible to have for example a decision tree or a neural
network that directly determines if something is an outlier, because the training-set does not contain
examples of outliers.

Ideally, a model should also be able to distinguish between logical and structural anomalies. A struc-
tural anomaly is an image showing a wrong object. A logical anomaly is a valid object being located
at a wrong position. Detecting logical anomalies is often harder [68].

2.4 Self-supervised Learning

A common bottleneck of deep learning models is the amount of labeled training data needed. How-
ever, it may be the case that there is more data available which is unlabeled. In this cases it may be
beneficial to pretrain a model on tasks that only requires unlabeled data. While doing this the model
may learn useful representations of the data. Afterwards, the model can be fine tuned by training for
the actual task at hand. This is the idea of self-supervised learning [69, 70]. Self-supervised learning
is different to supervised training in which the labels are given. In unsupervised learning, training is
done without labeled data. Self-supervised learning can be seen as a category of unsupervised learn-
ing in which labels are created from the data to create so called pretext tasks.

A pretext task could for example be to use a convolutional neural network to find the correct rotation
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of an image [71]. After the CNN was trained for this using a large set of unlabeled images it may
have kernels that specialize on useful features of these images. Therefore, it may be much easier to
further train it for other tasks like classification, object recognition etc. that require labeled data.

Another type of pretext task is inpainting [53]. In this case, an image is partially obstructed and the
pretext task is to predict the obstructed region.

In recent years contrastive learning gained popularity [72]. In contrastive learning images are aug-
mented and a model is trained to have similar representations for the different augmentations of the
same image.
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Figure 8: Examples of the handwritten MNIST images.

3 Introspective energy models with Bayesian networks
When developing introspective energy models, conditional probability tables (CPTs) were initially
used for the sidewards pass. This method was later discarded in favour of neural networks which
performed better. Nevertheless, this section will describe how they were used for the MNIST dataset
[15] and the problems with them. The performed experiments will show the success of the model in
an semi-supervised outlier task and in sampling instances based on the learned distribution.

The MNIST dataset contains grayscale images sized 28 by 28 pixels of handwritten digits between
0 and 9. The 60.000 training images are labeled with the digit shown on them and the test-set con-
tains 10.000 images. In this experiment we do not care about the labels and ignore them. Examples
of MNIST images are shown in Figure 8. In order to use a Bayesian network, pixels need to have
discrete values. Therefore, they were binarized by setting their value to 1 or 0 depending on whether
their grayscale value is above or below the threshold of 0.3. A threshold of 0.3 was chosen because it
made reading the digits the easiest in a human inspection.

The following two subsections either one (just pixel representation) or multiple layers were used and
problems with both methods are discussed.

3.1 Experiment without using high level features
As a first experiment only one layer is used, which means that each node in the layer corresponds to a
single pixel and there is no convolution. In order to avoid having to search for a structure, hard-coded
relations are used. The parents of a node are the nodes of the 4 pixels located north-west, north,
north-east and west as shown in Figure 9. This is done, because the value of a pixel is probably a
good predictor for its neighbouring pixels. It also ensures that the Bayesian network is acyclic and
that each node has the same amount of parents. This is important as the number of data required
grows exponentially with the number of parents. Each node is associated with a conditional probabil-
ity table that predicts the probability of it having the value 0 or 1. This table has 24 = 16 rows for each
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Figure 9: A structure for a Bayesian network for images. Nodes represent pixels. To keep the
Bayesian network acyclic, parents are only located north-west, north, north-east and west of a node.
Long-distance relations are not present.

unique parent configuration. Since MNIST has a set of 60.000 training images there are in average
3750 data-points per row. However, some configurations are of course much more likely or unlikely.
Pseudo-counts of 1 were used for each row, since the data is limited and not completely representative.

After fitting the model to the data, it was tasked to generate new images of the same distribution as
the training images. For this purpose, Gibbs sampling[73] was used as described in Algorithm 1.
The idea is to repeatedly change a pixel and accepting this permutation according to the probability
of the state before and after the change. In theory, as long as there are no states that are assigned
zero probability and each variable is chosen infinitely often, the samples are independent and iden-
tically distributed samples of the Bayesian network [18]. In practice, good results can be achieved
by having enough iterations between samples. For the MNIST samples, 100.000 iterations were used.

Algorithm 1 The pseudo-code for Gibbs sampling.
procedure GIBBSSAMPLING(bn,N, iterations between)

input: a Bayesian network bn, N ∈R, iterations between ∈R
set the state of bn to a random image X
for 1, ...,N do

for 1, ..., iterations between do
X ′← X with a random pixel changed
X ← X ′ with probability P(X ′|bn)

P(X |bn)+P(X ′|bn)

add X to samples
return: samples
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Figure 10: Samples generating using Gibbs sampling of a simple Bayesian network trained with the
MNIST dataset.

The generated samples are shown in Figure 10. The model did learn that the pixels in the corners and
boarders are usually black and it sometimes generates little lines or curves. However, they clearly do
not look like handwritten digits.

In another experiment the Bayesian network was used for semi-supervised outlier detection. It was
trained with images that only show one number. This means that instead of the 60.000 training im-
ages in the MNISt training-set it was only training with about 6.000 of them which show a specific
number. During testing, it had to differentiate between images showing the number in the training-set
and the other images (the ”outliers”). This type of task mimics a situation in which there is only one
type of normal but a diverse set of outliers. The models find outliers by calculating the probability of
each image with the hope that outliers have an especially low probability.

An example of the energy distribution of the outliers and normal images in the testing-set is shown
in Figure 11a. A method to measure the goodness of a model performing outlier detection is the
area under the receiver operating characteristic curve (AUROC), which is shown in Figure 11b. A
%-area of 50 would be random guessing. The results for runs in which different numbers were in the
training-set are shown in Table 1. The model performed best if it trained with images showing a 1
with an AUROC of 99.9. This makes sense because the centered line of a 1 is not commonly found
in other images. After training with the number 8 the model performed performed the worse with an
AUROC of only 76.6. This is probably because the lines that make up an 8 also exist in many other
digits. The average AUROC for the ten runs was 89.4.

The results for this task of semi-supervised outlier detection shows a proof of concept, but is not a
serious competitor with the state of the art. This specific type of semi-supervised outlier detection
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(a) The probability for normal images showing the
number two and outlier images that show other num-
bers.

(b) The resulting ROC curve. The false positive and
false negative rate differs based on what threshold is
chosen. The %-area under the ROC curve (AUROC)
is 82.1.

Figure 11: An example of an probability distribution for normal and outliers images and the resulting
ROC. The Bayesian network was trained with images showing the number two.

0 1 2 3 4 5 6 7 8 9 Average
AUROC 94.9 99.9 82.1 84.2 85.0 89.2 95.1 94.8 76.6 92.5 89.4

Table 1: The AUROC scores for an semis-supervised outlier detection task using MNISt images. In
each of the ten experiments the model was trained to consider one of the numbers as normal and the
other abnormal. The introspective energy model used conditional probability tables for the sidewards-
pass and used 1 layer.

it too unique of a task to compare it with any other models directly. It would be great to use this
Bayesian network for semi-supervise outlier tasks that make it possible to compare it with other
models. However, benchmarks that are used in recent years, like the MVTec dataset [9], consist of
large rgb-images. Unfortunately, the Bayesian network would have the disadvantage that it needs
change the pixel values to discrete states and it would also have a very large number of parameters,
duo to the image size. This makes it impractical to train for such a task.

3.2 Incorporating higher level features in Bayesian networks for image data

The Bayesian network as implemented in the previous section was not able to generate realistic sam-
ples of the data. A problem may be the fact, that relations are only between neighbouring pixels. This
may prevent the model to effectively exchange information over large distances within the image. For
example, a line that is used to draw a digit is usually about 5 pixels wide. However, a pixel positioned
somewhere within a line does not know where exactly in the line it is positioned. The CPT of the
pixel only contains information about close neighbours and does not receive information from 5 pix-
els away. A possible solution for this is to add relations between pixels over large distances. However,
this is problematic because there can not be too many relations, otherwise the CPTs become too large
to be trained with the limited data.
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Therefore, hidden variables may be used to solve this issue. A hidden variable could be a feature
of an image region. These hidden variables can have relations with other hidden variables, allowing
them to exchange information over large distances within the image. However, there are probably
a lot of hidden variables needed, which rules out traditional methods used to find hidden variables
in Bayesian networks. There is however a very effective method used by deep learning to extract
features from an image: convolution. The new layer of hidden nodes would need to have discrete
states. This can be achieved by performing convolution and thresholding the activations afterwards.
Again, in order to avoid a computational expensive search it is beneficial to restrict the relations as
follows:

• Relations between nodes should only exist within the same layer.

• Incoming relations should only come from north-west, north, north-east and west.

• Nodes that correspond to the same kernel must have incoming relations from the same direc-
tions.

• The receptive fields of nodes having a relation should not overlap.

• The receptive fields of nodes having a relation should be next to each other.

The first three restrictions are design choices to keep the model simple and to reduce the search space
of possible relations. The reason for the third point is that nodes of the same convolutional kernel
correspond to the same type of super-feature and may therefore be best predicted by the same type of
surrounding super-features. The fourth point ensures that hidden variables can exchange information
over large distances. The idea of the last point is that hidden variables that are features of neighbour-
ing image regions are probably good in predicting each other. Information over even larger distances
can be exchanged by adding additional layers (using convolution) with nodes having bigger receptive
fields. Note that this limits the maximum amount of convolutional layers, since a node having a re-
ceptive field that is larger than half of the image can not have any relations with other nodes.

Even with these restrictions, it is not possible to add every possible relation if the number of kernels is
high. Since relations can come from 5 directions, the number of possible incoming relations of a node
is 5n, with n being the number of convolutional kernels used. Structure search can be used to find
suitable relations within the candidate-set. Relations that decrease the BIC the most are interactively
added until there is no relation anymore that can decrease the BIC. Note that this method usually gives
a good solution but may only find a local maximum [22].

The convolutional kernels need to be trained as well. Ideally, the nodes with values determined by
a kernel are useful to predict other nodes that correspond to neighbouring image regions. Formally,
given a Bayesian network BN we want to change the parameters θ of the kernels to minimize the
following loss:

L(θ) = L(D|BN)−L(D|BN′) (8)

Here, L(D|BN) is the likelihood of the data D given a Bayesian network BN that was trained on the
data using maximum-likelihood estimation. BN′ is the Bayesian network without any relations.
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Figure 12: A comparison between the threshold function and the sigmoid function 1
1+e−8x . Both have

a similar shape but the sigmoid function has a non-zero gradient. The threshold function is necessary,
because the Bayesian network works with discrete variables. However, while calculating the gradient
it is replaced with the sigmoid.

However, this loss can not be minimized by using gradient descent. Remember that convolutional
kernels with parameters θ take some data x and multiply it by their weights and add a bias to get the
higher level representations s. A threshold function is used on s to obtain data z that has either state 1
or state 0. Using the chain rule we get:

∂L(D|BN)

∂θ
=

∂L(D|BN)

∂z
∗ ∂z

∂s
∗ ∂s

∂θ
(9)

Since, z was obtained using the threshold function of s, it is the case that ∂z
∂s = 0, which makes the

hole gradient 0.

A way to avoid this problem is to replace the threshold function by a sigmoid while calculating the
gradient. By using a sigmoid function it is possible to calculate a pseudo-gradient with a non-zero
solution. Even though it is not the real gradient, it may still help to reduce our loss function L(θ).
The sigmoid function that worked well and was used to replace the threshold, function is 1

1+e−8x . The
functions are plotted in Figure 12.

Overall, there are two optimization problems: The kernels need to be trained and the relations need
to be trained. Training the kernels requires that there are already some relations and training the rela-
tions requires that there are already some kernels. To do this, an EM-algorithm is used. Initially the
kernels and relations are random, but get iterativly updated until convergence. Note that this method
may only find a local maxima. The pseudo-code of this algorithm is shown in algorithm 2.

To train a model, two convolutional transitions were used. Both transitions used five kernels of size 3
by 3 followed by a 2 by 2 max pooling with a stride of 2. This causes nodes in the two hidden layers
to have a receptive field of size 4 by 4 and 10 by 10 respectively. Algorithm 2 shows how the param-
eters of the kernels and structure between hidden variables were trained in detail. It was used first
to generate the first hidden layer and a second time afterwards to generate the second hidden layer.
The EM-algorithm was run for 50 iterations each and the learning rate α to train the kernels was 0.008.

Gibbs sampling was once again performed to let the new model generate samples. The results are
shown in Figure 13. Comparing them to the results shown in Figure 10, the images seem to have
more pronounced lines. Otherwise they are at best vaguely resemble actual handwritten digits. The
performance for the semi-supervised outlier task is shown in Table 2. The average AUROC score of
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Algorithm 2 The pseudo-code to add an additional layer of hidden nodes to a Bayesian network.
procedure ADDLAYER(bn,n,D,α)

input: a Bayesian network bn, a number of kernels n, a dataset D and learning rate α

initialize n convolutional kernels randomly
while no convergence do

optimizeStructure(bn,D,n)
optimizeKernels(bn,D,α)

procedure OPTIMIZESTRUCTURE(bn,D,n)
remove all relations in bn
dist← the distance between two nodes such that their receptive fields are not overlapping.
while BIC(bn,D) can be reduced do

k1,k2,dir← parameters that result in the biggest bic reduction
with k1,kn ∈ [1,n], dir ∈ {north−west,north,north− east,east}
for all nodes v of kernel k1 do

v′ the node dist away of v in direction dir of kernel k2.
Add a relation from v′ to v

procedure OPTIMIZEKERNELS(bn,D,α)
θ← the parameters of the convolutional kernels.
bn′← bn without relations
L(θ)← P(D|bn)−P(D|bn′)
∂L ′(θ)

∂θ
← the derivative of L(θ) with respect to θ with the threshold function being replaced by

a sigmoid function.
θ← θ+α

∂L ′(θ)
∂θ

93.0 is now a bit higher than without hidden layers. With the new learning algorithm training is quite
slow and does not scale up well for larger image sizes.

0 1 2 3 4 5 6 7 8 9 Average
AUROC 98.9 99.3 91.3 89.2 90.9 86.7 98.0 94.3 87.7 93.8 93.0

Table 2: The AUROC scores for an semis-supervised outlier detection task using MNISt images. In
each of the ten experiments the model was trained to consider one of the numbers as normal and the
other abnormal. The introspective energy model used conditional probability tables for the sidewards-
pass and used 3 layers.

Overall, the results for generating samples are poor with and without hidden variables and lack be-
hind the state of the art which can produce very realistic samples [62] [65]. A possible problem with
this could be the generation method using Gibbs sampling, which may get stuck too easily in local
maxima. Maybe using more iterations could increase performance.

However, the major problem with the hidden variables introduced is that the local Markov property is
violated. The local Markov property demands that the state of a variable is independent of the other
nodes given its Markov blanket. This is not the case in the presented model. A hidden variable that
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Figure 13: Samples generating using Gibbs sampling of an Bayesian network with two hidden layers
trained on the MNIST dataset.

encodes a feature of an image region causally depends on the nodes that encode pixels in this region.
However, there are no dependencies between nodes of different layers. Similarly, hidden variables
with the same receptive field that stem from different kernels also do not have relations but directly
depend on each other. For example, a hidden variable may be a feature encoder for a horizontal line
and another variable may be a feature encoder of a vertical line at the same region. Both features
are mutually exclusive, which causes them to probably not be independent of each other given their
parents in other image regions.

Unfortunately, there does not seem to be an easy solution for this issue. Adding these relations to the
hidden variables would make them largely independent of the hidden variables further away in the
image. But these relations are important and are the reason why hidden variables were added to the
model at all.

All code used for the experiments was written in the C programming language using the OpenMP in-
terface for multiprocessing. All files are available at https://github.com/LukasKinder/convolutionalBN.

https://github.com/LukasKinder/convolutionalBN
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4 Introspective energy models for semi-supervised outlier detec-
tion

In the previous section, the sidewards pass was performed using conditional probability tables. Now,
small neural networks will be used instead. The nodes values do not need to be categorical anymore,
which is why the threshold function is replaced by the ReLU activation function. Each node is as-
sociated with a small neural network that predicts the nodes activation using the activations of the
surrounding nodes. A high energy is a big mismatch between the actual and predicted activations.

A possible application for this is semi-supervised outlier detection. After training the model with
normal images, outliers are detected by their high energy. To asses the performance of the model,
the MVTec dataset was used [9]. The MVtec dataset is subdivided into 15 categories of a different
industrial manufactured object. For each category there are between 60 and 320 images of non-defect
instances in the training-set. The test-set contain defects as well as non-defect instances that need to
be identified. The rgb-images have a width and height between 900 and 1024 pixels. Examples of
MVTec images are shown in Figure 14 and a statistical overview is shown in Table 3.

Category #Train
#Test

(good)
#Test

(defect)
Image

side length

O
bj

ec
ts

Bottle 209 20 63 900
Cable 224 58 92 1024

Capsule 219 23 109 100
Hazelnut 391 40 70 1024
Metal Nut 220 22 93 700

Pill 267 26 141 800
Screw 320 41 119 1024

Toothbrush 60 12 30 1024
Transistor 213 60 40 1024

Zipper 240 32 119 1024

Te
xt

ur
es

Carpet 280 28 89 1024
Grid 264 21 57 1024

Leather 245 32 92 1024
Tile 230 33 84 840

Wood 247 19 60 1024
Total 3629 467 1258 -

Table 3: An overview of the MVTec dataset. For each object and texture the number of training
images as well as the number of defect and normal testing images is given.

All code was written in the Python programming language using the PyTorch library. It is available
under https://github.com/LukasKinder/Master.

https://github.com/LukasKinder/Master
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Figure 14: Example instances of the MVTec dataset. The first row shows defect-free samples, the
second row shows defect samples and the third row shows the zoomed-in defects.

4.1 Methods
Formally, an introspective energy model is a convolutions network in which the activations in layer l
are determined by: a[l]= conv(a[l−1]). With a[0] being the input image. The transition conv() performs
convolution, max pooling and applies the ReLU activation function. This is the forward-pass. The
forwards pass generates a spacial map of nodes which corresponding to different regions of the image.
There are as many nodes corresponding to the same region as there are convolutional kernels. During
the sideward-pass the activation a[l]i of a node n[l]i at layer l is predicted using the activations of the
neighbours of the node neigh(n[l]i ). For this task there is a model model[l]i () associated to this specific
node:

â[l]i = model[l]i ( [a[l]j | n
[l]
j ∈ neigh(n[l]i )] ) (10)

Here, â[l]i is the prediction. The neighbours of a node neigh(n[l]i ) are at the same layer and should
be nodes with receptive fields that are adjacent to n[l]i . The difference between a nodes activation
as determined by the forward-pass and its predicted activation during the sideward-pass is the error
associated with this node.

err[l]i = â[l]i −a[l]i (11)

The overall loss in a layer l and the objective function is:

L l = ∑
i
(err[l]i )2 (12)

During training, the model aims to minimize this error by optimizing the weights of the convolutional
kernels and the parameters of the models performing the sidewards-pass. This is done using stochastic
gradient descent for the images in the training-set. However, the network may fail to learn meaningful
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higher level concepts. For example because it always maps to 0 during the forward pass. If a[l]i = 0
for every image in the training-set, model[l]i () will learn to output 0 without considering the input.
The resulting error will be 0 as well.

To avoid this, while backtracking the gradient the actual activations are detached from the gradient.

err[l]i = â[l]i −a[l]i .stopGradient() (13)

In other words, while calculating the gradient during training, the nodes are trained to be good pre-
dictors of their neighbours and not to be easily predictable.

The models model[l]i () for each node comes in the form of small neural networks. Since the training-
set of the MVTec dataset is small, they may overfit. That means that they are good in predicting the
activations for the limited training-set but fail to generalize for other (defect-free) images. To avoid
this, weight sharing can be used. This means that (part of) the weights that made up a model model[l]i ()

are the same in other models model[l]j (). This effectively allows the parameters of the weights to be
trained with more data. For example, lets assume the number of training images n is quite small. The
size of the images is 300 by 300 pixels. We would like to train the models that perform the sidewards
pass in layer 0 that predict a pixel value. If in this case, the weights of all sidewards-models are
shared, the weights are effectively trained with n ∗ 300 ∗ 300 samples. With this increase amount of
data, the chance for overfitting is small, even if the models for the sidewards pass have many weights.

However, if all models share the same weights the position of the node is not incorporated in the
prediction. This may not be a problem if the image shows a texture or pattern. For these types of
images it is often the case that the information of the position within the image is not useful to pre-
dict a nodes activation. However, usually the position in the image is important. Many images in the
MVTec dataset show objects that are centered, which creates an expectation for certain characteristics
in different image regions. For example, in images showing a capsule we expect the outline of the
upper part of the capsule to be located in the upper third of the image.

In order to incorporate information about the position of the node there are two methods. The model
may receive the x and y position of the node as an input (both normalized as a value between 0 and
1). Or alternatively, the model associated to a node may only contain some shared weights and some
weights that are specific to the node. Shared weights can come in two forms: Weights may be shared
between all models associated to nodes in a layer or weights may be shared between models of nodes
that corresponds to the same convolutional kernel. Overall, six different architectures were considered
in which different types of weight sharing was used. They are shown in Figure 15. The models of type
(a) uses the most weight sharing but no information about the position of the node. This caused a poor
performance for some object categories of the MVTec dataset that are not textures. Model (d) uses
no weight sharing at all, but had a poor performance, probably because of overfitting. Model (e) and
(f) have a lot of weight sharing and are still able to incorporate information about the position of the
node. However, they also did not perform very well. The reason is probably that in the MVTec dataset
the objects are often position exactly in the center of the image and have the same size. This makes
the exact position very important for the expected activation. Just giving the position as an input is
not good enough, because small changes in position can have a big effect. It should be investigated if
models of type (e) or (f) would perform better for other dataset, like for example ImageNet. Model
type (b) and (c) are similar but (c) only shares weights between models of node that correspond to the
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(a) (b) (c)

(d) (e) (f)

Figure 15: Six different designs for neural networks performing the sidewards-pass. The activations
of the neighbours (blue) are used to predict the activation of a node (red). (a): The models share their
weights except for the last layer, in which weights are shared for nodes of the same convolutional
kernel.(b): Weights are shared between all nodes, except in the last layer. (c): Weights are shared
between nodes of the same kernel, except in the last layer. (d): No weight-sharing at all. (e) The
weights are shared with all nodes in the initial layers and shared between nodes of the same kernel
in the last layer. Additionally, the x and y coordinate of the node is given as an input as well. (f) All
weights are shared. The model receives the x and y coordinate of the node, as well as the kernel of
the node.

same kernel. They performed the best and type (b) was chosen for the following experiments.

A new model was trained from scratch for each MVTec category. The architecture for the overall
model for each category was the same and is shown in Table 4. To summarize: on top of layer 0
which is the pixel level there were four more layers that used 15,25,35 and 60 convolutional kernels
respectively. Max pooling was always used with size 2 by 2 and a stride of 2. The receptive fields of
a node went up to a size of 66 in the last layer. This is actually not a big fraction of the 300 by 300
pixel images. This was fine because defects usually impact only small regions. A node at position
(x,y) was neighbour with a node (x′,y′) if and only if max(|x− x′|, |y− y′|) = Neighbour Distance.
For example, in the first layer the neighbour distance is 1 which means that there are 8 surrounding
positions with neighbours. The image has three channels (rgb) which means that there are 8∗3 = 24
neighbours in total. The neighbour distance was chosen such that the receptive fields between neigh-
bours in layer 2,3 and 4 slightly overlap. The architecture of the sidewards model used 2 hidden layers
with 32 and 12 hidden units, except in layer 4 were there were three hidden layers with 32, 32 and 16
hidden units each.

A node located close the edge of an image may not have neighbours in all direction. Since weight
sharing was used it would still be good if the architecture of this nodes’ sidewards model is still the
same. This is why the activation of a missing neighbour was replaced by 0. However, the models
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Layer Convolution
Receptive

Field
Size

Neighbour
Distance

Sidewards
Models

0 - 1 1 [32,32,12,1]

1
conv:n=15,size=3

max-pool:size=2,stride=2
4 3 [384,32,16,1]

2
conv:n=25,size=5

max-pool:size=2,stride=2
14 3 [624,32,16,1]

3
conv:n=35,size=5

max-pool:size=2,stride=2
34 3 [864,32,16,1]

4
conv:n=60,size=3

max-pool:size=2,stride=2
66 2 [976,32,32,16,1]

Table 4: The cold-start architecture of the IEM used for the MVTec dataset. For each layer the
convolutional transition, the resulting size of the receptive field, the distance of the neighbours and
the number of nodes of the model performing the sidewards pass is shown. In the last column, the
first number always indicates the number of inputs, followed by numbers describing the number of
nodes in the hidden layers. The last number indicated the number of output nodes which is alway 1.

were also provided with a mask telling them if there does or does not exist a neighbour in a certain
position. This is for example why a model performing the sidewards pass in layer 0 has 32 input. 24
of these inputs are the activations of the neighbours and another 8 inputs is the mask telling if at each
of the 8 neighbour-position there actually is a node or not.

Training the convolutional kernels and models for the sidewards-pass was done layer by layer. That
means that training the next layer was only done after the previous layer was completely trained. The
pseudocode for this is shown in Algorithm 3. This method of training performed well and was a bit
more stable than training all layers at once. The learning rates αs and α f were 0.001 and a batch size
N = 8 was used. The images were all resized to 300 by 300 pixels, to make training computationally
faster.

To calculate the energy after training, it was beneficial to normalize the errors of each node by assum-
ing they are normally distributed. This is similar to the method proposed by [1] but is done over all
nodes instead of over the pixels. We can normalize this error as follows:

err norm[l]
i,x =

|err[l]i,x−mean(err[l]i )|

std(err[l]i )
(14)

Here, err[l]i,x is the error of node n[l]i for image x. With mean(err[l]i ) being the mean and std(err[l]i )
being the standard error of the error of node i in layer l for the instances in the training-set.

Until this point each node is individually associated with an error. The final energy associated with a
layer for an input is calculated via:
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Algorithm 3 The pseudo-code to add additional layers of hidden nodes to an IEM. The layer are
added one by one. The appendix ”.detach” means that a variable is not backtracked while calculating
a derivative,

procedure TRAINIEM(D,L,N,αs,α f )
input: Data D, number of layers L, batch size N, learning rates α f and αs
for l = 0,...,L do

if l = 0 then
For each pixel, add sidewards models with parameters θs
θ f ← /0

else
Add a convolutional transition to the model with parameters θ f
For each new node, add sidewards models with parameters θs

while no convergence do
B← A batch of N images of D.
L ← ∑b∈B ∑i(â

[l]
i −a[l]i .detach)2

θ f = θ f +α f
∂L
∂θ f

θs = θs +αs
∂L
∂θs

energy[l] = ∑
i
|err norm[l]

i | (15)

To associate an input with an energy we can combine the energies of each layer using:

energy = ∑
l

wl ∗ energy[l] (16)

Here wl is a weight associate with a layer that can fine tuned. However, for the experiments of the
MVTec dataset they were set to 1 for all layers.

4.2 Results
An example of how error normalization is improving the models performance is shown in figure 16.
Here, the distribution of normal and defect testing images of the ”Zipper” object category is shown
with and without error normalization. A much higher AUC of 0.977 was achieved with normalization
which was considerably higher than without normalization. A similar trend was observed for other
object categories.

An image is categorized by the model as normal or outlier based on its energy. A threshold must
be chosen that indicates the maximum energy an image can have to be still considered normal. This
can be visualized in a (receiver operating characteristic) ROC curve . A commonly used metrics to
measure the performance for the MVTec dataset [9] is to use the area under the ROC curve (AUROC).

The results in terms of AUROC for every object and texture is shown in Table 5. The other models
used for comparison were state of the art models trained from scratch and do not utilizing a pretrained
model. Patch SVDD is a distance based model, ITAE and RIAD are autoencoders and GANomaly is
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(a) No normalization (b) With normalization

Figure 16: An example of the energy distribution for images of normal and defect instances. The IEM
is able to separate normal from defect instances better if error normalization was performed. Images
come form the ”Zipper” object of the MVTec dataset.

a GAN. The Introspective energy model has an average AUROC that is lower than RIAD and PATCH
SVDD. However, this average is mainly low because of a low outlier for the ”Metal Nut” object
category. The Introspective Energy Model performs better than any other model for the ”Hazelnut”,
”Carpet” and ”Wood” object category and is able to perfectly distinguish normal from defect screws.

4.3 Discussion

Note that the MVTEc dataset has quite small testing-sets for each category. Therefore the exact re-
sults should be seen with caution. During testing, the model is usually only misclassifying a handful
of images. By performing many runs with different architectures and weights for the layers, it could
be possible to ”randomly” get better results for a specific object category. This is why the weights for
the layers were always 1 and the architecture was not fine tuned for different categories of the MVTec
dataset.

The overall results are quite promising, even though the average performance was not as good as the
state of the art. However, the reason the average is low, is manly because of some object categories
for which the model had a very bad performance, like ”Metal Nut”, ”Capsule” or ”Tile”. The IEM
did outperform all other models in some object categories.

A possible explanation of why the model performed poor for some categories, is that normal objects
sometimes have random components. Examples of cases like this is shown in Figure 17. The IME
tries to predict regions of these images using the surrounding region and assign a high energy if these
predictions are bad. However, in this case accurately predicting an image region is impossible because
of the random nature of the shown objects. The lines of the leather, the red dots of the pill and the
dark dots on the tile are random. Therefore the model will assign high energies to normal instances.
If normal instances are assigned high energies it is hard to distinguish them from abnormal instances
that have high energies because of an defect.
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Patch
SVDD[74]

ITAE[75] GANomaly[5] RIAD[54]
Introspective
Energy Model

Bottle 98.6 94.1 89.2 99.9 99.0
Cable 90.3 83.2 75.7 81.9 78.5

Capsule 76.7 68.1 73.2 88.4 72.1
Hazelnut 92.0 85.5 78.5 83.3 94.8
Metal Nut 94.0 66.7 70.0 88.5 53.6

Pill 86.1 78.6 74.3 83.8 82.8
Screw 81.3 100 74.6 84.5 100

Toothbrush 100 100 65.3 100 95.8
Transistor 91.5 84.3 79.2 90.9 95.7

Zipper 95.1 87.6 74.5 98.1 97.8
Carpet 92.9 70.6 69.9 84.2 94.1
Grid 94.6 88.3 70.8 99.6 93.1

Leather 90.9 86.2 84.2 100 96.8
Tile 97.8 73.5 79.4 98.7 87.2

Wood 96.5 92.3 83.4 93.0 97.0
Average 92.1 83.9 76.2 91.7 87.9

Table 5: The AUROC scores in abnormally detection for different categories of the MVTec dataset.
The introspective energy model was compared with state of the art models that also did not use
pretraining using a different dataset.

The model performed particularly bad for the ”Metal Nut” object, which is shown on the right in Fig-
ure 14. The AUROC score of 53.6 is barley better than random. This could be because the object is
also a bit random. The shiny and dim parts of the metal nut are often hard to predict exactly. Another
explanation could be that the metal nuts are rotated differently in every image. This prevents to model
to learn at which exact positions edges should be. However, the same is true for the ”Screw” object,
for which the model performs very well. Maybe the difference is that the metal nuts do not have any
meaningful textures or pattern if zoomed into the image. This could make it hard to learn meaningful
higher level representation, as the model is only trained layer by layer.

A potential problem with the model is that the convolutional kernels are only trained with images of
normal instances. This could mean that they are not able to pick on higher level features that only
appear for defects. A possible solution for this could be to train the forwards pass with normal as well
as defect instances and the parameters for the sidewards pass afterwards, with normal instances only.

Even without fine-tuning the hyper-parameters for the different object categories, it was a lot of work
to find good settings. The design for the forwards and sidewards pass give many possible options. On
top of this, the learning mechanism gives a big search space of hyper-parameters as well. This is in
general a challenge for machine learning [76]. However, in this case the novel nature of the model
makes it harder consult existing literature.
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Figure 17: Some images of the MVTec dataset showing non-defect samples. A sample of the
”Leather” category is shown left, ”Pill” in the middle and ”Tile” on the right. Even though the
objects are normal, they have random aspects that are hard to predict. this causes the IEM to assign
them high energies, even though they do not have any defects.

The model presented here shows some similarities to the RIAD model, because both determine an
energy by the success of an inpainting task. However, the IEM has the advantage that it only needs to
be run once, while RIAD is run many times with different regions being obstructed. This makes the
IEM computational cheaper.

An interesting aspect of the model is that it is able to train a convolutional network layer by layer.
This is relevant as training a deep neural network often struggles with the vanishing gradient problem
[77, 78]. In this case, the gradient that is backpropagated staring in the output layer becomes smaller
and smaller for each layer before. This can prevent effective training. By training the layer one by one,
the problem is overcome. Existing methods to train neural networks layer by layer is greedy layer-
wise pretraining [79, 80]. Maybe future work could investigate further, if an IEM can be preferred
over layer-wise petraining for some detests.
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5 Introspective energy models with transfer learning
Even though the previous section showed promising results for the MVTec dataset, they lack far be-
hind state of the art models that use transfer learning. Taking pretrained convolutional kernels from a
model trained with the ImageNet dataset can achieve AUROC score of 99 or more for each of the 15
object categories.

A possible method to improve the Introspective energy model is to transfer the convolutional kernels
of an already pretrained model. This section discusses how this is done in detail using the AlexNet
model [16].

5.1 Methods
Since the MVTec dataset is very small, it could be very beneficial to pretrain it using a large dataset.
For example, it may be trained on the ImageNet [46] dataset before fine-tuning it for the training
images of the MVTec dataset. Even though this could work, the problem is that the ImageNet dataset
is very big and pretraining a model with it would be very computationally expensive. Instead, it is
possible to transfer the parameters of an already existing model. The hope is that the convolutional
kernels of the pretrained model are useful for the task of predicting outliers of the MVTec dataset. In
this case, only the parameters for the sidewards-pass need to be trained from scratch.

The pretrained model that was used for this task is the AlexNet [16] model. The reason it was chosen
is that the first few layers have relatively little convolutional kernels and that the size of the convo-
lutional kernels are relatively small. Only the parameters of the first four convolutional layers were
used, because using more would make the receptive fields of the nodes too large. The exact architec-
ture is shown in Table 6. The main difference to the architecture that was used before is that there are
more kernels and that the receptive fields become larger in later layers. Since there are more kernels,
the models performing the sidewards-pass have more inputs. To compensate for this, the models were
made larger, with more hidden units. The images were resized to 224 by 224 pixels which is an re-
quirement for AlexNet.

During training the weights of the convolutional kernels were not changed and only the weights of
the models performing the sidewards pass needed to be trained. This performed better than taking the
pretrained weights as a starting point and fine-tuning them. Because of this, it does not matter if the
model is trained layer by layer or all at once. Otherwise, training is done as before by minimizing
the objective function of equation 12 using stochastic gradient descent. The learning rate was 0.001
and the batch size was 8. The weights that were used for each layer as described in Equation 16 were
always 1.

5.2 Results
The results in terms of AUROC for every object and texture is shown in Table 7. Using pretrained
kernels increase the average AUROC from 87.9 to 90.8. However, there are some object categories
for which the results were actually considerably worse, like for ”Grid” and ”Screw”.

The three state of the art models used for comparison were all distance based models that use pre-
trained kernels of a deep convolutional network trained on ImageNet. The overall performance of the
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Layer Convolution
Receptive

Field
Size

Neighbour
Distance

Sidewards
Models

0 - 1 1 [32,32,16,1]

1
conv:n=64,size=11,stride=4
max-pool:size=3,stride=2

19 1 [512,32,16,1]

2
conv:n=192,size=5

max-pool:size=3,stride=2
83 1 [1536,54,64,32,1]

3 conv:n=384,size=3 114 3 [9984,64,64,16,1]

4 conv:n=256,size=3 147 1 [2048,64,64,32,1]

Table 6: The architecture of the IEM using the convolutional kernels of the Alexnet Model. For
each layer the convolutional transition, the resulting size of the receptive field, the distance of the
neighbours and the number of nodes of the model performing the sidewards pass is shown.

IEM is considerably worse than the state of the art models for most object categories.

5.3 Discussion
State of the art models that detect defect instances for the MVTec dataset greatly benefit from pre-
trained models. This is probably because the training-set of the MVTec dataset is very small. It seems
like large the convolutional models trained on the ImageNet dataset come with higher level represen-
tations that are often useful for the MVTec dataset as well.

Using the convolutional kernels of AlexNet in the introspective energy model did lead to an improve-
ment for a many of the objects. The reason that it did not help for all object categories could be that
they require very specific kernels that are not part of AlexNet.

It is important to not that only the first four layers of AlexNet were used. This is only a small part
of the parameters. Unfortunately it was not possible to use more layers, because otherwise the recep-
tive fields become to large. The high amount of convolutional kernels may also prevented the model
to have a better performance. During experiments without transfer learning a too high amount of
convolutional kernels cause a bad performance. This is probably because the models performing the
sidewards pass receive a too large input, making training slow and overfitting more likely.

Interestingly, a better performance was achieved by transferring the parameters of the convolutional
kernels without changing the afterwards. It was not leading to an improvement to fine-tune the kernels
with the images of the MVTec dataset. This is probably because the training-set of the MVTec only
contains non-defect instances. By fine-tuning the kernels with images of non-defects. they may not
be able pick up on features that only appear in images of defect instances. However, this is important
to distinguish them.
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ReConPatch[81] PatchCore[10] MemSeg[82]
Introspective
energy Model

Bottle 100 100 100 98.9
Cable 99.7 99.5 98.2 89.5

Capsule 99.8 98.1 100 78.3
Hazelnut 100 100 100 98.9
Metal Nut 100 100 100 79.2

Pill 96.21 96.6 99 85.5
Screw 99.8 98.1 97.8 88.7

Toothbrush 100 100 100 96.9
Transistor 100 100 99.2 89.3

Zipper 99.9 99.4 100 90.8
Carpet 100 98.7 99.6 91.0
Grid 99.5 98.2 100 80.1

Leather 100 100 100 96.8
Tile 100 98.7 100 99.1

Wood 99.47 99.2 99.6 99.2
Average 99.6 99.1 99.56 90.8

Table 7: The AUROC scores in abnormally detection for different categories of the MVTec dataset.
The introspective energy model used pretrained kernels of the AlexNet model and was compared with
state of the art models that also utilized pretrained models.
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6 Conclusion

This thesis introduces the concept of an introspective energy model that uses a new architecture to
assign energies to input images. A high energy is a measure of the disability to predict image re-
gions based on the surrounding. One application for which it can be used is semi-supervised outlier
detection, where the training-set only contains non-outliers. An introspective energy model that con-
sists of layers of Bayesian networks was used for the MNIST dataset. Although it could be used for
this task, the model struggled to learn the probability distribution of MNIST images effectively. The
samples generated by the model using Gibbs sampling did resemble numbers very much. The main
problem with using an introspective energy model with conditional probability tables is that it is not
a true Bayesian network, because the local Markov property is violated. Moreover, the model’s train-
ing process is computationally expensive, which makes it impractical for tasks involving large images.

A new version of the model was developed, utilizing small neural networks to predict image regions
based on their surroundings. With this mechanism the model was able to outperform the state of the
art in some categories of the MVTec dataset. However, an introspective energy model using pretrained
kernels was not as good as distance-based models using pretrained models. A possible explanation
for this is that the model used for transfer learning had too many convolutional kernels and the only
the first few layers could be transferred.

There are image outlier detection tasks for which it is hard to use pretrained kernels. Very domain-
specific datasets like x-ray, satellite, art or microscopic images usually do not benefit much from
pretrained convolutional kernels trained with IamgeNet [83]. Therefore it is still relevant to explore
models that do not depend on transfer learning.

In conclusion, introspective energy models are studied in this thesis and are worth to further investi-
gated for the following reasons:

• Since every node of an introspective energy model has its own loss, the gradient does not need
to be backtracked over multiple layers. This avoids the vanishing gradient problem.

• Introspective energy models are relatively easy to train, because layers can be trained one by
one. This gives much control over the learning progress and makes it easier to pinpoint potential
problems during training.

• An IEM is a gray-box model that can be much more explainable than traditional deep learning
models. It can provide information about where in the input and in in which layer a high energy
originates. It could potentially also be used to determine how the input should be different in
order to reduce the energy.

• An IEM is an energy based model that can be trained without ever being presented with high-
energy examples. For the MVTec dataset it was only outperformed by non-deep learning mod-
els that may not scale up to more difficult tasks.

• There is not much data required to train an IEM, because it is able to use a lot of weight-sharing.
This is different to traditional deep learning models. With lot of weight sharing the number of
parameters are reduced, which helps to prevent overfitting.
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• Based on the task at hand, the architecture of an IEM can be chosen using expert knowledge.
For example by using position-independent sidewards-models for texture inputs or by selecting
receptive field sizes that match the size of important features.

It could also be interesting to use IEMs not only for image data but also for videos or audio data. For
videos 3D convolution can be applied and the neighbours of a node may be nodes not only adjacent
in space but also in time. When using an introspective energy model for audio data, a node encoding
a feature of the audio at some time may be predicted using nodes that encode features of the audio
before and afterwards.
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