
Process Log Generation for Exploring Security Vulnerabilities and

Violations in Business and Scientific Workflows

Bachelor Thesis

Nikiforos Kyparos

August 1, 2023

First Supervisor:
Prof. Dr. Dimka Karastoyanova

Second Supervisor:
Nafiseh Soveizi

1

Abstract

There is a growing need for security solutions to protect against anomalies that can occur in cloud-
based business processes. Businesses are increasingly utilizing the cloud space for their data handling
operations due to its scalable and flexible nature. Consequently, anomalies that range from inefficient
procedures to malicious attacks have become ever more prevalent. Currently, businesses apply various
methods to their processes to protect against abnormal behavior, including machine learning models that
are trained on event log files and are capable of detecting anomalies. These files are extracted from
the execution of the business process. However, based on our research, there is no comprehensive log
file targeting the specific characteristics and requirements for detecting security and privacy violations.
To address this gap, our focus is on exploring malicious attacks on the user’s side of the process and
generating event log files. In this research, we introduce a novel approach to generating log files for the
user tasks of the business processes, aiming to enhance the robustness and accuracy of detection models.

2

Contents

1 Introduction 4

2 Background 5
2.1 The business process . 5
2.2 Different Types of Attacks . 6
2.3 Event logs . 7

3 State of the Art 7
3.1 Business process . 7

3.1.1 Log utilization . 8
3.1.2 Other existing anomaly detection mechanisms 9
3.1.3 Log Generation Techniques 10

3.2 Scientific process . 11

4 Implementation 13
4.1 Process handling . 13
4.2 Simulation . 14

4.2.1 Legitimate behavior . 14
4.2.2 Malicious behavior . 14
4.2.3 Reusability . 15

4.3 Collected event logs . 15

5 Results 17

6 Future Work 20

7 Conclusion 22

8 References 23

3

1 Introduction

The sustainability and prosperity of a modern business depend heavily on
the security and robustness of its software infrastructure. However, a
recurring point of failure in the chain of operations is the human element.
As a result, monitoring user behavior in the business processes is of
paramount importance to any complex organization.

Business processes commonly adopt process models to streamline their
operations. This model describes the structure of a series of tasks and sets
requirements for their completion. In most cases, a business process may
involve multiple participants and many contributing systems. Consequently,
the points of entry for a malicious individual are also numerous. Such an
intrusion could result in a critical attack on the infrastructure of a business
process. Therefore, the development of tools capable of detecting and
defending against such attacks becomes crucial.

One solution to address this challenge is the generation of log files used to
train machine learning models. These log files contain the events that occur
during the execution of a process, enabling the construction of the desired
logs. Then, machine learning algorithms can be applied to these files to
construct a detection model. To that end, many solutions have been
proposed, and there is a growing interest in this area of research.

The aim of our research is to investigate the behavior of users that
actively participate in a business process and collect logs based on their
activity. Therefore, it is of particular importance to collect and log
information that can aid in distinguishing between legitimate and malicious
users. Information about the time of activity, the number of hits or calls
from a specific address, payloads, IP reputation, and geo-location are all
useful metrics to include in our logs.

Similarly to the range of metrics that should be collected, the potential
types of attacks on user behavior vary significantly. There are four
overarching branches that will be considered, and under which all attacks
fall. The first category, called Distributed Denial-of-Service, concerns
attacks that affect the amount of user traffic. The second, called Probe,

4

describes attempts to gather information about a system. The third is
Remote-to-Local, which covers infiltrations to the network from outside
sources. Finally, the fourth category is User-to-Root, and it concerns
malicious system privilege escalations. As these attacks pose a serious
threat to any business process, a solution has to be found that provides
detection and safety enhancements.

In section 2, the context of the research and its key goals will be established.
Section 3 will explore current approaches to the topic that also influenced
this paper. In section 4, the implementation of the research into a working
program will be described, and in section 5, the final results from the program
will be displayed and analyzed. In section 6, the future steps for this research
will be discussed. Finally, section 7 concludes the paper.

2 Background

2.1 The business process

Business processes are defined as a specification of the set of business
activities required to achieve a business objective, as well as the information
and resources they use [10]. The Business Process Modeling Notation
(BPMN) is a graphical representation commonly used for depicting business
processes, as illustrated in Figure 1. These processes are widely used by
companies and offer streamlined workflows, well-defined procedures, and
great agility.

In the context of business processes, there are two overarching types of
activities. Firstly, the services, which are automated, can be handled by
software applications or can be outsourced to the cloud, offering cost
savings, scalability, and flexibility. On the other hand, there are users that
interact through their own console APIs with the services. These users also
need to be monitored in order to extract helpful information. The
monitoring of user actions will be the main focus of this paper.

The activities that need to be performed by a user in a process are called
user tasks. These are manual and non-automated steps in which an
individual is tasked with carrying out a specific operation with the help of
some software application. Examples of such tasks are approving requests,

5

producing reports, and filling out forms. These tasks are susceptible to a
wide range of attacks that can be performed by intruders. Despite the large
number of possible attacks, these intrusions follow some general patterns
and leave a signature about their behavior. These signatures have been
studied extensively and as a result, they can be classified according to their
characteristics [6].

Figure 1: An example of a BPMN

2.2 Different Types of Attacks

The attacks covered in our research can be separated into four broad
categories:

1. (Distributed) Denial-of-Service (DDoS): In DDoS attacks, an
influx of requests is sent to the network with the goal of obstructing
legitimate requests from being fulfilled [19]. Although it does not pose a
threat to sensitive data it can cause significant damage to a company’s
resources.

2. Probe: In this method, the attacker deliberately sends a request that
will be flagged as malicious and then analyzes the system’s response in
order to evaluate its detection capabilities [18]. Probe attacks can often
constitute the first step of a much larger attack, where the malicious
entity gains insight into the system architecture and then launches the
more dangerous steps of the attack while leveraging this knowledge.

3. Remote-to-Local (R2L) attack: Here a non-local entity sends a
packet over the network to a computer in order to obtain local user
privileges by exploiting vulnerabilities in the target system’s

6

authentication protocols [14]. After having obtained user privileges, the
attacker can then operate on the network virtually undetected.

4. User-to-Root (U2R) attack: A U2R attack starts off with the
attacker having access to a regular user account and then exploiting
vulnerabilities to gain access to the root user [14]. Similarly to R2L, a
malicious individual making a U2R will attempt to exploit system
resources in order to execute actions that they would otherwise be
unauthorized to execute.

2.3 Event logs

During the execution of a business process, various tasks and activities are
carried out that provide insight into the specific actions performed. The
collection of this data is typically done through Logging, resulting in an
event log consisting of records documenting process events. In our research,
we are interested in collecting this information about user tasks.

After obtaining log files containing the activities of the users during their
tasks, we can compare these data points with the data that would have been
produced by an attacker. Then, we can make decisions on whether there
are any signs of malicious activity in the executed process. This idea forms
the basis for a novel machine learning model that would be trained on these
logs and would be able to accurately detect intrusions. Although this step
is outside the scope of this thesis, it is important because it relies on the
end product of this research, which is the user task logs, to conform to some
predefined guidelines.

3 State of the Art

3.1 Business process

The field of business intelligence has seen a rise in popularity in recent years.
Consequently, the interest in security and specifically in anomaly detection
has increased sharply. This has led to the proposal of many new tools to serve
this purpose.

7

3.1.1 Log utilization

One area of research for the development of detection tools is log utilization.
This involves researchers using the logs that business processes generate as
the basis for their proposals. Considering that our paper also falls under
this category, it is important to evaluate contemporary solutions.

Current approaches, such as the one by Nolle et al. [13], utilize event log
data to detect anomalies. Specifically, the authors do not stop at the
case-level anomalies, instead, they also make use of activity attribute data,
which allows for greater coverage not available at the case level. The data
are obtained from the executed service and user tasks in the form of a log
file and then used in the training of a model. This has led to some
promising results, as can be seen from the reported accuracy scores of these
models. However, there exist additional features that can be considered
during the creation of the log file.

In business workflows, Nolle et al. [12] propose a detection method for
anomalies using autoencoders, which does not require prior knowledge about
the given process and does not rely on a clean (i.e. containing no anomalies)
data set for its training phase. Similarly to [13], the same authors extract
both real-life event logs and synthetic event logs from processes and then
transform them before using them to train an autoencoder. The logs contain
at least three columns which are essential for identifying each trace. These
columns are ”Trace ID”, ”Timestamp” and ”Activity” which distinguish
between different activities in the process. There is also the option to add
event attributes such as a ”User” column. The main benefit of the
autoencoder is that it provides a detailed breakdown of detected anomalies,
which unlike previous approaches can identify the specific anomalous event
within a sequence. Furthermore, it is able to analyze which attribute of the
event (e.g. the user) is anomalous rather than the entire event.

One proposal that attempts to predict anomalies is by Rekik et al. [15]. It
involves a context-aware system that predicts peak load times using business
process duration (KPI) thresholds. To achieve this, it utilizes a decision tree
technique on the execution log. To achieve an accurate prediction, it is
required that the business process is monitored and logged for at least one

8

years worth of data. When applied to multiple generated time stamps, the
system correctly identified the peak load period and then reduced the
number of violated business process instances of a simulated activity. This
work, however, does not offer any options for future adaptations.

Focusing on what caused anomalies rather than trying to detect them,
Chouchan et al. [7], introduce model-agnostic explanations of process
anomalies using linguistic summaries. These anomalies are obtained from
the process event logs. The main idea involves isolating anomalous cases
and then comparing them to similar normal cases to identify the differences.
To measure the similarity, a function of edit distance and length of traces is
created. Finally, to generate the summary a truth value is provided to each
one. Additionally, there is a threshold value that needs to be reached. Only
the summaries with the highest values that are also above the threshold are
displayed. The effectiveness of the explanations is evident in the paper,
however, as the authors note, there are more aspects that need to be
explored, especially in regard to activity levels. Although this paper does
not offer any proposal on how to use these findings for further detection
purposes, it is highly relevant to our research as it also focuses on extracting
information from the logs.

3.1.2 Other existing anomaly detection mechanisms

Besides utilizing the process logs, there are also other proposals that
attempt to address the same issue. One such proposal is Lima et al. [9].
The authors present BP-IDS, which is a specification-based detection
system. Specification-based systems rely on pre-existing models of
acceptable behavior to compare observations against. In this paper,
acceptable behavior is modeled as a set of business processes. Using sensors,
information on the execution of activities is collected. Then, if any
abnormality in the received data is detected the system raises an alarm.
Abnormalities are considered as any activities that cannot be attributed to
any existing business process. The results showed that BP-IDS is capable of
detecting exploits in the software as well as in the business logic. It also
proved that it can scale up, regardless of the size and number of activities.

Another approach to anomaly detection is proposed by Sarno et al [17].

9

In this paper, an ontology-based modelling solution is put forward. The first
step in this procedure is capturing the anomalies from the event logs using
mining techniques. Then, conformance checking is applied to the anomalies
by comparing the ontology graph of standard business processes with the
ontology graph of the event logs. Finally, a method called multi-level class
association rule learning is used to exploit the collected anomalous data for
detection purposes.

The vast majority of proposals that focus on the control-flow perspective,
similar to those that have been discussed in this paper so far, originate from
the field of business process management and process mining [8]. However,
we are specifically interested in anomaly detection in user behavior. For such
contributions, a valuable example is the research of Myers et al. [11]. The
authors of this paper, conduct anomaly detection focusing on user behavior,
by collecting the process logs and constructing a model of expected behavior,
before applying a conformance checking activity. Similarly to Myers et al,
there is also the research of Alizadeh et al. [3]. In this paper, there is a focus
on detecting non-conforming user behavior. This is achieved by comparing
the expected behavior of a system with the user behavior that was produced
in order to identify deviations.

3.1.3 Log Generation Techniques

A critical part of our research involves the procedure for generating the log
files. There have been a few contributions in recent years that propose an
approach to this problem. One such example is the paper by Remy et al.
[16], which provides valuable insight into the process of log generation. The
authors describe the experiences and challenges of creating an event log for
a warehouse of a large real-world health system. This served as a useful
sample for understanding log generation in the health system domain but
also in other areas outside of it.

After reviewing these papers (Table 1), we can conclude that one efficient
method for detecting attacks is by applying machine learning techniques to
log files. However, in the context of this study, we found that there is no
suitable log file available for exploring security vulnerabilities specifically
related to user behavior in business processes. This highlights the need for

10

further research in this area to develop appropriate log generation
techniques that consider the unique characteristics of user behavior and its
impact on security.

3.2 Scientific process

Solutions in scientific workflows appear to be more adaptive in nature. In
[20, 21], Wang et al. describe an intrusion-tolerant system, where sub-tasks
are executed in parallel across multiple Virtual Machines. All tasks are
given a confidence score based on the Lagged Decision Mechanism. This
mechanism will wait a specified amount of time in order to collect data from
multiple VMs before calculating the confidence score that is shown in the
logs. The adaptive aspect stems from its ability to react by preserving
intermediate data and subsequently re-executing sub-tasks that received a
low confidence score.

The idea of rescheduling anomalous tasks during run-time is further
expanded upon in [1], while [22] introduces a workflow management
framework that can be applied to a federated cloud. This framework also
supports a dynamic rescheduling method. In contrast to the previously
discussed literature, [2] proposes a proactive adaptation strategy that
predicts future resource load. This enables it to control resource load
fluctuation, therefore increasing the accuracy of future failure detection.

11

Table 1: Summary of mentioned papers.

Reviewed Papers
Paper Type of Process Proposed Method

[1] Scientific Reschedule tasks that are
designated as high-risk

[2] Scientific Predict future resource
load

[3] Business Conformance checking
[7] Business Model-agnostic

explanations of process
anomalies using linguistic
summaries

[9] Business Attempt to attribute
activities to any pre-
existing model of
acceptable behavior

[11] Business Conformance checking
[12] Business Extract event logs and

construct detection model
using autoencoders

[13] Business Extract event logs
reaching the attribute
level and construct
detection model

[15] Business Predict peak load times
using duration thresholds

[17] Business Conformance checking
is applied to the
anomalies by comparing
the ontology graph
of standard business
processes with the
ontology graph of the
event logs

[20] Scientific Assign confidence score to
all tasks

[21] Scientific Assign confidence score
to all tasks and schedule
replicas of sub-tasks

[22] Scientific Dynamic rescheduling of
uncompleted services

12

4 Implementation

4.1 Process handling

The first step in implementing the proposed ideas that were discussed earlier
is finding a way to create, modify and deploy processes. For this purpose, the
Camunda [5] workflow engine was selected. Camunda provides many useful
tools for business processes, but for our purposes, two are the most important.
The first tool is Camunda Modeler which allowed us to interact with a BPMN
by assigning tasks, monitoring the flow, and adding new behavior to the tasks.
An example of this graphical user interface is shown in Figure 2. The second
tool is a framework provided by Camunda that can be deployed together with
a bpmn and run without any adjustments needed. This framework is built in
Java using the Spring Boot application. With these tools, introducing new
behavior becomes relatively straightforward, as we can create a new Java
class in our framework that produces the desired behavior and then add the
reference to that class in the Modeler.

Figure 2: Camunda Modeler GUI

13

4.2 Simulation

4.2.1 Legitimate behavior

As mentioned before, in this project, our focus is on user tasks, where a user
must manually claim and complete the task, resulting in slow throughput
time. However, to generate sufficiently comprehensive event logs, a significant
number of executions is required. To solve this issue, we decided to simulate
user tasks using service tasks. Essentially, the user tasks were converted
to service tasks linked to a Java class that would replicate the behavior of
a legitimate user. By applying this simulation, the process execution is now
automated and can be performed thousands of times in a few seconds without
the need for human intervention.

4.2.2 Malicious behavior

Since the user behavior was simulated, a similar approach was chosen for
the malicious behavior. The types of attacks analyzed in Section 2 have
some unique characteristics that indicate their occurrence. Therefore, we
created some additional classes in our Java project to replicate each attack.
Thresholds were set for each attack to decrease false positives.

For the DDoS attack, the deciding factors are the IP location of active
users as well as any unexpected sharp increases in incoming traffic. This is
because such traffic fluctuations, particularly from many different addresses,
could indicate someone is attempting to flood the network.

Regarding the probe attack, we considered the duration of a user’s task
and the number of calls made. If the duration is significantly shorter than
expected, it could be a hint that the user assigned to the task is not performing
it as expected and is instead quickly gathering information about the system’s
responses. This information can be used for other malicious purposes.

For the R2L attack, the most important indicators are the user’s IP
location and their authentication status. Using these metrics, we can
identify if someone is accessing the system from addresses outside the
expected network or attempting to create a new user remotely.

Finally, for the U2R attack, we assessed whether an existing user has root
privileges by checking if they are an admin. If a non-administrator user
attempts to perform an admin-level action or escalate the privileges of a
regular user account to that of an admin, it is deemed suspicious.

Additionally, we set equal weights for each attack and then randomly

14

selected one attack during execution. The data generated by the attacks are
mixed with the data from legitimate users.

4.2.3 Reusability

The simulated behavior is triggered whenever the associated task is
executed. This is achieved by adding a listener to the user tasks1, as shown
in Figure 3. These listeners are the main connection between the Java
classes and the tasks, requiring minimal adjustment to the Camunda
platform. In order to adapt the code to different processes and tools, only
the basic framework needs to change. Then, the classes that replicate the
legitimate and malicious behavior can be added as they are. Consequently,
we believe that our approach offers great reusability capabilities.

Figure 3: An example of a BPMN with simulated user tasks and execution listeners

4.3 Collected event logs

After achieving the desired simulation, the next step was logging all the
relevant execution data. In order to log information, we used the Simple
Logging Facade for Java (SLF4J) and Logback. For the user tasks, it is
important to monitor data that describe the actions taken by users and the
corresponding context. Therefore, we identified the following fields to be
included in our logs:: ”Instance ID”, ”Process ID”, ”Task Name”,
”Assignee”, ”Used IP”, ”Day”, ”Duration”, ”Number of valid”, ”Number of
invalid”, ”Number of calls”, ”Activity label” and ”Label justification”. This
is not an exhaustive list of useful metrics that can be logged, but only a
subset that was selected for this project. Adding or removing fields from the
logs is a simple procedure of generating the data and then calling the log

1The user tasks are simulated as service tasks in the BPMN.

15

function, as all the logging is done in the same class that handles user task
triggers. The data assigned to these fields is simulated and logged in the
listener class that is executed together with the user tasks. The last two
fields are the conclusion of each log entry. ”Activity label”, will be assigned
either a value of ’Normal’ or one of the different types of attacks (’DDoS’,
’Probe’, ’R2L’, ’U2R’). In order to reach a decision, all the previous data
points for the specific task are considered against a model signature for each
of the attacks. Then, the ”Label justification” will provide the reasoning
behind this labeling.

Expanding on the previous description of the log fields, they are a
combination of real process metrics and synthetic data. ”Instance ID”,
”Process ID” and ”Task Name” are extracted from the process using the
JavaDelegate class offered by Camunda. ”Assignee” is produced by
randomly selecting a name from a list using a random generator class.
”Used IP”, ”Day”, ”Duration”, ”Number of valid”, ”Number of invalid” and
”Number of calls” follow a similar randomization approach, but each with
its own restrictions. ”Used IP” follows the IPv4 standard and its network
part is restricted to addresses between 100 and 256 to create a range of
allowed addresses and a range of foreign addresses. ”Day” is obtained by
randomly indexing a list of seven entries, each for one day of the week.
”Duration” is considered in minutes and has a range of values between 0
and 1000. ”Number of valid” has a range between 0 and 100, ”Number of
invalid” between 0 and 10, and ”Number of calls” also has the same range
between 0 and 10. The ”Activity label” and the ”Label justification” are
produced last after considering the previous data that have been generated.
Their possible values will be discussed in the next section. Finally, we
executed the entire process multiple times to produce a sufficient number of
entries and then wrote all logged data to an event log file named
’process.log’, which was saved in the directory of the Java project.

16

Table 2: The log fields and their descriptions.

Log fields
Field Description

Instance ID The random ID that was
generated for the process
instance

Process ID The name that was given to the
process

Task Name The name of the executed user
task

Assignee The name of the user that
executed the user task

Used IP The IP address of the user that
executed the user task

Day The day of the week that the user
task was executed

Duration The number of minutes it took
for the user to complete the user
task

Number of valid The number of valid calls made
by the user

Number of invalid The number of invalid calls made
by the user

Number of calls The total number of calls made
by the user

Activity label The type of activity that was
indicated

Label justification The reason behind the decision
on the type of activity

5 Results

When the Java project is running, the BPMN file that is included in the
directory is executed and the ’process.log’ file is created. This file is considered
the process event log file. It contains lines of log entries along with their label

17

descriptions. The number of lines in the file is decided by the value that we
set in the loop that will execute the process. A sample from an event log file
that was generated by executing an insurance claim procedure (Figure 1) can
be seen in Figure 4 below. In this example, the number of executions was set
to 50,000.

Figure 4: A sample from process.log

All log files generated by our program will have the same structure as the
insurance claim log file of Figure 4. Using the insurance claim process
(Figure 1) as our example, it comprises of 5 user tasks, resulting in 6 line
entries for each completed process execution when combined with the label
descriptions. Considering a loop of 50,000 iterations, there are 250,000
entries each of which describes a task execution using the fields outlined in
Table 2. With this information, we can assess the frequency of each
simulated attack and the factors influencing it.

18

In order to obtain more accurate results, we ran the program 5 times and
averaged the occurrences for each of the attacks. We considered a total of
250,000 instances for further evaluation. In the case of the DDoS attack, the
log files contained 22,105.8 instances (≈8.84%). Among these, 15,256
(≈6.1%) instances were due to ”IP addresses coming from the outside
authorized network” and 6,849.8 (≈2.74%) instances were caused by a
”Sharp increase in network traffic”. Probe attacks occurred on average
19,666.8 times (≈7.87%). 3,768.2 (≈1.51%) were attributed to a ”Very short
connection duration”, 5,229.8 (≈2.09%) to ”Too many calls” and 10,668.8
(≈4.27%) to ”Too many invalid calls”. The number of R2L attacks was
42,594.8 (≈17.04%). This included 14,302 (≈5.72%) for ”Unusual time of
activity”, 23,773.8 (≈9.51%) for ”Unusual user location” and 4,519
(≈1.81%) for an ”Attempt to create new unauthorized user”. Finally, U2R
attacks occurred an average of 19,869.2 times (≈7.95%), of which, 10,444.2
(≈4.18%) were due to ”User does not have admin authentication”, while the
other 9,425 (≈3.77%) due to ”Suspicious privilege escalation”. Below are
example instances of each of the attacks in the log files. The relevant data
for each Figure is highlighted.

Figure 5: An instance of a DDoS attack

Figure 6: An instance of a Probe attack

Figure 7: An instance of a R2L attack

19

Figure 8: An instance of a U2R attack

Figure 9: Summary of attack occurrences in the log files

6 Future Work

The produced log files can be improved in the future in multiple ways.
Firstly, the authenticity of the log fields that were randomly generated can
be increased to better reflect a real-life example. This may involve
incorporating a wider range of candidate users, more accurate IP addresses,
and more flexible task duration values. Secondly, the log file can be
extended to include more fields that offer new insight into the details of the
process execution. This way, thereby enhancing the accuracy of the activity
labels’ decisions. Thirdly, the current log files are restricted to the four types
of attacks that were discussed and then to a few possible cases for each of
them. Therefore, in the future new types of attacks can be introduced as
well as new possible ways for these attacks to manifest. This will increase
the coverage of the log files and will improve their descriptive capabilities.

As for the Java application, some contributions can benefit the research.
The current results are mostly based on the insurance claim process of
Figure 1. Therefore, it will be useful to gather more processes with varying

20

complexity and deploy them using our framework to enhance the external
validity of the logs. For this purpose, we can generate random BPMN
models using tools such as PLG2 [4] and then include the generated file in
the resources of our project in the same way as the insurance claim process
was used. Additionally, the Java code can be refactored in order to have a
better file and directory structure as well as more abstraction to our
implementation.

This project is a component of a larger project in the Information
Systems group of the University of Groningen. Parallel to this research, log
files were also generated for the service tasks of a business process, following
similar security principles. Therefore, the next step can be merging the
results of these two projects into one log file that covers all possible tasks.

Finally, the complete log files for both user tasks and service tasks can be
used for security and detection processes using machine learning. Specifically,
machine learning algorithms can be applied to the log files to construct a
model that will be able to detect incoming attacks or intrusions. The detection
rate can either be periodical or ideally in real-time. This model can then be
used by businesses to protect their processes against malicious individuals or
groups.

21

7 Conclusion

The objective of this project was to simulate user tasks in business processes
accurately, incorporating various types of attacks. The motivation behind
these simulations was to provide a clear event description in the event of
different attacks, enabling the use of the generated data for detection
purposes through machine learning.

The generated log of the project shows effective recognition and analysis
of different types of attacks, closely resembling real process execution
results. Additionally, the automation of user tasks through simulation has
provided the opportunity to generate vast amounts of log entries. Therefore,
the accuracy of a future machine learning model that will be trained on
these files increases.

While the results are promising, there is room for improvement, as the
current simulation is relatively basic. Since it is not in the scope of this
project, the authenticity of the data produced by the tasks for business
purposes has not been extensively explored. Furthermore, the signatures
and characteristics of the attacks that were covered are often much more
complex and difficult to identify in the real world than were portrayed in
these log files.

Despite these limitations, the findings of this project, in their current
form, are already valuable for research purposes and hold promising
potential for achieving satisfactory detection rates with machine-learning
models. However, further research is necessary due to the increasing
complexity and evolving nature of the attacks targeted by the project.

22

References

[1] Farzaneh Abazari, Morteza Analoui, Hassan Takabi, and Song Fu.
Mows: Multi-objective workflow scheduling in cloud computing based on
heuristic algorithm. Simulation Modelling Practice and Theory, 93:119–
132, 2019. Modeling and Simulation of Cloud Computing and Big Data.

[2] Mani Alaei, Reihaneh Khorsand, and Mohammadreza Ramezanpour.
An adaptive fault detector strategy for scientific workflow scheduling
based on improved differential evolution algorithm in cloud. Applied Soft
Computing, 99:106895, 2021.

[3] Mahdi Alizadeh, Xixi Lu, Dirk Fahland, Nicola Zannone, and Wil MP
van der Aalst. Linking data and process perspectives for conformance
analysis. Computers & Security, 73:172–193, 2018.

[4] Andrea Burattin. Plg2: Multiperspective process randomization with
online and offline simulations. In BPM (Demos), pages 1–6. Citeseer,
2016.

[5] Camunda. Camunda BPM. https://camunda.com/. Accessed: 2023-07-
17, 2023. Version 7.19.0.

[6] Zouhair Chiba, Noureddine Abghour, Khalid Moussaid, Amina El Omri,
and Mohamed Rida. A survey of intrusion detection systems for
cloud computing environment. In 2016 International Conference on
Engineering & MIS (ICEMIS), pages 1–13, 2016.

[7] Sudhanshu Chouhan, Anna Wilbik, and Remco Dijkman. Explanation
of anomalies in business process event logs with linguistic summaries. In
2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pages 1–7, 2022.

[8] Jonghyeon Ko and Marco Comuzzi. A systematic review of anomaly
detection for business process event logs. Business & Information Systems
Engineering, pages 1–22, 2023.

[9] João Lima, Filipe Apolinário, Nelson Escravana, and Carlos Ribeiro. Bp-
ids: Using business process specification to leverage intrusion detection
in critical infrastructures. In 2020 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), pages 7–12,
2020.

23

https://camunda.com/

[10] Business Process Model. Notation (bpmn) version 2.0. OMG
Specification, Object Management Group, 19:52–60, 2011.

[11] David Myers, Suriadi Suriadi, Kenneth Radke, and Ernest Foo. Anomaly
detection for industrial control systems using process mining. Computers
& Security, 78:103–125, 2018.

[12] Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühlhäuser.
Analyzing business process anomalies using autoencoders. Mach Learn,
107:1875–1893, 2018.

[13] Timo Nolle, Alexander Seeliger, and Max Mühlhäuser. Binet:
Multivariate business process anomaly detection using deep learning.
In Business Process Management, pages 271–287, Cham, 2018. Springer
International Publishing.

[14] Swati Paliwal and Ravindra Gupta. Denial-of-service, probing & remote
to user (r2l) attack detection using genetic algorithm. International
Journal of Computer Applications, 60(19):57–62, 2012.

[15] Mouna Rekik, Khouloud Boukadi, and Hanêne Ben-Abdallah. Towards
an autonomic outsourcing to the cloud decision. In 2016 IEEE 25th
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), pages 20–25, 2016.

[16] Simon Remy, Luise Pufahl, Jan Philipp Sachs, Erwin Böttinger, and
Mathias Weske. Event log generation in a health system: a case study.
In Business Process Management: 18th International Conference, BPM
2020, Seville, Spain, September 13–18, 2020, Proceedings 18, pages 505–
522. Springer, 2020.

[17] Riyanarto Sarno and Fernandes P. Sinaga. Business process anomaly
detection using ontology-based process modelling and multi-level class
association rule learning. In 2015 International Conference on Computer,
Control, Informatics and its Applications (IC3INA), pages 12–17, 2015.

[18] Vitaly Shmatikov and Ming-Hsiu Wang. Security against probe-response
attacks incollaborative intrusion detection. Association for Computing
Machinery, pages 129–136, 08 2007.

24

[19] Nikhil Tripathi and Babu Mehtre. Dos and ddos attacks: Impact, analysis
and countermeasures. In 2nd International Conference on Advanced
Computing, Networking and Security (ADCONS ’13), pages 1–6, 12 2013.

[20] Yawen Wang, Yunfei Guo, Zehua Guo, Wenyan Liu, and Chao Yang.
Protecting scientific workflows in clouds with an intrusion tolerant
system. IET Information Security, 14(2):157–165, 2020.

[21] Yawen Wang, Yunfei Guo, Wenbo Wang, Hao Liang, and Shumin
Huo. Inhibitor: An intrusion tolerant scheduling algorithm in cloud-
based scientific workflow system. Future Generation Computer Systems,
114:272–284, 2021.

[22] Zhenyu Wen, Rawaa Qasha, Zequn Li, Rajiv Ranjan, Paul Watson,
and Alexander Romanovsky. Dynamically partitioning workflow over
federated clouds for optimising the monetary cost and handling run-time
failures. IEEE Transactions on Cloud Computing, 8(4):1093–1107, 2020.

25

	Introduction
	Background
	The business process
	Different Types of Attacks
	Event logs

	State of the Art
	Business process
	Log utilization
	Other existing anomaly detection mechanisms
	Log Generation Techniques

	Scientific process

	Implementation
	Process handling
	Simulation
	Legitimate behavior
	Malicious behavior
	Reusability

	Collected event logs

	Results
	Future Work
	Conclusion

