
University of Groningen

Clustered Travelling Salesman Problem

Elucidating the Effects of Clustering on the Performance
of Non-Deterministic Polynomial Problems

Luke McNaughton (s3595447)

July 21, 2023

Bachelor’s Thesis

To fulfill the requirements for the degree of Bachelor of Science
in Computer Science at University of Groningen

under the supervision of:
Prof. K. Bunte (University of Groningen)

and
Prof. F.F. Mohsen (University of Groningen)

Contents

Page

Acknowledgements 4

Abstract 5

Symbols 6

1 Introduction 7

1.1 Background Information . 9

1.1.1 Travelling Salesman Heuristics . 9

1.1.2 Clustering . 10

2 Methods 13

2.1 Clustering Functions . 13

2.1.1 Hopkins Statistic . 13

2.1.2 Spectral Clustering . 14

2.1.3 DBSCAN Clustering . 15

2.2 TSP Functions . 15

2.2.1 Held-Karp Lower Bound . 15

2.2.2 Distance Functions . 16

2.2.3 Lin-Kernighan Heuristic . 17

2.2.4 Nearest Neighbour Heuristic . 18

2.2.5 Single Linkage Clustering . 19

2.2.6 Single Linkage Clustering Optimized wtih Localized Lin-Kernighan . . . 19

3 Experiments 21

4 Discussion & Results 25

4.1 Experiment Results . 25

4.1.1 Quality of Solutions . 25

4.1.2 Computational Efficiency . 27

4.1.3 Clustering Tendency . 28

4.1.4 Number of Clusters vs Size of Clusters 30

4.1.5 Varying Cluster Density . 32

4.1.6 Isotropic vs Elongated Clusters . 32

2

CONTENTS 3

5 Conclusion & Future work 34
5.1 Conclusion . 34
5.2 Future Work . 35

Bibliography 36

4

Acknowledgments

I’d like to acknowledge and give credit to the guidance of my supervisor, Professor K. Bunte,
for passing down her rich wisdom in the areas of study for this paper was written, as well as
providing extremely valuable criticism, support, and motivation which was vital for completing
this daunting task during a fairly difficult time. I’d also like to acknowledge my parents, siblings
and my girlfriend for their unconditional mental and emotional support throughout the tenure
of this project.

5

Abstract

The Travelling Salesman Problem is a categorically NP-Hard problem with many proposed
solutions for Optimization. The use of Approximation is one such way of increasing the speed
of the process at the cost of retrieving, at times, sub-optimal results. We want to see what the
effects are with the introduction of Clustering to such a process. For this project, we would like
to test what effect varying levels of Clusteredness according to multiple Clustering methods
have on the Travelling Salesman Problem relative to its derivative, the Clustered Traveling
Salesman Problem. We will see if the establishment of well-formed clusters has any particular
effect on search performance.

Keywords: Travelling Salesman, Clustering, Clustering Tendency, P vs. NP, Optimization,
Clustered Travelling Salesman

6

Symbols

x ∈ R row data vector
O Big O notation, represents the upper bound of the time

complexity of an algorithm
X ∈ Rn×d Dataset of n data points, each with d features∑n

i Summation, denoting the addition of a sequence of num-
bers, from i to n

{C1, C2, . . . , Ck} Set of elements
T
⋃
{(pi, pj), (pi+1, pj+1)} Union of two sets, which represents all the elements that

are in either set
T \ {S1, S2} Removal of elements from a set
argminpj∈P\p1,...,pi f(pi, pj) Argmin, which finds the argument of the minimum value

of a function

Chapter 1

Introduction

There are many famous problems in Computing which can be categorised as computationally
hard, with The Travelling Salesman Problem (TSP) being one of the more well known. There
are various algorithms and methodologies which may be applied to optimise problems like these
to come about more efficient solutions. The purpose of the Travelling Salesman Problem is,
simply put, to find the shortest path throughout a given set of points and known distances
where each point is visited only once [1]. One widely adopted method for optimising this
problem is with the use of Clustering, which then spawns a new variant of the problem known
as the Clustered Travelling Salesman Problem (CTSP)[2]. In this variant, which was originally
proposed by Chisman in 1975, the cities are grouped into clusters, and the cities are visited
contiguously within the cluster before moving onto the next cluster (Chisman, 1975).

We want to evaluate the effect of varying Clusters of different shapes, sizes and densi-
ties would have on the search performance on the CTSP. This project would undertake this
exploration by having an array of datasets with varying Clustering Types and Tendencies and
seeing the effects of the CTSP solution relative to TSP algorithms as the Clustering Tendency
of the environments increase. Our work builds upon the findings of Y. Lu, J.-K. Hao, and Q.
Wu[2], who proposed a clustering approach to solve the TSP for instances with clusters. Their
approach involves partitioning the cities into clusters and then finding a tour that visits each
cluster in turn. We aim to extend their work by investigating the performance of these heuris-
tics on their clustering approach. By conducting these experiments, we hope to gain a deeper
understanding of the Clustered TSP and identify effective heuristic approaches for solving this
challenging variant of the TSP.

To evaluate the performance of these heuristics on the Clustered TSP, we will conduct
a series of experiments on benchmark instances from the literature. We will measure the
quality of the solutions obtained by each heuristic by computing the ratio of the solution
cost to the optimal cost found using another method known as the Held-Karp Lower bound.
Additionally, we may also compare the computational time required by each heuristic to obtain
a solution. We hypothesize that the performance of these heuristics on the clustered variant of
the problem will be influenced by the number of clusters and the size of the clusters. To assess
the effectiveness of the proposed algorithms, we will compare their performance with that of the
standard TSP algorithm and the Clustered Travelling Salesman Algorithm proposed by Lu’s
team[2]. Our study will also investigate the possible effects of different clustering tendencies on
the performance of the Clustered Travelling Salesman Algorithm.

7

8 CHAPTER 1. INTRODUCTION

The analysis of these algorithms on datasets with varying clustering states will provide
insights into the factors that affect the performance of the algorithms when applied to clustered
TSP instances. The comparison of the results obtained by these algorithms with those obtained
by the TSP and Clustered TSP algorithms will help to identify the most effective approach for
solving the clustered TSP. Finally, the demonstration of different clusters with varying shapes,
sizes, and densities will provide a better understanding of the impact of these factors on the
performance of the Clustered Travelling Salesman Algorithm.

Overall, the proposed project will contribute to the existing body of knowledge on the
clustered TSP and provide valuable insights into the performance of different TSP algorithms
on clustered instances. There are several avenues for future work that can build upon our
findings. One promising direction is the exploration of parallelization techniques to improve
the performance of the algorithms by solving each cluster in parallel, thus drastically improving
the solution time for large scale instances.

CHAPTER 1. INTRODUCTION 9

1.1 Background Information

1.1.1 Travelling Salesman Heuristics

Nearest Neighbour Algorithm

The Nearest Neighbor heuristic is a well-known algorithm for solving the Traveling Salesman
Problem (TSP) that dates back to the 1950s [3]. It is a simple and intuitive algorithm that
starts from an arbitrary city and iteratively adds the nearest unvisited city to the tour until
all cities have been visited. In the proposed project, the Nearest Neighbor heuristic is the first
algorithm used to solve the Clustered Traveling Salesman Problem (CTSP) on the generated
datasets. This is because the Nearest Neighbor heuristic is a widely adopted algorithm for the
TSP, and it provides a benchmark for evaluating the performance of other heuristics.

The Nearest Neighbor heuristic has several advantages, including its simplicity, speed, and
ability to find good solutions for relatively small instances. However, it also has several short-
comings, including its tendency to produce suboptimal solutions and the sensitivity to the
starting position. The heuristic provides a useful benchmark for evaluating the performance
of other heuristics, including the Lin-Kernighan heuristic which is the other Algorithm that
will be used in this project. By comparing the performance of other heuristics to that of the
Nearest Neighbour, we can determine whether they can provide significant improvements in
solution quality and computational efficiency.

The Nearest Neighbor algorithm has a computational complexity of O(n2̂), where n is the
number of nodes in the TSP instance. The algorithm works by selecting the nearest unvisited
node at each step, which requires scanning all the remaining nodes to find the nearest one.
Therefore, the overall time complexity of the algorithm is dominated by the pairwise distance
computations between nodes, which require O(n2̂) operations [4].

Lin-Kernighan Heuristic

The Lin-Kernighan algorithm is another well-known heuristic for solving the Traveling Salesman
Problem (TSP) that was first introduced by Shen Lin and Brian Kernighan in 1973 [5]. The
algorithm works by iteratively improving an initial tour by exchanging a sequence of edges
in the tour with an alternative sequence of edges. This process is repeated until no further
improvements can be made.

The Lin-Kernighan algorithm consists of two primary steps:
• Identify a sequence of ”t” edges to be removed from the tour.
• Replace the removed edges with a new sequence of ”t” edges to form an improved tour.
The algorithm iteratively applies these two steps to obtain a locally optimal tour. The

Lin-Kernighan algorithm is considered to be one of the most effective heuristics for solving the
TSP and has been the basis for several more advanced TSP heuristics [4] .

One advantage of the Lin-Kernighan algorithm over other TSP heuristics is its ability to
find high-quality solutions for relatively large TSP instances. The algorithm’s effectiveness can
be attributed to its ability to explore a wider range of solution space compared to simpler
heuristics like the Nearest Neighbor algorithm [6].

The Lin-Kernighan algorithm’s computational complexity is typically observed to grow at a
rate between O(n2) and O(n3), where n is the number of nodes in the TSP instance [4]. While

10 CHAPTER 1. INTRODUCTION

this makes the algorithm more computationally expensive compared to simpler heuristics like
the Nearest Neighbor algorithm, it is still more efficient compared to exact algorithms like, say,
dynamic programming, which have exponential running times.

1.1.2 Clustering

Clustering is a widely adopted method for optimizing the Traveling Salesman Problem (TSP)
by grouping the cities into clusters, thus forming a new variant of the problem known as the
Clustered Traveling Salesman Problem (CTSP) [2]. In the CTSP, the cities are visited contigu-
ously within the cluster before moving onto the next cluster. This approach can result in more
efficient solutions, as it divides the large problem into multiple smaller problems to be handled
at a time. This division reduces the total number of possible routes that need to be considered
thus an overall improvement [7].

The proposed project aims to evaluate the performance of different TSP algorithms on
clustered instances with varying clustering tendencies. Specifically, the project aims to explore
the effect of varying clusters of different shapes, sizes, and densities on the search performance
of the CTSP. This exploration is conducted by using two clustering techniques:

• Spectral Clustering
• Density-Based Clustering

The performance of TSP algorithms will be compared as the clustering tendency of the envi-
ronments increases.

The clustering of cities can have a significant impact on the performance of TSP algorithms.
For instance, the size and shape of the clusters can affect the total number of possible routes
and, consequently, the time required to search for an optimal solution. Similarly, the density
of the clusters can affect the efficiency of algorithms that rely on the geometric structure of the
problem, such as the Nearest Neighbor algorithm.

Hopkins Statistic

The Hopkins statistic was first introduced by Hopkins in 1954 to measure the clustering ten-
dency of a dataset. It is widely used in cluster analysis to determine the degree of clustering
or randomness in a given dataset. The statistic measures the difference between the actual
distribution of distances between data points and a uniformly distributed random sample of
points. If the distribution of distances between data points is significantly different from that
of the random sample, then the dataset is said to have a clustering tendency.

In the proposed project, the Hopkins statistic will be used to evaluate the clustering ten-
dency of the datasets generated using spectral and density-based clustering techniques [8]. By
measuring the degree of clustering or randomness in the datasets, we will use this as the gauge
for which we’ll group or separate the different datasets to be compared.

CHAPTER 1. INTRODUCTION 11

Spectral Clustering

Spectral clustering is a popular unsupervised clustering algorithm that groups together points
in a dataset based on the similarity of their spectral embeddings. Developed by Ng, Jordan,
and Weiss in 2002, spectral clustering has been widely used in various domains, including image
segmentation, social network analysis, and bioinformatics [9].

The goal of spectral clustering is to partition a dataset into clusters, where each cluster
is defined as a set of points that are similar to each other and dissimilar to points in other
clusters. The algorithm operates by defining two key parameters: the number of clusters,
referred to as n clusters, and the method of computing the spectral embeddings, which is
typically accomplished by constructing a graph from the data and computing the Laplacian
matrix.

Spectral clustering works by first constructing a graph from the dataset, where each point
is represented as a node in the graph, and the edges between nodes are weighted based on the
similarity of the points. The Laplacian matrix is then computed from the graph that serves as
a measure of the smoothness of the graph. The eigenvectors of the Laplacian matrix are then
used to embed the data into a lower-dimensional space [10], where the points are then clustered
using a traditional clustering algorithm, in the case of my implementation, RBF.

The resulting clusters may be of arbitrary shape, and spectral clustering is particularly
effective at identifying clusters that are not linearly separable in the original space. Additionally,
spectral clustering has been shown to perform well on datasets with varying density and high
dimensionality (Luxburg, 2007).

Density-Based Clustering

Density-based spatial clustering of applications with noise, known as DBSCAN, is a popular
unsupervised clustering algorithm that was introduced by Ester et al. in 1996. The algo-
rithm groups together points in a dataset based on their proximity to each other, and it has
been widely used in various domains, including image segmentation, anomaly detection, and
customer segmentation [11].

The goal of DBSCAN is to partition a dataset, where each cluster of points is defined as a set
of points that are densely packed together and at the same time separated from other densely
packed points by regions that are sparsely populated. The algorithm operates by defining three
key parameters:

• the minimum number of points required to form a dense region, referred to as min samples
• the maximum distance that two points can be from each other to be considered part of
the same cluster, referred to as epochs, or eps.

• Points that are not part of any cluster are labeled as noise.
DBSCAN selects a point in the dataset that is unassigned to a cluster or marked as noise,

then assesses the number of neighboring points that exceed a specified minimum number of
points required to form a dense region with the minimum numbers of neighbours within the
set epochs distance of the selected point. If this minimum number of neighboring points is
met, the point is designated as a core point and added to a new cluster. Points within epochs
distance of the core point are then also included in the cluster. Border points that have fewer
than the minimum required neighboring points are added to the cluster of a nearby core point.
Any remaining unassigned points are labeled as noise. The process continues until all points

12 CHAPTER 1. INTRODUCTION

have been assigned to a cluster or marked as noise. The resulting clusters may be of arbitrary
shape, and there may be clusters of varying density [11]

Clustered Traveling Salesman Problem and the Single Linkage Clustering Method

In the recent paper by Y. Lu and co. [2], a novel two-stage approach was proposed to solve
the CTSP. The first stage involved constructing a TSP tour within each cluster using heuristic
algorithms, one of them being the Nearest Neighbor heuristic. The second stage, referred to as
”Inter-cluster tour merging”, dealt with the process of linking the individual cluster tours into
a single tour; A key method proposed for this second stage was the Single Linkage Clustering
(SLC) method. In the context of CTSP, SLC is used to iteratively merge intra-cluster tours
based on their nearest inter-tour points. This guarantees the minimum possible additional
distance when merging two tours, hence optimizing the overall route.

The SLC method is both powerful and flexible in its application to the CTSP, helping to
optimize inter-cluster tour merging with computational efficiency. However, it is also important
to note that the effectiveness of the SLC can be influenced by the nature of the data set and
the distribution of clusters, as well as has, to a certain extent the same limitation as that of
Nearest Neighbour, in being that it yields faster results at the expense of slightly sub-optimal
results. Despite potential limitations, SLC remains a valuable tool in the CTSP-solving toolkit,
offering an innovative approach for inter-cluster tour merging.

Chapter 2

Methods

2.1 Clustering Functions

2.1.1 Hopkins Statistic

The hopkinsStatistic function takes an input Dataframe x and returns the Hopkins statistic.
This statistic is used to assess the clustering tendency of the data. If the value of H is closer
to 1, it indicates that the dataset has a high clustering tendency and is well clustered. On the
other hand, if the value of H is closer to 0.5, it indicates that the dataset does not have a clear
clustering tendency and is poorly clustered. If H is closer to 0, it suggests that the dataset
is uniformly distributed, and clustering may not be an appropriate technique to analyze the
data. This methodology is in reference to that of Lawson and Jurs [12] in conjunction with an
implementation found of this found on StackOverFlow.

Initially, a sample size of 5% of X’s rows is chosen. Two sets of points are generated: a
uniform random sample and a random sample from X. Using scikit-learn’s NearestNeighbors
class, nearest neighbor distances are computed for both samples. The distance to the first
(nearest) neighbor is retained for the uniform random sample, while the distance to the second
nearest neighbor is retained for the random sample from X.

The Hopkins statistic is then calculated as the ratio of the sum of distances to the nearest
neighbors for the uniform random sample over the sum of distances to the nearest neighbors
for the random sample from X. This measure helps determine the degree of clustering in the
data, with a higher Hopkins statistic indicating a stronger clustering tendency.

Given a dataset X ∈ Rn×d:

H(X) =

∑m
i=1 ui∑m

i=1(ui + wi)
(2.1)

where ui are the nearest neighbor distances for each point in a random uniform sample Xu

of size m, and wi are the nearest neighbor distances for each point in a random sample Xr of
size m from the dataset X.

13

14 CHAPTER 2. METHODS

Algorithm 1 Simplified pseudocode for calculating the Hopkins statistic

1: function CalculateHopkins(X) returns a value H
2: X ← X.values
3: X sample← X[random indices]
4: neigh← NearestNeighbors(n neighbors = p)
5: nbrs← neigh.fit(X)
6: u distances, u indices← K-Neighbours from Uniform Samples
7: u distances← u distances[:, 0]
8: w distances, w indices← nbrs.kneighbors(X samples)
9: w distances← w distances[:, 1]
10: u sum← sum(u distances)
11: w sum← sum(w distances)
12: H ← u sum

u sum+w sum

13: return H
14: end function

2.1.2 Spectral Clustering

Spectral Clustering can be defined as: Given a set of points X ∈ Rn×d, number of clusters
n clusters, and γ:

S(X,n clusters, γ) = KMeans(n clusters).f it(ϕ(L, n clusters)) = {C1, C2, . . . , Ck} (2.2)

where ϕ(L, n clusters) denotes the matrix containing the first n clusters eigenvectors of the
Laplacian matrix L, and L = D−A. The adjacency matrix A is computed as Aij = exp(−γ||xi−
xj||2), and D is a diagonal matrix with Dii =

∑
j Aij.

Algorithm 2 Pseudocode for the Spectral Clustering algorithm

1: function spectralClustering(locations, n clusters, γ)
2: X ← extract coordinates(locations)
3: distances← calculate pairwise distances(X)
4: γ ← compute gamma(distances)
5: spectral← spectral clustering(n clusters, γ)
6: cluster labels← spectral.fit predict(X)
7: clusters← initialize clusters()
8: for i, label in enumerate(cluster labels) do
9: x, y ← get coordinates(X, i)
10: add point to cluster(clusters, label, x, y)
11: end for
12: return clusters, cluster labels
13: end function

Despite its effectiveness, spectral clustering has several limitations, including its sensitivity
to the choice of the number of clusters and the method of computing the spectral embeddings.
The choice of these parameters may require some domain expertise to determine appropriate

CHAPTER 2. METHODS 15

values. Additionally, spectral clustering may be computationally expensive on large datasets,
and the resulting clusters may be highly dependent on the quality of the graph construction.

2.1.3 DBSCAN Clustering

Given a set of pointsX ∈ Rn×d, distance threshold e, and minimum number of pointsmin samples:

D(X, e,min samples) = DBscan(X, d,N, e,minsamples) = {C1, C2, . . . , Ck} (2.3)

where d denotes d(xi, xj), which computes the distance between points xi and xj in X, a
neighborhood function N is such that N(xi) = xj ∈ X | d(xi, xj) ≤ e, which returns the set of
points within the distance threshold e from the point xi, a core point as a point xi ∈ X with at
least minsamples points in its neighborhood, i.e., |N(xi)| ≥ minsamples, and {C1, C2, . . . , Ck}
are the clusters formed by connecting core points and their reachable neighbors, and a core
point is defined as a point with at least min samples neighbors within a distance of e.

Algorithm 3 DBSCAN clustering algorithm

1: function dbScanCluster(locations, n clusters, targetHop, n, nPerCluster, gauss, e)

2: X ← np.array(locations)

3: distances← pairwise distances(X)

4: γ ← 1
2·(np.median(distances))2

5: dbscan← DBSCAN(eps=e, min samples=5).fit(X)

6: cluster labels← dbscan.labels

7: for i, label in enumerate(cluster labels) do

8: x, y ← X[i]

9: clusters[label].append((x, y))

10: end for

11: return clusters, cluster labels

12: end function

DBSCAN has several advantages over other clustering algorithms, including its ability to
identify arbitrary shaped clusters and its resistance to noise. However, the choice of epochs and
min samples can greatly affect the resulting clusters and may require some domain expertise to
determine appropriate values. Additionally, DBSCAN may struggle with datasets of varying
density or datasets with high dimensionality.

2.2 TSP Functions

2.2.1 Held-Karp Lower Bound

The held karp lower bound function aims to calculate a lower bound on the total distance
for the Traveling Salesman Problem (TSP) using the Held-Karp algorithm. The TSP is a

16 CHAPTER 2. METHODS

well-known combinatorial optimization problem, where given a list of cities and their pairwise
distances, the goal is to find the shortest possible tour that visits each city exactly once and
returns to the starting city. The Held-Karp algorithm computes a lower bound on the optimal
tour length, which can be used to prune the search space when searching for the optimal
solution.

The input parameter points is a list of 2D coordinates representing the locations of the
cities in the TSP. The function begins by calculating the pairwise distances between all cities,
resulting in an n x n distance matrix, where n is the number of cities.

The minimum spanning tree (MST) is then calculated from the distance matrix using the
minimum spanning tree function from the scipy.sparse.csgraph module. The MST is a tree that
connects all vertices in a graph such that the sum of the edge weights is minimized. The sum
of the edge weights in the MST provides a lower bound for the optimal TSP tour length since
the optimal tour must also connect all cities.

To refine the lower bound further, the function finds the minimum distance from the starting
city to any other city (min start edge) and the minimum distance from any other city back to
the starting city (min end edge). The lower bound is then calculated by summing the MST’s
total weight, min start edge, and min end edge.

Given a set of points P = {p1, p2, . . . , pn}:
HK(P) = MST(P) + min

j>1
(d(p1, pj)) + min

j>1
(d(pj, p1)) (2.4)

Where MST(P) is the sum of edge weights of the minimum spanning tree of P , and d(pi, pj)
denotes the Euclidean distance between points pi and pj.

Algorithm 4 Held-Karp Lower Bound Function

1: function held karp lower bound(points)

2: n← len(points)

3: dist← Euclidean distance matrix for points

4: mst← sum of edge weights of minimum spanning tree of dist

5: min start edge← np.min(dist[0, 1 :])

6: min end edge← np.min(dist[1 :, 0])

7: lower bound← mst+min start edge+min end edge

8: return lower bound

9: end function

2.2.2 Distance Functions

Euclidean Distance between points defined as:

D(p1, p2) =
√

(p1x − p2x)2 + (p1y − p2y)2 (2.5)

Tour Distance throughout all points can be defined as:

TotalDistance(tour) =

len(tour)−1∑
i=0

distance(touri, touri−1) (2.6)

CHAPTER 2. METHODS 17

2.2.3 Lin-Kernighan Heuristic

The lin kernighan tsp function is an implementation of the Lin-Kernighan heuristic for solving
the TSP. The Lin-Kernighan heuristic is a local search algorithm that attempts to improve an
initial tour iteratively by swapping pairs of edges to reduce the tour length. The algorithm has
been shown to produce high-quality solutions for the TSP in practice.

Given a set of points P = p1, p2, . . . , pn, the Lin-Kernighan algorithm constructs a tour
by applying the 2-opt local search algorithm to a random initial tour. The 2-opt algorithm
iteratively swaps two edges in the tour if the resulting tour has a shorter total distance. The
LK algorithm can be represented as follows:

1. Generate a random initial tour T .
2. Perform 2-opt swaps on T until no further improvement is possible.
3. If an improved tour is found, go to step 2; otherwise, return the best tour found.
The 2-opt swap operation is represented by the following formula:

LK(p) = T ′ = T \ {(pi, pi+1), (pj, pj+1)}
⋃
{(pi, pj), (pi+1, pj+1)} (2.7)

Algorithm 5 Lin-Kernighan heuristic algorithm

1: function LinKernighan(points)

2: function twoOptSwap(tour, i, k)

3: return tour[: i] + reversed(tour[i : k + 1]) + tour[k + 1 :]

4: end function

5: n← len(points)

6: indexTour ← list(range(n))

7: shuffle(indexTour)

8: improvement← True

9: while improvement do

10: improvement← False

11: for i in range(1, n− 1) do

12: for k in range(i+ 1, n) do

13: newTour ← twoOptSwap(indexTour, i, k)

14: if tourDistance(newTour) < tourDistance(indexTour) then

15: indexTour ← newTour

16: improvement← True

17: end if

18: end for

19: end for

20: end while

21: pointTour ← [points[i] for i in indexTour]

22: return pointTour, tourDistance(pointTour)

23: end function

18 CHAPTER 2. METHODS

2.2.4 Nearest Neighbour Heuristic

This Nearest Neighbour function takes the input parameter points is a list of 2D coordinates
representing the locations of the cities in the TSP. The function initializes an empty set of
unvisited cities and a list of visited cities with the starting city at index 0. The algorithm
iteratively chooses the nearest unvisited city to the current city, updates the total distance,
and moves the chosen city from the unvisited set to the visited list. Once all cities have been
visited, the algorithm returns to the starting city and the final tour and its total distance are
returned.

Given a set of points P = p1, p2, . . . , pn, the Nearest Neighbor algorithm constructs a tour
by iteratively selecting the nearest unvisited point from the current point, starting from p1.
The algorithm can be represented by the following formula:

NN(p) = T =
n−1⋃
i=1

(pi, arg min
pj∈P\p1,...,pi

d(pi, pj)) (2.8)

where T is the final tour, and d(pi, pj) denotes the Euclidean distance between points pi
and pj.

Algorithm 6 Nearest Neighbour algorithm

1: function NearestNeighbour(points)

2: n← len(points)

3: unvisited← set(range(1, n))

4: visited← [points[0]]

5: totalDistance← 0

6: while unvisited do

7: minDistance←∞
8: for i in unvisited do

9: distance← Distance between points[currentIdx] and points[i]

10: if distance < minDistance then

11: minDistance← distance

12: nextIdx← i

13: end if

14: end for

15: totalDistance← totalDistance+minDistance

16: currentIdx← nextIdx

17: end while

18: totalDistance← totalDistance+Distance between points[0] and points[currentIdx]

19: visited.append(points[0])

20: return visited, totalDistance

21: end function

CHAPTER 2. METHODS 19

2.2.5 Single Linkage Clustering

Given a set of clusters C = {c1, c2, . . . , cm} where each cluster ci is a sequence of points from
the set P = {p1, p2, . . . , pn}, the SLC function merges clusters iteratively until only one cluster
remains. This process is expressed as:

SLC(C, T) =

{
C, if |C| = 1

SLC(C ′, T ′), otherwise

where

• C = {c1, c2, . . . , cm} is the current set of clusters,
• T is the current distance table,
• (ci, cj) = argmini ̸=j D(i, j) are the pair of clusters with the minimum inter-cluster dis-
tance,

• C ′ = (C \ {ci, cj}) ∪ {c′} is the new set of clusters after merging ci and cj into a new
cluster c′, and

• T ′ is the updated distance table after the merge.

The inter-cluster distance between two clusters ci and cj is defined as the minimum Euclidean
distance between any pair of points pk ∈ ci and pl ∈ cj:

D(i, j) =

{
minpk∈ci,pl∈cj dist(pk, pl) if i ̸= j

∞ if i = j

2.2.6 Single Linkage Clustering Optimized wtih Localized Lin-Kernighan

Here, we implemented a modified version of the Lin-Kernighan which now has two changes:
1. No Longer Shuffles the Initial tour
2. Now, using a KD-Tree, performs a localized search in order to optimize nearby areas to

the points.
This implementation can be expressed as such:

Given the current tour T and a point pi in T , let Q be the set of points within a distance r
from pi, efficiently retrieved using the KDTree’s ‘query ball point‘ function:

Q = tree.query ball point(pi, r)

For each pj ∈ Q, the function LK improves T by replacing the edges (pi, pi+1) and (pj, pj+1)
with (pi, pj) and (pi+1, pj+1) if the total distance of the tour decreases:

LKMod(p) = T ′ = T \ {(pi, pi+1), (pj, pj+1)}
⋃
{(pi, pj), (pi+1, pj+1)}

Which in the end, we can concatenate everything to express it as:

SLC(C, T) =

{
LKMod(C), if |C| = 1

LKMod(SLC(C ′, T ′))

20 CHAPTER 2. METHODS

Algorithm 7 SLC with Lin-Kernighan algorithm

1: function SLCwithLK(solution, table)

2: clusters← [s[0] for s in solution]

3: while len(clusters) > 1 do

4: min distance, index1, index2←∞,−1,−1
5: for i, j in range(len(clusters)) if i ̸= j do

6: if table[i][j] < min distance then

7: min distance, index1, index2← table[i][j], i, j

8: end if

9: end for

10: entry point, exit point← table[index1][index2]

11: cluster1, cluster2← clusters[index1], clusters[index2]

12: a← cluster1[: entry + 1]

13: b← cluster2[exit :]

14: c← cluster2[: exit+ 1]

15: d← cluster1[entry + 1 :]

16: merged← a++b++c++d

17: clusters.insert(index1,merged cluster)

18: table← closestPointTable(clusters, range(len(clusters)))

19: end while

20: return LinKernighanMod(clusters[0])

21: end function

Chapter 3

Experiments

In this experiment, we aim to explore the performance of various TSP algorithms in solving the
Traveling Salesman Problem under different conditions. We will focus on four different TSP
algorithms, represented as:

1. Nearest Neighbour (NN) algorithm: NN(P)
2. Lin-Kernighan Heuristic (LK): LK(P)
3. Spectral Clustering with Lin-Kernighan Heuristic (SLC): SLC(P)
4. Spectral Clustering with Nearest Neighbour Heuristic (SLCwithLK): SLCwithLK(P)

We evaluate the performance of these algorithms on a set of points (P), which are generated
using various target Hopkins Statistic values, Gaussian standard deviation values, and different
nPerCluster values around nCluster centres. The points are generated by the function:

G(n clusters, γ) = generateAround(nPerCluster, g, centres) (3.1)

For each combination of targetHop, Gaussian standard deviation (g), and nPerCluster, we
perform the TSP algorithms and calculate the average tour distance:

Performance(avgHK, avgdist) =
avg hk

avg dist
(3.2)

Where F(P) denotes one of the TSP algorithms.

In each of our experiments, we adjusted a set of variables to evaluate the sensitivity and
adaptability of the different TSP algorithms. These variables were selected to span a range of
values to better understand their impact on the resulting tours and to highlight the strengths
and weaknesses of each algorithm under varying circumstances. Here is a list of the parameters:

• Number of Clusters

• Hopkins Statistic

• Number of Points per Cluster

• Gauss

• Functions

The key aspects we’ll be examining in the experiments are as follows:

• Quality of the solutions: Assess the quality of the solutions obtained from each TSP
algorithm by calculating the gap between the generated solutions and the Held-Karp

21

22 CHAPTER 3. EXPERIMENTS

lower bound HK(P). This will help quantify the effectiveness of the algorithms in finding
near-optimal solutions to the TSP. This will simply be done by Running each algorithm
on the same set of points and looking at the route and the total distance.

Goals/ Variables Measured:

– Total Distance
– Assessing Solution Quality, i.e., number of loops/crosses

Static Variables:

– Number of Points per Clusters
– Number of Clusters
– Hopkins Statistic
– Gauss
– Functions[Nearest Neighbour, Lin-Kernighan, SLC, SLCwithLK]

• Computational efficiency: Analyze the computational efficiency of each TSP algo-
rithm in terms of time complexity and memory consumption. This will provide insights
into the scalability of the algorithms when applied to large-scale datasets. We do this by
simply incrememnting the total number of Points in each map, running each algorithm
and recording the amount of time it takes each algorithm to complete.

Goals/ Variables Measured:

– Time(ms) to solve each map
Changing Variables:

– Number of Points per Clusters
– Number of Clusters

Static Variables:

– Hopkins Statistic
– Gauss
– Functions[Nearest Neighbour, Lin-Kernighan, SLC, SLCwithLK]

• Clustering tendency: We vary the target Hopkins Statistic values. This allows us to
control the degree to which the points are clustered, and observe the impact of different
clustering tendencies on the performance of the TSP algorithms. By adjusting the Gauss
measurement, we can adjust the density of the clusters, ranging each set from well clus-
tered, to random.

Goals/ Variables Measured:

– Time(ms) to solve each map
– Search performance

Changing Variables:

– Gauss
– Number of Points per Clusters
– Number of Clusters

Static Variables:

– Hopkins Statistic

CHAPTER 3. EXPERIMENTS 23

– Functions[Nearest Neighbour, SLC, SLCwithLK]

• Number of clusters vs Number of Points per Cluster: We also need to verify
the effect that’s had with the same number of points going from 1 cluster to many. By
changing the number of clusters in the dataset, we aim to understand how the TSP al-
gorithms cope with varying levels of granularity in the clustering structure. We do this
simply by incrementing the Cluster Size, and dividing all the points among them. Here
we take n number of points and m number of clusters. We start at m=1 and increase
the number of clusters until 10. Then we observe the the effect on performance and time
that incrementing the number of clusters has on our results.

Goals/ Variables Measured:

– Time(ms) to solve each map
– Search performance

Changing Variables:

– Number of Clusters
– Number of Points in Each Cluster

Static Variables:

– Gauss
– Hopkins Statistic
– Functions[Lin-Kernighan, SLC, SLCwithLK]

• Varying clustering densities: Here we’ll test with different clusters having different
concentration of points than others. To assess the impact of this on the TSP algorithms,
we generate datasets with clusters of different densities and analyze the performance of
the algorithms under these conditions.
Goals/ Variables Measured:

– Search performance
Changing Variables:

– Number of Points per Clusters
– Gauss

Static Variables:

– Number of Clusters
– Functions[SLC, SLCwithLK]

• Isotropic vs Elongated Clusters: Finally, we’ll study the performance of the TSP
algorithms when applied to datasets with more circular clusters relative to elongated
ones. This can be achieved by adjusting the Gaussian x and y factors for the clusters,
which essentially limits the number of x values for each y value and vice verse, as a result
creating an elongating effect.
Goals/ Variables Measured:

– Search performance
– Time (ms)

Changing Variables:

– Gaussian x and y values

24 CHAPTER 3. EXPERIMENTS

Static Variables:

– Number of Points per Clusters
– Number of Clusters
– Functions[Lin-Kernighan, SLC, SLCwithLK]

Through this extensive analysis, we aim to gain a better understanding of the performance
and robustness of TSP algorithms under various experimental conditions, which can potentially
inform the selection of the most appropriate TSP algorithm and parameters for real-world
applications involving clustered data.

Chapter 4

Discussion & Results

4.1 Experiment Results

4.1.1 Quality of Solutions

The aim of this experiment was simple; Run all the algorithms on the same group of points,
look at the results, and assess the quality of the solutions. Here we have the following clustered
group of points:

Figure 4.1: Figure showing all the points in their Respective Clusters

25

26 CHAPTER 4. DISCUSSION & RESULTS

From the above points we obtained the following plots from our implemented algorithms:

Figure 4.2: Figure Showing all Algorithms Ran on the Same Points

They all start from the same starting point in the top left corner, and the colour of the lines
darken from light blue to black to visualize the direction the algorithm is travelling.

Findings
Here we can clearly see the best performing solution is the Lin-Kernighan, as it’s meant to be
a near optimal solution for the TSP. The key to its success is the way it refines the solution
iteratively through a series of ’exchanges’ until no further improvements can be made, ensuring
that the final route is as optimal as possible. We can see that there are no crossings or inter-
sections, and there’s a clear path going around all the points. For the Clustered Algorithms,
we can see the path is also quite good but not optimal. They identify and connect clusters
efficiently, minimizing travel distance between different clusters, and consequently offering a
relatively optimal solution. This can be particularly advantageous when handling complex and
large-scale TSP instances, as we will see in the later experiments. On the other hand, the
Nearest Neighbour algorithm is a strictly greedy algorithm, which tends to give suboptimal
results. It simply selects the closest unvisited node as the next node, leading to fast solutions,

CHAPTER 4. DISCUSSION & RESULTS 27

but inefficient routes.

4.1.2 Computational Efficiency

Figure 4.3: Plots of the Change in Distance vs Cluster Tendency

Nearest Neighbour
By far the most computationally efficient of all the algorithms. It simply operates by taking
a starting point and then iterating over all remaining unvisited nodes to find the nearest one.
This operation, repeated for each node, results in a quadratic time complexity O(n2).

Lin-Kernighan
Contrary to the Nearest Neighbour this is the most computationally expensive algorithm. The
nature of the algorithm involves substantial computational expense to find the most optimized
solution by evaluating all pairs of edges in the path for potential improvements in order to find
the most optimal path. Each iteration in this heuristic involves assessing a variety of potential
paths, which results in much longer wait times for larger datasets.

Clustered Algorithms
On the contrary, the SLC Clustering TSP algorithm simplifies the problem by breaking down
the larger dataset into smaller, manageable clusters. The algorithm then solves the Travelling

28 CHAPTER 4. DISCUSSION & RESULTS

Salesman Problem (TSP) within these smaller clusters individually. Given the smaller size of
these clusters compared to the overall dataset, the task of solving the TSP becomes relatively
quicker. This method reduces the number of ’exchanges’ or ’moves’ to be evaluated, which
ultimately lessens the computational burden. When it comes to forming the final solution by
combining all the clusters, the algorithm evaluates ’moves’ proportional to the number of clus-
ters, which is again considerably less than the total number of nodes in the dataset.

In essence, while Lin-Kernighan’s intensive path optimization leads to slower performance for
particularly larger datasets, SLC’s strategy of breaking down the problem into smaller parts
makes it much more computationally efficient, thereby facilitating quicker solutions.

4.1.3 Clustering Tendency

Search Performance:

Theoretical expectations might suggest significant performance variation in algorithms based
on the clustering tendency, as quantified by the Hopkins statistic. However, the results from the
experiments indicate a different scenario, illustrating that the effect of changes in the Hopkins
statistic on the algorithms’ search performance fluctuated more than expected, essentially illus-
trating that change in clustering tendency doesn’t particularly lead to predictable alterations
in the search performance.

Figure 4.4: Plots of the Change in Distance vs Cluster Tendency

Speed:
Similarly, we predicted that for the Clustering algorithms, we would see an improved per-
formance for this metric than with the basic algorithms, and the results do show that. So
while there’s a difference between the algorithms, but we don’t notice much of a trend in the
algorithms within themselves as the tendency changes

CHAPTER 4. DISCUSSION & RESULTS 29

Figure 4.5: Plots of the Change in Execution Time vs Cluster Tendency

30 CHAPTER 4. DISCUSSION & RESULTS

4.1.4 Number of Clusters vs Size of Clusters

Figure 4.6: Plots of the Change in Performance and Execution Time vs the Number of Clusters

We slowly increased the amount of points in the table to observe the effect of highly clustered
data on the performance and efficiency. In the case of the Performance, we measured it, of

CHAPTER 4. DISCUSSION & RESULTS 31

course, against the Lower bound of the dataset and found that there was actually a gradual
decrease in optimization of the results as the number of clusters increased. It’s important to
highlight that the observed underperformance is more than likely rooted in the fundamental
nature of the clustering-based solutions and their inherent approach to solving the problem.
Specifically, these algorithms focus on effectively clustering the data points and then connecting
these clusters, which isn’t always the most efficient route from a global perspective.

The previous experimental results bear this out. In the first experiment, for instance, the
optimal Lin-Kernighan solution shows a path that skirts along the perimeter of all points,
demonstrating a global optimization strategy. In contrast, the solutions derived from the clus-
tering algorithms are more focused on connecting points within individual clusters and then
linking these clusters together, essentially adopting a local optimization strategy.

While this approach is beneficial in efficiently dealing with and reducing the complexity of
large datasets by breaking them down into more manageable subsets, it does not necessarily
yield the most optimal path when considering the dataset as a whole. As such, when these
results are compared to the optimal solution from the Lin-Kernighan algorithm, they might
appear to underperform.

Also measuring the execution time as we increased the number of points, the results came
to no surprise. We observe that with respect to the time complexity, increasing the number
of clusters trumps the other algorithm in that regard, for fairly obvious reasons. Dividing the
larger problem into numerous smaller subproblems, and concatenating them, adopting the local
optimization strategy, will intuitively trump any other method for this nature of problem.

32 CHAPTER 4. DISCUSSION & RESULTS

4.1.5 Varying Cluster Density

Unfortunately for the varying clustering density, we weren’t able to draw a valid conclusion
regarding this, with respect to search performance, there seemed to be no real correlation,
neither was there for Execution time, the results produced were of course, more sensitive to
other parameters, overall Cluster density, number of Clusters, etc.

4.1.6 Isotropic vs Elongated Clusters

Here we analysed whether there would be a noticeable difference between more elongated clus-
ters as opposed to isotropic clusters:

(a) Vertically Elongated Clusters (b) Horizontally Elongated Clusters

(c) Performance against Vertical Stretching (d) Performance against Horizontal Stretching

Figure 4.7: Figures Showing Performance vs Elongation of the Clusters

We can see that the more elongated the clusters, the more optimal the results. This makes
intuitive sense as the nature of these elongated clusters pairs itself well to the concept of
tour construction based on the clustered approach. More specificially, when clusters of points
are elongated, an algorithm can traverse through each cluster in a more sequential manner,

CHAPTER 4. DISCUSSION & RESULTS 33

systematically moving from one end of the cluster to the other. This pattern can often mirror
the optimal route more closely than in isotropic clusters, where the lack of a distinct structural
direction can make determining an efficient path more difficult/unlikely.

Chapter 5

Conclusion & Future work

5.1 Conclusion

The central objective of this research is to investigate the effectiveness of different approaches for
solving the Travelling Salesman Problem; more specifically with the use of Clustering Methods,
creating the Clustered Travelling Salesman Problem, and understanding how differenjt param-
eters influence the efficacy of these problems. Our experiments yielded some expected results,
a couple of surprises, and on a whole granted a lot of insight into the nature of the algorithms.

Looking purely at the solutions themsselves, the CTSP algorithms presented a distinct
method of breaking down the problem, providing reasonably optimal solutions while signifi-
cantly reducing the computational load relative to more exact solutions, thus making it overall
more efficient for large-scale TSP instances.

Interestingly, when it came to clustering tendency measured by the Hopkins statistic, the
search performance of the algorithms did not follow a predictable pattern. However, the CTSP
algorithm did, in fact, demonstrate quicker execution times when data had higher clustering
tendencies. This aligns with the fundamental strategy of the algorithm, effectively grouping
data points into distinct clusters, thus reducing the complexity of the problem.

Another one of the key insights derived from our investigation is the relationship between
the number of clusters and their size. As the number of clusters increased, there was a notable
decrease in the optimization of the results compared to the more optimized algorithm. This
suggests that while clustering strategies significantly improve the efficiency of handling large
datasets, they may not necessarily yield the most globally optimal paths. A similar trend was
observed when the clusters were isotropic versus elongated. Elongated clusters, as a result of
their structural directionality would yield more optimal results, pointing to the fact that the
physical nature of the clusters can impact the efficiency of the solutions.

In conclusion, our research validates the merit in utilizing the CTSP as a strategy for tackling
the TSP for certain instances. Despite not providing globally optimal solutions, the value lies
in computational efficiency and ability to better deal with larger datasets. Therefore, the choice
of algorithm should more be inflienced by the unique characteristics of the problem, such as
the number and the type of clusters, as well as the desired balance between computational
efficiency and need for the most optimal solution.

34

CHAPTER 5. CONCLUSION & FUTURE WORK 35

5.2 Future Work

Despite thhe work done in this research elucidating the performances and characteristics of the
CTSP algorithms, there is still a lot of potential work to be done. One such avenue is with the
use of parallelisation or parallel computing being applied to the Clustering Algorithms explored
in order to even further speed up the process for larger instances. Intuitively, with the nature
of these algorithms involving the splitting up the large instance into multiple smaller instances,
and solving them in parallel, would yield an improvement in Computation time. It could also
be a means for providing drastic imnprovement for the non-clustered algorithms such as the
Lin-Kernighan. Consequentially, the design and implementation of parallel versions of these
algorithms should be a major focus of future work.

In addition to the on TSP, the application of clustering methods to other NP-hard problems
warrants investigation. Many of these problems share structural similarities with TSP, such
as the Job Shop Scheduling Problem, and the Knapsack Problem. The approach of clustering
to break down larger problems into more manageable subsets could be an effective strategy to
reduce the complexity and improve the efficiency of solving these types problems.

Overall, there is substantial room for future work in terms of enhancing the efficiency and
effectiveness of the CTSP and other NP-hard problems, with potential far reaching benefits in
numerous fields.

36 BIBLIOGRAPHY

Bibliography

[1] Y. Hultaichuk and A. Matviychuk, “Modern approaches for solving the travelling salesman
problem and the examples of their effective application,” Visti Natsionalnoi Akademii Nauk
Ukrainy, vol. 4, pp. 87–97, 2020.

[2] Y. Lu, J.-K. Hao, and Q. Wu, “Solving the clustered traveling salesman problem via tsp
methods,” arXiv preprint arXiv:2007.05254, 2020.

[3] R. Bellman, Dynamic Programming. Princeton University Press, 1962.

[4] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, The Traveling Salesman Problem: A
Computational Study. Princeton University Press, 2007.

[5] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-salesman
problem,” Operations research, vol. 21, no. 2, pp. 498–516, 1973.

[6] K. Helsgaun, “General k-opt submoves for the lin-kernighan tsp heuristic,” Mathematical
Programming Computation, vol. 1, no. 2-3, pp. 119–163, 2009.

[7] J. A. Chisman, “The clustered traveling salesman problem,” Computers Operations Re-
search, vol. 2, no. 2, pp. 115–119, 1975.

[8] A. Banerjee and R. N. Dave, “Validating clusters using the hopkins statistic,” in Fuzzy
Systems, 2004. Proceedings. 2004 IEEE International Conference on, pp. 149–154, IEEE,
2004.

[9] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
Advances in neural information processing systems, vol. 2, pp. 849–856, 2002.

[10] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17,
no. 4, pp. 395–416, 2007.

[11] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise,” in Kdd, pp. 226–231, 1996.

[12] B. W. Lawson and P. C. Jurs, “New index for clustering tendency and its application
to chemical problems,” Journal of Chemical Information and Modeling, vol. 30, no. 1,
pp. 36–41, 1990.

	Acknowledgements
	Abstract
	Symbols
	Introduction
	Background Information
	Travelling Salesman Heuristics
	Clustering

	Methods
	Clustering Functions
	Hopkins Statistic
	Spectral Clustering
	DBSCAN Clustering

	TSP Functions
	Held-Karp Lower Bound
	Distance Functions
	Lin-Kernighan Heuristic
	Nearest Neighbour Heuristic
	Single Linkage Clustering
	Single Linkage Clustering Optimized wtih Localized Lin-Kernighan

	Experiments
	Discussion & Results
	Experiment Results
	Quality of Solutions
	Computational Efficiency
	Clustering Tendency
	Number of Clusters vs Size of Clusters
	Varying Cluster Density
	Isotropic vs Elongated Clusters

	Conclusion & Future work
	Conclusion
	Future Work

	Bibliography

