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Abstract
The Hénon map is a two-dimensional quadratic map that, for some parameter val-
ues, has a strange attractor. This strange attractor has comparable properties to
the Lorenz attractor and the strange attractors of many other systems. In this
project, we discuss the map’s history and its relation to the Lorenz system. We
classify the stability of the fixed points of the Hénon map and identify curves in
the parameter plane where period doubling bifurcations occur. Upon observing
numerical evidence of a period doubling cascade, we identify the possibility for
regions in the parameter plane where the map is chaotic. To further classify such
regions, we rely on Lyapunov exponents. By means of a Lyapunov diagram, we
then classify the system’s stability and attractor type in a parameter plane, where
we observe numerical evidence of a chaotic attractor. Lastly, we discuss the Hénon
attractor and some of its properties. In particular, to further investigate its fractal
properties, we give numerical estimates of its box-counting dimension and Lya-
punov dimension. We conclude with a discussion regarding the relation that the
Hénon attractor and the unstable manifold of one its saddle fixed points seem to
have.
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3.2 The Hénon Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Fixed Points and Period Doubling 19
4.1 Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Period Doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Lyapunov Exponents 25
5.1 Oseledets’ Multiplicative Ergodic Theorem . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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1 Introduction

In 1963, an article by Edward Lorenz titled Deterministic Periodic Flow was published (Lorenz,
1963). In this article, Lorenz is primarily concerned with deterministic hydrodynamical systems
and their flow. Lorenz presents a mathematical proof that, under certain conditions, nonperiodic
trajectories of such a system are necessarily unstable, meaning that trajectories starting very close to
the nonperiodic trajectory, no matter how close, eventually separate from it by some distance. As a
result, such systems where most trajectories are observed to be nonperiodic are quite unpredictable
in the long run.

According to Lorenz, this result has far-reaching implications for many real world applications.
For instance, based on the premise that atmospheric states are generally believed to evolve in a
nonperiodic manner, this would imply that the slightest imperceptible change in the present state of
the atmosphere is sufficient to cause its distant future to evolve into a completely different state. As
a consequence, given the desire to predict future atmospheric states such as the weather, this implies
that, even the slightest measurement error in its present state, which is arguably inevitable, is suffi-
cient to make any prediction of a sufficiently distant future state effectively impossible (Lorenz, 1963).

To provide an illustrative example, Lorenz then gives a three-dimensional system that represents a
simplified model of the convection and temperature variation of the flow of a two-dimensional fluid
flow. For this system, which was later called the Lorenz system, Lorenz then presents numerical
observations, for a particular set of parameter values, from which all trajectories are observed to
be unstable and almost all appear to be nonperiodic. In addition, these trajectories appear to get
trapped in some region of the phase space. In this region, the trajectories then seem to be attracted
to a particular limit set that is observed to have some strange properties and a complex shape
(Lorenz, 1963).

In order to get a better understanding of this “strange” attractor and its properties, in the ar-
ticle titled A two-dimensional mapping with a strange attractor published in 1976 (Hénon, 1976),
Michel Hénon proposes a simple two-dimensional quadratic map which appears to have similar prop-
erties to the Lorenz system. In addition, upon iteration of the map some initial points appear to
diverge towards infinity whereas others are observed to stay bounded. For some parameter values,
for the cases where successive iterations stay bounded, the sequence of points are observed to tend
towards a strange attractor that has similar properties to the Lorenz attractor. In this way, the map
was presented as a useful tool, more tractable to analysis, to be used to get a better understanding
of the Lorenz system and its attractor. This map was later named the Hénon map and is the main
subject of this project.

Although the Hénon map is essentially just a simple theoretical model that has no direct bearing on
the physical world, its properties, and, in particular, the structure of its attractor are characteristic
of the properties of attractors seen in many physical systems (Broer & Takens, 2009). For instance,
the strange attractors of dissipative hydrodynamical systems, where dissipative means that the flow
of the system contracts volumes, are often observed to consist of manifolds folded closely on top of
each other in a multisheeted structure bearing resemblance to a Cantor set (Grassberger & Procac-
cia, 1983), which is also observed in the attractor of the Hénon map. Besides, due to the period
doubling behavior observed upon variation of the parameters, the Hénon map appears to have a
similar route to chaos as is often seen before the onset of turbulence (Eckmann & Ruelle, 1985).
So despite its simple form, the Hénon map can be considered as an important tool to get a better
understanding of chaos and strange attractors.

In this project, we aim to cover and numerically investigate properties of the Hénon map. Specifi-
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cally, we further investigate the relation that the Hénon map and its attractor have to the Lorenz
system and its attractor. This discussion is followed by the investigation of its fixed points and the
period doubling behaviour observed upon variation of parameter. Then, which can be considered
as the main section of this project, using numerical methods, we classify the system’s stability and
attractor type in a parameter plane by means of Lyapunov exponents. Lastly, we conclude with
a brief discussion on the fractal properties of the attractor along with its relation to the unstable
manifold of one its saddle fixed points.

Whilst discussing these topics, we aim to introduce the concepts required such that the mate-
rial presented is relatively self contained. To this end, we start of with a preliminary section on
dynamical systems where basic results and definitions are presented. Whenever a new concept is
discussed, such as Lyapunov exponents or fractal dimension, we give a brief introduction to that
respective topic. This is done to ensure that the results are accessible to people with a mathematical
background comparable to that of mathematics bachelor students.
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2 Preliminaries

For the material and results discussed in this project some background theory is required. This
section gives a brief introduction to important definitions and results from the field of dynamical
systems.

2.1 Dynamical Systems

Definition 2.1 (Dynamical System). A deterministic dynamical system is a tuple (M,T, ϕ), where
M is a non-empty set called the state space, the time set T ⊂ R is an additive semi-group, and
ϕ : M × T → M is an evolution operator satisfying:

1. ϕ(x, 0) = x for any x ∈ M ;

2. ϕ(ϕ(x, t1), t2) = ϕ(x, t1 + t2) for any x ∈ M and t1, t2 ∈ T .

These last two properties are also referred to as the group property of the evolution operator (Broer
& Takens, 2009).

The notion of determinism in the definition means that future states are uniquely determined by
present states only and that there is no ambiguity about future states given its present state. Despite
requiring that all future states are uniquely determined given its present state, the definition does
not require that all past states are uniquely determined by the present state. Namely, the time set
T only has to be an additive semi-group and not necessarily a group. However, for a dynamical
system (M,T, ϕ) where T is also a group, past states are uniquely determined by present states as
well.

Given a dynamical system (M,T, ϕ) and a state x ∈ M , we can also define a mapping T → M
given by t 7→ ϕ(x, t) =: ϕt(x), which is also referred to as the evolution operator for the ini-
tial state x ∈ M . Moreover, by the group property of the evolution operator, these maps satisfy
ϕt1+t2(x) = ϕt2 ◦ ϕt1(x). The image of this map for the entire time set T is also referred to as the
trajectory or orbit of x. In the cases where T is a group, the image of this map for T≥0 is referred
to as its forward orbit. Similarly, for a fixed t ∈ T , we can define the map ϕt : M → M given by
x 7→ ϕt(x) = ϕ(x, t) (Broer & Takens, 2009; Pugh, 2017).

Usually the time set T is R,R+,Z or Z+. In the two former cases, namely T is R or R+, we
speak of continuous dynamical systems. Such continuous dynamical systems are usually given as
solutions to systems of ordinary differential equations. For instance, given an ordinary differential
equations f : Rn → Rn that is C1 and Lipschitz, we can define a dynamical system (Rn,R, ϕ) where
ϕ(x, .) is the global solution of

∂

∂t
ϕ(x, t) = f(x), ϕ(x, 0) = x.

In the latter two cases, whenever the time set T is Z+ or Z, we speak of discrete dynamical sys-
tems. These systems are usually associated with a map. Namely given a non-empty set M and
a map F : M → M , we can define a dynamical system (M,Z+, ϕ) where ϕ(x, n) := Fn(x). In
particular, when F is a bijection, we can replace the semi-group Z+ by the group Z and define
ϕ(x,−n) := F−n(x) := (F−1)n(x) for −n < 0 (Broer & Takens, 2009; Pugh, 2017).

In some cases, different dynamical system can exhibit comparable behaviour and the dynamics
might only differ up to a homeomorphism.
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Definition 2.2 (Topological Conjugacy). We say two dynamical systems (M,T, ϕ) and (M ′, T, ϕ′)
are topologically conjugate if there exists a homeomorphism h : M → M ′ such that h ◦ ϕ(x, t) =
ϕ′(h(x), t) for all x ∈ M and t ∈ T (Devaney, 2003).

Whenever two systems are topologically conjugate, it follows that the dynamics of the systems are
topologically the same differing only by a homeomorphism.

2.2 Stability

An important area of the study of dynamical systems is the study of their steady states, limit sets,
and their general limiting behaviour. Since the Hénon map is a discrete dynamical system, we will
mostly focus on definitions and results relevant for discrete dynamical systems. To ease notation,
we often express a discrete dynamical system as a map F : M → M such that ϕ(x, n) = Fn(x) for
x ∈ M and n ∈ T with T = Z≥0 or Z. Since in such cases the system is essentially just an iterated
map, the fixed points and periodic points of the map are of interest for the system.

Definition 2.3. Let F : M → M be some map with M non-empty. A point x ∈ M is said to be
a fixed point of F if F (x) = x. A point x ∈ M is said to be periodic if Fn(x) = x for some n ≥ 1.
The least positive n such that Fn(x) = x is said to be the the period of x (Devaney, 2003).

It is not difficult to see that for for a fixed point x ∈ M of F that F k(x) = x for any k ≥ 0 and that
a periodic point x ∈ M of period n is a fixed point of Fn. Moreover, the least positive property of
the period n, of a periodic point x ∈ M , ensures that F k(x) are all distinct periodic points of period
n for k = 0, . . . n− 1.

Definition 2.4. A fixed point x ∈ Rn of a C1 map F : Rn → Rn is called hyperbolic if none of the
eigenvalues of the linearization DFx of F at x lie on the unit circle, i.e., |λ| ≠ 1 for all eigenvalues
λ of DFx. Similarly, a periodic point x ∈ Rn with period k is called hyperbolic if it is a hyperbolic
fixed point of F k (Devaney, 2003).

Then, for a hyperbolic fixed point x ∈ Rn of F : Rn → Rn, the fact that F is C1 implies that
the systems is, locally, well-approximated by its linearization. Hence, the eigenvalue spectrum of its
linearization is indicative of the local behaviour of the system.

Theorem 2.5. If x is an hyperbolic fixed point of F : Rn → Rn such that |λ| < 1 for all λ ∈ σ(DFx),
then there exists some open neighbourhood U of x such that Fn(y) → x as n → ∞ for any y ∈ U ,
where convergence is understood in the Euclidean norm.

Proof. Suppose x ∈ Rn is some fixed point of F : Rn → Rn such that |λ| < 1 for all λ ∈ σ(DFx).
Then ||DFx|| = ρ(DFx) < 1, where the former is the operator norm and the latter the spectral
radius, i.e, the largest absolute value eigenvalue. Also, since F is C1, the eigenvalues of DFx depend
smoothly on x and there exists some Bδ(x) such that ||DFx′ || < α < 1 for all x′ ∈ Bδ(x) for some
real constant α.
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Now let x′ ∈ Bδ(x). Then, since x is a fixed point of F ,

||F (x′)− x|| = ||F (x′)− F (x)||

= ||
∫ 1

0

d

dt
F (tx′ + (1− t)x)dt||

≤
∫ 1

0

|| d
dt

F (tx′ + (1− t)x)(t)||dt

=

∫ 1

0

||DFtx′+(1−t)x(x
′ − x)||dt

≤
∫ 1

0

||DFtx′+(1−t)x|| · ||x′ − x||dt

<

∫ 1

0

α||x′ − x||dt

= α||x′ − x||,

where we implicitly used the triangle inequality, the chain rule, and the fact that Bδ(x) is a convex
set. This implies that F (x′) ∈ Bδ(x), since ||F (x′) − x|| < α||x′ − x|| < δ. Following the same line
of reasoning, we can show that if Fn(x′) ∈ Bδ(x) that then ||Fn+1(x′)− x|| < α||Fn(x′)− x||, from
which it follows, by means of induction, that ||Fn(x′)−x|| < αn||x′−x|| and hence ||Fn(x′)−x|| → 0
as n → ∞.

The proof above is an adaptation of the proof presented in Devaney, 2003. For cases where F is a
diffeomorphism, we can obtain a useful corollary to this theorem.

Corollary 2.6. Suppose x ∈ Rn is some hyperbolic fixed point of F : Rn → Rn such that |λ| > 1 for
all λ ∈ σ(DFx), then there exists some open neighbourhood U of x such that Fn(y) → x as n → −∞
for any y ∈ U .

Proof. Suppose x ∈ Rn is some fixed point of F : Rn → Rn such that |λ| > 1 for all λ ∈ σ(DFx).
Then x is also a hyperbolic fixed point of F−1 and |λ| < 1 for all λ ∈ σ((DF−1)x). The result then
follows by a direct application of 2.5.

As a consequence of these results, we adopt the following definition for hyperbolic fixed points based
on a classification of the respective eigenvalue spectrum of the linearization.

Definition 2.7. Suppose x is a hyperbolic fixed point of F : Rn → Rn.

1. x is said to be an attracting fixed point if all eigenvalues of DFx have an absolute value less
than 1.

2. x is said to be a repelling fixed point if all eigenvalues of DFx have an absolute value greater
than 1.

3. x is said to be a saddle point otherwise, i.e., at least one eigenvalue of DF (x) has an absolute
value less than 1 and at least one eigenvalue is greater than 1 in absolute value.

The definition is similar for a period-k hyperbolic point x with F replaced by F k, i.e. considering x
as a fixed point of F k (Devaney, 2003).

This classification of hyperbolic periodic points is in fact the same for all points in the periodic cycle.
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Proposition 2.8. Suppose x ∈ Rn is some k-periodic hyperbolic point of F : Rn → Rn, then the
classification of x based on definition 2.7 is the same for all points its periodic cycle.

Proof. Suppose x ∈ Rn is some k-periodic hyperbolic point of F : Rn → Rn, it suffices to show that
σ((DF k)x) = σ((DF k)Fm(x)) for any 1 ≤ m < k. Let m be such that 1 ≤ m < k, then by the chain
rule

(DF k)Fm(x) = DFFk−1+m(x) ◦ · · · ◦DFFm(x)

= DFFm−1(x) ◦ · · · ◦DFx ◦DFFk−1(x) · · · ◦DFFm(x),

and that

(DF k)x = DFFk−1(x) ◦ · · · ◦DFx.

The results then follows by repeated application of the fact that AB and BA have the same eigen-
values for n× n matrices A,B.

The result of theorem 2.5 and proposition 2.8 then also implies that it makes sense to talk about peri-
odic cycles as being attracting or repelling in accordance with the classification given in definition 2.7.

These limit sets that are attracting under forward-iteration, which are also referred to as attractors,
are not limited to periodic cycles or fixed points. To more formally define such attractors, it is of
interest to see what limiting behaviour forward orbits of specific initial points have.

Definition 2.9. Let F : Rn → Rn and x0 ∈ Rn. The ω-limit set ω(x0) of the orbit {Fn(x0)} defined
by x0 is given by

ω(x0) = {y ∈ Rn : Fnj (x0) → x for some subsequence {nj}j≥1 ⊂ Z≥0}.

The definition is taken from Broer and Takens, 2009, and allows for a formal definition of attractors.

Definition 2.10. Adopting the notation of 2.9, we say that an ω-limit set ω(x) for x ∈ Rn is an
attractor, whenever there exists arbitrarily small neighbourhoods of ω(x) such that

Fn(U) ⊂ U

for all n ≥ 1, and that for any y ∈ U , we have

ω(y) ⊂ ω(x).

This second condition is equivalently stated as

∞⋂
n=0

Fn(U) = ω(x),

for that particular neighbourhood U (Broer & Takens, 2009).

Notice that with this definition, repelling periodic cycles and periodic cycles of saddle type are pre-
cluded from being an attractor despite being the ω-limit of any point in the periodic cycle. However,
attracting periodic cycles are classified as attractors with this definition, which is of course desirable
given the general intuition and connotation one might have with these terms.

In addition, defining an attractor in such a way also implies that there is some larger set of ini-
tial points that tend towards the attractor upon iteration of the map. This set is also commonly
referred to as the basin of attraction of that attractor.
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Definition 2.11. Whenever Λ is an attractor, we define its basin of attraction B(Λ) as

B(Λ) = {y ∈ Rn : ω(y) ⊂ A},

which is an open set (Broer & Takens, 2009).

When studying the stability of dynamical systems and their respective limit sets, it is common to do
so for a family of dynamical systems that depend on a set of parameters. Then at values where there
is a qualitative or topological change in the behaviour of the system, such as a change in stability
of a limit set or a topological change of an attractor, a bifurcation is said to occur. The study of
such bifurcations in the field of dynamical systems is also referred to as bifurcation theory (Broer &
Takens, 2009).

Lastly, it should be noted the the results and definitions in this section can also be extended to
more general cases of discrete dynamical systems, defined by C1 maps, such as F : U → U where
U ⊂ Rn is some domain. However, for the purposes of the study of the Hénon map, the above
definitions and results suffice since this map is a diffeomorphism of the euclidean plane R2.

2.3 Chaos

The concept of deterministic chaos is an important topic and active field of research in the study of
dynamical systems. The precise definition of whenever a system or attractor is said to be chaotic is
also something that varies, where some definitions require more restrictive conditions than others.
Depending on the context, the nature of the definition of chaos might also have a more topological
flavour, posing conditions on the geometry of attractors and limit sets, or rely on ergodic properties,
concerning statistical properties of systems when they are considered as satisfying some probability
measure in the long run (Devaney, 2003). Altough these definitions might differ, it usually always
involves sensitivity to initial conditions and the unpredictability of orbits (Peitgen et al., 2004).

To provide some intuition for the concept of of chaos, we will present a topological definition of
chaos presented by Devaney, 2003, where one of the conditions for chaos is sensitive dependence on
initial conditions.

Definition 2.12 (Devaney’s definition of sensitive dependence on initial conditions). Let F : J → J
with J ⊂ Rn. Then F is said to have sensitive dependence on initial conditions if there exists a
δ > 0 such that, for any x ∈ J and any neighbourhood N of x, there exists y ∈ N such that

||F k(y)− F k(x)|| > δ,

for some k ≥ 1 (Devaney, 2003).

Aside from sensitive dependence on initial conditions, Devaney also requires that chaotic systems
possess some degree of indecomposability, i.e., that the system does not reduce to two subsystems
that do not interact and that can be separated with disjoint open sets. The proposed condition that
intends to guarantee this is that of topological transitivity.

Definition 2.13. Let F : J → J with J ⊂ Rn. Then F is said to be topologically transitive if for
any pair of open sets U, V ⊂ J , we have

F k(U) ∩ V = ∅

for some k ≥ 1 (Devaney, 2003).

Lastly, Devaney’s defintion of chaos requires that there is some degree of regularity in the system,
albeit not always observed. For this latter condition, it is required that periodic points are dense.
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Definition 2.14 (Devaney’s definition of chaos). Let F : J → J with J ⊂ Rn. Then F is said to
be chaotic if

1. F has sensitive dependence on initial conditions.

2. F is topologically transitive.

3. periodic points are dense in J .

With this definition, an attractor Λ ⊂ J is then said to be chaotic if F |Λ is chaotic (Devaney, 2003).

However, since dynamical systems are often investigated by means of numerical techniques, this
topological definition of chaos and chaotic attractors is rather difficult to work with in practice.
For example, Devaney’s definition of sensitive dependence on initial conditions is rather restrictive
since it puts conditions on all initial points in a set. In addition, the other two conditions also pose
problems since the geometric study of dynamical systems and attractors is quite difficult (Eckmann
& Ruelle, 1985).

For this reason, for the purposes of studying the dynamics of the Hénon map, we will not be
working with this definition of sensitive dependence on initial conditions and of chaos. Rather, in
order to define these concepts in a useful way for numerical investigation, we will rely on Lyapunov
exponents to define sensitive dependence on initial conditions and classify what it means for an
attractor to be chaotic.
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3 The Map

The map was originally proposed by Michel Hénon in his 1976 paper A Two-dimensional Mapping
with a Strange Attractor (Hénon, 1976). The purpose of the map was for it to be a simple mapping
that possesses similar properties to the Lorenz system and its Poincaré map. Below, a short overview
of the Lorenz system is provided followed by the actual mapping later named the Hénon map along
with some of its properties.

3.1 The Lorenz System

The Lorenz system is a system of ordinary differential equation modelling the convection and tem-
perature variation of a two-dimensional fluid flow. The system was presented by Edward Lorenz in
his 1963 article Deterministic Nonperiodic Flow (Lorenz, 1963), where the equations determining
the dynamics of the system are given by

x′ = σ(y + x),

y′ = (ρ− z)x− y,

z′ = xy − βz,

(1)

where σ, ρ, β are parameters. For the interested reader, a detailed derivation of the equations can
be found in the appendix of Broer and Takens, 2009.

In this article, Lorenz is primarily interested in deterministic continuous ordinary differential equa-
tions modelling the flow of dissipative hydrodynamical systems that stay in some bounded phase
space, where dissipative means that the flow contracts volumes. In particular, as suggested by the
title, the flow of nonperiodic trajectories of said systems. Here a nonperiodic trajectory P (t) is a
trajectory that is not periodic, i.e, there exists no τ > 0 such that P (t + τ) = P (t) for all t, and
that also is not quasi-periodic. Here a quasi-periodic trajectory P (t) is a trajectory such that for
any ϵ > 0 and any τ0 > 0 there exists some τ > τ0 such that ||P (t + τ) − P (t)|| < ϵ for all t > t1
for some t1. Actually, since periodic trajectories are also quasi-periodic, it suffices for a trajectory
to not be quasi-periodic in order for it to be nonperiodic (Lorenz, 1963).

Given that trajectories of such systems are bounded, it follows that any trajectories P (t) has certain
limit points P0 that it gets arbitrarily close to infinitely many often. In addition, given that the sys-
tem is assumed to be smooth, it follows that P (t) gets arbitrarily close to any point of the trajectory
through P0 infinitely many times, which implies that the entire trajectory through P0, when consid-
ered as a set, is contained in the set of limit points of the trajectory P (t). Such a trajectory contained
in the set of limit points of the trajectory P (t) is said to a limiting trajectory of P (t). Then, if P (t)
is contained in its own set of limiting trajectories, i.e., it revisits any point previously visited arbi-
trarily closely and infinitely many often, then the trajectory P (t) is said to be central (Lorenz, 1963).

It is then shown, by means of a relatively straightforward deductive argument, that whenever a
limiting-trajectory of a bounded trajectory P (t) is stable that this necessarily implies that P (t) is
quasi-periodic. Here, a trajectory P (t) with initial point P (t0) is stable if for any ϵ > 0 there exists a
δ > 0 such that if another trajectory P ′(t) satisfies ||P ′(t0)−P (t0)|| < δ that then ||P ′(t)−P (t)|| < ϵ
for all t > t0, and a trajectory is unstable otherwise. From this it also follows that whenever a
bounded trajectory P (t) is nonperiodic that then no limiting-trajectories of P (t) is stable. Hence,
whenever P (t) is a central nonperiodic trajectory, this also implies that P (t) is necessarily unstable.
A similar but weaker result is obtained for noncentral nonperiodic trajectories where it is mentioned
that theoretically such trajectories can still be stable but that they likely do not have any bearing
on reality (Lorenz, 1963).
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According to Lorenz, this observation has far-reaching consequences for many real world appli-
cations. For instance, given the fact that atmospheric states are generally accepted to evolve in a
nonperiodic manner, this implies that initial states differing only by negligible and imperceptible
amounts can evolve, given a sufficiently large time-line, into completely different states. This would
mean that even the slightest measurement error of the initial state, which is inevitable, is sufficient
to make any prediction of a sufficiently distant future impossible (Lorenz, 1963).

Lorenz then proceeds to present the system given by 1 as an example of a simple model of a
hydrodynamical system where, for certain parameter values, by means of numerical simulation, all
solutions are found the unstable and almost all are found to be nonperiodic. In particular, for the
parameter values σ = 10, ρ = 28, β = 8/3 some numerically approximated solutions are plotted
where it is observed that these seem to tend towards an attractor with a complex shape and strange
properties. Figure 1 shows a numerical approximation to a trajectory for these parameter values
where this attractor can be observed.

Figure 1: Lorenz attractor for σ = 10, ρ = 28, β = 8/3. One million iterations with ∆t = 0.001 using
a second-order approximation procedure identical to the procedure used by Lorenz, 1963.

As noted by Hénon, 1976, the Lorenz system seems to have a bounded region R where the trajecto-
ries of the system eventually get trapped into. Then, due to the fact that the system is dissipative,
this causes the flow of the system to contract R to the attractor which necessarily has measure
zero as a result. Then, for the parameter values where the attractor assumes its complex shape, it
was found by numerical experiments of Yves Pomeau in 1976, which were not published, that the
system appears to stretch in one direction and fold over itself in the course of rotations around the
attractor. The attractor then appears to consist of surfaces folded closely on top of each other in a
manner bearing familiarity to a Cantor set (Hénon, 1976).

Then, in 1976, in the article titled A Two-dimensional Mapping with a Strange Attractor, Michel
Hénon proposed a two-dimensional quadratic map that appears to have properties similar to that
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of the Lorenz system (Hénon, 1976). In addition, for some parameter values the map appears to
have a “strange” attractor that has similar properties to the Lorenz attractor. In this way, the map
aims to provide a model, more tractable for purposes of mathematical analysis, to be used to get a
better understanding of the Lorenz system and its attractor. In the next section, we briefly explain
Hénon’s reasoning used in the construction of the map along with the map itself and some of its
properties that relate it to the Lorenz system and its attractor.

3.2 The Hénon Map

In order to derive a simplified model of the Lorenz system and its attractor, Hénon considered three
steps. The first step was the consideration of the Poincaré map of the Lorenz attractor, which
roughly speaking is a map that maps successive intersections of a trajectory with a hyperplane
to each other. This reduces the dynamics of the three-dimensional continuous system to that of
a two-dimensional discrete system. However, this would unfortunately still require the numerical
integration of the original trajectories and the process of finding successive intersections with the
hyperplane. To overcome this difficulty, the second step was the consideration that defining an
explicit map would simplify the computation significantly. In addition, provided this map is chosen
carefully, it can hopefully be constructed in a way such that it emulates some of the desired prop-
erties also seen in the Lorenz system. The last step then consist of an explicit construction of this
map (Hénon, 1976).

The map is constructed as the composition of three maps, where each map aims to emulate a
property observed in the Lorenz system. Motivated by the folding effect observed in the Lorenz
system, the first map is

H ′(x, y) = (x, y + 1− ax2),

where a is some folding parameter. The second map is then a contraction along the x-axis

H ′′(x, y) = (bx, y)

with −1 < b < 1 a contraction parameter, and, lastly, a reflection given by

H ′′′(x, y) = (y, x).

The composition Ha,b(x, y) = H ′′′ ◦H ′′ ◦H ′(x, y) is then given by

Ha,b(x, y) = (y + 1− ax2, bx), (2)

which was later named the Hénon map.

Figure 2 illustrates the effect of the folding of H ′, the contraction of H ′′, and the reflection H ′′′

with a = 1 and b = 0.5. Figure 3 shows the folding and contraction effect of the map for different
iterations with a = 1.4 and b = 0.3, which are the classic parameter values originally selected by
Hénon. From figure 3, we observe that after a few iterations, the map seems to stretch a cube in
one direction and contract it in the other direction. This then causes the cube to be deformed into
a curve which appears to be folded on top of itself.
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(a) (b) H ′

(c) H ′′ (d) H ′′′

Figure 2: The maps H ′, H ′′, H ′′′ applied sequentially to the unit square with a = 1, b = 0.5.

The linearization of the map is given by

DHa,b(x, y) =

(
−2ax 1
b 0

)
, (3)

which has constant determinant −b. The result is that the map contracts areas by a constant factor
|b| < 1 and reverses the orientation whenever b > 0. This property of contracting areas is desirable
from the perspective of emulating the Lorenz system since this system is also dissipative (Hénon,
1976).

In addition, the map is a diffeomorphism from R2 to itself with inverse

H−1
a,b (x, y) =

(
y

b
, x− 1 +

ay2

b2

)
, (4)

provided that b is nonzero. Since trajectories through a particular point of the Lorenz system are
also unique, the existence of such an inverse is also a welcome property.
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(a) 0 iterations (b) 1 iteration (c) 3 iterations

(d) 5 iterations (e) 10 iterations (f) 20 iterations

Figure 3: The effect of iterating the Hénon map with a = 1.4 and b = 0.3 for a set of initial points
in a square.

The map has two fixed points given by

x+ =
−(1− b) +

√
(1− b)2 + 4a

2a
, y+ = bx+, (5)

and

x− =
−(1− b)−

√
(1− b)2 + 4a

2a
, y− = bx−, (6)

where x+ and x− are the roots of the polynomial −ax2 − (1 + b)x + 1. This is comparable to the
Lorenz system which also has two equilibrium points when ρ > 1 (Lorenz, 1963).

Furthermore, for certain parameter values, the Hénon map appears to have a strange attractor
with Cantor set like structure. For instance, for a = 1.4 and b = 0.3, the attractor appears to
consist of curves folded closely on top of each other. In addition, upon magnification near the the
fixed point (x+, y+) (see 5), it is revealed that the curves that constitute the the attractor are folded
closely on top of each other in a self-similar fractal manner that bears resemblance to a Cantor set.
Hence, the attractor appears to be the product of a one-dimensional manifold with a Cantor set.
This is similar to the strange attractor of the Lorenz system which appears to be the product of a
two-dimensional manifold with a Cantor set (Hénon, 1976).
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(a) N = 105

(b) N = 106

(c) N = 107

Figure 4: The figures show the last N iterations of an orbit of N + 104 iterations starting at
(x0, y0) = (0, 0) for the parameters a = 1.4 and b = 0.3. The area of (b) corresponds to the rectangle
in (a), and the area of (c) corresponds to the rectangle in (b). The fixed point (x+, y+) (see 5) is
marked with a black marker.

17



Comparable to the Lorenz system, the Hénon map also has a trapping region for certain parameter
values, meaning a region R ⊂ R2 such that the image Ha,b(R) ⊂ R. For instance, the area with
corners

(XA, YA) = (−1.33, 0.42),

(XC , YC) = (1.245,−0.14),

(XB , YB) = (1.32, 0.133),

(XD, YD) = (−1.06,−0.5),
(7)

is a trapping region for the parameters a = 1.4 and b = 0.3 (Hénon, 1976). Figure 5 shows this
region along with its image.

Figure 5: Trapping region with corners A,B,C,D (see 7) and the image of the region for the Hénon
map with a = 1.4 and b = 0.3. The blue shape corresponds to the boundary of the trapping region
and the green shape is the boundary of its image.
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4 Fixed Points and Period Doubling

In this section, we discuss the fixed points of the Hénon map along with a classification of their
stability in a parameter plane. We then identify curves in the parameter plane where period doubling
bifurcations occur and observe numerical evidence of a period doubling cascade.

4.1 Fixed Points

As mentioned in section 3.2, the Hénon map has two fixed points (x+, y+) and (x−, y−) given by 5
and 6, respectively. These fixed points are real when a ≥ a0 := −(1− b)2/4. However, since we are
primarily interested in a > 0 and |b| < 1, this bound is not much of practical concern since a0 < 0
for |b| < 1.

The characteristic polynomial of the linearization DHa,b((x, y)) is given by

P (λ) = λ2 − 2axλ− b.

As a result, the eigenvalues at a point (x, y) ∈ R2 are given by

λ = ax±
√
a2x2 + b. (8)

Using this, we can classify the fixed points according to their stability using definition 2.7. Figure 6
shows such a classification of the fixed points in a parameter plane. For the parameter values where
the fixed point (x+, y+) is real, it is always a saddle. The fixed point (x+, y+) is an attracting fixed
point for a certain region with a ≥ a0 and is a saddle for a region after some curve.

(a) Fixed point (x+, y+) (b) Fixed point (x−, y−)

Figure 6: Classification of the fixed points (x+, y+) and (x−, y−) in a parameter plane −1 < a < 3
and |b| < 1. The black shaded area is where the fixed point is not real, blue is used when the fixed
point is attracting, and green means the fixed point is a saddle point.

Upon substitution of (x+, y+) in 8 and solving for hyperbolic points, it is observed that (x+, y+)
is hyperbolic for a = −(1 − b)2/4 and a = 3(1 − b)2/4. The former is a0, which we identified
as the lower bound such that the fixed points are real, and the latter is the point where (x+, y+)
undergoes a bifurcation and goes from an attracting point to a saddle point. For simplicity, we
define a1 = 3(1− b)2/4. The following proposition summarizes these results.

Proposition 4.1. The Hénon map Ha,b has no real fixed points for a < −(1 − b)2/3 and two real
fixed points given by (x+, y+) and (x−, y−) for a ≥ −(1 − b)2/4. The fixed point (x+, y+) is an
attracting fixed point for −(1− b)2/4 < a < 3(1− b)2/4 and a saddle for a > 3(1− b)2/4. The fixed
point (x−, y−) is a saddle for all a > −(1− b)2/4.
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4.2 Period Doubling

Interestingly, at a = a1 = 3(1 − b)2/4 where the fixed point (x+, y+) goes from an attracting fixed
point to a saddle fixed point, we also see the first periodic orbit of period 2 emerge. We can find
these period-2 points by solving for fixed point of H2

a,b, i.e., points (x, y) such that

(x, y) = H2
a,b(x, y) =

(
−a(−ax2 + y + 1)2 + bx+ 1,−bax2 + by + b

)
.

From the y-coordinate, we see that

y =
b− abx2

1− b
, (9)

which upon substituting in the x-coordinate shows that fixed points of the x-coordinate are the roots
of the polynomial

P (x) := −a3x4 + 2a2x2 − (1− b)3x+ (1− b)2 − a.

Now, since the fixed points of Ha,b are also fixed points of H2
a,b, we know that the x-coordinate

of the fixed points of Ha,b are also roots of P (x). Hence, this shows that P (x) = Q(x)R(x) with
Q(x) = −ax2 − (1 − b)x + 1, the polynomial that has the fixed points of Ha,b as its roots, and R
some degree-2 polynomial. Using polynomial long division, we see that

R(x) = a2x2 − (1− b)ax+ (1− b)2 − a.

Then solving for the roots of R and substituting this in the y-coordinate 9, we get that the other
two fixed points of H2

a,b are

x2,+ =
(1− b) +

√
4a− 3(1− b)2

2a
, y2,+ =

b− abx2
2,+

1− b
, (10)

and

x2,− =
(1− b)−

√
4a− 3(1− b)2

2a
, y2,− =

b− abx2
2,−

1− b
, (11)

which are real for a ≥ a1 and coincide with (x+, y+) when a = a1.

Figure 7: Stability of the fixed points (x2,±, y2,±) of H
2
a,b in a parameter plane with 0 < a < 4 and

|b| < 1. The black shaded area is where the fixed point is not real, blue is used when the fixed point
is attracting, and green means the fixed point is a saddle point.
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Also, since Ha,b(x2,+, y2,+) = (x2,−, y2,−) and vice versa, they form a period two cycle of Ha,b. Then,
as a result of 2.8, these have the same stability as fixed point of H2

a,b and period-2 points of Ha,b.

Then, as shown in figure 7, these are attracting fixed points of H2
a,b for some interval a > a1 and,

hence, form an attracting period-2 cycle of Ha,b. Therefore, we see a period doubling bifurcation of
Ha,b at a = a1.

Proposition 4.2. At a = a1 := 3(1− b)2/4, the map Ha,b undergoes a period doubling bifurcation,
where

• the fixed point (x+, y+) is attracting for a < a1;

• for a ≥ a1, a period-2 cycle emerges consisting of (x2,−, y2,−) and (x2,+, y2,+) that are equal
and coincide with (x+, y+) at a = a1;

• for a > a1, the period-2 cycle consisting of (x2,−, y2,−) and (x2,+, y2,+) is attracting and
(x+, y+) is no longer attracting.

From figure 7, it also becomes evident that the period-2 cycle is only attracting for a certain region
with a ≥ a1 and becomes a saddle later on. Solving for the hyperbolic points of DH2

a,b(x+, y+)

and DH2
a,b(x−, y−) shows that the curve where this occurs is given by a2 := (5b2 − 6b + 5)/4, so

that the period 2 cycle is attracting for a1 < a < a2 and a saddle for a > a2. For a > a2, we also
see a period-4 cycle emerge upon numerical investigation, which hints at another period doubling
bifurcation at a = a2 and, consequently, a period doubling cascade as a increases.

Figure 8 provides further evidence of such a period doubling cascade occurring for a fixed pa-
rameter b = 0.2. In figure 8 only the x coordinate is shown since yn = bxn−1, i.e., the last thousand
y-coordinates would look almost identical, except for 1 point each, to a scaled version of the last
thousand x-coordinates. In addition, the respective distance of the a parameter values for which
consecutive period doubling bifurcations occur also appear to be decreasing. This pattern appears
to continue until, eventually, the period starts doubling erratically in a small neighbourhood ap-
proximately before a ≈ 1.149, which can be seen from figure 9 and figure 10. After this point, the
periods, if they exist, appear unidentifiable and the complexity exhibited hints at chaos. In fact, a
period doubling cascade is a common route in which system become chaotic (Alligood et al., 1996).

Figure 8: The x-coordinate of the last 103 iterations of an orbit of 104 iterations with (x0, y0) = (0, 0),
provided the orbit did not diverge, with b = 0.2, 0.1 < a < 1.7 and stepsize ∆a = 10−4.
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Figure 9: The x-coordinate of the last 103 iterations of an orbit of 104 iterations for (x0, y0) = (0, 0)
in the range 0.7 < x < 1.3, provided the orbit did not diverge, with b = 0.2, 1.1 < a < 1.325 and
step size ∆a = 10−5. This corresponds to the enclosed area of the red rectangle in 8.

Figure 10: The x-coordinate of the last 103 iterations of an orbit of 104 iterations for (x0, y0) = (0, 0)
in the range 1.13 < x < 1.18, provided the orbit did not diverge, with b = 0.2, 1.140 < a < 1.167
and step size ∆a = 10−6. This corresponds to the enclosed area of the blue rectangle in 9.

Interestingly, in the region where the behaviour appears chaotic, there are also certain intervals where
the systems appears to return to a periodic cycle only to return to chaotic behaviour after another
period doubling cascade. This behaviour is quite similar to that of the family of one-dimensional
quadratic maps, of which a famous representative is the logistic map defined by the recurrence

xn+1 = rxn(1− xn) with r > 0,
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which is known to be chaotic for certain parameter values (Alligood et al., 1996). In addition,
for the Hénon map, which is a two-dimensional quadratic map, we see that the dynamics of the
x-component reduce to the recurrence

xn+1 = 1− ax2
n + byn = 1− ax2

n + bxn−1,

and that whenever b = 0, this reduces to the dynamics of

Fa(x) = 1− ax2, (12)

which is also a one-dimensional quadratic map. This map has been the subject of an article titled
On iterations of 1−ax2 on (−1, 1) (Benedicks & Carleson, 1985), where this map is investigated for
parameter values 0 < a < 2. In this article, among many other things, it is shown that there exists
some subset ∆ ⊂ (0, 2), with positive Lebesgue measure, where the map has no attracting periodic
orbits for a ∈ ∆.

Theorem 4.3. Define Fa : (−1, 1) → (−1, 1) by Fa(x) = 1− ax2, then there exists a set ∆ ⊂ (0, 2)
of positive Lebesgue measure such that Fa has no attracting periodic cycle for all a ∈ ∆ (Benedicks
& Carleson, 1985).

Figure 11: The last 103 iterations of an orbit of 104 iterations of Fa(x) = 1 − ax2 with x0 = 0 for
0 < a < 2 and stepsize ∆a = 10−4.

Figure 11 also shows numerical support for this theorem since it appears that the region where the
system is not attracted to a periodic cycle, which would contain ∆, has positive Lebesgue measure.

In fact, the main theorem presented in Benedicks and Carleson, 1985 is far stronger than the-
orem 4.3. Namely, in this paper it is also shown that there exists some ∆ ⊂ (0, 2) of positive
one-dimensional Lebesgue measure such that the dynamics of Fa(x) = 1 − ax2 are chaotic for all
a ∈ ∆. Here, it should be noted that we have yet to define the type of chaos that this refers to,
which is done in section 5.2, and that this is not necessarily the same type of chaos as Devaney’s
topological chaos introduced in the preliminaries.

The similarity of figure 11 to figure 8 might also suggest that for small |b|, the Hénon map, when
considered as the recurrence xn+1 = 1 − ax2

n + bxn+1, can be thought of as a perturbation of the
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system defined by Fa(x) = 1 − ax2. This approach to the Hénon map, by viewing it as a pertur-
bation of Fa(x) = 1 − ax2 for small values of |b|, is in fact what was used to derive, arguably, the
most well-known results for the Hénon map proven by means of rigorous analysis in Benedicks and
Carleson, 1991. In many ways, the work presented in Benedicks and Carleson, 1991 builds on the
results of Benedicks and Carleson, 1985 for the map Fa(x) = 1 − ax2. In section 6.2, the main
theorem of Benedicks and Carleson, 1991 is discussed in further detail.

Now, to further investigate the region where the Hénon map appears to exhibits chaotic behaviour,
the concept of Lyapunov exponents is useful. The next section provides a brief introduction to
Lyapunov exponents along with a numerical computation of the Lyapunov exponents of the Hénon
map for a set of parameters.
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5 Lyapunov Exponents

The concept of Lyapunov exponents was, as the name suggests, originally thought of by Aleksandr
Lyapunov in his PhD thesis The General Problem of the Stability of Motion (Lyapunov, 1892). In
addition, in his thesis, one of the first definitions of the stability of trajectories of dynamical systems
was given alongside the idea of Lyapunov functions.

Definition 5.1 (Lyapunov stable). Let (Rn, ϕ, T ) be a dynamical system. A trajectory ϕ(x0, t) is
stable if for any ϵ > 0 there exists a δ > 0 such that ||ϕ(x0, t)− ϕ(x, t)|| < ϵ for all t ≥ 0 whenever
x ∈ B(x0; δ). A stable trajectory ϕ(x0, t) is asymptotically stable if there exists a δ > 0 such that
||ϕ(x0, t)− ϕ(x, t)|| → 0 as t → ∞ whenever x ∈ B(x0; δ).

Now, where the definition of Lyapunov stable and Lyapunov asymptotically stable allows for a
characterization of trajectories based on whether neighbouring trajectories stay sufficiently close or
whether neighbouring trajectories get attracted to it, it does not precisely quantify to what extent
they do so. Then, as a way of quantifying the exponential rate of which a particular perturbation
to a trajectory grows in distance to it, Lyapunov proposed the concept of characteristics exponents.
Loosely speaking, given a perturbation to a trajectory, where δ(t) measures the distance over time,
which is assumed to approximately grow in an exponential manner, the characteristic number λc is
such that δ(t)eλct neither diverges to infinity nor converges to zero (Pikovsky & Politi, 2016).

However, nowadays they are usually defined as the value that approximately measures the rate
of exponential growth of the distance, which would corresponds to −λc if λc is the characteristic
number as defined by Lyapunov. More precisely, using the notation of the paragraph above, the
Lyapunov exponent is the number λ such that δ(t) ≈ δ(0)eλt (Pikovsky & Politi, 2016).

5.1 Oseledets’ Multiplicative Ergodic Theorem

While Lyapunov’s original definition of characteristic exponents provides a useful intuition and mo-
tivation for the use of such exponents, it fails to provide any direct method of computing them and it
does not guarantee that they exits. As a result, we do not define them as such. That being said, for
discrete dynamical systems defined by iterated C1 maps, we can obtain similar numbers by relying
on the fact that, locally, the map is well approximated by its linearization.

Namely, suppose F : U → U where U ⊂ Rn is some domain and F is C1. Then, a small circle
centered at x ∈ U is mapped to an ellipsoid centered at F (x) if we approximate F with the lin-
earization DFx, provided DFx is nonsingular. In particular, the circle’s center x is mapped to F (x)
and its semi-axes are stretched or contracted along some of its directions. Moreover, when DFx is
diagonalizable, this stretching effect along with the semi-axes that it occurs is characterized by the
eigenvalues and corresponding eigenvectors of DFx. Similarly, the eigenvalues and eigenvectors of
DFN

x give an approximation to how nearby points to x are mapped and the expansion behaviour
of the system. Figure 12 presents an illustrative example of how a circle is mapped to an ellipse by
the linearization of a C1 map of the plane.
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Figure 12: Example of how, with f : R2 → R2 a C1 map, fn maps a disk centered at v0 to an
ellipsoid centered at fn(v0) when approximating f with its linearization (Dfn)v0 . Figure taken
from Alligood et al., 1996.

Now suppose, for illustrative purposes, we simplify the case further and assume that the linearization
DFx is equal to a constant matrix A for all x ∈ U . Suppose also that all eigenvalues of A are distinct
and satisfy |λ1| > . . . > |λn| > 0 with respective eigenvectors v1, . . . , vn. Then, for a small v ∈ Rn

with v =
∑n

i=1 civi, we have

FN (x+ v)− FN (x) ≈ (DFN )x(v) = DFFN−1(x) ◦ . . . ◦DFx(v) = ANv =

n∑
i=1

ciA
Nvi =

n∑
i=1

ciλ
N
i vi,

where, assuming c1 ̸= 0, the right-hand sides tends to the direction corresponding to the dominant
eigenvalue λ1, and thus for sufficiently large N can be approximated with

||FN (x+ v)− FN (x)|| ≈ ||c1λN
1 v1|| = eN log |λ1|||c1v1|| ∝ eN log |λ1|||v||.

Now adopting the notation δ(N) = FN (x+ v)− FN (v), where δ(0) = v, we see that this translates
to

||δ(N)|| ∝ eN log |λ1|||δ(0)||,

which would imply that δ(N)e−N log |λ1| neither diverges to infinity nor converges to zero as N → ∞.
As a result, we see that − log |λi| corresponds to Lyapunov’s definition of the characteristic exponent
of x in the direction of v and, hence, log |λi| would be the Lyapunov exponent at x in the direction of
v. In particular, when k is the smallest index such that ck ̸= 0, then log |λk| would be the Lyapunov
exponent at x in the direction of v. So, we see that the set of possible Lyapunov exponents at x
is given by log |λi|, where λi are the eigenvalues of A. Moreover, when Vk = span{vj : k ≤ j ≤ n}
and Vn+1 = {0}, we see that the Lyapunov exponent at x in the direction of v is log |λk| whenever
v ∈ Vk \ Vk+1.

It should be noted that this example is indeed an oversimplification. However, as it turns out,
it provides some useful intuition for the multiplicative ergodic theorem, which is an important re-
sult regarding the existence of Lyapunov exponents that was proven in 1968 by Valery Oseledets
(Oseledets, 1968).

26



Theorem 5.2 (Oseledets’ Multiplicative Ergodic Theorem). Let F : U → U be C1 where U ⊂ Rn

is some domain. In addition, suppose F defines an ergodic probability preserving system and that
DFx satisfies some further regularity properties. Then, for almost all x ∈ U , meaning that the
complement of this set has Lebesgue measure zero, there exists numbers

λ1 > · · · > λk, (13)

and subspaces

TxU ∼= Rn = V 1 ⊋ V 2 ⊋ · · · ⊋ V k ⊋ V k+1 = {0}

such that for all v ∈ V i \ V i+1, we have

lim
N→∞

1

N
log ||(DFN )xv|| = λi. (14)

Furthermore, the numbers λi are constant along the orbit of x defined by F .

The formulation of the theorem is a weaker result than the original theorem and an adaptation of
the formulation presented in (Filip, 2017).

Technicalities regarding the the probability preserving nature of the system and assumptions on
DFx have intentionally been omitted. A more formal treatment of the explicit assumptions and a
proof of the theorem requires concepts from ergodic theory. Given the fact that this would require
quite a few preliminaries, especially from measure theory, we do not cover it. Instead, for a relatively
brief overview of the definitions for the formal presentation of theorem 14 along with a proof of the
theorem, we refer the reader to Filip, 2017. For a more extensive and detailed discussion of the
aforementioned, we refer the the reader to Viana, 2014.

As a result of theorem 5.2 and in line with the previous discussion regarding the relation of Lya-
punov exponents and 14, we formulate a more practical definition of Lyapunov exponents, which
also accounts for the fact that the numbers λi are constant along orbits.

Definition 5.3 (Lyapunov Exponents). Let F : U → U where U ⊂ Rn is some domain and F is
C1. For x ∈ U and v ∈ Rn the corresponding number λ such that

λ = lim
N→∞

1

N
log ||(DFN )xv||, (15)

provided the limit exists, is the Lyapunov exponent of x in the direction of v. The set of all possible
Lyapunov exponents for an orbit defined by x ∈ U is called the Lyapunov spectrum of this orbit and
coincides with the set of numbers λ1 > · · · > λk given by 13. For purposes of simplicity, we often
denote the Lyapunov spectrum as λ1 ≥ · · · ≥ λn, where, in the notation of theorem 14, the
i-th number of 13 is repeated dimV i − dimV i+1 many times.

Defining Lyapunov exponents as such, i.e., we condition on whether the limit given by 15 exists, has
the benefit that it is easier to work with numerically, and that we do not have to check whether the
conditions of theorem 14 are satisfied. Hence, the fact that some of the conditions of theorem 5.2
have been omitted, does not cause many problems for our purposes.

Despite formulating the definition as such, we see that this definition of Lyapunov exponents corre-
sponds rather well with Lyapunov’s idea of characteristics exponents. Namely, for x ∈ U and some
sufficiently small perturbation x+ v ∈ U with corresponding Lyapunov exponent λ, we see that for
sufficiently large N

||FN (x+ v)− FN (x)|| ≈ ||(DFN )xv|| ∝ eNλ, (16)
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meaning that they indeed provide a good classification of the rate of exponential separation of nearby
trajectories, which was originally intended by Lyapunov. In this way, the Lyapunov exponents pro-
vide a way to classify the system’s sensitivity to initial conditions along orbits.

Also, as a consequence of the multiplicative ergodic theorem, the largest Lyapunov exponents λ1 of
an orbit defined by x ∈ U is in some sense the most indicative of the sensitivity of the system along
orbits. Namely, since

λ1 = lim
N→∞

1

N
log ||(DFN )xv|| for all v ∈ V 1 \ V 2,

where V 1 = Rn, and V 2 is a subspace of Rn of dimension strictly less than n and thus has Lebesgue
measure zero as a subset of Rn, we see that

λ1 = lim
N→∞

1

N
log ||(DFN )xv|| for almost all v ∈ Rn. (17)

Henceforth, whenever it is said that a property holds almost everywhere or for almost all, it means
that the complement of this set has Lebesgue measure zero as a subset of Rn. As a consequence of
17, whenever v ∈ Rn is some perturbation with uniform and randomly chosen direction, then the
Lyapunov exponent in that direction is the largest Lyapunov exponent λ1 with probability 1.

5.2 Classification

Besides the Lyapunov spectrum being equal for points along an orbit, it is generally also the case
that the Lyapunov exponents are equal for all initial points in the basin of a attraction of a particular
attractor (Parker & Chua, 1989; Pikovsky & Politi, 2016). Roughly speaking, this is due to the fact
that the Lyapunov exponents along an orbit are defined as a limit along that particular orbit, which
causes the transient behavior to be irrelevant. As a result, points lying in the basin of attraction
of the same attractor will have the same Lyapunov spectrum since their limiting behaviour will be
fairly similar.

Remark 5.4. Suppose F : U → U is C1 and U ⊂ Rn. If x, y ∈ U satisfy ω(x) = ω(y) then the
Lyapunov spectrum of x and y are the same. As a consequence, if Λ is an attractor and x, y are
two points in its basin of attraction, then the Lyapunov spectrum of x and y are the same (Parker
& Chua, 1989).

This observation is presented in the form of a remark since there are generally exceptional cases for
which they are not true. For this reason, we present this observation and the following observations
in the form of remarks. Although these remarks are not fully rigorous, they are still quite accurate
in the sense that the exceptional cases are rare and usually happen on sets of Lebesgue measure
zero (Pikovsky & Politi, 2016; Viana, 2014). So, for the purposes of numerical investigation, these
remarks are quite sound and serve as useful heuristics.

Despite not rigorously proving these remarks, we will still motivate them by providing plausibil-
ity arguments. For a more formal treatment of these observations and the proof of their rigorous
analogues, we refer the reader to Viana, 2014.

Now, given the observation of remark 5.4, it follows that the Lyapunov spectrum can also be con-
sidered as a property of the attractor. In fact, it is quite indicative of the attractor type (Parker &
Chua, 1989; Pikovsky & Politi, 2016). In this way, the Lyapunov spectrum of points in its basin of
attraction can be used to classify the attractor type. For instance, whenever an orbit is in the basin
of attraction of an attracting k-periodic cycle of F , the Lyapunov spectrum of this orbit is related
to the eigenvalues of the periodic points when considering them as fixed points of F k.
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Remark 5.5. Let F : U → U where U ⊂ Rn is some domain and F is C1. If x ∈ U is in the
basin of attraction of an attracting k-periodic cycle and y ∈ U is any point on that cycle, then the
Lyapunov exponents along the orbit of x are λi =

1
k log |mi| where mi are the eigenvalues of (DF k)y

(Parker & Chua, 1989).

To provide some intuition, the following plausibility argument is quite useful, namely suppose x ∈ U
is in the basin of attraction of an attracting k-periodic cycle of a C1 map F : U → U and y ∈ U is
any periodic point on that cycle. Since points lying in the same basin of attraction have the same
Lyapunov exponents by remark 5.4, it follows that the Lyapunov spectrum along the orbit of x is
equal to the Lyapunov spectrum along the periodic orbit of y, which x tends towards. Suppose also,
for the sake of argument, that the eigenvalues m1, . . . ,mn of (DF k)y are real distinct and satisfy
|m1| > · · · > |mn| > 0 with eigenvectors v1, . . . , vn.

Then, if λ is the Lyapunov exponent of y in the direction of vi, we see that

λ = lim
N→∞

1

N
log ||(DFN )yvi||

= lim
l→∞

1

kl
log ||(DF kl)yvi||

= lim
l→∞

1

kl
log ||(DF k)lyvi||

= lim
l→∞

1

kl
log ||ml

ivi||

= lim
l→∞

1

kl
(l log |mi|+ log ||vi||)

=
1

k
log |mi|,

where we implicitly used that subsequences of convergent sequences tend to the same limit, the
chain rule, and k-periodicity of the orbit of y. Therefore, we see that λi =

1
k log |mi| for i = 1, . . . , n,

which gives the full Lyapunov spectrum. As a reminder, the reason why the choice of periodic point
on the cycle is irrelevant is because of proposition 2.8.

From this observation, we can also obtain two other useful corollary heuristics, which we again
present as remarks. Namely, whenever a k-periodic cycle is attracting and y is a point on the cy-
cle, the eigenvalues of (DF k)y are strictly less than 1 in absolute value and, hence, all Lyapunov
exponents are negative.

Remark 5.6. Let F : U → U where U ⊂ Rn is some domain and F is C1. If x ∈ U is in the basin
of attraction of an attracting periodic cycle then all Lyapunov exponents of the orbit of x are strictly
negative.

In addition, in the case of period-doubling bifurcations, the Lyapunov exponents also behave in a
typical manner. To illustrate, suppose a C1 map Fa : U → U now smoothly depends on a param-
eter a and has a period doubling bifurcation at a = a∗, where an k-periodic cycle is attracting for
a < a∗, and for a > a∗ we see an attracting 2k-periodic cycle emerge out of the k-periodic cycle
which is no longer attracting. Now consider some x ∈ U which lies in the basin of attraction of the
k-periodic cycle for a < a∗ and in the basin of attraction of the 2k-periodic cycle for a > a∗. Then,
for both a < a∗ and a > a∗, the Lyapunov exponents of the orbit of x will be negative by remark 5.6.

In addition, as a ↑ a∗, the largest Lyapunov exponent of the orbit of x will tend to 0. To see
why, let y be a point on the k-periodic orbit and let m1 be its dominant eigenvalue, meaning largest
absolute value. Then, using the observation of remark 5.5, we have λ1 = 1

k log |m1|. Now, since the
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k-periodic cycle is attracting for a < a∗, and it is no longer attracting for a > a∗, this implies that
|m1| < 1 for a < a∗ and |m1| > 1 for a > a∗. As a result, since we assumed that F depends smoothly
on a, we see that |m1| ↑ 1 as a ↑ a∗ and, hence, this implies λ1 ↑ 0 as a ↑ a∗. In a similar manner, we
can show that λ1 ↑ 0 as a ↓ a∗ where λ1 now corresponds to the largest Lyapunov exponent of the
attracting 2k-periodic cycle for a > a∗. This observation is summarized in the following heuristic.

Remark 5.7. Suppose Fa : U → U is a C1 map that depends smoothly on the parameter a where
U ⊂ Rn is some domain. Suppose also that at a = a∗ a period doubling bifurcation occurs. Then
whenever x ∈ U lies in the basin of attraction of the respective periodic cycles for both a < a∗ and
a > a∗ and λ1 is the largest Lyapunov exponent of the orbit of x, then λ1 ↑ 0 as a → a∗.

In fact, a largest Lyapunov exponent of zero is typical of bifurcations (Pikovsky & Politi, 2016).
Also, because of 16 and 17, a largest Lyapunov exponent of zero implies that for sufficiently large
N , we have

||Fm(x+ v)− Fm(x)|| ∝ 1

for all m ≥ N and for almost all v ∈ Rn, meaning that

||Fm(x+ v)− Fm(x)|| ≈ C,

where C is some real constant, for all m ≥ N and for almost all v ∈ Rn. For this reason, the case
where the largest Lyapunov exponent is zero is also classified as an invariant circle.

Lastly, we see that a strictly positive largest Lyapunov exponent at a point x corresponds rather
well with the intuitive understanding of what it means to have sensitive dependence on initial con-
ditions at the point x, since 16 and 17 imply that almost all nearby obits will diverge from the orbit
of x in an exponential manner. Similarly, in the case of sensitive dependence on initial conditions,
it should be expected that the largest Lyapunov exponent is strictly positive (Broer & Takens, 2009).

For this reason, for practical purposes, a point x can be considered as having sensitive depen-
dence on initial conditions if it has a strictly positive largest Lyapunov exponent. Now, whenever we
want to use this to classify orbits as chaotic, we require a few more assumptions. For instance, the
case of a positive Lyapunov exponent for some point in an open neighborhood where points diverge
towards infinity does not correspond well with our intuitive understanding of chaos, since the orbits
are quite predictable. The definition provided by Alligood et al., 1996, which can be attributed to
James Yorke, excludes such cases.

Definition 5.8 (Yorke’s definition of a chaotic orbit). Let F : U → U where U ⊂ Rn is a domain.
Suppose x ∈ U and that the orbit of x is bounded. Then the orbit of x is said to be chaotic if

1. F is not asymptotically periodic;

2. the largest Lyapunov exponent of x is strictly positive;

3. no Lyapunov exponent of x is equal to zero.

Here, not asymptotically periodic means that the orbit does not tend towards a periodic orbit (Alligood
et al., 1996).

The reason why the last condition is relevant is best shown with an illustrative example presented
in Alligood et al., 1996. Namely, consider the map F : R2 → R2 with polar coordinates given by

F (r, θ) = (r2, θ + q),
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where q is such that q
2π ̸∈ Q. It is not difficult to see that points with r > 1 will diverge towards

infinity and that point with r < 1 will converge towards the origin. In addition, points with r = 1
will always lie on the unit circle and these orbits are not asymptotically periodic since q

2π ̸∈ Q. Also,
since

(DF )(r,θ) =

[
2r 0
0 1

]
,

we see that the Lyapunov exponents for points on the unit circle are λ1 = log 2 and λ2 = 0, since
their orbits always stay on the unit circle. However, the orbits on the unit circle behave quite
predictably, since they just spiral around the origin with a constant angle q. Hence, despite the
fact that such orbits have a positive Lyapunov exponent and are not asymptotically periodic, the
behaviour is still quite predictable.

Then, using the definition of a chaotic orbit, a definition is given of a chaotic set and a chaotic
attractor.

Definition 5.9 (Yorke’s definition of a chaotic attractor). Let F : U → U where U ⊂ Rn is a
domain and let x ∈ U . Then the ω-limit set ω(x) is said to be a chaotic set if there exists a y ∈ ω(x)
such that the orbit of y is chaotic in terms of definition 5.8. In addition, an attractor Λ is said to
be a chaotic attractor if Λ is a chaotic set (Alligood et al., 1996).

It should be noted that the implied definition of an attractor here is somewhat different than that
of definition 2.10. For this latter definition, it is required that there exists arbitrarily small neigh-
bourhoods U of the attractor Λ such that ω(y) ⊂ Λ for all y ∈ U . However, Yorke’s definition of an
attractor is less restrictive, and more practical to work with for numerical purposes

Definition 5.10 (Yorke’s definition of an Attractor). Let F : U → U where U ⊂ Rn is a domain.
A ω-limit set ω(x) for x ∈ U is an attractor, if there exists V ⊂ U with non-zero n-dimensional
Lebesgue measure such that ω(y) ⊂ ω(x) for all y ∈ V (Alligood et al., 1996).

Using Yorke’s definition of a chaotic attractor, we can then formulate a useful heuristic, which we
again present as a remark. This remark is formulated in a manner that is somewhat vague but will
nevertheless be quite useful for numerically classifying chaotic attractors.

Remark 5.11. Suppose F : U → U is a diffeomorphism and U ⊂ Rn is some domain. Suppose
x ∈ U is some initial point chosen with some degree of arbitrariness. If the forward-orbit of x stays
in some bounded region and the largest Lyapunov exponent of x is strictly positive with no other
Lyapunov exponent of the Lyapunov spectrum of x equal to 0, then, except for rare cases, the orbit
of x tends towards a chaotic attractor Λ in terms of definition 5.9

Similar to the previous remarks, we can motivate this heuristic by a plausibility argument. Namely,
suppose F : U → U is a diffeomorphism and U ⊂ Rn is some domain. Let x ∈ U be some arbi-
trary initial point and suppose it satisfies the conditions above. Then, since the forward orbit of x is
bounded, there exist some compact set V ⊂ Rn, not necessarily contained in U , such that Fm(x) ∈ V
for all m ≥ 0. Hence, by the Bolzano-Weierstrass property, there exists some ω(x) ⊂ V , nonempty.
In addition, since x ∈ U is assumed to be chosen in an arbitrary manner, we can classify ω(x)
as an attractor in terms of definition 5.10 with a high degree of certainty. Namely, the fact that x
is somewhat arbitrary implies that the set with this ω-limit set likely has positive Lebesgue measure.

In addition, we can choose some y ∈ ω(x) such that the Lyapunov spectrum of y is the same
as the Lyapunov spectrum of x by remark 5.4. Then, the fact that the largest Lyapunov exponent is
strictly positive implies that ω(x) is not an attracting periodic cycle by remark 5.6. Also, because F
is a diffeomorphism, this implies with a high degree of certainty that ω(x) is not a periodic cycle of
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saddle type, since such cycles only attract nearby orbits along their local stable manifold of Lebesgue
measure zero (see section 6.2). Hence, with a high degree of certainty, we can classify the orbit of y
as chaotic by definition 5.8, since the Lyapunov spectrum has a strictly positive largest Lyapunov
exponent, no other Lyapunov exponent is zero, and the orbit of y is not asymptotically periodic.
Therefore, the attractor ω(x) contains a chaotic orbit, which by definition 5.9 implies that ω(x) is a
chaotic attractor.

5.3 Lyapunov exponents of the Hénon map

For the computation of the Lyapunov exponents, we relied on the algorithm developed by Benettin
et al., 1980 that uses the Gram-Schmidt orthonormalization procedure. For the details of this
algorithm along with a sketch of the derivation, we refer the reader to the appendix A.1. For all the
following figures in this section, this algorithm was used.

Figure 13: The above figure shows the last 103 iterations of an orbit of 104+103 iterations, provided
the orbit did not diverge, and the figure below shows the Lyapunov exponents for these orbits. The
largest Lyapunov exponent λ1 is marked black if λ1 < 0 and red if λ1 > 0. The other Lyapunov
exponent λ2 is marked blue. The range of a values is 0.1 < a < 1.7 with stepsize ∆a = 10−4 and
b = 0.2. The dotted line in the Lyapunov exponents figure corresponds to λ = 1

2 log(0.2). The initial
point of this orbit is chosen in close proximity to (x+, y+) (see 5).

Figure 13 illustrates the same scenario of figure 8 where figure 13 now also shows the Lyapunov
exponents. From figure 13, we see that both Lyapunov exponents are indeed observed to be neg-
ative for the parameters where the orbit tends to a periodic cycle. This is as predicted by remark 5.6.

Notice also that at values a = a∗ where a period doubling bifurcation occurs, we observe that
λ1 ↑ 0 as a → a∗ and that λ1 = 0 at a = a∗, which is as predicted by remark 5.7. Also, for
the regions after the period doubling cascade where the systems appears to exhibits aperiodic and
erratic behaviour, we observe a positive largest Lyapunov exponents. By remark 5.11, this can be
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considered as empirical evidence of chaos and a chaotic attractor in terms of definition 5.8 and defini-
tion 5.9. For values of a > 1.622... the orbits diverged towards infinity and no attractor was detected.

In addition, in figure 13, we see that that the largest Lyapunov exponents λ1 appears to be the
reflection of the smaller Lyapunov exponent λ2 about the line λ = 1

2 log(0.2). As it turns out, this is
due to the fact that for maps with constant determinant the Lyapunov exponents satisfy a relation
with respect to that determinant.

Proposition 5.12. Let F : U → U be C1 with a U ⊂ Rn a domain. Suppose that det(DFx) = c
for all x ∈ U where c is a nonzero constant. If λ1 ≥ · · · ≥ λn are the Lyapunov exponents of x ∈ U ,
then

log(|c|) =
n∑

k=1

λi.

This result is proven in Viana, 2014 and follows from the fact that the sum of the Lyapunov expo-
nents measures the rate of volume contraction/expansion along an orbit. Although we do not give a
proof of this statement, in section 6.1.2 and the appendix A.1, a plausibility argument is presented
between the relation of the sum of the Lyapunov exponents and the rate of volume contraction.

Using proposition 5.12, we can derive a useful corollary for the Hénon map.

Corollary 5.13. Suppose λ1 ≥ λ2 are the Lyapunov exponents for some (x, y) ∈ R2 of Ha,b. Then,

λ1 + λ2 = log(|b|),

and

λ1 ≥ 1

2
log(|b|), λ2 ≤ 1

2
log(|b|), (18)

which also implies that λ2 < 0, since |b| < 1.

This corollary is trivial to show and follows directly from proposition 5.12 and the fact that the
determinant of the linearization of Ha,b is equal to −b everywhere, which we showed in section 3.2.

From corollary 5.13, we also see that, for orbits of the Hénon map, it is not possible for both
Lyapunov exponents to be positive due to the fact that the system is dissipative. The cases where
an attractor of a system is observed to have more than one positive Lyapunov exponents are also
sometimes referred to as hyperchaos. This term was first used by Rössler, 1979 upon observing two
positive Lyapunov exponents for the flow of a four-dimensional system.

Using a similar approach as for the fixed parameter b = 0.2 and 0.1 < a < 1.7, we can also
classify the attractor and behavior of the system in a larger parameter plane. Figure 14 shows such
a classification of the system based on Lyapunov exponents, which is also commonly referred to as
a Lyapunov diagram. The meaning of the colours is given in table 1. Figure 16 shows the largest
Lyapunov exponent in the same parameter plane and using the same data as the Lyapunov diagram
of figure 14. The Lyapunov exponents used for these figures correspond to orbits with initial points
in close proximity to (x+, y+) (see 5).
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Figure 14: Lyapunov diagram of the Hénon map for the range −0.6 < b < 0.7 and 0.5 < a < 2.5
with a parameter grid of 1500× 1500. The colour coding is given in table 1.

Colour Lyapunov Exponents Attractor Type

Dark Green 0 > λ1 > λ2 Periodic cycle of node type
Blue 0 > λ1 = λ2 Periodic cycle of focus type
Light Green 0 = λ1 > λ2 Invariant circle
Red λ1 > 0 > λ2 Chaotic Attractor
White - No attractor detected

Table 1: The meaning of the colours of the Lyapunov diagram of figure 14. The colour coding is
inspired by Garst, 2018.

In the diagram of figure 14 and in table 1, for the cases where both Lyapunov exponents are strictly
negative the attractor is classified as a periodic cycle, which is motivated by the observation of
remark 5.6. In addition, according to remark 5.5, whenever an orbit tends towards an attract-
ing n-periodic cycle the Lyapunov exponents are λi = 1

n log |mi| where mi are the eigenvalues of
(DHn

a,b)(x,y) with 1 > |m1| ≥ |m2| > 0 and where (x, y) is any point on the attracting cycle. Hence,
whenever 0 > λ1 = λ2 this implies that |m1| = |m2|. Also, since the eigenvalues of (DHn

a,b)(x,y)
are roots of a degree two polynomial with real coefficients, whenever the eigenvalues m1 and m2 are
complex, they are conjugate to each other and, as a result, satisfy |m1| = |m2|. So, locally the point
(x, y) is an attracting fixed point of Hn

a,b that attracts nearby orbits equally along all directions in a
possibly spiraling manner, where the spiraling occurs if m1 and m2 are complex. Such an attracting
fixed point is often characterised as an attracting fixed point of focus type and figure 15a provides
an example of how a typical attracting fixed point of focus type looks like.
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Through a similar line of reasoning, the case where 0 > λ1 > λ2 implies that 1 > |m1| > |m2| > 0
and that both m1 and m2 are real. If v1 and v2 are the respective eigenvectors of m1 and m2,
then locally the point (x, y) is an attracting fixed point of Hn

a,b where nearby orbits converge faster
towards (x, y) along the direction of the v2, which is the eigenvector of the smaller eigenvalue m2,
and almost all orbits will visually approach (x, y) along the direction of v1. Such an attracting fixed
is often characterised as an attracting fixed point of node type and figure 15b gives an illustrative
example of how such a fixed point might look like.

(a) Focus type fixed point (b) Node type fixed point

Figure 15: Examples of how an attracting fixed point of focus type and node type attract orbits of
a discrete system. The dotted lines are used to represent consecutive iterations.

In figure 16 and table 1, the case where the largest Lyapunov exponent λ1 is zero is classified as an
invariant circle, where a motivation for this classification is provided in the previous section. For
the parameter values a = a1 := 3(1− b)2/4 and a = a2 := (5b2 − 6b+ 5)/4, where period doubling
bifurcations occur, we observe in figure 16 that the largest Lyapunov exponent is zero. These find-
ings agree with the expectation presented in remark 5.7.

For the cases where the Lyapunov exponents λ1 and λ2 satisfy λ1 > 0 and λ2 < 0, the attrac-
tor is classified as a chaotic attractor by remark 5.11. In figure 14, we see numerical evidence for
the presence of a chaotic attractor in some region of the parameter plane where |b| is not too large
and a depending on b. For purposes of simplicity, in what follows, we shall now refer to this region
as the chaotic region.

From figure 14, it also seems that the parameter values in the chaotic region appear to have positive
two-dimensional Lebesgue measure in the parameter plane. It is in fact proven by Benedicks and
Carleson, 1991 that for small values of b > 0 there exists a set of a parameter values, depending on
b, with positive one-dimensional Lebesgue measure such that the Hénon map has a chaotic attractor
for such parameter values. We shall discuss this result in further detail in section 6.2.

In addition, in this larger region where a chaotic attractor is detected, there appear to be smaller
sets, of positive two-dimensional Lebesgue measure, where the system tends to a periodic cycle.
This was already observed for the parameter b = 0.2 in figure 13 and appears to persist throughout
the parameter plane. More strongly, it is conjectured, but not yet proven, that the chaotic region
is contained in the closure of the parameter values where the Hénon map has an attracting periodic
cycle.

Conjecture 5.14. The chaotic region is contained in the closure of the set of parameters where
the Hénon map has an attracting periodic cycle (Benedicks & Carleson, 1991; Eckmann & Ruelle,
1985).
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If the conjecture would be true, this would also imply that the Lyapunov exponents do continuously
depend on the parameters a and b, since the largest Lyapunov exponents would be strictly positive
for chaotic parameter values and strictly negative for parameter values with an attracting periodic
cycle. Hence, this would also explain why the Lyapunov exponents appear to be discontinuous as a
function of a for fixed b = 0.2 in this region, which we see in figure 13.

These periodic regions in the chaotic region have also been investigated and classified according
to the main periodicities that occur in them by Gallas, 1993. Here, since there are period doubling
cascades in these regions, the main period k of a region is such that the periodic cycles in this region
are of period k · 2n for some n ≥ 0.

Figure 17 and figure 18 provide a magnification of parts of the chaotic region observed in figure
14. Upon magnification of parts of the chaotic region, as seen in figure 17 and figure 18, we observe
that these periodic regions seem to assume peculiar shapes in the parameter plane. For reasons
that are hopefully clear, these regions are also referred to as shrimps and swallows (Nusse & Yorke,
1998). From figure 17 and figure 18, it also appears that these swallows and shrimps exists for even
smaller scales of the parameter plane, which might hint at a fractal structure.

Figure 16: Classification of the system based on largest Lyapunov exponents in a parameter plane

Figure 16 shows the value of the largest Lyapunov exponent in a parameter plane for the same data
used to generate the Lyapunov diagram in figure 14. This figure also provides numerical verification
for a result proven in Benedicks and Carleson, 1991.

Theorem 5.15. For all c < log 2 there is a b0 > 0 such that for all b ∈ (0, b0) there is a set E(b)
of positive one-dimensional Lebesgue measure such that for all a ∈ E(b) there is a point z0 in the
attractor of Ha,b such that

||(DHn
a,b)z0(0, 1)|| ≥ ecn,

and as a consequence λ1 ≥ c for this orbit (Benedicks & Carleson, 1991).
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Also, the largest positive Lyapunov exponent found in the 1500× 1500 parameter grid of figure 16
is λ1 ≈ 0.6851 < log 2 ≈ 0.6931 for (a, b) ≈ (1.9996,−0.0003). So, based on this observation, it
appears plausible that log 2 might also be an upper bound for the largest Lyapunov exponent for
the Hénon map in this parameter plane.

(a)

(b)

Figure 17: Lyapunov diagram and largest Lyapunov diagram for the range 0 < b < 0.2 and
1.4 < a < 1.8 with a 1000 × 1000 parameter grid. The color coding of the Lyapunov diagram is
given in table 1.
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(a)

(b)

Figure 18: Lyapunov diagram and largest Lyapunov diagram for the range 0.2 < b < 0.35 and
1.225 < a < 1.45 with a 1000× 1000 parameter grid. The color coding of the Lyapunov diagram is
given in table 1.
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6 Attractor

In this section, we investigate some properties of the attractor of the Hénon map. In particular, we
mostly focus on the attractor for the classic parameter values a = 1.4 and b = 0.3, originally selected
by Hénon, 1976. Firstly, we investigate properties relating to the fractal geometry of the attractor.
We conclude this section with a discussion regarding the relation of the attractor and the unstable
manifold of one of the map’s saddle fixed points.

6.1 Dimension

As discussed in section 3.2 and observed in figure 4, near the fixed point (x+, y+), the attractor of the
Hénon map appears to consist of curves folded closely on top of each other in a self-similar manner
bearing familiarity to a Cantor set. As a result, the attractor seems to be a fractal that consists
of the product of a one-dimensional manifold with a Cantor set. Then, in order to get a better
understanding of the attractor, and of such shapes in general, we will numerically compute some it
its fractal dimensions, which are dimensions that are not restricted to integers. In particular, in this
section, we compute the box-counting dimension and Lyapunov dimension of the Hénon attractor
along with a brief introduction to the respective dimension.

6.1.1 Capacity Dimension and Box-Counting Dimension

A simple type of fractal dimension is that of capacity dimension. This dimension is also commonly
referred to as the fractal dimension. However, for clarity purposes and to avoid confusion, since we
refer to multiple types of fractal dimension, we shall not use this name.

Capacity dimension can be introduced in an intuitive manner as an extension of integer dimen-
sion of simple shapes such as lines, squares, cubes, and spheres. Namely, suppose M is some smooth
manifold embedded in Rn of dimension 1 ≤ d ≤ n, necessarily an integer, and N(ϵ) is the minimum
number of volume elements (boxes, balls, etc.) in Rn of diameter ϵ > 0 required to cover M , then

N(ϵ) ∝ ϵ−d,

for sufficiently small ϵ. For instance, for S2 ⊂ R3 we have

N(ϵ) ∝ ϵ−2,

and for a cube C ⊂ R3, with interior, we have

N(ϵ) ∝ ϵ−3.

So, we see that for sufficiently small ϵ > 0, we get

N(ϵ) = kϵ−D,

for some real constant k > 0, where taking the logarithm gives

logN(ϵ) = −D log(ϵ) + log(k), (19)

which implies that

lim
ϵ→0+

− logN(ϵ)

log ϵ)
= lim

ϵ→0+
−−D log ϵ+ log k

log ϵ
= D,

and, as a result, motivates the following definition.
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Definition 6.1 (Capacity Dimension). Suppose A ⊂ Rn is bounded and N(ϵ) is the minimum
number of volume elements of Rn of diameter ϵ required to cover A. Then the capacity dimension
Dcap is defined as

Dcap = lim
ϵ→0+

− logN(ϵ)

log ϵ
, (20)

provided the limit exists (Parker & Chua, 1989).

As it turns out, defining capacity dimension as such allows for it to take on non-integer values for
complex shapes such as fractals.

To give an illustrative example of such a fractal with non-integer capacity dimension, we consider
the middle third Cantor set. As a brief reminder, the Cantor set C ⊂ [0, 1] is constructed by iterative
removal of the open middle third of the intervals in Cn, where C0 = [0, 1]. For instance, the iterates
are given by C1 = [1, 1/3]∪ [2/3, 1], C2 = [1, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1] and, more generally,
where

Cn =
⋃

a∈{0,2}n

[
n∑

i=1

ai3
−k,

n∑
i=1

ai3
−k + 3−n

]
,

is the union of 2n disjoint intervals of length 3−n (de Snoo & Winkler, 2023). Then the Cantor set
C is given as the nested intersection of the Cn’s, namely

C =

∞⋂
n=0

Cn.

Now consider intervals of length ϵ = 3−k with k ≥ 1. We see that the number of intervals of length
3−k required to cover C equals the number of intervals required to cover Ck and is equal to 2k, since
Ck consists of 2k intervals of length 3−k that are separated by a distance greater than 3−k, and
the fact that Cn ⊂ Ck for n ≥ k. Then, provided the limit given by 20 exists, which is implied by
Parker and Chua, 1989, we see that

Dcap = lim
ϵ→0+

− logN(ϵ)

log ϵ

= lim
k→∞

− logN(3−k)

log 3−k

= lim
k→∞

− log 2k

log 3−k

= lim
k→∞

− k log 2

−k log 3

=
log 2

log 3
= 0.63 . . . ,

which shows that the Cantor set has non-integer dimension. So, despite the Cantor set having one-
dimensional Lebesgue measure zero (de Snoo & Winkler, 2023), it still occupies some ‘space’ in the
interval [0, 1] in the sense that there is no upper bound N to the minimum number of boxes such
that the Cantor set can be covered with less than N intervals of length ϵ for all ϵ > 0.

In fact, interpreting the capacity dimension of a set A ⊂ Rn as a measure of how it occupies
space in Rn proves to be a rather intuitive way of thinking about the capacity dimension, albeit a
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bit vague. For instance, the Cantor set does not sit in R as a finite collection of points, which have
capacity dimension 0, nor does sit in R as an interval would, which have capacity dimension 1. So,
the Cantor set is something more than a finite collection of points and something less than a interval
in terms of how it occupies space (Parker & Chua, 1989). On the other hand, the set Q ∩ [0, 1] has
capacity dimension 1, meaning that, although it is a countable collection of points, it occupies space
as if an interval would, which also makes sense since Q ∩ [0, 1] is dense in [0, 1].

The capacity dimension does present some difficulties since the minimum number of volume ele-
ments required for a given ϵ may vary for the volume element used, i.e., it might require more boxes
than balls to cover a particular set (Parker & Chua, 1989). For practical purposes, this makes the
capacity dimension rather difficult to compute numerically. So, instead of computing the capacity
dimension of the Hénon attractor, we restrict our attention to coverings of the attractor where the
volume elements are boxes. This dimension is aptly named the box-counting dimension.

Definition 6.2 (Box-Counting Dimension). Suppose A ⊂ Rn is bounded and N(ϵ) is the minimum
number of boxes of Rn of side length ϵ required to cover A. Then the box-counting dimension Dbox

is defined as

Dbox = lim
ϵ→0+

− logN(ϵ)

log ϵ
, (21)

provided the limit exists (Parker & Chua, 1989).

In order to compute this value, we rely on the box-counting technique presented in Parker and
Chua, 1989. The method relies on covering the state space with a grid of boxes of side length ϵ and
counting the number of boxes that contain elements of the respective set. Then, in order to compute
the box-counting dimension Dbox, we repeat this procedure for various small ϵ > 0 and compute
the slope of the log-log plot of N(ϵ) and − log ϵ, where N(ϵ) is the number of boxes that contain
elements of the set.

A motivation for this method is the fact that, in a similar manner as above, we see that the box-
counting dimension approximately satisfies

logN(ϵ) = −Dbox log ϵ+ log k, (22)

for some real constant k > 0, and ϵ > 0 sufficiently small. Therefore, choosing a sufficiently small ϵ
and computing Dbox as − logN(ϵ)/ log ϵ would still result in error term of − log k/ log ϵ. However,
from 22, computing Dbox as the slope of a least-squares linear fit of the log-log plot of N(ϵ) and
− log ϵ, for various sufficiently small values of ϵ > 0, would resolve this. For the interested reader, a
more detailed account of this method as well the algorithm used is presented in the appendix A.2.
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Figure 19: Box-counting dimension for a = 1.4 and b = 0.3.

Figure 19 presents a plot of logN(ϵ) versus − log ϵ, where the box-counting dimension is computed
as the slope of the least-squares linear fit. The estimated value is Dbox = 1.26 ± 0.01, where this
represents the 95% confidence interval for a standard ordinary least-squares linear regression. This
value is close the estimate 1.261± 0.003 by Russel et al., 1980, although the error is smaller for this
estimate.

This does in fact show that the Hénon attractor, for a = 1.4 and b = 0.3, has non-integer box-
counting dimension. This provides further validity to the claim that the Hénon attractor can be
considered a fractal in R2. Since 1 < Dbox < 2, this shows that the attractor should be considered
as something more than a one-dimensional manifold, which have box-counting dimension 1, in terms
of how it occupies space, and that it does not occupy space as if a set with nonzero two-dimensional
volume would, which have box-counting dimension 2. This result ties in rather well with the obser-
vation of section 3.2 and figure 4, where we observed that the attractor appears to be a product of a
one-dimensional manifold with a Cantor set. The fact that the integer part of Dbox is 1 is due to the
one-dimensional manifolds, and the remaining fraction is due to the fact that these one-dimensional
manifolds are folded on top each other in a fractal manner similar to a Cantor set.
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6.1.2 Lyapunov Dimension

The Lyapunov dimension is based on a conjecture relating the Lyapunov spectrum of an attractor
to its capacity dimension. The formula for the Lyapunov dimension was presented in the lecture
notes of James Kaplan and James Yorke, where it was conjectured that its value was equal to that
of the capacity dimension (Kaplan & Yorke, 1979). For this reason, the dimension is also commonly
referred to as the Kaplan-Yorke dimension.

Definition 6.3 (Lyapunov Dimension). Suppose λ1 ≥ . . . ≥ λn are the Lyapunov exponents of an
orbit tending towards an attractor Λ of F : Rn → Rn. If j ≥ 0 is the largest integer such that

j∑
k=1

λk ≥ 0,

then the Lyapunov dimension is defined as

DL = j +

∑j
k=1 λk

|λj+1|
. (23)

Here it is assumed that the largest integer j ≥ 0 with
∑j

k=1 λk ≥ 0 also satisfies j < n such that
λj+1 exists. By proposition 5.12, this is necessarily the case for attractors of dissipative systems, for
which the conjecture was formulated (Grassberger & Procaccia, 1983; Kaplan & Yorke, 1979).

In their lectures notes, Kaplan and Yorke present the numerical observations for a family of two-
dimensional and three-dimensional discrete dynamical systems which the conjecture Dcap = DKY

was based on (Kaplan & Yorke, 1979). However, in Frederickson et al., 1983, of which Kaplan and
Yorke are co-authors, they explained that the conjecture should be abandoned since the Lyapunov
spectrum can be susceptible to exceptional cases and statistical noise, whereas the capacity dimen-
sion is a constant value for a given attractor. Instead of fully dropping the conjecture, they proposed
an alternative conjecture that the Lyapunov dimension is equal to the probability dimension, which
is an ergodic measure that we shall not cover to avoid a full digression into ergodic theory but refer
the interested reader to Grassberger and Procaccia, 1983, Eckmann and Ruelle, 1985 and Parker
and Chua, 1989.

In addition, in Frederickson et al., 1983, they present a plausibility argument to give further credibil-
ity to this new conjecture. Interestingly, an almost identical argument to the plausibility argument
presented by Frederickson et al., 1983, in support of the new conjecture, is used to motivate the
plausibility of the old conjecture by Parker and Chua, 1989. The following argument is an adapta-
tion of this plausibility argument in support of the old conjecture, i.e., DL = Dcap.

Suppose λ1 ≥ . . . ≥ λn are the Lyapunov exponents of an attractor of F : Rn → Rn. Consider
an n-dimensional cube C(0), with sufficiently small side length ϵ > 0, centered at some point x for
which the orbits tends towards the attractor. Now denote C(k) as the image of F k of C(0). Also
suppose, with a suitable rotation of the cube, that the length of the ith side of C(n) approximately
evolves as ϵeλi for sufficiently large n. Now, if 1 ≤ j < n is some arbitrary j such that λj+1 < 0 and
N(k) is the number of cubes of side length ϵeλj+1k required to cover C(k), we see that

N(k) ≈
j∏

i=1

(
ϵeλik

ϵeλj+1k

)
= e(

∑j
i=1 λi−jλj+1)k, (24)

since the sides corresponding to λi ≤ λj+1, with j + 1 < i ≤ n, shrink with respect to eλj+1k such
that they do not influence N(k) for sufficiently large k.
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Using 24, we define Dcap(j), and see that,

Dcap(j) := lim
k→∞

− logN(k)

log(ϵeλj+1k)

= lim
k→∞

−

(∑j
i=1 λi − jλj+1

)
k

λj+1k + log ϵ

= j −
∑j

i=1 λi

λj+1

= j +

∑j
i=1 λi

|λj+1|
.

Then, proceed to define Dcap(j) in a similar manner for all 1 ≤ j < n such that
∑j

i=1 λi ≥ 0. It
is shown in Frederickson et al., 1983 that the minimum Dcap(j) is attained at the largest integer

j such that
∑n

i=0 λj ≥ 0. Using this largest integer j such that
∑j

i=1 λi ≥ 0, with some abuse of
notation, this then gives the approximation

Dcap = lim
ϵ→0+

− logN(ϵ)

log ϵ

≈ lim
k→∞

logN(k)

log(ϵeλj+1k)

= j +

∑j
i=0 λi

|λj+1|
= DL,

which concludes the plausibility argument. It should be noted that it is implicitly assumed that the
initial hypercube C(0) eventually ’spreads out’ over the entire attractor such that, for sufficiently
large k, the estimate N(k) also corresponds well with the estimate of the number of boxes of side
length ϵeλj+1k required to cover the the attractor.

Using formula 23, this allows for a straightforward computation of the Lyapunov dimension of
the Hénon attractor. For instance, for a = 1.4 and b = 0.3, the approximated Lyapunov exponents
for an orbit in the basin of attraction of the attractor are λ1 = 0.421 . . . and λ2 = −1.625 . . .,
which gives DL = 1.259 . . . for the Lyapunov dimension. This value is quite close to the estimate
of the box-counting dimension of figure 19. Despite the fact that the box-counting dimension is not
necessarily equal to the capacity dimension, and the fact that the conjecture DL = Dcap should be
dropped according to Kaplan and Yorke, they still provide good estimates that are generally quite
close to Dcap (Eckmann & Ruelle, 1985; Pikovsky & Politi, 2016).
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Figure 20: Lyapunov dimension in a 1500× 1500 parameter plane with 0.5 < a < 2.5 and
−0.6 < b < 0.7. The black regions correspond to a Lyapunov dimension of 0 and the white regions
correspond to cases where no attractor was detected.

By using the same data used to generate the Lyapunov diagram of figure 14, we can use formula 23
to compute the Lyapunov dimension in this parameter plane, where figure 20 shows the result. The
largest Lyapunov dimension for this parameter grid is DL ≈ 1.31 which is attained at the parameter
values a ≈ 1.021 and b ≈ 0.530.
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6.2 Stable and Unstable Manifold

In the preliminary section, in definition 2.7, we defined hyperbolic fixed points of a C1 map as either
attracting, repelling, or a saddle according to the eigenvalue spectrum of the linearization at that
fixed point. The classification of the former two can be motivated by the result of theorem 2.5 and
corollary 2.6. However, as of yet, no such result was presented for saddle fixed points.

In the cases where x is a saddle fixed point of a diffeomorphism F , it turns out that, in a neigh-
bourhood of x, the points that tend towards x upon iteration of F assume the structure of a smooth
manifold, commonly referred to as the local stable manifold. In addition, the global set of points
that tend towards x upon iteration of F , also referred to as the stable manifold, can be constructed
from this local stable manifold. A similar result can be shown for the set of points that converge to
x upon iteration of its inverse F−1, where these sets are called the local unstable manifold and the
unstable manifold, respectively.

For purposes of simplicity, we restrict relevant results and the construction of the stable and unstable
manifold to saddle fixed points of F : R2 → R2, where F is a diffeomorphism.

Theorem 6.4 (Local Unstable Manifold Theorem). Suppose x is a saddle fixed point of a diffeo-
morphism F : R2 → R2. Then, there exists δ > 0 and a C1 curve γ : (−δ, δ) → R2 such that

1. γ(0) = x.

2. γ′(0) ̸= 0.

3. γ′(0) is an unstable eigenvector of DFx, i.e., associated to the eigenvalue with |λ| > 1.

4. γ is F−1 invariant, i.e., points in the image of γ are mapped to the image of γ by F−1.

5. F−n(γ(t)) → x as n → ∞ for any t ∈ (−δ, δ).

6. There exists ϵ > 0 such that if ||F−n(y) − x|| < ϵ for all n ≥ 0, then y = γ(t) for some
t ∈ (−δ, δ).

We shall not provide a detailed proof of this theorem and instead refer the reader to Devaney, 2003.

The curve γ, satisfying the conditions of theorem 6.4, is then referred to as the local unstable
manifold at x and is commonly denoted by γu. Similarly, since F is a diffeomorphism, the local
unstable manifold at x, when considered as a fixed point of the diffeomorphism F−1, is the stable
manifold at x of F denoted by γs. These local curves then allow for a definition of the stable and
unstable manifold.

Definition 6.5 (Stable and Unstable Manifold). Suppose x is a saddle fixed point of the a diffeo-
morphism F : R2 → R2 and γs and γu are the local stable and local unstable manifold at x. The
stable manifold W s(x) and unstable manifold Wu(x) at x are defined as

W s(x) =

∞⋃
n=1

F−n(γs), and Wu(x) =

∞⋃
n=1

Fn(γu), (25)

where γs and γu are considered as subsets of R2, i.e., as their image in R2 (Devaney, 2003).

From this definition and theorem 6.4 it is then straightforward to show the following result.

46



Proposition 6.6. Suppose W s(x) and Wu(x) are the stable and unstable manifold of a saddle fixed
point of the diffeomorphism F : R2 → R2. Then W s(x) and Wu(x) satisfy

W s(x) = {y ∈ R2 : Fn(y) → x as n → ∞}, and Wu(x) = {y ∈ R2 : F−n(y) → x as n → ∞}.

Proof. We will only show the proof for the equality regarding Wu(x), since the equality for W s(x)
is shown in a completely similar manner by observing that it is the unstable manifold of x when
considered as a saddle fixed point of the inverse F−1.

Suppose γu is the local unstable manifold of x that satisfies the conditions of theorem 6.4. Then,
by definition of the unstable manifold 6.5, the unstable manifold satisfies

Wu(s) =

∞⋃
n=1

F−n(γu).

Using this equality, we observe that proving the proposition is equivalent to showing that
F−n(y) → x as n → ∞ if and only if F−m(y) ∈ γu for somem > 0, where γu is considered as a subset
of R2. To this end, suppose F−n(y) → x as n → ∞ for some y ∈ R2. Then, by the 6th condition of
theorem 6.4, there exists ϵ > 0 such that if ||F−n(z)− x|| < ϵ for all n ≥ 0, then necessarily z ∈ γu.
Now, since F−n(y) → x as n → ∞, there exists some m > 0 such that ||F−n(y) − x|| < ϵ for all
n ≥ m. This then gives that ||F−n (F−m(y))−x|| < ϵ for all n ≥ 0, which implies that F−m(y) ∈ γs
and shows the first direction. The reverse direction is trivial to show as it is a direct implication of
the 5th condition of theorem 6.4. This concludes the proof.

Despite the fact that theorem 6.4 is only an existence proof, the 5th condition, namely that γ′(0)
is tangent to the unstable eigenvector of DFx, borrowing the notation of the theorem, still allows
for a relatively straightforward method to numerically estimate segments of the unstable manifold.
Namely, suppose we pick some large collection of initial points along both directions of the unstable
eigenvector in sufficiently close proximity to the saddle point. Then, these points should lie on or
in very close proximity to the local unstable manifold. Hence, by definition 6.5, connecting this
collection of initial points and their images for a few iterations by line segments should give an
approximation to a segment of the unstable manifold. In a similar manner we can give an approx-
imation to a segment of the stable manifold by numerically computing it as the unstable manifold
of the inverse. An informed implementation of this method requires a few more technicalities that
are included in the appendix A.3.

Figure 21 provides a numerical estimate of a segment of both the stable and unstable manifold
of the saddle fixed point (x+, y+) (see 5) for a = 1.4 and b = 0.3. We again stress that this is only a
segment of the stable and unstable manifold. Also, of the segment of the stable manifold computed,
the figure only shows the part of it that lies in the region of the plane depicted in figure 21. The
stable manifold was significantly harder to compute since the segment corresponding to the upward
direction of the stable eigenvector seemed to diverge towards infinity relatively quickly. The unsta-
ble manifold does not present such difficulties as the saddle fixed point (x+, y+) and points in close
proximity to it along the direction of the unstable eigenvector are contained in the trapping region
described in section 3 and shown in figure 5. This causes the unstable manifold to be completely
contained in this trapping region.
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Figure 21: Segment of the stable manifold (blue) and the unstable manifold (red) of the saddle fixed
point (x+, y+) (black marker) for a = 1.4 and b = 0.3 in some region of the plane.

What is even more remarkably is that visually the unstable manifold appears to closely resemble
the shape of the attractor depicted in figure 4. This relation between the unstable manifold and the
attractor of the Hénon map is, in fact, the topic of the main theorem presented by Benedicks and
Carleson, 1991, which is proven by means of rigorous analysis.

Theorem 6.7 (Main result of Benedicks and Carleson, 1991). Suppose Wu is the unstable manifold
of the fixed point (x+, y+) of Ha,b. Then for all c < log 2 there is a b0 > 0 such that for all b ∈ (0, b0)
there is a set E(b) with positive one-dimensional Lebesgue measure such that for all a ∈ E(b):

1. There is an open set Ua,b such that for all (x, y) ∈ Ua,b,

d(Hn
a,b(x, y),W

u) → 0 as n → ∞.

2. There exists a (x0, y0) ∈ Wu, which depends on both a and b, such that

(a) the forward orbit of (x0, y0) is dense in Wu;

(b) ||(DHn
a,b)(x0,y0)(0, 1)|| ≥ enc for all n ≥ 0.

Here d(x,A) := infy∈A ||x− y|| for x ∈ R2 and A ⊂ R2.

This theorem does in fact prove that, for such parameter values and a particular c < log 2, there
exists an attractor that is equal to the closure of the unstable manifold of the fixed point (x+, y+),
where the attractor is an attractor in terms of definition 5.10. To see why, suppose b ∈ (0, b0) and
a ∈ E(b), then the existence of a point (x0, y0) ∈ Wu whose forward-orbit is dense in Wu also
implies that its ω-limit set is equal to Wu, that is ω((x0, y0)) = Wu. In addition, because there
exists a set of positive two-dimensional Lebesgue measure, namely the open set Ua,b, such that
ω((x, y)) ⊂ Wu = ω((x0, y0)) for all (x, y) ∈ Ua,b, it follows by definition 5.10 that Λ := ω((x0, y0))
is an attractor with Λ = Wu.

The theorem also shows that, for values of 0 < c < log 2, this is a chaotic attractor in terms of
definition 5.9. Namely, for b ∈ (0, b0) and a ∈ E(b), the existence of an orbit (x0, y0) ∈ Λ such that
||(DHn)a,b(0, 1)||(x0,y0) ≥ ecn for all n ≥ 0 shows that the largest Lyapunov exponent λ1 of this
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orbit is strictly positive. In addition, since λ1 + λ2 = log(|b|), by corollary 5.13, this also implies
that λ2 = log(|b|) − λ1 < 0 because 0 < b < b0 < 1. Then, because the forward orbit of (x0, y0) is
dense in Wu, where Wu clearly does not correspond to a periodic cycle, it follows that (x0, y0) is not
asymptotically periodic. So, since the orbit of (x0, y0) is not asymptotically periodic and λ1 > 0 and
λ2 < 0, it follows that the orbit of (x0, y0) ∈ Λ is chaotic in terms of definition 5.8, which implies
by definition 5.9 that Λ is a chaotic attractor. For convenience, we summarize this in the following
corollary.

Corollary 6.8. There exists a b0 > 0 such that for any b ∈ (0, b0) there exists a set E(b), with
positive one-dimensional Lebesgue measure, such that, for all a ∈ E(b), Ha,b has a chaotic attractor
Λ in terms of definition 5.9 with Λ = Wu, where Wu is the unstable manifold of the saddle fixed
point (x+, y+).

It should be noted that theorem 6.7 is an existence proof and that the theorem does not specify
any particular value of b0. As a result, it is not clear whether the parameter values of a = 1.4 and
b = 0.3 are included. Although, it is mentioned in Broer and Takens, 2009 that the value b = 0.3 is
probably far too large to be included with the approach taken by Benedicks and Carleson, 1991.

Despite the fact that it is doubtful whether the values a = 1.4 and b = 0.3 are included in the
parameter set of the theorem, it still becomes evident from numerical observations such as figure
21 and figure 4 that an equality of the attractor and the closure of the unstable manifold seems
plausible. Due to such observations and the work of Benedicks and Carleson, 1991, chaotic attrac-
tors that are equal to the closure of an unstable manifold of a saddle periodic point, or a saddle
equilibrium point in continuous dynamical systems, are also referred to as Hénon-like attractors
(Broer & Takens, 2009).

From figure 21, we also see that the stable and unstable manifold seem to intersect at points differ-
ent from (x+, y+). In addition, they seem to do so in a manner such that the stable and unstable
manifold are not tangent at these intersections. Such points are also called transversal homoclinic
intersections and where used to give a proof of a chaotic set of the Hénon map before the result
of Benedicks and Carleson, 1991. Namely, as shown by Smale, 1967, the existence of a homoclinic
intersection can be used to construct a Horseshoe map which is topologically conjugate to the shift
automorphism on two symbols. Then, since the shift automorphism is chaotic in the sense of def-
inition 2.14, this proves the existence of a set where the dynamics of the Hénon map are chaotic
(Devaney, 2003).

However, although it proves the existence of a chaotic set, the proof does not specify whether
this set is also an attractor (Devaney & Nitecki, 1979; Marotto, 1979). Hence, this result is weaker
than the main theorem 6.7 of Benedicks and Carleson, 1991. For this reason, we do not cover the
result in detail. For an extensive discussion on the Horseshoe map and the shift automorphism, we
refer the reader to Devaney, 2003. For an existence proof of homoclinic intersections in the Hénon
map, for some parameter values, we refer the reader to Marotto, 1979. For a direct construction of
a Horsehoemap and a topological conjugacy with the shift automorphism, for a map that the Hénon
map is conjugate to, we refer the reader to Devaney and Nitecki, 1979.
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7 Concluding Remarks

As a final note, we briefly summarize what was covered. We conclude with a few recommendations
for further reading.

In section 3, we gave a brief overview of Lorenz’ article Deterministic Nonperiodic Flow and
the Lorenz system (Lorenz, 1963). Then, we showed Hénon’s construction of the two-dimenional
quadratic map, which was later named the Hénon map, along with its similarities to the Lorenz
system and its attractor.

In section 4, we classified the stability of fixed points of the Hénon map. We also identified two
curves, in the parameter plane, where period doubling bifurcation occur. We then presented nu-
merical evidence of a period doubling cascade and identified the possibility that there are chaotic
regions in the parameter plane.

In order to further analyse the regions where the dynamics appear chaotic, we relied on the concept
of Lyapunov exponents. We presented and gave plausibility arguments for heuristics, for numeri-
cal purposes, to classify the system’s behavior and its attractor by means of Lyapunov exponents.
Accordingly, we then classified the stability and attractor type of the Hénon map by means of a
Lyapunov diagram. In this Lyapunov diagram, we observed numerical evidence of a set, which ap-
pears to have positive two-dimensional Lebesgue measure, where the dynamics and the attractor of
the Hénon map can be classified as chaotic.

Lastly, in section 6, we discussed some properties of the attractor of the Hénon map. Firstly, we
gave numerical estimates of some fractal dimensions, namely the box-counting dimension and the
Lyapunov dimension, where we also presented a motivating discussion for these dimensions along
with their relation to each other. Lastly, we presented a numerical estimate of a segment of the
stable and unstable manifold of one of the Hénon map’s saddle fixed points. We also discussed the
relation that the unstable manifold and the attractor of the Hénon map appear to have and related
this to the work of Benedicks and Carleson, 1991.

For further reading regarding dynamical systems and chaos, we suggest Broer and Takens, 2009
and Devaney, 2003. For an accessible book that explains numerical methods for dynamical systems,
we recommend Parker and Chua, 1989. Lastly, for an accessible book on Lyapunov exponents and
their uses, the textbook Pikovsky and Politi, 2016 is a good start. For a more formal and rigorous
discussion of Lyapunov exponents, we refer the reader to Viana, 2014.
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A Numerical Methods and Considerations

A.1 Lyapunov Exponents

For the computation of the Lyapunov spectrum, the method developed by Benettin et al., 1980 was
used. In Parker and Chua, 1989, this method is motivated by means of an intuitive explanation.
Below, we present an adaptation of this explanation. The notation for the algorithm is similar to
that of Garst, 2018.

First, suppose F : R2 → R2 is C1 and x ∈ R2 with Lyapunov exponents λ1 ≥ λ2. Then, by
theorem 5.2, it follows that

λ1 = lim
n→∞

1

n
log ||(DFn)xv||

for almost all v ∈ R2, except for possibly a subspace with Lebesgue measure zero. Hence, for some
random v ∈ R2, with uniformly chosen direction, the Lyapunov exponent at x in the direction of v
is the largest Lyapunov exponent λ1 with probability 1.

Computing λ1:
Relying on this observation, it is relatively straightforward to compute the largest Lyapunov expo-
nent. Namely, pick some arbitrary v ∈ R2 with unit length and choose some integer s ≥ 1 that
specifies after how many iterations we apply a normalization. Then, set v0 = v and x0 = x and
iterate the following scheme

uk+1 = (DF s)xks
vk,

vk+1 =
uk+1

||uk+1||
,

x(k+1)s = F s(xks),

for 0 ≤ k ≤ N − 1, where we write xks instead of xk to make it explicit that it is the ks-th point
along the orbit of x0.

Then, it follows that

uk+1 = (DF s)xks
vk

=⇒ ||uk||uk+1 = (DF s)xks
uk

=⇒ ||uk||uk+1 = (DF s)xks
◦ (DF s)x(k−1)s

vk−1

=⇒ ||uk||uk+1 = (DF 2s)x(k−1)s
vk−1,

for 1 ≤ k ≤ N −1, where we implicitly used the chain rule. Using this, it is straightforward to show,
by means of induction, that

N∏
k=1

||uk|| = ||(DFNs)x0
v0||.
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Then, since the Lyapunov exponent at x0 in the direction of v0 is λ1 with probability 1 and, assuming
this is the case,

λ1 = lim
n→∞

1

n
log ||(DFn)x0

v0||

≈ 1

sN
log ||(DF sN )x0

v0||

=
1

sN
log

(
N∏

k=1

||uk||

)

=
1

sN

N∑
k=1

log ||uk||,

for sufficiently large N .

Computing λ1 and λ2:
Although the method of picking some random v0, with uniformly chosen direction, is quite useful
for computing λ1, it is not well-suited for the computation of the full Lyapunov spectrum at x0,
since the probability of observing λ2 for such a direction is 0.

To derive a more suitable method, we rely on proposition 5.12 and a useful approximation. Namely,
using the ellipse analogy of section 5.1, we see that a small circle E(0) around x0 evolves as an el-
lipse E(n) centered at Fn when approximating Fn by its linearization (DFn)x0 . In addition, by the
result of theorem 5.2, the expansion/contraction along the major axis of the ellipse is proportional
to eλ1n and the expansions/contraction along the minor axis, which is orthogonal to the major axis,
is proportional to eλ2n. This implies that when |E(n)| is the 2-dimensional volume of the ellipse as
a function of n that then, for sufficiently large n,

|E(n)| ≈ Ce(λ1+λ2)n,

for some constant C > 0, which gives

λ1 + λ2 ≈ lim
n→∞

1

n
log |E(n)|. (26)

Using this relation, we can derive an algorithm that computes both λ1 and λ2. Namely, choose
some v0,1 with unit length and v0,2, with unit length, orthogonal to v0,1. Then, the square C(0) at
x0 with sides v0,1 and v0,2 has 2-dimensional volume |C(0)| = ||v0,1|| · ||v0,2|| = 1. Now, pick some
s ≥ 1, not too large, and iterate the following scheme for 0 ≤ k ≤ N − 1:

ũk+1,1 = (DF s)xks
vk,1,

ũk+1,2 = (DF s)xks
vk,2,

uk+1,1 = ũk+1,1,

uk+1,2 = ũk+1,2 − (⟨ũk+1,2, uk+1,1⟩/⟨uk+1,1, uk+1,1⟩)uk+1,1,

vk+1,1 =
uk+1,1

||uk+1,1||
,

vk+1,2 =
uk+1,1

||uk+1,1||
,

x(k+1)s = F s(xks).
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Denote C(n) by the image of the square C(0) of (DFn)x0 and denote its 2-dimensional volume by
|C(n)|. Then, we see that

|C(sN)| =
N∏

k=1

|C(sk)|
|C(s(k − 1)|

, (27)

since |C(0)| = 1. From the construction of the algorithm, we have

|C(s)|
|C(0)|

= ||u1,1|| · ||u1,2||,

because the 2-dimensional volume of the parallelogram C(s) with sides ũ1,1 and ũ1,1 is equal to the
2-dimensional volume of the cube with sides u1,1 and u1,2.

Then, as opposed to calculating the exact value of |C(sk)|/|C(s(k − 1))| for k > 1, the algorithm
calculates the average contraction/stretching along these s iterations by means of constructing a
new square with sides of length 1, with the Gram-Schmidt orthonormalization procedure, and then
applying a similar procedure to how |C(s)|/|C(0)| was computed. This gives the useful approxima-
tion

|C(sk)|
|C(s(k − 1))|

≈ ||uk,1|| · ||uk,2||
||vk−1,1|| · ||vk−1,2||

= ||uk,1|| · ||uk,2||.

Now, substituting this into 27 gives

|C(sN)| ≈
N∏

k=1

||uk,1|| · ||uk,2||,

which, combined with 26, shows that

λ1 + λ2 ≈ lim
n→∞

1

n
log |C(n)|

≈ 1

sN
log |C(sN)|

≈ 1

sN
log

(
N∏

k=1

||uk,1|| · ||uk,2||

)

=
1

sN

N∑
k=1

log ||uk,1||+
1

sN

N∑
k=1

log ||uk,2||,

(28)

provided N ≥ 1 is sufficiently large.

Now, when we observe the iteration scheme, we see that the values associated to uk,1 are actu-
ally the exact same values as the uk values that the algorithm that computes λ1 would generate.
This gives the useful relation

λ1 ≈ 1

sN

N∑
k=1

log ||uk,1||,

which, upon substitution into the result of 28, gives

λ2 ≈ 1

sN

N∑
k=1

log ||uk,2||.

53



Hence, this gives the approximation of the Lyapunov exponents as

λ1 ≈ 1

sN

N∑
k=1

log ||uk,1||,

λ2 ≈ 1

sN

N∑
k=1

log ||uk,2||.

(29)

This method can also be generalized to compute the Lyapunov spectrum for higher dimensional
cases by a similar algorithm that relies on the Gram-Schmidt orthonormalization procedure.

From the construction of the algorithm, we also see that the linearization along the orbit always has
to be nonsingular, since otherwise the Gram-Schmidt orthonormalization procedure fails.

Numerical considerations and implementation:
For the implementation of the algorithm that computes the full Lyapunov spectrum, we specifically
tailored it to be used for the Hénon map, where a general implementation could also have been used
but was not necessary. The code is given below.

import numpy as np

Henon = lambda x, a, b : [x[1] + 1 - a*(x[0]**2), b*x[0]]

JacobianHenon = lambda x, a, b : [[-2*a*x[0], 1], [b, 0]]

def HenonOrbit(x0, a, b, iterations = int(1e4)):

X = np.zeros([2, iterations])

X[:,0] = x0

for i in range(1,iterations):

X[:, i] = Henon(X[:,i-1], a, b)

if np.linalg.norm(X[:, i]) > 1e3:

X = np.array([ X[0][0:i+1] , X[1][0:i+1] ])

return X, False

return X, True

def Lyapunov(a, b, N_t = int(1e3), N = int(1e4), x0 = [0, 0]):

Xlist, condition = HenonOrbit(x0, a, b, iterations= N_t + N )

if condition == False:

bounded = False

lyapunov1, lyapunov2 = None, None

else:

bounded = True

U = np.identity(2)

Unorm = np.zeros((2,N))

for i in range(N):

X = Xlist[:,N_t+i]

DHx = JacobianHenon(X, a, b)

V = np.matmul(DHx, U)

U[:,0] = V[:,0]

U[:,1] = V[:,1] - ( np.dot(V[:,1], U[:,0]) / np.dot(U[:,0],U[:,0]) ) * U[:,0]

Unorm[0,i] = np.linalg.norm(U[:,0])

Unorm[1,i] = np.linalg.norm(U[:,1])

U[:,0] /= Unorm[0,i]

U[:,1] /= Unorm[1,i]
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lyapunov1 = (1/N) * np.sum(np.log(Unorm[0,::]))

lyapunov2 = (1/N) * np.sum(np.log(Unorm[1,::]))

if math.isnan(lyapunov1) == True or math.isnan(lyapunov2) == True:

lyapunov1, lyapunov2, bounded = None, None, False

return lyapunov1, lyapunov2, bounded

Notice that the algorithm will only compute the Lyapunov exponents of orbits that stay bounded
in some region. This was done since we are primarily interested in orbits that stay bounded and
tend towards some attractor. Also, since the Lyapunov spectrum is generally the same for all points
in the basin of attraction of a particular attractor (see remark 5.4), the transient behaviour of the
orbit is irrelevant for the limiting value that defines the Lyapunov exponent. For this reason, we
only calculate the Lyapunov exponents from the last N iterations of an orbit of Nt +N iterations,
where the subscript t is used to denote transient.

Furthermore, the algorithm we used performs the Gram-Schmidt orthonormalization procedure after
each iteration, as opposed to after each s > 1 subsequent iterations. The reason for this is that the
method is generally more stable when applying this procedure after each iteration, despite requiring
more operations and taking up more time. For instance, initially the algorithm was implemented
allowing for a a general s ≥ 1. However, after testing this method by using it to generate Lyapunov
diagrams, it was observed that the method was not as accurate for parameter values with b close to
zero when s > 1. This is likely due to the fact that |det(DHa,b)| = |b|, i.e., the determinant is also
close to 0 for such parameter values. This causes volumes to contract quite rapidly which makes
the approximation of the Lyapunov exponents less accurate provided the Gram-Schmidt procedure
is not used after each iteration.

This algorithm was used to generate the data for all figures of section 5.3 and section 6.1.2. In
addition, for all of these figures the values Nt = 103 and N = 104 were used similar to what was
done by Garst, 2018. As opposed to the predefined x0 = (0, 0), which the algorithm defaults to if
no initial point is provided, the initial point was usually taken in close proximity to, but not equal
to, (x+, y+) (see 5). The parameter grid of the Lyapunov diagrams where chosen with equidistant
points such that no parameter value had b = 0, since the method only works when the linearization
is nonsingular. It took around 50 hours to generate the data for figure 14, figure 16, and figure 20,
and the date for figure 17 and figure 18 took around 24 hours each.

55



A.2 Box-Counting Dimension

In order to compute the box-counting dimension, the box-counting technique was used. In partic-
ular, an adaptation of the technique presented in Parker and Chua, 1989. It should be noted that
this method only works for sets having finitely many element. Below, a brief explanation of the
method is given for finite subsets of R2, where it can also be generalized to higher dimension with
some minor changes.

Compute N(ϵ):
Suppose, we have a set M ⊂ R2, with finitely many elements, and suppose ϵ > 0. Then define, the
respective maximum and minimum x-coordinate and y-coordinate by

xmin := min
(x,y)∈A

x, xmax := max
(x,y)∈A

x,

ymin := min
(x,y)∈A

y, xmax := max
(x,y)∈A

y.

Also define the integers

Nx :=

⌈
xmax − xmin

ϵ

⌉
, Ny :=

⌈
ymax − ymin

ϵ

⌉
,

where ⌈·⌉ is the ceiling function that rounds up real numbers to integers. Then, define the matrix A
as the zero Ny by Nx matrix. In this way, we can use the matrix A as a representation of a grid of
boxes with side length ϵ placed over the set M . In order to count how many of these boxes contain
an element of M , we loop over the elements of M and sort them to a box.

Namely, for every (x, y) ∈ M , we can assign integers

nx :=

⌈
x− xmin

ϵ

⌉
, ny :=

⌈
y − ymin

ϵ

⌉
,

where for the cases with x = xmin, we assign nx = 1, and for the cases with y = ymin, we assign
ny = 1. Because, every (x, y) ∈ M satisfies xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax, this implies
that 1 ≤ nx ≤ Nx and 1 ≤ ny ≤ Ny. In this way, we loop over all elements (x, y) ∈ M , where M is
a finite set, assign the integers nx and ny, and set the entry anynx

to 1, if it is not equal to 1 yet,
where aij is the ijth entry of A.

After this procedure, every element of M is assigned a box in the form of an entry in A marked
with a 1 instead of a 0. In addition, an entry of A is only marked with a 1 if it can associated to
an element of M and marked with a 0 otherwise. Hence, the number of nonzero elements of A, all
marked with a 1, equals the number of boxes of side length ϵ required to cover M for this particular
covering. We count, the nonzero entries of A by

N(ϵ) =

Ny∑
i=1

Nx∑
j=1

aij .

Then, this N(ϵ) is an estimate of the minimum number of boxes of side length ϵ required to cover
M . It is only an estimate since this cover might not be optimal cover. Although, for sufficiently
small ϵ > 0, it is expected that the estimate is sufficiently close (Parker & Chua, 1989).

Compute Dbox:
Suppose, we have the same finite set A ⊂ R2 as above. In section 6.1.1, we showed that Dbox

approximately satisfies the linear relation

logN(ϵ) = −Dbox log ϵ+ log k, (30)
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where N(ϵ) is the minimum number of boxes of side length ϵ > 0 required to cover A, and k is some
real positive constant. Then, we use the method above to estimate N(ϵi) for a collection ϵi > 0,
sufficiently small but not too small, where 1 ≤ i ≤ n. Then, assuming the results have been plotted
in a log-log plot to see that the ϵi’s are chosen such that the relation 30 is approximately linear, we
calculate Dbox as the slope of a standard ordinary-least-squares linear for logN(ϵi) and − log ϵi with
the error estimate as the standard 95% confidence interval for the slope.

Numerical considerations and implementation:
The method to compute Dbox was implemented exclusively for the purposes of the Hénon attractor.
The code that estimates N(ϵ) for the Hénon attractor with N points is given below. Note that in
order to assign elements to boxes, this method uses the floor function instead of the ceiling function
since indices in Python start at 0.

import numpy as np

import matplotlib.pyplot as plt

fixpoint1 = lambda a, b : np.array([((b-1)+( (b-1)**2+4*a )**(1/2)) / (2 * a),

b*(((b-1)+( (b-1)**2+4*a )**(1/2)) / (2 * a))])

Henon = lambda x, a, b : [x[1] + 1 - a*(x[0]**2), b*x[0]]

def HenonOrbit(x0, a, b, N = int(1e4)):

X = np.zeros([2, N])

X[:,0] = x0

for i in range(1,N):

X[:, i] = Henon(X[:,i-1], a, b)

if np.linalg.norm(X[:, i]) > 1e5:

X = np.array([ X[0][0:i+1] , X[1][0:i+1] ])

return X, False

return X, True

def Boxes(epsilon, a, b, N = int(2e7), N_t = int(1e5)):

x0 =fixpoint1(a,b) + 0.01*np.array([-1,1])

X_ = HenonOrbit(x0, a, b, N = N+N_t)

if X_[1] == True:

XArray = X_[0]

X = XArray[0][N_t::]

Y = XArray[1][N_t::]

xmax, xmin = np.max(X), np.min(X)

ymax, ymin = np.max(Y), np.min(Y)

xboxes = int(np.ceil((xmax-xmin)/epsilon ))

yboxes =int( np.ceil((ymax-ymin)/epsilon ))

count = np.zeros((xboxes, yboxes))

for i in range(len(X)):

x = X[i]

y = Y[i]

xindex = int(np.floor((x-xmin)/epsilon))

yindex = int(np.floor((y-ymin)/epsilon))

count[xindex, yindex] = 1

return np.sum(count)

For the computation of the estimate shown in figure 19, the last 2 · 107 iterations of an orbit of
2 · 107 + 105 iterations was used to give an estimate of the attractor. The ϵ-values used range from
0.5 to 10−4.
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A.3 Unstable Manifold

We only give the method that numerically estimates the unstable manifold of a saddle fixed point
x ∈ R2 of a diffeomorphism F : R2 → R2, since the stable manifold is computed as the unstable
manifold of the saddle fixed point x of the inverse F−1. The method used to estimate segments of
the unstable manifold was found in Garst, 2018, where it is mentioned that the method was based
on techniques presented in Broer and Takens, 2009 and Simó, 1992.

As mentioned in section 6.2, the method relies on taking a collection of initial points in close prox-
imity to the saddle fixed point along both directions of the unstable eigenvector of the linearization
at the saddle fixed point. Namely, suppose F : R2 → R2 is a diffeomorphism and x is a saddle fixed
point of F . Suppose λ is the unstable eigenvalue of F , i.e., the eigenvalue with an absolute value
greater than 1. Also, suppose that λ > 1 with v a corresponding eigenvector with unit length. Let
ϵ > 0, sufficiently small, and suppose we approximate N points on both sides of the local unstable
manifold by

sj = ϵej log(λ
2)/N ,

ωL
0,j = x− sjv,

ωR
0,j = x+ sjv,

with j = 1, . . . , N , where L and R stand for left and right. By the fifth condition of theorem 6.4,
we can indeed expect that these points should provide a sufficiently close approximation to the local
unstable manifold, provided ϵ is sufficiently small. The initial points also account for the magnitude
of the eigenvalue λ and the fact that it is not desirable for these initial points to be equidistant to
each other. The reason for the latter is that too many points near x relative to the points farther
removed from x gives a poorer estimate of the unstable manifold, since the line segments connecting
the initially farther removed points grow quicker than the line segments corresponding to points
initially close (Simó, 1992).

We then iterate the following scheme:

ωL
k,j = F (ωL

k−1,j),

ωR
k,j = F (ωR

k−1,j)

for 1 ≤ j ≤ N and 1 ≤ k ≤ m, for some m ≥ 1 not too large. The estimate of the ”left” part of the
unstable manifold is then given by connecting the points

ωL
0,1, . . . , ω

L
0,N , . . . . . . , ωL

m,1, . . . , ω
L
m,N ,

by line segment, and the estimate of the ”right” part of the unstable manifold is given by connecting
the points

ωL
0,1, . . . , ω

L
0,N , . . . . . . , ωL

m,1, . . . , ω
L
m,N ,

by line segment. Here ”right” and ”left” are marked with quotation marks since they do not neces-
sarily corresponds to those directions. The name right and left is just a way to distinguish between
the two sides of the unstable manifold.

Whenever the dominant eigenvalue λ of DFx satisfies λ < −1, the same method can be used by
noting that then λ2 is the dominant eigenvalue of (DF 2)x with the same eigenvector. In addition, it
should be clear by theorem 6.4 and definition 6.5 that the unstable manifold of x when considered
as a saddle fixed point of F or when considered as a saddle fixed point of F 2 are the same.
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Numerical considerations:
The values for the computation of the unstable manifold of the saddle fixed point (x+, y+) where
ϵ = 10−5, N = 103, and m = 12. For the computation of the stable manifold, we used the same
values for ϵ and N but only computed m = 7 iterations, since the error appears to grow quite quickly
for more iterations. The code used to generate figure 21 is given below.

import numpy as np

import matplotlib.pyplot as plt

fixpoint1 = lambda a, b : np.array([((b-1)+( (b-1)**2+4*a )**(1/2)) / (2 * a),

b*(((b-1)+( (b-1)**2+4*a )**(1/2)) / (2 * a))])

fixpoint2 = lambda a, b : np.array([((b-1)-( (b-1)**2+4*a )**(1/2)) / (2 * a),

b*(((b-1)+( (b-1)**2+4*a )**(1/2)) / (2 * a))])

Henon = lambda x, a, b : [x[1] + 1 - a*(x[0]**2), b*x[0]]

HenonInverse = lambda x, a, b: [x[1]/b, x[0]-1+a*(x[1]**2)/(b**2)]

JacobianHenon = lambda x, a, b : [[-2*a*x[0], 1], [b, 0]]

a, b = 1.4, 0.3

p = fixpoint1(a, b)

DF = JacobianHenon(p, a, b)

eig = np.linalg.eig(DF)

lambda1 = eig[0][0]

lambda2 = eig[0][1]

v1 = eig[1][:, 0]

v2 = eig[1][:, 1]

N = int(1000)

epsilon = 1e-5

mu = 12

ms = 7

Narray = np.arange(1, N+1, step = 1)

WLU = np.zeros((mu, N, 2))

WRU = np.zeros((mu, N, 2))

WLS = np.zeros((ms, N, 2))

WRS = np.zeros((ms, N, 2))

SU = epsilon*np.exp(Narray*np.log(lambda1**4)/N)

SS = epsilon*np.exp(Narray*np.log((1/lambda2)**2)/N)

for i in range(N):

WLU[0][i] = p-SU[i]*v1

WRU[0][i] = p+SU[i]*v1

WLS[0][i] = p-SS[i]*v2

WRS[0][i] = p+SS[i]*v2

for i in range(1, mu):

for j in range(N):

WLU[i][j] = Henon(Henon(WLU[i-1][j], a, b), a, b)

WRU[i][j] = Henon(Henon(WRU[i-1][j], a, b), a, b)

for i in range(1, ms):

for j in range(N):
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WLS[i][j] = HenonInverse(WLS[i-1][j], a, b)

WRS[i][j] = HenonInverse(WRS[i-1][j], a, b)

for i in range(mu):

plt.plot(WLU[i,:, 0], WLU[i, :, 1], 'r', linewidth = 1/2)

plt.plot(WRU[i,:, 0], WRU[i, :, 1], 'r', linewidth = 1/2)

for i in range(ms):

if i < 10:

plt.plot(WLS[i,:, 0], WLS[i, :, 1], 'b', linewidth = 1/2)

plt.plot(WRS[i,:, 0], WRS[i, :, 1], 'b', linewidth = 1/2)

plt.plot(p[0], p[1], 'k+', markersize = 15)

plt.xlim([-1.5, 1.5])

plt.ylim([-0.5, 0.5])

plt.xlabel('X')

plt.ylabel("Y")

name = "Stable and Unstable Manifold original, for a, b = " + str(a) + " , " + str(b) + ".png"

plt.savefig("Better pictures/Stable and Unstable Manifold/"+name, dpi = 350)
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Rössler, O. (1979). An equation for hyperchaos. Physics Letters A, 71, pp. 155–157.
Russel, D., Hanson, J., & Ott, E. (1980). Dimension of strange attractors. Physical Review Letters,

45, 1975–1978.
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