
Sentiment Analysis For Predicting Cost
Management Actions Related To Changes In

Infrastructure-as-Code (IaC) Artifacts

Bachelor’s Thesis

To fulfill the requirements for the degree of
Bachelor of Science in Computing Science

under the supervision of:

Prof. Dr. Vasilios Andrikopoulos
&

Dr. Daniel Feitosa

Mohammad Al Shakoush (s4274865)
m.al.shakoush.1@student.rug.nl

3rd August 2023

ABSTRACT

Abstract
Infrastructure-as-Code (IaC) is a commonly implemented approach for the administration of IT in-
frastructure. It involves the use of artifacts to automate the processes of provisioning, deployment,
configuration, and maintenance of infrastructure resources, all of which come with a certain cost. As
the artifacts define the infrastructure, any modifications to them will have an impact on cost man-
agement. Thus, when developers make changes to the artifacts, they document the changes and the
rationale behind them, typically using a version control system.

The changes and their associated description, along with the accompanying rationale, express an
opinion or sentiment that could be analyzed using sentiment analysis. Sentiment analysis is a natural
language processing technique that has several applications in diverse domains, but its potential for
cost management in IaC remains under-explored.

The existing models for sentiment analysis have been largely unsuccessful, either being general-
purpose models with poor performance or software engineering specialized models that have also
been inadequate. In light of this, research has been conducted to create a custom sentiment analysis
model, with the use of the Generative Pre-trained Transformer (GPT) model proving to be highly
effective.

ACKNOWLEDGMENTS

Acknowledgments
This work would not have been possible without the generous guidance and support of Dr. Daniel
Feitosa and Prof. Dr. Vasilios Andrikopoulos. Furthermore, I am greatly appreciative of the assistance
provided by Brian Setz. Finally, I am grateful to the University of Groningen and the Faculty of
Science and Engineering for providing the necessary resources, such as Hábrók 1, Product Licenses,
and others.

1https://www.rug.nl/society-business/centre-for-information-technology/news/verbeterd-rekencluster-habrok-geeft-
onderzoeker-meer-rekenkracht?lang=en

https://www.rug.nl/society-business/centre-for-information-technology/news/verbeterd-rekencluster-habrok-geeft-onderzoeker-meer-rekenkracht?lang=en
https://www.rug.nl/society-business/centre-for-information-technology/news/verbeterd-rekencluster-habrok-geeft-onderzoeker-meer-rekenkracht?lang=en

Contents

1 Introduction And Motivation 7
1.1 Research Questions . 7
1.2 Research Outline . 8

2 Background 9
2.1 Git & GitHub . 9

2.1.1 Git . 9
2.1.2 GitHub . 9

2.2 Cloud Orchestrators & IaCs . 9
2.2.1 Cloud Orchestrators . 10
2.2.2 Infrastructure as Code . 10
2.2.3 Versioned IaC artifacts . 10

2.3 Sentiment Analysis . 10
2.4 Building blocks . 11

2.4.1 Previous Bachelors Project . 12
2.4.2 Sentiment Analysis Pipeline . 12

2.5 Agreement Metrics . 13
2.5.1 Cohen’s kappa . 13
2.5.2 Krippendorff’s alpha . 14

2.6 Huggingface . 15
2.7 Hábrók cluster . 15
2.8 Alpaca-LoRA . 15
2.9 Paper Write-up . 16

3 Study design and execution 17
3.1 Overall Design . 17
3.2 General-use Sentiment Analysis Models . 18

3.2.1 Results . 21
3.2.2 Conclusion . 24

3.3 Software Engineering Sentiment Analysis Models 25
3.3.1 Results . 25
3.3.2 Conclusion . 27

3.4 Conclusion . 27

4 Custom Sentiment Analysis Model 29
4.1 Manual Data labeling . 29
4.2 LLM & GPT . 30
4.3 GPT-3.5 . 30

4.3.1 Results . 31
4.3.2 GPT-3.5 & General-Use Models . 37

4.4 The Ground Truth . 38
4.4.1 GPT-3.5 & Ground Truth . 39
4.4.2 General-Use Models & Ground Truth . 39

4.5 Data labelling conclusions . 39
4.5.1 GPT-3.5 & General-Use Models . 39

4

CONTENTS

4.5.2 General-Use Models & Ground Truth . 40
4.5.3 GPT-3.5 & Ground Truth . 40

4.6 Base Model Choice . 41
4.7 LLama 7B . 43

4.7.1 Results . 44
4.8 Fine-tuned Alpaca-7B . 48

4.8.1 Results . 48
4.9 Alpaca-7B & Bitcoin dataset . 50

4.9.1 Results . 51
4.10 Gpt-4 Alpaca 13B . 53

4.10.1 Results . 53

5 Conclusions 56
5.1 General-use Models . 56
5.2 Software Engineering Models . 56
5.3 LLama-7B . 56
5.4 Fine-tuned Alpaca-7B . 57
5.5 Alpaca-7B with Bitcoin sentiment dataset . 57
5.6 Gpt-4 Alpaca 13B . 57
5.7 Future Work . 57

Bibliography 60

Appendices 62
A Alpaca-GPT4 13B interesting outputs . 62
B LLama 7B interesting outputs . 64
C Agreement Between All Models . 65
D Alpacas Runs Reports . 68

Page 5

List of Figures

2.1 Ray cluster overview [1] . 12

3.1 General-use sentiment analysis models in the pipeline 19
3.2 General-use Models Results . 23
3.3 Senti-CR in the pipeline . 26

4.1 GPT-3.5 added to the pipeline . 32
4.2 GPT-3.5 agreement with general-use models . 38
4.3 Data labeler frontend . 38
4.4 Data labeler overview . 39
4.5 GPT-3.5 agreement with ground truth . 40
4.6 General-use agreement with ground truth . 41
4.7 Alpaca-7B (without bitcoin dataset) agreement with ground truth 49
4.8 Alpaca-7B (without bitcoin dataset) & GPT . 49
4.9 Alpaca-7B with bitcoin dataset agreement with ground truth 51
4.10 All alpacas agreements with each other . 52
4.11 Cohen’s kappa . 55

1 Cohen’s Kappa matrix of all models (negative values are due to values being rounded) 66
2 Krippendorph’s Alpa matrix of all models . 67
3 Alpaca Runs : eval/sampels per second . 68
4 Alpaca Runs : eval/runtime . 68
5 Alpaca Runs : eval/loss . 68
6 Alpaca Runs : eval/steps per second . 68
7 Alpaca Runs : train / learning rate . 68
8 Alpaca Runs : train / loss . 68
9 Alpaca Runs : : train / train loss . 69
10 Alpaca Runs : train / train runtime . 69
11 Alpaca Runs : train / global step . 69
12 Alpaca Runs : train / train steps per second . 69
13 Alpaca Runs : System GPU process memory allocated 69
14 Alpaca Runs : System GPU memory allocated . 69
15 Alpaca Runs : System GPU time spent accessing memory 70
16 Alpaca Runs : System GPU Utilization . 70
17 Alpaca Runs : System GPU Time Spent Accessing Memory 70
18 Alpaca Runs : System GPU Utilization . 70

6

1 | Introduction And Motivation

Infrastructure as code (IaC) is an approach that has gained widespread acceptance for the management
of IT infrastructure. It allows organizations to manage and provision their infrastructure through
machine-readable definition files rather than manual configuration, automate deployments, and apply
version control techniques [2, 3].

Cloud computing has revolutionized the way organizations deploy their infrastructure, allowing ac-
cess to a wide range of computing services over the Internet. The main advantage of cloud computing
is its cost-effectiveness since the pricing structure is linked to the level of usage. Thus, it is important
to select the services that best suit the organization’s needs and budget in order to maximize value and
minimize expenses [4].

As infrastructure grows in complexity, managing changes to IaC artifacts becomes more challen-
ging, and it is crucial to understand how changes impact the cost of infrastructure management in the
cloud[5]. According to Gartner [6], by 2025, more than 80% organizations will adopt IaC as a funda-
mental practice to manage IT infrastructure. While IaC has several benefits, cost management can be
a significant concern for organizations. The lack of insights into the cost implications of changes to
IaC artifacts can lead to unexpected expenses [5, 7].

Sentiment analysis identifies opinions, emotions, and attitudes in text data. It has several applications
in diverse domains [8]. However, the potential of sentiment analysis for cost management in IaC
remains under-explored [9]. Therefore, this proposal seeks to explore the potential of sentiment
analysis for predicting cost management actions in response to changes in IaC artifacts.

A worthwhile endeavor would be to investigate whether sentiment analysis can be utilized to enable
organizations to effectively manage their infrastructure costs. Sentiment analysis on commit messages
related to IaC artifacts can provide insights into how developers and engineers feel about changes in
the infrastructure code. These changes could be related to cost optimization, performance improve-
ment, or other factors. By analyzing the sentiment of these messages, we hope to identify patterns
and trends that can help us predict cost management actions related to these changes.

For example, positive sentiment in commit messages could indicate that the changes made are likely to
result in cost savings or improved performance, while negative sentiment could suggest the opposite.
This information can be used to inform decision-making around cost management actions, such as
whether to proceed with a particular change or explore alternative options.

The goal of this work is therefore to explore the potential of sentiment analysis on commit messages
related to IaC artifacts as a tool for predicting cost management actions. By identifying patterns and
trends in the sentiment of these messages, we aim to provide insights that can inform decision-making
around changes to IaC artifacts, allowing organizations to optimize their infrastructure performance
and reduce costs. Our ultimate objective is to provide a framework that enables organizations to
make informed decisions about their infrastructure, contributing to improved business outcomes and
innovation.

1.1 | Research Questions
To summarize, this thesis focuses on examining the relationship between sentiment and cost manage-
ment actions in IaC.

7

1.2. RESEARCH OUTLINE

Consequently, our research questions are:

Q1. To what extent is it possible to use existing sentiment analysis models from the literature
to establish this relation?

Q2. How efficient is it to create a specialized sentiment analysis model for the same purpose?

1.2 | Research Outline
In Chapter 2, we provide an overview of the background information and relevant scientific literature
related to the main concepts of this research.

Chapter 3 presents the study design and execution of the research conducted for this thesis regarding
the non-customized models, as well as the results obtained and their discussion. As the number of
results is extensive, they are included in the relevant sections within this chapter rather than a separate
chapter.

Chapter 4 focuses on the process of making the customized sentiment analysis model, its challenges
and results.

Finally, in Chapter 5, the conclusions and potential future works that can result from this research are
outlined.

Page 8

2 | Background

This chapter provides an overview of the fundamental concepts central to this research. In Section 2.1
and Section 2.2 fundamental concepts are explained in order to understand Section 2.3. In which
relevant background work is outlined showcasing the relevance of the sentiment in the software en-
gineering realm and how its analysis can provide useful analysis about the project. Additionally,
Section 2.4 highlights the two main components this thesis has utilized in order to achieve the res-
ults. Section 2.5, Section 2.6, Section 2.7, and Section 2.8 explain essential tools utilized during this
research. Finally, Section 2.9 mentions the importance of this project’s results.

2.1 | Git & GitHub
In the ever-changing landscape of software development, version control, and collaborative tools are
essential for effective and dependable project administration. Git, a decentralized version control sys-
tem, and GitHub, a broadly utilized web-based hosting platform, have become key technologies that
have revolutionized how developers manage, monitor changes, and collaborate on codebases.

2.1.1 | Git

Git 1 is a distributed version control system (VCS) that has revolutionized the way in which software
developers manage and track changes in their projects. Git is a widely-used VCSs within the software
development community. The most relevant aspects of Git for this research are :

Commits and Snapshots : Git tracks changes to the codebase through “commits”. Each commit
captures a snapshot of the project at a specific point in time, making it easy to navigate through
the project’s history.

Version Control : Git provides a comprehensive history (the snapshots with the commits) of the
codebase, allowing developers to track changes and revert to previous versions.

Consequently, having a history of snapshots of the codebase enables the developers to view every
change made to every file and crucially the associated commit messages provide details of the changes.

2.1.2 | GitHub

GitHub2 is a web-based platform that facilitates software development using the Git version control
system, providing an environment in which developers may collaborate on and manage code repos-
itories. As a hub of both open-source and private development projects, it enables users to share and
work together on software projects, thus promoting collaboration and innovation in the development
process. Which is crucial to this research and the previous thesis outline in Section 2.4.1.

2.2 | Cloud Orchestrators & IaCs
Cloud computing has revolutionized the way organizations manage and deploy their IT infrastruc-
tures. Cloud orchestrators and IaC have become essential components of modern cloud-native envir-

1https://git-scm.com/about
2https://github.com/

9

https://git-scm.com/about
https://github.com/

2.3. SENTIMENT ANALYSIS

onments, helping to streamline cloud operations, improve scalability, and enable effective resource
management. The importance of cloud orchestrators and IaC lies in their capability to automate the
provisioning, configuration, and management of cloud resources, as well as to provide a platform for
continuous integration and deployment. By providing a reliable, consistent, and repeatable infrastruc-
ture, these technologies have enabled organizations to quickly and efficiently respond to changing
demands.

2.2.1 | Cloud Orchestrators
Cloud orchestration is a powerful tool that automates and manages the provisioning, configuration,
and deployment of cloud resources and services. It serves as a critical backbone for cloud infra-
structure management by abstracting the complexities of underlying cloud platforms and providing a
unified interface for defining and controlling the infrastructure. Popular cloud orchestration solutions
include Kubernetes 3, Docker Swarm 4, and Amazon ECS 5.

2.2.2 | Infrastructure as Code
IaC is an approach to cloud infrastructure configuration that treats it as software code. This paradigm
involves representing cloud infrastructure in a declarative fashion using code, which can be version-
controlled, tested, and deployed programmatically. Popular IaC tools include Terraform 6, AWS
CloudFormation 7, and Azure Resource Manager 8.

2.2.3 | Versioned IaC artifacts
The combination of Git, GitHub, and IaC artifacts provides versioned IaC artifacts that describe the
infrastructure in the cloud. As these files have direct influence on the cost of the cloud deployments,
any changes made to them also affects the cost of the project’s deployment. All of the changes are
documented using Git and are accessible by others if hosted on GitHub.

2.3 | Sentiment Analysis
Sentiment analysis, also known as opinion mining, is a Natural Language Processing (NLP) technique
for determining and analyzing sentiment or emotion expressed in a text, such as reviews, social media
posts, or customer feedback. The purpose of sentiment analysis is to classify text into categories
of positive, negative, or neutral in order to determine the overall sentiment of the author towards a
particular topic. This process usually involves utilizing machine learning algorithms or lexicon-based
approaches in order to detect and measure words or phrases that communicate emotion, sentiment, or
polarity.

Sentiment analysis has been applied in marketing, customer experience, and social media analysis
[8]. Abo et al [10] conducted a systematic mapping study dealing with sentiment analysis for Arabic
texts in social media.

3https://kubernetes.io/
4https://docs.docker.com/engine/swarm/
5https://aws.amazon.com/ecs/
6https://www.terraform.io/
7https://aws.amazon.com/cloudformation/
8https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/overview

Page 10

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://aws.amazon.com/ecs/
https://www.terraform.io/
https://aws.amazon.com/cloudformation/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/overview

2.4. BUILDING BLOCKS

In the context of software engineering, Ahasanuzzaman et al [11] used sentiment analysis to provide
API designers an insight into the issues of their API by analyzing the sentiment of questions and
answers on Stack Overflow 9.

Guzman et al [12] applied sentiment analysis on commit messages from open-source projects on
GitHub 10. Then used that to analyze the sentiment relationship with different factors such as used
programming language, time and day of the week in which the commit was made, team distribution,
and project approval.

However, researchers have found that sentiment analysis using regular sentiment analysis models (the
models used for customer reviews for example) is not accurate enough in the realm of software en-
gineering. Since messages include technical jargons, word contractions, emoticons, URLs, and code
snippets.

This prompted scientists like Biswas et al [13] to look into the effects of two possible ways to enhance
the training for sentiment analysis of SE artifacts when using neural networks that were specifically
designed using the Stack Overflow data. They studied the effects of software domain-specific word
embeddings on the performance of the sentiment analysis tool, as compared to generic word embed-
dings learned from Google News, and tailored the sentiment analysis process to the software domain
using software domain-specific word embeddings learned from Stack Overflow posts.

Additionally, Ahmed et al [14] made SentiCR, a Customized sentiment analysis tool for code review
interactions, and compared their own made model to already existing models. The outcome of this
was clear that already existing models cannot be used out of the box in software engineering.

Finally, Ding et al [15] used SentiSW, an entity-level sentiment analysis tool specific to the SE do-
main. Consisting of sentiment classification and entity recognition to extract the sentiment from issue
comments. After building a 3,000 labeled sentiment dataset, which is the largest software engineer-
ing dataset in sentiment analysis.

In the context of IaC, sentiment analysis has the potential to help organizations predict the cost im-
plications of changes to IaC artifacts. By analyzing the sentiment of comments related to IaC changes,
organizations can make informed decisions about the changes they make, reduce costs, and optimize
infrastructure performance.[16]

In conclusion, sentiment analysis has been successfully applied in software engineering. And plays
a role, in the productivity and quality of code the developers provide [17]. However, its potential for
cost management in IaC stays uncharted.

2.4 | Building blocks
This thesis is composed of several key components which are essential for its successful completion.
These components have been instrumental in inspiring the concept of the research and enabling the
successful implementation of it.

9https://stackoverflow.com/
10https://github.com/

Page 11

2.4. BUILDING BLOCKS

/multiple

/compare

/

Model

Pre-processor

Model

Pre-processor

Model

Pre-processor

Model Deployment

Model

Pre-processor

Model Deployment

Model

Pre-processor

Model Deployment

Model

Pre-processor

Model Deployment

requests

Model Pre-processor

Pipeline
Deployment

Model Deployment

APIEndpoint

Load Balancer

Continuation

Model DeploymentModel Deployment

Figure 2.1: Ray cluster overview [1]

2.4.1 | Previous Bachelors Project
In 2022, a thesis was created under the same supervisors and titled “Mining and Analysis of Cost-
related Decisions in Cloud Infrastructures”. This thesis aimed to collect relevant data pertaining to
Infrastructure as Code (IaC) files. The study conducted a mining operation of public GitHub repos-
itories to investigate the prevalence of Infrastructure as Code (IaC) artifacts. Specifically, the mining
process was aimed at identifying repositories with a codebase that exceeded a specified percentage
of IaC artifacts. Two datasets11were collected, namely commits messages and issues, both related to
IaC files. As a start, the primary dataset to be explored and used in this thesis is the commits.

2.4.2 | Sentiment Analysis Pipeline
In anticipation of its use in this thesis, under the same supervisors, I created a horizontally-scalable
pipeline, the structure of which can be seen in Figure 2.1, to host multiple Natural Language Pro-
cessing (NLP) models. This pipeline was designed such that any NLP model can be added to the
pipeline after implementing the model interface, and the newly added model would be accessible via
an Application Programming Interface (API) that exposes all the hosted models on the Ray cluster 12.
This pipeline provides a great utility in this thesis, as it allows for the easy addition of any model of
interest and allows for sentiment analysis requests from that model using the exposed FastAPI13 API.
This work was done under the course name Short Programming Project (SPP).

The workflow consisted of adding all of the tested models to the pipeline and utilizing the /multiple

endpoint to obtain sentiment analysis results from multiple models simultaneously.

11https://github.com/feitosa-daniel/cloud-cost-awareness/blob/main/dataset.json
12https://docs.ray.io/en/latest/cluster/getting-started.html
13https://fastapi.tiangolo.com/

Page 12

https://github.com/feitosa-daniel/cloud-cost-awareness/blob/main/dataset.json
https://docs.ray.io/en/latest/cluster/getting-started.html
https://fastapi.tiangolo.com/

2.5. AGREEMENT METRICS

Horizontally-scalable Pipeline

A horizontally-scalable pipeline is a system architecture designed to facilitate the handling of in-
creasing workloads and data volumes by employing a distributed approach to processing tasks across
multiple nodes or machines. This design strategy differs from that of traditional vertically-scalable
systems, which focus on augmenting resources on a single machine, and instead, allows for the ex-
pansion of processing capabilities without any detrimental effect on performance through the addition
of additional machines to the processing pool.

Micro-services Architecture

Micro-services architecture is an architectural software style that organizes an application as an ag-
gregation of small, loosely coupled, and independently deployable services. Each service concen-
trates on a particular business capability and works as an independent unit with its own database,
logic, and capabilities. These services communicate with each other via clearly defined Application
Programming Interfaces (APIs), usually across a network.

Ray Serve

Ray Serve 14 is a library designed to facilitate the development and deployment of machine learning
models as high-performance microservices. It allows developers to create production-ready serving
systems with minimal latency and maximum throughput. This library provides a way for developers
to create and manage machine learning models in a scalable and reliable manner.

2.5 | Agreement Metrics
In this thesis, multiple models will be employed in order to label data entries, referred to as raters.
Human annotations, known as ground truth, will be used to evaluate the correctness of the models.
Two metrics will be utilized in order to determine the accuracy of the models, namely Cohen’s kappa
and Krippendorff’s alpha. These metrics will allow for comparison of model output to the ground
truth, in order to assess the accuracy of the models. This is also known as inter-rater reliability.

2.5.1 | Cohen’s kappa
The determination of interrater reliability is a critical factor in the validity of research results. The
Kappa statistic is a commonly used measure to evaluate the extent to which two or more raters agree
in their assessment of a particular variable. By assessing the consistency of ratings across different
raters, researchers can gain confidence in the accuracy of the data collected [18].

14https://docs.ray.io/en/latest/serve/index.html

Page 13

https://docs.ray.io/en/latest/serve/index.html

2.5. AGREEMENT METRICS

κ =
Po −Pe

1−Pe

Po =
∑

k
i=1 nii

N

Pe =
∑

k
i=1 (ni· ·n·i)

N2

where:
• κ is Cohen’s kappa,
• Po is the observed agreement, which is the proportion of observed agreement among raters,
• Pe is the agreement expected by chance, which is the proportion of agreement expected by

chance,
• k is the number of categories (codes or labels),
• nii is the number of items both raters have assigned to category i,
• ni· is the total number of items assigned to category i by all raters,
• n·i is the total number of items assigned to category i by all raters, and
• N is the total number of ratings (the sum of all ni j values).

If the raters are in complete agreement, then Cohen’s Kappa coefficient, κ = 1. If there is no agree-
ment among the raters other than that which would be expected by chance, κ = 0. It is also possible
for the statistic to be negative [19], which can occur by chance if there is no correlation between
the ratings of the two raters, or it may indicate a real tendency of the raters to give contrasting rat-
ings.

2.5.2 | Krippendorff’s alpha
Krippendorff’s alpha is a reliability measure used to assess the agreement or reliability of data an-
notations or codings across multiple raters or coders. It is particularly applicable when dealing with
nominal or ordinal categorical data, where raters classify items into discrete categories or assign or-
dinal values [20].

Page 14

2.6. HUGGINGFACE

α = 1− Do

De

Do =
k

∑
j=1

n

∑
i=1

mi j(mi j −1)
N(N −1)

De =
k

∑
j=1

o j(o j −1)
N(N −1)

where:
• α is Krippendorff’s alpha,
• Do is the observed disagreement, which is the sum of squared disagreements among raters,
• De is the disagreement expected by chance, which is the sum of squared disagreements expected

by chance,
• k is the number of categories (codes or labels),
• n is the number of items being rated, and
• N is the total number of ratings (the product of n and the number of raters).

Negative α values indicate significant disagreement or systematic bias, while an α value of 0 sug-
gests chance-level agreement. Positive values of α reflect higher levels of agreement and indicate a
more reliable and consistent coding process. An α of 1 indicates perfect agreement, which is rarely
achievable in real-world data coding tasks.

2.6 | Huggingface

Hugging Face15, a well-known NLP company and open-source community, has made significant
contributions to the fields of NLP and machine learning. By developing and maintaining state-of-the-
art NLP libraries and models, Hugging Face makes it possible that researchers, developers, and the
general public to access and use the most advanced tools in the field. The Huggingface library will be
employed to deploy the models created and to access the base models necessary for this thesis.

2.7 | Hábrók cluster

Hábrók cluster 16 is a computer cluster provided by the University Of Groningen. This cluster is a
collection of computers that can be used for doing calculations that exceed the capacity of an average
desktop or laptop. This cluster will be used when training the models and generating them. All of
our experiments were run on the cluster with at least two A100 NVIDIA GPUs and at least 6GB of
memory per GPU.

2.8 | Alpaca-LoRA

Alpaca-LoRA 17 is a low-power variant of the Stanford Alpaca framework designed to enable the
training of large models on low-end devices such as the Raspberry Pi. This variant leverages Low-
Rank Adaptation (LoRA) to reduce memory consumption and accelerate training time [21].

LoRA freezes the pre-trained model weights and injects trainable rank decomposition matrices into
each layer of the Transformer architecture, greatly reducing the number of trainable parameters for

15https://huggingface.co/
16https://wiki.hpc.rug.nl/habrok/introduction/
17https://github.com/tloen/alpaca-lora

Page 15

https://huggingface.co/
https://wiki.hpc.rug.nl/habrok/introduction/
https://github.com/tloen/alpaca-lora

2.9. PAPER WRITE-UP

downstream tasks. This has several key advantages, sharing and building the model becomes increas-
ingly easier, more efficient and lowers the hardware barrier, and merge the trainable matrices with the
frozen weights [21].

2.9 | Paper Write-up
This research is in the process of being compiled into a comprehensive research paper by esteemed
supervisors. The paper is undergoing extensive review and evaluation.

The review process is ongoing and entails a critical evaluation of the research methodology, data
analysis, and interpretation of results, with a steadfast dedication to upholding scholarly standards
and scientific rigor. The paper aims to communicate the insights gained, the methods used, and the
implications of the findings in a clear, concise, and academically sound manner.

Page 16

3 | Study design and execution

This section delves into the design choices that have been systematically employed throughout the
course of this research endeavor. Additionally, it elaborates on the pragmatic aspects of their realiza-
tion and implementation.

Developers use version control systems such as Git to manage their Infrastructure as Code (IaC)
artifacts, which are often hosted on GitHub and are accompanied by commit messages that describe
the changes made to them. This allows for an understanding of the reasoning behind the changes
to the IaC, and thus can provide insight into the associated costs of hosting IT infrastructure in the
cloud. This has driven research efforts to extract these changes and commit messages, leading to
datasets such as those discussed in Section 2.4.1.

In order to be able to answer the research question we need to run sentiment analysis on the datasets
mentioned. Extracting the sentiment of every entry in the dataset could be achieved using different
methods.

In this section, every experiment done in this thesis is outlined in addition to the associated results.
In Section 3.2 the utilization of the General NLP Models is described, and in Section 3.3 the attempt
to use the Software Engineering NLP Models is brought into the spotlight along with the issues
encountered.

This study will only analyze the commit messages dataset to gain insight. Additionally, the issues
dataset will be processed through the models, as the only difference between the two datasets is the
text sent to the API. The reason for this is having the issues dataset labeled could be beneficial for
further research, but due to time constraints analyzing the results will not take place.

3.1 | Overall Design
The primary goal of this study is to address the research questions (RQ) defined in the introduction and
evaluate the effectiveness of sentiment analysis in software engineering using the Alpaca model. To
achieve this, we have designed a comprehensive methodology that leverages the existing components
and knowledge discussed in the previous chapter.

Our approach involves the following key steps:

Tripolar Tagging of Sentiments: In contrast to the traditional binary or polarity-based sentiment
analysis, we adopt a tripolar tagging scheme to capture nuances in sentiment expression. Our
sentiment labels are categorized into three classes: positive, neutral, and negative. This ap-
proach allows us to provide more nuanced and context-aware sentiment predictions.

Model Selection: For the sentiment analysis task, we carefully choose a set of language models
from the literature, encompassing both transformer-based and traditional machine learning ap-
proaches. We will start with general-use models, move on to more software engineering models,
and finally make a customized model as it is necessary.

Establishing the ground truth: To ensure the accuracy and reliability of the tripolar tagging, we
perform a rigorous process of establishing the ground truth. The author and GPT-3.5 annotate
independently the commit messages, and inter-annotator agreement measures, such as Cohen’s
kappa, are computed to assess the consistency of annotations.

17

3.2. GENERAL-USE SENTIMENT ANALYSIS MODELS

Evaluation Metrics: To assess the models’ effectiveness, we employ Cohen’s kappa and Krippen-
dorff’s alpha as evaluation metrics. These metrics provide measures of inter-rater agreement,
allowing us to assess the consistency and reliability of sentiment predictions.

Comparison with Baselines: We establish baseline models using conventional sentiment analysis
techniques and compare their performance with the fine-tuned Alpaca models. This comparison
enables us to gauge the improvement achieved using Alpaca’s capabilities.

Tripolar Tagging of Sentiments
The tripolar tagging of sentiments serves as a fundamental design decision in this study. By moving
beyond the binary sentiment classification, we aim to capture nuanced sentiments expressed in commit
messages. For instance, a developer’s sentiment towards a code change could be positive due to
efficiency improvements, neutral for minor bug fixes, or negative for complex refactoring. The tripolar
tagging approach enhances the granularity of sentiment analysis, making it more contextually relevant
to software engineering tasks.

Model Choices
In selecting the language models for sentiment analysis, we strike a balance between the state-of-
the-art transformer-based models, known for their contextual understanding, and traditional machine
learning models, renowned for their interpretability.

Experimental Setup
We conduct extensive experiments on the prepared dataset using the Alpaca models. Each model
undergoes fine-tuning. The evaluation metrics provide quantitative measures of each model’s ability
to accurately predict sentiments.

3.2 | General-use Sentiment Analysis Models
The first method to label all the entries in the dataset is to use pre-existing models used to achieve this
specific goal. Therefore, three general-use models are selected for use: Stanza NLP1, Vader2, and
Textblob3. These models are commonly employed in sentiment analysis and are thus chosen as the
go-to models for the purpose of this study.

By using the pipeline outlined in Section 2.4.2, all three models were easily implemented (as illus-
trated in Figure 3.1). Subsequently, the exposed endpoints yielded the results mentioned in Sec-
tion 3.2.1.

1https://stanfordnlp.github.io/stanza/
2https://github.com/cjhutto/vaderSentiment
3https://textblob.readthedocs.io/en/dev/

Page 18

https://stanfordnlp.github.io/stanza/
https://github.com/cjhutto/vaderSentiment
https://textblob.readthedocs.io/en/dev/

3.2. GENERAL-USE SENTIMENT ANALYSIS MODELS

Figure 3.1: General-use sentiment analysis models in the pipeline

Naturally, every model requires a specific implementation to extract the sentiment of a given piece of
text. However, implementing the Classifier interface guides us toward what methods to implement.
Therefore, TextBlob’s implementation in the pipeline is as follows:

@serve.deployment

class TextBlobClassifier(Classifier):

def __init__(self):

self.model = TextBlob

'''

TextBlob takes as input one single sentence at a time

- we classify the sentence by calling the TextBlob class

with the given sentence

- If the polarity is 0 then neutral, > 0 positive else negative

'''

def classify(self, text : str):

polarity = self.model(text).sentiment.polarity

if polarity > 0:

response = "Positive"

elif polarity == 0:

response = "Neutral"

else:

response = "Negative"

return response

The Stanza NLP model implementation was not as straightforward due to serialization issues 4. As

4https://stackoverflow.com/questions/68787955/cant-pickle-thread-rlock-objects-when-using-huggingface-trainer-
with-ray-tun

Page 19

https://stackoverflow.com/questions/68787955/cant-pickle-thread-rlock-objects-when-using-huggingface-trainer-with-ray-tun
https://stackoverflow.com/questions/68787955/cant-pickle-thread-rlock-objects-when-using-huggingface-trainer-with-ray-tun

3.2. GENERAL-USE SENTIMENT ANALYSIS MODELS

each model had to be serialized to be inserted into the pipeline, Ray employed the use of the pickle

library 5 Unfortunately, it was unable to serialize the Stanza NLP model, so an alternate library,
dill 6 was used instead.

Consequently, a manual serialization and deserialization of the model prior to it being added to the
pipeline needed to take place. The serialization had already been done once by another process,
therefore only the deserialization needed to be done before the model could be added, which was
done using a startup_event method. The implementation is as follows:

STANZA_NAME = "stanza_model.pkl"

def startup_event():

if os.path.exists(STANZA_NAME) == False:

stz.download('en')

Load the Stanza model

nlp = stz.Pipeline('en')

Serialize the Stanza model using dill

with open(STANZA_NAME, 'wb') as f:

dill.dump(nlp, f)

@serve.deployment

class StanzaClassifier(Classifier):

def __init__(self):

run the startup event

startup_event()

if the file does not exist throw an error

if os.path.exists(STANZA_NAME) == False:

raise Exception("Stanza model not found")

file = open(STANZA_NAME, 'rb')

nlp = dill.load(file)

self.model = nlp

def classify(self, text : str):

doc = self.model(text)

sentiment = 0

size = len(doc.sentences)

for i, sentence in enumerate(doc.sentences):

sentiment += sentence.sentiment

if (size == 0):

return "Neutral"

sentiment = sentiment / size

5https://docs.ray.io/en/latest/ray-core/objects/serialization.html#serialization-notes
6https://pypi.org/project/dill/

Page 20

https://docs.ray.io/en/latest/ray-core/objects/serialization.html#serialization-notes
https://pypi.org/project/dill/

3.2. GENERAL-USE SENTIMENT ANALYSIS MODELS

polarity = round(sentiment, 0)

response = {}

if polarity == 0:

response = "Negative"

elif polarity == 1:

response = "Neutral"

else:

response = "Positive"

return response

The Vader model addition to the pipeline was as straightforward as Textblob without any issues. The
implementation in the pipeline:

@serve.deployment

class VaderClassifier(Classifier):

def __init__(self):

self.model = SentimentIntensityAnalyzer()

'''

Vader takes as input one single sentence at a time

- we classifiy the sentence by calling the Vader class

with the given sentence

'''

def classify(self, text : str):

polarity = self.model.polarity_scores(text)

if polarity['compound'] >= 0.05 :

response = "Positive"

elif polarity['compound'] <= - 0.05 :

response = "Negative"

else :

response = "Neutral"

return response

3.2.1 | Results
For the results, the JSON markup language was used due to the pipeline using it as its API’s re-
sponse. As mentioned before the /multiple endpoint was used with all three mentioned models as

Page 21

3.2. GENERAL-USE SENTIMENT ANALYSIS MODELS

the parameters. This results in the following response for a single commit message:

{

"type": "commit",

"url": "https://github.com/blinkist/terraform-aws-airship-ecs-

cluster/commit/d7aa659971bee1be873d3dda92e30443556f52df",

"content": {

"message": "Removed the default use of detailed monitoring. (#17)

* Reduces CloudWatch costs for metrics by 80%"

},

"codes": [

"saving"

],

"sentiment": {

"text_blob": "Positive",

"vader": "Neutral",

"stanza": "Negative",

}

},

The pipeline was used to analyze each commit in the dataset. It was able to accept an array of
commits, making it simple to apply to the entire dataset, as shown in Figure 3.1.

The degree of agreement between the three models applied to the labeled dataset was found to be low,
resulting in a 57% percentage of conflicts between the models. To evaluate this agreement, Krippen-
dorff’s alpha (see Figure 3.2a) and Cohen’s kappa (see Figure 3.2b) were utilized as measures.

Krippendorff’s alpha score of 0.061 is indicative of low agreement among raters or coders. This score
is considered relatively low, indicating that the observed agreement in the data is not significantly
different from what would be expected by chance alone. As a reliability coefficient, higher values are
generally desired to indicate better agreement between the models.

Cohen’s Kappa score of 0.11− 0.23 is regarded as relatively low, indicating a lack of agreement
between the models. Again suggesting that the observed agreement in the data is not significantly
different from what would be expected by chance alone.

Page 22

3.2. GENERAL-USE SENTIMENT ANALYSIS MODELS

(a) Krippendorff’s alpha (b) Cohen’s kappa

Figure 3.2: General-use Models Results

Furthermore, the models were found to be unable to handle typos correctly, resulting in disagreements
between the models. For example:

{

"type": "commit",

"url": "https://github.com/stealthHat/k8s-

terraform/commit/681a3f8b4942be495b3f2528fb9ee40d7a4eb08a",

"content": {

"message": "nat gateway is verry expensive"

},

"sentiment": {

"text_blob": "negative",

"vader": "neutral",

"stanza": "positive"

}

}

We can see that all 3 models are giving different sentiments for the same sentence.

Page 23

3.2. GENERAL-USE SENTIMENT ANALYSIS MODELS

Lastly, the models were unable to understand software jargon in the commit messages, which hindered
their ability to accurately analyze the data.

{

"type": "commit",

"url": "https://github.com/thomastodon/jabujabu/commit/

02210a3d3ba4a770c29623825b7f54f3ff33f3c7",

"content": {

"message": "Make the concourse cluster cheaper

- no longer uses a load balancer\n- no longer uses more expensive VMs"

},

"sentiment": {

"text_blob" : "neutral",

"vader": "negative",

"stanza": "negative",

}

}

3.2.2 | Conclusion
From the observations, we can safely conclude that we cannot use these models’ results as the ground
truth for our analysis. From the results discussed in Section 3.2.1 that are also depicted in Figure 3.2
we know that such results and such scores have the following implications:

• Limited Reliability: Such kappa and Krippendorff scores suggest only a slight agreement
between the raters, indicating inconsistent assessments of the data.

• Subjectivity and Variability: The observed scores may be indicative of subjectivity and vari-
ability in the coding process. It suggests that the models hold different interpretations of the
categories or criteria, resulting in in-congruent outcomes.

• Challenges in Data Interpretation: Interpreting the data becomes more arduous with such scores.
It is difficult to draw dependable conclusions or generalize findings due to the limited agreement
between raters.

• Necessity for Improvement: The diminished scores underscore the necessity for procedural
enhancement in the coding process. Additional training or clearer guidelines for models are
essential to augment their agreement and heighten the data’s overall reliability.

It is not possible to use these models to accurately determine the true sentiment (i.e. ground truth) of
commit messages. Consequently, alternative models must be explored in order to develop a reliable
method for gauging sentiment. Although further training may help to improve the agreement between
models, this would require significant time and effort. Therefore, it is necessary to identify models
that have already been trained in a context similar to that of the current research.

Page 24

3.3. SOFTWARE ENGINEERING SENTIMENT ANALYSIS MODELS

3.3 | Software Engineering Sentiment Analysis Models
In Section 3.2.2 it was established that sentiment analysis models that are aware of software-specific
jargons are in need. Accordingly, Senti-SE 7 and Senti-CR8, models that were initially discussed in
Section 2.3, were selected for use in the context of software engineering. Both of these models were
trained with the consideration of software-jargons, and were successfully applied in extracting the
sentiment of sentences.

3.3.1 | Results
The results of both models were not satisfactory. When analyzing Senti-CR, it was observed that it
did not perform adequately. Similarly, Senti-SE yielded poor results. Both results will be discussed
below.

Senti-SE

When attempting to utilize this model, we encountered a few issues that set us back and made it not
possible for us to run this model locally. The model was built using JAVA with Ant as the building
tool.

The repository includes a fat jar 9 of the model which should be executable; however, this jar does not
function due to missing classes. It was discovered that the structure of the code for the model needed
to be fixed in order to build it locally, rather than relying on the included jar. Upon attempting to
build the model locally, it became apparent that some crucial files were missing which were required
for training the model. Consequently, the author was contacted to provide the missing files or further
instructions on how to build the model; however, no files or instructions were received.

Senti-CR

Senti-CR, built using Python, proved to be a difficult task to work with. The repository lacked clear
indications of the version of Python used, as well as the dependencies and their exact versions. This
made getting started with the model very difficult. After using the latest version of Python and fixing
all syntax errors, the necessary libraries were updated. The fixes included:

• The workbook library for python is not supported for the current LTS version 3.11 and needed
to be swapped for openpyxl . Consequently, all snippets of code invoking specific methods of
workbook needed to be swapped with those of openpyxl .

• The SMOTE does not accept as many parameters as before. Therefore the function calls needed
to be updated.

• The method called smote_model.fit_sample has been renamed to smote_model.fit_resample .

• The 3.11 Python does not allow many old syntax but the most interesting one is

for i, j in dic.iteritems():

Which needed to be changed to

7https://github.com/amiangshu/SentiSE
8https://github.com/senticr/SentiCR
9https://stackoverflow.com/questions/19150811/what-is-a-fat-jar

Page 25

https://github.com/amiangshu/SentiSE
https://github.com/senticr/SentiCR
https://stackoverflow.com/questions/19150811/what-is-a-fat-jar

3.3. SOFTWARE ENGINEERING SENTIMENT ANALYSIS MODELS

for i, j in dic.items():

• The string in expand_contractions is now a byte string, so a change to string.decode("utf-8")

was necessary.

Subsequently, the model was trained, taking several hours. After which the model was added to the
pipeline as depicted in Figure 3.3 to be tested with the datasets.

Figure 3.3: Senti-CR in the pipeline

The specific implementation as added in the pipeline is as follows :

SENTI_CR_NAME = "classifier_model_GBT.pkl"

'''

called before the API is started, check if the model exists

'''

def startup_event():

if os.path.exists(SENTI_CR_NAME) == False:

Exception("SentI_CR model not found")

@serve.deployment

class SentI_CRClassifier(Classifier):

def __init__(self):

run the startup event

startup_event()

Page 26

3.4. CONCLUSION

file = open(SENTI_CR_NAME, 'rb')

nlp = dill.load(file)

self.model = nlp

def classify(self, text : str):

doc = self.model(text)

sentiment = 0

size = len(doc.sentences)

Same concept as in the Issues notebook. We average out the sentiment over all sentences in a document.

for i, sentence in enumerate(doc.sentences):

sentiment += sentence.sentiment

if (size == 0):

return "Neutral"

sentiment = sentiment / size

polarity = round(sentiment, 0)

response = {}

if polarity == 0:

response = "Negative"

elif polarity == 1:

response = "Neutral"

else:

response = "Positive"

return response

Testing with the datasets showed that the model utilized polarities that did not align with the −1 for
negative, 0 for neutral, and 1 for positive which was mentioned in the paper. Instead, it used only 0 or
1. For the purpose of this research, we do need all three polarities.

3.3.2 | Conclusion
The results presented in Section 3.3.1 indicate that Senti-SE cannot be used for this research, as the
necessary files were not provided by the author and could not be obtained locally. Which lead to not
having a functioning version of the model.

Additionally, Senti-CR is incompatible with this research due to its use of different polarities out-
put. This is regrettable, as comparison with these models would have been beneficial to this re-
search.

3.4 | Conclusion
In Section 3.2.1 and Section 3.3.1, our results demonstrated that the general-use models and the
attempted software engineering models were inadequate for labeling our dataset of commit mes-

Page 27

3.4. CONCLUSION

sages.

In Section 3.2.2 we concluded that general-use models demonstrated difficulty in correctly labeling
the dataset due to typos and software engineering jargon, resulting in a low agreement between the
models. This suggests that a better solution is required. Which prompted us to use software engineer-
ing models as described in Section 3.3.

In Section 3.3.2 we concluded that attempted software engineering models are unusable for either an
inadequate project setup or for a conflict between the model result and our tri-polarity.

This reveals the need for a model that encompasses all of our requirements. Learning from the errors
encountered when attempting to use the previous models, we can develop a customized sentiment
analysis model as outlined in Chapter 4.

Page 28

4 | Custom Sentiment Analysis Model

After examining the two options of utilizing general-use Sentiment Analysis models, as outlined in
Section 3.2, and software engineering Sentiment Analysis models, as outlined in Section 3.3, we
now move towards applying our customized Sentiment Analysis model that fulfills the requirements
of:

• Handling typos correctly: in Section 3.2.1 it was demonstrated that Sentiment Analysis mod-
els must be specifically trained in order to effectively handle typos in sentences.

• Being aware of software-specific jargons: as outlined in Section 3.2.1 Sentiment Analysis
models that are not aware of the context are not able to provide correct sentiment.

• High accuracy: our model must achieve high accuracy in predicting sentiment, which can be
determined by comparing its results to the manually labeled data. The manual label will be
used as the ground truth.

Therefore, the following next steps could be identified:

1. Labeling the data.

2. A suitable base model must be chosen to meet most of the requirements.

3. Train the model with the labeled dataset.

4. Study the results.

4.1 | Manual Data labeling
Recent developments in the field of artificial intelligence have led to the emergence of large-scale
language models, which are constructed using artificial neural networks. These models are pre-trained
using self-supervised and semi-supervised learning approaches and typically contain tens of millions
to billions of weights. In order to efficiently train these models, specialized AI accelerator hardware
is used to parallel process large volumes of textual data, typically obtained from the Internet. As
language models, they are able to take an input text and generate a prediction of the subsequent token
or word [22].

Data labeling in the context of this research is to label all the commit messages in the commits dataset
as one of the three polarities positive, neutral, and negative. Additionally, we decided to take an
extra step and include the rationale behind the sentiment when labeling. The annotators of this data
will be the author and GPT-3.5 3.5 specifically text-davinci 003 . The reason we chose to include
another agent is that the use of two agents to label data, instead of relying on a single agent, offers
several advantages that contribute to the overall quality and reliability of the dataset. These advantages
include :

• Increased inter-rater agreement and reliability: it allows for the assessment of inter-rater
agreement. Comparing the labels generated by the two agents using metrics as done in Sec-
tion 3.2.1.

• Improved error identification and correction: the use of two agents to independently label
data can help to identify and rectify any errors or inconsistencies within the labeling process.

29

4.2. LLM & GPT

Disagreements between the agents can be used to indicate areas of ambiguity or complexity,
thus necessitating further clarification.

• Reduced bias: the use of multiple agents in the labeling process can help to counterbalance any
biases that may be present due to the individual nature of the task. By having more than one
agent contribute to the labeling process, a more balanced and comprehensive view of the data
can be generated, thereby reducing the risk of bias and increasing the accuracy of the results.

• Validation and Confidence: When presenting research or using the labeled data for machine
learning purposes, having two agents label the data adds an additional layer of validation and
confidence in the results.

4.2 | LLM & GPT
Generative Pre-trained Transformer 3 (GPT-3), released by OpenAI in 2020, is a large language model
(LLM) based on the Transformer architecture, which replaces recurrent and convolutional architec-
tures with an attention-based decoder. Compared to its predecessor GPT-2, GPT-3 has a significantly
larger model size and a number of parameters, enabling it to generate more accurate language models
[23]. Recent research has demonstrated the efficacy of GPT-3.5, leading to its inclusion as a part of
this thesis [24].

4.3 | GPT-3.5

The reasons to specifically choose GPT-3.5 text-davinci 003 include :

• Contextual understanding: : GPT-3.5 stands as a powerful language model renowned for its
contextual comprehension of natural language. Given the conciseness and potential presence of
domain-specific jargon and informal language in commit messages, GPT-3.5’s contextual un-
derstanding allows for effective sentiment extraction, even in the absence of explicit indicators,
thereby enhancing the accuracy of sentiment analysis.

• Handling varied sentence structure: The heterogeneity in length and structure of commit
messages demands a versatile analysis approach. GPT-3.5 aptly accommodates the spectrum
of message lengths and diverse sentence patterns, rendering it well-suited for analyzing a wide
range of commit messages and extracting sentiment with precision.

• Large context window: The architectural design of GPT-3.5 affords it the capability to con-
sider an extensive context window, encompassing numerous preceding tokens within a text.
This feature fosters a deeper understanding of the commit message, potentially capturing senti-
ments that transcend individual sentences, thus enriching the sentiment analysis process.

• Developer-friendly API: GPT-3.5’s API caters to developers with a user-friendly interface,
simplifying integration into applications. This facilitates seamless implementation and em-
powers developers to harness the model’s capabilities effectively.

GPT-3.5 was then added to the pipeline as depicted in Figure 4.1. The specific implementation in the
pipeline is as follows:

class GptClassifier(Classifier):

def __init__(self):

self.model = "text-davinci-003"

Page 30

4.3. GPT-3.5

def classify(self, text : str):

response = openai.Completion.create(

model = f"{self.model}",

prompt= f"Use JSON to format the response like this:\n\n

{{

\"sentiment\": \"sentiment here\",

reason: \"reason here\"

}}.

Classify the sentiment of the following sentence

and give me the reason:\n\n{text}\n",

temperature=0,

max_tokens=60,

top_p=1.0,

frequency_penalty=0.0,

presence_penalty=0.0

)

return response['choices'][0]['text']

In order to understand the rationale behind the output of a GPT-3.5, it is essential to include the reason-
ing behind the sentence. This is especially necessary when disputes arise so that we can comprehend
GPT-3.5’s thought process.

The temperature of GPT-3.5 was reduced to zero, thereby mitigating the risk of obtaining unexpected
or creative responses from the model, which has been known to possess a hallucinatory element.

4.3.1 | Results
In terms of consistency in formatting the response, the results of GPT-3.5 were found to be inadequate.
Furthermore, the generated response did not adhere to the prompt, which required the use of JSON
notation. Consequently, additional processing is required to clean the data from any special characters
and extraneous text generated by GPT-3.5.

Page 31

4.3. GPT-3.5

Figure 4.1: GPT-3.5 added to the pipeline

Some of the things noticed from the responses of GPT-3.5 are:

Unsolicited text completion, 2 examples:

{

"type": "commit",

"url": "https://github.com/JamesWoolfenden/terraform-aws-

codebuild-container/commit/4a00ffcbf9576d7e5febdbdf94a31d4735fc8035",

"content": {

"message": "costs"

},

"codes": [

"awareness",

"storage"

],

"sentiment": {

"text_blob": "Neutral",

"vader": "Neutral",

"stanza": "Neutral",

Page 32

4.3. GPT-3.5

"gpt": " are too high

Sentiment: Negative

Reason: The sentence expresses dissatisfaction

with the high cost of something."

}

},

{

"type": "commit",

"url": "https://github.com/ken-matsui/poac-

infrastructure/commit/02c710b8259f493c475021fc9eac23b871305ae6",

"content": {

"message": "cost reduction\nhttps://aws.amazon.com/about-aws/whats-

new/2017/06/amazon-rds-enables-encryption-at-rest-for-additional-t2

-instance-types"

},

"codes": [

"saving",

"provider"

],

"sentiment": {

"text_blob": "Neutral",

"vader": "Neutral",

"stanza": "Neutral",

"gpt": "-and-cost-reduction/\n\nSentiment: Positive\nReason:

The sentence is discussing the addition of encryption at rest

for additional T2 instance types and cost reduction, which are

both positive developments."

}

},

Examining the GPT-3.5 result, it is evident that GPT-3.5 completed the sentence due to the lack of
contextual information for ascertaining sentiment.

Inconsistent result notation, 2 examples

{

"type": "commit",

"url": "https://github.com/tooxie/terraform-

workshop/commit/002bcce28e46728714fa1e0d20bec6f2559caba2",

"content": {

"message": "Add prod var\n\nWhat if we want to use less

Page 33

4.3. GPT-3.5

(or cheaper) infrastructure for non-prod systems?"

},

"codes": [

"instance",

"awareness"

],

"sentiment": {

"text_blob": "Negative",

"vader": "Positive",

"stanza": "Neutral",

"gpt": "\n\nNeutral. This sentence does not express any sentiment

, it is simply asking a question."

}

},

{

"type": "commit",

"url": "https://github.com/chad-russell-git/terraform-oci-cis-landing-

zone/commit/7247909ecd98c2d511316392f22cb3877f05250b",

"content": {

"message": "added policies for cost management"

},

"codes": [

"awareness",

"policy"

],

"sentiment": {

"text_blob": "Neutral",

"vader": "Neutral",

"stanza": "Neutral",

"gpt": "\n\nNeutral. This sentence does not express any sentiment, so it is classified as neutral."

}

},

The GPT-3.5 results are then cleaned and validated to look like the following:

{

"type": "commit",

"url": "https://github.com/tkhoa2711/terraform-

digitalocean/commit/a86d89369aaf5a20c1e4d8415a8a771aa7de7d10",

"content": {

"message": "provision a droplet with cheapest price"

Page 34

4.3. GPT-3.5

},

"codes": [

"saving"

],

"sentiment_analysis": [

{

"classifier": "text_blob",

"sentiment": "neutral",

"reason": "none"

},

{

"classifier": "vader",

"sentiment": "neutral",

"reason": "none"

},

{

"classifier": "stanza",

"sentiment": "neutral",

"reason": "none"

},

{

"classifier": "gpt",

"sentiment": "neutral",

"reason": "The sentence does not express any emotion or opinion."

}

]

},

Despite some erratic results, GPT-3.5 results appear to be promising. This begs the question of
whether GPT-3.5 is able to handle typos and software jargon, which were identified as bottlenecks for
general-use models, as demonstrated in Section 3.2.1.

Commit message with a typo:

{

"type": "commit",

"url": "https://github.com/stealthHat/k8s-

terraform/commit/681a3f8b4942be495b3f2528fb9ee40d7a4eb08a",

"content": {

"message": "nat gateway is verry expensive"

},

"codes": [

Page 35

4.3. GPT-3.5

"networking",

"awareness"

],

"sentiment_analysis": [

{

"classifier": "text_blob",

"sentiment": "negative",

"reason": "none"

},

{

"classifier": "vader",

"sentiment": "neutral",

"reason": "none"

},

{

"classifier": "stanza",

"sentiment": "positive",

"reason": "none"

},

{

"classifier": "gpt",

"sentiment": "negative",

"reason": "The word 'expensive' implies a negative sentiment."

}

]

}

Commit message with a software-jargon:

{

"type": "commit",

"url": "https://github.com/midl-dev/tezos-auxiliary-

cluster/commit/9cbfebaab11cb3466b160d18ef2eb46c0b875d55",

"content": {

"message": "cheaper vms"

},

"codes": [

"saving",

"instance"

],

"sentiment_analysis": [

Page 36

4.3. GPT-3.5

{

"classifier": "text_blob",

"sentiment": "neutral",

"reason": "none"

},

{

"classifier": "vader",

"sentiment": "neutral",

"reason": "none"

},

{

"classifier": "stanza",

"sentiment": "neutral",

"reason": "none"

},

{

"classifier": "gpt",

"sentiment": "positive",

"reason": "The sentence is expressing a desire for cheaper

virtual machines, which is a positive sentiment."

}

]

},

GPT-3.5 is shown to possess robustness towards typos, exhibiting a lesser degree of confusion com-
pared to the other three models. Additionally, GPT-3.5 has demonstrated an understanding that the
acronym ’VM’ stands for ’Virtual Machine’, as well as the sentiment that obtaining cheaper Virtual
Machines is a desirable outcome.

4.3.2 | GPT-3.5 & General-Use Models
Once the results of GPT-3.5 had been cleaned and incorporated into the dataset, we ran the same
metrics as in Section 3.2.1 (namely Krippendorf’s alpha and Cohen’s kappa) to measure the agreement
of GPT-3.5 with the general-use models (Figures Figure 4.2a and Figure 4.2b, respectively).

We can clearly see that the scores of Cohen’s kappa have a min of 0.087 and a max of 0.16, indicating
a very low agreement between GPT-3.5 and the general-use models. Additionally, Krippendorph’s
alpha of 0.068 further confirms the low level of agreement between the aforementioned models and
the fact that these models’ agreements or disagreements are the same as you would expect from
chance alone.

Page 37

4.4. THE GROUND TRUTH

(a) Krippendorff’s alpha (b) Cohen’s kappa

Figure 4.2: GPT-3.5 agreement with general-use models

Figure 4.3: Data labeler frontend

4.4 | The Ground Truth
To establish the ground truth manual data labeling was carried out. To facilitate this, a web application
was created, as illustrated in Figure 4.3. This provides a user-friendly frontend instead of working
within the JSON file.

The application consists of both a backend and a frontend. The backend reads the dataset and sends the
commit messages to the frontend one by one. The user then selects the sentiment for each message
before the frontend sends it to the backend, which writes it to the respective file. This process is
visualized in Figure 4.4. In order to expedite the development process, the technology stack for this
application consists of React as the frontend framework and FastAPI for the backend. React was
chosen for its ability to rapidly-produce a working application, while FastAPI was selected for its
speed and performance.

One of the thesis supervisors was made responsible for resolving conflicts between the manual la-
beling and the one produced by GPT-3.5

Page 38

4.5. DATA LABELLING CONCLUSIONS

Figure 4.4: Data labeler overview

4.4.1 | GPT-3.5 & Ground Truth
Upon successfully annotating all commit messages within the dataset, the subsequent step involves
gaining valuable insights into the concordance between my annotations and those generated by the
GPT-3.5 model. Furthermore, this analysis encompasses a comparative examination of the agreement
not only between my annotations (considered the ground truth) and GPT-3.5 but also between my an-
notations and other existing models utilized in the context of this research endeavor. As per usual, this
process seeks to evaluate the extent of alignment and divergence in the labeling of commit messages
across the author, GPT-3.5, Vader, Stanza NLP, and TextBlob. Thereby providing a comprehensive
understanding of the performance and efficacy of the GPT-3.5 model and other models in comparison
to the established ground truth.

Such an investigation is crucial in ascertaining the reliability and consistency of the annotations and
the potential impact on the overall reliability of the dataset.

In a manner akin to Section 3.2.1, a comparative analysis of inter-annotator agreement will be con-
ducted, specifically employing Krippendorff’s Alpha and Cohen’s Kappa measures. The assessments
will be performed between alshakoush (the author) and the GPT-3.5 model. The resulting outcomes
are visualized in Figure 4.5a and Figure 4.5b, respectively.

4.4.2 | General-Use Models & Ground Truth
Evaluating the performance of the general-use models can be easily done now by comparing their
extracted sentiment to the ground truth. To do this, Cohen’s Kappa and Krippendorff’s Alpha metrics
could again be used to measure the agreement between the models and the ground truth. This will
enable us to determine how accurate the models were, and whether our conclusions from Section 3.2.2
were accurate.

4.5 | Data labelling conclusions
Based on the analysis conducted in the previous sections, a few conclusions can be drawn.

4.5.1 | GPT-3.5 & General-Use Models
The results of the comparison between the GPT-3.5 model and the other models revealed that there
was essentially no agreement between them other than what would be expected by chance. Interest-
ingly, the TextBlob model had the highest level of agreement with GPT-3.5.

Page 39

4.5. DATA LABELLING CONCLUSIONS

(a) Krippendorff’s alpha

(b) Cohen’s kappa

Figure 4.5: GPT-3.5 agreement with ground truth

4.5.2 | General-Use Models & Ground Truth
A Cohen’s Kappa score of a max of 0.14 and a Krippendorff’s Alpha score of 0.059 as can be seen
in Figure 4.6 mean that there was essentially no agreement between the general-use models and
the ground truth other than what would be expected by chance. Confirming our conclusion in Sec-
tion 3.2.2 that these models simply are not suitable for use in the context of our project.

4.5.3 | GPT-3.5 & Ground Truth
A Cohen’s Kappa score of 0.82 and a Krippendorff’s Alpha score of 0.93 as can be seen in Figure 4.5
means that there is a substantial level of agreement between the manual labeling and the GPT-3.5
model in assigning sentiment labels. This level of agreement is considered excellent, indicating that
the sentiment labels provided by the raters closely align with each other and demonstrate a high degree
of concordance. Additionally meaning that GPT-3.5 is a reliable and effective tool for sentiment
analysis tasks even in a software engineering context.

Many of the responses generated by GPT-3.5 text_davinci_003 suggest that it is capable of un-
derstanding the context of a given sentence and providing relevant and reasonable responses. It can
accurately capture and express the tone and intent of the original commit message. Therefore, GPT-
3.5 can be relied upon as an effective tool for sentiment analysis tasks, even in a software engineering
context. This has been demonstrated through its high alignment with the ground truth as can be seen
in Figure 4.5.

The use of GPT-3.5 to obtain sentiment analysis was initially explored to include another agent,
however, the results were impressive due to their accuracy. This enabled us to decide on the model to

Page 40

4.6. BASE MODEL CHOICE

(a) Krippendorff’s alpha (b) Cohen’s kappa

Figure 4.6: General-use agreement with ground truth

use in building our NLP sentiment analysis model, which will be discussed in Chapter 4.

4.6 | Base Model Choice
As evident in Section 3.2.1 and as concluded in Section 3.2.2, general-use models cannot be used on
Software Engineering datasets. Additionally, this is the same conclusion Ahmed et al [25] had in their
research, which prompted them to make their own custom sentiment analysis model (SentiCR). The
model we have tried to implement in this thesis as per Section 3.3.1, but as evident in Section 3.3.2
neither did SentiCR or SentiSE provide sufficient results. Therefore, a customized sentiment analysis
tool is necessary in order to provide accurate labels for the data.

The GPT text-davinci-003 model was observed, as outlined in Section 4.4.1, which prompted a
search for a comparable yet more cost-efficient model. This led to the discovery of Stanford Alpaca
1 , a model fine-tuned from the LLaMA 7B model 2 on 52K instruction-following demonstrations 3.
Stanford claims that Alpaca exhibits qualitative behavior comparable to OpenAI’s text- davinci-003
but is surprisingly small and cost-effective to replicate. Additionally, Alpaca can be easily fine-tuned
to our needs. So we can fine-tune it using the commit messages dataset we have to improve its
performance even more.

The Alpaca 7B model, released by Stanford, has 7 billion parameters. Following its release, further
training of this model has resulted in the emergence of the Alpaca 30B model, featuring 30 billion
parameters. This has allowed for multiple base models to be tested in order to further research in
the field. In this section, the different base models and their results are discussed in detail. The base
models we trained with our dataset were:

LLama 7B : It would be interesting to investigate the results of training the LLama 7B exclus-
ively on our dataset. This would provide insight into the performance of the base
model of Alpaca and its effectiveness and improvements in our specific context.
This will be discussed in Section 4.7.

Alpaca-7b : We will be utilizing Alpaca for training on our dataset. Discussed in Section 4.8.
Alpaca-7b : In order to assess whether incorporating another sentiment dataset would improve

1https://crfm.stanford.edu/2023/03/13/alpaca.html
2https://github.com/facebookresearch/llama
3https://github.com/tatsu-lab/stanford alpaca/blob/main/alpaca data.json

Page 41

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://github.com/facebookresearch/llama
https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json

4.6. BASE MODEL CHOICE

the performance of Alpaca, we sourced a Bitcoin dataset 4 and merged it with our
existing dataset to observe the results. All of which will be outlined in Section 4.9.

Gpt-4 Alpaca 13B : This model is the most sophisticated one we will be employing, and its results are
likely to be most similar to the GPT results reported in Section 4.4.1. This will be
highlighted in Section 4.10.

Every entry in the dataset must be converted to a format that is suitable for the datasets [26]. This
involves transforming the dataset into an instruction-like format 5.

{

"instruction": "describes the task the model should perform",

"input": "context or input for the task",

"output": "the answer to the instruction as expected"

}

The instruction chosen was ”Detect the sentiment of the commit message”. After an examination
of the 52K instructions, Stanford used 13 in their own instructions dataset, this should be descriptive
enough. The input is simply the commit message, and the output is the sentiment from the ground
truth.

An entry in the dataset, after conversion using a Python script, appears as follows:

{

"instruction": "Detect the sentiment of the commit message.",

"input": "provision a droplet with cheapest price",

"output": "neutral"

}

All of the models were trained and generated using the hugging face 6 interface.

Lastly, every model was fine-tuned and generated7 on the Hábrók cluster8 of the University Of
Groningen. At least two A100 GPUs were used when fine-tuning or generating the model. Due
to time constraints, none of the models tested in this section were added to the pipeline outlined in
Section 2.4.2. The retrieval of the sentiment was done using the gradio-api, which allows for direct
communication with the model.

The client sending the requests is as follows:

from gradio_client import Client

client = Client("link to model")

4https://github.com/Stylo2k/SentimentAnalysis/blob/main/alpaca-bitcoin-sentiment-dataset.json,
https://www.kaggle.com/datasets/aisolutions353/btc-tweets-sentiment

5https://github.com/tatsu-lab/stanford alpaca
6https://huggingface.co/
7https://www.gradio.app/
8https://wiki.hpc.rug.nl/habrok/introduction/start

Page 42

https://github.com/Stylo2k/SentimentAnalysis/blob/main/alpaca-bitcoin-sentiment-dataset.json
https://www.kaggle.com/datasets/aisolutions353/btc-tweets-sentiment
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/
https://www.gradio.app/
https://wiki.hpc.rug.nl/habrok/introduction/start

4.7. LLAMA 7B

import json

data = json.load(open("../alpaca_dataset_v_x.json"))

starting_index = 0

index = 0

for d in data:

if index < starting_index:

index += 1

continue

print('Predicting for: ', d['input'])

result = client.predict(

f"{d['instruction']}", # str in 'Instruction'

f"{d['input']}", # str in 'Input'

0.1, # (numeric value between 0 and 1) in 'Temperature'

0.5, # (numeric value between 0 and 1) in 'Top p'

40, # (numeric value between 0 and 100) in 'Top k'

4, # (numeric value between 1 and 4) in 'Beams'

128,# (numeric value between 1 and 2000) in 'Max tokens'

api_name="/predict"

)

The values of Temperature, Top p, Top k, Beams, or the Max tokens were not altered and were left as
provided by default.

Finally, all models were fine-tuned using the finetune.py script provided by alpaca-lora9 on the
dataset mentioned. After retrieving the weights, the trained model was generated using the generate.py

script 10 provided my alpaca-lora.

4.7 | LLama 7B

The LLama 7B model 11 is intended to be fine-tuned to achieve a chat-bot-like experience [27]. This
will be done using the mentioned dataset. After fine-tuning the model, the weight is retrieved. After
pushing them to hugging face 12 the model is generated.

The fine-tuning was done using the finetune.py Alpaca-LoRA script and used the following command:

9https://github.com/tloen/alpaca-lora/blob/main/finetune.py
10https://github.com/tloen/alpaca-lora/blob/main/generate.py
11https://huggingface.co/decapoda-research/llama-7b-hf
12https://huggingface.co/moalshak/alpaca-commits-sentiment

Page 43

https://github.com/tloen/alpaca-lora/blob/main/finetune.py
https://github.com/tloen/alpaca-lora/blob/main/generate.py
https://huggingface.co/decapoda-research/llama-7b-hf
https://huggingface.co/moalshak/alpaca-commits-sentiment

4.7. LLAMA 7B

python finetune.py

--base_model 'decapoda-research/llama-7b-hf'

--data_path 'alpaca_dataset_v2.json'

--output_dir './llama'

The hyperparameters provided by Alpaca-LoRA were left as provided:

batch_size: int = 128,

micro_batch_size: int = 4,

num_epochs: int = 3,

learning_rate: float = 3e-4,

cutoff_len: int = 256,

val_set_size: int = 537,

lora hyperparams

lora_r: int = 8,

lora_alpha: int = 16,

lora_dropout: float = 0.05,

lora_target_modules: List[str] = [

"q_proj",

"v_proj",

],

llm hyperparams

train_on_inputs: bool = True, # if False, masks out inputs in loss

add_eos_token: bool = False,

group_by_length: bool = False, # faster, but produces an odd training loss curve

4.7.1 | Results
The fine-tuned LLama-7B results were then inserted into the dataset under “alpaca output”:

{

"instruction": "detect the sentiment of the following commit message",

"input": "provision a droplet with cheapest price",

"output": "neutral",

"alpaca_output": "provision a droplet with cheapest price

Instruction:

detect the sentiment of the following commit message

Input:

Page 44

4.7. LLAMA 7B

provision a droplet with cheapest price"

}

Unreasonably, the model did not produce any sentiment output, instead generating only the instruc-
tions. Since we thought something went wrong during the fine-tuning we tried to fine-tune it multiple
times but no improvement took place.

Other interesting outputs are :

{

"instruction": "detect the sentiment of the following commit message",

"input": "Update infrastructure to be more cost-effective",

"output": "positive",

"alpaca_output": "\\begin{itemize}\

\item Detect the sentiment of the following commit message: Update

infrastructure to be more cost-effective

\item Detect the sentiment of the following commit message: Update

infrastructure to be more cost-effective

\item Detect the sentiment of the following commit message: Update

infrastructure to be more cost-effective

\item Detect the sentiment of the following commit message: Update

infrastructure to be more cost-effective

\item Detect the sentiment of the following commit message: Update

infrastructure to be more cost-effective

\item Detect the sentiment of"

},

{

"instruction": "detect the sentiment of the following commit message",

"input": "Revert \"Update infrastructure to be more cost-effective\"

This reverts commit 09e400452c1bde25fe393dd56c2fd608b84a18ac.",

"output": "neutral",

"alpaca_output": "

This reverts commit 09e400452c1bde25fe393dd56c2fd608b84a18ac.

This reverts commit 09e400452c1bde25fe393dd56c2fd608b84a18ac.

This reverts commit 09e400452c1bde25fe393dd56c2fd608b84a18ac.

"

},

More interesting outputs of LLama-7B are in Section B.

It did generate the sentiment for some inputs:

Page 45

4.7. LLAMA 7B

{

"instruction": "detect the sentiment of the following commit message",

"input": "Choosing only availabilty zone for cost optimaization",

"output": "positive",

"alpaca_output": "\\begin{itemize}

\\item The sentiment of the following commit message is positive.

\\item The sentiment of the following commit message is negative.

\\item The sentiment of the following commit message is neutral.

\\end{itemize}

Instruction:

detect the sentiment of the following commit message

Input:

Choosing only availabilty zone for cost optimaization"

},

{

"instruction": "detect the sentiment of the following commit message",

"input": "Reduce build nodes to 16-vCPU, delays during bootups are costly",

"output": "neutral",

"alpaca_output": "The sentiment of this commit message is negative.

Instruction:

detect the sentiment of the following commit message

Input:

Reduce build nodes to 16-vCPU, delays during bootups are costly"

},

{

"instruction": "detect the sentiment of the following commit message",

"input": "updated the image id to use, the other one was costing too much.",

"output": "neutral",

"alpaca_output": "The sentiment of the commit message is positive.

Instruction:

detect the sentiment of the following commit message

Input:

updated the image id to use, the other one was costing too much."

},

{

Page 46

4.7. LLAMA 7B

"instruction": "detect the sentiment of the following commit message",

"input": "sets 'micro' VM profile to minimize costs",

"output": "positive",

"alpaca_output": "\\begin{itemize}

\\item The sentiment of the following commit message is positive.

\\item The sentiment of the following commit message is negative.

\\item The sentiment of the following commit message is neutral.

\\end{itemize}

Instruction:

detect the sentiment of the following commit message

Input:

sets 'micro' VM profile to minimize costs"

},

Page 47

4.8. FINE-TUNED ALPACA-7B

4.8 | Fine-tuned Alpaca-7B
The Alpaca-7B is as mentioned a fine-tuned LLama-7B. For this model, we used the hugging face
base model 13. After finetuning and generating the model with the retrieved weights14 we can run our
dataset through it.

The fine-tuning started with the using the following command:

python finetune.py

--base_model 'tloen/alpaca-lora'

--data_path 'alpaca_dataset_v2.json'

--output_dir './lora-alpaca'

4.8.1 | Results
The same usual metrics are run so we get the scores of 0.2 for Cohen’s kappa and 0.48 for Krippen-
dorff alpha, as depicted in Figure 4.7b, Figure 4.7a respectively.

A Cohen’s Kappa score of 0.2 indicates a relatively low level of agreement between Alpaca-7B and
the ground truth, indicating only a slight consensus beyond what could be attributed to mere chance.
This implies that there is some degree of consensus among the raters, yet the agreement is still quite
limited.

Krippendorff’s Alpha of 0.48 indicates a moderate level of inter-rater agreement beyond chance. This
suggests that there is some consensus among the raters, but there is still room for improvement in
terms of agreement.

The agreement between GPT and Alpaca-7B is higher, namely 0.29. Indicating the Alpaca agrees
more with GPT than the ground truth as depicted in Figure 4.8.

13https://huggingface.co/chainyo/alpaca-lora-7b
14moalshak/alpaca-commits-sentiment-v2

Page 48

https://huggingface.co/chainyo/alpaca-lora-7b
https://huggingface.co/moalshak/alpaca-commits-sentiment-v2

4.8. FINE-TUNED ALPACA-7B

(a) Krippendorff’s alpha

(b) Cohen’s kappa

Figure 4.7: Alpaca-7B (without bitcoin dataset) agreement with ground truth

Figure 4.8: Alpaca-7B (without bitcoin dataset) & GPT

Page 49

4.9. ALPACA-7B & BITCOIN DATASET

4.9 | Alpaca-7B & Bitcoin dataset
To investigate whether a larger dataset would imply better results, we finetuned Alpaca-7B using an
extended dataset consisting of the commits dataset and the Bitcoin sentiment dataset. The Bitcoin
sentiment dataset was sourced from Kaggle15 and was converted from a CSV file to a JSON file
in order to be compatible with the model. Finally, the JSON dataset was then converted into an
instruction dataset.

The conversion steps were done in the following manner :

import pandas as pd

import json

df = pd.read_csv("bitcoin-sentiment-tweets.csv")

print(df.head())

print(df.shape)

print(df.sentiment.value_counts())

def sentiment_score_to_name(score: float):

if score > 0:

return "Positive"

elif score < 0:

return "Negative"

return "Neutral"

dataset_data = [

{

"instruction": "Detect the sentiment of the tweet.",

"input": row_dict["tweet"],

"output": sentiment_score_to_name(row_dict["sentiment"])

}

for row_dict in df.to_dict(orient="records")

]

print(dataset_data[0])

with open("alpaca-bitcoin-sentiment-dataset.json", "w") as f:

json.dump(dataset_data, f)

After merging the two datasets the final merged dataset is retrieved16. After finetuning and generating
the model with the new weights, we can test our dataset against it.

15https://www.kaggle.com/datasets/aisolutions353/btc-tweets-sentiment
16https://github.com/Stylo2k/SentimentAnalysis/blob/main/alpaca dataset bitcoin merged.json

Page 50

https://www.kaggle.com/datasets/aisolutions353/btc-tweets-sentiment
https://github.com/Stylo2k/SentimentAnalysis/blob/main/alpaca_dataset_bitcoin_merged.json

4.9. ALPACA-7B & BITCOIN DATASET

python finetune.py

--base_model 'tloen/alpaca-lora'

--data_path 'alpaca_dataset_bitcoin_merged.json.json'

--output_dir './lora-alpaca-v2'

4.9.1 | Results
The first step is to compare the results to the ground truth which revelers the exact same scores
retrieved (see Figure 4.9) by the previous model (Alpaca-7B without the bitcoin sentiment data-
set).

From Figure 4.10 it is also apparent that Alpaca-7B with the extended dataset and without agree with
a Cohen’s kappa score of 1.0.

A Cohen’s Kappa score of 1 is indicative of perfect agreement between two models, suggesting that
the observed agreement between them is complete and without any discordance or disagreement. This
finding suggests that the models are perfectly aligned in their sentiment analysis, with no discrepan-
cies present.

(a) Krippendorff’s alpha

(b) Cohen’s kappa

Figure 4.9: Alpaca-7B with bitcoin dataset agreement with ground truth

Page 51

4.9. ALPACA-7B & BITCOIN DATASET

(a) Krippendorff’s alpha

(b) Cohen’s kappa

Figure 4.10: All alpacas agreements with each other

Page 52

4.10. GPT-4 ALPACA 13B

4.10 | Gpt-4 Alpaca 13B

Gpt-4 Alpaca 13B 17 is LLama-13B finetuned with the 57K instructions in addition to the new GPT-4
instruction dataset 18. After using it as our base model and further fine-tuning it with our dataset. We
can generate it and start testing it.

This model on its own is more than 30GB and too the longest to download and fine-tune. Running
this model was also resource intensive and needed two A100 NVIDIA GPUs.

To fine-tune the model we used the following command:

python finetune.py \

--base_model='TheBloke/gpt4-alpaca-lora-13B-HF'

--data_path='alpaca_dataset_v2.json'

--output_dir='./gpt4-alpaca-lora-13b'

4.10.1 | Results
The retrieved results look similar to the results we got from GPT-3.5 as outlined in Section 4.4.1.

{

"instruction": "detect the sentiment of the following commit message",

"input": "provision a droplet with cheapest price",

"output": "neutral",

"alpaca_output": "neutral, as it expresses a desire to find the most

cost-effective solution for provisioning a droplet.

However, it is important to note that sentiment analysis is not

an exact science, and the results can vary depending on the context,

language, and tone of the message. \n\nFor more accurate sentiment analysis,

it is recommended to use a machine learning model that has been trained on

a large dataset of sentiment-annotated text. \n\nIn this case, the

sentiment of the commit message"

}

The interesting part in Alpaca-GPT4 output is the following sentence :

However, it is important to note that sentiment analysis is not an exact science, and the
results can vary depending on the context, language, and tone of the message. For more
accurate sentiment analysis, it is recommended to use a machine learning model that has
been trained on a large dataset of sentiment-annotated text. In this case, the sentiment of
the commit message

This occurred in total 5 times you can find these in the appendix Section A

17https://huggingface.co/TheBloke/gpt4-alpaca-lora-13B-HF
18https://github.com/tloen/alpaca-lora/blob/main/alpaca data gpt4.json

Page 53

https://huggingface.co/TheBloke/gpt4-alpaca-lora-13B-HF
https://github.com/tloen/alpaca-lora/blob/main/alpaca_data_gpt4.json

4.10. GPT-4 ALPACA 13B

Additionally, the model gave sentiments like disappointed or frustrated, these were replaced by neg-
ative during the cleaning process. One result elicited multiple reactions for unexplainable reasons,
see Section A.

For very few results the parameters used, mainly the max_tokens , limited the output of the model.
Resulting in missing the sentiment, this would not have been a problem if Alpaca did not repeat the
commit message in the output.

After the cleaning process, the results looked as follows :

{

"sentiment": "positive",

"input": "Update default instance for more cost-effective choice",

"reason": ". It expresses a desire to make a change that will result

in a more favorable outcome, in this case, a more cost-effective

choice for the default instance of a product or service.

},

The most remarkable aspect of this model was its ability to recognize that a commit message ”costs”
requires further context in order to accurately determine the sentiment.

{

"instruction": "detect the sentiment of the following commit message",

"input": "costs",

"output": "unknown",

"alpaca_output": "The sentiment of the commit message \"costs\"

cannot be detected as it is too short and does not provide enough context.

Can you please provide more information about the context in which

the commit message was written? # noqa: E501"

}

Gpt-4 Alpaca 13B has a Cohen’s kappa score of 0.31 with the ground truth and a score of 0.35 with
GPT as indicated in Figure 4.11.

Cohen’s Kappa score of 0.31 indicates a moderate level of agreement between the raters in terms of
their categorical ratings or codings. This suggests that there is some consensus between the raters
beyond what would be expected from chance alone. Nevertheless, there is still room for improvement
in the level of agreement between them.

Interestingly again, Alpaca agrees more with GPT than the ground truth.

Page 54

4.10. GPT-4 ALPACA 13B

Figure 4.11: Cohen’s kappa

Page 55

5 | Conclusions

Through this research, we explored the following:

Q1. To what extent is it possible to use existing sentiment analysis models from the literature
to establish this relation?

Q2. How efficient is it to create a specialized sentiment analysis model for the same purpose?

In this section, these questions are answered using our conclusion from all the previous chapters.

5.1 | General-use Models
It is not possible to accurately ascertain the true sentiment (i.e. ground truth) of commit messages
using the models attempted in Section 3.2. As such, alternative models need to be explored in order
to develop an effective method of gauging sentiment. While further training of the current models may
help to improve their accuracy, it is a time and effort-intensive process. Consequently, it is important
to identify models that have already been trained in a similar context to the present research.

5.2 | Software Engineering Models
The results presented in 3.3.1 indicate that Senti-SE could not be used for the current research, as the
necessary files were not provided by the author and could not be obtained locally. Consequently, a
functioning version of the model was not available. Additionally, Senti-CR is incompatible with the
current research due to its use of different polarities output. Unfortunately, a comparison with these
models was not possible, which would have been beneficial to the research.

Our results in Section 3.2.1 and Section 3.3.1 demonstrate that general-use models and attempted
software engineering models are inadequate for accurately labeling our dataset of commit messages.
Section 3.2.2 concluded that general-use models struggle to correctly label the dataset due to typos
and software engineering jargon, leading to a low agreement between the models. This indicates that
a better solution is required, which led us to explore software engineering models in Section 3.3.
Section 3.3.2 concluded that the attempted software engineering models are unusable due to either an
inadequate project setup or for a conflict between the model’s result and our tri-polarity. Therefore,
we cannot use existing sentiment analysis models from the literature to establish this relation, which
answers Q1.

5.3 | LLama-7B
The results of the experiment were chaotic. It is likely that the inadequate size of the dataset was the
contributing factor to the unexpected results, as it was far from the used 52K instructions the Stanford
team used to get Alpaca. This is the main driver to try the next base model with an extra dataset and
to start with Alpaca because it has been already trained with 52K instructions.

56

5.4. FINE-TUNED ALPACA-7B

5.4 | Fine-tuned Alpaca-7B
The results of Alpaca-7B are encouraging, but further work is required to achieve the level of perform-
ance of GPT3.5. We clearly see that training LLama-7B with the 52K instructions dataset contributed
to the accuracy of this model. In order to enhance the performance of the language model, it may
be beneficial to utilize a larger model, such as Alpaca-13B instead of the Alpaca-7B currently in use,
and to employ a larger dataset. These strategies have been tested in this research.

5.5 | Alpaca-7B with Bitcoin sentiment dataset
To test whether using a bigger dataset will improve the accuracy the dataset was merged with the Bit-
coin sentiment dataset. Unfortunately, no improvements were observed, possibly due to the fact that
the sentiments expressed in Bitcoin tweets do not necessarily relate to software engineering topics. In
order to improve the model’s accuracy, a dataset more closely related to software engineering should
be sought. However, the results did not indicate that the model’s accuracy was worse after fine-tuning
with the merged dataset.

5.6 | Gpt-4 Alpaca 13B
This was conducted to test whether using a large language model (LM) will improve the accuracy.
It is clear from the results that using a larger LM 13B as opposed to a smaller LM 7B significantly
improves the accuracy of our model. Despite Stanford’s assertion that Alpaca-7B should generate
results comparable to those of text-davinci-003, it is evident from the results that this is not the case
for sentiment analysis.

Our analysis has shown that it is possible to create a specialized sentiment analysis model that is
fairly efficient. We observed that a slight change in the language model size improved the accuracy
of the model. There are various other methods that could be explored in order to further increase the
accuracy, which is discussed in Section 5.7.

5.7 | Future Work
There are various improvements that can still be made. A number of these were already briefly
commented on before, but we outline them below in further detail.

Use of Larger Language Models (LM): Our findings unequivocally indicate that increasing the model
size leads to improved accuracy. Prominently, the Alpaca-30B stands out as the largest
available Alpaca model, holding promise for substantial advancements.

Leveraging Bigger Datasets: While our research did not demonstrate enhanced accuracy by in-
creasing the dataset, it is essential to consider that the base model may have possibly
already been exposed to the dataset. To ascertain the impact definitively, we propose em-
ploying a distinct software engineering dataset for further experimentation with Alpaca.

Advance Alpacas Output: As a means to enrich Alpaca’s output, we propose modifying the instruc-
tion to instruct Alpaca to include its reasoning behind the sentiment prediction, along
with the possibility of incorporating the confidence level of its sentiment classification.
By requesting Alpaca to articulate the rationale for its predictions, we can gain valuable
insights into the model’s decision-making process.

Page 57

5.7. FUTURE WORK

Evaluate Alpacas Reason: Subsequent to instructing Alpaca to provide its reasoning, a critical step
involves evaluating the generated rationale. This evaluation should encompass two fa-
cets: a manual assessment by human experts and a comparison with GPT-3.5. The
manual assessment by experts allows for qualitative scrutiny of the generated explana-
tions, enabling us to identify the model’s strengths and weaknesses in providing coherent
and accurate reasoning. Concurrently, comparing Alpaca’s explanations with GPT-3.5’s
output serves as a benchmark to assess the clarity and conciseness of the model’s justi-
fications. Through this evaluation process, we seek to validate the reliability and efficacy
of Alpaca’s reasoning, further contributing to the model’s transparency and applicability
in sentiment analysis applications.

Incude Confidence Level: In addition to the sentiment predictions and reasoning, it is proposed to
incorporate the confidence level of Alpaca’s sentiment classifications in its output. By
including the confidence level, Alpaca can express the level of certainty it has in each
sentiment prediction, thereby offering users a measure of the reliability of the generated
results. This is an unexplored avenue in our research. It is important to acknowledge that
the generated value for the confidence measure may initially lack empirical grounding
or validation. Nevertheless, the exploration of this untested concept holds intrinsic merit
and justifies further investigation.

Utilize The Reason: The potential for enhancing Alpaca’s predictions using the reasons available
in the dataset is worth considering. By feeding these reasons to Alpaca, we anticipate
a twofold benefit: improved reasoning and enhanced prediction accuracy. Integrating
the contextual rationale behind each sentiment expressed in the commit messages could
potentially provide the model with a more profound understanding of the developers’
sentiments, leading to more informed and contextually aware predictions. Consequently,
this innovative approach has the potential to refine Alpaca’s performance and bolster its
applicability in sentiment analysis for software engineering tasks.

Local Reconstruction of Alpaca: An alternative approach is to construct Alpaca locally by integ-
rating the dataset we gather into the pre-existing 52K instruction set offered by Stanford.
Conducting the entire fine-tuning process cohesively will yield a more refined Alpaca
model, mitigating reliance on base models from Hugging Face.

Introducing Changes to Alpaca: An intriguing next step involves leveraging the changes present in
our dataset, alongside their associated commit messages. By feeding these changes to
Alpaca or any language model, we can accurately predict the exact lines of code that
were modified, purely based on the sentiment of the commit message or the message
content itself.

Diversifying Data Sources: While the previous thesis solely mined repositories hosted on GitHub,
the potential for a more extensive dataset exists in exploring other version control sys-
tems such as GitLab or Bitbucket. This diversification could yield a broader and more
diverse dataset for training and evaluation.

Addressing Uncollected Repositories: It is plausible that certain repositories were overlooked dur-
ing the mining process due to specific criteria regarding the percentage of Infrastructure
as Code (IaC) code needed to retrieve commit messages. To ensure comprehensive cov-
erage, addressing these uncollected repositories should be considered.

Combining Commits for Enhanced Quality: Within our dataset, certain commit messages exhibit
duplication (with differing commit hashes) or reversion commits. To improve data integ-
rity and quality, addressing these instances by removing duplicates or merging relevant
commits is essential.

Page 58

5.7. FUTURE WORK

Ensemble Learning: Explore the use of ensemble learning techniques by combining predictions
from multiple language models or variations of Alpaca. Ensemble methods often en-
hance overall performance and robustness.

Hyperparameter Optimization: Perform hyperparameter tuning to find the optimal settings for the
Alpaca model. Techniques like grid search or Bayesian optimization can help identify
the best hyperparameters for improved performance.

Explainability and Interpretability: Enhance the interpretability of Alpaca’s predictions by incor-
porating techniques like attention maps or saliency analysis to understand the model’s
decision-making process.

Post-Processing Techniques: Apply post-processing techniques to refine Alpaca’s predictions, such
as code formatting or constraint enforcement, to ensure output compatibility with the rest
of the codebase.

In conclusion, the proposed enhancements to the Alpaca model hold significant potential for advan-
cing its performance and applicability in the domain of software engineering. Through careful explor-
ation of these proposed enhancements, the accuracy and efficacy of the model can be improved, thus
contributing to the advancement of language models and their various applications in the software
development domain.

Page 59

Bibliography

[1] M. A. Shakoush, “Sentiment analysis pipeline.” https://drive.google.com/file/d/
1lzUHdU9D2Tm1gHOTTpCr-IfHmxcshQYx/view, 04 2023.

[2] D. A. Tamburri, W.-J. Van den Heuvel, C. Lauwers, P. Lipton, D. Palma, and M. Rutkowski,
“Tosca-based intent modelling: goal-modelling for infrastructure-as-code,” SICS Software-
Intensive Cyber-Physical Systems, vol. 34, no. 2, pp. 163–172, 2019.

[3] Microsoft Learn, “What is infrastructure as code?.” https://learn.microsoft.com/en-us/
devops/deliver/what-is-infrastructure-as-code, accessed 2023.

[4] Google Cloud, “Advantages of cloud computing.” https://cloud.google.com/learn/
advantages-of-cloud-computing, Accessed July 2023.

[5] CloudBolt, “3 advantages and challenges of infrastruc-
ture as code (iac).” https://www.cloudbolt.io/blog/
3-advantages-and-challenges-of-infrastructure-as-code-iac/, 12 2021.

[6] Gartner, “Gartner top 10 strategic technology trends for 2021.” https://www.gartner.com/
en/articles/4-predictions-for-i-o-leaders-on-the-path-to-digital-infrastructure,
2021. Accessed: 2021-10-12.

[7] T. van Breenen, “A reflection on the perceived benefits of infrastructure as code,” Compact,
vol. 2020, 2020.

[8] Y. K. Dwivedi, E. Ismagilova, D. L. Hughes, J. Carlson, R. Filieri, J. Jacobson, V. Jain, H. Kar-
jaluoto, H. Kefi, A. S. Krishen, V. Kumar, M. M. Rahman, R. Raman, P. A. Rauschnabel, J. Row-
ley, J. Salo, G. A. Tran, and Y. Wang, “Setting the future of digital and social media marketing
research: perspectives and research propositions,” Journal of Business Research, vol. 122, pp. 3–
13, 2020.

[9] H. Hoffmann, N. Luttenberger, R. Kotarski, S. Herwig, J. Müller, and J. Fürst, “Infrastructure as
code: A systematic review of research challenges and opportunities,” ACM Computing Surveys
(CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[10] M. E. M. Abo, R. G. Raj, A. Qazi, and A. Zakari, “Sentiment analysis for arabic in social media
network: A systematic mapping study,” 2019.

[11] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider, “Caps: a super-
vised technique for classifying stack overflow posts concerning api issues,” Empirical Soft-
ware Engineering, vol. 25, no. 2, pp. 1493–1532, 2020. https://doi.org/10.1007/
s10664-019-09743-4.

[12] E. Guzman, D. Azocar, and Y. Li, “Sentiment analysis of commit comments in github: An em-
pirical study,” in Proceedings of the 11th Working Conference on Mining Software Repositories,
pp. 352–355, ACM, 2014. https://dl.acm.org/doi/10.1145/2597073.2597118.

[13] E. Biswas, K. Vijay-Shanker, and L. Pollock, “Exploring word embedding techniques to im-
prove sentiment analysis of software engineering texts,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp. 68–78, 2019.

60

https://drive.google.com/file/d/1lzUHdU9D2Tm1gHOTTpCr-IfHmxcshQYx/view
https://drive.google.com/file/d/1lzUHdU9D2Tm1gHOTTpCr-IfHmxcshQYx/view
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://cloud.google.com/learn/advantages-of-cloud-computing
https://cloud.google.com/learn/advantages-of-cloud-computing
https://www.cloudbolt.io/blog/3-advantages-and-challenges-of-infrastructure-as-code-iac/
https://www.cloudbolt.io/blog/3-advantages-and-challenges-of-infrastructure-as-code-iac/
https://www.gartner.com/en/articles/4-predictions-for-i-o-leaders-on-the-path-to-digital-infrastructure
https://www.gartner.com/en/articles/4-predictions-for-i-o-leaders-on-the-path-to-digital-infrastructure
https://doi.org/10.1007/s10664-019-09743-4
https://doi.org/10.1007/s10664-019-09743-4
https://dl.acm.org/doi/10.1145/2597073.2597118

BIBLIOGRAPHY

[14] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “Senticr: A customized sentiment analysis tool
for code review interactions,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 106–111, IEEE, 2017. https://doi.org/10.1109/ASE.
2017.8115623.

[15] J. Ding, H. Sun, X. Wang, and X. Liu, “Entity-level sentiment analysis of issue comments,” in
Proceedings of the 3rd International Workshop on Emotion Awareness in Software Engineering,
SEmotion ’18, (New York, NY, USA), p. 7–13, Association for Computing Machinery, 2018.

[16] S. E. Institute, “Cost estimation for cybersecurity investments,” Tech. Rep. CMU/SEI-2019-SR-
019, Carnegie Mellon University, 2019.

[17] D. Graziotin, X. Wang, and P. Abrahamsson, “Happy software developers solve problems better:
psychological measurements in empirical software engineering,” PeerJ, vol. 2, p. e289, 2014.
https://doi.org/10.7717/peerj.289.

[18] M. L. McHugh, “Interrater reliability: The kappa statistic,” Biochem Med (Zagreb), vol. 22,
no. 3, pp. 276–282, 2012.

[19] J. Sim and C. C. Wright, “The Kappa Statistic in Reliability Studies: Use, Interpretation, and
Sample Size Requirements,” Physical Therapy, vol. 85, pp. 257–268, 03 2005.

[20] K. Gwet, “On krippendorff’s alpha coefficient,” 10 2015.

[21] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen, “Lora: Low-rank
adaptation of large language models,” CoRR, vol. abs/2106.09685, 2021.

[22] S. R. Bowman, “Eight things to know about large language models,” 2023.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Po-
losukhin, “Attention is all you need,” 2023.

[24] O. Katar, D. Ozkan, GPT, Yildirim, and U. R. Acharya, “Evaluation of gpt-3 ai language model
in research paper writing,” 12 2022.

[25] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “Senticr: A customized sentiment analysis tool
for code review interactions,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 106–111, 2017.

[26] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto,
“Stanford alpaca: An instruction-following llama model.” https://github.com/tatsu-lab/
stanford_alpaca, 2023.

[27] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-
A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.
Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” 2023.

Page 61

https://doi.org/10.1109/ASE.2017.8115623
https://doi.org/10.1109/ASE.2017.8115623
https://doi.org/10.7717/peerj.289
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Appendices

A | Alpaca-GPT4 13B interesting outputs

{

"instruction": "detect the sentiment of the following commit message",

"input": "I DONT WANT TO PAY FOR LOGS",

"output": "negative",

"alpaca_output": {

"sentiment": "The sentiment of the commit message

\"I DONT WANT TO PAY FOR LOGS\" is negative. It expresses the speaker's

unwillingness to pay for logs, indicating that they are dissatisfied

with the situation and may be frustrated or upset about it.<unk>\n\n

However, it is important to note that sentiment analysis is not an exact

science, and the results can vary depending on the context, language,

and tone of the message. In this case, it is possible that the speaker is

simply stating a fact, rather than expressing a negative sentiment.

It is also possible that the",

"reason" : "none"

}

},

{

"instruction": "detect the sentiment of the following commit message",

"input": "now using spot instance to reduce costs",

"output": "positive",

"alpaca_output": {

"sentiment": "The sentiment of the commit message \"now

using spot instance to reduce costs\" is positive. It expresses a desire to

reduce costs by using spot instances, which is a common practice in the

software development industry.<unk>\n\nHowever, it is important to note that

sentiment analysis is not an exact science, and the results can vary

depending on the context, language, and tone of the message. In this case, the

sentiment analysis is based on the analysis of the words and phrases used in

the commit message, and may not accurately reflect the true sentiment of

the person who wrote the message. It is also possible that the message",

"reason" : "none"

}

62

APPENDICES 63

}

{

"instruction": "detect the sentiment of the following commit message",

"input": "Switch to Centos 7 for cheaper costs",

"output": "positive",

"alpaca_output": {

"sentiment": "The sentiment of the commit message \"Switch

to Centos 7 for cheaper costs\" is positive. It expresses a desire to

switch to Centos 7 for the purpose of saving money.<unk>\n\nHowever,

it is important to note that sentiment analysis is not an exact

science, and the results can vary depending on the context, language,

and tone of the message. It is possible that the sentiment of the message

could be interpreted as neutral or even negative, depending on the

perspective of the reader. For example, if the commit message was written

by someone who was unhappy about the switch to Centos 7,",

"reason" : "none"

}

}

{

"instruction": "detect the sentiment of the following commit message",

"input": "switch to cheaper e2 GCP vms",

"output": "positive",

"alpaca_output": {

"sentiment": "The sentiment of the commit message \"switch

to cheaper e2 GCP vms\" is positive. It expresses a desire to make a

change for the better by switching to a more cost-effective solution.<unk>

\n\nHowever, it is important to note that sentiment analysis is not

an exact science, and the results can vary depending on the context,

language, and tone of the message. It is possible that the sentiment of

the message could be perceived as neutral or even negative, depending

on the reader's interpretation. \n\nIn general, sentiment analysis

is best used as a supplementary tool to help",

"reason" : "none"

}

}

APPENDICES 64

{

"instruction": "detect the sentiment of the following commit message",

"input": "cost reduction\nhttps://aws.amazon.com/about-aws/whats-new/2017/06/amazon-rds-enables-encryption-at-rest-for-additional-t2-instance-types",

"output": "positive",

"alpaca_output": {

"sentiment": "\"cost reduction\" is \"positive\"

or \"happy\" or \"pleased\" or \"excited\" or \"enthusiastic\" or

\"delighted\" or \"ecstatic\" or \"overjoyed\" or \"thrilled\" or

\"elated\" or \"euphoric\" or \"jubilant\" or \"ecstatic\" or

\"overjoyed\" or \"thrilled\" or \"elated\" or \"euphoric\" or

\"jubilant\" or \"ecstatic\" or \"overjoyed\" or \"th",

"reason" : "none"

}

}

{

"instruction": "detect the sentiment of the following commit message",

"input": "Add prod var\n\nWhat if we want to use less (or cheaper) infrastructure for non-prod systems?",

"output": "neutral",

"alpaca_output": "The sentiment of the commit message \"Add prod var\"

is Neutral.\n\nThe sentiment of the commit message \"What if we want to

use less (or cheaper) infrastructure for non-prod systems?\" is Positive.

\n\nThe sentiment of the commit message \"What if we want to use less

(or cheaper) infrastructure for non-prod systems?\" is Neutral.\n\n

The sentiment of the commit message \"What if we want to use less

(or cheaper) infrastructure for non-prod systems?\" is Neutral.

\n\nThe sentiment of the commit message \"What if"

}

B | LLama 7B interesting outputs

{

"instruction": "detect the sentiment of the following commit message",

"input": "feat: add spot instances to save costs (#41)",

"output": "positive",

"alpaca_output": "feat: add spot instances to save costs (#41)\n\\end{code}"

},

{

APPENDICES 65

"instruction": "detect the sentiment of the following commit message",

"input": "corrected resource parameters for low cost and changed version",

"output": "positive",

"alpaca_output": "\\begin{itemize}\n\\item This commit message

is positive.\n\\item This commit message is negative.\n\\item

This commit message is neutral.\n\\end{itemize}\n\n

Instruction:\ndetect the sentiment of the following commit message

\n\n### Input:\ncorrected resource parameters for low cost and changed version"

},

{

"instruction": "detect the sentiment of the following commit message",

"input": "test: uses m5a instance because less expensive",

"output": "positive",

"alpaca_output": "test: uses m5a instance because less expensivetest: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance because less expensive

test: uses m5a instance"

},

{

"instruction": "detect the sentiment of the following commit message",

"input": "disable nat gateway save cost",

"output": "positive",

"alpaca_output": "### Instruction:\n\n### Input:"

},

C | Agreement Between All Models

APPENDICES 66

Figure 1: Cohen’s Kappa matrix of all models (negative values are due to values being rounded)

APPENDICES 67

Figure 2: Krippendorph’s Alpa matrix of all models

APPENDICES 68

D | Alpacas Runs Reports

Figure 3: Alpaca Runs : eval/sampels per second Figure 4: Alpaca Runs : eval/runtime

Figure 5: Alpaca Runs : eval/loss Figure 6: Alpaca Runs : eval/steps per second

Figure 7: Alpaca Runs : train / learning rate Figure 8: Alpaca Runs : train / loss

APPENDICES 69

Figure 9: Alpaca Runs : : train / train loss Figure 10: Alpaca Runs : train / train runtime

Figure 11: Alpaca Runs : train / global step
Figure 12: Alpaca Runs : train / train steps per
second

Figure 13: Alpaca Runs : System GPU process
memory allocated

Figure 14: Alpaca Runs : System GPU memory
allocated

APPENDICES 70

Figure 15: Alpaca Runs : System GPU time spent
accessing memory

Figure 16: Alpaca Runs : System GPU Utiliza-
tion

Figure 17: Alpaca Runs : System GPU Time
Spent Accessing Memory

Figure 18: Alpaca Runs : System GPU Utiliza-
tion

	Introduction And Motivation
	Research Questions
	Research Outline

	Background
	Git & GitHub
	Git
	GitHub

	Cloud Orchestrators & IaCs
	Cloud Orchestrators
	Infrastructure as Code
	Versioned IaC artifacts

	Sentiment Analysis
	Building blocks
	Previous Bachelors Project
	Sentiment Analysis Pipeline

	Agreement Metrics
	Cohen's kappa
	Krippendorff's alpha

	Huggingface
	Hábrók cluster
	Alpaca-LoRA
	Paper Write-up

	Study design and execution
	Overall Design
	General-use Sentiment Analysis Models
	Results
	Conclusion

	Software Engineering Sentiment Analysis Models
	Results
	Conclusion

	Conclusion

	Custom Sentiment Analysis Model
	Manual Data labeling
	LLM & GPT
	GPT-3.5
	Results
	GPT-3.5 & General-Use Models

	The Ground Truth
	GPT-3.5 & Ground Truth
	General-Use Models & Ground Truth

	Data labelling conclusions
	GPT-3.5 & General-Use Models
	General-Use Models & Ground Truth
	GPT-3.5 & Ground Truth

	Base Model Choice
	LLama 7B
	Results

	Fine-tuned Alpaca-7B
	Results

	Alpaca-7B & Bitcoin dataset
	Results

	Gpt-4 Alpaca 13B
	Results

	Conclusions
	General-use Models
	Software Engineering Models
	LLama-7B
	Fine-tuned Alpaca-7B
	Alpaca-7B with Bitcoin sentiment dataset
	Gpt-4 Alpaca 13B
	Future Work

	Bibliography
	Appendices
	Alpaca-GPT4 13B interesting outputs
	LLama 7B interesting outputs
	Agreement Between All Models
	Alpacas Runs Reports

