
Exploring the HIsarna process using SINDy-CRN

Jasper Camman, S3789608

Abstract— This research aims to expand the current un-
derstanding of the SINDy-CRN algorithm by incorporating
input, output, and noisy data. The influence of these additional
parameters on the algorithm’s performance will be thoroughly
examined, leading to insightful recommendations. To validate
the effectiveness of these recommendations, they will be rigor-
ously tested and verified using the chemical reaction network
of the HIsarna process. The SINDy-CRN algorithm, which
combines the Sparse Identification of Nonlinear Dynamics
(SINDy) method with chemical reaction networks (CRNs), has
shown promise in modeling and analyzing complex dynamical
systems. However, the algorithm’s existing knowledge base pri-
marily focuses on clean and well-controlled data. By introducing
input, output, and noisy data into the SINDy-CRN algorithm,
this research will investigate how these factors impact its
performance. The study will explore the extent to which input
variables affect the accuracy and robustness of the algorithm’s
predictive capability. Additionally, the effect of noisy data on
the reliability of the algorithm will be examined. Based on
these finding some recommendations will be made to improve
the algorithm performance. To verify the effectiveness of the
recommendations, the chemical reaction network of the HIsarna
process will serve as a testbed. Ultimately, this research will
contribute to the advancement of the SINDy-CRN algorithm by
expanding its applicability to scenarios involving input, output,
and noisy data.

I. INTRODUCTION

Chemical reaction networks are widely utilized in various
fields because of their fundamental role in understanding
complex systems. However, comprehending the intricate
mechanisms of these networks can often pose significant
challenges, primarily due to their high dimensionality and
non-linear nature [3][4]. To address these difficulties, the
Sparse Identification of Nonlinear Dynamics (SINDy) algo-
rithm has emerged as a powerful approach for extracting
governing equations from available data. The SINDy algo-
rithm leverages the power of sparse regression techniques
to identify the most relevant terms in a system’s dynamics.
By iteratively testing potential terms and comparing them
with available data, SINDy efficiently determines the gov-
erning equations that best describe the observed behavior
of a system. This approach has shown promising results
in simple reaction networks without external disturbances
[7]. The SINDy algorithm has been extended to improve
its performance, these types of SINDy are called SINDy-PI.
However these algorithms still lack the ability to be applied
on chemical reaction networks, because of this a new type
of SINDy, SINDy-CRN has been proposed in paper [2].

The SINDy-PI algorithm has been extended to include
chemical reaction networks. The SINDy-CRN algorithm
has been proposed as an extension of the original SINDy-
PI framework. By incorporating additional capabilities, the

SINDy-CRN algorithm aims to handle more intricate and
realistic scenarios [2].

This research aims to extend the existing knowledge and
capabilities of the SINDy-CRN algorithm by applying it to
data obtained from the HIsarna process. The HIsarna process
is an innovative technology for ironmaking that reduces the
total amount of CO2 that is emitted during the process.

In this context, this research project seeks to push the
boundaries of the SINDy-CRN algorithm by applying it
to data obtained from the HIsarna process. By analyzing
the data generated from this process using the SINDy-CRN
algorithm, the researcher aims to extract valuable insights
into the underlying dynamics and kinetics of the chemical
reactions taking place and make recommendations on the
improvement of the SINDy-CRN algorithm

II. MATERIALS & METHODS

A. Chemical Reaction Networks

Chemical reaction networks (CRNs) form the backbone of
our understanding of chemical reactions and their dynamics.
They provide a powerful framework for modeling and ana-
lyzing complex systems, ranging from biochemical networks
in living cells to industrial processes and environmental
reactions.

At its core, a chemical reaction network consists of a set of
chemical species and the reactions that inter convert them.
The dynamics of the system are governed by the rates at
which these reactions occur and the concentrations of the
species involved.

The behavior of chemical reaction networks can be de-
scribed using mathematical equations. These equations often
involve systems of ordinary differential equations or stochas-
tic models, which capture the temporal evolution and statis-
tical fluctuations of the species’ concentrations. Analyzing
these mathematical models allows us to predict the behavior
of the chemical system under different conditions and gain
insights into its dynamics.

B. HIsarna process

The HIsarna process is an innovative ironmaking technol-
ogy that aims at reducing the energy consumption and CO2
emission compared to traditional production methods. It has
been developed by combining two well-known technologies,
the cyclone converter furnace, and the smelting reduction
vessel [8][9]. Traditionally, iron is produced in blast furnaces
where iron ore, coke, and limestone are added in a specific
ratio and heated at high temperatures [10]. Using the HIsarna
process, the need for coke is eliminated as well as removing



the sintering, pelletizing, and blast furnace ironmaking steps,
significantly reducing the amount of CO2 emitted [8].

The process begins with the injection of fine iron ore,
pulverized coal, and fluxes into a reactor vessel called the
Cyclone Converter Furnace (CCF). Inside the CCF, the
injected iron ore reacts with the burned CO-rich gas from
the smelting reduction vessel (SRV). The iron ore melts
and forms a liquid film along the cyclone walls, under
the influence of gravity the liquid film falls down into the
slag layer where afterwards it is exposed to oxygen to
generate heat, which results in the reduction of iron oxide
to metallic iron. The rate of the reaction is controlled by
the amount of dissolved carbon in the hot metal droplets [8].

During this research, a simplified chemical reaction net-
work is used. The simplified stoichiometric equations for the
reactions occurring in the blast furnace are defined as

2C+O2
k1−−→ 2CO (1)

2Fe2O3 +3C k2−−→ 4Fe+3CO2 (2)

C+O2
k3−−→ CO2 (3)

The reaction rates of each reaction are respectively,

k1 = 0.00833, k2 = 0.1000, k3 = 0.2250 (4)

C. SINDy-CRN

In order to model the chemical reactions taking place
inside the blast furnace we make use of an approach called
Sparse Identification of Chemical Reaction Networks, or
SINDy-CRN in short. This method differs from normal
SINDy, and variants like implicit SINDy, and parallel
and implicit SINDy (SINDy-PI) as it is based on prior
knowledge of the CRN. Firstly, the minimal number of
independent state variables is linked to the number of
independent kinetics taking place inside the CRN. Secondly,
the information about the singular value decomposition of
the concentration data matrix is used to construct a library
of possible functions for every independent kinetic which
is straight away used in the SINDy-PI algorithm to get a
sparse representation.

In the paper of [2] a nine step approach is presented
for the identification of the chemical reaction network
dynamics, this approach will be used in this paper for the
identification of the chemical reactions. The approach calls
for the following steps:

Firstly, identifying invariant relationships and concentra-
tion variables. Considering the concentration matrix C, where

C = [c1(t) c2(t) ... ci(t)] (5)

We need to find the reaction variant form of concentration
matrix D which can be obtained by performing the following
calculation

D =C−1mcT
0 (6)

Where 1m is the m-dimensional matrix containing ones as
its only element, and cT

0 being the initial concentration.

Secondly, Singular Value Decomposition (SVD) is per-
formed on matrix DT . The SVD of DT is than given by

SV D(DT ) =USV T =U1S1V T
1 +U2S2V T

2 (7)

Where S =
[

S1 0
0 S2

]
, is the SxS diagonal singular value

matrix containing the first R-non zero values corresponding
to S1, and the (S−R) which are the zero singular values
corresponding to S2.

By performing SVD, we can decompose a given matrix
into the product of three matrices: U , S, and V T , where
U and V are orthogonal matrices, and S is a diagonal
matrix containing singular values [5]. The SVD provides
valuable insights into the properties and characteristics of
the original matrix, allowing for efficient data compression,
dimensionality reduction, and other analytical techniques [6].

Thirdly, in the singular value decomposition process,
examining the singular values allows us to determine the
number of non-zero and zero singular values. Let’s denote
the number of non-zero singular values as R, and the
number of zero singular values as (S−R).

Fourthly, we need to obtain matrix Q, which is UT
2 in

the SVD. Additionally, we require U2, which specifically
refers to the left singular vectors corresponding to the
number of zero singular values. These left singular vectors
are instrumental in capturing the linear relationships and
structure within the data [6].

Fifthly, the independent and dependent concentration
values must be chosen such that the rank of the matrix with
the dependent values, Qd , is the same as the amount of zero
singular values. Thus rank(Qd) = S−R.

Sixthly, the invariant relationship Q(c − c0) must be
determined.

Seventhly, the columns of the concentration matrix
C must be chosen so that it represents the independent
concentration values Ci.

Eighthly, the library matrix Φ(Ci,Ċi) must be constructed
for every independent variable. The variables inside the
matrix are chosen by looking at the reactions taking place
and the aforementioned invariant relationship.

Lastly, the ninth step is to perform the identification of the
sparse matrix Σ by performing the sequentially least squares
method.

D. SINDy-PI

The Sparse Identification of Nonlinear Dynamics, Parallel
and Implicit (SINDy-PI) algorithm is employed as the final



step in the method described. Its purpose is to uncover the
underlying dynamics present in a given dataset [1].

1) Working principle: To start, a matrix C is created
which includes the values of the concentrations [c1 c2 · · · ci]
over time t, the following matrix C is constructed for this
purpose

C =


CT (t1)
CT (t2)

...
CT (tn)

=


c1(t1) c2(t1) · · · ci(t1)
c1(t2) c2(t2) · · · ci(t2)

...
...

. . .
...

c1(tn) c2(tn) · · · ci(tn)

 (8)

Additionally, a matrix Ċ containing the derivatives of the
concentrations [ċ1 ċ2 · · · ċi] over time is constructed

Ċ =


ĊT (t1)
ĊT (t2)

...
ĊT (tn)

=


ċ1(t1) ċ2(t1) · · · ċi(t1)
ċ1(t2) ċ2(t2) · · · ċi(t2)

...
...

. . .
...

ċ1(tn) ċ2(tn) · · · ċi(tn)

 (9)

Next, the library matrix Φ(Ci,Ċi) is constructed using
the results obtained from the first eight steps of the
method mentioned above. This matrix contains all the
candidate functions that were discovered during the process.
Furthermore, an empty matrix Ξ is created which will
contain the sparse coefficients ξ1 ξ2 · · · ξi.

With matrices C, Ċ, and Φ constructed, we can start with
discovering the dynamics of the chemical reaction network
by formulating a constrained optimization problem. The
goal is to find the set of equations that best explain the
observed dynamics. This optimization problem is formalized
as follows

min
Ξ

= ∥Φ(Ci,Ċi−Φ(Ci,Ċi)Ξ∥2+β∥Ξ∥0, (10)

s.t. diag(Ξ) = 0

The objective of the optimization is to minimize the
squared difference between the derivatives of the concen-
trations and the product of the library matrix and the sparse
coefficient matrix, while simultaneously promoting sparsity
in the solution [1].

By solving this constrained optimization problem, the
SINDy-PI algorithm identifies the most appropriate set of
equations that describe the dynamics of the chemical reaction
network, effectively revealing the underlying behavior of the
system [1].

An overview of the algorithm is shown in figure 1.

Fig. 1: Schematic illustration of SINDy-PI [1]

E. Tools & Methods

To analyze the discovered dynamics, we will use a method
that involves calculating the relative error over time. This
approach allows us to assess the accuracy of our findings.
The relative error is determined by employing the following
formula, which quantifies the deviation between the observed
values and the expected values:

ErrorCi =

∣∣∣∣Ci(t)−Ĉi(t)
Ci(t)

∣∣∣∣×100 (11)

Research Method, To properly understand the dynamics
of the HIsarna process using SINDy-CRN, the research
will start with expanding existing knowledge about the
SINDy-CRN because previously it has only been used on
data without input, output, and no noise. Afterwards, the
algorithm will be applied to the CRN of the HIsarna process
and the dynamics will be evaluated and discussed. If this
approach works, the dynamics will be made more realistic
and complicated using inputs and outputs, otherwise the root
cause of the problem will be discovered and elaborated on.

III. RESULTS

A. Simulation 0

For the first simulation, we will expand the existing
knowledge of the SINDy-CRN approach by expanding the
CRN with inputs, outputs, and noisy data. The CRN that is
evaluated will be the same as used in the paper [2], which
exists of the following chemical reactions, and variables:

A+2B r1−−→ C r2←−→ D (12)

Where
r1 =

k1cacb

k2 + k3cacB
(13)

And
r2 =

k4c4

k5+ cc
− k6cd

k7cd
(14)

are the reaction rates for each reaction. Where ki is
respectively: 0.5, 3.5, 1.5, 2, 5, 1.5, and 6.

The concentrations of the different species is noted as

c =


[A]
[B]
[C]
[D]

=


ca
cb
cc
cd

 (15)

The initial concentration c0 is defined as

c0 = [1.5, 2.5, 0, 0]T (16)



1) Input 1:

Input = [0.001, 0.001, 0, 0] (17)

The first input variables influence the discovered
dynamics, as can be seen in figure 2. Initially looking at
the evolution of the concentrations, the graphs look fairly
similar but when looking at the relative errors, there is a
big spike in the first second of the graph. This spike can be
explained by looking closely at the concentration evolution,
as the discovered concentration of c4 rises much quicker
than the original. Because this concentration starts at zero,
the relative error will be much greater when the discovered
dynamics rise faster than the original dynamics.

(a) Evolution of
concentration

(b) Relative concentration
error

Fig. 2: Concentrations Input 1

2) Input 2:

Input = [0.005, 0.005, 0, 0] (18)

In the second simulation, the input variables were delib-
erately raised to assess the algorithm’s sensitivity to such
changes. It became evident that the algorithm faced diffi-
culties in identifying the accurate dynamics of the original
system under these increased input values. Furthermore, a
prominent observation was the stark contrast in performance
between the independent and dependent variables. The inde-
pendent variables consistently outperformed the dependent
variables, showing their superior predictive capability. This
shows the significance of carefully evaluating and selecting
the input variables to ensure the algorithm’s ability to capture
the desired system behavior accurately, particularly when
faced with significant variations in input.

(a) Evolution of
concentration

(b) Relative concentration
error

Fig. 3: Concentrations Input 2

3) Input 3:

Input = [0.01, 0.01, 0, 0] (19)

Lastly, upon raising the input values to values mentioned
in (19), an analysis of the graphs and table reveals that
the algorithm exhibits superior performance compared to
the second input simulation. However, a notable observation
is the presence of a significant spike in relative error of
the concentration c4. Once again, it is worth mentioning
that the independent variables outperform the dependent
variables in terms of accuracy and consistency. This dis-
crepancy emphasizes the importance of carefully considering
the input variables’ influence on the algorithm’s predictive
capabilities,.

(a) Evolution of
concentration

(b) Relative concentration
error

Fig. 4: Concentrations Input 3

To illustrate and see the connection between increasing
the input and the change in relative error, the values are
shown at time, t(5), t(15), t(25), and t(35) in the following
tables

Relative error c1
Input 1 Input 2 Input 3

Relative Error t(5) 0.0685 0.1027 0.0751
Relative Error t(15) 0.3769 5.3193 3.0051
Relative Error t(25) 0.0129 17.9878 6.1009
Relative Error t(35) 0.3887 18.4933 0.3994

Table 1: Relative Error c1, Input

Relative error c2
Input 1 Input 2 Input 3

Relative Error t(5) 0.5684 2.1632 4.4652
Relative Error t(15) 4.1798 40.9175 57.9149
Relative Error t(25) 21.9624 201.6532 209.0132
Relative Error t(35) 67.8819 412.8429 366.5858

Table 2: Relative Error c2, Input

Relative error c3
Input 1 Input 2 Input 3

Relative Error t(5) 1.7813 7.7419 12.3292
Relative Error t(15) 3.0856 24.8907 33.0378
Relative Error t(25) 5.5960 50.9800 48.5592
Relative Error t(35) 7.8450 58.6996 56.4458

Table 3: Relative Error c3, Input



Relative error c4
Input 1 Input 2 Input 3

Relative Error t(5) 0.4477 1.9851 0.0079
Relative Error t(15) 0.0425 2.3183 1.1796
Relative Error t(25) 0.1131 6.7705 4.1290
Relative Error t(35) 0.1043 5.7313 6.4352

Table 4: Relative Error c4, Input

4) Output 1:

Out put = [0, 0, 0.001, 0.001] (20)

Looking at the simulation for the first output, the spike
in relative error for concentration c4 is again very notice-
able. But overall the algorithm is still able to discover the
dynamics fairly well. Also it is again very present that
the independent variables perform much better than the
dependent variables.

(a) Evolution of
concentration

(b) Relative concentration
error

Fig. 5: Concentrations Output 1

5) Output 2:

Out put = [0, 0, 0.005, 0.005] (21)

The second simulation shows that the algorithm is very
sensitive for a change in output value, as can be seen in figure
6b, the discovered dynamics keep rising while the actual
dynamics decrease in value. Again just as in the previous
simulation the spike in relative error for concentration c4 is
very noticeable.

(a) Evolution of
concentration

(b) Relative concentration
error

Fig. 6: Concentrations Output 2

6) Output 3:

Out put = [0, 0, 0.01, 0.01] (22)

Lastly, the third simulation again shows the sensitivity
of the algorithm as the relative error of concentration c3
increases even further.

(a) Evolution of
concentration

(b) Relative concentration
error

Fig. 7: Concentrations Output 3

Relative error c1
Output
1

Output
2

Output
3

Relative Error t(5) 0.1153 0.1164 0.1160
Relative Error t(15) 0.5657 0.5578 0.5782
Relative Error t(25) 0.2029 0.1993 0.2102
Relative Error t(35) 0.9949 0.9957 0.9954

Table 5: Relative Error c1, Output

Relative error c2
Output
1

Output
2

Output
3

Relative Error t(5) 0.1694 0.1710 0.1704
Relative Error t(15) 1.5624 1.5407 1.5973
Relative Error t(25) 1.1247 1.1047 1.1650
Relative Error t(35) 11.1915 11.2007 11.1995

Table 6: Relative Error c2, Output

Relative error c3
Output
1

Output
2

Output
3

Relative Error t(5) 2.3232 13.2137 27.6268
Relative Error t(15) 7.2681 39.6266 92.6568
Relative Error t(25) 11.4753 69.3979 188.5538
Relative Error t(35) 15.2772 103.9990 350.1838

Table 7: Relative Error c3, Output

Relative error c4
Output
1

Output
2

Output
3

Relative Error t(5) 0.0254 0.0320 0.9697
Relative Error t(15) 0.1296 0.0442 0.0877
Relative Error t(25) 0.0335 0.1729 0.4502
Relative Error t(35) 0.0342 0.2633 0.3003

Table 8: Relative Error c4, Output

7) Noise 1: For the first simulation the data will be made
noisy, this will be achieved by adding a noise variable as is
stated in equation (23), the noise is set to 0.01.

Input = Input +Noise (23)

Adding noise into the system reduces the predictive capa-
bility of the SINDy-CRN algorithm, the predicted dynamics
severely alter from the initial system.



(a) Evolution of
concentration

(b) Relative concentration
error

Fig. 8: Concentrations with Noise 1

8) Noise 2: Secondly, the noise is increased further and
set to 0.015

Looking at the results of the predicted dynamics in figure 9
and tables 9-12, it can be seen that the relative error increases
even further. Also still very prominent is the big spike in
relative error of the fourth concentration. Furthermore the
dependent variables again perform much worse than the
independent variables.

(a) Evolution of
concentration

(b) Relative concentration
error

Fig. 9: Concentrations with Noise 2

Relative error c1
Output
1

Output
2

Relative Error t(5) 1.0428 1.0673
Relative Error t(15) 7.0483 3.4300
Relative Error t(25) 17.0676 21.3759
Relative Error t(35) 40.4061 31.4798

Table 9: Relative Error c1, Noise

Relative error c2
Output
1

Output
2

Relative Error t(5) 0.5496 3.5000
Relative Error t(15) 16.6476 4.7929
Relative Error t(25) 104.3032 147.3930
Relative Error t(35) 332.9589 1495.66

Table 10: Relative Error c2, Noise

Relative error c3
Output
1

Output
2

Relative Error t(5) 2.4745 8.1936
Relative Error t(15) 11.1492 18.1927
Relative Error t(25) 11.2351 25.2865
Relative Error t(35) 27.1437 36.4941

Table 11: Relative Error c3, Noise

Relative error c4
Output
1

Output
2

Relative Error t(5) 4.8437 1.7824
Relative Error t(15) 4.6070 5.6682
Relative Error t(25) 2.8064 0.5583
Relative Error t(35) 4.8305 3.0111

Table 12: Relative Error c4, Noise

9) Recommendations: Looking at these initial
simulations, there are a few key takeaways from the
obtained data. Firstly, when having a simulation start with
concentration close to zero or at zero, it can provide a big
error in the beginning stages of the predicted dynamics,
this happens because the increase from the predicted
dynamics is larger than the original dynamics. Secondly,
the independent variables always outperform the dependent
variables, if the predicted dynamics need to have the
smallest error as possible it can be usefull to calculate more
independent variables than necessary. And thirdly, when
the data is very noisy, and/or not smooth, a smoothing
algorithm can be applied to alter the data before passing
it through the SINDy-CRN algorithm for better performance.

In conclusion, the following key takeaways need to be
taken into account:

1) Take extra notice of dynamics starting at zero
2) Use more independent variables when the error gets to

high
3) Use smoothing algorithm beforehand for noisy data

B. Simulation 1

In order to discover the dynamics of the reaction using the
SINDy-CRN approach we need to use the steps mentioned
above. First, we will test the model using generated data
with no input and/or output to check how the model will
work and respond using the simplified chemical reaction
network of the HIsarna process.

1) Initial parameters: The initial parameters of this sim-
ulation are the following, the reaction rates are stated in
equation (4), the concentrations of the different materials
present inside the CRN are

c =


[CO]
[CO2]
[O2]
[Fe]
[C]

[Fe2O3]

=


c1
c2
c3
c4
c5
c6

 (24)

The initial concentration c0 for the different materials is

c0 = [0, 0, 2, 0, 2, 1]T (25)



2) Library formation: Performing the first calculations,
the singular values of the CRN are shown to be 161.7439,
7.4197, 0.0783, 0, 0, 0. This implies that the rank of the
matrix D is 3, checking this by calculating the rank of matrix
D we discover that this is in fact the case.

The rank of a matrix is the maximum number of linearly
independent rows or columns it contains [5]. In this context,
the rank of matrix D represents the number of significant
reactions or dynamics in the chemical system. Since the
rank of D is 3, it suggests that the CRN consists of three
important reactions that contribute significantly to the
overall behavior of the system.

The matrix corresponding to the last zero singular values
is

Q =UT
2 =


−0.0261 −0.5974 0.3402 −0.3603 0.6235 0.0901
−0.0137 0.0687 −0.6257 −0.7518 −0.0550 0.1880
−0.8160 0.4264 −0.0004 0.0241 0.3895 −0.0060
0.4528 0.5577 0.2099 −0.2800 0.3478 −0.4904
−0.1078 0.2254 0.6664 −0.4091 −0.4410 0.3628
0.3416 0.3077 −0.679 0.2420 0.3755 0.7645

 (26)

The different partitions of Q are examined and based on
this the dependent variables are chosen to be c1, c2, and
c6. This leaves the dependent variables matrix to be the
following

Qd =


0.3402 −0.3603 0.6235
−0.6257 −0.7518 −0.0550
−0.0004 0.0241 0.3895
0.2099 −0.2800 0.3478
0.6664 −0.4091 −0.4410
−0.679 0.2420 0.3755

 (27)

The rank of Qd corresponds to the number of zero
singular values, thus the dependent variables c3, c4, and c5
are proven to be a good choice.

Next, the libraries for the above-mentioned dependent vari-
ables need to be chosen. Looking at the chemical reactions
the first reaction will depend only on c3 (O2), for this library
the powers are up to the third degree and its time derivative.
The second reaction generates c4 (Fe) will also contain only
itself to the third degree and its time derivative. Lastly, the
third reaction is only dependent on the concentration of c5
(C) thus the library will only consist of c5 up to the third
degree and its time derivative. Thus the libraries for the
dependent variables will be

Lib3 = [c3 ċ3 1 c2
3 c3

3] (28)

Lib4 = [c4 ċ4 1 c2
4 c3

4] (29)

Lib5 = [c5 ċ5 1 c2
5 c3

5] (30)

Finally, the threshold parameter is chosen to be 0.07.
Now we have all the information needed to perform the
sequentially threshold least-squares method to identify the
dynamic equations.

The dynamic equations that are obtained using this
method are the following

Concentration ċ3

ċ3 =
4366c2

3−2880c3

10000c3−32381
(31)

Concentration ċ4

ċ4 =
14037c2

4
5000

− 59267c4

10000
+

6143
2000

(32)

Concentration ċ5

ċ5 =
8202c2

5 +4655c5

10000c5−32094
(33)

Using these equations the dynamic equations of the
dependent kinetics can be calculated. The other kinetics are
calculated as

Concentration ċ2

ċ2 = ċ5 +(−2ċ3 +1.5ċ4) (34)

(35)
ċ2 =

42111c2
4

10000
− 177801 ∗ c4

20000
+

8202c2
5 + 4655c5

10000c5 − 32094

+
5760c3 − 8732c2

3
10000c3 − 32381

+
18429
4000

Concentration ċ1

ċ1 = ċ5− ċ2 (36)

(37)
ċ1 =

177801c4

20000
− 2 ∗

−4366c2
3 + 2880c3

10000c3 − 32381
− 2

∗
8202c2

5 + 4655c5

10000c5 − 32094
− 42111c2

4
10000

− 18429
4000

Concentration ċ6

ċ6 =−
1
4

ċ4 (38)

ċ6 =
59267c4

40000
− 143037c2

4
20000

− 6143
8000

(39)

3) Graphs of the dynamics: Plotting the found dynamics
together with the initial dynamics gives the following figure

Fig. 10: Discovered dynamics and original dynamics



As can be seen the discovered dynamics Chati and the
original dynamics Ci are the same.

Relative errors c1-c6
c1 c2 c3

Relative Error t(1) 0.1281 0.0593 0.0677
Relative Error t(3) 6.2685 0.2312 0.1494
Relative Error t(5) 6.3677 0.1678 0.0742

c4 c5 c6
Relative Error t(1) 0.0594 0.0785 0.0141
Relative Error t(3) 0.0373 0.1515 0.0107
Relative Error t(5) 0.0179 0.6461 0.0053

Table 9: Relative Errors c1-c6

(a) Concentrations C1, and
Chat1

(b) Concentrations C2, and
Chat2

Fig. 11: Concentrations C, and Chat

(a) Concentrations C3, and
Chat3

(b) Concentrations C4, and
Chat4

Fig. 12: Concentrations C, and Chat

(a) Concentrations C5, and
Chat5

(b) Concentrations C6, and
Chat6

Fig. 13: Concentrations C, and Chat

IV. SIMULATION 2
Next, the simulation will be expanded by including

input, and output. The knowledge and recommendations
from simulation 0 and simulation 1 will be applied on this
simulation.

1) Parameters: The parameters are chosen to be the
following:

f lux = 0.1 (40)

Input variables:

u1 = 3, u2 = 3, u3 = 0.1 (41)

Output variables:

COout = 0.5, CO2out = 0.4, O2out = 0, Feout = 2 (42)

Initial concentrations:

c0 = [0, 0, 3, 0, 2, 1]T (43)

2) Discovered dynamics: For this simulation the
discovered dynamics by applying the SINDy-CRN algorithm
are the following:

Concentration ċ1

(44)
ċ1 =

13641c42

2500
+

51183c4
5000

+
27646c3− 56250
10000c3− 40440

− 18656c52 + 23772c5− 9536
10000c5− 34773

− 4707
10000

Concentration ċ2

ċ2 =
9328c52 + 11886c5− 4768

10000c5− 34773
− 2 ∗ (13823c3− 28125)

10000c3− 40440

− 51183c4
5000

− 13641c42

2500
+

47079
10000

(45)

Concentration ċ3

ċ3 =
13823c3−28125
10000c3−40440

(46)

Concentration ċ4

ċ4 =
15693
5000

− 17061∗ c4
2500

− 4547c42

1250
(47)

Concentration ċ5

ċ5 =
9328c52 +11886c5−4768

10000c5−34773
(48)

Concentration ċ6

ċ6 =
4547c42

5000
+

17061c4
10000

− 15693
20000

(49)

As can be seen in the graphs stated below, the performance
of the algorithm has decreased by implementing the different
input, and output variables into the system. What is primarily
noticeable is that in this simulation unlike in simulation 0,
one independent kinetic (c4 has not been identified properly
where before this did happen. Because of this the identified
concentration of c6 is influenced directly and thus is also not
correct.
Furthermore, the two remaining dependent variables could
also not be identified correctly.



3) Graphs: The graphs of the initial concentrations over
time and the discovered dynamics are shown below.

Fig. 14: Discovered dynamics and original dynamics, sim 2

(a) Concentrations C1, and
Chat1

(b) Concentrations C2, and
Chat2

Fig. 15: Concentrations C, and Chat

(a) Concentrations C3, and
Chat3

(b) Concentrations C4, and
Chat4

Fig. 16: Concentrations C, and Chat

(a) Concentrations C5, and
Chat5

(b) Concentrations C6, and
Chat6

Fig. 17: Concentrations C, and Chat

V. CONCLUSION

To summarise, during this research the SINDy-CRN has
been expanded to include input, output, and noisy data, the
influence of these alterations has been simulated and mea-
sured and based on these results some suggestions have been
made. These recommendations have than been translated into
a new simulation and tested.

Looking at simulation 1, and 2, there is a clear difference
in performance of the SINDy-CRN algorithm. The input and
output have made drastic changes in the outcome of the
simulation and identified dynamics. To counter this, more
research has to be performed on the influence of input and
output in the SINDy algorithm because the recommendations
found did not perform properly. Also in further research,
the impact of slag should be taken into account because the
production of the iron is heavily dependent on this [8].

In conclusion, some steps have been taken into expanding
existing knowledge of the SINDy-CRN algorithm by includ-
ing input, output, and noise. The proper identification using
these variables was not satisfactory, thus different approaches
should be used for the identification of these dynamics.

REFERENCES

[1] Kaheman, K., Kutz, J.N., Brunton, S.L. (2020). Sindy-pi: A robust
algorithm for parallel implicit sparse identification of nonlinear dy-
namics. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 476(2242).

[2] Bhatt, N., Jayawardhana, B., Sánchez-Escalonilla, S,. (2023). SINDy-
CRN: Sparse Identification of Chemical Reaction Networks from Data.

[3] Kulakowski, B.T., Gardner, J.F., Shearer, J.L. (2007). Dynamic Model-
ing and control of Engineering Systems. Cambridge University Press.

[4] Raol, J.R. and Ayyagari, R. (2020) Control Systems Classical, modern,
and ai-based approaches. Boca Raton: CRC Press, Taylor Francis
Group.

[5] Shores, T.S. (2018). Applied linear algebra and matrix analysis.
Springer.

[6] He, J., Fu, Z.-F. (2001). Mathematics for modal analysis. Modal
Analysis, 12–48.

[7] Zhang, L., Schaeffer, H. (2019). On the convergence of the Sindy
algorithm. Multiscale Modeling and Simulation, 17(3), 948–972.

[8] Khasraw, D., Yan, Z., Hage, J.L., Meijer, K., Li, Z. (2022). Reduction
of feo in molten slag by solid carbonaceous materials for hisarna alter-
native ironmaking process. Metallurgical and Materials Transactions
B, 53(5), 3246–3261.

[9] Whiston, J., Spooner, S., Meijer, K., Li, Z. (2021). Observation
of the reactions between iron ore and metallurgical fluxes for the
alternative ironmaking HIsarna process. Ironmaking & Steelmaking,
48(10), 1142–1150.

[10] Crook, M. (2022). Iron Making: Exploring Traditional and Innovative
Techniques for Sustainable Production. Journal of Steel Structures &
Construction.

VI. APPENDIX

A. Code Simulation 0
Main function

clear all; clc; close all;
load('data_simulation.mat');

%%%%%%%%%%%%%%%%%%%%%%%

% Lets obtain the original CRN
% using SINDy



%%%%%%%%%%%%%%%%%%%%%%%

size_C = size(C,1);
% Noisy Data
Noise = 0;
C_N = C + randn(size_C,4)*Noise;
C_dot_N = C_dot + randn(size_C,4)*

Noise;

% Smooth Data
Smooth = 0;
if Smooth==1

C_S = smoothdata(C_N,'rloess');
C_dot_S = smoothdata(C_dot_N,'

rloess');
c1 = C_S(:,1);
c2 = C_S(:,2);
c3 = C_S(:,3);
c4 = C_S(:,4);

%load derivatives
dotc1 = C_dot_S(:,1);
dotc2 = C_dot_S(:,2);
dotc3 = C_dot_S(:,3);
dotc4 = C_dot_S(:,4);

else
c1 = C_N(:,1);
c2 = C_N(:,2);
c3 = C_N(:,3);
c4 = C_N(:,4);

%load derivatives
dotc1 = C_dot_N(:,1);
dotc2 = C_dot_N(:,2);
dotc3 = C_dot_N(:,3);
dotc4 = C_dot_N(:,4);

end

%%%%%%%%%%%%%%%%%%%%%%%

dt = 0.01; % Sampling period

% Calculate derivatives using finite
differences

% dotc1 = dot_fn(c1, dt);
% dotc2 = dot_fn(c2, dt);
% dotc3 = dot_fn(c3, dt);
% dotc4 = dot_fn(c4, dt);

% Define libraries
[nlib1, lib1] = libgen(1);
[nlib4, lib4] = libgen(4);

lib_c1= eval(lib1);
lib_c4 = eval(lib4);

size_lib1 = size(lib_c1,2); size_lib4
= size(lib_c4,2);

index_c1 = 1:size_lib1;
index_c4 = 1:size_lib4;

lambda_sweep = 0.0:0.05:1;

lambda_sweep = 0.1;

size_sweep = size(lambda_sweep, 2);

ec1 = zeros(size_sweep, 1); % error
array

pc1 = zeros(size_sweep, 1); %
polynomial size array

minc1 = 99999999;
lminc1=1;
argminc1 = [];
zetaminc1 = [];

ec4 = zeros(size_sweep, 1);
pc4 = zeros(size_sweep, 1);
minc4 = 99999999;
lminc4 = 1;
argminc4 = [];
zetaminc4 = [];

%%%%%%%%%%%%%%%%%%%%%%%

% SINDY algo

%%%%%%%%%%%%%%%%%%%%%%%
% Reference values are
c1dotc1 = c1.*dotc1;
c1c4dotc4 = c1.*c4.*dotc4;

for i = 1:size_sweep
index_c1 = 1:size_lib1;
index_c4 = 1:size_lib4;

lib_c1 = eval(lib1);
lib_c4 = eval(lib4);

prune = 1;
while(prune == 1)

zeta_c1 = inv(lib_c1'*lib_c1)

*lib_c1'*(c1.*dotc1);
zeta_c4 = inv(lib_c4'*lib_c4)

*lib_c4'*(c1.*c4.*dotc4);

max_zeta_c1 = max(abs(zeta_c1
(1:end)));

max_zeta_c4 = max(abs(zeta_c4
(1:end)));



prune_c1 = find(abs(zeta_c1
(1:end))<lambda_sweep(i)*
max_zeta_c1);

prune_c4 = find(abs(zeta_c4
(1:end))<lambda_sweep(i)*
max_zeta_c4);

% prune_c1 = find(abs(zeta_c1
(1:end))<lambda_sweep(i));

% prune_c4 = find(abs(zeta_c4
(1:end))<lambda_sweep(i));

index_c1(prune_c1) = [];
index_c4(prune_c4) = [];

lib_c1(:,prune_c1) = [];
lib_c4(:,prune_c4) = [];

if(isempty(prune_c1) == 1)&&
(isempty(prune_c4)==1)
prune = 0;

end;
end;

% store the value that gives the
minimum error

error_c1 = mean(sqrt((c1dotc1-sum
(zeta_c1'.*lib_c1, 2)).ˆ2));

if error_c1 < minc1
minc1 = error_c1;
argminc1 = index_c1;
lminc1 = lambda_sweep(i);
zetaminc1 = zeta_c1;

end
ec1(i) = error_c1;
pc1(i) = size(zeta_c1, 1);

error_c4 = mean(sqrt((c1c4dotc4-
sum(zeta_c4'.*lib_c4, 2)).ˆ2))
;

if error_c4 < minc4
minc4 = error_c4;
argminc4 = index_c4;
lminc4 = lambda_sweep(i);
zetaminc4 = zeta_c4;

end
ec4(i) = error_c4;
pc4(i) = size(zeta_c4, 1);

end
zetaminc1, zetaminc4
%%%%%%%%%%%%%%%%%%%%%%%

lib1 % original library

[nsparse1, mon1] = idx2mon(argminc1,
1); % reduced library

fprintf("C1 start size %d, sparse
size %d, lambda %d, min error %d\n
", nlib1, nsparse1, lminc1, minc1)

transpose(mon1) % extracted monomials

lib4 %original library
[nsparse4, mon4] = idx2mon(argminc4,

4); % reduced library
fprintf("C4 start size %d, sparse

size %d, lambda %d, min error %d\n
", nlib4, nsparse4, lminc4, minc4)

transpose(mon4) % extracted monomials

dyn = dot_sym(mon1, zetaminc1, mon4,
zetaminc4); % put the sparse
system together

fprintf("dotc1: \n\n"); pretty(dyn(1)
)

fprintf("dotc4: \n\n"); pretty(dyn(2)
)

%%%%%%%%%%%%%%%%%%%%%%%

% SOLVE THE SYSTEM

%%%%%%%%%%%%%%%%%%%%%%%

tspan = [0:0.01:35];
c0 = [1.5;2.5;0;0];
[that, c] = ode15s(@(t,c)dyn_fn(t, c,

mon1, zetaminc1, mon4, zetaminc4)
, tspan, c0);

% Error between initial data and
discovered dynamics

for i=1:size_C
Error_over_time_c1(i,1) = abs((

C_N(i,1)-c(i,1))/C_N(i,1))

*100;
Error_over_time_c2(i,1) = abs((

C_N(i,2)-c(i,2))/C_N(i,2))

*100;
Error_over_time_c3(i,1) = abs((

C_N(i,3)-c(i,3))/C_N(i,3))

*100;
Error_over_time_c4(i,1) = abs((

C_N(i,4)-c(i,4))/C_N(i,4))

*100;
end

% Plot Error in concentrations
figure(1)
plot(t,Error_over_time_c1,'black')
hold on
plot(t,Error_over_time_c2,'red')



plot(t,Error_over_time_c3,'blue')
plot(t,Error_over_time_c4,'yellow')
hold off
title('Concentration Errors')
legend({'Error Concentration 1','

Error Concentration 2','Error
Concentration 3','Error
Concentration 4'},'location','
southwest')

xlabel('Time')
ylabel('Error')

% Plot Concentrations
figure(2)
plot(t,C_N(:,1),'black')
hold on
plot(t,C_N(:,2),'red')
plot(t,C_N(:,3),'blue')
plot(t,C_N(:,4),'yellow')
plot(t,c(:,1),'--red')
plot(t,c(:,2),'--black')
plot(t,c(:,3),'--yellow')
plot(t,c(:,4),'--blue')
hold off
title('Concentration evolution')
xlabel('Time')
ylabel('Concentration')

%%%%%%%%%%%%%%%%%%%%%%%

% Formulate the Library
D = C_N - ones(size_C,4).*c0.';
[U,S,V] = svd(D.');
Rank_D = rank(D);
Rank_C = rank(C_N);
U = U.';

%%%%%%%%%%%%%%%%%%%%%%%

function dotC = dot_fn(C, dt)
% C: vector of size N containing

the function values
% dt: scalar representing the

time step
% calculate the first derivative

using finite differences
dotC = diff(C) / dt;

% append the last element to the
end to match the size of the
input vector

dotC = [dotC; dotC(end)];
end

function dyn = dot_sym(m1, z1, m4, z4
)

% combine monomials and zeta from
the sparse identification

into symbolic form dynamics
syms c1 c4 dotc1 dotc4;
eq1 = c1*dotc1-sum(z1'*m1);
dc1 = solve(eq1, dotc1);
eq4 = c1*c4*dotc4-sum(z4'*m4);
dc4 = solve(eq4, dotc4);
dyn = [collect(dc1); collect(dc4)

];
end

function dyn = dyn_fn(t, x, m1, z1,
m4, z4)
% dynamical system to be passed

to ode solver
c1 = x(1); c2 = x(2); c3 = x(3);

c4 = x(4);
dyn = eval(dot_sym(m1, z1, m4, z4

));
dyn2 = 2*dyn(1); dyn3 = -dyn(1)-

dyn(2);
dyn = [dyn(1); dyn2; dyn3; dyn(2)

];
end

%%%%% Simulator for reaction systems
CDC 2023

function y=mySimulator()
%%% Define Reaction stoichiometric
% R1: A+2B -> C and R2: C <-> D
%%% Rate expressions
% r1=k1*ca*cb/(k2+k3*ca*cb);
% r2=k4*cc/(k5+cc)-k6*cD/(k7+cD);
N=[-1 -2 1 0;0 0 -1 1];
dt = 0.01
%%% Kinetic Parameters
k1=0.5;
k2=3.5;
k3=1.5;
k4=2;
k5=5;
k6=1.5;
k7=6;
%%% Parameter vector
theta=[k1;k2;k3;k4;k5;k6;k7];

%%%% Time span
tspan=[0:dt:35];
%%% Initial concentrations
c0=[1.5;2.5;0;0];
%%% Integration
[t,C]=ode15s(@(t,c)Simulator_ode(t,c,

N,theta),tspan,c0);

size_C = size(C,1);
C_dot = zeros(size_C,4);



for i = 1:size_C
C_dot(i,:) = Simulator_ode(0,C(i

,:),N,theta);
end

%%% Plot for 4 concentrations
plot(t,C,'o');xlabel('Time [Unit]');

ylabel('Concentrations [km mˆ{-3}]
');legend('A','B','C','D')

%%%% Save file for Identification
save data_simulation_1 t C C_dot
end

function dy=Simulator_ode(t,x,N,
theta)

%%% Find number of ODEs
[n_r,n_c]=size(N');
%%% Initialization dy
dy=zeros(n_r,1);
%%%% Concentration variables
ca=x(1);
cb=x(2);
cc=x(3);
cD=x(4);
%%%% Parameters
k1=theta(1);
k2=theta(2);
k3=theta(3);
k4=theta(4);
k5=theta(5);
k6=theta(6);
k7=theta(7);
%%% Reaction rates
r1=k1*ca*cb/(k2+k3*ca*cb);
r2=k4*cc/(k5+cc)-k6*cD/(k7+cD);

Input = [0; 0; 0; 0];
Output = [0; 0; 0; 0];

%%% Reaction rate vector
r=[r1;r2];
%%% ODEs for 4 concentrations [ca,cb,

cc,cD]';
dy=N'*r+Input-Output;
end

B. Code Simulation 1
Main function

clear all; clc;

% Time parameters
t0 = 0;
tend = 5;
dt = 0.001;
tspan = [t0:dt:tend];

% Initial State of the system
Concentration_CO = 0;
Concentration_CO2 = 0;
Concentration_O2 = 2;
Concentration_Fe = 0;
Concentration_C = 2;
Concentration_Fe2O3 = 1;
State0 = [Concentration_CO;

Concentration_CO2;
Concentration_O2;
Concentration_Fe; Concentration_C

; Concentration_Fe2O3];

% Data Collecting
[t,X] = ode45(@SRV_CRN, tspan, State0

);

size_X = size(X,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%

% Formulate the Library
D = X - ones(size_X,6).*State0.';
[U,S,V] = svd(D.');
Rank_D = rank(D);
U = U.';
Qd = [U(:,3) U(:,4) U(:,5)];
Rank_Qd = rank(Qd);

%%%%%%%%%%%%%%%%%%%%%%%%%%

% Derivative of the data
size_X = size(X,1);
dot_X = zeros(size_X,6);
for i = 1:size_X

dot_X(i,:) = SRV_CRN(0,X(i,:));
end

%%%%%%%%%%%%%%%%%%%%%%%%%

%% Optimization
% Load data
c1 = X(:,1);
c2 = X(:,2);
c3 = X(:,3);
c4 = X(:,4);
c5 = X(:,5);
c6 = X(:,6);

% Load derivatives
dotc1 = dot_X(:,1);
dotc2 = dot_X(:,2);
dotc3 = dot_X(:,3);
dotc4 = dot_X(:,4);
dotc5 = dot_X(:,5);
dotc6 = dot_X(:,6);



% Define Libraries
Library3 = "[c3, dotc3, ones(size(c3,

1),1), c3.ˆ2, c3.ˆ3]";
size_lib3 = 5;
Library4 = "[c4, dotc4, ones(size(c4,

1),1), c4.ˆ2, c4.ˆ3]";
size_lib4 = 5;
Library5 = "[c5, dotc5, ones(size(c5,

1),1), c5.ˆ2, c5.ˆ3]";
size_lib5 = 5;

%%%%%%%%%%%%%%%%%%%%%

lambda_sweep = 0.07;
size_sweep = size(lambda_sweep, 3);

for i = 1:size_sweep
index_c3 = 1:size_lib3;
index_c4 = 1:size_lib4;
index_c5 = 1:size_lib5;

lib_c3 = eval(Library3);
lib_c4 = eval(Library4);
lib_c5 = eval(Library5);

prune = 1;
while prune==1

Zeta_c3 = inv(lib_c3'*lib_c3)

*lib_c3'*(c3.*dotc3);
Zeta_c4 = inv(lib_c4'*lib_c4)

*lib_c4'*(c4.*dotc4);
Zeta_c5 = inv(lib_c5'*lib_c5)

*lib_c5'*(c5.*dotc5);

Max_Zeta_c3 = max(abs(Zeta_c3
(1:end)));

Max_Zeta_c4 = max(abs(Zeta_c4
(1:end)));

Max_Zeta_c5 = max(abs(Zeta_c5
(1:end)));

prune_c3 = find(abs(Zeta_c3
(1:end))<lambda_sweep(i)*
Max_Zeta_c3);

prune_c4 = find(abs(Zeta_c4
(1:end))<lambda_sweep(i)*
Max_Zeta_c4);

prune_c5 = find(abs(Zeta_c5
(1:end))<lambda_sweep(i)*
Max_Zeta_c5);

index_c3(prune_c3) = [];
index_c4(prune_c4) = [];
index_c5(prune_c5) = [];

lib_c3(:,prune_c3) = [];

lib_c4(:,prune_c4) = [];
lib_c5(:,prune_c5) = [];

if (isempty(prune_c3)==1)&& (
isempty(prune_c4) == 1)&&
(isempty(prune_c5)==1)
prune = 0;

end
end

end

%% Reduced library
% L3 = "[c3 dotc3 c3.ˆ2]"
% L4 = "[c4 c4.ˆ2 c4.ˆ3]"
% L5 = "[c5 dotc5 c5.ˆ2]"

syms c3 dotc3 c4 dotc4 c5 dotc5
Equation3 = c3*dotc3-(-0.288*c3

+3.2381*dotc3+0.4366*c3.ˆ2);
Dot_c3 = solve(Equation3, dotc3);
Equation4 = c4*dotc4-(3.0715*c4

-5.9267*c4.ˆ2+2.8074*c4.ˆ3);
Dot_c4 = solve(Equation4, dotc4);
Equation5 = c5*dotc5-(0.4655*c5

+3.2094*dotc5+0.8202*c5ˆ2);
Dot_c5 = solve(Equation5, dotc5);
dyn = [collect(Dot_c3); collect(

Dot_c4); collect(Dot_c5)];

%% System that needs to be solved by
ode

% 2C + 02 -> 2CO
% 2Fe2O3 + 3C -> 4Fe + 3CO2
% C + 02 -> CO2
% [CO; CO2; O2; Fe; C; Fe2O3]

dynamics_c2 = dyn(3)+(-2*dyn(1))+1.5*
dyn(2); % Concentration CO2

dynamics_c1 = -dyn(3)-dynamics_c2;
% Concentration CO

dynamics_c6 = -1/4*dyn(2);
%

Concentration Fe2O3
dynamics = [dynamics_c1; dynamics_c2;

dyn(1); dyn(2); dyn(3);
dynamics_c6];

% Put ODE into Identified.m
% Run ODE
[that, C] = ode45(@Identified, tspan,

State0);

for i=1:size_X
Error_over_time_c1(i,1) = abs((X(

i,1)-C(i,1))/X(i,1)) *100;
Error_over_time_c2(i,1) = abs((X(

i,2)-C(i,2))/X(i,2)) *100;



Error_over_time_c3(i,1) = abs((X(
i,3)-C(i,3))/X(i,3)) *100;

Error_over_time_c4(i,1) = abs((X(
i,4)-C(i,4))/X(i,4)) *100;

Error_over_time_c5(i,1) = abs((X(
i,5)-C(i,5))/X(i,5)) *100;

Error_over_time_c6(i,1) = abs((X(
i,6)-C(i,6))/X(i,6)) *100;

end

% Concentration Error
figure(1)
plot(t,X(:,1),'black')
hold on
plot(t,C(:,1),'red')
hold off
legend({'C1','Chat1'},'location','

southeast')
xlabel('Time (s)')
ylabel('Concentration (M)')

% Plot Concentrations
figure(2)
plot(t,X(:,1),'black')
hold on
plot(t,X(:,2),'red')
plot(t,X(:,3),'blue')
plot(t,X(:,4),'yellow')
plot(t,X(:,5),'magenta')
plot(t,X(:,6),'green')
plot(that,C(:,1),'blacko')
plot(that,C(:,2),'redo')
plot(that,C(:,3),'blueo')
plot(that,C(:,4),'yellowo')
plot(that,C(:,5),'magentao')
plot(that,C(:,6),'greeno')
hold off
title('Concentration evolution')
xlabel('Time')
ylabel('Concentration')

CRN function

function dX = SRV_CRN(t,X)

% Dynamics
% Flux reactor
phi = 0;

% Volume
V = 19.0405;

% Inflow
u1 = 0;
u2 = 0;
u3 = 0;

% Outflow

COout = 0;
CO2out = 0;
O2out = 0;
Feout = 0;
% Constants
k1 = 0.0083;
k2 = 0.1;
k3 = 0.225;

% ODE
dX(1) = 2*(k1*X(3)*X(5).ˆ2)-phi*COout

/V;
dX(2) = 3*(k2*X(5).ˆ3*X(6).ˆ2)+(k3*X

(3)*X(5))-(phi*CO2out/V);
dX(3) = -k1*X(3)*X(5).ˆ2-k3*X(3)*X(5)

-(phi*O2out/V+u1/V);
dX(4) = 4*k2*X(5).ˆ3*X(6).ˆ2-phi*

Feout/V;
dX(5) = -2*k1*X(3)*X(5).ˆ2-3*k2*X(5)

.ˆ3*X(6).ˆ2-k3*X(3)*X(5)+u2/V;
dX(6) = -k2*X(5).ˆ3*X(6).ˆ2+u3/V;
dX = dX';

Identified Function

function dC = Identified(t,C)

dC(1) = (177801*C(4))/20000 - (2*(-
4366*C(3)ˆ2 + 2880*C(3)))/(10000*C
(3) - 32381) - (2*(8202*C(5)ˆ2 +
4655*C(5)))/(10000*C(5) - 32094) -
(42111*C(4)ˆ2)/10000 -
18429/4000;

dC(2) = (42111*C(4)ˆ2)/10000 -
(177801*C(4))/20000 + (8202*C(5)ˆ2
+ 4655*C(5))/(10000*C(5) - 32094)
+ (5760*C(3) - 8732*C(3)ˆ2)
/(10000*C(3) - 32381) +
18429/4000;

dC(3) = (4366*C(3)ˆ2 - 2880*C(3))
/(10000*C(3) - 32381);

dC(4) = (14037*C(4)ˆ2)/5000 - (59267*
C(4))/10000 + 6143/2000;

dC(5) = (8202*C(5)ˆ2 + 4655*C(5))
/(10000*C(5) - 32094);

dC(6) = (59267*C(4))/40000 - (14037*C
(4)ˆ2)/20000 - 6143/8000;

dC = dC';

C. Code Simulation 2
Main function

clear all; clc;

% Time parameters
t0 = 0;
tend = 5;
dt = 0.001;
tspan = [t0:dt:tend];



% Initial State of the system
Concentration_CO = 0;
Concentration_CO2 = 0;
Concentration_O2 = 3;
Concentration_Fe = 0;
Concentration_C = 2;
Concentration_Fe2O3 = 1;
State0 = [Concentration_CO;

Concentration_CO2;
Concentration_O2;
Concentration_Fe; Concentration_C

; Concentration_Fe2O3];

% Data Collecting
[t,X] = ode45(@SRV_CRN, tspan, State0

);

size_X = size(X,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%

% Formulate the Library
D = X - ones(size_X,6).*State0.';
[U,S,V] = svd(D.');
Rank_D = rank(D);
U = U.';
Qd = [U(:,3) U(:,4) U(:,5)];
Rank_Qd = rank(Qd);

%%%%%%%%%%%%%%%%%%%%%%%%%%

% Derivative of the data
size_X = size(X,1);
dot_X = zeros(size_X,6);
for i = 1:size_X

dot_X(i,:) = SRV_CRN(0,X(i,:));
end

%%%%%%%%%%%%%%%%%%%%%%%%%

%% Optimization
% Load data
c1 = X(:,1);
c2 = X(:,2);
c3 = X(:,3);
c4 = X(:,4);
c5 = X(:,5);
c6 = X(:,6);

% Load derivatives
dotc1 = dot_X(:,1);
dotc2 = dot_X(:,2);
dotc3 = dot_X(:,3);
dotc4 = dot_X(:,4);
dotc5 = dot_X(:,5);
dotc6 = dot_X(:,6);

% Define Libraries
Library3 = "[c3, dotc3, ones(size(c3,

1),1), c3.ˆ2, c3.ˆ3]";
size_lib3 = 5;
Library4 = "[c4, dotc4, ones(size(c4,

1),1), c4.ˆ2, c4.ˆ3]";
size_lib4 = 5;
Library5 = "[c5, dotc5, ones(size(c5,

1),1), c5.ˆ2, c5.ˆ3]";
size_lib5 = 5;

%%%%%%%%%%%%%%%%%%%%%

lambda_sweep = 0.07;
size_sweep = size(lambda_sweep, 3);

for i = 1:size_sweep
index_c3 = 1:size_lib3;
index_c4 = 1:size_lib4;
index_c5 = 1:size_lib5;

lib_c3 = eval(Library3);
lib_c4 = eval(Library4);
lib_c5 = eval(Library5);

prune = 1;
while prune==1

Zeta_c3 = inv(lib_c3'*lib_c3)

*lib_c3'*(c3.*dotc3);
Zeta_c4 = inv(lib_c4'*lib_c4)

*lib_c4'*(c4.*dotc4);
Zeta_c5 = inv(lib_c5'*lib_c5)

*lib_c5'*(c5.*dotc5);

Max_Zeta_c3 = max(abs(Zeta_c3
(1:end)));

Max_Zeta_c4 = max(abs(Zeta_c4
(1:end)));

Max_Zeta_c5 = max(abs(Zeta_c5
(1:end)));

prune_c3 = find(abs(Zeta_c3
(1:end))<lambda_sweep(i)*
Max_Zeta_c3);

prune_c4 = find(abs(Zeta_c4
(1:end))<lambda_sweep(i)*
Max_Zeta_c4);

prune_c5 = find(abs(Zeta_c5
(1:end))<lambda_sweep(i)*
Max_Zeta_c5);

index_c3(prune_c3) = [];
index_c4(prune_c4) = [];
index_c5(prune_c5) = [];

lib_c3(:,prune_c3) = [];



lib_c4(:,prune_c4) = [];
lib_c5(:,prune_c5) = [];

if (isempty(prune_c3)==1)&& (
isempty(prune_c4) == 1)&&
(isempty(prune_c5)==1)
prune = 0;

end
end

end

% SIM 2
Equation3 = c3*dotc3-(1.3823*c3

+4.0440*dotc3-2.8125);
Dot_c3 = solve(Equation3, dotc3);
Equation4 = c4*dotc4-(3.1386*c4

-6.8244*c4.ˆ2-3.6376*c4.ˆ3);
Dot_c4 = solve(Equation4, dotc4);
Equation5 = c5*dotc5-(1.1886*c5

+3.4773*dotc5-0.4768+0.9328*c5.ˆ2)
;

Dot_c5 = solve(Equation5, dotc5);
dyn = [collect(Dot_c3); collect(

Dot_c4); collect(Dot_c5)];

%% System that needs to be solved by
ode

% 2C + 02 -> 2CO
% 2Fe2O3 + 3C -> 4Fe + 3CO2
% C + 02 -> CO2
% [CO; CO2; O2; Fe; C; Fe2O3]

dynamics_c2 = dyn(3)+(-2*dyn(1))+1.5*
dyn(2); % Concentration CO2

dynamics_c1 = -dyn(3)-dynamics_c2;
% Concentration CO

dynamics_c6 = -1/4*dyn(2);
%

Concentration Fe2O3
dynamics = [dynamics_c1; dynamics_c2;

dyn(1); dyn(2); dyn(3);
dynamics_c6];

% Put ODE into Identified.m
% Run ODE
[that, C] = ode45(@Identified2, tspan

, State0);

for i=1:size_X
Error_over_time_c1(i,1) = abs((X(

i,1)-C(i,1))/X(i,1)) *100;
Error_over_time_c2(i,1) = abs((X(

i,2)-C(i,2))/X(i,2)) *100;
Error_over_time_c3(i,1) = abs((X(

i,3)-C(i,3))/X(i,3)) *100;
Error_over_time_c4(i,1) = abs((X(

i,4)-C(i,4))/X(i,4)) *100;

Error_over_time_c5(i,1) = abs((X(
i,5)-C(i,5))/X(i,5)) *100;

Error_over_time_c6(i,1) = abs((X(
i,6)-C(i,6))/X(i,6)) *100;

end

Time_Plot = [0:0.1:5];
% Plot Concentrations
figure(1)
plot(t,X(:,1),'black')
hold on
plot(t,X(:,2),'red')
plot(t,X(:,3),'blue')
plot(t,X(:,4),'yellow')
plot(t,X(:,5),'magenta')
plot(t,X(:,6),'green')
plot(that,C(:,1),'blacko')
plot(that,C(:,2),'redo')
plot(that,C(:,3),'blueo')
plot(that,C(:,4),'yellowo')
plot(that,C(:,5),'magentao')
plot(that,C(:,6),'greeno')
hold off
title('Concentration evolution')
legend({'C1','C2','C3','C4','C5','C6'

,'Chat1','Chat2','Chat3','Chat4','
Chat5','Chat6' },'location','
northeast')

xlabel('Time (s)')
ylabel('Concentration (M)')

plot(t,X(:,1),'black')
hold on
plot(t,C(:,1),'red')
hold off
legend({'C1','Chat1'},'location','

southeast')
xlabel('Time (s)')
ylabel('Concentration(M)')

CRN function

function dX = SRV_CRN(t,X)

% Dynamics
% Flux reactor
phi = 0.1;

% Volume
V = 19.0405;

% Inflow
u1 = 3;
u2 = 3;
u3 = 0.1;

% Outflow
COout = 0.5;



CO2out = 0.4;
O2out = 0;
Feout = 2;
% Constants
k1 = 0.0083;
k2 = 0.1;
k3 = 0.225;

% ODE
dX(1) = 2*(k1*X(3)*X(5).ˆ2)-phi*COout

/V;
dX(2) = 3*(k2*X(5).ˆ3*X(6).ˆ2)+(k3*X

(3)*X(5))-(phi*CO2out/V);
dX(3) = -k1*X(3)*X(5).ˆ2-k3*X(3)*X(5)

-(phi*O2out/V)+u1/V;
dX(4) = 4*k2*X(5).ˆ3*X(6).ˆ2-phi*

Feout/V;
dX(5) = -2*k1*X(3)*X(5).ˆ2-3*k2*X(5)

.ˆ3*X(6).ˆ2-k3*X(3)*X(5)+u2/V;
dX(6) = -k2*X(5).ˆ3*X(6).ˆ2+u3/V;
dX = dX';

Identified function

function dC = Identified(t,C)

dC(1) = (177801*C(4))/20000 - (2*(-
4366*C(3)ˆ2 + 2880*C(3)))/(10000*C
(3) - 32381) - (2*(8202*C(5)ˆ2 +
4655*C(5)))/(10000*C(5) - 32094) -
(42111*C(4)ˆ2)/10000 -
18429/4000;

dC(2) = (42111*C(4)ˆ2)/10000 -
(177801*C(4))/20000 + (8202*C(5)ˆ2
+ 4655*C(5))/(10000*C(5) - 32094)
+ (5760*C(3) - 8732*C(3)ˆ2)
/(10000*C(3) - 32381) +
18429/4000;

dC(3) = (4366*C(3)ˆ2 - 2880*C(3))
/(10000*C(3) - 32381);

dC(4) = (14037*C(4)ˆ2)/5000 - (59267*
C(4))/10000 + 6143/2000;

dC(5) = (8202*C(5)ˆ2 + 4655*C(5))
/(10000*C(5) - 32094);

dC(6) = (59267*C(4))/40000 - (14037*C
(4)ˆ2)/20000 - 6143/8000;

dC = dC';


