
Function generation from a
Sum of Oscillator Signals

an Evaluation of Algorithms

Rafael Tappe Maestro
s3258734

Master Thesis
Artificial Intelligence

Supervisors
Prof. Dr. Lambert Schomaker
Promovendus MSc D. Cipollini

University of Groningen
Netherlands

August 9, 2023

Abstract

Energy demand in data-intensive applications is an ever-growing
concern. Training a recent large language model consumes energy
in the order of hundreds of US households per year. Remarkably,
the human brain is orders of magnitude more energy efficient than
modern day digital computers. Taking inspiration from the brain,
the neuromorphic paradigm aims to build more efficient computing
systems using analog devices.

In this work, an ensemble of oscillators is designed and simulated
with the goal of arbitrary time-series approximation. Each oscillator-
neuron is formed by a vanadium dioxide memristor in series with a
resistor-capacitor (RC) circuit. Three approaches to simulate an en-
semble are developed using the SPICE circuit simulator. Because
the propagation of gradient information through electric circuits is a
hard problem, multiple gradient-free optimization algorithms are ex-
plored which perturb oscillators’ frequency, gain, phase and offset. We
fit a range of real-world and synthetic target functions with varying
frequency bands and durations. Root Mean Squared Error (RMSE)
between a target and ensemble signal is used to evaluate fit. As a
benchmark algorithm we rely on linear regression which produces an
analytical solution for the choice of circuit parameters.

We show that a vanadium-dioxide oscillator ensemble is suitable
for function generation when the target’s frequency band lies within
the frequency band of the oscillator-neurons. The approximation of
chirp signals is difficult, none of the real-world targets can be fit. The
system benefits from broad phase and frequency diversity. In contrast,
a wide dynamic range leads to exponential loss growth for most al-
gorithms. Surprisingly, an increase in the number of oscillators tends
to increase loss. Of the gradient-free algorithms, a Las Vegas and a
random walk algorithm perform best; they outperform advanced algo-
rithms such as Simulated Annealing, Basin Hopping and Differential
Evolution. We achieve a RMSE of 0.02 with the Las Vegas algorithm,
fitting a sine target function of amplitude 1; this is our best result.
Linear regression finds a RMSE that is 13 orders of magnitude smaller.

We identify plateaus and steep steps in oscillators’ frequency band
as one of two hinderances to better fit. The strongest argument for this
are the diminishing returns in adding oscillators to an ensemble while
solving analytically. Therefore, vanadium-dioxide oscillators alone
seem insufficient for realizing an arbitrary function approximator in
the frequency domain. Second, we find that gradient-free algorithms
would benefit from negative oscillator gains, as this is where the dis-
tribution of circuit parameters between gradient-free algorithms and
linear regression primarily differs.

1

Contents
1 Introduction 5

1.1 Problem description and goals 5
1.2 Proposed solution . 7
1.3 Research questions and contribution 10
1.4 Outline . 11

2 Related work 13
2.1 Introduction to neuromorphic computing 13
2.2 Approaches in neuromorphic computing 16

2.2.1 Gradient based optimization in-materio 16
2.2.2 Reservoir computing 17

2.3 Optimization . 19
2.3.1 Monte Carlo algorithms 19
2.3.2 Naive random search 21
2.3.3 Random Walk . 22
2.3.4 Las Vegas algorithms 23

3 Methods 25
3.1 Signal generation . 25

3.1.1 SPICE generator . 26
3.1.2 SPICE: VO2 oscillator 26
3.1.3 SPICE: Oscillator Ensemble 31
3.1.4 Python generator: VO2 oscillator 32
3.1.5 Python generator: Oscillator ensemble 35
3.1.6 Hybrid generator . 36
3.1.7 Hybrid: VO2 oscillator 37
3.1.8 Hybrid: Oscillator ensemble 38

3.2 Signal optimization towards a target 39
3.2.1 Las Vegas implementation 40

3.3 Target signals and preprocessing 42
3.4 Algorithm shorthand . 43

4 Experimental Setup 46

5 Results 49
5.1 Summary . 49
5.2 Oscillator properties . 50

5.2.1 Resistance diversity 50
5.2.2 Phase diversity . 51

2

5.2.3 Dynamic range . 53
5.3 Ensemble properties . 54

5.3.1 Number of oscillators 54
5.3.2 Number of perturbations 55

5.4 Targets . 58
5.4.1 Target frequency . 58

5.5 Target duration . 59

6 Discussion 60
6.1 Results discussion . 60

6.1.1 Resistance diversity 60
6.1.2 Phase diversity . 62
6.1.3 Dynamic range . 63
6.1.4 Number of oscillators 63
6.1.5 Number of perturbations 63
6.1.6 Target frequency . 64
6.1.7 Target duration . 64

6.2 Conclusion . 64
6.3 Limitations and Future Work 65

7 Acknowledgements 74

8 Abbreviations 75

9 Appendix A 76
9.1 Additional Algorithms . 76

9.1.1 Simulated Annealing 76
9.1.2 Differential Evolution 77

9.2 Relation to Fourier Methods 79
9.3 Supplement to the Methods 80

9.3.1 Elaboration on the VO2-circuit and oscillation function 80
9.3.2 Derivation of VO2 offset 83

9.4 Limitations of SPICE simulation 83
9.5 Reproducibility . 84
9.6 Classification . 85

10 Appendix B: Additional Results 86
10.1 Phase diversity . 86
10.2 Offset diversity . 86
10.3 Target function . 88
10.4 Algorithms . 89

3

10.4.1 Number of perturbed oscillators 91
10.4.2 Annealing algorithms 92
10.4.3 Perturbed oscillator property 92
10.4.4 Acceptance criterion 92
10.4.5 Discussion on Algorithms 93

11 Appendix C 94

4

1 Introduction

1.1 Problem description and goals
Artificial intelligence (AI) begins in the middle of the 20th century and is
kickstarted at a 1956 conference hosted by John McCarthy (Rockwell, 2017).
At the time, computing was expensive beyond comparison to todays stan-
dards. And yet again we face high costs in computing. We are at a different
point than we were 70 years ago. The imitation game, better known as Tur-
ing test, has podium contestants; in particular transformer models (Vaswani
et al., 2017) such as BERT (Devlin et al., 2019) and GPT-3 (Brown et al.,
2020). More recently, DALL·E 2 showcases the ability to transform text
descriptions into images; MusicLM does the same for music (Agostinelli et
al., 2023) and Dreamix introduces diffusion models as general purpose video
editors (Molad et al., 2023). ChatGPT is an example of these technologies
becoming readily available to developers and non-experts alike (Leiter et al.,
2023). We are at a point where AI is not only a research topic anymore, but
a common tool spawning a new suite of applications. As the adoption of AI
grows, problems of scale and efficiency are amplified.

The hallmark deep learning (DL) models incur a high cost in wall-clock
training time and energy spent. BERTbase, a 12 attention head and 110
million parameter model, is estimated to produce energy costs around 1.5
MWh (Strubell et al., 2019) training on 64 NVIDIA V100 graphics process-
ing units (GPUs). In comparison the 2021 per capita energy consumption
in the United States was around 77 MWh per annum1. Figure 1 shows that
year over year, the size of language models grows exponentially. While BERT
was born in 2018, GPT-3 boasts 3 orders of magnitude more parameters 2
years later, with energy costs scaling along. The given estimates don’t in-
clude training costs for development, hyperparameter optimization or neural
architecture search; considering these, multiple orders of magnitude must be
added to the cost estimation. The achievements of said works are beyond
fascinating. Yet, they also reveal limitations of the current Turing and von
Neumann computing paradigm for AI applications. Efficient deep learning
is an increasingly pressing topic not only because of increasing AI adoption
but also amidst an energy crisis and globally surging awareness around sus-
tainability.

Neuromorphic computing promises the energy efficiency that is found
in biological systems. The arguments are strong; albeit silicon chip tech-
nology has made smartphones more capable than super computers of past

1“Energy Use per Person”, n.d.

5

Figure 1: Size of large language models.

days, the energy efficiency at which the human brain operates while exert-
ing general intelligence remains unparalleled by multiple orders of magnitude
(Mead, 1990). Classical, digital computing and the Turing and von Neumann
paradigms are unlikely to go anywhere. Yet for the purpose of some tasks,
typically tackled by AI systems, the existence of a more energy efficient so-
lution is known to be possible in the form of biological brains. The question
arises, how to exploit biological principles of computation for our purposes.
Devising such systems is difficult because the problem is inherently interdis-
ciplinary and takes place on the level of algorithms and hardware. On the
algorithmic level, examples are reservoir computing, spiking neural networks
and local learning rules such as spike timing dependent plasticity (STDP). On
the hardware level Intel’s Loihi (Davies et al., 2018) and IBM’s True North
(Akopyan et al., 2015) demonstrate already existing neuromorphic chips.

Current AI systems successfully tackle a broad range of discrimination
and generation tasks across multiple modalities, for example those mentioned
in the first paragraph. In this work we focus on the problem of function ap-
proximation of one-dimensional signals. Signal approximation is the process
of generating a signal that closely resembles a target signal. In audio and
speech processing, signal approximation is used to compress audio signals to
make their transmission and storage more efficient thus enabling technolo-
gies such as high quality music streaming and voice calls. Compression is
achieved by approximating an original (target) signal with less coefficients,
while still preserving important features of the original signal. Traditional

6

approaches to signal approximation rely on digital signal processing (DSP)
methods; the established digital methods such as the Fast Fourier Transform
(FFT) are already efficient for discrete one-dimensional signals. However,
the time-complexity of classic methods such as the Fourier transform is ex-
ponential in the number of dimensions (Cooley & Tukey, 1965), or more
precisely the tensor rank of the signal. This means that they are not well
suited for the decomposition (and approximation) of high-dimensional sig-
nals. Furthermore, FFT algorithms assume discrete signals. Discrete signal
representations may be prohibitively expensive in terms of memory and com-
putation not only when dealing with high-dimensional signals but also when
dealing with high frequencies signals requiring fast sampling rates.

The aim for this work is to explore the potential of a neuromorphic device
based on vanadium dioxide (VO2) for the task of signal approximation. We
focus on the approximation of one-dimensional audio signals in order to test
the feasibility of the proposed system. Demonstrating higher computational
efficiency and lower energy consumption are out of the scope of this work,
but form an overarching goal behind neuromorphic computing and this work,
too.

1.2 Proposed solution
Figure 2 shows a schematic of the proposed system. The system consists of
a set of N uncoupled oscillators. Each oscillator has a constant frequency,
amplitude, offset and phase. Together the oscillators form an ensemble. The
signals generated by the oscillators in the ensemble are summed to form a
composite signal. A target signal is given as input to the system. The sys-
tem is trained to produce a composite signal that is as close as possible to
the target signal. The distance between the target and composite signal is
measured by a loss function, here the Root Mean Square Error (RMSE). The
system is trained by applying perturbations to the oscillators in the ensem-
ble. A perturbation causes a change in an oscillator signal’s parameters; its
frequency, amplitude, offset and phase. A perturbation is then accepted or
rejected based on the change in the loss function. The system is trained by
applying perturbations until the loss function is minimized or a maximum
number of perturbations is reached. The details of the training procedure
vary depending on the algorithm used to train the system.

Vanadium dioxide (VO2) is an anorganic compound whose phase transi-
tion properties make it interesting for neuromorphic applications. The ma-
terial is used to produce a VO2 memristor, a device that takes metal and
insulator phases; the phase can be controlled by an externally applied volt-
age. In a resistor-capacitor (RC) circuit (see Figure 7), the VO2 memristor

7

Figure 2: Oscillator ensemble.

produces high frequency oscillations of 0.1 to 1 GHz (Maffezzoni et al., 2015).
The focus of this work is not on the VO2 material itself; instead we will be
working with an equivalent circuit modeled after the material’s electric prop-
erties. The circuit is simulated in SPICE, a circuit simulator software. A
central goal is to approximate signals that show both frequency and ampli-
tude modulation from the ensemble of VO2 oscillators.

In order to simplify the simulation effort, meta-programming is used to
control the circuit elements. SPICE works by interpreting a netlist file, a text
file that describes a circuit’s elements and their properties. A general pur-
pose programming language, here Python, is used to generate such netlists.
As oscillators are uncoupled, electric interactions between them are assumed
to be negligible, so that time-series generated in SPICE are further processed
with Python. Once a perturbation to the circuit parameters has been com-
puted, it’s applied to the circuit by modifying the netlist file. The algorithms
that control the perturbations are also implemented in Python and miss a
circuit level implementation.

The perturbations of the oscillator ensemble and the resulting accep-
tance or rejection of changes are controlled by an optimization algorithm.
Multiple optimization algorithms are explored to approximate target sig-
nals. The propagation of gradient information in electric circuits is difficult
because the exact state of the system is not known at all times. There-
fore backpropagation of a loss function requires a work-around; when this
work-around relies on digital computing, the system is inefficient (Boon et
al., 2021). For this reason stochastic optimization algorithms are explored,
namely multiple Monte Carlo algorithms and a Las Vegas algorithm (Babai,
1979). Among the Monte Carlo algorithms are Simulated Annealing (Kirk-

8

patrick et al., 1983), Basin Hopping (Wales & Doye, 1997) and the Random
Walk algorithm (Pearson, 1905). Furthermore a population based algorithm,
Differential Evolution (Storn & Price, 1997), is explored. The algorithms are
compared to an analytical solution which is computed with linear regres-
sion by the Ordinary Least Squares (OLS) method (Levenberg, 1944) as a
benchmark.

The above algorithms have been selected with the following reasons in
mind. First, they are simple. While the algorithms don’t need to be simple
for the digital domain, when thinking about analog circuitry, simple algo-
rithms correspond to simple circuits. Among the chosen algorithms the Ran-
dom Walk algorithm is one of the simplest with little memory requirements,
in contrast to the population based Differential Evolution algorithm which
maintains a population of candidate solutions. Simpler algorithms yield more
freedom in designing a physical system as less control circuitry is necessary.
Second, although the system is simple conceptually and observable, the in-
dividual role of each oscillator is not known throughout the training process.
This means solving a black box optimization problem where only the com-
posite signal is observed. Stochastic optimization algorithms are well suited
for black box optimization problems as they make no assumptions about
the system. Third, stochastic optimization algorithms are well suited to set
a benchmark in optimization (Bergstra & Bengio, 2012) before advanced
methods are attempted. A benchmark should be established as the VO2

based oscillator ensemble is a new system. Lastly, random search and evo-
lutionary algorithms have been successfully used to optimize neuromorphic
systems (Schuman et al., 2022).

A range of synthetic and real world target signals are used to evaluate
the performance of the system and algorithms. Synthetic signals are simple
to work with because they are easy to generate and can be controlled freely.
The selected synthetic signals range from simple periodic signals to more
complex signals with frequency and amplitude modulation. Simple periodic
target signals are sinusoids, square, triangle and sawtooth waves. More diffi-
cult is the approximation of a chirp signal, which is a sinusoid with a linearly
increasing frequency. The difficulty arises because the frequency of the en-
semble’s oscillators is constant and the number of oscillators is finite while
the frequency of the target changes continuously. More difficult, still, is the
damped chirp signal, which is a chirp signal with a linearly decreasing am-
plitude. Real world signals have been selected to test the system’s ability at
speech and audio synthesis. For this purpose, a short human speech sample
and the call of a magpie (Pica pica) have been selected. These signals are also
difficult to approximate because they exert frequency and amplitude modu-
lation. Furthermore, they are non-stationary, meaning that their underlying

9

statistical properties vary with time.

1.3 Research questions and contribution
The research questions following this approach target four levels of the devel-
oped signal approximation system. First, on the level of a single oscillator,
what range of

1. frequency diversity,

2. phase diversity,

3. gain diversity,

4. offset diversity

minimizes the RMSE in target approximation? The diversity of an attribute
refers to the range of values that attribute can take. We expect that an
increase in an attribute’s diversity will lead to a decrease in RMSE. Second,
on the level of the oscillator ensemble, what is the relationship between

1. the number of oscillators,

2. the number of perturbations

on the RMSE in target approximation? We hypothesize that an increase in
the number of oscillators and perturbations will lead to a decrease in RMSE.
Third, on the level of targets, what is the relationship between

1. the target function,

2. the target duration,

3. the target’s frequency content

on the RMSE in target approximation? We expect that more difficult target
functions yield a larger RMSE. This means aperiodic target signals, sharp
edges, frequency and amplitude modulation. Furthermore, we hypothesize
that the duration of periodic target signals doesn’t impact the RMSE. We
also hypothesize that target signals which are slower than the oscillating
frequency of VO2 are more difficult to approximate. Fourth, we aim to
evaluate the choice of optimization algorithm by minimal RMSE. More finely,
we can distinguish algorithms by some of their properties and ask: What is
the relationship between

10

1. the number of simultaneous perturbations,

2. the perturbed property of the oscillators, meaning frequency, phase,
gain or offset or combinations thereof,

3. the candidate acceptance criterion, meaning by what criteria a change
to the ensemble after perturbation is accepted or rejected

on the RMSE in target approximation? Note that some of these questions
are responded to in the Appendix 10 for brevity of the main text.

Guided by the presented questions this work aims to contribute to the
field of artificial intelligence. Currently, digital compute approaches tackling
a range of AI problems face physical constraints, affecting both runtime and
energy efficiency. One of these problems is the approximation of signals,
in particular when signals are fast or high-dimensional. It’s unclear how
the existing obstacles can be overcome within the digital paradigm. This
work relies on the field of neuromorphic computing, which exploits aspects
of biological brains, to overcome said obstacles. Currently, neuromorphic
computing is in a phase of exploration. VO2 is under active investigation as
a neuromorphic material, encouraging further research. Uncoupled ensembles
of VO2 oscillators for the purpose of signal approximation have not yet been
demonstrated. The goal of this work is to test their capabilities. While
the approach is tested in simulation, the results could inform the design of
physical prototypes.

1.4 Outline
Subsequent sections of this work are structured as follows. Section 2 will
present related work beginning with Section 2.1 to give a historic account of
neuromorphic computing and a discussion of terminology. Following is Sec-
tion 2.2, to give an idea of current neuromorphic approaches. For this purpose
I cover gradient based approaches in Section 2.2.1. This is followed by Sec-
tion 2.2.2 which covers reservoir computing. Next, we move on to Section
2.3, with an algorithmic view on search and optimization in a neuromorphic
context. Herein, multiple stochastic optimization algorithms are covered.
The related works are followed by a description of methods in Section 3.
Here we begin with Section 3.1 which covers the generation of signals. Three
approaches have been explored. First is a SPICE only approach, described
in Section 3.1.1; this approach was abandoned due to numerical instability.
Second is a Python only approach, which is described in Section 3.1.4; this
approach allows for free control of oscillator signals but is a less realistic ac-
count of the VO2 oscillators. Section 3.1.6 describes a hybrid approach that

11

combines the advantages of the two previous approaches. For each approach,
signal generation is described on the level of a single oscillator and on the
level of the ensemble. It follows a detailed description of one optimization
algorithm in Section 3.2, adapted for the proposed system and an overview
of all tested algorithms in Section 3.4. Lastly, Section 3.3 covers the target
signals. Section 4 aggregates the parameters to the conducted experiments.
Next, Section 5 lays out the results. A discussion of said results follows in
Section 6. We conclude this work presenting limitations and suggestions for
future investigation. The Appendix is divided into three sections. First,
Section 9 holds material related to the methods and related work sections.
Second, Section 10 includes additional figures and results as well as discus-
sions thereof. Third, Section 11 contains source code and addresses a possible
erratum.

12

2 Related work

2.1 Introduction to neuromorphic computing
This section makes an attempt at a definition of neuromorphic computing
(NC), touching on history and modern day approaches. A precise definition
of the term neuromorphic computing is difficult to come by (Muller et al.,
2020), so we begin with an exploration of adjacent terminology to gain clarity.

Opposite to digital computing there is analog computing. One of the ear-
liest accounts of an analog computer is the Antikythera mechanism (Freeth
et al., 2006). Dated to the second century BC it was capable of predicting the
position of earth, moon and sun using 37 bronze gears. Analog computing
implies analogy between a modelled system and its model; analog comput-
ing also carries the notion of continuos representation and infinite precision
(within the boundaries of physics). Digital computing in contrast relies on
symbols2, such as bits and bytes, instead of analogy; the available number of
bits limit the precision of todays digital computers.

Unconventional computing, is a more recent term that intersects with
analog computing. It captures any approaches to computing that fall out-
side of the modern day computer architecture devised by John von Neumann.
This includes digital ternary computers, as well as computation based on
spintronics, optics, DNA, fungi, fluids and chemical reactions, to name a few
(Nakajima & Fischer, 2021). Not so unconventional anymore, quantum com-
puting has been argued to have developed into a sufficiently mature field of
its own (Jaeger, 2021). Gordon Pask, an English 20th century scientist, gave
his unconventional computers the name maverick machines. He, for example,
evolved an electrochemical ear of iron threads in a dish of ferrous sulphate
solution and platinum electrodes. Using positive reinforcement, with rewards
in the form of increased current, the system was capable of learning to dis-
criminate between two frequencies (Bird & Paolo, 2008). Maverick machine
is not the only alternative term given to unconventional computing. Emer-
gent, in-materio, natural, physical and alternative computing have also been
probed (Jaeger, 2021). Pask was involved with the cybernetics movement.
Popular figures of cybernetics such as Stafford Beer worked alongside him
building the electrochemical ear. Describing the prototype of a cyberneticist
Pask wrote:

”... we are concerned with brain-like artifacts, with evolution
growth and development; with the process of thinking and getting
to know about the world. Wearing the hat of applied science, we

2Veritasium, 2021.

13

aim to create ... the instruments of a new industrial revolution
- control mechanisms that lay their own plans”. (Bird & Paolo,
2008)

Brain-like, a paraphrase also used by Jaeger (2021), is an apt description
of neuromorphic that places it in its niche of computing. Neuromorphic
captures hardware and algorithms and therefore also takes place on digital
computers, for example in the form of artificial neural networks (ANN). NC
distinguishes itself from the broad fields of AI and machine learning (ML),
because AI and ML algorithms are not necessarily developed with brain-
likeness in mind; consider the support vector machine (SVM) (Cortes &
Vapnik, 1995) and k-nearest-neighbors (kNN) (Altman, 1992) algorithms.

Today’s research goals for neuromorphic computing are bigger than brain-
like algorithms. Through the development of hardware and algorithms along-
side each other the aim is a leap over the glooming limitations of digital com-
puting. Energy efficiency is not the only promise of neuromorphic computing
but also parallelism and adaptability (Jaeger, 2021). Digital computers are
serial systems first, before being parallel, and so was most interaction with
them, feed input - wait (sometimes long) - receive output - repeat, until the ap-
pearance of personal computers, graphical user interfaces and smartphones.
In contrast the brain operates in a parallel fashion, integrating the experience
of multiple sensory organs at all times while exercising control over multi-
ple muscles. The brain is also adaptable; the case of Phineas Gage, who’s
skull was fully penetrated by a metal rod in a work accident, demonstrates
that the brain continues to function and sustain life even after severe injury
(Reisberg, 2022). Pask’s electrochemical ear shows adaptability in a similar
fashion; conducting metal threads grow around obstacles and regrow after
taking damage. Figure 3 shows one of Pask’s original sketches of a similar
device. A network of metal threads manifests on the layer labelled as signal
network.

Research in neuromorphic computing also takes place outside of academia,
for example at Intel and IBM. Intel Loihi (Davies et al., 2018) is a neuro-
morphic chip that relies on spiking neural networks (Tavanaei et al., 2019)
to perform machine learning tasks with the advantages of asynchronous and
event-based processing while consuming less energy than a digital computers
for equivalent tasks. Version 1 of the chip, presented in 2018, has already
been succeeded by Loihi 2 in 2022 (Frady et al., 2022). IBM Zurich focuses
on three areas within neuromorphic computing, from lower to higher levels
of abstraction. First, is the exploration of new materials with possibly inter-
esting properties for neuromorphic computing, for example barium titanate
(Kormondy et al., 2017) or vanadium dioxide, explored in this work. Sec-

14

Figure 3: One of Pask’s electrochemical learning machines. Figure taken
from Pask (1960).

ond, are device level approaches where a material’s properties are exploited
to realize small scale computation; an example is demonstrating memory us-
ing barium titanate (Abel et al., 2017). Third, neuromorphic architectures
integrating the device level are explored, this includes the development of
learning algorithms. An example is a reservoir computing system based on
barium titanate (Stark et al., 2020).

Neuromorphic computing also seems to build commercial momentum.
BrainChip, founded in 2011, has a market capitalization of AU$ 1.5 billion3

as of September 2022. The company claims that their Akida chip is the first
commercial neuromorphic processor4. In 2022, Mercedes Benz partnered
with BrainChip for the production of the Mercedes-Benz Vision EQXX con-
cept car, where BrainChip technology handles speech recognition. Mercedes
claims that the wake word ”Hey Mercedes” can be evoked 5 to 10 times more
efficiently compared to digital hardware5. PROPHESEE, another neuromor-
phic tech startup founded in 2014 specializes in computer vision. In collabo-

3“Brainchip Stock”, 2022.
4Brainchip, 2022.
5Moll et al., 2022.

15

ration with Sony, the company developed event-based vision sensors6. Digital
cameras typically use frame-based sensors; event-based sensors promise re-
duced energy consumption alongside higher temporal resolution and dynamic
range. The commercial endeavours around neuromorphic computing benefit
in ways as promised by neuromorphic research.

2.2 Approaches in neuromorphic computing
In this section I will discuss why gradient based learning algorithms are
difficult in a neuromorphic context. Additionally I will present a non-gradient
based machine learning method that is popular in neuromorphic computing,
namely reservoir computing (RC). The approach to signal generation that I
am taking in this work falls in neither category as it is more simple. Yet, a
peek into RC, at this point, gives an idea of what kinds of algorithms are
promising in neuromorphic research and why.

2.2.1 Gradient based optimization in-materio

Deep learning is built on the back of gradient descent and backpropagation
algorithms. Gradient descent algorithms describe how to interpret gradients,
thus, how a neural network can learn using gradient information, while the
backpropagation algorithm is an efficient method for the computation of
gradients (Goodfellow et al., 2016). A canonical example of gradient descent
algorithms is stochastic gradient descent (SGD). Equation 1 describes the
gradient estimation rule while Equation 2 describes the weight update rule;
both equations are taken from Goodfellow et al. (2016).

ĝ ← 1

m
∇θ

∑
i

L(f(x(i); θ), y(i)) (1)

θ ← θ − εkĝ (2)

Where in Equation 1, ε is the learning rate with dimension 1, ∇θ is gradi-
ent with respect to θ, m is the number of samples in a minibatch of samples,
L is the loss function, f is the result of the forward pass or prediction, x is
a sample or data point, y is the target label or ground truth, i is the index
of a sample to label pair, ĝ is the average gradient estimate over m samples;

6“Sony to Release Two Types of Stacked Event-Based Vision Sensors with the Indus-
try’s Smallest 4.86 Micrometer Pixel Size for Detecting Subject Changes Only Delivering
High-Speed, High-Precision Data Acquisition to Improve Industrial Equipment Produc-
tivity”, 2021.

16

it has the same dimension as x and y. And where in Equation 2, θ refers to
weights between nodes, k is the index of an epoch.

Stochastic gradient descent and more generally, gradient based algorithms
are not feasible to implement in a neuromorphic system. To illustrate, con-
sider an electric circuit implementing a simple fully connected neural network
with a system of resistors and amplifiers as weights. In Equation 1, the term
f(x(i)) refers to the state of our circuit; this means weights and activations
of artificial neurons in the circuit. In order to calculate the derivative of the
loss, exact information about the state of the system is necessary. Obtaining
exact knowledge of the state of physical systems is a difficult problem (Boon
et al., 2021). In our case we may ask, to what level of accuracy can we de-
termine the voltage and current of each circuit element, the exact resistance
of a resistor and the gain added by an operational amplifier? Boon et al.
(2021) discuss multiple methods of measuring or calculating gradients.

Alspector et al. (1992) perturbate weights in a physical system in order to
measure changes in the system’s loss. A problem with this approach is that
each backward pass requires multiple measurements of the system (Boon
et al., 2021); the number of measurements scale at best linearly with the
number of parameters in the model; as such, this method has undesirable
time complexity.

Another approach for training a physical system using gradient descent is
presented by Ruiz Euler et al. (2020). Direct training on the physical system
is avoided by using a surrogate model. The surrogate is an artificial neural
network on a digital computer trained on the input-output behavior of the
physical system. The surrogate model is then further trained on a task that
the physical system should solve. This process produces parameters in the
model which can be transferred onto the physical system. Problematic with
this approach is that the training suffers from the DL efficiency constraints
that have already been laid out in Section 1.

More recently, Boon et al. (2021) present another approach for in-materio
backpropagation and demonstrate successful learning of boolean functions.
Their method relies on perturbations of the input signal that are recon-
structed from the output. It remains to show whether the reconstruction
of input signals scales to complicated real world signals, beyond boolean
functions.

2.2.2 Reservoir computing

Reservoir computing (RC) systems (Lukoševičius & Jaeger, 2009; Lukoše-
vičius et al., 2012) belong to the class of recurrent neural networks (RNN).
Currently, RNNs are often associated with training by gradient descent; for

17

an example, consider the use of Long-Short Term Memory (LSTM) based
language models (Hochreiter & Schmidhuber, 1997). A RC-system can be
trained without gradient information. Furthermore, the reservoir component
of such systems is typically a (somewhat) random network of neurons. RC
systems have been successfully applied to a wide range of tasks such as speech
and image recognition as well as time-series prediction. Both of these proper-
ties, (1) no need for gradient information and (2) network randomness, make
RC systems attractive for the development of neuromorphic devices.

The details of RC are not necessary to understand the rest of this work.
However a brief overview of RC is given here to give the reader a sense of
the kinds of algorithms that are popular in neuromorphic computing. Figure
4 shows the basics of a RC system. On a high level, the reservoir consists
of an input layer, a reservoir layer and an output layer. The input layer
presents an input to the system. Typically, each input node of the reservoir
is connected to one or more neurons of the reservoir. The weights of these
connections are randomly initialized and are not optimized (trained). Inside
the reservoir, connections between neurons are randomly initialized; these
connections also typically remain constant during training. The details of
neuron connectedness and random initialization are interesting and complex
(Loeffler et al., 2020), but are not important for understanding the concept
of RC. Similarly to the input layer, all neurons of the output layer are con-
nected to some neurons of the reservoir. The connections between the output
layer and the reservoir are also randomly initialized. During training, these
connections are optimized in order to reduce some loss function. Typically,
linear regression is used for this purpose, but other optimization methods are
feasible.

While the RC approach is simple on a high level, the details are plenty. In
particular when it comes to the development of in-materio systems, the RC
landscape becomes difficult to oversee. This is because expert domain knowl-
edge becomes necessary in multiple fields. While RC can be explained purely
mathematically and is applicable on digital computers, physical RC systems
will require knowledge of complex domains such as circuit design, optics and
spintronics to name a few. As hinted on, the connectedness of RC systems
is also an area of research in itself and can be studied from a graph theo-
retical perspective (Loeffler et al., 2020). For example, small-worldness has
been shown to be a common property in biological neural networks (Watts
& Strogatz, 1998). Furthermore, a broad class of RC systems, in particu-
lar Echo State Networks (ESN) typically assume a leaky integrator and fire
(LIF) neuron model, however a variety of neuron models are possible.

Nakajima and Fischer (2021) have surveyed a broad range of neuromor-
phic RC systems. In their book, they present Figure 5 which illustrates the

18

Figure 4: A simplified reservoir computing system.

interdisciplinary nature of reservoir computing. Their diagram can be gen-
eralized to the broader field of neuromorphic computing. It illustrates that
the development of a neuromorphic compute system draws on methods of
machine learning, materials science and mathematics of nonlinear dynamical
systems, among others.

2.3 Optimization
The presented approach in this work relies on classic machine learning meth-
ods for optimization. This section explores optimization algorithms and adds
a neuromorphic context. When hardware considerations are appropriate,
they focus on electric circuits.

2.3.1 Monte Carlo algorithms

The most naive and trivial approach to solve an optimization problem is ran-
dom search (Bergstra & Bengio, 2012). Albeit conceptually simple, as laid
out in Section 1.2, random search is powerful. Random search algorithms are
commonly divided into two classes, Monte Carlo and Las Vegas algorithms
(Goodfellow et al., 2016). Monte Carlo algorithms use resources deterministi-
cally while the found solution contains a random amount of error. By adding
compute resources, Monte Carlo methods yield output with less error. In this
context, a resource concerns, for example, the run time, memory or energy
consumption. In contrast, Las Vegas algorithms don’t show deterministic

19

Figure 5: The neuromorphic landscape around reservoir computing. Figure
adapted from Nakajima and Fischer (2021).

resource usage and produce a correct result or report failure. Correctness is
up to specification and may for example be defined as an error value having
obtained a value below some threshold.

In this section we focus on Monte Carlo algorithms. Monte Carlo al-
gorithms are commonly applied for optimization and search; more formally
they are a class of algorithms that sample from a distribution. In some cases,
the sampled distribution is unknown and a sampling algorithm is used to es-
timate it. For example, consider a coin that we know is manipulated, so we
don’t know the exact distribution of heads and tails. We may repeatedly
throw the coin (sample) and count the number of heads and tails (estimate
the distribution). Now consider our method of signal approximation laid out
in Section 1.2. We aim to approximate a signal by summing an ensemble of
oscillator signals. The signal we aim to approximate is the unknown distribu-
tion. By repeated sampling — by repeatedly replacing the oscillators, we can
estimate the signal (distribution). The ideal oscillator configuration is the
point of equilibrium where the error between the target signal and the sum of
the oscillators is minimized. In these terms, adding of resources corresponds
to sampling more often, thus reducing the error of an approximation.

A variety of Monte Carlo algorithms exist, here we are interested in two
classes of Monte Carlo samplers. First, direct sampling, where the distribu-
tion of interest is sampled directly (e.g. we toss a coin). Second, Markov

20

chain sampling, where the target distribution is sampled indirectly by sam-
pling a Markov chain that converges to the target distribution.

2.3.2 Naive random search

Naive random search shown in Listing 1 is the simplest form of direct sam-
pling Monte Carlo algorithms. Let PX be a sampled distribution and X be
the N -dimensional random variable associated with drawing from PX . Let
xj denote the j-th element of x and xi denote the i-th draw from X. The
algorithm initializes a candidate solution x1 with a random configuration.
Throughout runtime, the algorithm stores the best solution xbest. Then, the
algorithm iteratively samples a new candidate solution xi. l(x) is the loss
function, which is minimized by the algorithm. When a new candidate so-
lution xi has a loss lower than the current best solution xbest, the algorithm
updates the best solution. This process is repeated until a stopping criterion
is met. A typical stopping criterion is a maximum number of iterations.

Listing 1: Naive random search
1 # draw () : draw a random sample from the search−space
2 # l (x) : l o s s f unc t i on
3 # c r i t : s t opp ing c r i t e r i o n
4 # e v a l u a t e () : e v a l u a t e whether the s topp ing c r i t e r i o n i s met
5
6 best = draw ()
7 while not c r i t :
8 temp = draw ()
9 i f l (temp) < l (bes t) :

10 best = temp
11 c r i t = eva luate ()

As an example consider an initial draw x1 and a subsequent draw from
X with x being a 3-dimensional vector shown in Equation 2.3.2. The given
values are exemplary. While the chosen values here are all distinct, a draw
from X may also yield the state as a previous draw.

x1 =

 0.1
−0.3
0.5

 , x2 =

 0.9
−0.7
0.4

 (3)

Naive random search doesn’t require domain knowledge and is expected
to optimize (at least to some extent) with a broad range of loss functions and
distributions of the random variable X. Furthermore, the algorithm is simple
to implement and doesn’t require tuning of hyper parameters. Difficulty of
implementation typically refers to writing code in a high-level programming

21

language but also translates to a neuromorphic context. Intuitively, a circuit-
level implementation seems simpler, when compared with the gradient-based
approaches previously discussed in Section 2.2.1. Naive random search is an
uninformed (blind) search algorithm (Russell et al., 2010) as it doesn’t reuse
information about previous attempts or the currently best solution xbest to
generate a new candidate solution xi. The algorithm suffers the curse of
dimensionality, meaning that its performance decreases exponentially as the
dimensionality of the problem increases (Russell et al., 2010). Therefore, it
is best applied to low-dimensional problems.

Naive random search is non-complete because finding the global mini-
mum in the loss landscape is not guaranteed. This property is shared with
all Monte Carlo algorithms. For continuous problems such as the one tack-
led in this work, the time complexity of the algorithm is difficult to estimate
analytically as an exact solution is not guaranteed to exist. However a re-
lationship between the number of iterations and the loss function can be
established. This will be done empirically in Section 5. The space com-
plexity of the algorithm is determined by the memory required to store the
current best solution and the candidate solution being evaluated. The algo-
rithm is not optimal as (1) it’s not complete and (2) a solution if found is
not guaranteed to be found in the least possible amount of iterations (Russell
et al., 2010).

To improve the performance of the naive random search algorithm, sev-
eral variations have been proposed. A well known variation is the random
walk algorithm, where only one of N variables in a state x are replaced in-
stead of replacing N variables. Another variation is the Simulated Annealing
algorithm, which introduces a temperature parameter to allow for occasional
loss-increasing moves to avoid getting stuck in local minima. Moreover, evo-
lutionary algorithms, such as genetic algorithms, have also been proposed
as extensions to the naive random search algorithm. For brevity Simulated
Annealing and an evolutionary algorithm are discussed in the Appendix, see
Section 9.1. In order to evaluate advanced Monte Carlo algorithms, naive
random search can serve as a baseline.

2.3.3 Random Walk

Random walk is a variation of the naive random search algorithm. The al-
gorithm is shown in Listing 2. In a first step, the algorithm initializes a can-
didate solution x1 with a random configuration, as in naive random search.
Similarly, the best candidate solution is maintained throughout search. The
algorithm distinguishes itself from naive search by taking a single action at
each iteration (Russell et al., 2010). For this purpose we define an action as

22

a single draw for xj in the range of x1 to xN . While naive random search
replaces all N variables in a state x with a new random value, random walk
replaces only one variable in a state x. See, Equation 2.3.3 for an example
where only x3 is replaced.

x1 =

 0.1
−0.3
0.5

 , x2 =

 0.1
−0.3
0.4

 (4)

Being similar to naive random search, random walk shares many of its
properties. For this reason, the random walk is not necessarily better than
naive random search; for some problems, random walk may outperform naive
random search.

Listing 2: Random walk
1 # draw_fu l l () : draw N dimensiona l sample from the search−space
2 # draw (sample) : redraw one v a r i a b l e from the search−space
3 # l (x) : l o s s f unc t i on
4 # c r i t : s t opp ing c r i t e r i o n
5 # e v a l u a t e () : e v a l u a t e whether the s topp ing c r i t e r i o n i s met
6
7 best = draw_ful l () # i n i t i a l random sample in search−space
8 while not c r i t :
9 temp = draw (best)

10 i f l (temp) < l (bes t) :
11 best = temp
12 c r i t = eva luate ()

2.3.4 Las Vegas algorithms

Las Vegas algorithms constitute a broad class of algorithms. Both Las Vegas
and Monte Carlo algorithms are stochastic. While Monte Carlo algorithms
gamble on the quality of a solution, Las Vegas algorithms gamble resources,
in particular runtime (Goodfellow et al., 2016; Luby et al., 1993). Last
Vegas algorithms are described as always returning a correct solution. For
a continuous optimization problem, a Las Vegas algorithm would typically
find the global optimum. The notion of correctness can also be interpreted
flexibly. For example then, we may define a correct solution as any solution
with a loss below a certain threshold. In doing so, we find that Monte
Carlo algorithms can be rephrased as Las Vegas algorithms by changing the
stopping criterion.

Listing 3: Las Vegas Random Walk
1 # draw_fu l l () : draw N dimensiona l sample from the search−space

23

2 # draw (sample) : redraw one v a r i a b l e from the search−space
3 # l (x) : l o s s f unc t i on
4 # c r i t : s t opp ing c r i t e r i o n
5 # e v a l u a t e () : e v a l u a t e whether the s topp ing c r i t e r i o n i s met
6 # t h r e s h o l d # t h r e s h o l d f o r s topp ing c r i t e r i o n
7
8 def eva luate (sample) :
9 i f l (sample) < thre sho ld :

10 return True
11 return False
12
13 best = draw_ful l () # i n i t i a l random sample in search−space
14 while not c r i t :
15 temp = draw (best)
16 i f l (temp) < l (bes t) :
17 best = temp
18 c r i t = eva luate (sample)

Listing 3 shows pseudo code for a Las Vegas adapted random walk. In-
deed, the loop is identical to the Monte Carlo random walk algorithm in
Listing 2. The algorithms are only distinguished by the stopping criterion.
Where, Listing 2 stops when a fixed number of iterations is reached, while
Listing 3 stops when a solution with a loss below a certain threshold is
found. As optimization part of the algorithm is identical, their algorithmic
properties are the same. The given code snippet serves as a simple example
to introduce the notion of relatedness between Las Vegas and Monte Carlo
algorithms, although the example is somewhat artificial. A well known, real-
world Las Vegas algorithm is quicksort (Hoare, 1962). The runtime of the
algorithm depends on the selection of pivot elements7. The pivot element is
that element around which the to be sorted array is partitioned, with smaller
elements to one side and larger elements to the other.

7Har-Peled, 2015.

24

3 Methods
In this section I will describe the method to build and test the oscillator
ensemble as introduced in Figure 2. The purpose of the developed system
is to generate signals in order to approximate a target signal. The method
can be divided into three parts. In a first part, three approaches to generate
signals are developed. Second, the mechanisms to fit the generated signals to
a target signal are explored; these mechanisms correspond to the application
of optimization algorithms. Note that, a shorthand overview of all tested
optimization algorithms is given in Section 3.4. In a third part, multiple
target signals are discussed. All experiments are performed in simulation.

A high level overview of the developed system is given in Section 1.2. To
summarize, the general idea is repeated here, briefly.

1. The oscillator ensemble starts out as a set of random uncoupled oscil-
lators (random frequency, phase, gain and offset).

2. Oscillators signals are summed to form a composite signal.

3. The composite signal is compared to a target signal by RMSE.

4. A subset of oscillators is perturbed to form a candidate ensemble.

5. A composite signal is formed from the candidate ensemble and its
RMSE is computed.

6. The candidate ensemble is accepted or rejected by comparing its RMSE
to the RMSE of the original ensemble.

7. The process is repeated so long as resources are available.

3.1 Signal generation
In order to test the outlined hypotheses, three different approaches to signal
generation are developed. Each approach presents a different set of advan-
tages and disadvantages. We should think of the three developed approaches
as primarily different on an implementation level but similar on a conceptual
level. The first approach, we can call it SPICE simulation approach, is aimed
at being close to a physical circuit composed of multiple VO2 devices. The
second approach, call it Python approach, is aimed at accessibility from a
digital computing point of view. The third approach, from here on named
hybrid approach, is a combination of the first two approaches with the aim of
mitigating the disadvantages of the first two. While the SPICE section best

25

illustrates details of the developed system, ultimately the hybrid approach is
chosen for the presentation of results in Section 5.

3.1.1 SPICE generator

The SPICE approach best illustrates the underlying method of signal gen-
eration that is shared between the three approaches. The SPICE approach
is also the most accurate representation of a possible physical device and
therefore serves as inspiration for the other two approaches. The approach
to signal generation is best described in three parts. First, on the level of an
individual VO2 oscillator. Second, on the level of multiple VO2 oscillators in
a parallel circuit. Third, in terms of fitting the sum of multiple oscillators
signals to a target signal; this last part is reserved for Section 3.2.

3.1.2 SPICE: VO2 oscillator

Figure 6: Phase transitions in the VO2 device. Figure by Maffezzoni et al.
(2015).

Vanadium Dioxide is a voltage gated two-phase material; its two phases
are the metal phase and the insulator phase. A VO2 device is a two terminal
electric component that contains a VO2 element; the device inherits the two-
phase nature of the material. Radu et al. (2015) give an introduction to the
manufacturing of VO2 devices; further investigation on this account is left to
the reader. For the purpose of this work, an equivalent circuit model of the

26

VO2 device is used. The equivalent circuit is described by Maffezzoni et al.
(2015).

In the metal phase, the VO2 device is conductive while it’s resistive in the
insulator phase. Figure 6 describes the phase transitions in the VO2 device.
The x-axis indicates the applied voltage with arbitrary scale while the y-
axis indicates current, also on an arbitrary scale; see Núñez et al. (2021) for
voltage and current values. When no voltage is applied to the VO2 device, it
tends towards the insulator phase (Núñez et al., 2021). Taking the insulator
state as starting point, and applying a voltage, the VO2 device is in the high
resistance state below VL. Around the higher voltage VH , the VO2 device
undergoes an insulator to metal transition (IMT); the transition to the low
resistive state is abrupt but not instantaneous. Then, as the VO2 device is
in the metal state, the device remains conductive until the voltage is reduced
to the lower voltage VL. As applied voltage decreases from VH to VL, the
flow of current decreases linearly. At VL, the VO2 device undergoes a sudden
metal to insulator transition (MIT) and returns to the high resistive state.

Figure 7: A VO2 RC-circuit forms an oscillator unit (relaxation oscillator).

The phase-transition properties of the VO2 device can be used to build
VO2 oscillators. An example of a VO2 relaxation oscillator, inspired by
Maffezzoni et al. (2015), is shown in Figure 7. The unit V1 refers to a
direct current voltage source; the default voltage is set at 14 V in line with
the authors. The unit R1 refers to a resistor with a default resistance of
47 kΩ. This value is chosen because the oscillatory behavior of the RC-
circuit is probabilistic, and the probability of oscillation is maximal around
47 kΩ (Maffezzoni et al., 2015). The unit C1 refers to a capacitor with a

27

default value of 300 pF in accordance with the authors. U1 refers to the VO2

device described in Figure 6. Variability between VO2 devices is a problem
which affects computational approaches that rely on the (phase) synchrony
of multiple VO2 oscillators such as demonstrated by Núñez et al. (2021) and
Maffezzoni et al. (2015). For the purpose of this work, variability between
VO2 devices is not problematic. This is because frequency diversity is a
desired property of the signal generation approach. The component that is
altered for the purpose of fitting a target signal is the resistor R1. Adjusting
R1 influences the oscillation frequency of the circuit at point A. In this sense
R1 acts as frequency controller. Viewing the RC-circuit as an oscillatory
unit, the point A serves as output terminal, where voltage modulation is
observed.

Figure 8: Voltage output of the VO2 device at point A. Figure modified from
Núñez et al. (2021).

Figure 8 shows the voltage of the VO2 oscillator at point A in the RC-
circuit. The x-axis shows time in arbitrary units [a.u.] while the y-axis shows
voltage [a.u.]. VDC is the voltage source, VA is the output or oscillatory
voltage; the names map to the circuit in Figure 7. VMIT is the voltage at
which the metal to insulator transition occurs. At VIMT the insulator to
metal transition occurs. As the VO2 device enters the metal phase, the
output voltage VA sharply increases. Then, at point MIT, the VO2 device
enters the insulator phase and the output voltage of the VO2 RC-circuit
decreases at a sub-linear rate. The period of the oscillation is described by
the equation (Maffezzoni et al., 2015)

T = τmet · ln
(
Umet

eq − VIMT

Umet
eq − VMIT

)
+ τins · ln

(
U ins

eq − VIMT

U ins
eq − VMIT

)
, (5)

where,

• T is the period of the oscillation,

28

• τmet and τins are time constants of the metal and insulator phase re-
spectively,

• Umet
eq and U ins

eq are the voltages that capacitor C1 tends towards when
the VO2 device is in the metal or insulator phase; a more precise defi-
nition is found in the Appendix, ”eq” stands for equivalency following
Thévenin’s equivalency theorem,

• VIMT is the voltage at which the insulator to metal transition occurs in
the VO2 device,

• VMIT is the voltage at which the metal to insulator transition occurs in
the VO2 device.

See Section 9.3.1 in the Appendix for a more detailed discussion of the
equation’s terms and a more in-depth description of the circuit’s behavior.

Figure 9 shows an augmented circuit over the one shown in Figure 7.
The augmented circuit adds a negative voltage source, V1_NEG that drives
two operational amplifiers, U2_BUFF and U3_AMP. Op amp U2_BUFF8

serves as a voltage buffer. It shields the oscillation generated around the label
”Frequency” from the rest of the circuit. This is necessary to prevent multiple
oscillators in an ensemble from influencing each other, hence making them
uncoupled. The point at ”Frequency” corresponds to point A in Figure 7.
This makes combining multiple oscillators possible without them influencing
each other. Therefore the output voltage at PIN 3 is the same as the voltage
at ”Frequency”. Op amp U3_AMP9 allows change in gain and offset for the
oscillator generated signal. The achieved gain is given by the ratio of the
resistors R1_GAIN and R2_GAIN. This relation is described in Equation
610.

Gain = 1 +
R2

R1

(6)

Gains in the range of 0.1 to 10 are reasonably attainable with this circuit.
The displayed values, 9 kΩ and 1 kΩ are exemplary for a 10 fold gain. During
the optimization process, their values are intended to change in order to
control the contribution of an oscillator to the ensemble’s composite signal.
The voltage offset at PIN 3 of U3_AMP is controlled by the voltage applied
at PIN 1 of the op amp, labelled ”Offset”. When the voltage at PIN 1
is larger than that of PIN 2, the output voltage at PIN 3 is offset in a

8“CIRCUIT060021 Design Tool | TI.Com”, n.d.
9“CIRCUIT060022 Design Tool | TI.Com”, n.d.

10Sculley, n.d.

29

positive direction. When the voltage at PIN 1 is smaller than that of PIN
2, the voltage at PIN 3 is shifted negatively. Further, the voltage at PIN 1
is controlled by the ratio of R1_BIAS and R2_BIAS. This relationship is
described in Equation 7.

UOFFSET = V1_POS −R1_BIAS ·
(V1_POS + V1_NEG)

(R1_BIAS +R2_BIAS)
(7)

Where,

• UOFFSET is the voltage at PIN 1 of U3_AMP,

• V1_POS and V1_NEG are a voltage sources,

• R1_BIAS and R2_BIAS are resistors.

The outgoing signal of U3_AMP at PIN 3 then is a function of UOFFSET
and the voltage modulation at PIN 2 with the oscillation generated in the
RC-circuit. The values of R1_BIAS and R2_BIAS at 1 kΩ are exemplary
and are best chosen such that the oscillator’s signal is centered around 0
V. R1_BIAS and R2_BIAS, as well as R1_GAIN and R2_GAIN may be
replaced by potentiometers; for clarity they are shown as resistors in Figure
9.

Figure 9: Control circuit for a single VO2 oscillator.

Now we have a fully controllable oscillator. The frequency of the oscillator
is controlled by the RC-circuit’s time constant. The gain and offset of the
oscillator are controlled by the op amps. The time constant can be adjusted
by changing the value of the resistor R1_FREQ. The gain and offset can
be adjusted by changing the values of the resistance pairs R_GAIN and

30

R_BIAS. Lastly, the phase of a single VO2 oscillator can be controlled by
delayed onset of the voltage source V1_POS or by providing the capacitor
C1 with an initial charge.

3.1.3 SPICE: Oscillator Ensemble

The output voltages of multiple VO2 oscillators can be summed in order to
form a composite signal that approximates a target signal. This approach
shares similarities with Fourier synthesis, see Section 9.2 in the Appendix
for further elaboration. Figure 10 shows a circuit that sums the output
voltages of N VO2 oscillators forming an oscillator ensemble. The circuit
is an extension of the circuit in Figure 7 by aggregating N VO2 oscillators
in parallel. For simplicity, the operational amplifiers added in Figure 9 are
omitted. It’s important to consider that the oscillators are uncoupled and
independently controlled in their frequency, phase, gain and offset. Note
that for a single oscillator, its capacitor Ci and resistor Ri are in parallel,
forming a RC-circuit as shown in Figure 7. The ensemble circuit is driven by
a single power source V1 for simplicity. However, powering each oscillator
independently is viable and enables controlling the phase of each oscillator
separately. Instead of controlling the offset of each oscillator individually
as shown in Figure 9, it may be sufficient to control the offset of the sum
of oscillators using a single op amp following the summation of oscillator
signals.

Figure 10 misses a circuit-level representation of the comparison between
composite and target signals via RMSE. Furthermore, the circuit avoids an
explicit description of the mechanisms that change the resistive components
which control oscillators’ frequency, offset and gain in order to fit the system
towards the target signal. Fully developing these components on a circuit
level is beyond the scope of this work. In order to proceed, and to gauge the
value of such a system, these open ends are filled by digital computing in the
simulation.

Meta-programming is used to generate variations of SPICE netlists that
represent the ensemble circuit. A SPICE netlist is a text file that unambigu-
ously describes a circuit and its components. A netlist can be interpreted by
the SPICE simulator, which is a circuit simulation software that can solve for
the voltages and currents of a circuit. SPICE is capable of solving Maxwell’s
equations for the lumped network circuit model and the transmission line cir-
cuit model (C. Wong, 1994). The software is furthermore capable of transient
(time-domain) analysis and frequency analysis. In particular, the transient
analysis feature of SPICE is used to simulate the behavior of the circuit over
time. C. Wong (1994) points out that the transient analysis feature of SPICE

31

Figure 10: Ensemble of N = 4 VO2 oscillators.

is inefficient due to its adaptive time-stepping algorithm. This observation is
important for the development of the Python and hybrid signal generation
approaches. Before fitting the circuit to a target signal, the capabilities of
SPICE to simultaneously simulate increasingly large numbers of oscillators
is tested.

Initial exploration of the simulation capabilities of SPICE shows that the
simulation of a single oscillator is possible, but prohibitively slow. Section
9.4 in the Appendix elaborates on the details of this exploration. As a result
of found limitations the Python signal generator is developed in order to
proceed with simulation efforts.

3.1.4 Python generator: VO2 oscillator

Equations 19 and 20 produced by the VO2 device describe an exponential
function. As an approximation to this function a left-skewed triangle wave,
close to an inverse sawtooth function, is used for the Python signal generator.
Equation 8 describes the left-skewed triangle wave for a single cycle11.

11Weisstein, n.d.-b.

32

ftriangle(t, a, p, b) =

am(t+p)

L
+ b for 0 ≤ t ≤ L

m

a[1− m
(m−1)L

(
t+ p− L

m

)
] + b for L

m
≤ t ≤ 2L− L

m

am
L
(t+ p− 2L) + b for 2L− L

m
≤ t ≤ 2L.

(8)
Where,

• a is amplitude,

• L is the duration of a period,

• p is phase shift in radians,

• b is offset,

• t is time,

• m is the skew factor.

Here, m = 1 yields a sawtooth, m = 2 yields a triangle wave, and
m → ∞ yields a left-skewed triangle wave approaching an inverse saw-
tooth. A left skewed triangle wave is preferred over the inverse sawtooth
due to the steep step of the inverse sawtooth function. For convenience, the
scipy.signal.sawtooth (Virtanen et al., 2020) function with width=0.15
as skew factor is used.

In order to align with the op amp circuit design in Figure 9 an explicit
weight term w is introduced. Throughout this work, the terms gain and
weight are used interchangeably. The weight term is used to scale the am-
plitude, thus taking the role of the gain modifying op amp U3 in the circuit.
Thus the factor a in Equation 8 corresponds to the amplitude at point ”Fre-
quency” in Figure 9, whereas a · w refers to the amplitude in the circuit at
PIN OUT. The phase shift p corresponds to the onset time of the signal in the
circuit. The offset b corresponds to the bias at PIN OUT as modulated by
R1_BIAS and R2_BIAS. No additional term for offset at point ”Frequency”
is introduced in Equation 8 as the offset at PIN OUT is fully controlled by U3
and thus is not dependent on the bias at point ”Frequency”. In contrast the
amplitude at PIN OUT is dependent on the amplitude at point ”Frequency”.
The model for a single oscillator is then given by

foscillator(t) = w · ftriangle(t, a, p, b) (9)
In the Python signal generation approach frequency, phase, amplitude

and offset can be directly controlled; this is opposite to the SPICE approach,

33

where function properties are controlled indirectly by the circuit parameters.
As a downside of the Python approach, the circuit parameters corresponding
to an oscillator’s signal are not directly observable. An oscillator signal s
is discretely represented by a row vector of length d, where d is the total
number of samples, and a weight scalar w; see Equation 10.

s · w =
[
s1 s2 . . . sd

]
· w (10)

Frequency [Hz] Weight [a.u.] Phase [π] Offset [a.u.]
U(1e5, 1e6) U(0, 10) U(0, 2) 0

Table 1: Default Python parameters for generating an oscillator signal.

The default set of parameters for the Python signal generator is given in
Table 1. The frequency distribution is derived from SPICE simulations of the
VO2 RC-oscillator circuit. Both graphs in Figure 11 show the relationship
between resistance and frequency for the VO2 RC-oscillator circuit. On the
x-axis, both plots report the resistance of the R1 element in the RC-circuit.
The y-axis reports the frequency of the oscillation as a response. Whereas
Maffezzoni et al. (2015) (left) report frequency for the resistance range of
30 to 65 kΩ, we (right) show a larger range of 20 to 140 kΩ. Across the
shared range of 30 to 65 kΩ, Maffezzoni et al. (2015) report a frequency
range from 112 to 29 kHz while we find a range of 800 to 500 kHz. For the
resistance value R1=47 kΩ the frequency reported by Maffezzoni et al. (2015)
is 69 kHz, whereas we produce 690 kHz. The resistance value R1=47 kΩ is
particularly interesting as Maffezzoni et al. (2015) also report measurements
on a physical VO2 RC circuit with the same frequency. The left plot shows
a linear relationship between resistance and frequency. Instead, we observe
a moderately exponential relationship across the broad range of resistances.
Note that the staircase pattern present in our figure (right) is not the result
of large resistance steps, as a step size of 1 kΩ is used. It’s unclear why the
steps emerge in our figure. It’s also unclear why we find frequency values
that are an order of magnitude greater than Maffezzoni et al. (2015). The
case of the authors is stronger however, as their SPICE model’s frequency
at 47 kΩ aligns with the results of physical measurements for a VO2 RC
circuit. Furthermore, the authors report that oscillation is probabilistic with
a probability near 1 for resistances around 47 kΩ and near 0.5 around 30 kΩ
and 65 kΩ. We don’t observe the probabilistic nature of the VO2 oscillation;
the occurrence of oscillation appears equally probable for all resistances in the
tested range. Note that the probabilistic nature of oscillation is not reported
as grounded in physical measurement by Maffezzoni et al. (2015).

34

Figure 11: Frequency vs. resistance of a single VO2 oscillator. Left, figure
from Maffezzoni et al. (2015). Right, our own results.

Although the results of Maffezzoni et al. (2015) are backed by experimen-
tal results, we proceed by generating signals with frequencies matching our
own findings; see Table 1. We proceed with a model of deterministically oc-
curring oscillation, as the authors’ claim in this regard is based in simulation;
furthermore, it is computationally more efficient to assume oscillation is al-
ways present for simulation purposes, as zero-signals are avoided. Although
we observe an exponential relationship between resistance and frequency, we
assume a linear relationship as reported by Maffezzoni et al. (2015) for the
sake of simplicity; this allows us to draw signals’ frequencies from a uniform
distribution. Weights, w, are drawn from a uniform distribution in the range
of 0 to 10 [a.u.]. The chosen distribution is determined via hand-tuning as
we observed that dampening (resistive only weighting) in the range of 0 to
1 is insufficient for target signal approximation. Note that this may be in
part due to the small amplitude around 0.5 V of the VO2 RC-oscillator cir-
cuit. The phase, p, is drawn from a uniform distribution in the range of 0 to
2π. This choice reflects the desire to maximally increase diversity between
signals. Offset, b, is set to 0 [a.u.], as it is assumed that target signals are
centered around a 0 offset, too.

3.1.5 Python generator: Oscillator ensemble

Analogous with Section 3.1.3 the sum of N signals is generated by summing
the uncoupled oscillator signals along the time domain. Formally, a sum S
of N oscillators is computed from an oscillator ensemble E, a weight vector
W and a bias b, see Equation 11. The ensemble E has dimensions N,D,
while W is of length N . Here, D refers to the number of samples in the time

35

Figure 12: Sum of four oscillators (left) and individual oscillators (right).

domain. It is assumed that the individual oscillator offsets are 0 and thus
the offset of the sum of signals is modulated by a scalar b.

S = E ·W + b =

s1,1 s1,2 . . . s1,D
s2,1 s2,2 . . . s2,D

...
sN,1 sN,2 . . . sN,D

 ·

w1

w2
...

wN

+ b (11)

An example of a sum of four oscillators is given in Figure 12. On all
subplots, the x-axis gives time in seconds and the y-axis reflects the amplitude
of the signal in arbitrary units, albeit the amplitude is modeled after the VO2

RC-oscillator circuit as discussed in Section 3.1.4. The sum S is the result
of the sum of the four signals s1, s2, s3 and s4 shown on the right of Figure
12. The frequencies of the individual oscillators shown here are in the range
of 1 to 10 Hz; this choice is for purpose of demonstration, not following the
parameters in Table 1. Furthermore, the oscillators are weighted equally
with a weight of 1.

A sampling rate fs of 100 Hz is chosen for the sake of demonstration.
In order for a continuous signal to be reconstructable after sampling, the
sampling rate must be at least twice the maximum frequency of the signal;
this sampling rate is known as Nyquist rate. When a signal is sampled
at the Nyquist rate, the signal can be reconstructed without error. The
reconstruction requires Whittaker-Shannon interpolation (Shannon, 1949),
also known as sinus cardinals or sinc interpolation.

3.1.6 Hybrid generator

The hybrid signal generation method is a combination of the SPICE and
Python methods described in the previous sections. In this approach a VO2

36

oscillator circuit as shown in Figure 7 is simulated in SPICE to generate a
time series. In contrast to the SPICE method, only one circuit is simulated
at a time, so that oscillator signals are not summed in SPICE. Instead, the
sum of the oscillator signals is computed in Python. Hereby we circumvent
the limitations of SPICE when simulating multiple oscillators simulatenously.
This also avoids the circuit level implementation of the impedance buffered
circuit (Figure 9) with its phase, gain and offset control. Furthermore, sim-
ulation in SPICE is prohibitively slow at high sampling rates in the order of
1 GHz as needed for the VO2 RC-oscillator circuit. In order to accelerate
generating oscillator signals, caching and extrapolation are used.

3.1.7 Hybrid: VO2 oscillator

Within the hybrid approach three modes of signal generation are available
as a result of introducing caching. In order of slowest to fastest, measured in
wall-clock time, we have 1) full simulation in SPICE, 2) simulation of a single
period in SPICE and extrapolation of the signal in Python and 3) loading
a cached SPICE period from file and extrapolation of the signal in Python.
Table 2 gives an overview of the three signal generation modes and their
speed. For each table entry, a N = 100 oscillator ensemble was simulated on
an Intel i7-1065G7 CPU. The results are not averaged as runtime differences
are large between modes. A duration of 1e-5 s corresponds to the period
of a slow VO2 oscillator with a resistor near 140 kΩ, in line with Figure 11
(right). The first mode, full simulation in SPICE, is the slowest and identi-
cal to the SPICE method described in Section 3.1.2. Here, a SPICE netlist
is generated within Python using string manipulation. Then, the netlist is
written to a file and a call to SPICE is made in order to simulate the circuit.
The table shows that the duration of simulation scales with the duration of
the simulated signal. Although the relationship is sub-linear, the simulation
time is prohibitively long. The second mode, simulation of a single period in
SPICE and extrapolation of the signal in Python, is faster than the SPICE
approach for signal durations longer than a single period. Extrapolation can
be used as the oscillations are periodic in the SPICE simulation. When in-
creasing the signal duration, the simulation runtime remains nearly constant.
Third, the use of caching further reduces simulation time; it is two orders of
magnitudes faster compared to the extrapolation approach. In order to build
the cache, RC oscillators are simulated taking resistance steps of 100 Ω, for
each step a single period is simulated in SPICE and stored. Once built, the
cache is loaded into Python as a resistance to signal lookup table. Then,
an oscillator signal of desired duration is generated by extrapolation. While
speed is increased, a tradeoff is made in accurately representing the pool of

37

oscillators. Figure 11 (right) shows that this tradeoff seems acceptable due
to the frequency plateaus; it may be argued that the narrow steps between
plateaus are underrepresented using this approach. Comparing the extrapo-
lation and cache modes shows that spawning a SPICE process and simulating
a netlist for a short duration is slow. With the first two modes, when SPICE
simulation fails due to numerical instability (this occurs regularly at around
each 10 oscillators) the call to SPICE is repeated with the same netlist.

Table 2: Wall-clock times of hybrid generator modes with 100 oscillators.

Duration SPICE Extrapolation Cache + Extrapolation
1e-5 s 8.04 s 6.99 s 0.04 s
1e-3 s 586.03 s 7.05 s 0.07 s

After generating an oscillation, post processing is applied in Python to
remove the DC offset by averaging the signal and subtracting the average.
Furthermore phase and gain are added as described in Sections 3.1.4 and
3.1.5. The default hybrid parameters for generating a single oscillator sig-
nal are given in Table 3, combining parameters of the SPICE and Python
approaches. The bounds of the resistance distribution are chosen far apart
in order to maximize frequency diversity. Furthermore, compared to the
Python parameters a larger than zero offset diversity is chosen to increase
degrees of freedom in the optimization.

Resistance [kΩ] Weight [a.u.] Phase [π] Offset [a.u.]
U(20, 140) U(0, 10) U(0, 2) U(−10, 10)

Table 3: Default hybrid parameters for generating an oscillator signal.

3.1.8 Hybrid: Oscillator ensemble

The representation of an oscillator ensemble in the hybrid generator ap-
proach is identical to the Python approach described in Section 3.1.5. To
summarize, individual oscillator signals are summed, weighted and an offset
is added. The hybrid approach with caching is nearly as fast as the Python
approach but more realistic with respect to the properties of the VO2 mate-
rial. Critically, the Python approach doesn’t model the frequency staircase
observed in Figure 11 (right). Therefore, the hybrid approach is preferred
overall, an the focus for the remainder of this work.

38

3.2 Signal optimization towards a target
This section is concerned with describing the process of fitting the composite
signal of an oscillator ensemble to approximate a target signal. Previous sec-
tions describe the process of generating oscillator signals and the formation
of the ensemble signal. Generating an oscillator ensemble has been described
as a random draw within the constraints of the RC-circuit in Figure 7. Opti-
mization of the oscillator ensemble is the process of finding a set of oscillators
whose sum best approximates a target signal. The optimization of an oscil-
lator ensemble is an iterative process characterized by four steps.

1. Compute the loss between the sum of oscillators and the target signal.

2. Perturb the oscillator ensemble.

3. Recompute the loss between the oscillator sum and the target signal.

4. Accept or reject the perturbation, informed by the loss.

Figure 13: Explored classes of optimization algorithms.

Multiple algorithms have been implemented for the purpose of optimiza-
tion. In particular non-gradient based algorithms have been selected as they
are more feasible in the neuromorphic domain, eyeing the possibility of hard-
ware implementation. Algorithms have been selected from three classes. A
broad overview of these classes is given in Figure 13. First, are Monte Carlo
algorithms. Of particular interest among the Monte Carlo algorithms are
naive Monte Carlo search, Simulated Annealing (Kirkpatrick et al., 1983),
Basin Hopping (Wales & Doye, 1997) and variants of a random walk (Franz
et al., 2001; Pearson, 1905). The random walk algorithms are also inspired by
Hill Climbing and Gibbs Sampling (Geman & Geman, 1984; Neal, 1993) al-
gorithms. Second are evolutionary algorithms, by the example of Differential
Evolution (Storn & Price, 1997). Third, is a variant of a Las Vegas algorithm
(Babai, 1979). Lastly, linear regression by Least Squares (Levenberg, 1944)
is included as an analytical baseline. The selected algorithms have already
been described on a general level in Section 2.3. In this section the Las Vegas
algorithm will be described in greater detail as it provides the best results

39

in our experiments. Compared to the general description, the pseudo code
of the Las Vegas algorithm in this section is more verbose and shows details
specific to the implementation in Python source code. Short descriptions of
other algorithms are found in Section 3.4, furthermore all source code will
be made publicly available (Tappe Maestro, 2023).

3.2.1 Las Vegas implementation

Listing 4 shows the implementation of a Las Vegas algorithm. The algorithm
requires three inputs: a target signal, a maximum number of oscillators n in
the ensemble and a maximum number of iterations k that the inner loop is
allowed to run. The maximum number of iterations is determined according
to Listing 6. This in turn requires a total number of perturbations z that
the algorithm is allowed and a number of perturbations that the algorithm
performs on each iteration. The number of perturbations that is applied per
iteration is determined according to Listing 5. A perturbation is a change in
the phase, frequency or gain of an oscillator. Here, a perturbation is applied
to a candidate oscillator that is to be added to the ensemble. In the case of
Listing 4 a single oscillator is drawn on each iteration of the inner loop, thus
r equals 1. For the offset one perturbation is counted, as it’s assumed that
the offset is controlled on level of the composite ensemble signal. For the
algorithm described here, all four attributes are perturbed; thus we count 4
perturbations for one iteration of the inner loop.

The objects best, base and temp represent ensembles. The ensemble
best is the best ensemble found so far and base is the ensemble currently
being optimized. Ensemble temp is a temporary copy that is used to store a
perturbation of the base ensemble. The RMSE of an ensemble is accessed
by the rmse attribute; for simplicity, no function call is shown to update
the RMSE of an ensemble. Both the best and base ensemble are initialized
with an empty ensemble via the function init_empty_ensemble such that
the RMSE is equal to the RMSE between a zero signal and the target signal.

The variable k_j is a counter that is incremented each time the inner
loop is run, it is a stopping criterion for both the inner and outer loop that
evaluates to false when the maximum number of iterations is reached. The
variable i is a counter that is incremented each time a new oscillator is
accepted to the base ensemble. A new oscillator is accepted if the RMSE
of the temp ensemble is less than that of the base ensemble. The function
add_oscillator adds a new oscillator to the base ensemble at position i
meaning that once added, an oscillator is not removed from the ensemble.
The optimization of the base ensemble terminates when i is equal to the
maximum number of oscillators n in the ensemble or when the number of

40

iterations k is exhausted. Lastly, the base ensemble is compared to the best
ensemble by RMSE. The best ensemble is overridden if the RMSE of the
base ensemble is lower.

Listing 4: Implementation of a Las Vegas algorithm
1 t a r g e t # time s e r i e s
2 k # maximum number o f i t e r a t i o n s
3 n # number o f o s c i l l a t o r in ensemble
4
5 best = init_empty_ensemble ()
6 k_j = 0 # number o f i t e r a t i o n s
7 while k_j < k :
8 base = init_empty_ensemble ()
9 i = 0 # number o f r ep l a ced we i gh t s

10 while i < n and k_j < k :
11 k_j += 1
12 temp = add_osc i l l a t o r (base , i)
13
14 i f temp . rmse < base . rmse :
15 i += 1 # move to next row
16 base = temp
17
18 i f base . rmse < best . rmse :
19 best = base
20 return best

Listing 5: Determining the number of perturbations of an iteration
1 r # number o f per turbed o s c i l l a t o r s per i t e r a t i o n
2 p r o p e r t i e s # l i s t o f per turbed p r o p e r t i e s
3 pe r tu rba t i on s = 0
4
5 i f ” gain ” in p r o p e r t i e s :
6 pe r tu rba t i on s += r
7 i f ” f requency ” in p r o p e r t i e s :
8 pe r tu rba t i on s += r
9 i f ” phase ” in p r o p e r t i e s :

10 pe r tu rba t i on s += r
11 i f ” o f f s e t ” in p r o p e r t i e s :
12 pe r tu rba t i on s += 1
13 return pe r tu rba t i on s

Listing 6: Infering the maximum number of iterations
1 z # maximum number o f p e r t u r b a t i o n s
2 loop_cost # p e r t u r b a t i o n s consumed by one i t e r a t i o n
3 k = z / loop_cost
4 return k

41

Note that while this algorithm is here on called Las Vegas, only the inner
loop constitutes a Las Vegas algorithm as it’s uncertain how many iterations
are required to fill the ensemble. The outer loop is a Monte Carlo wrapper
that allows runtime to be controlled. Also, the notion of a solution that is
typically more strict for a Las Vegas algorithm is relaxed here; such that a
solution is an ensemble where the addition of each oscillator has reduced the
RMSE of the ensemble.

3.3 Target signals and preprocessing
Synthetic and real world target signals are tested against the oscillator ensem-
ble. Fit between a composite signal and the target is quantitatively evaluated
using Root Mean Square Error (RMSE). First we will discuss synthetic, then
real world target signals.

The synthetic signals are generated using the Python libraries numpy and
scipy (Virtanen et al., 2020). In order to test basic fitting capabilities, a
range of synthetic periodic functions are approximated. Namely, sine, tri-
angle, square, sawtooth, inverse sawtooth and beat signals are tested. A
beat signal is formed from the interference of two sine waves with similar fre-
quency. In order to assess the ensemble’s capability of producing frequency
modulation, a chirp signal serves as target. A chirp signal is a sine function
with an increasing or decreasing frequency over time. To test the system’s
ability to additionally adapt to amplitude modulation, a damped chirp signal
is used, where as frequency increases, the amplitude decreases over time. To
assess the ability of fitting non-periodic functions, samples are drawn from
a uniform and a normal distribution, respectively. We test signal approx-
imation on the unmodified noise signals; additionally we apply a 10-point
averager over the noise signals and also test fit on those.

We also aim to test the ensemble’s ability at approximating real world
signals. For this purpose an audio sample of a birdcall and a word of hu-
man speech are selected. The call of the magpie, who is among one of few
animals capable of recognizing themselves in a mirror (Prior et al., 2008),
is used. Since the magpie signal12 has been used as target throughout the
development of the Python signal generation pipeline, it can be considered
the development sample; in line with the notion of a development set. The
human speech sample has been held out until algorithms were implemented;
similar to the notion of a test set. The sample of human speech articulates
the word ”yes”13. A property of human speech is that vowel regions are

12H F, n.d.
13PacDV, 2022.

42

Figure 14: Magpie time-series (left) and Fourier transform (right).

nearly periodic (McClellan et al., 2017). This is likely to aid in the fitting
of speech. Next to evaluation via RMSE, the fit of the real world signals is
evaluated by listening to the approximated signal; this is achieved by con-
version to a .wav audio file. To a human listener the speech audio samples
are particularly interesting in this regard as humans are trained to recognize
speech even under noisy conditions.

Target Sampling frequency [Hz] Duration [s] Bit-dept Channels
magpie 11025 3.25 8 1
yes 48000 0.67 16 2

Table 4: Properties of the original audio files.

A summary of the target signals’ properties is given in Table 4. The
parameters for the real world signals given in the table represent those of
the original audio files. In order to reduce the computational cost of the
experiments, the signals are downsampled to 1 kHz. Furthermore, only the
center third of the magpie signal is approximated. Further preprocessing
steps involve the conversion of the ”yes” signal to mono and the removal of
the y-offset of the magpie signal originating from it’s original 8-bit encoding.
Figure 14 shows the time-series and Fourier transform of the unmodified
magpie recording. The magpie call shows elements of both amplitude and
frequency modulation.

3.4 Algorithm shorthand
This section gives an overview of the algorithms used across experiments in
Tables 5 and 6. In the name of brevity only a short description is given.
Further details can be found in the publicly available code repository (Tappe

43

Maestro, 2023) that accompanies this thesis. The first column denotes the
internal name of the algorithm, the second column gives a description. The
third column describes the cost function; in this case whether only lower
RMSE solutions are accepted, corresponding to greedy, or whether higher
RMSE solutions are accepted too, corresponding to ergodic. The fourth
column contains a reference to the algorithm or method that inspired the
implementation.

The method for determining the maximum number of iterations from a
fixed perturbation budget Z described in Section 3.2.1 applies to all manu-
ally implemented algorithms. Differential Evolution, Basin Hopping, SciPy
Anneal and SciPy Dual Anneal are more difficult to evaluate fairly as SciPy
implementations of the algorithms have been used. For Differential Evolution
the maximum number of generations is computed as

max_iter = Z −N

populations ·N
. (12)

Where, Z is the number of perturbations, N is the number of oscillators
and populations refers to the number of candidate solutions maintained per
generation of the evolutionary algorithm. We use SciPy’s default value of 15
for the number of populations. The maximum number of iterations for Basin
Hopping is determined as

max_iter = Z

N · 20
. (13)

Here, 20 is a hand-picked parameter that results in a run time similar
to the Las Vegas and Exploit algorithms on a digital computer. For SciPy
Anneal and SciPy Dual Anneal the maximum number of iterations is set to

max_iter = Z

N
. (14)

44

Name Shorthand description Loss Reference
One Shot Perturbs all oscillators simultaneously. A perturbation ran-

domly changes an oscillator’s frequency, phase and gain. Af-
ter a perturbation, a step is accepted when the new RMSE
is lower than before. Else a new perturbation is performed.
The algorithm stops when a budget of perturbations is ex-
hausted.

Greedy Random
Search

One Shot
Weight

Like One Shot, but only perturbs gain. Greedy Random
Search

Exploit Like One Shot, but only perturbs one oscillator before eval-
uating RMSE.

Greedy Random
Walk

Exploit J10 Like Exploit, but perturbs 10 oscillators simultaneously. Greedy Random
Walk

Exploit
Weight

Like Exploit, but only perturbs gain. Greedy Random
Walk

Exploit
Neighbor
Weight

Like Exploit Weight, but samples a Gaussian distribution
that is formed from the mean gain of a random oscillator
and it’s adjacent neighbors.

Greedy Random
Walk

Exploit De-
coupled

Like Exploit, but randomly changes either an oscillator’s
gain or it’s frequency and phase.

Greedy Random
Walk

Grow
Shrink

Draws an ensemble of oscillators. Perturbs a single oscil-
lator’s gain at a time. Random chance of increased or de-
creased gain by a fixed factor. Change is accepted if RMSE
is decreased.

Greedy Random
Walk,
Genetic
Algorithms

Dampen Like Grow Shrink, but only dampens gain. Greedy Random
Walk, L1
regular-
ization
(Goodfel-
low et al.,
2016)

Purge Like Dampen, but only sets gains to zero. Greedy Random
Walk,
Pruning
methods

Oscillator
Anneal

Like Exploit but uses a schedule to reduce the number of
oscillators over time following a linear schedule.

Greedy Simulated
Annealing

Oscillator
Anneal
Weight

Like Oscillator Anneal, but only perturbs gain. Greedy Simulated
Annealing

Oscillator
Anneal Log

Like Oscillator Anneal, but the number of oscillators follows
a logarithmic schedule.

Greedy Simulated
Annealing

Oscillator
Anneal Log
Weight

Like Oscillator Anneal Log, but only perturbs gain. Greedy Simulated
Annealing

Differential
Evolution

Population based optimization algorithm that relies on mu-
tation, crossover and selection to minimize a fitness function.

Greedy Storn
and Price
(1997)

Linear Re-
gression

Finds optimal solution analytically by minimization of
squared differences between prediction and target.

Ana-
lyti-
cal

Ordinary
Least
Squares
linear re-
gression

Table 5: Algorithm shorthand, first part.

45

Name Shorthand description Loss Reference
Las Vegas Begins with an empty ensemble and only adds an oscillator

to the ensemble if RMSE is reduced. Sets each oscillator
once. Then draws a new ensemble. Best ensemble is selected.

Greedy Las Vegas

Las Vegas
Weight

Similar to Las Vegas. Begins with a random best sample.
Updates each oscillator’s gain once.

Greedy Las Vegas

Exploit
Fast

Like Las Vegas until all oscillators have been changed at least
once, then like Exploit.

Greedy Las Vegas,
Random
Walk

Exploit Er-
godic

Like Exploit, but accepts perturbations with larger RMSE
given a small chance.

Er-
godic

Metropolis-
Hastings
(Russell
et al., 2010)

Exploit An-
neal

Like Exploit Ergodic, but the acceptance probability of
larger RMSE values decreases according to a temperature
schedule.

Er-
godic

Simulated
Annealing

Exploit An-
neal Weight

Like Exploit Anneal, but only perturbs gain. Er-
godic

Simulated
Annealing

Basin Hop-
ping

Similar to Simulated Annealing with a second, local, opti-
mization step. Here Constrained Optimization BY Linear
Approximation (COBYLA) is used for local optimization.

Er-
godic

Basin Hop-
ping

SciPy An-
neal

Conceptually similar to Exploit Anneal Weight. Uses
SciPy’s implementation of Generalized Simulated Anneal-
ing.

Er-
godic

Generalized
Simulated
Annealing

SciPy Dual
Anneal

Like SciPy Anneal, but uses a local optimization step af-
ter each annealing iteration. Local optimization via the
Limited-memory Broyden-Fletcher-Goldfarb-Shanno with
Bound constraints (L-BFGS-B) method.

Er-
godic

Generalized
Simulated
Annealing

Table 6: Algorithm shorthand, second part.

4 Experimental Setup
All experiments make use of the default parameters presented in Table 3 on
the oscillator level. On the ensemble level, the parameters in Table 7 are
used as default. Here, N denotes the number of oscillators, Z the number of
perturbations, T. the target function, amp. means amplitude, f frequency,
fs sampling rate and d. means duration. A sine of 500 kHz centered around
zero with an amplitude of 1 has been chosen as default target as 500 kHz
lies within the VO2 frequency band. For each experiment, the results are
averaged over L runs by default.

L N Z T. T. f T. bias T. amp. T. d. fs
10 100 20 k sine 500 kHz 0 [a.u.] 1 [a.u] 2e-5 s 2.5 GHz

Table 7: Default ensemble parameters.

Tables 8 and 9 list the conducted experiments. For each reported diversity
value (div.) in Table 8, the parameters are drawn from a uniform distribution.
The reported diversity value is the difference between the upper and lower
bound of said distribution.

46

U(a, b) [kΩ]
Name Description and goal a b div.

Resistance diversity
Oscillation frequency is controlled by
resistor R_FREQ in the RC-circuit.
To test whether a broader band increases fit.

40 54 14
33 61 29
26 68 42
19 75 56
19 95 76
19 125 106

Phase diversity
Phase is controlled by the
onset of the voltage source V1.
To test whether a broader band increases fit.

0 0 0
0 0.66 0.66
0 1 1
0 2 2
0 4 4

Gain diversity
Gain is controlled by resistors
R_GAIN via an op amp.
To test whether a broader band increases fit.

0 1 1
0 5 5
0 10 10
0 50 50
0 100 100

Offset diversity
Offset is controlled by resistors
R_OFFSET via an op amp.
To test whether a broader band increases fit.

0 0 0
-25 25 50
-50 50 100
-75 75 150
-100 100 200

Table 8: Dependent oscillator variables for the hybrid generator experiments.

For example, resistance diversity (div.) is the difference between the
upper (b) and lower bound (a) of the uniform distribution U from which
RC-circuits’ resistances R are sampled (see Figure 7). Resistance diversity
influences the frequency band produced by the oscillator ensemble and thus
influences the ability to fit target functions. The relationship between fre-
quency and resistance is given by the RC-circuit’s time constants and is
described by Equation 17; this relationship is also visualized in Figure 11
(right). The lower bound doesn’t extend below 19 kΩ as oscillation doesn’t
occur reliably for lower values. The upper bound has been chosen at twice
the maximum range explored by Maffezzoni et al. (2015).

Similarly, we perform experiments where increasing amounts of phase,
gain and offset diversity are sampled in order to test whether the ability to
fit target functions is improved. Phase allows shifting an oscillator’s signal
in time. Gain or weight modulation allows dampening the contribution of
oscillators not matching a target signal, and amplifying the contribution of
those that do; it is also known as dynamic range. Variability in offset allows
approximating target functions whose mean is not zero. More oscillators
add more tuneable parameters while more perturbations add optimization
iterations.

We try various target functions (see Section 3.3), frequencies and dura-
tions to test our hypotheses. For the target function experiment shown in
Table 9, we test the ability to fit target functions ordered by anticipated

47

Name Description and goal Values
Number of
oscillators

Number of decoupled oscillators in an ensemble. To test
whether a larger number increases fit.

50, 100, 200, 500, 1000

Number of
perturba-
tions

Number of perturbations applied to an ensemble. To test
whether a larger number increases fit.

0, 500, 1 k, 5 k, 10 k,
50 k

Target
function

Waveform of the approximated target function. To test
the ability of fit on a set of targets ordered by difficulty.

Sine, square, triangle,
sawtooth, inv. saw-
tooth, beat, chirp,
damp. chirp, uniform
noise, Gaussian noise,
10-pt avg. uniform
noise, 10-pt avg.
Gaussian noise, ”mag-
pie”, ”yes”

Target du-
ration

Duration of the approximation target function. To test
if long periodic signals are approximated as well as short
ones.

1e-4, 1e-3, 1e-2 s

Target fre-
quency

Frequencies of sines and damped chirp signals. To test
the ability of fit on various frequencies.

1, 10, 100, 1 k, 10 k,
100 k, 1 MHz

Table 9: Dependent ensemble variables for the hybrid generator experiments.

difficulty. For a given target function, the mean and standard deviation of
the RMSE is computed over the number of L runs with each algorithm; note
that this includes all algorithms listed in Section 3.4. Therefore, given 25
algorithms and 3 runs per algorithm, the mean and standard deviation is
computed over 75 RMSE values for each target function. Furthermore, for
the sine, triangle, sawtooth, inverse sawtooth, square wave and beat targets,
signals at 4 different frequencies are tested, from 1 kHz to 1 MHz, with steps
in powers of 10. Therefore, for targets with various frequencies, the mean
and standard deviation is computed over 4 · 75 = 300 RMSE values. The
noise targets have no frequency as they are sampled from a uniform or Gaus-
sian distribution until the number of samples is equal to a specified duration
multiplied by the sampling frequency. For the smoothened noise targets, a
10 point average is applied. In the target function experiment, the chirp
and damped chirp signals use a starting frequency of 1 Hz and a stopping
frequency of 1 MHz.

For the target frequency experiment sines and damped chirps are used.
The frequencies of the sines are directly reported in Table 9. The damped
chirps have a start and stop frequency which is set between two adjacent
frequencies, for example from 1 Hz to 10 Hz, from 10 Hz to 100 Hz, etc.

Lastly, for each experiment multiple algorithms are applied. Therefore, a
comparison of the algorithms workings is made linked to the results of previ-
ous experiments. In this comparison we focus on the hypotheses formulated
in Section 1.3.

48

5 Results
In this section we present experimental results addressing the research ques-
tions introduced in Section 1.3. The focus lies on results of the hybrid signal
generator pipeline for reasons discussed in Section 3.1. The figures presented
in this section contain the names of algorithms as devised for the develop-
ment of simulation code. The given names don’t claim that the algorithms
are novel; however they are kept instead of literature names as they are effec-
tive at descriptively naming algorithm variations. Furthermore while names
in the plots are written in pascal case, in the text they are written apart.
Additionally, the prefix ”MC”, short for Monte Carlo, is dropped in the text.
A short-hand description of each algorithm with reference to literature is
found in Section 3.4.

5.1 Summary
We find that the Las Vegas algorithm performs best across a range of exper-
iments.

Multiple hypotheses on oscillator properties are tested. The results show
that resistance diversity has a relatively small effect on the RMSE. We find
that the RMSE increases alongside resistance diversity. Phase diversity has
a large effect on the RMSE. The RMSE is minimal when phase shifts be-
tween 0 and 2 π are sampled. Dynamic range has a large effect on the RMSE
in particular when the dynamic range is large. The RMSE increases with
increasing dynamic range. No change in RMSE is observed with increas-
ing offset diversity for a majority of tested algorithms (Section 10.2 in the
Appendix).

On the ensemble level, an increase in the number of oscillators tends to
increase the RMSE. The Las Vegas algorithm is not affected by an increase
in the number of oscillators. An increase in the number of perturbations
reduces the RMSE across stochastic algorithms.

Real world target signals cannot be approximated with the hybrid pipeline,
while fitting a sine wave of 500 kHz is possible. Fitting longer durations of
periodic signals doesn’t increase RMSE, see Section 5.5 in the Appendix.

Algorithms perturbing one oscillator at a time perform best. No clear
trend is observed regarding algorithms that perform weight-offset pertur-
bation compared to weight-offset-frequency-phase perturbation. Greedy al-
gorithms outperform those that probabilistically accept RMSE increasing
states. See Section 10.4 in the Appendix for details.

49

5.2 Oscillator properties
5.2.1 Resistance diversity

Figure 15 displays resistance diversity (x-axis) against RMSE (y-axis) for a
broad set of tested algorithms. The three worst performing algorithms are
MCPurge, MCDampen and MCGrowShrink. The best performing algorithm
is linear regression that serves as a benchmark. For algorithms in bracket B,
the mean RMSE appears lowest in the 14 kΩ band and largest in the 106 kΩ
band; a good example is the One Shot algorithm. For algorithms in bracket
A, the mean RMSE appears lowest in the 56 kΩ band and largest in the 106
kΩ band; a good example is the Exploit Decoupled algorithm.

Figure 15: RMSE as a function of resistance diversity for a broad set of
algorithms. Mean and standard deviation over 10 runs. See Table 10 for
tabular data.

As Figure 15 is difficult to interpret, Table 10 highlights the results of
the four best algorithms. In the table, B. Hop. refers to Basin Hopping.
The three stochastic algorithms with lowest RMSE in the 56 kΩ band are
the Las Vegas algorithm, the Exploit Weight algorithm and Basin Hopping.
The Las Vegas algorithm is best across all resistance diversity bands with
the exception of the 42 kΩ band. Here, Differential Evolution, not shown
in the table, achieves a mean RMSE of 0.0007 with standard deviation (SD)
0.0013. In the 106 kΩ band, the Exploit-Neighbor-Weight algorithm achieves
a mean RMSE, lower than Basin Hopping, of 1.18 with SD=0.22. In the 76

50

kΩ band, the Exploit algorithm has the third lowest mean RMSE (M) of the
stochastic algorithms with M=0.66 and SD=0.27. The RMSE dip at 56 kΩ
and the maximum RMSE at 106 kΩ visible in Figure 15 is also present in
the tabular data.

RMSE
R ∼U(a, b) kΩ Linear Regression Las Vegas Exploit Weight B. Hop.
a b div. M SD M SD M SD M SD
40 54 14 1.78e-15 5.94e-17 0.05 0.01 0.15 0.12 0.22 0.15
33 61 28 1.76e-15 3.54e-16 0.03 0.01 0.06 0.07 0.08 0.12
26 68 42 1.74e-15 1.67e-16 0.02 0.01 0.05 0.04 0.11 0.13
19 75 56 2.12e-15 1.32e-15 0.03 0.01 0.08 0.06 0.05 0.06
19 95 76 1.85e-15 5.43e-16 0.04 0.01 0.2 0.14 0.92 0.73
19 125 106 1.35e-15 1.96e-16 0.08 0.04 0.33 0.11 1.18 0.22

Table 10: RMSE as a function of resistance diversity with four select algo-
rithms. See Figure 15 for the full set of algorithms.

Figure 16 displays the frequency distribution of four well-performing algo-
rithms. We observe a frequency band from 0.2 to 1.2 MHz across algorithms
in line with the VO2 frequency band. Only Las Vegas shows frequencies be-
low 0.2 MHz; these can be attributed to zero-frequency oscillators which are
used to initialize the Las Vegas ensemble. Gaps in the frequency distribution
are visible across algorithms. The probability densities are similar between
algorithms, also for Las Vegas when not considering its zero-frequency oscil-
lators.

5.2.2 Phase diversity

Table 11 shows the RMSE as a function of phase diversity for the three
stochastic algorithms with the lowest RMSE and linear regression as a ref-
erence. Here, Diff. Evol. and Exploit W. denote Differential Evolution
and Exploit Weight, respectively. Out of the stochastic algorithms, Differ-
ential Evolution shows the smallest mean for 0π phase diversity. Notably,
the RMSE increases for Differential Evolution at 2π and 4π by one order of
magnitude compared to when phase diversity is ≤ 1π. The overall smallest
RMSE out of the stochastic algorithms is achieved by the Las Vegas algo-
rithm at 2π phase diversity. The RMSE doesn’t further decrease beyond 2π
phase diversity. The effect of increased phase diversity is least pronounced
in the Exploit Weight algorithm. See Section 10.1 in the Appendix for the
full set of algorithms.

51

Figure 16: Frequency distributions after optimization. Average over 10 runs.

RMSE
Linear Regression Las Vegas Diff. Evol. Exploit W.

Phase div. M SD M SD M SD M SD
0.00 3.44E-10 3.40E-10 0.47 0.03 0.39 0.01 0.86 0.07
0.67 7.88E-14 8.70E-14 0.52 0.07 0.40 0.01 0.74 0.07
1.00 7.38E-15 1.06E-14 0.44 0.05 0.35 0.02 0.62 0.04
2.00 1.35E-15 1.25E-16 0.10 0.05 5.72 3.78 0.52 0.12
4.00 1.62E-15 5.30E-16 0.11 0.03 3.58 3.59 0.55 0.13

Table 11: RMSE as a function of phase diversity with four select algorithms.
See Figure 26 for the full set of algorithms.

52

5.2.3 Dynamic range

Figure 17 shows the RMSE as a function of dynamic range (gain or weight
diversity) for a broad set of algorithms. Dynamic range is shown on a loga-
rithmic scale whereas RMSE is on a linear scale. The RMSE increases with
an increase in dynamic range for all stochastic algorithms. We can identify
three brackets of algorithms, A, B and C. Algorithms in bracket C respond
strongest to an increase in dynamic range. The RMSE is response is exponen-
tial for both the B and C brackets. The exponential response is stronger in
bracket C. The Exploit Decoupled algorithm stands out from the C bracket
as it shows a decrease in RMSE between a dynamic range of 50 and 100.
An outlier in bracket B is Basin Hopping which shows a steeper increase in
RMSE similar to bracket C. Bracket A is formed by Las Vegas and linear
regression which respond sub-linearly.

Figure 17: RMSE as a function of dynamic range for a broad set of algo-
rithms. Mean and standard deviation over 10 runs. See Table 12 for tabular
data.

Table 12 shows RMSE as a function of dynamic range for the three
stochastic algorithms with the lowest RMSE and linear regression. In the ta-
ble Exploit N. W. refers to the Exploit Neighbor Weight algorithm. The Las
Vegas algorithm shows the lowest RMSE across all dynamic ranges among
the stochastic algorithms. The distance between Las Vegas and the other
algorithms increases as dynamic range increases. A hundredfold increase in
dynamic range increases the RMSE of the Las Vegas algorithm by a factor

53

of four. In comparison, the RMSE of Exploit Weight increases by a factor of
41.9.

RMSE
Linear Regression Las Vegas Exploit W. Exploit N. W.

Dyn. range M SD M SD M SD M SD
1 1.33E-15 2.48E-16 0.07 0.04 0.10 0.05 0.17 0.03
5 1.54E-15 5.95E-16 0.08 0.03 0.23 0.08 0.65 0.12
10 1.57E-15 5.01E-16 0.10 0.03 0.52 0.19 1.39 0.15
50 1.56E-15 4.46E-16 0.21 0.06 2.19 0.54 5.86 1.62
100 1.62E-15 5.3E-16 0.28 0.08 4.91 1.50 13.42 2.60

Table 12: RMSE as a function of dynamic range (dyn. range) with four
select algorithms. See Figure 17 for the full set of algorithms.

Figure 18 shows the distribution of gain for the algorithms listed in Table
12. The distribution of gain is shown for a default dynamic range of 10 [a.u.]
In each of the subfigures, probability density is shown on a logarithmic y-axis
with gain on the x-axis. Linear regression shows a probability density near
1000 around 0 gain; positive and negative gains are observed. The distri-
bution is not entirely symmetric, appearing heavier on the positive side of
the x-axis. Both Las Vegas and Exploit Weight display no negative gains, as
per their respective distributions. With Las Vegas the probability density is
maximal around 0 gain; the probability density exponentially decreases and
approaches zero as the gain approaches 2.5. The probability density around
zero of Las Vegas is in the same order of magnitude as that of linear re-
gression. The probability densities of Exploit Weight and Exploit Neighbor
Weight are smaller by two and three orders of magnitude, respectively. Ex-
ploit Weight observes a decrease in probability density up to 2.5, from there
on the density remains constant. Lastly, Exploit Neighbor Weight produces
the flattest distribution with a mode around 2 gain instead of 0; we observe
negative weights. The decay of probability to the left tail is more linear and
steep compared to the right tail.

5.3 Ensemble properties
5.3.1 Number of oscillators

Figure 19 shows the RMSE as a function of the number of oscillators in the
ensemble. Where discernible in this figure, the error grows with the num-
ber of oscillators across all algorithms. We observe two brackets in terms
of algorithms’ RMSE response. RMSE grows more rapidly in bracket B.

54

Figure 18: Weight distributions after optimization. Average over 10 runs.

Notably, Differential Evolution and Basin Hopping are part of group B al-
though both algorithms start out with a RMSE < 1 for N = 50 oscillators.
The Basin Hopping algorithm stands out in particular as its response curve
is exponential while other algorithms in the bracket show a sub-linear re-
sponse. Algorithms in bracket A show a weaker and more linear response to
increasing N . Within bracket A, Exploit J10, Las Vegas Weight and Exploit
Fast respond the strongest to an increase in the number of oscillators.

Table 13 shows the RMSE as a function of the number of oscillators in the
ensemble for the four algorithms with lowest RMSE. The Las Vegas algorithm
doesn’t respond to an increase in the number of oscillators. The RMSE of
Differential Evolution is initially low. Between 50 and 100 oscillators, the
RMSE increases by a factor of 16. The growth rate drops between 100 and
200 oscillators to a factor of 4.

5.3.2 Number of perturbations

Figure 20 shows the RMSE as a function of the number of perturbations
Z. For a majority of algorithms the RMSE decreases with an increase in
the number of perturbations. This trend doesn’t apply to the Purge and

55

Figure 19: RMSE as a function of the number of oscillators N in an ensemble
for a broad set of algorithms. Mean and standard deviation over 10 runs.
See Table 13 for tabular data.

RMSE
Linear Regression Las Vegas Diff. Evol. Exploit W.

N M SD M SD M SD M SD
50 1.30E-14 3.21E-14 0.14 0.07 0.19 0.18 0.23 0.14
100 1.52E-15 8.40E-16 0.11 0.04 3.16 3.82 0.41 0.12
200 1.16E-15 1.59E-16 0.10 0.03 12.79 1.87 0.67 0.23
500 1.33E-15 3.20E-16 0.08 0.03 22.31 3.88 1.18 0.27
1000 2.33E-15 7.10E-16 0.12 0.05 30.03 4.47 1.70 0.48

Table 13: RMSE as a function of the number of oscillators N with the three
lowest-RMSE algorithms and linear regression. See Figure 19 for a larger set
of algorithms.

56

Dampen algorithms that are only capable of decreasing oscillator gains. For
algorithms benefitting from an increase in the number of perturbations, we
find that the rate of decrease slows down with an increasing number of pertur-
bations. This is expected as the algorithms are stochastic and the probability
of finding a better solution decreases with an increasing number of perturba-
tions. The SciPy Dual Anneal algorithm stands out with a steep decline in
RMSE between 10 k and 50 k perturbations. Furthermore, Oscillator Anneal
Log and Exploit Decoupled stand out for steeply descending between 10 k
and 50 k perturbations. Although we can identify gaps between algorithms
along the y-axis at 50 k perturbations, there are no unique patterns of RMSE
shrinkage to distinguish groups.

Table 14 shows the RMSE for the four lowest-RMSE algorithms. The
table shows that the RMSE decreases with an increasing number of pertur-
bations for the three stochastic algorithms. Note that, the linear regression
algorithm doesn’t respond to a change in Z as it is not a stochastic algorithm;
thus perturbations are not allocated or tracked. Since the other algorithms
are stochastic they benefit from an increase in the number of perturbations.
Exploit Weight shows a 68 fold RMSE decrease between 0 and 50k pertur-
bations. Similarly, Exploit Neighbor Weight shows a 17 fold decrease. The
decrease is smallest for the Las Vegas algorithm with an 11 fold decrease. It
also stands out that the Las Vegas algorithm sets out with a lower RMSE
than Exploit Weight achieves after 10 k perturbations; the Las Vegas algo-
rithm is therefore more efficient in the number of perturbations needed.

RMSE
Linear Regression Las Vegas Exploit W. Exploit N. W.

Z M SD M SD M SD M SD
0 1.29E-15 1.63E-16 0.71 1.11E-16 19.08 2.40 18.61 2.50
500 1.31E-15 1.44E-16 0.49 0.10 9.76 2.47 7.12 1.44
1000 1.32E-15 3.25E-16 0.44 0.12 3.97 0.79 3.60 0.52
5000 1.41E-15 3.26E-16 0.19 0.06 1.13 0.33 1.92 0.26
10000 1.27E-15 1.57E-16 0.15 0.04 0.73 0.25 1.51 0.37
50000 1.34E-15 1.17E-16 0.06 0.03 0.28 0.12 1.05 0.16

Table 14: RMSE as a function of the number of perturbations Z with the
four lowest-RMSE algorithms. See Figure 20 for a larger set of algorithms.

57

Figure 20: RMSE as a function of the number of perturbations Z applied
to an ensemble for a broad set of algorithms. Mean and standard deviation
over 10 runs. See Table 20 for tabular data.

5.4 Targets
5.4.1 Target frequency

Figure 21 shows the RMSE as a function of target frequency. Both sinusoids
and damped chirp targets are approximated. For each target, the RMSE is
the mean over four algorithms and five runs per algorithm. The algorithms
are linear regression, Las Vegas, Exploit Weight and Exploit.

First, we observe that a majority of the sine targets yield a lower RMSE
compared to the chirps. Following the target function results in Section
10.3, this is not surprising. A constant change of frequency requires a larger
ensemble size to be approximated well. Second, we observe that sine targets
from 1 Hz to 1 kHz yield similarly low errors. The 1 MHz sine follows the
trend of previous sinusoids, while the 0.1 MHz sine stands out as having the
largest RMSE of all targets and a near two-fold RMSE compared to the 1
Hz sine.

Figure 22 shows three target sinusoids approximated with the Las Vegas
algorithm without averaging. The remaining parameters are kept the same
as in Figure 21. In the figure, time is on the x-axis and signal amplitude is on
the y-axis. The original target signal is shown in blue while the approximated
signal appears in orange, labelled as prediction. The findings contrast the

58

results of Figure 21.
Firstly we find that the 1 Hz sine is not approximated at all, although

the RMSE is low. The low RMSE is explained by the low amplitude of the
target signal at the sampled interval of the function. Furthermore, because
1 Hz is slow in comparison to the observed time-frame of 2e-5 s, the target
signal appears as a straight line.

Second, we find that the 100 kHz target is also not approximated. The
explanation for the large RMSE while approximating the 0.1 MHz sine lies in
the larger amplitude of the target signal in the observed time frame compared
to lower frequency targets. Note that linear regression also fails to approxi-
mate the target with a similar RMSE of 0.69 for a single run. This indicates
that there exists no better solution given the oscillators in the ensemble. The
inability to fit targets of 100 kHz and slower is likely explained by the VO2

frequency band of the oscillators. More specifically, (1) the upper and lower
bound of the band, which are 1.2 MHz and 0.2 MHz, respectively and (2)
the staircase-like shape of the VO2 frequency band with a large probability
of similar-frequency oscillators.

Third, we observe that the 1 MHz sine can be approximated. Its RMSE
is lower than the 100 kHz sine’s, but larger than the 1 Hz sine’s, both of
which are not approximated. Note that variations in amplitude of the target
sine in the 1 MHz figure are artifacts of sampling. Cardinal sine interpolation
has been used to smoothen both the target and the prediction in the given
figure for plotting; the RMSE is calculated on raw data.

5.5 Target duration
Figure 23 shows the RMSE as a function of the target duration for a subset
of algorithms. We find that with the exception of Differential Evolution,
the RMSE remains constant as the duration is increased. Although not
included here for clarity of the figure, we find a similar result for the remaining
algorithms. Differential Evolution shows a larger standard deviation and an
increase in RMSE beyond target durations 10−4 s compared to the other
algorithms in the figure. This may be partially explained by the sample size
of 3 runs per algorithm.

59

Figure 21: RMSE as a result of targets with varying frequency. Mean and
standard deviation over 5 runs.

6 Discussion

6.1 Results discussion
6.1.1 Resistance diversity

The resistance of an oscillator directly controls its frequency. Therefore
increased resistance diversity increases the bandwidth of the frequency re-
sponse. We asked whether a wider band of resistances will lower the RMSE.
The results in Section 5.2.1 allow two observations. First, the RMSE in-
creases when oscillators slower than the target-frequency are added to the
ensemble. Second, the RMSE decreases when faster than target signal oscil-
lators are added; this was only visible for algorithms in group A. We present
two possible explanations.

First, a wider band of resistances increases the search space. Meanwhile,
the number of perturbations is kept constant. Thus, there may be insufficient
resources to traverse the search space. This explanation seems appropriate
given that the effect cannot be observed with linear regression. Linear re-
gression finds an analytical solution that is not constrained by the number
of perturbations. Furthermore, the Las Vegas algorithm is second best; be-
cause the algorithm starts out with an empty ensemble and only adds RMSE
reducing oscillators, it doesn’t need to remove RMSE increasing oscillators

60

(a) 1 Hz (b) 100 kHz

(c) 1 MHz

Figure 22: Fitting sinusoids of 1 Hz with RMSE=7.15e-5, 100 kHz with
RMSE=0.71 and 1 MHz with RMSE=0.14 using the Las Vegas algorithm.
Result of a single run.

61

Figure 23: RMSE as a result of the target duration for a selection of algo-
rithms. Mean and standard deviation over 3 runs.

from the ensemble. This implies that the non-gradient algorithms struggle
with filtering out non-useful oscillators efficiently.

Second, the target signal is a sinusoid at 500 kHz. This means that
oscillators with a frequency below 500 kHz are not helping to reduce the
RMSE. The results show that the increase in RMSE occurs above 75 kΩ.
Resistances of 75 kΩ and higher correspond to frequencies below 500 kHz, as
shown in Figure 11 (right).

6.1.2 Phase diversity

We hypothesized that increasing phase diversity lowers the RMSE. The re-
sults in Section 5.2.2 are conclusive and show that the RMSE decreases with
increasing phase diversity. As expected, an increase beyond 2π does not fur-
ther decrease the RMSE because the sawtooth generated by the oscillators in
the ensemble is periodic. The findings apply to all algorithms except for one
outlier. It’s unclear why Differential Evolution shows a larger RMSE with
increasing phase.

62

6.1.3 Dynamic range

The hypothesis that dynamic range lowers RMSE must be rejected following
the results of Section 5.2.3. We find two possible explanations for the increase
in RMSE as a function of dynamic range.

First, the amplitude of the target signal is constant at 1 [a.u.]. Addition-
ally, the amplitude of the VO2 oscillation is near 1 V. An amplification of 0.1
V by a factor of 10 is already sufficient to reach the target signal amplitude.
Second, the number of perturbations is constant at 20 k. While an increase
in dynamic range widens the search space that can be explored, the number
of steps to explore remains constant. Lastly, we observe that linear regression
relies on negative gains. Therefore, allowing negative gains for all stochastic
algorithms may further decrease RMSE.

6.1.4 Number of oscillators

We hypothesized that an increase in the number of oscillators decreases the
RMSE. The results in Section 5.3.1 allow us to reject this hypothesis. The
following explanations come to mind.

First, adding more oscillators increases the dimensionality of the search
space. While a better solution can be found, more resources are necessary
to find a good solution. More resources are not available however, as the
number of perturbations is kept constant.

Second, the probability of nulling out bad oscillators may be too low
under the uniform distribution from which an ensemble’s gains are drawn.
The Las Vegas algorithm circumvents this by only adding RMSE-decreasing
oscillators to an initially empty ensemble.

Third, the oscillators’ frequency response as a function of RC-circuit re-
sistance is not continuous. The frequency response is staircase-like as shown
in Figure 11 (right). As the plateaus capture the largest density of oscillators,
the probability of adding an oscillator with a sufficiently unique frequency
response is low.

6.1.5 Number of perturbations

We hypothesized that an increase in the number of perturbations to an os-
cillator ensemble decreases the RMSE. The results in Section 5.3.2 confirm
this hypothesis. We also find that the Las Vegas algorithm is the most ef-
ficient stochastic algorithm in terms of the number of perturbations needed
to achieve a low RMSE.

From these arguments we conclude that adding oscillators comes at an
expense without a corresponding benefit. It remains open to investigate the

63

optimal number of oscillators. Although the number likely is below 50, it also
likely is equal to or greater than the number of pleateaus in the frequency
response. This indicates that materials beyond VO2 should be explored.

6.1.6 Target frequency

We hypothesized that targets slower than the VO2 frequency band are more
difficult to approximate. Our results in Section 5.4.1 confirm this hypothesis.
The findings show that when the target frequency is within the VO2 frequency
band, the target can be approximated.

We didn’t expect that signals below, but close to, the VO2 frequency band
could not be approximated. Intuitively, more oscillators are necessary to
approximate such targets. However as discussed in Section 6.1.4, adding more
oscillators does not necessarily lead to a lower RMSE due to the staircase-like
frequency response of the VO2 oscillators.

6.1.7 Target duration

We hypothesized that increased duration of periodic target signals doesn’t
affect the RMSE. Our results confirm this hypothesis. This showcases an
advantage of the neuromorphic over the digital compute paradigm.

In the digital domain, either higher resolution or a longer duration of a
target signal correspond to more samples in the time domain. An increase in
the number of samples is coupled to runtime cost; this is a limitation on the
hardware level of serial digital computers. Meanwhile, the oscillator ensemble
is inherently parallel and the approximation of a target is performed in the
frequency domain. Thus it is independent of signal duration and resolution
for periodic signals.

Note that we also don’t observe an increase in RMSE for linear regres-
sion. This is explained by linear regression not using a perturbation budget
that is enforced for the stochastic algorithms. An implementation of linear
regression with a fixed budget of operations is necessary to show an increase
in RMSE.

6.2 Conclusion
We find that signal approximation with an ensemble of VO2 oscillators is
possible for fast frequencies between 0.2 Ghz and 1.2 GHz. We also conclude
that VO2 is not suited for approximating slow frequency targets and by that
account most real world signals.

64

The advantages of the neuromorphic approach are its parallel nature and
its independence of signal duration and resolution for periodic signals. Ad-
ditionally, signal approximation with an ensemble of oscillators promises to
be more energy efficient than digital approaches. The need for such systems
is exemplified by the rise of machine learning on microcontrollers (Warden
& Situnayake, 2020).

We find two stochastic algorithms, Las Vegas and Exploit Weight, that
perform particularly well while maintaining minimal state. This shows that
non-gradient algorithms are worth exploring in a neuromorphic context.

6.3 Limitations and Future Work
We recognize that the presented results are the outcome of simulation. We
make assumptions regarding the behavior of the VO2 oscillator by disregard-
ing its probabilistic nature reported by Maffezzoni et al. (2015). We also use
caching of oscillator signals to speed up the simulation. It may be argued
that the narrow steps between VO2 frequency plateaus are underrepresented
as a result. Furthermore, we acknowledge that the integration of a number
of VO2 oscillators in the order of 100 oscillators is yet to be achieved in phys-
ical circuits (Corti et al., 2020). Yet, the simulation results are motivating
to continue with such efforts.

Due to the limitations of the VO2 material, the exploration of other ma-
terials for the purpose of signal approximation is recommended. We expect
that an improved oscillator ensemble can benefit from a variety of oscillator
circuits covering different frequency bands. This in turn may allow for the
approximation of lower frequency signals. Another approach to approximate
slower targets may be the use of a low-pass filter applied to the summed
ensemble signal to filter out high frequency components.

The perturbation of the oscillator ensemble relies on fast manipulation
of resistors in order to change frequency, gain and offset. It remains to be
explored how this can be achieved in a physical system. Possible solutions
include the use of potentiometers or an extended use of memristive devices
that replace resistors in the oscillator circuit.

In the chosen approach, the combination of oscillator signals is exclusively
linear and oscillators themselves are uncoupled. It is well known that non-
linearities play an important role in the function approximation capabilities of
neural networks. Coupling of oscillators, so that the output of one oscillator
drives the input of another, is another avenue to explore which allows drawing
from literature on spiking neural networks and reservoir computing.

We hope that this work contributes to a future of machine learning guided
by energy efficiency and inspired by the wonders of biological life.

65

References
Abel, S., Stark, D. J., Eltes, F., Ortmann, J. E., Caimi, D., & Fompeyrine,

J. (2017). Multi-Level Optical Weights in Integrated Circuits. 2017
IEEE International Conference on Rebooting Computing (ICRC), 1–
3. https://doi.org/10.1109/ICRC.2017.8123672

Agostinelli, A., Denk, T. I., Borsos, Z., Engel, J., Verzetti, M., Caillon, A.,
Huang, Q., Jansen, A., Roberts, A., Tagliasacchi, M., Sharifi, M.,
Zeghidour, N., & Frank, C. (2023, January 26). MusicLM: Generating
Music From Text. arXiv: 2301.11325 [cs, eess]. https://doi.org/
10.48550/arXiv.2301.11325

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,
P., Imam, N., Nakamura, Y., Datta, P., Nam, G.-J., Taba, B., Beakes,
M., Brezzo, B., Kuang, J. B., Manohar, R., Risk, W. P., Jackson,
B., & Modha, D. S. (2015). TrueNorth: Design and Tool Flow of a
65 mW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(10), 1537–1557. https://doi.org/10.1109/TCAD.2015.
2474396

Alspector, J., Meir, R., Yuhas, B., Jayakumar, A., & Lippe, D. (1992). A
Parallel Gradient Descent Method for Learning in Analog VLSI Neu-
ral Networks. Advances in Neural Information Processing Systems, 5.
Retrieved September 29, 2022, from https://proceedings.neurips.cc/
paper/1992/hash/1595af6435015c77a7149e92a551338e-Abstract.html

Altman, N. S. (1992). An Introduction to Kernel and Nearest-Neighbor Non-
parametric Regression. The American Statistician, 46(3), 175–185.
https://doi.org/10.1080/00031305.1992.10475879

Babai, L. (1979). Monte-Carlo algorithms in graph isomorphism testing. Uni-
versité de Montréal Technical Report.

Bäck, T., & Schwefel, H.-P. (1993). An Overview of Evolutionary Algorithms
for Parameter Optimization. Evolutionary Computation, 1(1), 1–23.
https://doi.org/10.1162/evco.1993.1.1.1

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Op-
timization. Journal of machine learning research, 13(2), 25.

Bird, J., & Paolo, E. D. (2008). Gordon Pask His Maverick Machines. The
Mechanical Mind in History, 185. Retrieved September 11, 2022, from
https://www.academia.edu/54223516/Gordon_Pask_His_Maverick_
Machines

Boon, M. N., Euler, H.-C. R., Chen, T., van de Ven, B., Ibarra, U. A.,
Bobbert, P. A., & van der Wiel, W. G. (2021, May 15). Gradient

66

https://doi.org/10.1109/ICRC.2017.8123672
https://arxiv.org/abs/2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/TCAD.2015.2474396
https://proceedings.neurips.cc/paper/1992/hash/1595af6435015c77a7149e92a551338e-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/1595af6435015c77a7149e92a551338e-Abstract.html
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1162/evco.1993.1.1.1
https://www.academia.edu/54223516/Gordon_Pask_His_Maverick_Machines
https://www.academia.edu/54223516/Gordon_Pask_His_Maverick_Machines

Descent in Materio. arXiv: 2105.11233 [cs]. Retrieved September 5,
2022, from http://arxiv.org/abs/2105.11233

Brainchip. (2022, September 19). The world’s first commercial producer of
neuromorphic IP. BrainChip. Retrieved September 19, 2022, from
https://brainchip.com/

Brainchip Stock. (2022, September 19). Retrieved September 19, 2022, from
https://investors.brainchip.com/stock

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https:
//doi.org/10.1023/A:1010933404324

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020, July 22).
Language Models are Few-Shot Learners. arXiv: 2005 . 14165 [cs].
https://doi.org/10.48550/arXiv.2005.14165

CIRCUIT060021 Design tool | TI.com. (n.d.). Texas Instruments. Retrieved
January 7, 2023, from https://www.ti.com/tool/CIRCUIT060021

CIRCUIT060022 Design tool | TI.com. (n.d.). Texas Instruments. Retrieved
January 7, 2023, from https://www.ti.com/tool/CIRCUIT060022#
overview

Cooley, J. W., & Tukey, J. W. (1965). An Algorithm for the Machine Calcula-
tion of Complex Fourier Series. Mathematics of computation, 19(90),
297–301.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3), 273–297. https://doi.org/10.1007/BF00994018

Corti, E., Khanna, A., Niang, K., Robertson, J., Moselund, K. E., Gotsmann,
B., Datta, S., & Karg, S. (2020). Time-Delay Encoded Image Recogni-
tion in a Network of Resistively Coupled VO� on Si Oscillators. IEEE
Electron Device Letters, 41(4), 629–632. https://doi.org/10.1109/
LED.2020.2972006

Dahlke, K. (2002–2022). Sines and Cosines are Orthogonal. Math Reference
Project. Retrieved January 3, 2023, from http://www.mathreference.
com/la-xf-four,orth.html

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H.,
Dimou, G., Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.-K., Lines,
A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse, J., Venkatara-
manan, G., … Wang, H. (2018). Loihi: A Neuromorphic Manycore
Processor with On-Chip Learning. IEEE Micro, 38(1), 82–99. https:
//doi.org/10.1109/MM.2018.112130359

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, May 24). BERT:
Pre-training of Deep Bidirectional Transformers for Language Under-

67

https://arxiv.org/abs/2105.11233
http://arxiv.org/abs/2105.11233
https://brainchip.com/
https://investors.brainchip.com/stock
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://www.ti.com/tool/CIRCUIT060021
https://www.ti.com/tool/CIRCUIT060022#overview
https://www.ti.com/tool/CIRCUIT060022#overview
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/LED.2020.2972006
https://doi.org/10.1109/LED.2020.2972006
http://www.mathreference.com/la-xf-four,orth.html
http://www.mathreference.com/la-xf-four,orth.html
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359

standing. arXiv: 1810.04805 [cs]. https://doi.org/10.48550/arXiv.
1810.04805

Energy use per person. (n.d.). Our World in Data. Retrieved September 3,
2022, from https://ourworldindata.org/grapher/per-capita-energy-
use

Frady, E. P., Sanborn, S., Shrestha, S. B., Rubin, D. B. D., Orchard, G.,
Sommer, F. T., & Davies, M. (2022). Efficient Neuromorphic Signal
Processing with Resonator Neurons. Journal of Signal Processing Sys-
tems, 94(10), 917–927. https://doi.org/10.1007/s11265-022-01772-5

Franz, A., Hoffmann, K. H., & Salamon, P. (2001). Best Possible Strategy for
Finding Ground States. Physical Review Letters, 86(23), 5219–5222.
https://doi.org/10.1103/PhysRevLett.86.5219

Freeth, T., Bitsakis, Y., Moussas, X., Seiradakis, J. H., Tselikas, A., Mangou,
H., Zafeiropoulou, M., Hadland, R., Bate, D., Ramsey, A., Allen, M.,
Crawley, A., Hockley, P., Malzbender, T., Gelb, D., Ambrisco, W.,
& Edmunds, M. G. (2006). Decoding the ancient Greek astronomical
calculator known as the Antikythera Mechanism. Nature, 444(7119),
587–591. https://doi.org/10.1038/nature05357

Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-6(6), 721–741. https:
//doi.org/10.1109/TPAMI.1984.4767596

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT
Press.

H F, C. (n.d.). HKBWS - Bird Call, Magpie. Retrieved May 26, 2023, from
http://www.hkbws.org.hk/web/eng/bird_call_eng.htm
Download at http://www.hkbws.org.hk/web/chi/birdcall/Magpie.wav.

Har-Peled, S. (2015). Intro, Quick Sort and BSP. University of Illinois at
Urbana–Champaign, 598: Randomized Algorithms. Retrieved May 26,
2023, from https://sarielhp.org/teach/10/a_rand_alg/lec/01_intro.
pdf
Unpublished lecture notes.

Hoare, C. A. R. (1962). Quicksort. The Computer Journal, 5(1), 10–16. https:
//doi.org/10.1093/comjnl/5.1.10

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

Iwamatsu, M., & Okabe, Y. (2004). Basin hopping with occasional jumping.
Chemical Physics Letters, 399(4), 396–400. https://doi.org/10.1016/
j.cplett.2004.10.032

68

https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://ourworldindata.org/grapher/per-capita-energy-use
https://ourworldindata.org/grapher/per-capita-energy-use
https://doi.org/10.1007/s11265-022-01772-5
https://doi.org/10.1103/PhysRevLett.86.5219
https://doi.org/10.1038/nature05357
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
http://www.hkbws.org.hk/web/eng/bird_call_eng.htm
https://sarielhp.org/teach/10/a_rand_alg/lec/01_intro.pdf
https://sarielhp.org/teach/10/a_rand_alg/lec/01_intro.pdf
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.cplett.2004.10.032
https://doi.org/10.1016/j.cplett.2004.10.032

Jaeger, H. (2021). Towards a generalized theory comprising digital, neuro-
morphic and unconventional computing. Neuromorphic Computing
and Engineering, 1(1), 012002. https : / / doi . org / 10 . 1088 / 2634 -
4386/abf151

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Sim-
ulated Annealing. Science, 220(4598), 671–680. Retrieved February
17, 2023, from https://www.jstor.org/stable/1690046

Kormondy, K. J., Popoff, Y., Sousa, M., Eltes, F., Caimi, D., Rossell, M. D.,
Fiebig, M., Hoffmann, P., Marchiori, C., Reinke, M., Trassin, M.,
Demkov, A. A., Fompeyrine, J., & Abel, S. (2017). Microstructure and
ferroelectricity of BaTiO\lesssub\greater3\less/sub\greater
thin films on Si for integrated photonics. Nanotechnology, 28(7), 075706.
https://doi.org/10.1088/1361-6528/aa53c2

Leiter, C., Zhang, R., Chen, Y., Belouadi, J., Larionov, D., Fresen, V., &
Eger, S. (2023, February 20). ChatGPT: A Meta-Analysis after 2.5
Months. arXiv: 2302.13795 [cs]. https://doi.org/10.48550/arXiv.
2302.13795

Levenberg, K. (1944). A Method for the Solution of Certain Non-Linear
Problems in Least Squares. Quarterly of Applied Mathematics, 2(2),
164–168. Retrieved May 20, 2023, from https://www.jstor.org/stable/
43633451

Loeffler, A., Zhu, R., Hochstetter, J., Li, M., Fu, K., Diaz-Alvarez, A., Nakayama,
T., Shine, J. M., & Kuncic, Z. (2020). Topological Properties of Neuro-
morphic Nanowire Networks. Frontiers in Neuroscience, 14. Retrieved
January 4, 2023, from https://www.frontiersin.org/articles/10.3389/
fnins.2020.00184

Luby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of Las Ve-
gas algorithms. Information Processing Letters, 47 (4), 173–180. https:
//doi.org/10.1016/0020-0190(93)90029-9

Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to
recurrent neural network training. Computer Science Review, 3(3),
127–149. https://doi.org/10.1016/j.cosrev.2009.03.005

Lukoševičius, M., Jaeger, H., & Schrauwen, B. (2012). Reservoir Computing
Trends. KI - Künstliche Intelligenz, 26(4), 365–371. https://doi.org/
10.1007/s13218-012-0204-5

Maffezzoni, P., Daniel, L., Shukla, N., Datta, S., & Raychowdhury, A. (2015).
Modeling and Simulation of Vanadium Dioxide Relaxation Oscillators.
IEEE Transactions on Circuits and Systems I: Regular Papers, 62(9),
2207–2215. https://doi.org/10.1109/TCSI.2015.2452332

McClellan, J. H., Schafer, R. W., & Yoder, M. A. (2017). DSP First (Second
edition, global edition). Pearson.

69

https://doi.org/10.1088/2634-4386/abf151
https://doi.org/10.1088/2634-4386/abf151
https://www.jstor.org/stable/1690046
https://doi.org/10.1088/1361-6528/aa53c2
https://arxiv.org/abs/2302.13795
https://doi.org/10.48550/arXiv.2302.13795
https://doi.org/10.48550/arXiv.2302.13795
https://www.jstor.org/stable/43633451
https://www.jstor.org/stable/43633451
https://www.frontiersin.org/articles/10.3389/fnins.2020.00184
https://www.frontiersin.org/articles/10.3389/fnins.2020.00184
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1007/s13218-012-0204-5
https://doi.org/10.1007/s13218-012-0204-5
https://doi.org/10.1109/TCSI.2015.2452332

Mead, C. (1990). Neuromorphic Electronic Systems. PROCEEDINGS OF
THE IEEE, 78, 8.

Molad, E., Horwitz, E., Valevski, D., Acha, A. R., Matias, Y., Pritch, Y.,
Leviathan, Y., & Hoshen, Y. (2023, February 2). Dreamix: Video Dif-
fusion Models are General Video Editors. arXiv: 2302 .01329 [cs].
https://doi.org/10.48550/arXiv.2302.01329

Moll, M., Olma, R., & Müller, T. (2022, January 3). VISION EQXX – taking
electric range and efficiency to an entirely new level. marsMediaSite.
Retrieved September 19, 2022, from https://group-media.mercedes-
benz.com/marsMediaSite/en/instance/ko/VISION-EQXX--taking-
electric-range-and-efficiency-to-an-entirely-new-level.xhtml?oid=
52282663

Muller, L. K., Stark, P., Offrein, B. J., & Abel, S. (2020). Neuromorphic Sys-
tems Design by Matching Inductive Biases to Hardware Constraints.
Frontiers in Neuroscience, 14. Retrieved September 13, 2022, from
https://www.frontiersin.org/articles/10.3389/fnins.2020.00437

Nakajima, K., & Fischer, I. (Eds.). (2021). Reservoir Computing: Theory,
Physical Implementations, and Applications. Springer Singapore. https:
//doi.org/10.1007/978-981-13-1687-6

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo
methods. Department of Computer Science, University of Toronto
Toronto, ON, Canada.

Ngspice, the open source Spice circuit simulator. (n.d.). Retrieved January
22, 2023, from https://ngspice.sourceforge.io/

Núñez, J., Avedillo, M. J., Jiménez, M., Quintana, J. M., Todri-Sanial, A.,
Corti, E., Karg, S., & Linares-Barranco, B. (2021). Oscillatory Neu-
ral Networks Using VO2 Based Phase Encoded Logic. Frontiers in
Neuroscience, 15, 655823. https://doi.org/10.3389/fnins.2021.655823

PacDV. (2022). Voices and Vocal Wav Sound Effects. Pacific Digital Video.
Retrieved January 4, 2023, from https://www.pacdv.com/sounds/
voices-5.html
files yes-5.wav and okay-7.wav.

Pask, G. (1960). The natural history of networks. Self-organizing systems,
232–263.

Pearson, K. (1905). The Problem of the Random Walk. Nature, 72(1865),
294–294. https://doi.org/10.1038/072294b0

Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-Induced Behavior in
the Magpie (Pica pica): Evidence of Self-Recognition. PLOS Biology,
6(8), e202. https://doi.org/10.1371/journal.pbio.0060202

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).
Language Models are Unsupervised Multitask Learners. OpenAI blog.

70

https://arxiv.org/abs/2302.01329
https://doi.org/10.48550/arXiv.2302.01329
https://group-media.mercedes-benz.com/marsMediaSite/en/instance/ko/VISION-EQXX--taking-electric-range-and-efficiency-to-an-entirely-new-level.xhtml?oid=52282663
https://group-media.mercedes-benz.com/marsMediaSite/en/instance/ko/VISION-EQXX--taking-electric-range-and-efficiency-to-an-entirely-new-level.xhtml?oid=52282663
https://group-media.mercedes-benz.com/marsMediaSite/en/instance/ko/VISION-EQXX--taking-electric-range-and-efficiency-to-an-entirely-new-level.xhtml?oid=52282663
https://group-media.mercedes-benz.com/marsMediaSite/en/instance/ko/VISION-EQXX--taking-electric-range-and-efficiency-to-an-entirely-new-level.xhtml?oid=52282663
https://www.frontiersin.org/articles/10.3389/fnins.2020.00437
https://doi.org/10.1007/978-981-13-1687-6
https://doi.org/10.1007/978-981-13-1687-6
https://ngspice.sourceforge.io/
https://doi.org/10.3389/fnins.2021.655823
https://www.pacdv.com/sounds/voices-5.html
https://www.pacdv.com/sounds/voices-5.html
https://doi.org/10.1038/072294b0
https://doi.org/10.1371/journal.pbio.0060202

Radu, I. P., Govoreanu, B., Mertens, S., Shi, X., Cantoro, M., Schaekers, M.,
Jurczak, M., Gendt, S. D., Stesmans, A., Kittl, J. A., Heyns, M., &
Martens, K. (2015). Switching mechanism in two-terminal vanadium
dioxide devices. Nanotechnology, 26(16), 165202. https://doi.org/10.
1088/0957-4484/26/16/165202

Reisberg, D. (2022). Cognition: Exploring the science of the mind (8e). W.
W. Norton & Company, Inc.
OCLC: 1251737663.

Rockwell, A. (2017, August 28). The History of Artificial Intelligence. Science
in the News. Retrieved September 2, 2022, from https://sitn.hms.
harvard.edu/flash/2017/history-artificial-intelligence/

Ruiz Euler, H.-C., Boon, M. N., Wildeboer, J. T., van de Ven, B., Chen, T.,
Broersma, H., Bobbert, P. A., & van der Wiel, W. G. (2020). A deep-
learning approach to realizing functionality in nanoelectronic devices.
Nature Nanotechnology, 15(12), 992–998. https://doi.org/10.1038/
s41565-020-00779-y

Russell, S. J., Norvig, P., & Davis, E. (2010). Artificial intelligence: A modern
approach (3rd ed). Prentice Hall.

Schuman, C. D., Kulkarni, S. R., Parsa, M., Mitchell, J. P., Date, P., &
Kay, B. (2022). Opportunities for neuromorphic computing algorithms
and applications. Nature Computational Science, 2(1), 10–19. https:
//doi.org/10.1038/s43588-021-00184-y

Sculley, D. (n.d.). Non-Inverting Amplifier. Tufts University. Retrieved Jan-
uary 7, 2023, from https://www.eecs.tufts.edu/~dsculley/tutorial/
opamps/opamps2.html
Kaggle CEO.

Shannon, C. (1949). Communication in the Presence of Noise. Proceedings
of the IRE, 37 (1), 10–21. https://doi.org/10.1109/JRPROC.1949.
232969

Sony to Release Two Types of Stacked Event-Based Vision Sensors with the
Industry’s Smallest 4.86 micrometer Pixel Size for Detecting Subject
Changes Only Delivering High-Speed, High-Precision Data Acquisition
to Improve Industrial Equipment Productivity. (2021, September 9).
Sony Semiconductor Solutions Group. Retrieved September 19, 2022,
from https://www.sony-semicon.com/en/news/2021/2021090901.
html

Stark, P., Horst, F., Dangel, R., Weiss, J., & Offrein, B. J. (2020). Opportu-
nities for integrated photonic neural networks. Nanophotonics, 9(13),
4221–4232. https://doi.org/10.1515/nanoph-2020-0297

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces. Journal of

71

https://doi.org/10.1088/0957-4484/26/16/165202
https://doi.org/10.1088/0957-4484/26/16/165202
https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://doi.org/10.1038/s41565-020-00779-y
https://doi.org/10.1038/s41565-020-00779-y
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1038/s43588-021-00184-y
https://www.eecs.tufts.edu/~dsculley/tutorial/opamps/opamps2.html
https://www.eecs.tufts.edu/~dsculley/tutorial/opamps/opamps2.html
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969
https://www.sony-semicon.com/en/news/2021/2021090901.html
https://www.sony-semicon.com/en/news/2021/2021090901.html
https://doi.org/10.1515/nanoph-2020-0297

Global Optimization, 11(4), 341–359. https ://doi .org/10.1023/A:
1008202821328

Strubell, E., Ganesh, A., & McCallum, A. (2019, June 5). Energy and Policy
Considerations for Deep Learning in NLP. arXiv: 1906.02243 [cs].
https://doi.org/10.48550/arXiv.1906.02243

Tappe Maestro, R. (2023, July 1). Function generation from a Sum of Oscilla-
tor Signals (Version 1.0.0). https://github.com/Wehzie/master-thesis
Commit ed1650e163da8aafd7e6e4ba5b8da7b76b589a19.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida,
A. (2019). Deep learning in spiking neural networks. Neural Networks,
111, 47–63. https://doi.org/10.1016/j.neunet.2018.12.002

Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated annealing. Physica
A: Statistical Mechanics and its Applications, 233(1), 395–406. https:
//doi.org/10.1016/S0378-4371(96)00271-3

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., & Polosukhin, I. (2017). Attention is All you Need. Ad-
vances in Neural Information Processing Systems, 30. Retrieved Septem-
ber 3, 2022, from https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Veritasium (typedirector). (2021, December 21). The Most Powerful Com-
puters You’ve Never Heard Of [Video]. Retrieved August 30, 2022,
from https://www.youtube.com/watch?v=IgF3OX8nT0w

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cour-
napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van Mulbregt, P.
(2020). SciPy 1.0: Fundamental algorithms for scientific computing in
Python. Nature Methods, 17 (3), 261–272. https://doi.org/10.1038/
s41592-019-0686-2

Wales, D. J., & Doye, J. P. K. (1997). Global Optimization by Basin-Hopping
and the Lowest Energy Structures of Lennard-Jones Clusters Contain-
ing up to 110 Atoms. The Journal of Physical Chemistry A, 101(28),
5111–5116. https://doi.org/10.1021/jp970984n

Warden, P., & Situnayake, D. (2020). TinyML: Machine learning with Ten-
sorFlow Lite on Arduino and ultra-low-power microcontrollers (First
edition). O’Reilly. tinymlbook.com
OCLC: on1104044619.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’
networks. Nature, 393(6684), 440–442. https://doi.org/10.1038/30918

Weisstein, E. W. (n.d.-a). Generalized Fourier Series. Retrieved January 22,
2023, from https://mathworld.wolfram.com/

72

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://arxiv.org/abs/1906.02243
https://doi.org/10.48550/arXiv.1906.02243
https://github.com/Wehzie/master-thesis
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/S0378-4371(96)00271-3
https://doi.org/10.1016/S0378-4371(96)00271-3
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.youtube.com/watch?v=IgF3OX8nT0w
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1021/jp970984n
tinymlbook.com
https://doi.org/10.1038/30918
https://mathworld.wolfram.com/

Weisstein, E. W. (n.d.-b). Triangle Wave. Retrieved January 24, 2023, from
https://mathworld.wolfram.com/FourierSeriesTriangleWave.html

Wong, C. (1994). ”SPICE” as a Maxwell’s equations solver. 1994 Second
International Conference on Computation in Electromagnetics, 303–
306. https://doi.org/10.1049/cp:19940077

Wong, W. (2015, June 10). Answer to ”Fourier transform with non sine
functions?”. Mathematics Stack Exchange. Retrieved January 3, 2023,
from https://math.stackexchange.com/a/1319755

Xiang, Y., Sun, D. Y., Fan, W., & Gong, X. G. (1997). Generalized simu-
lated annealing algorithm and its application to the Thomson model.
Physics Letters A, 233(3), 216–220. https://doi.org/10.1016/S0375-
9601(97)00474-X

73

https://mathworld.wolfram.com/FourierSeriesTriangleWave.html
https://doi.org/10.1049/cp:19940077
https://math.stackexchange.com/a/1319755
https://doi.org/10.1016/S0375-9601(97)00474-X
https://doi.org/10.1016/S0375-9601(97)00474-X

7 Acknowledgements
A thesis rarely emerges alone. For this one I’ve been supported by at least
the following. Professor Lambert Schomaker, who opted to supervise this
project together with promovendus Davide Cipollini. Professor Schomaker
had a clear vision of the project from the start. I’m glad that he guided
me through the fog of uncertainty with examples, ideas and understanding.
Davide accompanied me through the project at each step and shared his own
experiences about becoming a researcher. Dirk Bischof offered his extensive
expertise in electrical engineering, aided with circuit design and first inspired
a passion for electronics a long time ago. Jonas Zimmermann provided me
with advice on multiple details of the project including Markov Chain Monte
Carlo methods and Fourier Series; I’d like to thank him for his tireless expla-
nations. I’d like to thank Nils Kruse for reviewing source code and pointing
out bugs in a forest full of trees. Furthermore, Gonçalo Hora de Carvalho
listened and uplifted my spirits when it was needed. Elisabetta Blyumin
provided essential insights for the colloquium, drawing on her physics per-
spective. Nikolas Rieder, Robin Müller and Alia Schönberg asked questions
which I didn’t know to ask. Thank you Barbara, German, Claudia, Luz,
Fabio, Rüdiger, Milena, Luuk, Aaron, Marta for attending. My thanks also
go to the RUG staff for making the colloquium possible on short notice and
to the university for being a place of academic freedom. Lastly, I thank my
parents for the support that they have provided me with throughout my
studies and beyond, my mother for understanding without words and my
father for being an anchor of reason.

74

8 Abbreviations
Table 15 lists abbreviations used throughout this thesis.

Abbreviation Expansion
DL deep learning
ML machine learning
NC neuromorphic computing
RC reservoir computing
RC-circuit resistor-capacitor circuit
ESN echo state network
LSTM long-short term memory
a.u. arbitrary units
AM amplitude modulation
FM frequency modulation
RMSE root mean square error
M mean
SD standard deviation
T. target
div. diversity
CPU central processing unit
GPU graphics processing unit

Table 15: Abbreviations

75

9 Appendix A

9.1 Additional Algorithms
9.1.1 Simulated Annealing

Simulated Annealing is an improvement over both random search and the
random walk. The algorithm takes inspiration from processes in statistical
mechanics, where a material’s ground states are found by slow cooling (Kirk-
patrick et al., 1983) as otherwise defects and only partially stable structures
are formed. The algorithm is describe in Listing 7.

Listing 7: Simulated Annealing
1 # draw_fu l l () : draw an N dimensiona l sample from the search−

↪→ space
2 # draw (sample) : redraw one v a r i a b l e from the search−space
3 # l (x) : l o s s f unc t i on
4 # c r i t : s t opp ing c r i t e r i o n
5 # e v a l u a t e () : e v a l u a t e whether the s topp ing c r i t e r i o n i s met
6 # exp () : e xponen t i a l f unc t i on
7 # rand () : random r e a l number between 0 and 1
8
9 best = draw_ful l () # i n i t i a l random sample in search−space

10 temperature = 1
11 while not c r i t :
12 temperature = schedu le (temperature , c r i t)
13 candidate = draw (best)
14
15 i f l (candidate) < l (bes t) :
16 best = candidate
17 else :
18 d i f f = l (candidate) − l (bes t)
19 acceptance_rat io = exp (d i f f / temperature)
20 d e c i s i o n = rand () <= acceptance_rat io
21 i f d e c i s i o n == True :
22 best = candidate
23
24 c r i t = eva luate (temperature)

Similar to the random walk, the algorithm starts by initializing a candi-
date solution x1 with a random configuration; furthermore, a temperature
parameter is initialized (Russell et al., 2010). This parameter is updated on
each iteration as a function. The temperature schedule is important for a
good outcome of the optimization and dependent on the problem at hand;
it constitutes a tuneable hyper parameter. When a new candidate solution
xi has a loss lower than the current best solution xbest, the new candidate
solution is always accepted. If the new candidate solution xi has a higher

76

loss than the current best solution xbest, the new candidate solution is ac-
cepted by some chance. This probability of acceptance is decreased as (1) the
temperature decreases and (2) the loss of a candidate solution xi increases.
Typically, the algorithm stops when the temperature reaches a predefined
minimum value; hence the stopping criterion evaluation function is described
as a function of temperature, albeit other stopping criteria are possible.

In this work we explore Simulated Annealing for a neuromorphic com-
pute system. Interestingly, Simulated Annealing also played a central role
in the development of digital computers, in particular in solving the very
large scale integration (VLSI) problem (Kirkpatrick et al., 1983). The VLSI
problem is the problem of placing transistors on a chip such that the total
wire length is minimized, a problem which resembles that of the traveling
salesman problem.

The Simulated Annealing algorithm developed by Kirkpatrick et al. (1983)
is now known as the Classic Simulated Annealing (CSA) algorithm. More
recent developments are the fast Simulated Annealing (FSA) algorithm and
the Generalized Simulated Annealing algorithm (GSA) (Tsallis & Stariolo,
1996; Xiang et al., 1997). Another notable algorithm that builds on top of
Simulated Annealing is Basin Hopping (Iwamatsu & Okabe, 2004; Wales &
Doye, 1997). In Basin Hopping, an iteration involves two steps. Firstly a
random jump that is similar to an iteration of Simulated Annealing. Sec-
ondly, a local minimization step is performed to find the local minimum
within the current basin discovered by the hop. For local minimization, any
local optimization algorithm can be used. Similarly to Simulated Annealing,
the choice of the cooling schedule is important for good results.

9.1.2 Differential Evolution

Another branch of Monte Carlo methods are evolutionary algorithms. Broadly,
evolutionary algorithms take inspiration from biological evolutionary pro-
cesses. A central idea of evolutionary algorithms then is the concept of a
population of candidate solutions. The field of Differential Evolution is wide;
Bäck and Schwefel (1993) give an early overview of the field and identify
three main branches: genetic algorithms, evolution strategies and evolution-
ary programming. A more recent type of evolutionary algorithm is Differen-
tial Evolution (Storn & Price, 1997) which shares similarities in particular
with genetic algorithms and evolution strategies.

Listing 8: Differential Evolution
1 # draw_fu l l () : draw N dimensiona l sample from the search−space
2 # recombine () : randomly take th r ee i n d i v i d u a l s from the

↪→ popu la t i on and recombine them

77

3 # cros sove r () : mix the o r i g i n a l sample wi th the recombined (
↪→ mutated) i n d i v i d u a l

4 # l (x) : l o s s f unc t i on
5 # c r i t : s t opp ing c r i t e r i o n
6 # e v a l u a t e () : e v a l u a t e whether the s topp ing c r i t e r i o n i s met
7 # size_pop : number o f i n d i v i d u a l s in the popu la t i on
8
9 pop = [draw_ful l () for _ in range (size_pop)] # draw size_pop

↪→ i n i t i a l random samples
10 while not c r i t :
11 for i nd iv in pop :
12 indiv_mutate = recombine (indiv , pop)
13 i n d i v _ t r i a l = c r o s s o v e r (indiv , indiv_mutate)
14 i f l (i n d i v _ t r i a l) < l (ind iv) :
15 ind iv = i n d i v _ t r i a l
16 c r i t = eva luate ()

Listing 8 shows pseudo code for a basic variant of the Differential Evo-
lution algorithm (Storn & Price, 1997). Similar to random search, the algo-
rithm starts by drawing random samples. Instead of drawing a single sample,
Φ samples are drawn. Φ then corresponds to the number of individuals or
the population size. If a sample or individual is a vector of N dimensions,
then a population is a matrix of N by Φ dimensions. In the recombination
step, three unique individuals are taken from population space. Let xi denote
the i-th individual and let F be a real constant. x1 + F ∗ (x2 − x3) forms a
mutant individual by recombination. F then controls the extent to which a
difference between individuals x2 and x3 is amplified. In the crossover step,
the mutant individual is crossed with the original population. Let xj denote
the j-th scalar of an N dimensional vector that forms an individual. Then
for each entry j in the range 1 to N , either xj

original or pjmutant is chosen to form
the trial vector. Whether the original or the mutant value at j is carried to
the trial vector depends on CR. CR is the crossover ratio hyperparameter;
it is a real constant that controls the extent to which mutant individuals are
crossed with their original counterparts. Lastly, the trial vector is compared
with the original vector. If the trial vector is better than the original vector,
the trial vector is accepted and replaces the original one. In the vocabulary
of evolutionary algorithms, selection takes place. Differential Evolution is of-
ten run for a fixed number of iterations, termed generations; other stopping
criteria are feasible.

Although more advanced than naive random search, Differential Evolu-
tion shares algorithmic properties such as non-completeness. In a neuro-
morphic context, evolutionary algorithms that maintain a host of candidate
solutions are more difficult to implement compared to annealing algorithms.
This is primarily explained by the need for a physical representation of the

78

population. In the case of circuit development, this means more difficult
circuit design.

9.2 Relation to Fourier Methods
The oscillator ensemble approach resembles a Fourier series in materio. Here
we discuss some of the mathematics behind Fourier series and Fourier syn-
thesis. We aim to argue that Fourier synthesis is possible with non-sinusoidal
basis functions because the VO2 device produces an inverse sawtooth wave.
The following discussion focuses on continuous time signals.

A Fourier series is a sum of harmonic sinusoids which can be used to
approximate a periodic signal. Typically, sinusoids are used to synthesize
periodic signals. This may be in part, because a proof of a Fourier series’
convergence to a periodic signal is relatively straightforward when summing
sinusoids; see McClellan et al. (2017) for said proof. The derivation relies on
the properties of complex exponentials which by Euler’s formula

eiθ = cos(θ) + i sin(θ). (15)

decompose into a real cosine and an imaginary sine part. The sine func-
tion has further advantageous properties. Namely, sinusoids are symmetric,
are differentiable at any point, their basis is orthonormal and an eigenvector
(Dahlke, 2002–2022; W. Wong, 2015). However, other periodic functions,
for example a triangle wave or sawtooth wave, can be used to approximate
a periodic signal, too. Note that the type of convergence achieved with an
arbitrary periodic function isn’t necessarily the same as that of a sinusoid.
Discussing the nuances of Fourier series’ convergence types is out of the
scope of this work, as is proving convergence for non-trigonometric periodic
functions. For some mathematical evidence, consider the generalized Fourier
series14. The generalized Fourier series requires that its basis functions form
a complete orthogonal system on a closed interval. Sine and cosine form such
a system in the interval [−π, π] with the integral over their product equal
to 0. In the case of sinusoids this is easy to see, as

∫ π

−π
sin(x)dx = 0 and∫ π

−π
cos(x)dx = 0. By their vertically symmetric wave form it’s intuitively

clear that we can find similar biorthogonal systems with triangle and square
waves. We may be able to find a biorthogonal system with a sawtooth and
inverse sawtooth wave, too. Empirically we can test this, by applying linear
regression using the Least Squares method, to fit a sum of sawtooths to a
sinusoid target signal, given that the signal diversity is sufficient. Signal di-
versity refers to a finite number of unique elements in a set of signals, where

14Weisstein, n.d.-a.

79

each signal is a periodic function with constant phase, frequency, amplitude
and offset; two signals are unique when they vary in at least one of the
aforementioned properties. See Listing 10 in the appendix for an example.

In order to synthesize aperiodic signals, the Fourier synthesis formula 16
is used. It states that an arbitrary function can be approximated by a finite
sum of sinusoids of varying frequencies, phases, amplitudes and offsets. The
Fourier synthesis formula is a generalization of the Fourier series formula from
the interval [−π, π] to the interval [−∞,∞]. For time-series, finite or infinite,
it should be noted that any aperiodic signal can be considered periodic by
selecting a window and considering it to be the interval [0, 2π] of a periodic
signal. Effectively, this extends the signal to the periodic domain. Therefore,
Fourier synthesis is a function approximator for finite time-series.

f(x) =
N∑
k=1

Ak cos(2πfkt+ φk) (16)

9.3 Supplement to the Methods
9.3.1 Elaboration on the VO2-circuit and oscillation function

The VO2 device’s time constants presented in Equation 5 are defined as

τphase = Rphase
eq · C1, (17)

where,

• τphase is the time constant of the metal or insulator phase respectively,

• Rphase
eq is the combined resistance of the VO2 device and the resistance

of R1 during a given phase,

• C1 is the capacitance of the capacitor C1.

Elaborating on Equation 5 the voltages that the capacitor C1 tends to,
depending on the VO2 device’s state, are described by the equation

Uphase
eq = V1 ·

R1

R(U1)phase +R1
, (18)

where,

• V1 is the voltage of the DC voltage source V1,

• R1 is the resistance of the resistor R1,

80

• R(U1)phase is the resistance of the VO2 device U1 for a given phase.

Equations 5 and 17 describe how the oscillation period is related to the
RC-circuit elements R1 and C1. Since the oscillation frequency f at the
output terminal A is defined as inverse of the period T , we have f = 1

T
.

Doubling of R1’s resistance halves the time constants. While an increase in
resistance does decrease oscillation frequency, this relationship is not linear
as R1 also controls Umet

eq and U ins
eq . Also, doubling the capacitance of C1

halves the time constants with the relationship on frequency being linear.
Still, C1 is kept constant for the purpose of this work as R1 is considered
to be more easily changed. From Equation 18, we see that the voltage that
the capacitor C1 tends towards is the product of the DC voltage and the
combined resistance of U1 and R1.

Figure 6 describes the I-V characteristic of the VO2 device as a function
of applied voltage between the two terminals of the VO2 device. Meanwhile
Figure 24 describes the capacitor I-V characteristic seen at the terminals of
the capacitor C1. Here, Umet

eq and U ins
eq are the voltages that the capacitor

C1 tends towards when the VO2 device is in the metal or insulator phase
respectively; compared to Maffezzoni et al. (2015) the notation U is preferred
over E to describe a voltage. When the VO2 device is in the metal phase,
the voltage of the capacitor moves toward the DC voltage of V1. While
when the VO2 device is in the insulator phase, the capacitor discharges and
the voltage at node A moves toward zero. When the VO2 device is in the
insulator phase and near VH , the capacitor’s voltage is at V(C)L with a small
current flowing. Similarly, when the VO2 device is in the metal state near
VL, the capacitor’s voltage is at V(C)H with current flowing. The hysteresis
cycle in the capacitor is clockwise while the hysteresis cycle in the VO2 device
is counter clockwise.

Concluding, the sequence of events is as follows. First, the VO2 device
starts in the insulator phase; the capacitor is not charged. Second, as the
DC voltage is applied, the VO2 device transitions to the metal phase and the
capacitor charges. Third, as the capacitor charges, the voltage across the VO2

device falls off and the VO2 device transitions back to the insulator phase.
Fourth, the capacitor discharges (see Equation 18) and voltage builds up
across the VO2 device again. Fifth, the VO2 device transitions to the metal
phase and the capacitor is charged again as the voltage in the VO2 device
falls off. This sequence of events repeats itself indefinitely. The resulting
signal resembles an inverse sawtooth wave, as shown in Figure 8.

The waveform of the oscillator is described by the following two equations.
Equation 19 describes the signal as a function of time during the VO2’s metal
phase, while Equation 20 describes the signal during the insulator phase.

81

Figure 24: Voltage at the capacitor C1 as a function of the VO2 device’s
state. Figure modified from Maffezzoni et al. (2015).

Note a slight deviation in the last summand from Maffezzoni et al. (2015);
the change is justified in the Appendix, see Listing 9.

V met
out (t) = (Vmin − Umet

eq) · exp[−t/τmet] + Umet
eq (19)

V ins
out(t) = (Vmax − U ins

eq) · exp[−(t− Tmet)/τins] + U ins
eq (20)

where,

• V phase
out (t) is the output voltage of the oscillator at point A in Figure 7

while the VO2 device is in a given phase,

• t refers to the time,

• Vmin and Vmax are the minimum and maximum output voltage of the
oscillator,

• Uphase
eq is the voltage that the capacitor C1 tends towards when the VO2

device is in a given phase,

• τphase is the RC time constant of the circuit during the VO2’s phase,

• Tmet is the duration of a metal phase.

82

9.3.2 Derivation of VO2 offset

Equation 7 describes the offset voltage of the VO2 device. We can derive
the equation as follows. First, consider the subcircuit from V1_POS via
R1_BIAS and R2_BIAS to V1_NEG as a series circuit. According to Kir-
choff’s current law, the current through this circuit is the same at any point.
Furthermore, following Ohm’s law, the current through a resistor is the volt-
age across the resistor divided by its resistance. Combining voltages and
resistances in series, we can derive the following equation.

I =
(V1_POS + V1_NEG)

(R1_BIAS +R2_BIAS)
(21)

The voltage at UR1_BIAS is similarly given by Ohm’s law.

UR1_BIAS = R1_BIAS · I (22)

Upon substitution of I from Equation 21, into Equation 22 we arrive at
the following equation.

UR1_BIAS = R1_BIAS ·
(V1_POS + V1_NEG)

(R1_BIAS +R2_BIAS)
(23)

Let us call the voltage between R1_BIAS and R2_BIAS with respect to
ground UOFFSET, which applies at PIN 1 of U3_AMP. Then we subtract the
voltage originating from V1_POS by the voltage drop across R1_BIAS to
obtain UOFFSET.

UOFFSET = V1_POS − UR1_BIAS (24)

By substituting Equation 23 into Equation 24, we arrive at Equation 7.

9.4 Limitations of SPICE simulation
Initial exploration of the simulation capabilities of SPICE shows that the
simulation of an oscillator is slow. Table 16 shows measured and estimated
wall clock times of simulating a single oscillator for increasing signal dura-
tions. Table 17 shows three sets of parameters for VO2 circuits. The first
row of parameters is used to generate the results in Table 16; the choice of
parameters is taken from Maffezzoni et al. (2015). The column headers map
to the elements of a single RC-circuit as shown in Figure 7. N refers to the
number of oscillators in the circuit. The form U(a, b) refers to the use of
meta-programming, where the circuit parameters are drawn from a uniform
distribution ahead of simulation. The time step column refers to the time

83

step used in the transient analysis. By-hand experimentation shows that the
time step must be sufficiently small to accurately capture the oscillation; in
the case of the VO2 oscillator, time steps in the order of 1e-9 s are required
although the VO2 frequency doesn’t exceed 1.2e6 Hz. This small time step
makes the simulation of longer durations prohibitively slow. The second row
of parameters shows the largest number of non-identical oscillators in a sin-
gle circuit that I was capable of simulating. The parameters were found by
hand-tuning. Whether a SPICE transient analysis succeeds is not determin-
istic for a fixed set of parameters as SPICE sometimes fails citing numerical
instability. As the number of oscillators increases, the likelihood of failure in-
creases. Other times, SPICE stops an ongoing simulation without reporting
failure. The third row of Table 17 shows that SPICE is capable of simulating
large numbers of oscillators when their parameters are identical.

signal duration 1 s 1e-1 s 1e-2 s 1e-3 s 1e-4 s 1e-5 s
wall clock time est. 2 h est. 700 s 67 s 7 s 1 s <1 s

Table 16: Wall clock times to various durations of SPICE transient analysis
for a single VO2 oscillator circuit.

N osc. DC [V] R [kΩ] min C [pF] step [s] duration [s]
1 14 47 300 5e-9 1e-5 to 1e-2
100 4 8 U(40, 60) 5e-9 1e-5
500 12 47 300 5e-9 1e-5

Table 17: Parameters for SPICE netlist generation with the purpose of test-
ing SPICE’s simulation capabilities.

9.5 Reproducibility
An open-source implementation of SPICE called ngspice15, version 37, is
used for this work. For meta-programming, Python version 3.10 is used.
All source code will be made publicly available (Tappe Maestro, 2023). In
single threaded execution of the simulation a constant seed of 5 is used for
random number generation. For multi-threaded execution, seeding has not
been implemented; all results presented in Section 5 are generated by single
threaded execution.

15“Ngspice, the Open Source Spice Circuit Simulator”, n.d.

84

9.6 Classification
We find that other tasks can be realized with VO2 ensembles, for example
classification. An ensemble forest shown in Figure 25 consists of trained
ensembles. Each ensemble is trained to approximate a target class with a
stochastic algorithm as laid out in Section 3.2. Note that the training phase
is not shown in this diagram. After training, a test signal is compared to the
output of each ensemble by RMSE. The ensemble with the lowest RMSE is
chosen as the predicted class. The ensemble forest is inspired by the random
forest algorithm (Breiman, 2001). We successfully trained two ensembles
with the Las Vegas algorithm to distinguish between a sine and a square
wave. The approach seems to tolerate frequency deviations between the train
and test signals. We acknowledge that the presented design doesn’t satisfy
the ethos of neuromorphic computing as training and classification phases
are strictly separated. Such a dichotomy isn’t found in biological systems.
Exploration in this direction is left for future work.

Figure 25: A forest of ensembles acts as a classifier.

85

10 Appendix B: Additional Results

10.1 Phase diversity
Figure 26 shows the RMSE as a function of phase diversity for a broad set
of algorithms. The figure shows that the RMSE decreases with increasing
phase diversity up to 2π for a majority of algorithms. A notable exception is
Differential Evolution which shows larger RMSE at phase diversity 1π and
at 2π compared to lower phase diversities. For a majority of algorithms no
improvement in RMSE is visible beyond 2π phase diversity. Furthermore we
can distinguish two groups of algorithms. Bracket B denotes algorithms with
large RMSE at 0π phase diversity; we observe a steep decrease in RMSE with
increasing phase diversity. Bracket A denotes algorithms with initially lower
RMSE. Here, the effect of phase diversity on RMSE is less pronounced.

Figure 26: RMSE as a function of phase diversity for a broad set of algo-
rithms. Mean and standard deviation over 10 runs. See Table 11 for tabular
data.

10.2 Offset diversity
Figure 27 shows RMSE as a function of offset diversity for a broad set of algo-
rithms. We can identify two brackets of algorithms, A and B. For algorithms

86

in bracket A, an increase in offset diversity has little effect on RMSE. A no-
table outlier in this bracket is Exploit Fast which shows a RMSE decrease by
a factor of 4 between 0 and 50 offset diversity. Considering the sample size
of 10 and standard deviations in the order of 10 and larger, the observation
may be explained by chance. Bracket B shows an increase in RMSE as offset
diversity increases. This means the Purge, Dampen, Grow-Shrink, SciPy An-
neal and SciPy Dual Anneal algorithms; they have the largest RMSE at offset
diversity 200. The increase in RMSE with offset diversity is approximately
linear. Furthermore, the algorithms in bracket B show the highest RMSE at
0 offset diversity, too. This indicates that these algorithms generally perform
poorly, regardless of offset diversity.

Table 18 shows the RMSE as a function of offset diversity for the four al-
gorithms with the lowest RMSE. For linear regression, Las Vegas and Exploit
Weight we observe an increase in mean RMSE and standard deviation as off-
set diversity increases; this relationship is linear. Although mean RMSE is
lowest at 0 offset diversity, no clear trend is visible for the Exploit Neighbor
Weight algorithm.

RMSE
Linear Regression Las Vegas Exploit W. Exploit N. W.

Offset div. M SD M SD M SD M SD
0 1.33E-15 2.48E-16 0.10 0.03 0.44 0.13 1.15 0.21
50 1.55E-15 5.95E-16 0.12 0.04 0.44 0.15 1.45 0.30
100 1.57E-15 5.01E-16 0.10 0.03 0.59 0.21 1.41 0.15
150 1.56E-15 4.46E-16 0.13 0.04 0.61 0.26 1.30 0.23
200 1.62E-15 5.30E-16 0.14 0.06 0.88 0.31 1.55 0.32

Table 18: RMSE as a function of offset diversity with the three best stochastic
algorithms and linear regression. See Figure 27 for a larger set of algorithms.

We hypothesized that an increase in offset diversity would reduce RMSE.
Following the results, we can’t accept our hypothesis. We believe that this
is due the experiment design.

In this experiment, the target signal has a mean of zero; thus its offset
is zero and an optimization of offset is not necessary. Although we can
conclude that the experimental design is not ideal to answer the research
question, we find that algorithms which perform well under increased offset
diversity are capable of efficiently optimizing offset. We maintain that, for
an offset-diverse set of targets, offset diversity will likely lower the RMSE.
We also find that the SciPy algorithms don’t optimize the offset at all due
to an incorrect implementation. Note that this error also affects the results
of other experiments for these two algorithms, albeit to a smaller extent, as

87

Figure 27: RMSE as a function of offset diversity for a broad set of algo-
rithms. Mean and standard deviation over 10 runs. See Table 18 for tabular
data.

the default offset diversity is 20. We don’t consider this to be problematic as
Exploit Anneal implements the same algorithm as SciPy Anneal, and does
so correctly.

10.3 Target function
We find that the approximation of the real world target signals is not possible
using the hybrid generator. We are able to approximate real world signals
with the Python generator, however those results don’t realistically reflect
the properties of the VO2 material. For this reason, Figure 28 shows the
RMSE for a set of synthetic target functions. We note that the noise targets
appear to be the most difficult to approximate. However, the similarity in
mean RMSEs and a large standard deviations across target functions, makes
it difficult to draw further conclusions.

Therefore we repeat the experiment with a smaller set of algorithms
shown in Figure 29. The tested algorithms are Las Vegas, Exploit, Ex-
ploit Weight and linear regression. For each algorithm, 5 runs are sampled,
resulting in 20 RMSE values per target function, again multiplied by 4 for
targets with various frequencies as described in Section 4. Compared to Fig-
ure 28, the means and standard deviations are smaller. This is explained

88

by the selection of algorithms which are better at approximating the target
functions.

Most notably, the Gaussian noise target remains the most difficult to
approximate, similar to the previous figure. Additionally, the square wave is
the second most difficult target, this is likely due to the sharp edges of the
square wave. In comparison the edges of a triangle wave are smoother. Since
the sawtooth and inverse sawtooth targets also have a sharp edge, they too
may be more difficult to approximate than the triangle wave.

The sine wave yields a lower RMSE in comparison, also being smooth.
The smoothened noise targets have the lowest RMSE in this experiment.
This could be explained by the the smoothening of the signals with a 10
point average, which acts as a low-pass filter. Given that the sampling fre-
quency is 2.5 MHz, the noise targets are filtered to a frequency of 250 kHz
which is within the frequency band of a single oscillator, see Section 5.2.1.
Since the other constant frequency targets are drawn from a range of fre-
quencies, starting at 1 kHz, the low RMSE on the smooth noise targets
may be primarily explained by frequency rather than the shape of the target
function.

Lastly, the damped chirp target yields a lower RMSE than the chirp
target although it also has a varying amplitude. This could be explained by
the damped signal being close to zero towards the end of the signal, which
may be easier to approximate.

We hypothesized that the difficulty of the target function correlates with
increasing RMSE. Our results confirm this hypothesis.

We find that smooth functions are approximated well while sharp func-
tions were more difficult. Furthermore, frequency modulated signals are more
difficult to approximate than constant frequency signals. We can’t show that
amplitude modulation signals are more difficult than constant amplitude sig-
nals. The damped chirp is more easily approximated than the chirp signal
due to its zero deflection towards the end of the signal. A constant frequency
sine with growing amplitude may be a better target function to test the
effects of amplitude modulation.

Lastly we find that real world target signals can’t be approximated with
the hybrid pipeline. We believe this to be due to (1) their low frequency
in comparison to the VO2 frequency band and (2) the staircase frequency
response of the VO2 oscillators, see Figure 11 (right).

10.4 Algorithms
Figure 30 shows the RMSE as a function of the number of perturbations.
The data is the same as presented in Figure 20, however in this section we

89

Figure 28: RMSE as a result of the target function. Aggregate of 25 algo-
rithms and 3 runs per algorithm.

Figure 29: RMSE as a result of the target function. Aggregate of 4 algorithms
and 5 runs per algorithm.

90

(a) Simultaneous perturbations. (b) Annealing algorithms.

(c) Ergodicity and regularization. (d) Gain-only perturbation.

Figure 30: RMSE as a function of the number of perturbations Z applied to an
ensemble for varying subsets of algorithms. Data as in Figure 20.

focus on subsets of algorithms and discuss differences. In each figure linear
regression is included as a baseline.

10.4.1 Number of perturbed oscillators

Figure 30a shows the RMSE for stochastic algorithms with varying numbers
of simultaneously replaced oscillators. The One Shot algorithm perturbs
all oscillators at each iteration. Meanwhile the Exploit algorithm perturbs
one oscillator per iteration. Intermediate variations are the Exploit J=10
algorithm which perturbs 10 oscillators per iteration and the Oscillator An-
nealing algorithms which use a temperature schedule to decrease the number
of perturbed oscillators per iteration.

We find that Exploit performs best. It is the fastest algorithm to converge

91

to a low RMSE and it continues to improve at 50 k perturbations. Given
sufficient perturbations, the Oscillator Anneal Log and its linear counterpart
follow. The Exploit J=10 algorithm stops improving after 10 k perturbations.
It is overtaken at 40 k perturbations by the Oscillator Anneal Log algorithm.
The worst performing algorithm is One Shot.

10.4.2 Annealing algorithms

Figure 30b shows the RMSE for stochastic algorithms with varying annealing
schedules. The best performing stochastic algorithm is Basin Hopping. Ex-
ploit Anneal Weight achieves a similar RMSE at 50 k perturbations; Exploit
Anneal Weight doesn’t use a second local optimization step as Basin Hop-
ping. The Exploit Anneal algorithms decrease the acceptance probability of
worse solutions as the temperature decreases and perturb one oscillator at a
time. The Oscillator Anneal algorithms decrease the number of perturbed
oscillators as the temperature decreases. Here we find that the logarithmic
schedule performs better than the linear one. Yet, the Oscillator Anneal
algorithms all perform worse than the Exploit Anneal algorithms. For all
annealing algorithms, the weight and offset perturbing variant outperforms
the weight, offset, frequency and phase perturbing variant. The SciPy Anneal
algorithms perform worst up to 10 k perturbations. Beyond, Dual Annealing
improves, using a second local optimization step.

10.4.3 Perturbed oscillator property

Figure 30d shows the RMSE for stochastic algorithms with varying perturbed
oscillator properties. Exploit perturbs oscillators’ frequency, phase, offset and
gain. Meanwhile, Exploit Weight perturbs gain and offset starting out with
a random ensemble. The same principle applies to One Shot and One Shot
Weight and the Las Vegas and Las Vegas Weight algorithms.

There appears to be no clear trend, as Exploit Weight achieves lower
RMSE than Exploit. Meanwhile One Shot Weight performs worse than One
Shot and Las Vegas Weight performs worse than Las Vegas. The Exploit De-
coupled algorithm randomly alternates between weight-offset perturbations
and frequency-phase perturbations. It performs worse than Exploit Weight
with a larger standard deviation. Positively, the rate of RMSE decrease at
50 k perturbations is larger compared to other algorithms.

10.4.4 Acceptance criterion

Figure 30c shows two additional variations of the Exploit algorithm. Ex-
ploit Ergodic introduces an acceptance criterion which accepts perturbations

92

that increase the RMSE without a temperature schedule. Exploit Neighbor
weight samples neighbor gains, forms a Gaussian distribution and samples
the distribution to obtain a new gain. Here, neighbor refers to a neighboring
oscillator in the ensemble.

We find that Exploit Ergodic performs similarly to the Exploit algorithm.
Furthermore, Exploit Neighbor Weight performs similarly to Exploit Weight.
Both variants are outperformed by the Exploit Weight algorithm.

10.4.5 Discussion on Algorithms

In Section 10.4 we test the performance of various algorithms and compare
them by various properties. Although Basin Hopping and Differential Evo-
lution perform well, they are outperformed by the Las Vegas and Exploit
Weight algorithms. Both algorithms are also more suitable for hardware im-
plementation as they require less state to be maintained. While gain-offset
perturbation is compared to gain-offset-frequency-phase perturbation, the ef-
fect of phase perturbation alone remains to be tested. Futhermore, the effect
of perturbation strength is only tested to a limited extend with the Neighbor
Exploit and Grow Shrink algorithms; a more thorough investigation may be
worthwhile.

93

11 Appendix C

Listing 9: Possible typographical error in Maffezzoni et al. (2015)
1 ””” This Python s c r i p t e x p l o r e s equa t i ons (13) and (14) in

↪→ Maffezzoni e t a l . , 2015.
2 The purpose i s the check whether equat ion (14) has a typo in i t .
3 Namely , the term +E_eq^met cou ld p o s s i b l y be +E_eq^ ins .
4
5 The ev idence po in t s towards equat ion 14 indeed be ing wrong .
6 The minimum and maximum v o l t a g e s o f the two phases shou ld meet .
7 They do t h i s when c o r r e c t i n g equat ion 14 wi th the summand +E_eq^

↪→ in s .
8 They don ’ t meet when the summand i s +E_eq^met .
9 ”””

10
11 import numpy as np
12 import matp lo t l i b . pyplot as p l t
13
14 def f_metal (t , V_min, U_met, tau_met) :
15 ””” equat ion (13) from the paper ”””
16 return (V_min − U_met) ∗ np . exp(−t / tau_met) + U_met
17
18 def f_insu lator_paper (t , V_max, U_ins , tau_ins , T_met , U_met) :
19 ””” equat ion (14) . t h i s i s how the i n s u l a t o r equat ion i s

↪→ de s c r i b ed in the paper ”””
20 return (V_max − U_ins) ∗ np . exp(−(t−T_met) / tau_ins) +

↪→ U_met
21
22 def f_ insu la to r_hypothes i s (t , V_max, U_ins , tau_ins , T_met) :
23 ””” t h i s i s a h y p o t h e s i s f o r the c o r r e c t i n s u l a t o r equat ion

↪→ ”””
24 return (V_max − U_ins) ∗ np . exp(−(t−T_met) / tau_ins) +

↪→ U_ins
25
26 # the va l u e s are l o o s e l y i n s p i r e d by the paper but d i s r e ga rd

↪→ t i m e s c a l e s
27 t = np . l i n s p a c e (0 , 100 , 1000)
28 V_max = 13 # max v o l t a g e o f the output o s c i l l a t i o n
29 V_min = 11 # min v o l t a g e o f output o s c i l l a t i o n
30 U_met = V_max +1 # v o l t a g e the capac i t o r tends to during metal

↪→ phase o f vo2
31 U_ins = V_min −1 # v o l t a g e capac i t o r tends to during i n s u l a t o r

↪→ phase o f vo2
32 R = 47 # r e s i s t o r in RC c i r c u i t
33 C = 300e−3 # capac i t o r in RC c i r c u i t
34 tau_met = R∗C # RC time cons tant during metal phase
35 tau_ins = 1∗tau_met # RC time cons tant during i n s u l a t o r phase
36 T_met = 1 # per iod o f metal phase

94

37
38 p l t . p l o t (t , f_metal (t , V_min, U_met, tau_met) , l a b e l=’ metal ’)
39 p l t . p l o t (t , f_insulator_paper (t , V_max, U_ins , tau_ins , T_met ,

↪→ U_met) , l a b e l=’ i n s u l a t o r paper ’)
40 p l t . p l o t (t , f_ insu la to r_hypothes i s (t , V_max, U_ins , tau_ins ,

↪→ T_met) , l a b e l=’ i n s u l a t o r t e s t ’)
41 p l t . l egend ()
42 p l t . show ()

Listing 10: Approximation of a sine function by periodic non-trigonometric
functions.

1 ”””
2 This Python code demonstrates approximation o f a s inu so i d
3 with a l i n e a r combination o f non−tr i gonome t r i c f u n c t i o n s o f

↪→ vary ing phase and frequency
4 us ing l i n e a r r e g r e s s i o n .
5 ”””
6 import matp lo t l i b . pyplot as p l t
7 import numpy as np
8 from s c ipy import s i g n a l
9 import matp lo t l i b . pyplot as p l t

10 from sk l e a rn . l inear_model import LinearRegre s s i on
11
12 RNG = np . random . default_rng ()
13
14 def compute_weighted_sum (X: np . ndarray , c o e f : np . ndarray ,

↪→ i n t e r c e p t : f loat) −> np . ndarray :
15 ””” genera te approximation o f t a r ge t , y ”””
16 f i t = np .sum(X.T ∗ coe f , ax i s =1) + i n t e r c e p t
17 return f i t
18
19 def compute_rmse (p : np . ndarray , t : np . ndarray) −> f loat :
20 ”””
21 Compute roo t mean square error (RMSE) between p r e d i c t i o n and

↪→ t a r g e t s i g n a l .
22 ”””
23 rmse = np . sq r t (((p−t) ∗∗2) . mean ())
24 return rmse
25
26 def r e g r e s s 1d (p : np . ndarray , t : np . ndarray) :
27 ””” app ly l i n e a r r e g r e s s i o n ”””
28 r = p .T
29 reg = LinearRegre s s i on () . f i t (r , t)
30 return reg
31
32 t = np . l i n s p a c e (0 , 10 , 50000)
33 t a r g e t = np . s i n (2 ∗ np . p i ∗ 1 ∗ t)
34 p l t . p l o t (t , target , l a b e l=’ t a r g e t ’)

95

35
36 s i g n a l s = []
37 for i in range (1 , 100) :
38 f = RNG. uniform (0 . 1 , 1)
39 phase = RNG. uniform (0 , 2) ∗ np . p i
40 # s = s i g n a l . square (phase + 2 ∗ np . p i ∗ f ∗ t)
41 s = s i g n a l . sawtooth (phase + 2 ∗ np . p i ∗ f ∗ t , width =0.1)
42 s i g n a l s . append (s)
43
44 matrix = np . array (s i g n a l s)
45 reg = reg r e s s 1d (matrix , t a r g e t)
46 weights = reg . coef_
47 o f f s e t = reg . inte rcept_
48 pred = compute_weighted_sum (matrix , weights , o f f s e t)
49 rmse = compute_rmse (pred , t a r g e t)
50 print (rmse)
51
52 p l t . p l o t (t , pred , l a b e l=’ pred ’)
53 p l t . l egend ()
54 p l t . show ()

96

	Introduction
	Problem description and goals
	Proposed solution
	Research questions and contribution
	Outline

	Related work
	Introduction to neuromorphic computing
	Approaches in neuromorphic computing
	Gradient based optimization in-materio
	Reservoir computing

	Optimization
	Monte Carlo algorithms
	Naive random search
	Random Walk
	Las Vegas algorithms

	Methods
	Signal generation
	SPICE generator
	SPICE: VO2 oscillator
	SPICE: Oscillator Ensemble
	Python generator: VO2 oscillator
	Python generator: Oscillator ensemble
	Hybrid generator
	Hybrid: VO2 oscillator
	Hybrid: Oscillator ensemble

	Signal optimization towards a target
	Las Vegas implementation

	Target signals and preprocessing
	Algorithm shorthand

	Experimental Setup
	Results
	Summary
	Oscillator properties
	Resistance diversity
	Phase diversity
	Dynamic range

	Ensemble properties
	Number of oscillators
	Number of perturbations

	Targets
	Target frequency

	Target duration

	Discussion
	Results discussion
	Resistance diversity
	Phase diversity
	Dynamic range
	Number of oscillators
	Number of perturbations
	Target frequency
	Target duration

	Conclusion
	Limitations and Future Work

	Acknowledgements
	Abbreviations
	Appendix A
	Additional Algorithms
	Simulated Annealing
	Differential Evolution

	Relation to Fourier Methods
	Supplement to the Methods
	Elaboration on the VO2-circuit and oscillation function
	Derivation of VO2 offset

	Limitations of SPICE simulation
	Reproducibility
	Classification

	Appendix B: Additional Results
	Phase diversity
	Offset diversity
	Target function
	Algorithms
	Number of perturbed oscillators
	Annealing algorithms
	Perturbed oscillator property
	Acceptance criterion
	Discussion on Algorithms

	Appendix C

