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Abstract: Theory of mind allows humans to reason about the mental states of others, including
their beliefs, desires, goals, and emotions. It can become increasingly complex, where higher-
order theory of mind can be employed to think about mental states of those who use theory
of mind themselves. In this paper an agent-based model is used to examine the benefit of first-
and second-order theory of mind in a 3-player competitive setting, where agents can increase
their chance of winning by predicting their opponents’ actions. This extends an existing model
of 2-player interactions to allow for 3-player interactions. Theory of mind agents will be added
to a population initially consisting of behavior-based agents. Evolutionary dynamics will show
whether theory of mind can invade the population, providing insight into why/how theory of
mind evolved for humans. Generally the performance of second-order theory of mind proves to
be the best, but all strategies have merit. The results are highly dependent on the amount of
time agents are given to learn their opponents’ strategies, and on the frequency of agents taking
a random action.

1 Introduction

Theory of mind (ToM)—also known as ‘mind-
reading’ (Apperly, 2010)—allows one to reason
about the mental state of another. This mental
state can include beliefs, desires, goals, and emo-
tions (Premack & Woodruff, 1978). It is there-
fore no wonder that theory of mind has been
shown to overlap with the capacity to feel empa-
thy (Cerniglia et al., 2019): to ‘put oneself in an-
other’s shoes.’ Besides having certain cooperational
benefits, theory of mind is useful in competitive sit-
uations (de Weerd & Verheij, 2011; de Weerd et al.,
2013). In these settings theory of mind can be used
to reason about other’s thoughts in order to deduce
their intentions: to ‘put oneself in another’s ruse.’

The focus of this paper lies on the competitive
side of theory of mind. A simple competitive setting
is rock paper scissors (RPS). A player not using
ToM may take random actions, or take a behavior-
based approach. If the player plays randomly, it
will win 50% of the time. Instead the behavior-
based approach could be used to attempt to pre-
dict the opponent’s move by considering previous
patterns, as humans have been shown to do (Falk

& Konold, 1997). Following an opponent’s rock in a
prior round, the player may opt for paper, expect-
ing the opponent to repeat their move. A player
could also utilize theory of mind. Such a player
would not merely consider previous behavior of an
opponent to predict their action. Instead it would
attribute a mental state to the opponent. A ToM
player would expect the opponent to use a strategy
themselves, and would account for that. Suppose
the opponent lost with rock against the player’s
paper last round. Then the opponent might expect
the player to choose paper again (belief), and play
scissors (intention). The ToM player can use this
deduced intention to choose rock. If the player is
correct about the intention of the opponent, the
theory of mind strategy would win.

But the ToM strategy can itself be beaten by an-
other, more complex ToM strategy (de Weerd et al.,
2013). The theory of mind strategy the player ap-
plied in the RPS example was (only) of the first
order (the behavior-based strategy of the oppo-
nent can be seen as zero-order ToM). There is also
second-order ToM, where a player forms a men-
tal state of the opponent in which this opponent
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has its own mental state of the player. While the
first-order ToM player before picked rock to counter
scissors, a second-order ToM player would consider
that the opponent expects that. The player then
infers that the opponent will play paper, and there-
fore the player picks scissors.

There is also theory of mind of the third or-
der and up. Humans have been shown to employ
higher orders (Perner & Wimmer, 1985; Sullivan et
al., 1994; Miller, 2009; Goodie et al., 2012; Arslan
et al., 2012; Verbrugge et al., 2018; Arslan et al.,
2020) reliably up to fourth-order ToM (Kinderman
et al., 1998; Stiller & Dunbar, 2007). Groups of an-
imals such as other primates also show some capac-
ity of mentalization (Kano et al., 2019), However,
currently no evidence shows that any animal other
than humans has the same ability of higher-order
theory of mind. And it is still debated whether any
is fully capable of first-order theory of mind (Penn
& Povinelli, 2007; Carruthers, 2008; van der Vaart
et al., 2012; Martin & Santos, 2014).

The skill of theory of mind is cognitively demand-
ing, but humans still possess it. Therefore there
should be an evolutionary advantage for (higher-
order) ToM reasoning (Aiello & Wheeler, 1995).
Previous research shows that higher-order theory of
mind can be beneficial in cooperative (de Weerd et
al., 2015), competitive (de Weerd & Verheij, 2011;
de Weerd et al., 2013), as well as mixed-motive sit-
uations (Verbrugge, 2009; de Weerd et al., 2017,
2014a,b). The Machiavellian intelligence hypothe-
sis states that competitive skills such as deception
and manipulation gave humans the evolutionary
advantage since the largest challenge was dealing
with and competing against companions (Whiten
& Byrne, 1997).

In this paper an agent-based model will be used
to examine the effectiveness of zero-, first- and
second-order theory of mind in a competitive set-
ting. The goal is to find out whether a first- and/or
second-order theory of mind strategy can ‘invade’
a population of computational agents relying on
a simple behavior-based strategy in a competi-
tive setting, in a one-dimensional lattice population
structure. In contrast to RPS, the setting will have
3 competitors. This will likely influence the effec-
tiveness of theory of mind as it will require agents to
think about what others are thinking about others.
The RPS shows that a ToM strategy of a certain or-
der can directly counter that of the preceding order.

Hence it is expected that first-order ToM agents
will succeed in completely invading a population of
agents with a behavior-based strategy, even with
three players per game. When second-order ToM
agents are introduced however, the interplay be-
tween the three strategies becomes harder to pre-
dict. While second-order ToM should be able to
beat first-order ToM, it might ‘overthink’ when
competing against zero-order ToM. This makes the
competition between the three strategies in the
population a game of rock paper scissors in and
of itself.

The remainder of this thesis is structured as fol-
lows. In section 2 the Bridge Crossers game is ex-
plained, as well as the three orders of ToM reason-
ing that agents use and the evolutionary dynamics
of the population. Section 3 presents results of the
agent evolution for a subset of populations, each
with different assumptions on the values of impor-
tant parameters. Finally in section 4 an analysis of
the significance of the results is given, in particular
its relevance to ToM evolution in humans.

2 Methods

2.1 The Competitive Setting

Agents will participate a game called ‘Bridge
Crossers,’ which is displayed in figure 3.5. All agents
start on a center platform. Three bridges are con-
nected to this platform, each leading to a certain
number of coins—either 1, 3, or 5. The game con-
sists of multiple rounds. Every round, all agents
pick a bridge and cross simultaneously. When mul-
tiple agents choose the same bridge, it collapses and
none of these agents receives any coins. Meanwhile
agents alone on a bridge receive the number of coins
their bridge leads to. The agent with the most coins
after all rounds wins.

The game is mainly inspired by the Game of
Chicken (Rapoport & Chammah, 1966), in which
two drivers are on a collision course with each other
and one of them has to break off for both of them
to survive. But the one who breaks off is called the
‘chicken’ and receives a lower reward than the other
driver. In Bridge Crossers this Game of Chicken
would correspond to choosing the 5-coin bridge or
not. There is a high reward for being the only one
who selects that bridge, but only when no oppo-

2



Figure 2.1: One round of the 3-player Bridge Crossers game. At the start of a round a) all players
(triangles) are placed on the central platform. Connected to this position are three bridges, each
leading to a number of coins (1, 3 and 5). All players choose a bridge, and then b) simultaneously
cross their selected bridge. Finally, c) the coins are distributed. When a bridge has to support
more than one player (in this case the bridge leading to 5 coins, which both red and blue picked),
it collapses and the corresponding players get no coins. But if a player is alone on a bridge (green),
that player receives all coins the bridge leads to.

nents do. The risk of opponents choosing the same
bridge is tied to the number of coins it leads to.

Another similar game theory experiment is the
prisoners dilemma (Poundstone, 1992). In this
thought experiment two prisoners have no way to
contact each other, but they are presented with
a choice: betray the other and be set free, or co-
operate and both get a reduced sentence. If both
prisoners decide to betray however, both get the
full sentence. This is similar to how two agents on
the same bridge in Bridge Crossers receive no coins
(they crossed each other). More specifically, Bridge
Crossers resembles the iterated prisoners dilemma,
where the prisoners dilemma is repeated for sev-
eral iterations. This allows for more complex dy-
namics such as trust (Axelrod & Hamilton, 1981).
In this variation, a successful method proved to be
the tit-for-tat strategy, where a prisoner copies the
previous move of the other (Harrald & Fogel, 1996;
Kuhn, 2019).

Bridge Crossers is also at its core a rock pa-
per scissors game. Each agent has three options,
and if agents choose the same option, they tie. But
there are two differences. One, there are more than
two players. Considering the Machiavellian intelli-
gence hypothesis, competition between more than
two persons must have played a big role during evo-
lution of human cognition. In the Bridge Crossers
game specifically it has the following effect: Even

if two players tie, another can still get coins. This
means that the players who tied actually end up
both losing.

The second difference with RPS is that each ac-
tion has a unique potential reward. Going for 5
coins can bring a higher reward, which also brings
higher risk. Since a game spans multiple rounds,
this can introduce interesting dynamics. For exam-
ple an agent can go for 5 coins even though it pre-
dicts that others will too, either to prevent anyone
else from taking over the lead, or because it is the
only way left to win. Two players might even work
together against the leading player by taking turns
in taking the fall to prevent the leader from getting
coins. By introducing action-dependent reward po-
tentials, the competitive setting is more closely re-
lated to the real world competitive situations which
caused humans to evolve theory of mind.

These two additions to RPS are present with
any number of players higher than two. Therefore
the chosen number in this study is three, to limit
computational complexity and allow for easier in-
spection of individual games. As for the number of
bridges, this should be equal to the number of play-
ers, for the following reason. An agent tries to pre-
dict which bridges its opponents will cross. If there
are fewer bridges than players, then even if an agent
correctly predicts all actions of its opponents, there
might not be any bridge left to cross. Conversely, if
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there are more bridges than players, this increases
the probability that an agent incorrectly guesses
the choices of the others but still by chance crosses
an empty bridge. Three bridges for three players
maximally rewards agents for correctly predicting
the moves of others (with theory of mind), which
is what this study aims to inspect.

There are three rounds per game. This should be
sufficient for agents to be affected by the described
additions to RPS. In particular, three rounds is the
minimum which allows for all players to win re-
gardless of the first (or any singular other) round.
This means agents have the opportunity to adapt to
their opponents within a single game. For the exact
rewards of the bridges there are numerous viable
options. The rewards should be relatively close to
each other, to prevent options being so unprofitable
that they are never picked. The rewards should also
be compatible with the number of rounds, so that
all rewards have use. With 3 rounds, the rewards
are set to 1, 3, and 5 coins. This choice assures that
1) each reward, not only the highest, is useful. Re-
ceiving 3 coins twice wins over 5 coins once. And
1 coin can still result in a slight advantage over
agents with otherwise the same score. 2) There is
a clear difference between the rewards. This lowers
randomness in actions of players (the extreme case
being where all rewards are identical).

2.2 Zero-Order Theory of Mind

The experiment will use an agent-based model.
These models can show how interactions between
individuals may cause the emergence or necessity
of a certain type of behavior (Nowak & May, 1992;
Epstein, 1999; Macy & Willer, 2002; Gilbert, 2007).
In this case, the interactions are the games being
played and the behavior is theory of mind. While
three players in Bridge Crossers start in same posi-
tion, they all have their own strategy—either zero-
, first- or second-order theory of mind. Zero-order
theory of mind (ToM0) agents do not use any the-
ory of mind. This still means that they can be im-
plemented in many ways. To correctly determine
whether theory of mind indeed gives evolution-
ary advantage, the behavior-based ToM0 strategy
needs to be as good as it can be. De Weerd (2013)
gave these agents for each of their opponents a set
of zero-order beliefs: numerical values for each ac-
tion which represent the likelihood of the opponent

taking that action. This worked well for rock pa-
per scissors, but the addition of action-dependent
reward potentials makes it so that not only these
likelihoods matter, but also the potential rewards
of actions. It may be acceptable to select the 5-coin
bridge even though there is a higher probability
that a opponent will too. Something more complex
is required for zero-order ToM.

Instead of beliefs, ToM0 agents use reinforcement
learning (RL). Specifically they will use Q-learning
to find state-action values that represent how likely
each action is to lead to a good outcome at the end
of the game. The first piece of information agents
need for this approach is all possible states of the
game. A state in the Bridge Crossers game is the
unique combination of the round number and the
number of coins each player has. An example: sx
= {turnx,{coinsx}} = {2,{3,0,5}}. The order of
the coins matters. The first number represents the
player, while the following coins are those of the
opponents. {2,{3,5,0}} would be a different state.
This allows an agent to prefer giving one opponent
5 coins over another (perhaps the one it has found
to be less challenging). Since there are 3 turns, all
situations where it is the start of turn 4 are either
the ‘win,’ ‘loss,’ or ‘tie’ state. Furthermore, situa-
tions where there are turns left but there is no way
to tie or win, are also the loss state. And situa-
tions where the player will win regardless of what
happens are included in the win state.

All states are connected through actions. Going
for 5 coins can only lead to states where either the
player has 5 more coins, or the player has the same
number of coins (in case an opponent chooses the
same bridge). While playing, Q-learning will as-
sign and update state-action values—Q-values—to
each performed action in each visited state. The
initial values are equal to the number of coins an
action might lead to. This encourages agents to pick
bridges leading to more coins at first, as they are
more likely to lead to higher rewards when no infor-
mation about the opponents is available, and there
is no reason yet to leave 5 coins for others.

Every action in each state leads to a numeric re-
ward. A possible reward scheme for actions is sim-
ply the number of coins they result in. Then the
action of going for 5 coins leads to either a reward
of 5 or 0. But there is a problem with this. Con-
sider the case where an agent receives 3 coins while
an opponent receives 5 coins. This would give the
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agent a reward of 3, while in reality it lost by 2
coins. Therefore the reward instead uses the differ-
ence in coins between the agent and the opponent
with the most coins: the (possibly negative) lead.
The reward is equal to the increase in lead due to
an action. There is one exception, which is when
an action leads to the end of the game. If an action
wins the game, the reward is equal to the maximum
coins a player can get in one turn: the maximum
possible gain in lead (+5). This is because it does
not matter with how much of a lead an agent wins.
And contrarily, the reward for an action resulting
in a loss is the maximum possible loss in lead (-5).
Finally, a tie results in a reward of 0. This results
in the following equation for the reward:

R(a, st) =



5 if st+1 = win
−5 if st+1 = loss
0 if st+1 = tie
p(st+1)− o(st+1) otherwise
−(p(st)− o(st))

,

(2.1)
where p(s) is the number of coins the player has

in state s and o(s) is the number of coins of the
opponent with the most coins in state s.

ToM0 agents generally take the action with the
highest Q-value, but there is a probability that they
make a random choice instead. The agents follow
the ϵ-greedy exploration strategy. The ϵ parame-
ter is set to 0.2. With 3 turns, this leads to a ≈50%
probability per game of performing at least one ran-
dom move (which is not the action with the highest
Q-value). This allows for exploration necessary for
RL, and also makes it harder for other agents to
correctly predict the agent’s actions. At the same
time, the ToM0 agent’s strategy is not sacrificed too
heavily as there is also a 50% probability of playing
a game without any random actions.

Besides allowing exploration and unpredictabil-
ity, the ϵ parameter has a third function. Due
to the nature of the agent-based simulation, each
ToM0 agent has the exact same strategy. By includ-
ing some randomness in their actions, two ToM0

agents are prevented from always choosing the same
bridge, as their initial Q-values and Q-value update
steps are the exact same. The Q-learning state-
action value update rule is

Q(st, at) := Q(st, at)+α[rt+γmax
a∈A

Q(st+1, a)−Q(st, at)],

(2.2)
where rt is the reward given after taking action

at, α is the learning rate, and γ the discount fac-
tor. These last two parameters are the same for all
agents, meaning agents update state-action values
identically if they select the same action. An ϵ prob-
ability of selecting a ‘sub-optimal’ action makes up
for the simplicity of the agents. It simulates in a
very abstract way the many other considerations
humans make which make them choose for seem-
ingly sub-optimal actions, requiring for the theory
of mind strategies to have a more sophisticated way
to predict actions. The ϵ parameter will have a large
effect on the results, so several values around 0.2
will be tested: 0.05, 0.1, 0.2, 0.3, and 0.4.

The discount factor for Q-learning is set to 0.9.
With 3 turns, this means that the agents learn to
plan ahead as none of the rewards are discounted
too heavily. And planning ahead should be very
possible with only 3 turns. Finally, the learning rate
is 0.5. This allows an agent to quickly change its
Q-values when facing ToM agents of a higher or-
der, which themselves will be able to change their
strategy during the game. It reflects the dynamic
nature of the game where agents have to stay one
step ahead of their opponents not to choose the
same bridge.

2.3 First-Order Theory of Mind
A ToM0 agent considers how likely each action is
to lead to a good outcome based only on its own Q-
values. But a ToM1 agent first thinks about what
it would do were it in the situation of each of its
opponents. The agent uses their Q-values to make
predictions of their actions, in order to inform its
own action. Therefore a ToM1 agent keeps track of
not just its own Q-values, but those of every player
in the game.

Each action can lead to multiple different states,
depending on which actions the opponents take.
The Q-value of an action is simply put a weighted
‘average’ of the rewards it has led to in the past.
This means that it implicitly includes the probabil-
ities of which actions the opponents will take. For
example, the 5 coins action Q-value likely lowers
over time since the opponents will take the same
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action, returning a negative reward or 0. By first
explicitly predicting the opponents’ actions with
theory of mind, a ToM1 agent can compute a more
accurate utility of the action rather than relying on
the Q-value.

ToM1 agents use three steps to select an ac-
tion, based on a similar study by De Weerd (2013).
(1) The agent tries to predict the actions of its
opponents. (2) The agent uses the predictions to
compute the ToM utilities of its own actions. (3)
The agent integrates the ToM utilities with its own
(zero-order) Q-values.

(1) To predict an opponent’s action, a ToM1

agent first assumes that the opponent is a ToM0

agent. This is the only case where a prediction is
possible, as a ToM1 agent cannot form a mental
state of another ToM1 agent; only a ToM≥2 agent
can. Assuming that the opponent has no theory
of mind of its own, the ToM1 agent simply places
itself in the state of the opponent, and uses the op-
ponent’s Q-values to select one optimal action â

(1)
j

in the same way a ToM0 agent would. There are
three cases where this leads to an incorrect predic-
tion. First, the opponent could take a random ac-
tion due to the ϵ parameter. Second, the Q-values
might be too different from the actual Q-values of
the opponent. Third, the opponent is not a ToM0

agent.
To solve the first problem, the ToM1 agent does

not assign a probability of 100% to the predicted
action of the opponent. Instead it creates a proba-
bility distribution over all the opponent’s possible
actions. This distribution, called beliefs b, is formed
with the agent’s own ϵ value:

b
(1)
j (a) =

{
1− ϵ, if a = â

(1)
j

ϵ/2, if a ̸= â
(1)
j

. (2.3)

As for the problem of mismatching Q-values, this
solves itself over time, assuming the learning rates
of both agents are similar. The third problem of
the opponent not being a ToM0 agent is addressed
during the integration step (3).

(2) The reward of each action depends on the
specific combination of both opponents’ actions.
Therefore the ToM1 agent has to combine the be-
liefs of the opponents’ actions into probabilities for
each opponent action pair, given by

Ptom(aj , ak) = bj(aj) · bk(ak), (2.4)

where aj is one of the three possible actions of
opponent j, and ak that of opponent k. Next, the
agent assigns a utility to each of its own actions
according to theory of mind, taking into account
the likelihood of each opponent action pair:

ϕtom(ai) =
∑
aj∈A

∑
ak∈A

Ptom(aj , ak) · U(ai, aj , ak),

(2.5)
where ai is the action of the agent itself, and the

utility U of that action is given by

U(ai, aj , ak) = R(ai, aj , ak, st) + max
a∈A

Q(st+1, ai),

(2.6)
which depends on the actions aj and ak of the

opponent. This equation sums the immediate payoff
(reward) with the highest Q-value in the next state
(that actions ai, aj , and ak lead to), allowing the
agent to plan ahead.

(3) Now ϕ is the preference for actions according
to ToM1. But a ToM1 agent does not completely
rely on its theory of mind predictions. It also uses
its own Q-values, which represent the agent’s ToM0

strategy. To know how much the agent should rely
on the theory of mind predictions, it has to de-
termine how confident it is that the opponent is
a ToM0 agent, or rather how confident it is that
first-order theory of mind works against that op-
ponent. For this reason, while playing, the agent
keeps track of whether ToM1 correctly predicts the
opponent’s actions, and assigns to opponent j a
confidence value 0 ≤ c

(1)
j ≤ 1 for ToM1 (more in

section 2.5). There is a separate confidence value
for both opponents. Similar to the beliefs, the two
confidence values need to be combined into a gen-
eral confidence in theory of mind:

ctom = c
(1)
j · c(1)k . (2.7)

With this confidence, the ToM utilities ϕtom can
be integrated with the Q-values:

I(a) = (1− ctom) ·Q(s, a) + ctom · ϕtom(a). (2.8)

This results in a utility for each action which is
based on the agent’s Q-values and the predictions
of first-order theory of mind. Like ToM0 agents,
ToM1 agents pick the action with maximum value
with a probability of 1-ϵ.
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2.4 Second-Order Theory of Mind

Just like ToM1 agents expand upon the strategy
of ToM0 agents, ToM2 expands on ToM1 with one
difference: ToM2 agents have the ability to predict
actions of ToM1 agents. They can place themselves
in the position of their opponent, and select an ac-
tion just like a ToM1 agent would. But ToM2 agents
can also still place themselves in the mental state
of a ToM0 agent. Rather than having for opponent
j one confidence value c

(1)
j and one predicted ac-

tion â
(1)
j , ToM2 agents have these for both first-

and second-order ToM. This changes a few details
in the three steps explained for ToM1 agents.

(1) To predict opponent j ’s action, a ToM1 agent
assumes that the opponent is a ToM0 agent. ToM2

agents do the same, and predict action â
(1)
j . But

they also predict what the opponent would do if it
were a ToM1 agent, resulting in â

(2)
j . While equa-

tion 2.8 computes a ToM1 agent’s final action util-
ities by integrating â

(1)
j with the agent’s Q-values,

for ToM2 agents â(2)j needs to be integrated as well.
Since there are now two different action predic-

tions, there are also two sets of beliefs: the ToM1

belief b(1)j given by equation 2.3, and the ToM2 be-
lief b(2)j which instead uses â

(2)
j :

b
(2)
j (a) =

{
1− ϵ, if a = â

(2)
j

ϵ/2, if a ̸= â
(2)
j

. (2.9)

(2) For ToM1 agents each opponent action pair
has one ToM probability given by equation 2.4.
This probability depends on the ToM1 beliefs b

(1)
j

and b
(1)
k . But there are now 2 sets of beliefs for each

opponent. Therefore every opponent action pair has
4 different ToM probabilities: one for each combi-
nation of opponent j ’s possible ToM order o and
opponent k ’s possible ToM order p:

Ptom(o,p)(aj , ak) = b
(o+1)
j (aj) · b(p+1)

k (ak). (2.10)

(3) Similarly there are 4 ToM utilities for each
action of the agent

ϕtom(o,p)(ai) =
∑
aj∈A

∑
ak∈A

Ptom(o,p)(aj , ak) · U(ai),

(2.11)

and 4 combine confidence values

ctom(o,p) = c
(o+1)
j · c(p+1)

k . (2.12)

To integrate the ToM utilities with their Q-
values, ToM2 agents use the same function as ToM1

agents (equation 2.8), except 4 times in sequence,
with

I(a) := (1−ctom(o,p)) ·I(a)+ctom(o,p) ·ϕtom(o,p)(a),
(2.13)

where I(a) starts as the action’s Q-value. The
ToM utilities are integrated in the following order:
ϕtom(0,0), ϕtom(0,1), ϕtom(1,0), ϕtom(1,1). This order
matters and will influence the results, but this in-
fluence is not examined in this paper. This order
simply integrates ϕtom(0,0) first like a ToM1 agent
would, and then integrates the three utilities com-
puted with ToM2 in an arbitrary order.

2.5 Learning over Games

A ToM0 agent updates the Q-values of each state-
action pair with Q-learning after each turn. A ToM
agent keeps track of the Q-values of its opponents
as well, so it updates three state-action values af-
ter a turn. Additionally, a ToM agent updates the
confidence values in theory of mind for each of its
opponents. These represent how sure the agent is
that a ToM order n works against opponent j. ToM2

agents therefore have two confidence values per op-
ponent. These are updated with

c
(n)
j =


λ+ (1− λ) · c(n)j , if aj = â

(n)
j

c
(n)
j , if n = 2 and

aj = â
(1)
j = â

(2)
j

(1− λ) · c(n)j , otherwise

,

(2.14)
where λ is the learning speed with the value of

0.5. This allows an agent to quickly adapt the confi-
dence in its ToM orders, which is useful when an op-
ponent can change its strategy as well (by adapting
its own confidence values). The confidence value for
ToM2 only increases if ToM1 did not already cor-
rectly predict the action. This prevents an agent
from using ToM2 in the case where ToM1 performs
just as well, so that the agent doesn’t overestimate
the theory of mind of its opponents.
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A ToM2 agent has to keep track of not only its
own confidence values, but also the ToM1 confi-
dence of the opponents about itself. This is neces-
sary for when the agent forms the mental state of
ToM1 agent. To update this value, in each round a
ToM2 agent ‘predicts’ what its own action would
be if it were a ToM0 agent. The agent assumes
that the opponents update this confidence identi-
cally, so there is only one value c

(1)
i . All confidence

values are initialized to 0 so that theory of mind
is only used when deemed necessary. Empirical re-
sults show that this does not have a large effect,
likely due to the high learning speed.

2.6 Population and Evolution
To determine whether the ToM1 and/or ToM2

strategy can invade a population of ToM0 agents,
first 1000 ToM0 agents enter the population. Since
theory of mind evolved in a large population of hu-
mans, this number should not be too small. Be-
fore the evolution starts, one of the ToM0 agents
becomes a ToM1 agent. Then in each epoch, ev-
ery agent competes in the Bridge Crossers game
according to a one-dimensional lattice population
structure, where each agent has two neighbours.
Since there are 3 players per game, each agent plays
3 games per epoch. Once in the ‘middle’ against its
two neighbours, and in two games as an ‘opponent.’

An agent takes over (evolves into) the ToM or-
der of the winner of the game where the agent faced
its own two neighbours. This evolution happens at
the end of an epoch, after all agents have played
3 games. This prevents a possible cascade where
all ToM0 evolve into ToM1 agents in epoch 1. In-
stead, it will take at least 500 epochs for all ToM0 to
disappear, which will make the results more inter-
pretable as epochs will resemble passing time. The
population structure likely has a large influence on
the results. In the one-dimensional lattice, a strat-
egy spreads from a single point. In e.g. a well-mixed
population it would likely spread more quickly.

A ToM1 agent may have a non-zero probability
of losing against two ToM0 agents. Even if it is a
small probability, this may cause the ToM1 strat-
egy to immediately disappear from the population.
Therefore in each subsequent epoch, if there are no
ToM1 agents, one ToM1 agent replaces the agent
where the first ToM1 agent started. From epoch
100, a ToM2 agent is placed here instead, as long

as there are no ToM2 agents already in the pop-
ulation. This gives the ToM1 strategy some time
to spread, but not to take over the entire popula-
tion, which would prevent ToM2 agents from having
to compete against ToM0 agents. The ToM2 agent
is placed in the same position as the initial ToM1

agent, because ToM2 is meant to counter ToM1 and
would therefore emerge where the ToM1 strategy
exists.

As many epochs will be ran as necessary for the
population to stabilize (the percentage of agents for
each strategy stops changing). It is difficult to ap-
ply a strict rule for this, so first an (over)estimation
is made. If the population is still visibly changing
when evolution stops, a larger number of epoch will
be ran. The population is assumed to be stabilized
when the strategy percentages show a periodic pat-
tern for more epochs than when there wasn’t such a
pattern. For the result graphs this periodic pattern
will be trimmed down.

In one epoch, each agent should compete in 3
games. However, there are only 10 possible config-
urations of strategies ({0,0,0}, {0,0,1}, ... {2,2,2}).
To reduce computation time, instead of simulat-
ing identical games over and over, each of these
configuration is assigned a win percentage distri-
bution, just once. For example, the configuration
{0,0,1} could be assigned a 10% probability of
ToM0 winning, and a 90% probability of ToM1 win-
ning. These percentages are computed before the
first epoch starts. Then during the population algo-
rithm, agents use the win percentages as a probabil-
ity distribution to decide which strategy to evolve
into.

In 3 of these configurations all agents use the
same strategy, so one strategy has a win probabil-
ity of 100%. For the other 7 each, n x 100 games are
played with agents using the strategies of that con-
figuration. During the first n-1 games, the agents
update their Q-values and confidence values accord-
ing to section 2.5, but the outcomes of the games
do not matter—these are practice games, necessary
for reinforcement learning and for theory of mind.
Afterwards, one more game is played. The strategy
of the winner of the nth game receives a point.

As for ties, each tying agent could be given a
point. If in a game with two ToM1 agents and one
ToM0 agent the two ToM1 agents tie for first place,
it might seem logical to award a point to the ToM1

strategy. But the goal of agents is to win, without
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taking into consideration the possibility of a tie.
The reward of a tie is 0, so it is not given points
here either. This is not merely an implementation
choice, but it is because in this study ToM is exam-
ined strictly in a competitive setting. If the ToM1

strategy were given a point, the setting would be-
come mixed-motive as the sum of pay-offs would
vary. Agents in the same strategy would become a
‘team’ while the setting is supposed to be a compe-
tition between the individual agents. Even though
the agents will not be able to learn to become a
team, as the strategy points are separate to agent
rewards, the results will not be those of a compet-
itive setting.

After n games, the Q-values and confidence val-
ues are reset to their initial values. This process of
playing n games and resetting values is repeated 99
more times, resulting in 100 - ties points distributed
over the participating strategies. The distribution
of points becomes the probability distribution that
agents use when deciding which strategy to evolve
into. For example, if n is 10 and in the configura-
tion {0,0,1} ToM0 wins the 10th game 20 times,
ToM1 wins the 10th game 40 times, and there are
40 ties in the 10th game, this results in a probabil-
ity distribution of 33.3% for ToM0 and 66.6% for
ToM1.

The number of games n is an important vari-
able, because theory of mind may only be useful
before/after a certain number of games. In order to
form correct mental states of opponents, their strat-
egy has to be learned. The number of games will
also influence the performance of ToM0 because of
reinforcement learning. Therefore the results of the
population evolution will be inspected for several
values of n: 2, 3, 4, 5, 7, 10, 15, 20, 25, and 50. This
does not include 1 as the results would be too ran-
dom; each state would be visited for the first time.
Additionally, several ϵ values will be tested: 0.05,
0.1, 0.2, 0.3 and 0.4. This parameter may also have
a large impact on the results and will show how
robust the theory of mind strategies are against
randomness. Or how much they need not to con-
tinuously take the same action as another agent
with the same ToM order.

The code for the simulation is published
on GitHub here: https://github.com/The-
Mink/BridgeCrossersToM

3 Results

The results prove to be highly dependent on the ϵ
value and the number of played games n. Each of
the three orders of theory of mind performs well in
at least a few of the tested combinations of n and
ϵ. Only some cases are shown in this section.

3.1 Second-Order Theory of Mind

For most values of ϵ and n the final population
is comprised of only ToM2 agents, and in many
others ToM2 still performs better than the other
strategies. The evolution of agent strategies when ϵ
is 0.2 and n is 25 is displayed in figure 3.1. Before
ToM2 agents are introduced, only 2 configurations
(matchups of ToM orders) matter: 2 ToM0 agents
against 1 ToM1 agent and 1 ToM0 agent against 2
ToM1 agents. As seen in table 3.1, in the first con-
figuration ToM1 wins 56/100 games. In the second,
ToM1 wins 57/100 games. Meanwhile ToM0 wins
only 13/100 and 19/100 games. Figure 3.1 reflects
this with a steep decrease in ToM0 agents and in-
crease in ToM1 agents.

When at epoch 100 ToM2 agents enter the pop-
ulation, the number of ToM0 agents keeps decreas-
ing at the same rate, while the increase of ToM1

slows down. The ToM2 strategy starts invading at a
slightly slower rate than ToM1. Around epoch 1150
there are no more ToM0 agents, and the ToM1 pop-
ulation immediately starts declining. Now only the
configurations {1,1,2} and {1,2,2} matter, where
ToM2 wins 43/100 and 50/100 games respectively,
and ToM1 only 30/100 and 17/100. The difference
here is smaller than that between ToM0 and ToM1

agents, and so is the rate of ToM2 taking over
ToM1. Still, after epoch 2650 only ToM2 agents re-
main. Like for all following results, the graph ends
when the number of agents for each strategy stops
changing (as explained in section 3.3). The periodic
pattern at the end (in this case horizontal lines) is
trimmed down without a specific rule.

Figure 3.2 shows a situation where the ToM2 still
successfully invades, but not the entire population.
In this specific population ϵ is 0.05 and n is 10, al-
though the same pattern is present when 4 ≤ n ≤
15). ToM1 has a 83/100 win rate in the configura-
tion {0,0,1} as seen in table 3.2. But the win rate in
the configuration {0,1,1} is only 35/100, lower than
that of ToM0 (59/100). Even though ToM1 per-
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Figure 3.1: The number of zero-, first- and second-order agents in
the population of 1000 during epochs, where the probability of a
random action was 20% and the agents learned their opponents’
strategies over 25 consecutive games. ToM2 agents entered the pop-
ulation at epoch 100 (visualized with a dashed line). The results are
smoothed with a moving average over 10 epochs.

ToM0 ToM1 ToM2

0,0,1 13 56
0,1,1 19 57
0,0,2 22 51
0,2,2 21 42
1,1,2 30 43
1,2,2 17 50
0,1,2 20 17 33

Table 3.1: The number of
wins (out of 100) in the 25th
game for each order of the-
ory of mind in each config-
uration of strategies, where
the probability of a random
action was 20%.

Figure 3.2: The number of zero-, first- and second-order agents in
the population of 1000 during epochs, where the probability of a
random action was 5% and the agents learned their opponents’
strategies over 10 consecutive games. ToM2 agents entered the pop-
ulation at epoch 100 (visualized with a dashed line). The results are
smoothed with a moving average over 10 epochs.

ToM0 ToM1 ToM2

0,0,1 16 83
0,1,1 59 35
0,0,2 14 82
0,2,2 42 43
1,1,2 14 72
1,2,2 60 31
0,1,2 38 19 34

Table 3.2: The number of
wins (out of 100) in the 10th
game for each order of the-
ory of mind in each config-
uration of strategies, where
the probability of a random
action was 5%.
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forms worse in this configuration compared to when
ϵ was 0.2 and n was 25 (and ToM1 won 56/100), it
invades the population more quickly.

ToM1 starts declining at epoch 700. This time,
there are still ToM0 agents in the population. The
ToM2 strategy keeps invading, but both the ToM0

and ToM1 strategies decline. As fewer ToM0 agents
remain in the population, the decline of the ToM1

strategy slows down. When at epoch 1050 the ToM0

population disappears, the decline of ToM1 agents
stops. Its population stabilizes along with ToM2, at
a ratio of about 3:7.

3.2 First-Order Theory of Mind

There are a few cases where ToM2 fails to invade a
population of ToM1 agents. One of these is shown in
figure 3.3, where ϵ is 0.3 and n is 25. In each epoch
after 100, a ToM2 agent enters the population if
there is not already one present. Still, the strategy
fails to properly enter the population, both when
there are still ToM0 agents and when there are not.
The win rates of ToM2 given in table 3.3 are much
lower than the win rates of ToM2 in tables 3.1 and
3.2. This allows ToM1 to completely take over the
population.

In even fewer cases, the final population consists
of mostly ToM1 agents while there are still ToM2

agents. Figure 3.4 (ϵ is 0.2 and n is 2) shows one of
these situations. ToM1 takes over the ToM0 strat-
egy, and the ToM2 strategy slowly invades as well.
When there are no more ToM0 agents in epoch
1000, the ToM2 strategy catches up to ToM1 un-
til about a third of the population is ToM2 and
two thirds are ToM1. Some variation does occur.
For example around epoch 7500, where for a short
time the ratio of ToM1 agents increases. Table 3.4
shows that the configurations {1,1,2} and {1,2,2}
have win rates 28/100 and 40/100 for ToM2 and
51/100 and 25/100 for ToM1, which evidently gives
ToM1 an advantage over ToM2.

3.3 Zero-Order Theory of Mind

Zero-order theory of mind does not maintain the
highest ratio of agents in the population with any
tested combination of ϵ and n. However, it can get
close. Figure 3.5 shows the evolution of the popula-
tion when ϵ is 0.05 and n is 2—the situation where

ToM0 performs best. The ToM1 strategy starts in-
vading the ToM0 population, and ToM2 joins at
epoch 100 at a similar rate. But the ToM0 strategy
never drops to zero; it stabilizes around epoch 500
with a population of 500. This coincides with the
point where the ToM1 strategy starts losing agents.
ToM2 keeps invading until epoch 1200, where it sta-
bilizes just slightly above the ToM0 strategy (the
gap between the two strategies varies for other val-
ues of ϵ and n). Table 3.5 shows that the configura-
tions {0,0,2} and {0,2,2} have win rates 4/100 and
93/100 for ToM0 and 90/100 and 6/100 for ToM2.
Since both strategies lose almost all games where
two of their agents face one of the other strategy,
their average win rates drop quickly whenever they
have more agents. Therefore both strategies hover
around 50%.

4 Discussion

The goal of this study was to find out whether a
first- and/or second-order theory of mind strategy
can invade a population of agents relying on a sim-
ple behavior-based strategy in a competitive set-
ting, in a one-dimensional lattice population struc-
ture. The used agent-based model was designed to
reflect the theory of mind that humans possess, and
to simulate why/how this skill may have evolved in
the human population.

How well first-order theory of mind (ToM1) and
second-order theory of mind (ToM2) evolved in the
population of behavior-based agents (ToM0) de-
pends on two variables. First, the number of games
that agents have to learn each other’s strategies and
to adapt their own: n. Second, the probability that
agents take a random action instead of following
their strategy: ϵ.

Figure 3.1 shows one of the cases where ToM2

completely invades the population. Figure 3.3
shows one where ToM1 does. Figures 3.2 and 3.4
show cases where both ToM1 and ToM2 remain
when the population evolution stabilizes. Finally,
figure 3.5 shows a case where ToM0 is in the final
population along with ToM2. These results demon-
strate that each of the three strategies is useful un-
der certain circumstances. Both first- and second-
order theory of mind can indeed invade a popula-
tion of behavior-based agents in a competitive set-
ting. But they do not always succeed in completely
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Figure 3.3: The number of zero-, first- and second-order agents in
the population of 1000 during epochs, where the probability of a
random action was 30% and the agents learned their opponents’
strategies over 25 consecutive games. ToM2 agents entered the pop-
ulation at epoch 100 (visualized with a dashed line). The results are
smoothed with a moving average over 10 epochs.

ToM0 ToM1 ToM2

0,0,1 29 40
0,1,1 24 44
0,0,2 38 33
0,2,2 21 43
1,1,2 42 25
1,2,2 25 37
0,1,2 25 16 25

Table 3.3: The number of
wins (out of 100) in the 25th
game for each order of the-
ory of mind in each config-
uration of strategies, where
the probability of a random
action was 30%.

Figure 3.4: The number of zero-, first- and second-order agents in
the population of 1000 during epochs, where the probability of a
random action was 20% and the agents learned their opponents’
strategies over 2 consecutive games. ToM2 agents entered the pop-
ulation at epoch 100 (visualized with a dashed line). The results are
smoothed with a moving average over 10 epochs.

ToM0 ToM1 ToM2

0,0,1 22 47
0,1,1 34 33
0,0,2 33 45
0,2,2 44 22
1,1,2 28 40
1,2,2 51 25
0,1,2 24 14 19

Table 3.4: The number of
wins (out of 100) in the 2nd
game for each order of the-
ory of mind in each config-
uration of strategies, where
the probability of a random
action was 20%.
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Figure 3.5: The number of zero-, first- and second-order agents in
the population of 1000 during epochs, where the probability of a
random action was 5% and the agents learned their opponents’
strategies over 2 consecutive games. ToM2 agents entered the pop-
ulation at epoch 100 (visualized with a dashed line). The results are
smoothed with a moving average over 10 epochs.

ToM0 ToM1 ToM2

0,0,1 2 97
0,1,1 81 11
0,0,2 4 93
0,2,2 90 6
1,1,2 14 84
1,2,2 87 12
0,1,2 12 5 21

Table 3.5: The number of
wins (out of 100) in the 2nd
game for each order of the-
ory of mind in each config-
uration of strategies, where
the probability of a random
action was 5%.

taking over the population.
Specifically, the ToM strategies almost always

completely invade the ToM0 population. In the ma-
jority of cases the ToM2 takes over most of the pop-
ulation, but in many cases the ToM1 strategy does
instead. There does not seem to be a clear correla-
tion between the two parameters (n and ϵ) and the
cases where ToM1 performs better than ToM2.

But it is clear when the ToM strategies struggle
against the behavior-based strategy. This happens
when there is both a small probability of taking a
random action, and agents have few games to learn
their opponents’ strategies (like in figure 3.5 where
n is 2 and ϵ is 0.05). Because of the few games,
agents do not have much time to learn, which means
the ToM strategies do not have a large advantage
over ToM0. And since ϵ is low as well, the effect
where two agents of the same order are at a dis-
advantage is augmented, since they will more of-
ten pick the same action. Table 3.5 demonstrates
clearly that agents rarely win when one of their op-
ponents have the same ToM order. ToM0 remains
in the population because it is too difficult to beat
with two ToM1 or ToM2 agents.

It may seem like a very specific case where both
these parameters have a low value, but during evo-
lution it might have been more important to be able
to compete against novel opponents than against
companions. And a small probability of taking a

random action might be more realistic than the
higher probabilities.

4.1 Human Evolution

The model was meant to give some insight into
why/how the skill of theory of mind emerged in
humans. The results might implicate that theory of
mind evolved because of (social) civilisation, where
humans developed more relations with each other.
At first the behavior-based strategy was useful be-
cause it performs well against novel opponents, but
this type of first- or even second-contact competi-
tion became less and less common. As competition
started to occur more between relatives in a more
compact world, humans were given time to learn
each other’s strategies, which in turn set the stage
for theory of mind to be beneficial.

But it is a leap to confidently explain with these
results the evolution of theory of mind, mainly be-
cause the model is too abstract. There are many
factors that will have influenced the process of
theory of mind evolution, such as biological capa-
bilities, social connections, and historical circum-
stances. However, the results of the model do illus-
trate why humans may have learned (higher-order)
theory of mind. It beats the behavior-based strat-
egy in many cases.
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4.2 Population Structure

The results depend highly on a very important im-
plementation detail: the population structure. And
the one-dimensional lattice is not necessarily an ac-
curate representation of the real-world human pop-
ulation structure, which even now is undergoing
major changes (Campbell et al., 2009). The lattice
is the cause of certain aspects in the population
evolution graphs, for example the steady increase
of the ToM1 population which at one point sud-
denly starts decreasing. This is seen most clearly
in figure 3.1, where agents play for 25 games and
have a 20% probability of taking a random ac-
tion. Due to the one-dimensional lattice, the ToM1

strategy spreads in two directions. From epoch 1
to 100 in the population graph there is a steep in-
crease in ToM1 agents. Table 3.1 indeed shows that
ToM1 clearly beats ToM0 when no ToM2 agent is
involved. But around epoch 1150 the ToM1 popu-
lation starts diminishing. This is because the two
‘waves’ of spreading ToM1 agents have met; there
are no ToM0 agents left.

At epoch 100 the ToM2 strategy is placed where
the ToM1 strategy originated. This makes sense
from an evolutionary standpoint, as the ToM2

strategy likely emerged to combat the ToM1 strat-
egy. However, with the lattice population struc-
ture this has an important consequence. The ToM2

strategy starts spreading in both directions just like
ToM1 did. Except the ToM2 agents only compete
against ToM1 agents. Even if some ToM1 agents
lose against ToM0, the ‘holes’ that form in the
spreading ToM1 population will be quickly filled
again with ToM1 agents. This means that the ToM2

strategy invades within a ‘bubble’ of ToM1 agents
and never has to compete against ToM0 agents.

The one-dimensional lattice structure nullifies
the game of rock paper scissors between the three
ToM orders as mentioned in section 1. It was ex-
pected that ToM1 beats ToM0, ToM2 beats ToM1,
and ToM0 might beat ToM2. Additionally, when
multiple agents in a game have the same strategy,
they are at a disadvantage. This is most clearly vis-
ible in table 3.5. Since in this case there is only a
5% probability of taking a random action, agents
with the same strategy often take the same action,
which in the Bridge Crossers game is disadvan-
tageous. This fact combined with the rock paper
scissors relationship between the strategies, could

cause a population to fall into some sort of equi-
librium where even for the worst performing strat-
egy a few agents might remain. But this would only
happen if the strategies were better spread through-
out the population. Because of the ‘waves’ of evo-
lution in the lattice, it does not.

4.3 Unrealistic Theory of Mind

In a vast majority of cases, second-order theory of
mind completely takes over the population. This is
not solely because ToM2 generally does not have
to compete against ToM0 agents. For instance ta-
ble 3.1, corresponding to one of the cases where
ToM2 invades completely, shows that ToM2 would
outperform ToM0 even when no ToM1 agents are
involved.

A big reason why both ToM strategies perform
better than the behavior-based strategy in almost
all cases is likely the simplicity of the model. The
agents use reinforcement learning, and as explained
in section 2.5, they keep track of each other’s state-
action values. Since each agent uses the exact same
computations, these values are perfect represen-
tations; the mental states that ToM agents form
are without error. The disadvantage of theory of
mind—the possibility of overthinking by making
a series of error-prone predictions—is less present.
The only variable is the probability of taking a ran-
dom action, which ToM strategies can account for
with confidence values. This is why theory of mind
performs so well in the model (except in the cases
where both n and ϵ have low values).

4.4 Conclusion

Though there are some implementation choices
which may not reflect human cognition, the model
has shown that both a behavior-based strategy and
(higher-order) theory of mind have use. This agrees
with studies which have found that humans use the-
ory of mind (Perner & Wimmer, 1985; Sullivan et
al., 1994; Miller, 2009; Goodie et al., 2012; Arslan
et al., 2012; Verbrugge et al., 2018; Arslan et al.,
2020). The model expands upon a similar model
used for the rock paper scissors competitive setting
(de Weerd et al., 2013). There are three players
instead of two players, and the same model could
be employed for settings with more participants.
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Additionally, due to the reinforcement learning ap-
proach, the model accounts for action-dependent
reward potentials which applies to many real-world
situations.
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