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Abstract: Neural Radiance Fields (NeRFs) can accurately capture 3D volumes in neural net-
works but are often unreliable in real-world settings where information is limited. This is prob-
lematic for settings that require decision-making like autonomous driving. This research uses
uncertainty quantification to gain insight into the reliability of predictions. This is done by ap-
plying a method called Flipout to NeRF. It uses Variational Inference to increase uncertainty
quality and is found to produce better predictions and associated uncertainty than previous
methods.

1 Introduction

Neural Radiance Fields (NeRFs) have seen a lot of
attention since their introduction by Mildenhall et
al. (2021). Their appeal lies in the ability to encode
3D volumes implicitly within a relatively uncompli-
cated deep neural network. This interest has led to
considerable improvements in fidelity and compu-
tational efficiency.
Usually, a set of numerous training images from

diverse viewpoints is required for optimal results.
However, in real-world scenarios, this availability
of images is rare, and even when available, it adds
computational costs making it harder to create
real-time applications. There has been promising
research by for instance Verbin et al. (2022) look-
ing to increase the accuracy of NeRF models with
only a few training images in so-called “few-shot
settings”. However, they are unable to show the
associated uncertainty of their predictions.
Knowledge about the uncertainty of a NeRF

model is essential for real-world settings like au-
tonomous driving or medical imaging. It can indi-
cate areas of an object that are likely to be incor-
rect. This can directly influence decision-making.
Estimating the uncertainty in neural networks

is achieved with Bayesian deep learning. Several
techniques exist that approximate the uncertainty.
Researchers have been investigating integrating
these techniques with NeRFs. While these methods
achieve good qualitative results, a complete analy-

sis of the predicted uncertainty is still an area to
improve upon.

This research aims to quantify the uncertainty
using a general method for stochastic neural net-
works called “Flipout”. This approach produces a
lower variance than Bayes by Backprop by Blun-
dell et al. (2015) and produces better uncertainty
characteristics.

To simulate a real-world setting, this method is
performed in a few-shot scenario with three train-
ing images. This makes accurate reconstructions
more difficult but increases the opportunity to an-
alyze the uncertainty in inaccurate areas.

Ultimately, this research addresses the question:
“How effective are the uncertainty quantification
properties of Flipout compared to other methods?”

It is found that the novel Flipout approach
presents more effective way to interpret uncertainty
in the context of NeRFs compared to previous
methods.

2 Related work

2.1 NeRF

A Neural Radiance Field (NeRF) can capture a 3D
environment in a neural network. This is done by
encoding a radiance value, essentially the intensity
of light, for every combination of a position in 3D
space x and a viewing direction d. The radiance c
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Figure 2.1: Rays are projected from a novel
viewpoint. Radiance samples are taken along
the rays.

consists of four values. One for each color channel
in RGB, and a density σ, which can be interpreted
as the ray termination probability.

To extract a 2D image from the NeRF, rays r(t)
are projected into the scene from a novel viewpoint,
as is visible in Figure 2.1. Samples t are taken along
the ray from tn to tf . These samples are accumu-
lated to calculate the final pixel color. This process
is described in the volumetric rendering function
(2.1), where T (t) is the transmittance. See Milden-
hall et al. (2021) for a more detailed explanation.

C(r) =

∫ tf

tn

T (t) σ(r(t)) c(r(t),d) dt (2.1)

To train a NeRF, usually, a large set of images
from diverse viewpoints is used. Issues will emerge
when it is trained on very few images. However, in
real-world scenarios, a large set of images is almost
never available. This makes it an interesting area
for research. This research intentionally constrains
the number of images available to NeRF.

2.2 NeRF in Few-Shot Scenarios

In Few-Shot scenarios, NeRF is trained on a limited
set images, usually 1 ∼ 4. Figure 2.2 shows such
a training set. To achieve good results with this
limitation, several regularization techniques have
been proposed. This section outlines two popular
techniques and examines their applicability in real-
world settings.

Figure 2.2: Training images used in a Few-Shot
scenario. Only one side of the Lego excavator is
observed.

Verbin et al. (2022) leverages a depth baseline to
improve the quality. They generate a point cloud
using a Structure from Motion (SfM) algorithm ap-
plied to the training data, which is then used to
supervise the optimization process.

Although this method produces more accurate
results, it often makes significant prediction errors
related to object structure. Additionally, prediction
errors from the point cloud can propagate to the
NeRF representation, thereby increasing inaccura-
cies.

Accurate scene structure is essential for au-
tonomous navigation. However, it’s insufficient to
rely solely on improved accuracy. Current predic-
tions tend to be overconfident, providing no insight
into whether the model is extrapolating.

Alternatively, Deng et al. (2022) regularize based
on patches in unseen views. Their proposed loss
functions encourage geometry smoothness and
color consistency, removing the need for an addi-
tional depth baseline.

Still, as acknowledged by the authors, the effec-
tiveness of this approach lies in the assumption that
the true structure is mostly smooth and the color
remains consistent. These conditions are not appli-
cable in all cases and can result in blurred recon-
structions when the scene includes high-frequency
details.

This can be problematic in autonomous naviga-
tion, where missing detail on a sign, for example,
can lead to misclassification. Similar to the previous
method, there’s no way to detect such misclassifi-
cations.

To meet the demands of real-world settings, it’s
clear that simply improving accuracy through regu-
larization is not enough. Uncertainty quantification
is a critical component that needs to be incorpo-
rated into the process.
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2.3 Uncertainty Quantification with
Bayesian Neural Networks

With Bayesian statistics, when estimating the
probability of an observation, we not only take into
account the frequency of that observation but also
include prior knowledge about how likely it is to
occur.

P(w|D) =
P(D|w) P(w)

P(D)
(2.2)

This concept is described in equation (2.2) and
is applied in training Bayesian neural networks
(BNNs). By learning a BNN, the goal is to learn the
posterior probability P(w|D) of the weight configu-
rations (w) given some data (D). This is called the
Bayesian weight posterior distribution (BWPD).

P(y|x) =
∫
w

P(y|w,x) P(w|x) dw (2.3)

After training, suppose a prediction is to be made
with a given input x. According to equation (2.3),
the learned BWPD can be used to calculate P(y|x).
This is called the Bayesian predictive posterior dis-
tribution (BPPD).
As can be seen, this prediction is not a single

value as in regular neural networks. In fact, all
weights and outputs in BNNs are modeled as prob-
ability distributions rather than single-point val-
ues. This approach is more informative because a
probability distribution provides an indication of a
value’s uncertainty, which can be interpreted as a
measure of trustworthiness.
Unfortunately, it is not possible to describe equa-

tions (2.2) and (2.3) as closed-form expressions.
Additionally, an exact approximation of these ex-
pressions is computationally infeasible. This makes
BNNs typically intractable.
However, it is possible to generate individual

samples from the theoretical BPPD by making rel-
atively simple adjustments to a regular neural net-
work. The collected samples form a histogram that
roughly approximates the BPPD, shown in figure
2.3. Several adjustments have been proposed.
Such as Monte Carlo Dropout by Gal &

Ghahramani (2016) (where random activations are
dropped during inference), Monte Carlo Drop-
Connect by Mobiny et al. (2021) (where random

Figure 2.3: Approximation of the Bayesian Pre-
dictive Probability Distribution (BPPD) with
50 samples forming a histogram

weights are dropped during inference), and es-
timation using ensemble methods like Lakshmi-
narayanan et al. (2017).

These naive sampling methods lead to a mediocre
fit for the BPPD. As seen in figure 2.3, some values
are sampled too many times and others too little.

A more accurate approximation is achievable by
having an explicit training objective that learns a
probability density function qθ(w|D) that fits the
P(w|D) (BWPD) as close as possible.

This approach is known as variational inference,
which is the main method employed in this research
and is further explained in the following sections.

2.4 Variational Inference

Variational inference in BNNs has been extensively
researched as a method to quantify uncertainty.

As mentioned before, the goal is to fit qθ(w|D) to
the BWPD during training. This is done by adding
a distance metric between the two distributions to
the loss so that this is minimized.

KL(q, p) =

∫
x

q(x) log
q(x)

p(x)
(2.4)

This is done with the Kullback-Leibler diver-
gence described in equation (2.4). This is a general
metric that measures the separation between two
probability distributions.

The evidence term P(D) in equation (2.2) cannot
be assumed or computed. Therefore, The KL diver-
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Paper RGB σ P(RGB|x) P(σ|x) UQ Method

NeRF
Mildenhall et al. (2021)

✓ ✓ × × none

S-NeRF
Shen et al. (2021)

✓ ✓ ✓ ✓ Variational Inference

CF-NeRF
Shen et al. (2022)

✓ ✓ ✓ ✓ Variational Inference

Density Aware NeRF
Sünderhauf et al. (2023)

✓ ✓ ✓ ✓ Deep Ensembles

Flipout NeRF ✓ ✓ ✓ ✓ Variational Inference

Table 2.1: NeRF papers with corresponding uncertainty quantification methods and which values
they estimate

gence needs to be reformulated into the Evidence
Lower BOund (ELBO).
Minimizing the ELBO, means that it is only pos-

sible to approximate the lower bound of the evi-
dence during training. The evidence term could be
arbitrarily large, so it is unknown what the accu-
racy of the resulting approximation is. However, for
Bayesian deep learning, it is more effective than the
naive sampling approach.

L = KL(qθ(w|D),P(w)) + LNLL (2.5)

The final loss is described in equation (2.5).
Where the KL divergence between the approxi-
mate BWPD qθ(w|D) and the prior P(w) is calcu-
lated and added to the LNLL, which is the negative
log-likelihood as expectation over the approximate
BWPD.
Some drawbacks of using variational inference

are the detrimental effects on training speed. The
loss can become unstable because of the added
stochasticity and it may take much longer to con-
verge.

2.5 NeRFs and Uncertainty Quan-
tification

The concept of Bayesian Neural Networks can be
used to quantify the uncertainty in NeRFs. In reg-
ular NeRF, it is possible to predict the RGB value
and the density given an input. For a NeRF that
adopts a BNN, it is also possible to predict the
standard deviation of the RGB and of the density.

This section introduces and evaluates previous
research that aims to quantify the epistemic uncer-
tainty in NeRFs. Their goal is to find areas where
the model is more uncertain about the reconstruc-
tion of a scene. Some papers mentioned in this sec-
tion are found in Table 2.1.

Shen et al. (2021) use a variational inference
approach which they call ”Stochastic NeRF” (S-
NeRF). They learn the probability distributions of
the weights and the outputs. Their approach incor-
porates an algorithm similar to Bayes by Backprop
by Blundell et al. (2015).

As simplifications, they assume that weights are
normal distributions and that view-radiance pairs
are independent. However, they find that this leads
to a lack of consistency in the output image at ad-
jacent pixels.

They address the independence assumption in a
follow-up paper Shen et al. (2022), by modeling a
complex joint distribution between each prediction.
They achieve smoother outcomes by using condi-
tional normalizing flows.

Sünderhauf et al. (2023) try an alternative
method of quantifying uncertainty with Deep En-
sembles, introduced by Lakshminarayanan et al.
(2017). They also devise a new uncertainty term
that is more informative for areas with low density.

Generally, many assumptions and simplifications
are made to make these methods work. This is nec-
essary to make the problem tractable but compro-
mises the produced uncertainty quality.

For Deep Ensembles, they simplify the problem
by not explicitly training the model to approximate
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the BWPD. They treat the weight configuration
of every ensemble member as a sample from the
BWPD. This means many ensemble members are
necessary to obtain a good approximation of the
uncertainty.

The aforementioned variational inference meth-
ods do approximate the BWPD during training.
However, they are unstable and produce a large
variance which can compromise uncertainty qual-
ity. This is caused by the simplification that only a
single weight sample from the BWPD is taken while
training a batch of data. Ideally, multiple samples
are taken to increase diversity. This problem is ad-
dressed in the following section.

2.6 Flipout

A BNN randomly changes the weights of a model
to learn which values are more likely. To change
the weights, a sample from the BWPD is taken.
Only the weight matrix of the stochastic layers is
adjusted with this sample.

As mentioned before, this only happens once dur-
ing each training batch. This means that the same
weight matrix is used for over 12 million forward
passes when a batch contains 64 coarse samples and
128 fine samples over an image of 256x256 pixels.
To obtain better results, a separate sample needs
to be taken for each forward pass. Unfortunately,
this is computationally unfeasible.

Wen et al. (2018) found that they could trans-
form the existing weight matrix within a batch
instead of taking a new sample each time. They
do this in a way that the new weights are suffi-
ciently uncorrelated while still representing a sam-
ple from the BWPD. This adds minimal computa-
tional overhead.

This allows for more variation during training,
which leads to a reduced variance of the predictions
and faster convergence. The technique is called
Flipout and is applied to regular NeRF. It is an-
alyzed in the following sections.

3 Experimental Setup

In this research we apply Flipout to NeRF. The
base NeRF implementation uses a hierarchical sam-
pling approach as presented in Mildenhall et al.

(2021), using 64 coarse samples and 128 fine sam-
ples. The NeRF consists of 8 fully connected layers,
each containing 256 dense units. This NeRF im-
plementation doesn’t use any additional optimiza-
tions. This base model is extended with various un-
certainty quantification methods.

All methods, with the exception of ensembles,
only use stochastic weights in the output layers of
NeRF. These are in total 4 layers, consisting of the
2 output layers for RGB and Depth and the 2 layers
before.

By increasing the number of stochastic layers, it
is possible to produce better uncertainty. However,
the produced image quality and speed of conver-
gence can suffer. By taking more samples, the qual-
ity of the uncertainty can also be increased. Every
method except ensembles uses 10 samples to make
a prediction.

3.1 Uncertainty Methods

3.1.1 MC-DropConnect

Stochastic results are produced during inference by
randomly setting weights to zero. The results are
samples from the BPPD. Weights are dropped for
every forward pass with a probability of 5%.

3.1.2 Ensembles

An ensemble consists of 5 NeRF models, all with
identical architecture but different weight initial-
ization. The results that are produced are samples
from the BPPD. A standard deviation and mean
can be calculated over all outputs for each forward
pass.

3.1.3 Bayes By Backprop

Bayes by backprop is a variational inference
method. It does not take variation in training
batches into account. Given the batch size of 1,
the kl-weight is set to 1. The prior parameters are
sigma 1: 5.0, sigma 2: 2.0, and prior pi: 0.5.

3.1.4 Flipout

Flipout, is another variational inference method
that is the main focus of this paper. This does
take variation within training batches into account.
Given the batch size of 1, the kl-weight is set to 1.
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The prior parameters are sigma 1: 5.0, sigma 2: 2.0,
and prior pi: 0.5.

3.2 Data

The data that is used for training, testing, and eval-
uation consists of rendered images from a 3D model
using Blender. This synthetic dataset was created
by Mildenhall et al. (2021). The 3D Lego excavator
from this dataset is used. This 3D model is espe-
cially suitable because it contains plenty of high-
frequency details.
The novel viewpoints generated in this research

are not covered by images in the dataset. For
this reason, a pseudo-ground truth is computed by
training a regular NeRF model for 120 epochs on
100 images from the training dataset.
For the Few-Shot scenario that is used in the

experiments, only 3 images are used in training in-
stead of 100. These images share similar viewpoints.
This ensures that only a specific part of the object
is observed, creating an ideal scenario for evaluating
the uncertainty in unseen views. The exact views
used in training are shown in figure 2.2.

3.3 Analysis

3.3.1 Novel views

To analyze the performance of the models, novel
views are produced that are not seen in the train-
ing data. These novel views are gathered in two
settings. The first setting is called the “360-views”
setting and circles around the object, varying the
azimuthal angle ϕ with intervals of 60, while keep-
ing the polar angle θ the same at a value of -30. The
second is called the “unseen-views” setting and only
observes the unseen half of the scene from ϕ:[30,150]
with an interval of 30. It also varies the polar angle
θ:[-45,45] in three intervals, to observe the topside
and the underside of the object.

3.3.2 Qualitative Analysis

To analyze the quality of the predicted RGB im-
age, the difference between this image and the RGB
ground truth is calculated. The absolute difference
between the color channels of each pixel is taken.
All color channels are then summed forming an er-
ror map. This is done the same way for the depth
maps.

To create the RGB uncertainty maps, the pre-
dicted standard deviations of the rgb are accumu-
lated along the rays. In the volumetric rendering
function, see equation (2.1), the predicted density
is used to weigh the RGB uncertainty. Note that
this is different from the density uncertainty. The
mean of all color channels is taken to produce an
uncertainty map.

To create the depth uncertainty maps, the pre-
dicted standard deviations of the density are accu-
mulated along the rays and rendered according to
the volumetric rendering function.

The color scale of each map is displayed to the
right. Because these maps often contain outliers,
extreme values are clipped. The 99.5 percentile of
the predicted maps is calculated and used as the
upper bound for scaling.

3.3.3 Quantitative Analysis

A quantitative analysis of the produced images is
also performed. For this, we use the standard met-
rics PSNR and SSIM that analyze the similarity
between the prediction and the ground truth. Addi-
tionally, the Mean Absolute Error (MAE) is taken.
This is the mean over the absolute differences for
each pixel as described in equation (3.1).

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.1)

To analyze the quality of the uncertainty quan-
tification we take the Gaussian Negative Log-
Likelihood for each pixel. This estimates the prob-
ability of the ground truth given a Gaussian prob-
ability distribution. The Gaussian is defined by the
predicted mean ŷ and predicted standard deviation
σ̂. This is described in equation (3.2).

NLL =
1

n

n∑
i=1

log σ̂2
i +

(yi − ŷi)
2

σ̂2
i

(3.2)

The minimum value in the predicted uncertainty
is changed to 1e − 2. This minimizes the effect of
black pixels in the background of the image.

3.3.4 Plots

Plots are used to compare the outputs of differ-
ent methods. For each of the 4 output channels R,
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G, B and σ, the predicted standard deviation and
the error are graphed in scatter plots to show their
correspondence. This is done for the “360-views”
setting, meaning that the seen and the unseen side
of the excavator is analyzed.
The maximum limit of the y-axis for all color

channels and methods is 0.2. The maximum limit
of the y-axis for the depth is 87. This is different
for ensembles as they produce larger uncertainty.
In the calibration plot, the standard deviation

and the accuracy are related. The accuracy is di-
vided into bins of 20. For each bin, the mean stan-
dard deviation is calculated. Also in this case
The ROC curves indicate the separation between

seen and unseen views based on the predicted un-
certainty. This is done by taking two views that are
close to the training data. The angles (ϕ, θ) of these
views are correspondingly (-60, -30) and (-120,-30).
Additionally, two opposing views, that are far from
the training data, are taken with the angles (-240,
-30) and (-300, -30). The False Positive Rate and
True Positive Rate are calculated and plotted.

4 Results

A Flipout NeRF model is trained in a few-shot sce-
nario and is compared with the baseline model as
described in section 3.2. Additionally, it is com-
pared to other uncertainty quantification methods
as described in section 3.1. The following sections
present and analyzes the results.

4.1 View Synthesis in a Few-Shot
Scenario

The qualitative results of Flipout NeRF are visu-
alized in Figure 4.2 and in Figure 4.3. Novel views
are generated according to the “360-views” setting.
From top to bottom, it displays the predicted value,
the ground truth, the absolute error, and the un-
certainty.

4.1.1 RGB View Synthesis

As is visible in the predicted RGB images in Figure
4.2, Flipout NeRF learns structures that do not
correspond to the ground truth. Mainly areas that
are unseen during training are being extrapolated.
It can be seen in Figure 4.1 that during training, the

Figure 4.1: The training loss over the three
training images decreases, while the validation
loss over all 100 images remains the same.

validation loss decreases at first, but very quickly
flattens out and stops improving. As expected, it
shows that Flipout NeRF isn’t generalizing well for
all 100 views.

Viewpoints that are in the range θ = [−180◦, 0◦]
are further from the training viewpoints and show
more extrapolation and an increased absolute error.
This is supported by Table 4.1, where it can be seen
that the Mean Average Error increases correspond-
ingly with the viewing angles of Figure 4.2.

Additionally, there is a black hole in the middle
of the object for unseen views. This means that
these areas have a predicted density of 0. It must
be noted that these areas are also highlighted by
the error despite the fact that they do not represent
extrapolated structures.

The low-density areas of the excavator show a
large error but no uncertainty. It is expected that
the uncertainty is similar to the error, but as a
result of the previous observation, the uncertainty
does not necessarily correspond to the error.

However, it can be seen in Table 4.1 that the Neg-
ative Log-Likelihood of the uncertainty shows the
same behavior as the MAE. It increases for unseen
views.

The top of the excavator shows significantly more
uncertainty than the bottom. Here the structures
are thinner and comparatively move a lot in screen
space between different views. This could be a rea-
son why there is more disagreement between sam-
ples.
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Figure 4.2: The performance of the predicted RGB is analyzed by observing views in the “360-
views” setting. Novel views are generated by varying the azimuthal angle ϕ. The two most left
columns are closest to the training views and show a low error. When observing the columns to
the right, the error increases. It can be seen that the observed side of the excavator shows lower
uncertainty than the unobserved side.

ϕ angle -60° -120° -180° -240° -300° 0°
RGB MAE ↓ 0.114 0.108 0.249 0.286 0.245 0.199
P(RGB) NLL ↓ 17.71 17.26 112.12 195.61 159.82 77.95

Table 4.1: Performance metrics are calculated seperatly for each viewing angle in the “360-views”
setting. The MEA indicates the quality of the prediction and the NLL indicates the quality of the
uncertainty. As can be seen, both metrics indicate worse performance when moving away from
the training views.

RGB PSNR ↑ RGB SSIM ↑ RGB MAE ↓ P(RGB) NLL ↓
MC-DropConnect 14.25 0.537 0.094 336.17
Ensembles 13.92 0.473 0.109 170.99
Bayes By Backprop 17.08 0.645 0.064 144.50
Flipout 16.69 0.634 0.067 96.74

Table 4.2: The performance of different uncertainty quantification methods in the “360-views”
setting is compared. Bayes By Backprop achieves a slightly better RGB prediction than Flipout.
However, Flipout seems to outperform all other methods when estimating the uncertainty.
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Figure 4.3: The performance of the predicted depth is analyzed in the “360-views” setting. Novel
views are generated by varying the azimuthal angle ϕ. The top row shows mediocre results com-
pared to the ground truth. This difference is not entirely captured in the error. It can be seen
that the uncertainty is localized on the unseen side.

ϕ angle -60° -120° -180° -240° -300° 0°
Depth MAE ↓ 0.579 0.584 0.611 0.722 0.673 0.618
P(σ) NLL ↓ 631.34 1513.42 1504.32 2525.20 1212.69 515.45

Table 4.3: Performance metrics are calculated seperatly for each viewing angle θ in the “360-views”
setting. The MEA indicates the quality of the prediction and the NLL indicates the quality of the
uncertainty. As can be seen, both metrics indicate worse performance when moving away from
the training views.

Depth RMSE ↓ Depth MAE ↓ P(σ) NLL ↓
MC-DropConnect 1.565 0.968 5246.01
Ensembles 1.543 0.945 1190.76
Bayes By Backprop 1.168 0.678 969.26
Flipout 1.064 0.631 1317.07

Table 4.4: The performance of different uncertainty quantification methods in the “360-views”
setting is compared. Flipout achieves a slightly better depth prediction than Flipout. However,
Bayes By Backprop seems to outperform all other methods when estimating the uncertainty.
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In Table 4.2 it can be seen that Bayes By Back-
prop and Flipout achieve very similar quantitative
results. However, Flipout performs better when it
comes to uncertainty quality.

4.1.2 Depth View Synthesis

The predicted depth maps by Flipout are visible
in Figure 4.3. It can be seen that structures are
stretched horizontally and there are more floating
artifacts. There is more extrapolation when com-
paring the prediction to the ground truth than in
Figure 4.2.

The edges of the object are not very sharp and do
not correspond to the ground truth edges. As a re-
sult, mainly the edges are highlighted by the error.
This makes it harder to find smaller inaccuracies in
the body of the excavator. In this case, the error is
an even worse indicator of extrapolated data.

However, when analyzing Table 4.3, it seems that
there is a similar pattern as is visible in the RGB
results. The error and uncertainty quality seem to
get worse when moving further away from the seen
views.

The produced uncertainty is comparable to the
uncertainty in RGB space. Yet, it shows even more
localized uncertainty to the unseen side of the ex-
cavator.

Different methods are compared in Table 4.4. As
can be seen, Bayes By Backprop slightly outper-
forms Flipout when it comes to uncertainty qual-
ity. However, Flipout achieves better overall depth
quality in this case.

4.2 Uncertainty

In this section, the predicted uncertainty of Flipout
is analyzed and compared to other methods. Only
“unseen-views” are analyzed as described in section
3.3.1. These views are expected to have increased
uncertainty within these areas.

4.2.1 Flipout

Figure 4.4 (RGB) and Figure 4.5 (depth) display
the uncertainty produced by Flipout.

Both the RGB and depth uncertainty maps show
uncertainty that seems to be in roughly the same
areas. Specifically, around the hood and the bucket

of the excavator. These areas seem to be localized
at the unseen side of the excavator.

When observing the top and middle rows of the
RGB uncertainty, it can be seen that there is a lack
of uncertainty at the center. This is caused by the
lack of predicted density as was mentioned before.

A similar argumentation can be made for the un-
derside of the LEGO base, where there is a black
spot visible underneath the tracks of the excavator.

However, other parts from the underside view
show visible uncertainty despite the fact that these
parts were never observed. This might be because
the LEGO base is represented as a single layer,
rather than a LEGO brick with a distinct top and
bottom. This means that the top can be seen from
the underside.

It is essential to acknowledge that the standard
deviation of the RGB uncertainty is considerably
small, with a maximum of 0.08 in a value range of
0 to 255. This means the predicted RGB is likely
accurate.

When analyzing the depth map in Figure 4.5,
it can be seen that in this case, there is high un-
certainty in the middle part of the excavator as
opposed to the RGB case. This means there is a
predicted density for this part.

When looking at Figure 4.5, it can be seen that
the predicted density of this area is low, while the
uncertainty for this part is comparatively high.

The bottom row of the figure displays extrap-
olated floating structures, which are marked as
highly uncertain. This is correct as they are not
part of the scene.

For the depth maps, the standard deviation is
larger than the RGB uncertainty maps, reaching a
maximum value of 35. This indicates high general
variability in the density.

The uncertainty seems to be robust and remains
consistent across different unobserved viewpoints.

4.2.2 MC-DropConnect

As can be seen in the results generated by MC-
DropConnect in Figure 4.6, large parts of the scene
are not modeled or extrapolated.

The uncertainty is not localized at a particular
side of the excavator. However, similarly to Flipout,
it marks the hood and bucket of the excavator more
uncertain.
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Figure 4.4: RGB uncertainty maps generated in the “unseen-views” setting by Flipout. The maps
display the mean standard deviation of all color channels.

Figure 4.5: Depth uncertainty maps generated in the “unseen-views” setting by Flipout. The maps
display the standard deviation of the depth.
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Figure 4.6: Uncertainty maps from the middle row of the “unseen-views” setting generated by
MC-DropConnect. The top row is the mean RGB standard deviation and the bottom row is the
depth standard deviation.

Figure 4.7: Uncertainty maps from the middle row of the “unseen-views” setting generated by
Ensembles. The top row is the mean RGB standard deviation and the bottom row is the depth
standard deviation.

The RGB uncertainty does not remain consistent
when changing from views. The uncertainty of the
bucket is view-dependent.

For these reasons, DropConnect does not seem
to have ideal uncertainty quantification properties.

4.2.3 Ensembles

Figure 4.7 displays the results generated by Ensem-
bles. It can be seen that the reconstruction of the

object is way more blurry than other methods.

This could be because of the amount of dis-
agreement between each model. Ensembles con-
verge slower and end up with blurry results.

It seems that the RGB uncertainty does not
remain consistent between views. The blurriness
makes it impossible to see if the uncertainty is lo-
calized.

The depth uncertainty clearly shows uncertainty
in specific areas. These areas contain thin struc-
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Figure 4.8: Uncertainty maps from the middle row of the “unseen-views” setting generated by
Bayes By Backprop. The top row is the mean RGB standard deviation and the bottom row is the
depth standard deviation.

tures. It is not clear if the uncertainty is located on
the unseen side.
It must be noted that ensembles produce higher

uncertainty than other methods, as can be seen
from the color bar.
Ensembles are not ideal for uncertainty quantifi-

cation.

4.2.4 Bayes By Backprop

The uncertainty results by Bayes By Backprop can
be found in Figure 4.8.
The RGB uncertainty seems to be equally dis-

tributed over the whole excavator. Additionally, it
can be seen that results are generally noisy, leading
to small spots with high uncertainty. It cannot be
seen which side of the excavator was observed.
The depth maps have better uncertainty char-

acteristics, mainly highlighting thin structures and
edges. However, even in these views it is not pos-
sible to discern the seen from unseen the unseen
side.
This makes Bayes By Backprop not ideal for un-

certainty quantification.

4.3 Error and Uncertainty Corre-
spondence

As the error is an indication of extrapolation, it is
expected that areas with a large error show more

uncertainty. This is visualized in Figure 4.9 by re-
lating the error to the uncertainty in scatter plots.

Dark areas in these plots mean that many un-
certainty predictions are made for that error value.
Lighter areas indicate that fewer uncertainty pre-
dictions or none at all are made for that uncertainty
value.

It must be noted that as was stated before, the
error does not necessarily correspond to the uncer-
tainty.

When observing the RGB outputs it can be
seen that all distribution shapes show a descend-
ing slope. All methods have a tendency to predict
too high uncertainty for low error values and too
little uncertainty for high error values. This does
not correspond to the expectation that a higher er-
ror should cause higher uncertainty as this would
result in a ascending slope.

A possible reason for this is the fact that there
are more low error values in a scene than high er-
ror values, making it harder to spot a trend. Addi-
tionally, it can be seen that some slopes start from
higher than others. This could be because the col-
ors are scene dependent and some scenes have a
larger tendency to create uncertainty for a specific
color.

It can be seen that the distribution shape that
Flipout produces, shows more variability in the
standard deviation. This means there is more diver-
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Figure 4.9: Matrix of error-uncertainty plots using novel views from the “360-views” setting.
Columns correspond to model outputs and rows correspond to methods. The x-axis is the absolute
error and the y-axis is the standard deviation.

sity in uncertainty predictions which leads to more
useful information.

In the depth plots, it can be seen that the shape
looks very different. All methods produce a flat line
and the variability of the standard deviation is con-
stant over all error values. This means that many
different error values share an equal amount of un-
certainty. This makes it very hard to use uncer-
tainty as a proxy for the error.

This is probably caused by the edges that caused
a large variety of error values. The uncertainty in
this area however remained the same.

Also in the case of the depth plots, Flipout shows
more variability making it a better candidate than
previous methods.

4.4 Calibration

Similar to the previous section, it is expected that
the uncertainty matches the performance of the
model. In this case, Figure 4.10 shows the confi-
dence related to the accuracy of the model.

The data is binned and an average confidence
is calculated for each bin. This means that it is no
longer dependent on the amount of high error areas
in the image.

When observing the RGB outputs for all models,
it can be seen that the lines show a linear correla-
tion between confidence and accuracy. This is as
expected and shows that the models are relatively
well-calibrated.

It can be seen that there is a sudden increase in
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Figure 4.10: Matrix of calibration plots using novel views from the “360-views” setting. Columns
correspond to model outputs and rows correspond to methods. The x-axis is the confidence and
the y-axis is the accuracy.

confidence for accuracy values around 0.7. There is
no apparent reason for this.

When observing the depth lines it can be seen
that produce higher confidence values than ex-
pected. It can be seen that MC-DropConnect actu-
ally shows the best calibration properties, having a
line that is closest to a linear correlation.

Lines that are above a straight diagonal line indi-
cate overconfident predictions. Lines that are under
a straight diagonal indicate underconfident predic-
tions.

Flipout does not seem to differentiate from other
methods in this regard.

Several methods could be implemented to correct
the calibration of uncertainty quantification mod-

els.

4.5 Out of Distribution Detection

Previous sections related the uncertainty to the
performance of the model. In this section, only un-
certainty produced by Flipout is analyzed because
it is impossible to access the ground truth in the
real world. This means that it is not possible to
calculate the performance of a model. However, it
is possible to use the predicted uncertainty as a
proxy for the performance.

Seen views are considered as the training distri-
bution. Unseen views are out of the training distri-
bution. The uncertainty of the two settings is com-
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Figure 4.11: Top row: ROC plots that relate the False Positive Rate and the True Positive Rate.
Bottom row: Histograms that show the distributions of seen and unseen views. Blue is seen views,
red is unseen views.

pared to analyze if there is a difference and how
large the difference is. This difference can be used
to check if a new view is inside or outside the train-
ing distribution.

The distributions of the two settings are com-
pared in Figure 4.11. From the histograms, it can
be seen that the distributions overlap. This means
that predictions from unseen views are very similar
to predictions from seen views.

The ROC curve shows how separable the distri-
butions are. When there is a clear separation, the
line should be higher than a straight diagonal and
have an Area Under the Curve (AUC) approaching
1.

It can be seen in Figure 4.11 that the produced
ROC line is linear. This means it is not possible to
differentiate the distributions from each other. The
AUC is correspondingly around 0.5.

This ambiguity of uncertainty for different views
can also be seen in Figure 4.4 and Figure 4.5. Here,
the predicted uncertainty seems to have the same
distribution for every image. The uncertainty seems
to be localized but is still visible from seen views.

5 Conclusion

In the previous section, a NeRF model was trained
with Flipout and evaluated against other models.
This was done to quantify the uncertainty in the
predictions of the model.

Both variational inference approaches, Bayes By
Backprop and Flipout, produced the least extrap-
olation under the limitation of a few-shot scenario.
However, Flipout outperformed all previous meth-
ods in uncertainty quality. This is the case for both
the RGB uncertainty and the depth uncertainty.

From the synthesized novel viewpoints, it can
be seen that the produced RGB and depth un-
certainty is localized at the unseen side of the ob-
ject. This is not the case for previous methods that
produce view-dependent uncertainty or show un-
certainty distributed over the whole object.

To indicate the difference between the ground
truth and the prediction the absolute error is calcu-
lated over different novel views around the object.
It can be seen that unseen views have an increased
error. This is supported by the results of the Mean
Absolute Error and the Negative Log-Likelihood for
corresponding views.

When relating the error to the produced uncer-
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tainty, it can be seen that Flipout produces the
most variation in uncertainty values for different er-
ror values compared to other methods. This means
that Flipout is a better proxy for the error than
other methods.
However, the error does not capture all relevant

inaccuracies. For instance, it calls attention to the
unmodeled sections of the object. This is not rel-
evant in comparison to the uncertainty that can
only capture modeled section and aims to display
the extrapolation.
Additionally, other error metrics than the ab-

solute error have not been considered. Using the
squared error instead could lead to different results.
For accurate calibration, it is expected that con-

fidence and accuracy are linearly correlated. All
models seem to perform similarly in this regard.
The color channels for all methods show a sudden
increase in confidence when the accuracy is around
0.7. Flipout seems to make more overconfident pre-
dictions for the depth than other methods.
The distribution of the training set is compared

to the distribution of opposing views to detect if
there is a difference. It is found that views close to
the training distribution can not be differentiated
from views that are far from the training distribu-
tion. This has to do with the fact that the same
amount of uncertainty is visible through the object
from the seen side.
In conclusion, Flipout seems to have a theoreti-

cal benefit over previous methods, this is reflected
in some of the empirical results. Overall Flipout
has more effective uncertainty quantification prop-
erties. However, there are still problems with de-
tecting views that are out of distribution.
Future work could use real-world datasets to have

an even more realistic setting for robotics. Addi-
tionally, it could focus on increasing the uncertainty
quality by adding methods that produce calibrated
uncertainty.
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