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Abstract: The objective of this study is to compare and evaluate previously studied uncer-
tainty quantification methods in out-of-distribution (OOD) data using real-world scenario re-
gression tasks, focusing on their ability to distinguish between aleatoric and epistemic uncer-
tainties. A comprehensive analysis is conducted using four uncertainty methods: MC-Dropout,
MC-DropConnect, Flipout and Ensembles, in both numerical and visual datasets to determine
their effectiveness in disentangling uncertainty. The findings from the numerical dataset indicates
that variations of OOD inputs on individual features produces different relationships between ID
and OOD data when using the same uncertainty method. Uncertainty methods such as Dropout
and Dropconnect show positive signs of increasing epistemic uncertainty in both types of datasets.
However, it is inconclusive to title them as the best general disentangling method when applied
on the respective datasets. Yet, methods such as Flipout show to be unreliable.

1 Introduction

In neural networks, the primary objective is to cre-
ate a representation that models the intricacies of
a scenario. Thus, while the primary focus is on
creating an accurate model, minimizing potential
uncertainty works in conjunction with this goal.
Since the role of a Deep Neural Network (DNN)
requires the ability to make decisions that are rea-
sonable in the context of a stochastic environment
(Y. Gao & Su, 2021), the training data, also known
as In-distribution data (ID), will have to make un-
foreseen predictions that may result in using data
that has never been encountered, known as Out-
Of-Distribution data (OOD) (Cui & Wang, 2022).
Within real-world scenarios, solely using ID data is
considered to be a close-world assumption. There-
fore, in order to produce a practical model in an
open-world scenario, it is crucial to understand
the uncertainty the model makes in its predictions
(Drummond & Shearer, 2006). With that in mind,
there are various methods to limit uncertainty, as
disentangling uncertainty aims to clarify the best

possible interpretation of the source of these uncer-
tainties.

The definition of uncertainty can be fully ex-
plained through the idea of predictive uncertainty,
which can be broken down into two components
for further analysis in estimating the confidence of
the model (Abdar et al., 2021). The first compo-
nent is aleatoric uncertainty, an irreducible uncer-
tainty due to the non-deterministic nature of mea-
surement errors or the inherent variability in the
underlying process being modeled; randomness or
noise. Consider a game of dice, you roll a fair die to
determine one of the six values. In this context,
aleatoric uncertainty is presented as the unpre-
dictability of the specific number that will be rolled.
The second component is Epistemic uncertainty, a
reducible uncertainty due to a lack of knowledge
about the perfect predictor which can be reduced
by collecting more data or refining the parameters
of the model. For example, if prompted to predict
the meaning of the word “kichwa” in Swahili, and
given the choices of ”head” or ”tails”, your initial
probability might be the same or lower, however,
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gaining knowledge in the language can limit this
uncertainty (Hüllermeier & Waegeman, 2021).
In many scenarios where regression tasks are

most commonly applied, the confidence interval is
equally important as the prediction itself. Since the
confidence interval is a measure of reliability, it is
a crucial factor in safety-critical situations (Yang
et al., 2022) (Siegel, 2012), consequently, it is a
necessity for the model’s estimations to be prop-
erly aligned with its prediction errors (Gustafsson
et al., 2023). For example, when applying a DNN on
retinal photographs it notes that certain features
were significantly more prominent to be correctly
predicted such as gender (0.97) compared to other
features with figures around 0.70. Nevertheless, the
research indicates that all features are relevant yet
it cannot be fully justified independently for mak-
ing their prediction (Topol, 2019). In other lower-
risk domain scenarios, the housing neural network
applied to the California mansions depicts the ev-
ident errors that occur in the application of OOD
data (Anonymous, 2020). From the perspective of a
human, these errors seem nonsensical, yet the net-
work has decided to misinterpret the information.
Thus indicating that there are situations where the
uncertainty of the machine reaches a limit in its
knowledge and underscores the capabilities of hu-
man intelligence. In the case of the house predic-
tion network, the features fail to capture the essen-
tial indicators to determine the actual price of the
house, the result of the presence of unorthodox ob-
jects such as palm trees to the side of the house, or
completely utilizing an image of a non-house object
presented an absurd prediction.
Networks tend to have the most difficulty to

generalize OOD data that stems from the distri-
butional shift (Anonymous, 2020) (Gustafsson et
al., 2023), these models tend to exhibit height-
ened uncertainty and generate potentially unreli-
able outputs, emphasizing the critical role of han-
dling model selection in OOD data (J. Gao et al.,
2023). To simply train a deep neural network with
target ŷ = f(x) does not encapsulate a natural dy-
namic environment (Gustafsson et al., 2023). Al-
though, accounting for the inherent unpredictabil-
ity in data is inevitable, and while it is challenging
to ensure that the training data does not lack in-
formation, nor obtain noise, methods such as cali-
bration are used in practical application face. The
use of calibration in scaling are one step in regres-

sion tasks to reduce these issues, however, it is only
a method in reducing the magnitude effects (Gal,
2016).

In order to analyze the role of the uncertain-
ties in the OOD data, it is important to con-
sider that epistemic uncertainty is most useful,
whereas aleatoric uncertainty is not usable. Thus,
this paper will probe into whether the disentan-
glement of uncertainty can validate the behavior
of aleatoric and epistemic uncertainty when apply-
ing Out-Of-Distribution data in regression tasks.
Secondly, this paper will investigate the applica-
tion of different uncertainty methods to individual
features impact and provide interpretation for the
generation of OOD data. Finally, when assessing
OOD data across both data types (numerical and
visual), is it possible to generalize the uncertainty
methods to disentangle the uncertainties? This re-
search will offer a novel approach to visualizing the
application of existing uncertainty methods on re-
gression tasks, while also tackling the integration of
OOD data in the disentanglement of uncertainty.
To do this, the paper will proceed with an expla-
nation of the literature background including the
understanding of regression, the method to disen-
tangle aleatoric and epistemic, the necessary uncer-
tainty methods and previously established findings.
This will be followed by the setup of our regression
tasks, a deep-analysis with an interpretation of the
results, concluding with the discussion and limita-
tions that were found.

2 Literature Review

2.1 Related Work

The separation of epistemic and aleatory uncer-
tainty have already been well documented in re-
gression problems when attempting to evaluate a
trained model solely on the data it was given.
According to Depeweg et al. (2018) research, the
aleatoric component of uncertainty may be dis-
tinguished from the total amount of uncertainty,
leaving the epistemic uncertainty as the only re-
maining component. The type of data he works
with involves examining specific patterns in the dis-
tribution of the data, including heteroscedasticity
and bimodality. These specific patterns additions
to the existing data helped achieve extracting the
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necessary information to disentangle uncertainty.
On the other hand, using a technique called MC-
Dropout, Kendall & Gal (2017) have shown they
can separately measure both uncertainty compo-
nents. These two methods in particular do not con-
sider the application to OOD, therefore, research
such as Valdenegro-Toro & Mori (2022) delves fur-
ther into the investigation of OOD, wherein he uti-
lizes the presence of heteroscedasticity through the
use of a toy-regression dataset. To expand the dis-
entanglement of uncertainty, Valdenegro-Toro’s re-
search employs different types of uncertainty meth-
ods to gain a more comprehensive understanding of
the diverse uncertainties involved. With the cur-
rent knowledge on methods in decreasing uncer-
tainty estimates in OOD, the opportunity to take
these methods into consideration to improve the
validity of regression uncertainty estimation meth-
ods to real-world distribution shifts has also been
recognised. Gustafsson et al. (2023) assesses multi-
ple uncertainty estimation approaches to discover
that no approach is entirely calibrated across all
datasets. Some approaches become overconfident
despite having good performance on baseline vari-
ations without distribution shifts. Thus, it can be
argued that OOD’s absolute performance through
the use of disentangling uncertainty is still insuf-
ficient. In consideration of the struggles to con-
sider overconfidence in model prediction in OOD
and realizing the information gained from disen-
tangling uncertainty, this research hopes to gain
knowledge in disentangling uncertainty by applying
the uncertainty methods extended by Valdenegro-
Toro including Monte-Carlo Dropout, Monte-Carlo
DropConnect, Flipout and Ensembles to mimic
a datasets with real-world potential distribution
shift by implementing OOD data (Valdenegro-Toro
& Mori, 2022). The conclusion from the paper
presents that Dropout is the best disentangling
method while Flipout and Ensembles prove to be
good indicators for epistemic uncertainty in the
OOD area.

2.2 Disentangling Uncertainty

2.2.1 Regression

In the case of regression for ID data, the total un-
certainty is quantified through the use of variance.
Specifically, the aleatoric uncertainty uses variance

of the observation error while the epistemic un-
certainty uses the variance created by parameter
uncertainty (σ2ϵ). The conditional mean by itself
is not sufficient as it is only a point estimation
of the target variable given the input, therefore
disregarding inherent variations. In order to dis-
tinguish the residual error, the total uncertainty
is deconstructed by considering the heteroscedas-
tic aleatoric uncertainty as loss attenuation. The
existence of heteroscedastic behavior occurs when
variance is presented as a function of x ∈ X (Hüller-
meier & Waegeman, 2021). Kendall & Gal (2017)
theory is a result of considering to penalize the pre-
diction errors for points with high residual variance
less . Thus, the difference between the calculated
loss attenuation and total uncertainty results in the
epistemic uncertainty.

2.2.2 Bayesian Predictive posterior

When measuring the uncertainty of a model, the
weights are sampled from a distribution p(θ|x, y).
For every sample of the set of weights that is pro-
duced, the model makes a prediction that creates a
mean µ and variance σ2ϵ. The prediction is a sam-
ple of the predictive posterior distribution p(y|x, θ).
The Bayesian predictive posterior is presented as

the distribution of the probability over the outputs
(predictions) can be determined based on the given
inputs and observed data. Given the distribution of
the weights, which is also represented as the uncer-
tainty in the parameters, the Bayesian predictive
posterior can be calculated.

p(y|x) =
∫
w

P (y|w, x)P (w|D) dw (2.1)

Equation 2.1 presents the theoretical interpre-
tation of calculating the predictive posterior in a
bayesian neural network (Valdenegro, 2023). The
calculation involves taking the integration of the
prediction of a forward pass,which considers a prob-
ability distribution of the weights, and using the
probability distribution of those weights over all
weighted values. However, in consideration of bayes
rule, in the attempt to calculate the probability dis-
tribution of the whole data, it is intractable to take
the integral over all possible weight configurations,
especially when the data’s dimensionality is high.
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Thus, the practical method is to use the Monte-
Carlo (MC) approximation.

P (y|x) ≈ M−1

∫ M

i

Pi(y|w, x) dw (2.2)

Equation 2.2 presents a simpler method to cal-
culate the predictive posterior that results in an
approximation, by taking M samples of forward
passes. The finite number of samples will inherently
result in a worst approximation, however, by tak-
ing the summation of M number of forward passes,
we are able to create an approximation using the
posterior distribution over weights and averaging
the predictions. This will be useful in obtaining the
predictive variance and predictive mean and in ex-
plaining the uncertainty methods in the next sec-
tion.

µ∗(x) = M−1
∑
i

µi(x) (2.3)

σ2
∗(x) = M−1

∑
i

(
σ2
i (x) + µ2

i (x)− µ2
∗(x)

)
(2.4)

The predictive variance can be further decon-
structed into aleatoric and epistemic uncertainty.
The aleatoric uncertainty can be represented as the
mean of the variance while epistemic uncertainty is
the variance of the means.

σ2
∗(x) = M−1

∑
i

σ2
i (x) +M−1

∑
i

µ2
i (x)− µ2

∗(x)

(2.5)

2.3 Loss Functions

In probabilistic models, the Negative Log-
Likelihood (NLL) loss function (equation 2.6)
is frequently employed, especially for Gaussian
distributions Seitzer et al. (2022). In consideration
of this, the Gaussian Negative Log-Likelihood can
be described through this equation:

LNLL(yn, xn) =
1

2
log(σ2

i (xn)) +
(µi(xn)− yn)

2

2σ2
i (xn)

(2.6)
However, it tends to underestimate variance

but trains the model’s ”variance heads” to quan-
tify aleatoric uncertainty. Beta-Negative Log-
Likelihood (β-NLL), shown in equation 2.7, is used

to reduce this. By adding a weighted element that
is responsive to variance, β-NLL alters NLL by in-
creasing the weight on variances that are larger.
Therefore, the stop() is a gradient operation that
stop the backpropagation of gradient in the opera-
tions in the parentheses (Valdenegro-Toro & Mori,
2022).

Lβ−NLL(yn, xn) = stop(ϵ2β)LNLL(yn, xn) (2.7)

We can efficiently estimate the aleatoric uncer-
tainty by training models using these loss func-
tions, and we can then estimate the epistemic un-
certainty by estimating the variance of the output
of the model, giving us a complete picture of model
uncertainty.

2.4 Uncertainty methods

2.4.1 Monte-Carlo Dropout

Dropout is a technique mainly used for prevent-
ing overfitting, it is usually performed only during
training. During the Dropout process, each neu-
ron in a layer has a certain probability of being
”dropped out”, with the exception of last layer.
Monte-Carlo Dropout utilizes the Dropout in in-
ference testing, this allows for varying predictions
of the predictive mean and predictive variance for
each forward pass (Gal & Zoubin, 2016). Thus,
these samples are a result of the approximation
of Bayesian predictive posterior (Hüllermeier &
Waegeman, 2021). In this research we used the
Dropout probability that produced optimized loss
values (found in Appendix A.3) , we use probability
values of 0.3 for air quality regression and 0.5 for
age regression.

2.4.2 Monte-Carlo DropConnect

DropConnect is a regularization technique that is
an extension of the Dropout method. Unlike switch-
ing off neurons in dropout, DropConnect randomly
‘drops” or sets the weights of each connection be-
tween the neurons in a neural network to zero.
Each weight has a probability ’p’ of being set to
zero (Valdenegro-Toro & Mori, 2022). Compared to
dropout, this technique affects more parameters as
it produces a stronger regularization effect due to
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being able to sample from a larger set of models us-
ing different subsets of model parameters (Mobiny
et al., 2021). We use a probability value of 0.5 for
air quality regression and 0.5 for the age regression.

2.4.3 Flipout

Flipout is another regularization technique that is
a variant of the dropout technique, as it aims to
approximate inference that introduces stochasticity
through the sampling method of weights during the
forward pass (Valdenegro-Toro & Mori, 2022). The
technique applies perturbation to the mean weights
that are modeled by the Gaussian distribution. The
perturbations are affected, by reducing the vari-
ance of gradient estimates (Lee et al., 2023). The
kl weight controls the KL divergence term, thus, we
set the kl weight to a very low value in both tasks
to not have a strong affect on the training process.

2.4.4 Ensembles

Ensembles implies training multiple neural net-
works, and when it makes a prediction, in our case,
it combines the predictions of all trained based
models since different instances of a random weight
is initialized (Valdenegro-Toro & Mori, 2022). It as-
sumes that these models’ predictions follow a Gaus-
sian distribution, the assumption is used to com-
bine the predictions in a way that estimates the un-
certainty of the prediction. This can be very useful
in many applications where not only the prediction,
but also an estimate of its reliability, is required. An
Ensemble of M = 5 neural networks is used.

3 Experimental Setup

3.1 Keras Uncertainty

This paper will use a modification of the reposi-
tory keras uncertainty by Valdenegro-Toro & Mori
(2022), the repository consists of utilities and mod-
els that perform Uncertainty Quantification on
Keras.

3.2 Datasets

3.2.1 Age recognition dataset

The dataset consists of 2,000 images of faces that
are labeled according to their ages. The ages in-

cluded a range from 1 to 110 years, the distribution
of the ages varies as the higher ages include less
data compared to the younger ages (Rabbi, 2018).
However, each age has at least one image within the
range. The distribution should be not be of high im-
portance due to the use of the transfer learning is
used in the model architecture.

3.2.2 Air quality dataset

The dataset contains 9,357 hourly averaged re-
sponses recorded by a gas multisensor device that
are placed in an Italian city between March 2004
and February 2005 (Learning, 2020). The dataset
contains missing values in the dataset which are
represented by a -200 value. The device specifi-
cally captures five important continuous features
that contribute to air quality: CO, Non Methanic
Hydrocarbons, Benzene, Total Nitrogen Oxides
(NOx), and Nitrogen Dioxide (NO2) concentra-
tions. Therefore, the target label that will be used is
Total Nitrogen Oxides (NOx) as it has been stated
to be a precursor to many of the other gasses (Bere-
itschaft, 2011). The dataset contains evidence of
uncertainty in the form of cross-sensitivities, con-
cept drifts, and sensor drifts, which may impact the
sensors’ concentration estimation capabilities.

3.3 Air Quality

The air quality data collection is unique as it cap-
tures many areas where uncertainty may arise. The
complexity of a multi-sensor device allows for mis-
readings as evident errors in the recording of all
the features was visible. Given that the target vari-
able is a precursor to the other features, allows for a
potentially interesting relationship in epistemic un-
certainty. Thus, due to the temporal behaviour of
the data, we can expect real-world changes applied
in the data.

3.3.1 Model Architecture

We use an optimized classic model as the base
model for the use of the uncertainty method. The
model consists of three densely connected layers.
From the given dataset we only considered 8 of the
13 features. The model is trained on 80% of the
data and 20% is used for the inference data. When
applying the uncertainty methods to the model, we
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see very limited changes in loss values. Therefore,
stable performances may prove to be a resourceful
benchmark for further analysis of the uncertainty
methods (more details can be found in Appendix
A.3.1 - A.3.4).

3.3.2 Out-of-Distribution data using AUC
from ROC cruve

The OOD data is created by using the top 10%
of the highest values of a feature and manipulating
them to be larger than the largest value in that fea-
ture, this is done by adding a random value between
1 and 2. Since the normalization method ensures
that each features are all values between 0 to 1. A
neutral setting was created by focusing on each fea-
ture individually, only one feature was manipulated
at a time.
To test if the OOD data can be discriminated by

the models, Area Under the Curve (AUC) values
from the Receiver Operating Characteristic (ROC)
is utilized. Two seperate ROC curves are created
based on the predictions of aleatoric and epistemic
gained from the different uncertainty models using
the two different loss functions. The ID data used
were those of the test inputs. AUC values closer to
1 indicate that the model can distinguish the data
types better, values closer to 0.5 indicates random
guessing, lower values indicated the models inabil-
ity to distinguish the data types.

3.3.3 Visualize Aleatoric and Epistemic
Uncertainty

To analyze the uncertainty of the OOD data of the
model, we visualize it by including 3 domains: the
training, inference (ID data) and the OOD data.
This is so that the graphs are able to depict the
total of aleatoric and epistemic and showcase it
within one graph and two separate graphs which
then displays aleatoric and epistemic uncertainty.
We found that for this scenario, placing the predic-
tion of the features’ mean values in increasing order
allows for the visualization of the uncertainty to be
clearer. In the interest of clarity, the OOD data
from the ID data is differentiated by a dotted sepa-
ration and is set to the largest value of the ID value
in the feature. Additionally, by only analyzing the
standard deviation without the mean predictions,
presents us with a more comprehensible visualiza-

tion to analyze the relationship between ID and
OOD.

3.4 Age Recognition

Age recognition has been a challenging task since
the human face contains a variety of features that
make it difficult for even the human eye to recog-
nize. For example, features such as a change in ex-
pressions have been noticed to affect the prediction
significantly (Meghana et al., 2020), while more
content unrelated effects such as head pose, image
quality, or image resolution (ELKaraze et al., 2022)
pose problems to optimizing an efficient model.

Figure 3.1: Sample Image of training (ID) data,
labelled 10 years

3.4.1 Model Architecture

Residual Network (ResNet) is a deep learning
model that has been developed to train extremely
deep networks, specifically tasks that involve classi-
fying images. The idea proposed by He et al. (2015)
aims to directly mitigate the vanishing gradient
problem by reformulating layers as learning resid-
ual functions opposed to the use of unreferenced
functions. Through the use of ”shortcut connec-
tions”, passing the input directly to the output of
a layer allows weights of early layers to be updated
less frequently (Iqbal et al., 2021). Resnet-50, built
with 50 layers, is most commonly utilized in clas-
sification tasks. However, due to the sophisticated
nature of this dataset, applying transfer learning
can provide insights to successfully train the model
needed for our regression task. Therefore, utilizing
a pre-trained model, specifically on the imagenet
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dataset, allows us to decrease the amount of data
required while being able to fulfill our objective in
disentangling uncertainty (Meghana et al., 2020).
Referring to Appendix A.4, it is evident that the

loss is relatively high to the most efficient trained
models that exist (ELKaraze et al., 2022). However,
the training and test loss present decent confidence
in providing information on the uncertainty based
on the R2, MSE and MAE values.

3.4.2 Out-of-Distribution data

The OOD data utilized for this task considers se-
mantically unrelated images, specifically cars. The
dataset is taken of 15 images of Audi cars from a
car image dataset by Kumar (2022). Due to the in-
herent concept that the content of an image is the
most important characteristic of a prediction by a
successful model. The robustness of the model will
be the focal point of the uncertainty. The analysis
is visualized through uncertainty bars representing
each image, we compare 15 ID images (eg. predic-
tion for age 19) with the 15 OOD images, unlike
numerical dataset it is difficult to recognize the ex-
tent of each value membership to the OOD dataset.
Thus the mean prediction with the variation in un-
certainty in aleatoric and epistemic of each image
will be of importance.

Figure 3.2: Sample Image of OOD data used in
the domain

4 Air Quality Analysis

4.1 AUC values from ROC curve

Refer to Appendix B for table of values.

4.1.1 Uncertainty Methods

As expected, the classic model does not rely on
aleatoric uncertainty as it inherently does not
model uncertainty. Therefore, we see that the ap-
plication of either loss function does not show any
abrupt changes. Similarly, since Ensembles consider
the predictions from multiple models, it may be
able to capture more complex relationships result-
ing in the very high AUC value for the data in
epistemic uncertainty, whereas the combination of
multiple classic models does not translate in the
possibility of capturing aleatoric uncertainty.

4.1.2 Loss Function

The effect of the loss function is evident in the
Dropout and Flipout methods, the AUC values us-
ing NLL are significantly higher than those of the
β-NLL in these two methods. The result of this clar-
ifies the ability for these models to use aleatoric
uncertainty as an identification method to distin-
guish the OOD and ID data. However, compared
to Flipout, Dropout utilizes epistemic uncertainty
substantially better to distinguish the two data
types. Therefore, the models are efficiently using
both aleatoric and epistemic uncertainty as a means
to distinguish the OOD and ID data. Moreover, the
aleatoric uncertainty can be seen to significantly in-
crease when using DropConnect, thus, overall NLL
performs as a better loss function to ensure that
the model is able to distinguish between the data
types.

4.1.3 Feature

Additionally, it is important to note that there are
distinct features such as PT08.S3(NOx), that show
as outliers to the common trends of other features.
The uncertainty methods cause no change to AUC
values when using both loss functions indicating
that the manipulation done to the features inputs
are not sufficient enough to use aleatoric uncer-
tainty as a distinguishing feature. This provides
insights into efficiently creating OOD data while
using other uncertainty methods and loss functions
as a comparison tool. Therefore, to ensure that the
use of the OOD data is valid, interpreting each fea-
ture by the use of either epistemic and aleatoric
can be seen as beneficial to distinguish the data
types. In consideration of this information, there is
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not a single feature that provides full reliability on
both aleatoric and epistemic uncertainty using all
uncertainty methods and both loss functions. How-
ever, the OOD input data for the feature CO(GT)
using the NLL loss function provides promising re-
sults for both epistemic and aleatoric distinction
in the creation of the OOD data. Even though, al-
though choosing a single feature may provide a bet-
ter understanding on creating OOD data using the
predictions of either uncertainties, it can not be a
conclusive representation when assessing the best
disentangling method for the data.

4.2 ID and OOD comparison

In reference to Figure 4.2, when comparing the un-
certainty in the ID and OOD data per individ-
ual feature, in the classic model when utilizing the
NLL and β-NLL loss functions, the total uncer-
tainty decreases, indicating that the model is highly
confident in its predictions and considers the ob-
served data points to be similar to the original data
trained on. The Dropout model when utilizing the
NLL and β-NLL vary significantly, the Dropout
using NLL show constant aleatoric and epistemic
uncertainty while the β-NLL is evidently able to
distinguish the aleatoric and epistemic uncertainty.
The DropConnect model for both NLL and β-NLL
do not show much difference, they both produce
similar results with a difficult distinction between
aleatoric and epistemic uncertainty. The Flipout
model is very unreliable, in both the ID and OOD
areas the uncertainty is unstable as it varies, we can
see that although the epistemic uncertainty is very
low, the aleatoric uncertainty is very high. There-
fore, there is a clear distinction between the two un-
certainties, the total uncertainty does not capture
the inherent uncertainty in the original data. The
impact of the β-NLL loss function did not seem to
affect the uncertainty in the model. The Ensemble
model in both loss functions seem to be the most
clear in presenting the inability to generalize to the
OOD data as an increase in epistemic uncertainty
is shown.

4.2.1 Between Different Uncertainty meth-
ods

In consideration of both loss functions and each un-
certainty method, arguably Dropout with the uti-

lization of the β-NLL loss function and both En-
semble methods using β-NLL and NLL may be the
best method for epistemic uncertainty. We are un-
able to select a single combination for the ideal dis-
entanglement since, based on all the combinations
of models and loss functions, the aleatoric uncer-
tainty in the ID and OOD domains is, for the most
part, constant.

Classic Model

Dropout Model

Dropconnect Model
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Flipout Model

Ensemble Model

Figure 4.2: Comparison of total, aleatoric and
epistemic uncertainty on all uncertainty meth-
ods using NLL loss function for an individual
feature (PT08.S2(NMHC)), all values to the left
of the vertical red line are ID and the rest are
OOD.

Classic Model

Dropout Model

Dropconnect Model
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Flipout Model

Ensemble Model

Figure 4.4: Comparison of total, aleatoric and
epistemic uncertainty on all uncertainty meth-
ods using β-NLL loss function for an individual
feature (PT08.S2(NMHC)), all values to the left
of the vertical red line are ID and the rest are
OOD. The x-axis represents the domain

Dropout CO(GT)

Dropout NO2(GT)

Dropout NOx(GT)
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Dropout PT08.S2(NMHC)

Dropout PT08.S3(NOx)

Dropout PT08.S5(O3)

Figure 4.6: Comparison of aleatoric and epis-
temic uncertainty on Dropout without the mean
predictions using β-NLL loss function for 6 of 8
feature, all values to the left of the vertical black
line are ID and the rest are OOD. The x-axis
represents the domain.

4.2.2 Between Different Features

Due to the possibility of the relationship of the out-
of-distribution data to differ between each individ-
ual feature, through figures 4.6 we can visualize dif-
ferent types of variations of the same method. The
figure presents the Dropout method without the
predicted mean, as mentioned earlier, the method
is reliable to find epistemic uncertainty. However,
there are different types of relationships between
ID and OOD, for example, all the individual fea-
tures show an increase in epistemic uncertainty
in the OOD area except for PT08.S3(NOx). Ad-
ditionally, when looking at aleatoric uncertainty,
CO(GT) shows that there is an increase instead
of a decrease in uncertainty in the OOD. We ex-
pect all of the relationships in the epistemic and
aleatory uncertainty of the same method to show
the same pattern in each individual feature, how-
ever, clearly in certain cases there is a difference
(Refer to Appendix C.4 for other Dropout graphs).
These insights could prove that the OOD data may
possess unique characteristics or patterns that dif-
fer from the training data, which is not inherent to
the other OOD data.

Unlike Dropout, when visualizing Ensembles
(graphs can be found in Appendix C.4), it has an
evident difference in ID and OOD when it comes
to all features, making it a better method for epis-
temic uncertainty. Therefore, when looking closer
into each feature, we can visualize the uncertainties
that may have a greater influence on the model.

4.3 Face Age Regression Analysis

When comparing the method of prediction of the
model, there seems to be a general pattern in it’s
mean prediction that is evident when comparing
between the ID and OOD datasets. Through figure
4.7 & 4.8, as expected, the aleatoric uncertainty is
extremely high in all models due the earlier expla-
nation as the labels are very noisy due to the dif-
ficulty in finding age is inherently difficult even for
humans. Moreover, the use of an ROC would not be
valid in this case and is justified by the varying pre-
dictions between ID and OOD results. However, in
the ID case, it seems that Dropout and Flipout have
the closest predictions to the actual age (19). While
the predictions made on the OOD are confident, it
is clear that the range of predictions are bigger than
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Classic Model Dropout Model DropConnect Model Flipout Model

Figure 4.7: Comparison of aleatoric and epistemic uncertainty on all uncertainty methods with
the mean predictions using β-NLL loss function on ID data (Face images labelled 19). The error
bars represent the corresponding uncertainty of the predictions. The x-axis represents the domain

Classic Model Dropout Model DropConnect Model Flipout Model

Figure 4.8: Comparison of aleatoric and epistemic uncertainty on all uncertainty methods with
the mean predictions using β-NLL loss function on OOD data (Cars) . The error bars represent
the corresponding uncertainty of the predictions.
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the ID data. When comparing the uncertainty, as
expected, the classic model in the ID results in no
epistemic uncertainty while the OOD data causes
the aleatoric uncertainty to increase. DropConnect
shows very little to no variation in epistemic uncer-
tainty and aleatoric uncertainty between the inputs
in the ID. In the OOD, we see that aleatoric uncer-
tainty is still consistent with the same range as the
ID data, however, with a larger uncertainty. While
it is clear that the epistemic has variation in it’s un-
certainty values that are larger than in the ID data.
Similarly to the ID uncertainty in DropConnect,
epistemic and aleatoric uncertainty are consistent.
However, in the OOD condition, Dropout shows
no change in aleatoric and epistemic uncertainty.
In the OOD, the range of predictions in Flipout
differ substantially compared to all the methods,
the aleatoric uncertainty clearly increases while the
epistemic uncertainty is constant in between the ID
and OOD areas.

Based on the findings, classic and Flipout both
show more sensitivity to the data as there is a
clear indication of lower confidence in the range of
the aleatoric uncertainty and predictions. However,
the relationship of the uncertainty between ID and
OOD is not sufficient to categorize them as an im-
portant disentangling method. Dropout produces
the best predictions for the ID inputs, however, it
clearly shows a lack of generalization in the OOD
area. However, we can conclude that Dropconnect
is the best in identifying epistemic uncertainty. The
method shows consistency in the uncertainty in the
aleatoric uncertainty yet has enough inputs in the
OOD to show a variation in epistemic uncertainty
compared to all other methods.

5 Conclusions & Discussion

In conclusion, we have been able to test and further
research the applications of the various uncertainty
methods of previous research on OOD data.

Based on the results of the air quality dataset,
the model is overconfident in its predictions for the
OOD values as it clearly is not substantial against
the uncertainty in the ID data. However, the uncer-
tainty methods prove to impact the model’s epis-
temic and aleatoric uncertainty differently based
on each individual features difference in creation of
the OOD data. Given that the loss values provide

information that the model is well trained to the
ID data, the most evident difference in uncertainty
between the two loss functions is in Dropout. We
did not expect the method to have such a promi-
nent difference on the epistemic uncertainty given
that the model had already performed well on the
ID data. In reference to Valdenegro-Toro & Mori
(2022) results, once again Flipout proves to be an
unreliable source to disentangle uncertainty in both
types of datasets in the same manner, the applica-
tion of Flipout seems to rely on aleatoric while iden-
tifying very low epistemic uncertainty. As expected
ensembles provides a good indication of epistemic
uncertainty in the OOD areas. On the other hand,
although DropConnect and Dropout were seen to
be heavily influenced by β-NLL loss like in previ-
ous studies, the impact of Dropout seems to im-
prove aleatoric uncertainty estimation opposed to
DropConnect. Despite this, based on this current
research it may be difficult to conclude that Drop-
Connect is a better general disentangling method
when comparing it to similar datasets.

5.1 Future Research

An implementation of the uncertainty methods
with the analysis of specific individuals on a sce-
nario that follows a heteroscedastic pattern in the
OOD inputs may provide a different indication to
the best disentangling uncertainty method. As we
attempt to mimic a real-world scenario dataset, the
air quality dataset lacks the variation in feature re-
lationships which results in the predictions to be
significantly simple. Despite this, I argue that it has
provided insightful results on the analysis of fea-
tures with the addition of OOD data. On the other
hand, the age recognition dataset may be more in-
sightful with more determinant features that could
distinguish different importance in features. For ex-
ample, including certain face expressions may influ-
ence the models ability to distinguish uncertainty
with the methods.

5.2 Conclusion

Hopefully these findings provide more insights and
detail on different approaches where the uncer-
tainty methods can be utilized in testing models
on open-world scenarios. Although it may be diffi-
cult to create a realistic input of OOD data possible
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for a model, this research aims to provide insights
on possible analysis that may be beneficial in the
creation of synthetic data.
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A Architecture and Optimization of Models

A.1 Configurations for Air Quality Models

The stochastic function replaces includes the final layer, Dense(1), in order to produce the uncertainties

• Number of epochs: 100.

• Batch size: 10.

• Optimizer: Adam (learning rate = 0.001, β1 = 0.9, β2 = 0.999).

• Classic:

– Dense(128, ReLU)

– Dense(128, ReLU)

– Dense(64, ReLU).

• Dropout:

– Dense(128, ReLU)

– Dropout(0.3)

– Dense(128, ReLU)

– Dropout(0.3)

– Dense(64, ReLU)

– Dropout(0.3).

• DropConnect:

– DropConnectDense(128, ReLU, p = 0.5)

– DropConnectDense(128, ReLU, p = 0.5)

– DropConnectDense(64, ReLU, p = 0.5).

• Flipout:

– FlipoutDense(128, ReLU)

– FlipoutDense(128, ReLU)

– FlipoutDense(64, ReLU)

– (Prior is disabled)

• Ensembles:

– 5 copies of the classic model trained with different random weight initializations.
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A.2 Configurations for Age Regression Models

The stochastic function replaces includes the final layer, Dense(1), in order to produce the uncertainties

• Number of epochs: 150.

• Batch size: 32.

• Optimizer: Adam (learning rate = 0.001, β1 = 0.9, β2 = 0.999).

• Resnet 50 Configuration

– pooling=’avg’

– weights=’imagenet’

• Classic:

– Resenet50

– Dense(128, ReLU)

– Dense(64, ReLU)

– Dense(64, ReLU)

– Dense(32, ReLU)

• Dropout:

– Resenet50

– Dense(128, ReLU)

– Dropout(0.5)

– Dense(64, ReLU)

– Dropout(0.5)

– Dense(64, ReLU)

– Dropout(0.5).

– Dense(32, ReLU)

– Dropout(0.5).

• DropConnect:

– Resenet50

– DropConnectDense(128, ReLU, p = 0.5)

– DropConnectDense(64, ReLU, p = 0.5)

– DropConnectDense(64, ReLU, p = 0.5)

– DropConnectDense(32, ReLU, p = 0.5).

• Flipout:

– Resenet50

– FlipoutDense(128, ReLU)

– FlipoutDense(64, ReLU)

– FlipoutDense(64, ReLU)

– FlipoutDense(32, ReLU)

– (Prior is disabled)
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A.3 Loss Curves of Air Quality Models

A.3.1 Classic Model Loss Curve

Loss : [MSE, MAE]
Train loss: [0.0006776957307010889, 0.018691718578338623]
Test loss: [0.0007112125167623162, 0.020568329840898514]
Train R2: 0.9776055570634924
Test R2: 0.9780257693869515

18



A.3.2 Dropout Model Loss Curve

Loss : [MSE, MAE]
Train loss: [0.0021760028321295977, 0.034687817096710205]
Test loss: [0.0018724644323810935, 0.03415553644299507]
Train R2: 0.9313477120821618
Test R2: 0.9313402800606485

A.3.3 Dropconnect Model Loss Curve
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Loss : [MSE, MAE]
Train loss: [0.003306058468297124, 0.04279094934463501]
Test loss: [0.00324618024751544, 0.04616352915763855]
Train R2: 0.9244076023494844
Test R2: 0.9414050531525713

A.3.4 Flipout Model Loss Curve

Loss : [MSE, MAE]
Train loss: [0.001307631959207356, 0.02685621567070484]
Test loss: [0.001243737991899252, 0.027157479897141457]
Train R2: 0.9565270387391661
Test R2: 0.962132440518198
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A.3.5 Ensemble Model Loss Curve
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Loss : [MSE, MAE]
Train loss: [0.0006230067199714686 0.017634724918639474]
Test loss: [0.0006879925336423829 0.02061510332010165]
Ensemble R²: [0.9794127516445735 0.9787431869505839]

A.4 Loss Curves of Age Regressoin Models

A.4.1 Classic Model Loss Curve

Loss : [MSE, MAE]
Train loss: [327.8652038574219, 14.865017890930176]
Test loss: [407.4013977050781, 16.871294021606445]
Train R2: 0.4462479753478099
Test R2: 0.38005652315256466
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A.4.2 Dropout Model Loss Curve

Loss : [MSE, MAE]
Train loss: [533.34521484375, 19.018558502197266]
Test loss: [599.1786499023438, 20.54180335998535]
Train R2: 0.12777903676563573
Test R2: 0.1010953880354678

A.4.3 Dropconnect Model Loss Curve
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Loss : [MSE, MAE]
Train loss: [548.69482421875, 18.952190399169922]
Test loss: [585.801513671875, 20.485567092895508]
Train R2: 0.12008096685632286
Test R2: 0.059550019013146493

A.4.4 Flipout Model Loss Curve

Loss : [MSE, MAE]
Train loss: [430.3692321777344, 17.077608108520508]
Test loss: [496.2757873535156, 18.633813858032227]
Train R2: 0.28674907615052336
Test R2: 0.2836386445386654
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B Receiver Operating Curve Information

B.1 AUC values of Uncertainty Methods and Loss functions

Table B.1: AUC values from the ROC curve using each uncertainty method, NLL as the loss
function and using the predictions from Aleatoric uncertainty

Feature Classic Dropout Dropconnect Flipout Ensembles
PT08.S1(CO) 0.14 0.10 0.05 1.00 0.03
NOx(GT) 0.02 0.73 0.35 0.98 0.00
PT08.S3(NOx) 0.00 0.00 0.00 0.25 0.00
CO(GT) 0.81 0.80 0.69 1.00 0.92
PT08.S2(NHMC) 0.00 0.14 0.14 1.00 0.00
NO2(GT) 0.00 0.16 0.00 0.95 0.00
PT08.S5(O3) 0.00 0.88 0.77 0.99 0.00
NMHC(GT) 0.10 0.69 0.24 0.99 0.01

Table B.2: AUC values from the ROC curve using each uncertainty method, NLL as the loss
function and using the predictions from Epistemic uncertainty

Feature Classic Dropout Dropconnect Flipout Ensembles
PT08.S1(CO) 0.59 0.85 0.88 0.51 1.00
NOx(GT) 0.64 0.97 0.90 0.45 1.00
PT08.S3(NOx) 0.28 0.41 0.23 0.83 1.00
CO(GT) 0.59 0.91 0.74 0.36 1.00
PT08.S2(NHMC) 0.67 0.68 0.84 0.46 1.00
NO2(GT) 0.56 0.90 0.97 0.41 1.00
PT08.S5(O3) 0.57 0.92 0.77 0.43 1.00
NMHC(GT) 0.45 0.94 0.85 0.34 1.00

Table B.3: AUC values from the ROC curve using each uncertainty method, β-NLL as the loss
function and and using the predictions Aleatoric uncertainty

Feature Classic Dropout Dropconnect Flipout Ensembles
PT08.S1(CO) 0.00 0.15 0.08 0.30 0.00
NOx(GT) 0.01 0.13 0.12 0.74 0.00
PT08.S3(NOx) 0.00 0.00 0.00 0.43 0.00
CO(GT) 0.96 0.71 0.18 0.42 0.03
PT08.S2(NHMC) 0.01 0.05 0.17 0.31 0.00
NO2(GT) 0.00 0.00 0.02 0.73 0.00
PT08.S5(O3) 0.00 0.01 0.13 0.23 0.00
NMHC(GT) 0.12 0.42 0.38 0.42 0.11
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Table B.4: AUC values from the ROC curve using each uncertainty method, β-NLL as the loss
function and and using the predictions Epistemic uncertainty

Feature Classic Dropout Dropconnect Flipout Ensembles
PT08.S1(CO) 0.61 0.84 0.79 0.40 1.00
NOx(GT) 0.65 0.97 0.79 0.81 1.00
PT08.S3(NOx) 0.34 0.02 0.17 0.41 1.00
CO(GT) 0.64 0.91 0.73 0.67 1.00
PT08.S2(NHMC) 0.57 0.91 0.85 0.69 1.00
NO2(GT) 0.41 0.92 0.89 0.75 1.00
PT08.S5(O3) 0.63 0.93 0.82 0.66 1.00
NMHC(GT) 0.54 0.94 0.83 0.74 1.00

B.2 Sample Graphs of ROC using NLL

ROC curve of CO(GT)
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ROC curve of NO2(GT)

ROC curve NOx(GT)
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ROC curve of PT08.S1(CO)

ROC curve of NMHC(GT)
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ROC curve of PT08.S5(O3)

ROC curve of PT08.S3(NOx)
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ROC curve of PT08.S2(NMHC)

C Visualizatoin of Aleatoric and Epistemic Uncertainty

C.1 Visualization of uncertainties with mean and standard deviation, NLL
loss function

Classic CO(GT)

Classic NMHC(GT)

Classic NO2(GT)
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Classic NOx(GT)

Classic PT08.S1(CO)

Classic PT08.S3(NOx)
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Classic PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using NLL loss function for an individ-
ual feature (PT08.S2(NMHC)), all values
to the left of the vertical red line are ID
and the rest are OOD.
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Dropout CO(GT)

Dropout NMHC(GT)

Dropout NO2(GT)
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Dropout NOx(GT)

Dropout PT08.S1(CO)

Dropout PT08.S3(NOx)
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Dropout PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using NLL loss function for an individ-
ual feature (PT08.S2(NMHC)), all values
to the left of the vertical red line are ID
and the rest are OOD.

35



Dropconnect CO(GT)

Dropconnect NMHC(GT)

Dropconnect NO2(GT)
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Dropconnect NOx(GT)

Dropconnect PT08.S1(CO)

Dropconnect PT08.S3(NOx)
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Dropconnect PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using NLL loss function for an individ-
ual feature (PT08.S2(NMHC)), all values
to the left of the vertical red line are ID
and the rest are OOD.
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Flipout CO(GT)

Flipout NMHC(GT)

Flipout NO2(GT)
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Flipout NOx(GT)

Flipout PT08.S1(CO)

Flipout PT08.S3(NOx)
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Flipout PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using NLL loss function for an individ-
ual feature (PT08.S2(NMHC)), all values
to the left of the vertical red line are ID
and the rest are OOD.
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Ensemble CO(GT)

Ensemble NMHC(GT)

Ensemble NO2(GT)
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Ensemble NOx(GT)

Ensemble PT08.S1(CO)

Ensemble PT08.S3(NOx)
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Ensemble PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using NLL loss function for an individ-
ual feature (PT08.S2(NMHC)), all values
to the left of the vertical red line are ID
and the rest are OOD.
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C.2 Visualization of uncertainties with mean and standard deviation, β-NLL
loss function

Ensemble CO(GT)

Ensemble NMHC(GT)

Ensemble NO2(GT)
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Ensemble NOx(GT)

Ensemble PT08.S1(CO)

Ensemble PT08.S3(NOx)
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Ensemble PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using β-NLL loss function for an indi-
vidual feature (PT08.S2(NMHC)), all val-
ues to the left of the vertical red line are
ID and the rest are OOD.
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Dropout CO(GT)

Dropout NMHC(GT)

Dropout NO2(GT)
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Dropout NOx(GT)

Dropout PT08.S1(CO)

Dropout PT08.S3(NOx)
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Dropout PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using β-NLL loss function for an indi-
vidual feature (PT08.S2(NMHC)), all val-
ues to the left of the vertical red line are
ID and the rest are OOD.
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Dropconnect CO(GT)

Dropconnect NMHC(GT)

Dropconnect NO2(GT)
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Dropconnect NOx(GT)

Dropconnect PT08.S1(CO)

Dropconnect PT08.S3(NOx)
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Dropconnect PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using β-NLL loss function for an indi-
vidual feature (PT08.S2(NMHC)), all val-
ues to the left of the vertical red line are
ID and the rest are OOD.

53



Flipout CO(GT)

Flipout NMHC(GT)

Flipout NO2(GT)
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Flipout NOx(GT)

Flipout PT08.S1(CO)

Flipout PT08.S3(NOx)
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Flipout PT08.S5(O3)

Comparison of total, aleatoric and epis-
temic uncertainty on all uncertainty meth-
ods using BNLL loss function for an indi-
vidual feature (PT08.S2(NMHC)), all val-
ues to the left of the vertical red line are
ID and the rest are OOD.
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C.3 Visualization of uncertainties with only standard Deviation, NLL loss
function

Classic CO(GT)

Classic NMHC(GT)

Classic NO2(GT)) 57



Classic NOx(GT)

Classic PT08.S1(CO)

Classic PT08.S2(NMHC)
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Classic PT08.S3(NOx

Classic PT08.S5(O3)

Comparison of aleatoric and epistemic un-
certainty on Classic without the mean pre-
dictions using NLL loss function for re-
maining features, all values to the left of
the vertical black line are ID and the rest
are OOD
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Dropout CO(GT)

Dropout NMHC(GT)

Dropout NO2(GT))
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Dropout NOx(GT)

Dropout PT08.S1(CO)

Dropout PT08.S2(NMHC)
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Dropout PT08.S3(NOx

Dropout PT08.S5(O3)

Comparison of aleatoric and epistemic un-
certainty on Dropout without the mean
predictions using NLL loss function for re-
maining features, all values to the left of
the vertical black line are ID and the rest
are OOD
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Dropconnect CO(GT)

Dropconnect NMHC(GT)

Dropconnect NO2(GT))
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Dropconnect NOx(GT)

Dropconnect PT08.S1(CO)

Dropconnect PT08.S2(NMHC)
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Dropconnect PT08.S3(NOx

Dropconnect PT08.S5(O3)

Comparison of aleatoric and epistemic
uncertainty on Dropconnect without the
mean predictions using NLL loss function
for remaining features, all values to the left
of the vertical black line are ID and the rest
are OOD
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Flipout CO(GT)

Flipout NMHC(GT)

Flipout NO2(GT))
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Flipout NOx(GT)

Flipout PT08.S1(CO)

Flipout PT08.S2(NMHC)
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Flipout PT08.S3(NOx

Flipout PT08.S5(O3)

Comparison of aleatoric and epistemic un-
certainty on Flipout without the mean pre-
dictions using NLL loss function for re-
maining features, all values to the left of
the vertical black line are ID and the rest
are OOD
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Ensemble CO(GT)

Ensemble NMHC(GT)

Ensemble NO2(GT))
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Ensemble NOx(GT)

Ensemble PT08.S1(CO)

Ensemble PT08.S2(NMHC)
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Ensemble PT08.S3(NOx)

Ensemble PT08.S5(O3)

Comparison of aleatoric and epistemic un-
certainty on Ensemble without the mean
predictions using NLL loss function for re-
maining features, all values to the left of
the vertical black line are ID and the rest
are OOD
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C.4 Visualization of uncertainties with only Standard Deviation, β-NLL loss
function

Classic CO(GT)

Classic NMHC(GT)

Classic NO2(GT)) 72



Classic NOx(GT)

Classic PT08.S1(CO)

Classic PT08.S2(NMHC)
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Classic PT08.S3(NOx)

Classic PT08.S5(O3)

Comparison of aleatoric and epistemic un-
certainty on Classic without the mean pre-
dictions using β-NLL loss function for re-
maining features, all values to the left of
the vertical black line are ID and the rest
are OOD
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Dropout NMHC(GT)

Dropout PT08.S1(CO)

Comparison of aleatoric and epistemic un-
certainty on Droput without the mean pre-
dictions using β-NLL loss function for re-
maining features, all values to the left of
the vertical black line are ID and the rest
are OOD
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Dropconnect CO(GT)

Dropconnect NMHC(GT)

Dropconnect NO2(GT)
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Dropconnect NOx(GT)

Dropconnect PT08.S1(CO)

Dropconnect PT08.S2(NMHC)
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Dropconnect PT08.S3(NOx)

Dropconnect PT08.S5(O3)

Comparison of aleatoric and epistemic
uncertainty on Dropconnect without the
mean predictions using β-NLL loss func-
tion for remaining features, all values to
the left of the vertical black line are ID
and the rest are OOD
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Flipout CO(GT)

Flipout NMHC(GT)

Flipout NO2(GT))
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Flipout NOx(GT)

Flipout PT08.S1(CO)

Flipout PT08.S2(NMHC)
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Flipout PT08.S3(NOx)

Flipout PT08.S5(O3)

Comparison of aleatoric and epistemic un-
certainty on Flipout without the mean pre-
dictions using β-NLL loss function for re-
maining features, all values to the left of
the vertical black line are ID and the rest
are OOD
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Ensemble CO(GT)

Ensemble NMHC(GT)

Ensemble NO2(GT))
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Ensemble NOx(GT)

Ensemble PT08.S1(CO)

Ensemble PT08.S2(NMHC)
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Ensemble PT08.S3(NOx)

Ensemble PT08.S5(O3)

Comparison of aleatoric and epistemic un-
certainty on Ensemble without the mean
predictions using β-NLL loss function for
remaining features, all values to the left of
the vertical black line are ID and the rest
are OOD
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