
Validation of Uncertainty in Classification

under Point Cloud Downsampling

Bachelor’s Project Thesis

Jay Khalil; s3167240; a.l.khalil@student.rug.nl,

Supervised by: Dr M.A. Valdenegro Toro

Abstract: The rapid evolution of artificial intelligence (AI) highlights the need to understand
uncertainties in machine learning (ML) predictions. This research explored uncertainties in point
cloud data, a high-dimensional structure pivotal in many fields, utilising Bayesian neural net-
works. Hence, we integrated Monte Carlo Dropout, Monte Carlo DropConnect, Flipout, and
Deep Ensemble within a custom PointNet model. Through iterative downsampling, the models
unveiled varying abilities to manage uncertainties. Our findings suggest a prevalent underconfi-
dence due to point cloud data complexity. Importantly, model sensitivities varied across classes,
indicating the intricacies of class representation and training complexities. Notably, the extent of
downsampling influenced uncertainty in non-linear ways, challenging the assumption that more
sampling points always yield better results. These insights underscore the study’s contribution
to ML’s uncertainty management, hinting at avenues for model optimisation. Future research
should delve deeper into this promising domain.

1 Introduction

Artificial Intelligence (AI) is the mantra of the cur-
rent era.” This intriguing statement by the author
Jordan summed up the advancement of AI per-
fectly. AI has permeated every aspect of modern
life, transforming the landscape of various indus-
tries and reshaping our everyday experiences. A tes-
tament to this monumental shift is the rise of Ope-
nAI’s large language models, such as ChatGPT,
that can comprehend and generate human-like text,
opening up new frontiers in communication, con-
tent creation, and knowledge extraction. Another
example can be Tesla’s Autopilot, which can ob-
serve the dynamic environment and react under ex-
treme time-stress situations, striving for a reaction
with high accuracy.

Despite these advancements, the proliferation of
AI hinges on the ability to handle and interpret
high-dimensional, complex data structures—an
area where machine learning (ML), a subset of AI,
shines, Krizhevsky et al., 2017. Machine learning
algorithms can learn from data, recognise patterns,
and make decisions, contributing significantly to
the evolution of AI. As such, ML has been at

the forefront of AI’s growth, facilitating significant
improvements in areas such as image and speech
recognition, natural language processing, and au-
tomation, Rayhan, 2023.

1.1 Point Clouds

One of the most shining achievements of machine
learning lies in image classification. This revolution-
ary technology produced significant results since
it has been under development for decades Sul-
tana et al., 2020. However, in terms of real-world
accuracy, image recognition can be less trustwor-
thy based on the physical world. This drawback is
raised because images consist of 2D data. Hence,
point clouds capture the precise 3D geometry and
spatial relationships of objects or scenes. This in-
formation is crucial for tasks that require under-
standing objects’ shape, structure, and position-
ing in three-dimensional space. Therefore, scien-
tists have developed advanced technologies to har-
ness the power of such a classification. The crucial
form of point cloud data is fundamental to various
fields, including computer vision, geospatial analy-
sis, and robotics. Point cloud data is characterised
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by its high dimensionality and complexity, present-
ing unique challenges and opportunities for AI algo-
rithms, such as PointNet, DGCNN, and PointCNN
Kim & Kim, 2020.
An instance of these uncertainties in point cloud

data handling arises from the inherent noise pro-
duced by the data collection technologies, such as
Laser or LIDAR systems. These systems capture
data by emitting pulsed laser beams to measure
distances to the Earth’s surface. Inherent to this
process is the introduction of noise, primarily due
to the less-than-perfect precision of the detection
mechanisms, atmospheric interference, and variable
surface reflectivity. The noise can result in spurious
data points within the point cloud, creating a ’false
feature’ that could lead the Neural Network to clas-
sify incorrectly.
This inherent noise represents a form of data un-

certainty, a concept that expands to all fields where
data is collected and interpreted, not only point
cloud data. Similarly, there is a parallel to be drawn
with the concept of model uncertainty in machine
learning, where even with perfect data, the model’s
predictions may still be uncertain due to the in-
herent limitations and assumptions of the chosen
model. Both forms of uncertainty - data and model
- pose significant challenges for machine learning
applications and require careful consideration when
designing and implementing these systems.

1.2 Uncertainty

In machine learning, uncertainties can broadly be
categorised into two types: aleatoric uncertainty,
which stems from inherent data noise, and epis-
temic uncertainty, which arises from incomplete
knowledge about the model. Identifying, quanti-
fying, and managing these uncertainties is critical
to the reliable deployment of every task utilising a
neural network Valdenegro-Toro & Mori, 2022.
Nevertheless, the handling and interpretation of

point cloud data are rife with uncertainties. An ex-
ample of such uncertainty can be seen in a classi-
fication task when the Neural Network must clas-
sify an object by choosing between various objects.
Such a task can be straightforward for humans.
However, it is not easy for the algorithms, especially
if we consider two similar objects with certain fea-
tures yet differs in categories, or training with class
imbalanced datasets Yun & Lee, 2023.

1.3 State of the art

There has been a significant amount of publica-
tions enriching our understanding of point cloud
classifications since Qi, Su, et al. pioneered the
field with the PointNet architecture. Subsequent re-
search expanded upon this foundational work and
introduced advanced versions with improved accu-
racy, such as PointNet++ (Qi, Yi, et al., 2017).
However, there remains a noticeable lack of discus-
sion concerning crucial factors like the number of
selected point clouds per entity and their impact
on uncertainty prediction.

While one might naturally presume that a
greater quantity of point clouds per entity would
yield enhanced accuracy, the study by Lumban-
Gaol et al. suggests otherwise. They investigated
the semantic segmentation of an indoor scene of a
railway station captured in point cloud using three
distinct models, contrasting their outcomes across
various factors (Lumban-Gaol et al., 2021).

Experimental results demonstrated a trade-off
between computational efficiency and preserving
geometric details. Their results indicated a negative
correlation between the number of points per class
and segmentation task performance. Additionally,
a detailed study on the sensitivity of PointNet’s hy-
perparameters provided valuable insights into their
relationship with the number of points (Nurunnabi
et al., 2021).

Moreover, Valdenegro-Toro & Mori work on un-
derstanding uncertainty in neural networks pro-
posed a generalised approach to identify and dif-
ferentiate between aleatoric and epistemic uncer-
tainties. Their contributions significantly advanced
our comprehension of the intricate relationship be-
tween different uncertainty types and their applica-
tion in neural networks. The state of the art work
demonstrated an outstanding results using the lat-
est advancement in model architecture to capture
uncertainty.

1.4 Current work

In light of previous pioneering work, this work seeks
to evaluate the effectiveness of Bayesian neural net-
works in determining both aleatoric and epistemic
uncertainties in point cloud classification tasks with
varying numbers of sample points per object. We
utilise the PointNet architecture (Qi, Su, et al.,
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2017) for 3D object recognition. While more recent
algorithms have emerged after PointNet, they often
draw upon its foundational concepts. The research
will employ the benchmark ModelNet10 dataset
(Wu et al., 2015). The primary research question
we seek to address is: ’How significant is the influ-
ence of downsampling on introducing uncertainty
in cloud classification, and what approaches are
suitable for its validation?’ Addressing this ques-
tion will shed light on uncertainty quantification
in machine learning algorithms tailored for point
cloud data, propelling the development of depend-
able and accurate AI systems.
Our approach employs several techniques to eval-

uate the performance and robustness of differ-
ent uncertainty quantification methods across di-
verse data volume scenarios: Monte Carlo Dropout,
Monte Carlo DropConnect, Flipout, and Deep En-
semble. We will examine each method under var-
ious downsampling strategies, progressively reduc-
ing point cloud numbers from 4096 to a minimum
of 16 points per object. This systematic exploration
will thoroughly assess these uncertainty techniques
in different point cloud data volume contexts.

2 Method

In this coming section we will discuss the theoretic
implementation of the approached method.

2.1 Dataset

The ModelNet10 dataset is a subset of the larger
ModelNet40 dataset, both introduced by (model-
net10) in their seminal paper on 3D ShapeNets.
The dataset comprises ten categories, each con-
taining CAD models of objects typically found
in indoor environments. These categories include
beds, desks, chairs, bathtubs, tables, sofas, moni-
tors, dressers, nightstands, and toilets. ModelNet10
contains 3,991 3D CAD models for training and
908 for testing. The objects in the dataset are rep-
resented as point clouds, and each point cloud has
been normalised into a unit sphere, which is benefi-
cial for tasks related to 3D object recognition. How-
ever, the dataset comes unfortunately imbalanced,
but this can be beneficial as it brings better simu-
lation to the real world, Appendix A Table A.1 &
Table A.2. Despite that, the widespread use and ac-

Figure 2.1: ModelNet10 Dataset, An example
from all the categories, left to right, up to down:
Bathtub, Bed, Chair, Desk, Dresser, TV, Night-
stand, Couch, Sofa, Table, and Toilet

ceptance of ModelNet10 in the research community
can be attributed to its well-curated nature, which
makes it an ideal benchmark dataset for evaluating
3D object classification algorithms. In Figure 2.1,
we can see examples of objects from ModelNet10
dataset.

However, the data in our model originates from
a subset of points within an Euclidean space, with
these points forming a point cloud. This point cloud
possesses three key attributes. First, it’s unordered,
differing from pixel or voxel arrays, necessitating a
model immune to variations in input point orders.
Second, these points interact within their defined
metric space, creating meaningful local structures
whose interactions the model must discern. Lastly,
the model must ensure invariant under transforma-
tions, such as rotation or translation, to maintain
accurate object representation and classification,
Qi, Su, et al., 2017.

2.1.1 Sampling

Point sampling is performed on the point clouds in
our dataset, using a random process for each cloud.
The goal is to ensure that the distribution of points
in each cloud remains representative of the origi-
nal, while reducing the computational complexity
by limiting the total number of points, Qi, Su, et
al., 2017.

Given a triangle formed by three points in the
cloud, p1, p2, and p3, the area of the triangle is
calculated using Heron’s formula:

A =
√

s(s− a)(s− b)(s− c) (2.1)

where s is the semi-perimeter of the triangle
given by s = a+b+c

2 , and a, b, and c are the lengths
of the sides of the triangle.
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A point within the triangle is then randomly
sampled based on barycentric coordinates (s, t), en-
suring that the probability of selection is propor-
tional to the triangle’s area. The barycentric co-
ordinates are used to compute the position of the
sampled point p as follows:

p = sp1 + (t− s)p2 + (1− t)p3 (2.2)

This process is repeated until the desired number
of points is sampled, Figure 2.2.

In addition, to achieve a representative sample
of the mesh, triangles (or faces) are sampled based
on their areas. This ensures that larger triangles,
which occupy more of the mesh’s surface, are more
likely to be sampled, thus retaining the overall
structure and features of the original mesh in the
downsampled point cloud.

2.1.2 Data Normalisation

Normalising the point cloud data is a crucial step
in our methodology. This process involves translat-
ing and scaling the objects within the point cloud
to a common coordinate system and size, respec-
tively. This normalisation aligns with the ”trans-
lation” process used in the work by Qi, Su, et al.
(2017). Thus, the translation is achieved by sub-
tracting the mean value of the point cloud coordi-
nates from each point, effectively placing the ob-
jects at the origin of the coordinate system. After
that, we scale these translated points to fit within
a unit sphere by dividing each point by the max-
imum norm of the point clouds, as shown in Fig-
ure 2.2. The mathematical representation of these
operations is as follows:

Given a point cloud P = p1, p2, . . . , pn, where pi
are the coordinates of each point, we compute the
normalised point cloud P ′′ by:

1. Centring the Point Cloud:

meanj =
1

n

n∑
i=1

pci,j

npci,j = pci,j −meanj

for i = 1, 2, . . . , n

and j = 1, 2, . . . , d

(2.3)

2. Normalising the Point Cloud:

norm(npci) =

√√√√ d∑
j=1

npc2i,j

for i = 1, 2, . . . , n

max norm = max
i

(norm(npci))

normalised pci,j =
npci,j

max norm
for i = 1, 2, . . . , n

and j = 1, 2, . . . , d

(2.4)

2.1.3 Data Pre-processing

In our methodology, data preprocessing is a key
step to ensure the robustness of our model Qi, Su,
et al., 2017. The process increases the diversity of
our training dataset, reducing the risk of overfit-
ting while accommodating potential changes in the
input data. Our approach primarily relies on two
essential techniques:

1. Random Rotation: We randomly rotate each
object in the point cloud around the Z-axis
during the training process. The rotation angle
θ is chosen randomly within the range [0, 2π].
The rotation operation is conducted with a ro-
tation matrix R, resulting in the rotated point
cloud P ′, as shown in 2.5.

θ = random(0, 2π)

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


P ′ = RPT (2.5)

2. Gaussian Noise: To better equip the model
to cope with potential sensor noise in real-
world applications, we add Gaussian noise to
the point cloud. The noise N is drawn from a
Gaussian distribution with mean 0 and stan-
dard deviation 0.02, and is added to each point
in the point cloud, resulting in the noisy point
cloud P ′′, as shown in 2.6.

N ∼ N (0, 0.02)

P ′′ = P ′ +N (2.6)
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Figure 2.2: Point Clouds Processing; The top
sample illustrates a bed object before augmen-
tation, while the bottom sample represents the
same bed post-processing, where data has been
modified through rotation around the Z-axis
and the addition of noise was added.

Through these augmentation techniques, we
manage to increase the variability within our train-
ing data, resulting in a more generalisable and ro-
bust model, Figure 2.2.

2.2 Models

In this study, we utilise the PointNet model, closely
aligning with the original version as described by
Qi, Su, et al.. Furthermore, as we integrated various
uncertainty models into our study, additional mod-
ifications were required. Specifically, alterations to
the final layers of each PointNet model to become
an uncertainty model were made to ensure align-
ment with their respective theoretical underpin-
nings. The following subsections will delve further
into these models and highlight the specific differ-
ences and modifications.

2.2.1 PointNet Architecture

PointNet architecture is a type of neural network
that directly consumes point clouds, which are un-
structured sets of points in space. This model is
beneficial for 3D geometric data processing. The
model’s architecture is implemented in Python us-
ing the Keras and TensorFlow libraries. PointNet’s
pipeline consists of several key components, includ-
ing transformation networks (T-Nets), a classifica-
tion network, and a custom loss computation. Fig-
ure 2.3 will show the simplicity of the pipeline.

The particular component of the model is the
T-Nets, which include an input and feature trans-
form, which are employed to align input data and
learn the features, respectively. These transforma-
tion networks capture global spatial information
about point clouds. The transformation matrices
generated by the T-Nets are also regularised to be
close to orthogonal matrices, which helps to ensure
the transformation learned is a rotation, Figure 2.7.

∥X ·XT − I∥ = 0 (2.7)

The classification network comprises several lay-
ers, including 1D convolutional layers, dense layers,
and a final softmax layer. It takes the transformed
data from the T-Nets, applies a series of transfor-
mations, and finally classifies the point cloud into
one of the predefined classes.
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Figure 2.3: PointNet architecture. The model accepts n points, performs input and feature trans-
formations, and aggregates point features via max pooling. This process yields classification scores
for k classes. The segmentation network extends this, combining global and local features to out-
put per point scores. ’mlp’ refers to multi-layer perceptron, with bracketed numbers indicating
layer sizes. All ReLU layers utilise batch normalisation, and dropout layers are applied in the final
mlp of the classification network, Qi, Su, et al., 2017.

Loss function

The loss function in this model combines classifi-
cation loss and regularisation. Classification loss,
calculated using Sparse Categorical Crossentropy,
measures how accurately the model classifies point
clouds. The regularisation term ensures transfor-
mation matrices (m3x3 and m64x64) approximate
orthogonal matrices, effectively learning rotation
transformations.
The loss function takes the following form:

Ltotal = Lclassification+α(∥I−AAT ∥2F+∥I−BBT ∥2F )
(2.8)

In this equation, Ltotal is the total loss,
Lclassification is the classification loss, A and B are
the transformation matrices, and I is the identity
matrix. AAT andBBT are the result of matrix mul-
tiplication of each transformation matrix and its
transpose. The symbol α represents a hyperparam-
eter, and |.|2F is the Frobenius norm. This structure
encourages both proper classification and the learn-
ing of mostly rotation transformations.

Metrics

The performance of the model is tracked using two
metrics: mean loss and accuracy. Mean loss pro-
vides an overview of the model’s error magnitude,

while accuracy measures the percentage of correct
predictions, assessing the model’s prediction capa-
bilities. Both metrics are monitored during training
and validation for comprehensive performance un-
derstanding.

2.2.2 Bayesian Neural Networks

A Bayesian Neural Network (BNN) is a variant of
traditional neural networks where the weights are
assigned a probability distribution rather than a
single value. Such a methodology can motivate the
model to account for uncertainty in its predictions,
improving reliability. Formally, Bayesian inference
is used to update our prior beliefs p(λ) about the
weights λ = {w1, w2, ..., wK} given the observed
input/output pairs (x,y), resulting in a posterior
distribution p(λ|x,y), Abdar et al., 2021. This is
done using Bayes’ theorem:

p(λ|x,y) = p(y|x,λ)p(λ)
p(y|x)

(2.9)

For a new test sample x∗, the model averages its
predictions over all possible weights, weighted by
the updated belief about those weights, to make a
prediction:

p(y∗|x∗,x,y) =

∫
p(y∗|x∗,λ)p(λ|x,y)dλ (2.10)
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However, due to the high-dimensional nature of
the weight space in neural networks, computing this
integral is computationally expensive, and hence,
various techniques such as Monte Carlo Dropout
and Monte Carlo DropConnect are employed to ap-
proximate it, Gawlikowski et al., 2023.

2.2.3 Monte Carlo Dropout

Monte Carlo Dropout (MC Dropout) serves as a
potent technique for approximating integrals that
are generally computationally challenging, as de-
tailed by Gal & Ghahramani, 2016, and illustrated
in equation 2.11. The technique pivots on the prin-
ciples of stochastic sampling. In this context, each
execution of a forward pass through the neural net-
work yields a unique sample from the underlying
posterior distribution. This approach is of particu-
lar value as it sidesteps the extensive computational
resources usually associated with traditional Monte
Carlo simulations.
During the training process, MC Dropout em-

ploys random binary markers to denote specific
nodes within the network. The interpretation is
that if a node’s marker value equates to 0, the said
node is omitted or ”dropped” from the network.
This action has the advantage of curtailing over-
fitting by diminishing the prevalent co-adaptation
effect among different layers.
The mathematical representation for estimation

using MC Dropout can be described as follows:

p(y∗|x,x, y) =
1

M

M∑
i=1

p(y|x∗, λ)p(λ|x, y) (2.11)

Here, M stands for the number of forward passes
through the network. Furthermore, p(y∗|x∗, λ) is
a representation of the distinct samples generated
during each of these forward passes.

2.2.4 Monte Carlo DropConnect

Monte Carlo DropConnect (MC DropConnect) op-
erates as a variant of MC Dropout. However, in-
stead of eliminating nodes from the neural network,
it strategically omits weights, a method discussed
in Oberdiek et al., 2018. This methodology offers
an alternate route for injecting randomness into the
network’s structure and behavior.

Mirroring the process in MC Dropout, during
the training phase, DropConnect assigns random
binary indicators to the weights within the net-
work. Weights assigned a value of 0 are subse-
quently dropped. This mechanism serves as an ef-
fective means of mitigating overfitting, a situation
particularly prominent in larger and more complex
models.

The estimation formula for MC DropConnect
aligns closely with that of MC Dropout:

p(y∗|x,x, y) =
1

M

M∑
i=1

p(y|x∗, λ)p(λ|x, y) (2.12)

In this equation, M symbolizes the number
of forward passes through the network, while
p(y∗|x∗, λ) signifies the distinct samples procured
during each forward pass. For both MC Dropout
and MC DropConnect, we calculate the predictive
mean, µ(x), and standard deviation, σ(x), as fol-
lows:

µ(x) =
1

M

M∑
i=1

fi(x) (2.13)

σ(x) =

√√√√ 1

M

M∑
i=1

(fi(x)− µ(x))2 (2.14)

Here, fi(x) corresponds to the output of the net-
work for the ith forward pass. These predictive
mean and standard deviation values are then used
to construct the model’s confidence interval.

2.2.5 Flipout

The Flipout strategy brings a new level of refine-
ment to the Bayes by Backprop (BBB) approach
by injecting stochasticity into the weight distri-
butions of a neural network. While BBB treats
weight sampling as an additive disturbance on the
mean (expressed as w = µ+ σz, where z ∼ N(0, 1)
and w ∼ N(µ, σ)), as documented in Wen et al.,
2018.

∆Wn = ∆Ŵ rns
T
n (2.15)

The equation 2.15, ∆Wn represents the per-
sample perturbation. Meanwhile, ∆Ŵ = σz stands
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as the per-sample perturbation metric, and rn, sn
are independent samples drawn from a Rademacher
distribution.

2.2.6 Deep Ensemble

The Deep Ensemble strategy synergies the predic-
tive capacities of multiple models, also known as
ensemble members, to boost overall performance
and refine uncertainty quantification, as discussed
in Lakshminarayanan et al., 2017. The output of
each ensemble member for a specific input x is
represented by fi(x), where i symbolises the in-
dex of the ensemble member. The collective out-
put from the DE, symbolised as fE(x), is the arith-
metic mean of all individual member outputs. For
an ensemble with M members, this is captured in
equation 2.16:

fE(x) =
1

M

M∑
i=1

fi(x) (2.16)

In tasks that involve classification, the ensemble’s
collective prediction is computed by taking the soft-
max of the averaged logits from all ensemble mem-
bers. This is illustrated in equation 2.17:

fE(x) =
1

M

M∑
i=1

softmax(fi(x)) (2.17)

2.3 Downsampling

Downsampling functions as an effective method
for decreasing the quantity of observations in a
dataset, with the primary objective of maintaining
the fundamental characteristics of the original data
Chen et al., 2022. Given a collection of data points
X = x1, x2, ..., xn, where n represents the number
of data points, downsampling facilitates the gen-
eration of a smaller set X ′ = x′i1, x

′i2, ..., x
′
m, in

which m < n.
A downsampling function, designated as D :

X → X ′, is defined for this purpose, where the set
X ′ contains fewer points than the initial set X. In
the particular context of this investigation, we in-
troduce a downsampling factor f , defined such that
f = 2k, with k representing a non-negative integer.
Consequently, the number of points m in the re-
duced set X ′ is given by m = n/2k. This approach
results in a sequence of successively down-sampled

datasets, wherein the number of points is halved at
each progressive stage.

2.4 Experiment Design

The experiment is built around the concept of
downsampling the point clouds data points 2.3. By
varying the volume of data in this manner, we aim
to examine the behaviour of selected uncertainty
methods under different data circumstances.

In the following sections, we detail the construc-
tion and training of the respective models un-
der each method. The choice of hyperparameters,
model architecture, and training regimen are ex-
plained, providing a comprehensive view of the ex-
perimental setup.

2.4.1 PointNet Baseline Model

Our experimental framework commences with a
baseline model built on the architecture of Point-
Net, a deep learning model specifically tailored for
processing point cloud data, as previously outlined
in Section 2.2.1. This architecture serves as the
foundation for all subsequent model variants in this
study. The model was custom designed according to
the specifications outlined in Qi, Su, et al., 2017.

In an effort to augment this architecture with
a capability for uncertainty quantification, we in-
troduce a Stochastic Classifier to perform multi-
ple stochastic forward passes for each input, with
each pass resulting in a different output due to
the randomness introduced by the dropout. The
model doesn’t directly deliver these multiple out-
puts as the final result; instead, they are processed
further. The model calculates the mean over all
stochastic forward passes to create a single predic-
tion that encapsulates the predictive uncertainty in
the form of a distribution over possible outcomes.
The Stochastic Classifier class was imported from
keras uncertainty library Valdenegro-Toro, 2021

However, the Stochastic Classifier will not have
that much of an impact regarding measuring the
uncertainty on the Baseline model since it is design
with an ordinary dropout that is activated only
during training. Yet, it creates unification when
compared to another models.
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2.4.2 Monte Carlo Dropout model

The Monte Carlo (MC) Dropout model is a modi-
fied version of the baseline PointNet architecture by
incorporating the Stochastic Dropout layer, which
applies dropout during both training and infer-
ence phases, Section 2.2.3. This MC Dropout layer
is introduced after the second dense layer with a
dropout rate of 0.3, followed by standard batch nor-
malisation and ReLU activation functions.
The model concludes with a dense output layer,

mapping to the classes of the classification problem,
with a softmax activation function. The model’s
distinctive feature is the application of the Stochas-
tic Classifier during the inference phase. With this
modification, the model effectively acts as a Monte
Carlo simulator by performing multiple forward
passes for each input, each pass generating a dif-
ferent prediction due to the MC Dropout layer.
The Stochastic Dropout layer was imported from

keras uncertainty library Valdenegro-Toro, 2021.

2.4.3 Monte Carlo dropConnect model

The Monte Carlo (MC) dropConnect model, as de-
scribed 2.2.4, was similar to the MC Dropout ex-
cept it instead introduces the concept of dropCon-
nect into the architecture of the PointNet model.
Hence, a DropConnect Dense layer replaces the sec-
ond dense layer in the Base model, randomly drop-
ping connections instead of neurons with a rate of
0.3.
Similar to the MC Dropout model, the MC drop-

Connect model uses the Stochastic Classifier to per-
form multiple forward passes during inference, ef-
fectively turning the model into a Monte Carlo sim-
ulator. These multiple passes take advantage of the
DropConnect Dense layer’s behaviour, which ran-
domly drops connections, allowing the model to
generate a distribution of predictions for each in-
put and thus offering a probabilistic understanding
of the inherent uncertainty in the outcomes.
The Stochastic DropConnect layer was imported

from keras uncertainty library Valdenegro-Toro,
2021

2.4.4 Flipout Model model

The Flipout model adapts the PointNet Base
model, integrating a Flipout Dense layer that intro-
duces Bayesian variational inference into the net-

work, as explained in section 2.2.5. This transfor-
mation creates a Bayesian version of PointNet, ca-
pable of capturing weight uncertainty.

Further, the Flipout Dense layer, which substi-
tutes the second dense layer in the baseline archi-
tecture, is characterised by several defining param-
eters. The KL weight, a critical factor representing
the distance between two probability distributions,
is set as the inverse of the total number of batches
in the dataset. In this case, the KL weight was com-
puted as 1.0/number of batches, where the number
of batches is the dataset length divided by the batch
size of 32.

For the prior, the Flipout Dense layer assumes
a mixture of two Gaussian distributions. The stan-
dard deviations were set as 5.0 and 2.0, while the
prior weight was set as 0.5, although these values
can be adjusted to fit the problem context.

Similar to the MC Dropout and MC drop-
Connect models, the Flipout model employs the
Stochastic Classifier during inference. This ap-
proach involves multiple forward passes for each
input, generating a distribution of predictions, and
offering a probabilistic understanding of the out-
comes.

The Flipout Dense layer was incorporated us-
ing the keras uncertainty library Valdenegro-Toro,
2021.

2.4.5 Deep Ensemble model

The Deep Ensemble model is another adaptation
of the baseline PointNet model, with the architec-
ture remaining identical but without incorporating
a Dropout layer. It employs the concept of ensem-
ble learning, wherein multiple instances of the same
model are created and trained independently on the
same dataset, section 2.2.6.

The layers in the Deep Ensemble model are iden-
tical to the baseline PointNet model, following the
same sequence of dense layers, batch normalisation,
and ReLU activation functions. However, the differ-
entiating feature is the utilisation of the Deep En-
semble Classifier during the inference phase. This
classifier creates multiple instances of the model,
each trained independently on the same dataset,
leading to an ensemble of predictions. The ensem-
ble’s mean prediction is then normalised to adjust
the probabilities for each class.

The model generates a distribution of predictions
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for each input, allowing for a probabilistic interpre-
tation of the predictions.
The Deep Ensemble Classifier class was im-

ported from keras uncertainty library Valdenegro-
Toro, 2021

2.4.6 Downsampling Method

In our experiment, we introduced a straight-
forward downsampling technique, described in
2.1.1. The sampling deprivation is performed
with a set of downsampling factors, K =
{0, 1, 2, ..., 9}, which results in a number of points
F = {4096, 2048, 1024, 512, 256, 128, 64, 32, 16}.
For each f ∈ F , all models (Base, MC Dropout,
MC DropConnect, Flipout, and Deep Ensemble)
are trained and evaluated to study their perfor-
mance and robustness under varying data volumes.

2.4.7 Test-time Data Augmentation
Method

In this study, we also explore aleatoric uncertainty
using a test-time data augmentation method, as
proposed by Wang et al., 2019. This method es-
timates uncertainty by introducing small perturba-
tions to the data during the testing phase, gener-
ating various versions of the same sample. In our
case, these perturbations include adding random
noise and rotating points around the z-axis, as de-
scribed in section 2.1.3.
However, unlike the original methodology out-

lined by Wang et al., we did not create multiple
versions of each data sample in our implementation.
Since our dataset’s inherent characteristics, such as
fundamental similarities between objects within the
same category, made it well-suited with various ob-
jects shares similar features. Furthermore, we aver-
aged the entropy of all model predictions for each
individual sample to measure uncertainty per sam-
ple.

2.4.8 Uniform Training Setup for Stan-
dardised Results

We standardised our experiment using a univer-
sal random seed of 42, applied across all random
generator libraries. Our models were trained using
GPU-based methods for optimised performance,
with each model completing a full run through the

five models in about 8 hours using NVIDIA RTX
3090 GPU.

The models, including various PointNet iter-
ations and their uncertainty modifications, em-
ployed identical hyperparameters. They underwent
16 epochs, with batch normalisation at 0.75 mo-
mentum. An L2 bias regulariser (0.01 rate) was
used on the 1D convolutional layer, and the second-
to-last dense layer featured an L2 kernel regu-
lariser (0.01 rate). Uniformity was further main-
tained with each stochastic classifier model using
50 stochastic samples, a parameter mirrored in the
Stochastic model’s number of estimators.

2.5 Metrics used for evaluation

2.5.1 Calibration Analysis

Calibration analysis assesses the alignment between
a classifier’s predicted probabilities and the actual
outcomes. As outlined in this paper Silva Filho et
al., 2021, it consists of several evaluation methods,
including the Classifier Calibration Error, Classifier
Calibration Curve, and Classifier Accuracy Confi-
dence Curve, detailed below.

Classifier Calibration Error

The classifier calibration error is used to evalu-
ates the agreement between the predicted probabil-
ities and the observed frequencies. The calibration
error classifier is the expected absolute difference
between the predicted probabilities and observed
probabilities over a set of instances grouped by pre-
dicted probability into bins. This can be calculated
using equation 2.18:

Ecal =
1

N

M∑
m=1

nm|Ppredm − Pobsm| (2.18)

In equation 2.18, Ecal is the calibration error, N
is the total number of instances, nm is the num-
ber of instances in bin m, Ppredm is the average
predicted probability in bin m, and Pobsm is the
actual observed probability in bin m.

Classifier Calibration Curve

The classifier calibration curve provides a visual in-
spection of the model’s calibration by plotting the
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average predicted confidence against the bin accu-
racy for each bin. Ideally, for a perfectly calibrated
model, this curve should be close to the line of
equality (y=x).

Classifier Accuracy Confidence Curve

The classifier accuracy confidence curve offers an-
other way of assessing calibration. It plots the
achieved accuracy against the confidence thresh-
old. For each threshold, it considers only the exam-
ples with confidence greater than or equal to that
threshold and calculates the accuracy of predictions
within this subset. The plot provides a perspective
on how the model’s accuracy varies with its own
confidence in its predictions.
The Classifier Calibration Error, Classifier Cali-

bration Curve, and Classifier Accuracy Confidence
Curve were imported from keras uncertainty li-
brary Valdenegro-Toro, 2021

2.5.2 Negative Log-Likelihood (NLL)

Negative Log-Likelihood (NLL) quantifies the dis-
similarity between the predicted probabilities and
the true labels, Quinonero-Candela et al., 2005. It
is calculated using equation 2.19:

NLL = − 1

N

N∑
i=1

log(ypredi
[yi]) (2.19)

In equation 2.19, NLL is the negative log-
likelihood, N is the total number of instances, and
ypredi

[yi] is the predicted probability for the true
label yi of instance i.

The Negative Log-Likelihood (NLL) was
method imported from keras uncertainty library
Valdenegro-Toro, 2021

2.5.3 Entropy

Entropy is a measure of the uncertainty or ran-
domness of the predictions, often used in informa-
tion theory. The standard Shannon entropy, as de-
fined in the paper Valdenegro-Toro & Mori, 2022,
is used in this context. For a single instance, the
entropy is calculated by summing the product of
the predicted probability and the logarithm of the
predicted probability for each class. The overall en-
tropy is then computed as the average of the indi-

vidual entropies across all instances, as described
by equations 2.20 and 2.21:

Hi = −
C∑

j=1

Pj log(Pj) (2.20)

H =
1

N

N∑
i=1

Hi (2.21)

In equations 2.20 and 2.21, Hi is the entropy of
instance i, C is the number of possible classes, Pj is
the predicted probability for class j,H is the overall
entropy, and N is the total number of instances.

The Shannon entropy method was imported from
keras uncertainty library Valdenegro-Toro, 2021

3 Results

This section outlines the findings from our study,
highlighting the model performance through Cali-
bration Analysis, Negative Log-Likelihood (NLL),
and Entropy metrics.

3.1 General Model Performance

Our models underwent rigorous training and val-
idation procedures, utilising two sets from the
dataset Training and Validation, detailed in sec-
tion 2.1. We prioritised optimising computational
efficiency, which included aspects such as model de-
sign and algorithmic improvements, to ensure min-
imal interference with our primary research focus.
Similar to the original implementation of Qi, Su, et
al., 2017 we considered the use of the base model
with 1024 points sample as an example here. The
model demonstrated a substantial accuracy of 87%,
while a reduction of Loss went down to 0.42, as
illustrated in Figure 3.2, Figure 3.1 shows every
recorded accuracy for the same model under differ-
ent point sampling. Moreover, the downsampling
had an interesting effect on the variation in the
model’s accuracy. The points sampling from 4096
down to 1024 was relatively close, around 87%,
then it went up to the highest on 512, reaching
88%, then down to stay within the range of 80s%
until descending to lowest at 40.31% which is the
lowest sampling point of 16, Table 3.1. However,
this accuracy can also be observed considering the
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struggle of the models to find the correct classifica-
tion choice when we observe the Loss. The lowest
reached Loss was at the sampling point 512 with
0.3671 but reached up to 1.0790 on the 16 sampling
points, Table 3.1.

Figure 3.1: Model Accuracy; Accuracy achieved
at the 14Th training epochs using 1024 point
cloud samples

Figure 3.2: Model Loss; Loss minimisation
recorded at the 14Th training epochs with 1024
point cloud samples

Additionally, the randomly selected prediction
example underscores the model’s accuracy, cor-
rectly identifying 28 out of 30 objects, as shown in
Figure A.1. Despite the high accuracy, the confu-
sion matrix reveals some misclassifications among
the categories, highlighting areas for potential im-
provement. This is further illustrated in Figure A.2.

3.2 Calibration Analysis

Our analysis on calibration provided several key
insights. We examined three primary facets of
calibration: the Calibration plot ”Reliability Dia-
gram”, the Calibration Curve, and the Calibration
Error. These methods are discussed in depth in sec-
tion 2.5.1.
The Calibration plot illustrates the relationship

between a model’s predicted confidence probabil-

Table 3.1: Sampling Accuracy

Sample Accuracy Loss

4096 87% 0.4058
2048 86% 0.4021
1024 87% 0.3671
512 88% 0.3657
256 85% 0.4306
128 85% 0.4437
64 82% 0.5291
32 76% 0.6903
16 62% 1.0790

ities and its observed accuracy. An ideal Calibra-
tion plot would have outcomes closely aligned with
the diagonal, signifying that confidence estimates
are well-calibrated. However, deviations from this
ideal were observed for our models, as seen in Fig-
ures A.6, A.7, and A.8. While all models started
near the diagonal, many displayed divergences be-
ginning around a confidence of 0.25. An upward di-
vergence indicates regions of overconfidence, which
was evident in models like ”Base”, ”MC Dropout”,
”MC DropConnect”, and ”Deep Ensemble” at spe-
cific sample sizes, such as 4096. A downward diver-
gence, conversely, indicates underconfidence, which
was noted in models like ”MC Dropout”, ”MC
DropConnect”, ”Flipout”, and ”Deep Ensemble”.
Notably, ”Deep Ensemble” at 1024 samples and
”MC DropConnect” at 256 samples demonstrated
the closest adherence to the ideal calibration. In
stark contrast, ”MC Dropout” at both 256 and
4096 samples performed poorly.

The effect of down-sampling also offered insights
into model performance. For instance, approxi-
mately 80% of models trained with the highest
sampling displayed tendencies towards overfitting.
Meanwhile, models trained with the lowest sam-
pling showed the least variability.

For a more nuanced understanding, we also as-
sessed the Calibration Error, visualised in Fig-
ure A.12. ”Deep Ensemble” consistently performed
well across multiple sample sizes, particularly 4096,
2048, and 1024. In comparison, ”MC DropOut”
showcased heightened errors at smaller sample
sizes, such as 256, hinting at its sensitivity to vari-
ations in data size and quality.

The Calibration Curve revealed that our models
typically exhibited a non-linear trajectory. Starting
relatively flat, they converged near a quarter of the
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confidence axis, subsequently displaying a notable
rise in accuracy towards the final point on the plot,
as illustrated in Figures A.9, A.10, A.11. This pat-
tern indicates regions where the model’s stated con-
fidence did not align with a commensurate increase
in accuracy. It suggests that all models tended to
be under-confident in their predictions, particularly
at lower confidence levels. Notably, a direct corre-
lation was evident between the model’s confidence
increase and the accuracy of the projections, pre-
dominantly around the third section of the con-
fidence axis. It is intriguing to note that models
which incorporated some form of uncertainty, such
as MC Dropout, Flipout, and Deep Ensemble, gen-
erally exhibited higher calibration errors compared
to the Base model.

3.3 Quantitative Analysis

3.3.1 Entropy & Negative Log-Likelihood
(NLL)

The entropy values for each point cloud sam-
ple were determined by averaging the results of
each data point five times generated from differ-
ent models, section 2.4.7. The results revealed vary-
ing trends in Figure A.4 through histogram anal-
ysis across different point cloud sizes. Plots with
larger sampling sizes, 4096 to 512, had entropy data
tend to concentrate mainly on the side of the plot,
suggesting less certainty. In contrast, smaller sizes
range from 256 to 16 sampling points and seem to
spread out, indicating potential uncertainty. Specif-
ically, towards lower entropy values, Points 64 and
32 exhibited a notable increase in the middle range.
In addition, the 16th sampling point was remark-
ably distinct, with a significant presence of a bell
shape, which is an alarming sign of a substantial
uncertainty level.

We have observed various trends and insights
from the NLL analysis across all models, classes,
and varying points, table B.1. The NLL metric gen-
erally tends to range immensely between all the in-
volved factors. Comparing the results of table B.3,
revealed that the choice of the sampling number
affected the uncertainty and the model evidently
since averaging the categories NLL individually and
then extracting the mean considering all models for
shows the sampling of 4096 got a total average of
0.744, sampling 2048 got a total average of 0.726

while 1024 had an average of 0.722. These values
were emphasised further looking at the Entropy val-
ues in values in table B.4, where 4096 showed 0.41,
while 2048 and 1024 resulted in 0.36.

To measure the performance in uncertainty re-
garding each model, we have used the average of
the Entropies and NLL of each model across all
categories in that sample class. Hence, the Deep
Ensemble model consistently achieved a lower NLL
across all points, with its minimum at 0.63 for
4096 points and, on average, around 0.6 until reach-
ing 0.67 at 256 sampling points. The second best
was Flipout, with its average 0̃.7 until reaching the
extreme downsampling level around 128 sampling
points, table B.1. However, that was not the case
in terms of Entropy, Flipout was the optimal model
considering the average Entropy across all samples
scoring 0.32 at each of the largest sampling points.
The second was MC DropConnect, table B.1.

When we analyse individual classes and exclude
the results after 128 sampling since it is evident
that all models were not optimal, a few patterns
emerge. Looking at Entropy table B.2, and NLL ta-
ble table B.1, the values remain consistently low for
the monitor and chair across all models, even across
different point sampling, e.g. the chair’s scoring was
as low as 0.09 at 4096, 2048 and reaching 0.2 on
1024. While some other categories were better with
some sampling but not the others, such as monitor
sofa and bed, as their performance changed across
different sampling points. In contrast, the worse
categories’ performance was desk, nightstand, and
dresser, and the last in their list was a bathtub,
table B.1.

3.4 Qualitative Analysis

3.4.1 Entropy & Negative Log-Likelihood
(NLL)

Distribution Analysis Across Sample Sizes

The entropy scatter plot, like the histogram, de-
rives its values by averaging each data point from
five distinct model outcomes. Interpreting the scat-
ter plot hinges on the y-axis distribution: a higher
positioning signifies greater entropy and vice versa,
Figure A.5. For larger sample sizes, namely 4096
to 512, specific categories, like the monitor and
sofa, predominantly cluster near the y-axis’ base,
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suggesting lower entropy values. Conversely, night-
stands and desks display a more dispersed y-axis
distribution, starting notably above the base and
sometimes reaching beyond the 1.25 mark. In mid-
sized samples from 256, a more obvious spread was
observed. Then below 64 and 32, the categories al-
locate more evenly, culminating in a near-uniform
distribution by the 16-sample plot. Despite that,
The monitor category remains consistently close
to the y-axis base, indicating its stability against
downsampling. In contrast, the desk, nightstand,
and dresser were the least stable under downsam-
pling conditions.

Model-wise Analysis Across Categories and
Samples

Analysing the models based on their Negative
Log Likelihood (NLL) values across different point
cloud samplings in Figure A.3 unveiled clear pat-
terns and tendencies in their performances.
The Base model displayed noticeable fluctua-

tions dependent on the number of points sam-
pled. Particularly, the bathtub category was un-
predictable, pointing towards challenges or intri-
cacies in this specific category. Similarly, the MC
DropOut model, while relatively consistent, also
faced challenges in the bathtub category, suggest-
ing shared complexities across models for this cat-
egory. The desk and Nightstands within this model
further stood out due to their unique performance
curves, potentially highlighting category-specific
challenges. Further, the MC DropConnect model
have presented a consistent trend but was not de-
void of occasional spikes, especially in the dresser
and nightstand categories. This pattern emphasises
the existence of inherent challenges within certain
categories that might require further exploration.
The Flipout model, on the other hand, performed
with a balance of highs and lows.

3.5 Downsampling

To better understand the effects of downsam-
pling, we plotted both the Negative Log-Likelihood
(NLL) and Entropy on the same graph. This allows
us to visualise the impact of downsampling across
different categories.
Upon examining the downsampled results at

4096, 2048, and 1024 as shown in Figure A.13, no-

table discrepancies emerge between the NLL and
Entropy results. A striking observation is that the
performance at the 1024 sample size often surpasses
that of the larger 4096 and 2048 sample sizes. De-
tailed analysis indicates that sample sizes above
1024 consistently register elevated average values
for both Entropy and NLL. For instance, at the
4096 sample size, many models exhibit an NLL
nearing 1.0 and an Entropy around 2.0, making
its performance inferior to both the 2048 and 1024
sample sizes. Furthermore, a closer inspection of
the 1024 sample size reveals superior performance
over the 2048 sample size, particularly within indi-
vidual categories of models such as Deep Ensem-
ble, Flipout, MC Dropout, and MC DropConnect.
In Deep Ensemble, while categories like desks and
nightstands display subpar results at 1024, others
like Bathtub, Bed, Desk, Dresser, and Sofa exhibit
marked improvements. The table category, for ex-
ample, demonstrated over a 50% enhancement in
both NLL and Entropy when compared to the 2048
sample size.

Transitioning to the 512 to 128 downsample
range, Figure A.14 illustrates a significant uptick
in both NLL and Entropy, implying deteriorated
performance. Models at the 128 sample size, specifi-
cally Flipout, MC DropOut, and MC DropConnect,
display Entropy values often surpassing 2.0. How-
ever, the NLL values remained somewhat stable,
typically staying slightly below 1.0.

Further downsampling paints a grim picture. As
shown in Figure A.15, the plots begin to saturate
at the 64 sample mark. Here, we witness instances
where the Entropy of MC DropConnect exceeds
2.0, and for MC DropOut, it approaches a stagger-
ing 3.0. High NLL values become increasingly com-
monplace, often reaching 1.0. At the lowest sample
sizes of 32 and 16, Entropy and NLL values domi-
nate the plot, with some models displaying Entropy
values beyond 3.5.

Throughout this downsampling analysis, the
Deep Ensemble model consistently better on av-
erage than other models, showcasing consistency in
reporting its prediction. Conversely, post the Base
model, MC DropConnect emerged as the most ad-
versely affected model.
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4 Discussion

This study investigated the capability of Bayesian
neural networks to measure the uncertainties of
point cloud classification tasks. The inquiry behind
this research asked: ’How significant is the influ-
ence of downsampling on introducing uncertainty
in cloud classification, and what approaches are
suitable for its validation?’ The findings of this
study gave essential knowledge that can help
progress in the production of solid and precise AI
systems which can skillfully address the intricacies
and uncertainties existing in point cloud data.

The application of Monte Carlo Dropout, Monte
Carlo DropConnect, Flipout, and Deep Ensemble,
each implemented within a specialised version of
the PointNet model, served as the foundation of
our methodology. These modified models were
trained and validated alongside a basic PointNet
model for comparison purposes. Additionally, the
models were enhanced with techniques that utilise
a stochastic classifier to generate predictions that
can quantify the level of uncertainty. In order to
conduct a comprehensive evaluation, the models
underwent a sequential downsampling process,
gradually reducing the number of points from
4096 to 16 points. This technique allowed us to
assess the models’ performance across different
volumes of point cloud data using various metrics
to measure performance and uncover uncertainty.
Through this process, we gained insight into the
models’ ability to classify under increased stress
caused by varying point cloud densities.

This calibration analysis of different models
indicated a general tendency for underconfidence,
likely due to the complexity of point cloud data.
Despite this, they maintained a high accuracy rate.
As confidence levels rose, prediction accuracy also
improved, providing evidence of their reliability.
However, models that incorporated elements of
uncertainty (such as MC Dropout, MC Drop-
Connect, Flipout, and deep ensemble) had higher
calibration errors and thus were less reliable. This
finding suggests that introducing uncertainty may
cause model miscalibration.

It is worth noting that the models had different
sensitivities to different classes, which suggests

that the relationship between class representation,
class complexity, diversity within a class, and
biases in model training is complex. The results
also highlight the importance of selecting the
appropriate model for specific tasks. The MC
Dropout model had higher uncertainty and lower
accuracy for the Desk class compared to the MC
DroConnect model, possibly due to class imbal-
ance or functional differences between the models.
On the other hand, the deep ensemble model
had fairly consistent performance across classes,
although there were some variations due to data
complexities and uncertainties. Certain classes like
Desk, dresser, and Nightstand had higher NLL
and entropy, indicating that the model struggled
to confidently predict these classes, possibly due to
data noise or a lack of informative features. This
might be due to inherent data noise or a lack of
sufficiently informative features.

The NLL and entropy scores specific to each class
indicated that different models handle class-specific
uncertainties in various ways. Notably, categories
with higher entropy generally have higher NLL
scores, suggesting a correlation between model
uncertainty and classification performance. Fur-
thermore, the data in tables (Reference tables
here) aligned with the results’ analysis (reference
here the analysis section) of class representation
versus NLL, demonstrating that models respond
differently to class representation and inherent
complexities. Despite having low representation,
certain classes did not necessarily exhibit the high-
est NLL or Entropy, indicating intricate dynamics
within model predictions influenced by factors
beyond class representation. Many categories
displayed confusion, which could be attributed to
a class imbalance in the datasetA.1 and A.1. For
instance, the models were tested with classes like
a bathtub, which accounted for only 5.51% of the
entire dataset, while a nightstand comprised 9.47%
of the validation dataset. The first class performed
relatively well, but the second class was one of
the worst in the entire dataset. Analysing the
training dataset clarifies this phenomenon, as the
distribution in the training sets was the opposite.

Moreover, exploring downsampling’s impact on
uncertainty in various models revealed intrigu-
ing findings. The results unveiled a noteworthy
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surge in uncertainty with an increase in the
downsampling rate. However, this effect was
inconsistent across different classes, displaying
various outcomes. Certain classes consistently
displayed heightened uncertainty across all models,
while others showcased improvements. Meagre
downsampling rates resulted in increased uncer-
tainty for most classes. Nonetheless, some classes
maintained or enhanced their positions, indicating
potential robustness in their corresponding model
architectures. Surprisingly, the results indicate
that higher sampling points do not necessarily
guarantee better outcomes. On the contrary, it
might have the opposite effect. Consequently, a
prominent sensitivity is observed in the point
cloud classification surrounding the PointNet
architecture regarding the number of points.

Building upon the foundational work by
Lumban-Gaol et al., 2021 and Valdenegro-Toro &
Mori, 2022, our study adds to the literature high-
lighting the significance of uncertainty quantifica-
tion in point cloud data classification. The authors,
Lumban-Gaol et al. and Nurunnabi et al., provided
key insights into model accuracy, pointing to a re-
curring problem of class sensitivity in point clouds.
While revealing their findings, they did not probe
deeply into uncertainty aspects. Our research not
only supports their conclusions but also accentu-
ates the prevalence of the issue based on our data.
Their selection of data, which had its own set of
limitations, particularly in volume, can be better
understood in the context of our study. We have
determined that the quality and quantity of data
can indeed influence predictive outcomes.
In addition, the groundbreaking research of

Valdenegro-Toro & Mori enriched our understand-
ing of the intricate interplay between different
types of uncertainties and underscored the need
for more robust quantification techniques. Their
findings about the unreliability of aleatoric un-
certainty in out-of-distribution settings shaped
our research and evaluation criteria. This study
adds to this discourse by providing empirical
evidence of the models’ differential performance
across different classes and their sensitivity to
downsampling. This emphasises the potential
of model customisation based on specific tasks,
classes, or data complexities.

Our research contributes to the flourishing
domain of uncertainty quantification in machine
learning, especially in point cloud data classifi-
cation. While we found encouraging results, it
is crucial to recognise the dynamic and swiftly
evolving nature of AI and machine learning
technologies. Therefore, exploring increasingly
sophisticated methods for handling uncertainties
remains a continuous journey, requiring relentless
research, exploration, and refinement. Future stud-
ies must aim to disentangle these uncertainties and
dive deep into identifying aleatoric and epistemic
uncertainties.
Furthermore, the models’ differential performance
across different classes and their sensitivity to
downsampling also point towards the potential
of model customisation based on specific tasks,
classes, or data complexities. Additionally, the
influence of dataset imbalance on the model’s
performance and uncertainty estimations under-
scores the need for extra attention to categorical
balancing techniques.

5 Conclusions

This research attempted to examine the capabil-
ities of Bayesian neural networks for quantifying
uncertainties in point cloud classification tasks
under progressive downsampling, a crucial as-
pect in the evolution of precise AI systems. The
methodologies employed, including variants of the
PointNet model, offered valuable insights into the
dynamics of point cloud data under varying data
volumes and complexities. Our findings resonate
with the implications of prior studies, underscoring
the challenge of class sensitivity in point clouds.
Moreover, they emphasise the nuanced relationship
between class representation, complexity, and in-
herent biases in training. A key revelation from our
study is the potential miscalibration introduced
by incorporating elements of uncertainty, pointing
towards the necessity for more rigorous validation
techniques in future works.

The differential model performance across
classes and the observed sensitivities to down-
sampling emphasise the potential for task-specific
model customisation. This adaptability will be
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paramount in addressing specific challenges posed
by unique datasets, classifications, or underlying
data complexities. Additionally, our observations
concerning dataset imbalance highlight the impor-
tance of employing balanced training techniques
to enhance model reliability and accuracy.

In summary, while our study contributes valuable
insights to the realm of uncertainty quantification
in machine learning, it also accentuates the ever-
evolving nature of AI. As the domain progresses,
so does the need for refined methodologies that ad-
dress these uncertainties with increasing precision.
Our work serves as a stepping stone, encouraging
future endeavours to disentangle further and under-
stand the uncertainties inherent in machine learn-
ing models, especially concerning point cloud data
classification.
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A Appendix

Table A.1: Distribution of Classes in the Train-
ing Dataset for the ModelNet10

Class Count Percentage
Bathtub 106 2.66%
Bed 515 12.90%
Chair 889 22.28%
Desk 200 5.01%

Dresser 200 5.01%
Monitor 465 11.65%

Night Stand 200 5.01%
Sofa 680 17.04%
Table 392 9.82%
Toilet 344 8.62%

Table A.2: Distribution of Classes in the Valida-
tion Dataset for the ModelNet10

Class Count Percentage
Bathtub 50 5.51%
Bed 100 11.01%
Chair 100 11.01%
Desk 86 9.47%

Dresser 86 9.47%
Monitor 100 11.01%

Night Stand 86 9.47%
Sofa 100 11.01%
Table 100 11.01%
Toilet 100 11.01%
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Figure A.1: Predicted examples; Predicted randomly sampled objects.
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Figure A.2: Confusion Matrix; Illustration of the model’s confusion without Normalisation
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Figure A.3: Comparative analysis of model performances based on NLL values across different
point cloud samplings. The figure consists of five plots, each representing one of the models
described in Models 2.2. The x-axis indicates the NLL per class, while the y-axis represents the
downsampling point clouds. Category labels are provided on the bottom-left, corresponding to
each line in the plots.
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Figure A.4: Average Entropy per Sample; Average Entropy per Sample histogram represents every
sampling frame, starting from left to right and top to bottom: 1024, 512, 256, 128, 64, 32, 16, 8, 4
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Figure A.5: Average Entropy per Sample; Average Entropy per Sample histogram represents every
sampling frame, starting from left to right and top to bottom: 1024, 512, 256, 128, 64, 32, 16, 8, 4
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Figure A.6: Calibration Plot ”Reliability di-
agram”

Figure A.7: Calibration Plot ”Reliability di-
agram”

Figure A.8: Calibration Plot ”Reliability di-
agram”
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Figure A.9: Calibration Curve Figure A.10: Calibration Curve

Figure A.11: Calibration Curve
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Figure A.12: Calibration Error
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Figure A.13: NLL and Entropy scores of the model for each category across all sample sizes. Models
are plotted on the x-axis, and their scores are on the y-axis. Each model’s name is displayed at
the top, followed by the corresponding sample points.

Figure A.14: NLL and Entropy scores of the model for each category across all sample sizes. Models
are plotted on the x-axis, and their scores are on the y-axis. Each model’s name is displayed at
the top, followed by the corresponding sample points.
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Figure A.15: NLL and Entropy scores of the model for each category across all sample sizes. Models
are plotted on the x-axis, and their scores are on the y-axis. Each model’s name is displayed at
the top, followed by the corresponding sample points.
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B Appendix

Models Sample NLL. Bath. Bed Chai. Desk Dres. Moni. NigSt. Sofa Tabl. Toil.

Base 4096 0.90 2.15 0.35 0.21 0.80 1.30 0.26 1.68 0.51 1.52 0.19
MC DO 4096 0.70 0.94 0.29 0.12 1.47 2.00 0.21 0.94 0.36 0.43 0.30
MC DC 4096 0.76 0.60 0.93 0.19 1.55 1.65 0.27 1.10 0.23 0.61 0.43
FlipOt 4096 0.73 1.04 0.15 0.08 2.13 1.37 0.37 1.49 0.29 0.11 0.30
Ensemb 4096 0.63 0.87 0.19 0.09 1.21 0.67 0.26 1.57 0.41 0.78 0.30
Base 2048 0.75 0.81 0.31 0.09 1.61 1.48 0.22 1.78 0.25 0.69 0.31

MC DO 2048 0.75 1.43 0.40 0.05 1.26 0.48 0.36 1.98 0.30 0.72 0.52
MC DC 2048 0.73 1.33 0.42 0.21 0.91 1.10 0.34 1.97 0.32 0.32 0.38
FlipOt 2048 0.73 1.04 0.39 0.14 1.69 0.52 0.40 1.81 0.18 0.75 0.37
Ensemb 2048 0.67 1.03 0.21 0.08 1.00 1.04 0.23 0.85 0.39 1.61 0.30
Base 1024 0.81 0.85 0.26 0.02 1.08 0.86 0.44 1.93 0.25 1.79 0.64

MC DO 1024 0.64 0.91 0.12 0.08 1.42 1.09 0.21 1.40 0.37 0.39 0.40
MC DC 1024 0.88 1.68 0.44 0.23 1.35 0.91 0.45 2.21 0.25 0.88 0.38
FlipOt 1024 0.64 0.26 0.28 0.21 1.49 0.99 0.30 1.43 0.24 0.65 0.57
Ensemb 1024 0.64 0.96 0.27 0.12 1.70 0.69 0.37 1.49 0.30 0.24 0.30
Base 512 0.68 0.73 0.36 0.10 1.63 1.96 0.18 0.85 0.32 0.33 0.36

MC DO 512 0.85 1.57 1.13 0.13 1.85 1.26 0.23 1.32 0.26 0.39 0.40
MC DC 512 0.71 0.29 0.85 0.08 1.86 0.63 0.32 1.79 0.32 0.63 0.32
FlipOt 512 0.79 1.12 0.38 0.17 1.68 1.08 0.20 1.36 0.25 1.48 0.19
Ensemb 512 0.66 0.81 0.26 0.18 1.25 0.90 0.20 1.79 0.31 0.49 0.37
Base 256 0.79 0.72 0.70 0.26 2.03 0.92 0.36 1.66 0.36 0.74 0.13

MC DO 256 0.76 0.90 0.41 0.26 1.44 2.01 0.39 0.85 0.55 0.53 0.26
MC DC 256 0.80 1.10 0.61 0.12 1.88 0.85 0.31 1.60 0.24 0.92 0.40
FlipOt 256 0.74 0.88 0.50 0.23 1.06 1.02 0.29 1.44 0.32 1.32 0.29
Ensemb 256 0.67 1.03 0.38 0.21 1.43 0.83 0.24 1.43 0.48 0.45 0.23
Base 128 0.86 0.96 0.42 0.27 1.59 1.74 0.22 1.56 0.35 0.95 0.55

MC DO 128 0.82 0.91 0.45 0.13 2.06 1.37 0.31 1.32 0.51 0.62 0.55
MC DC 128 0.94 1.36 0.74 0.16 1.60 2.26 0.41 1.00 0.63 0.83 0.45
FlipOt 128 0.97 1.62 0.26 0.12 2.31 1.16 0.21 1.30 0.44 1.47 0.77
Ensemb 128 0.75 0.72 0.55 0.19 1.63 0.82 0.44 1.58 0.47 0.65 0.43
Base 64 1.00 1.78 0.31 0.27 2.16 1.77 0.52 1.39 0.48 0.89 0.38

MC DO 64 1.27 3.62 0.90 0.10 2.40 1.44 0.56 1.91 0.40 0.74 0.68
MC DC 64 1.01 1.92 0.28 0.35 2.06 1.76 0.50 1.59 0.43 0.78 0.45
FlipOt 64 1.08 2.05 0.78 0.36 1.84 1.37 0.40 2.04 0.55 1.14 0.32
Ensemb 64 0.91 1.47 0.47 0.49 1.94 1.56 0.33 1.44 0.53 0.46 0.42
Base 32 1.47 2.35 0.99 0.08 2.88 1.79 0.90 1.98 0.97 0.81 1.98

MC DO 32 1.23 1.87 0.93 0.39 2.75 1.88 0.55 1.44 1.01 0.75 0.74
MC DC 32 1.27 2.32 1.12 0.58 2.61 1.61 0.41 1.95 0.51 0.79 0.82
FlipOt 32 1.26 2.45 0.87 0.31 2.48 1.50 0.88 2.15 0.57 0.79 0.64
Ensemb 32 1.23 2.31 0.74 0.42 2.35 1.66 0.75 1.46 0.82 0.95 0.89
Base 16 1.86 3.58 1.43 0.94 3.24 2.27 0.65 2.31 0.97 1.38 1.81

MC DO 16 1.88 3.15 1.75 0.69 2.85 2.49 0.93 2.42 0.99 1.48 2.05
MC DC 16 1.93 3.36 1.01 0.84 2.99 2.67 0.95 2.66 1.31 1.01 2.45
FlipOt 16 1.96 3.81 1.63 0.98 3.02 2.48 1.24 2.20 0.94 0.92 2.37
Ensemb 16 1.81 3.13 1.25 0.66 2.98 2.34 0.78 2.16 0.94 1.51 2.37

Table B.1: The Negative Log Likelihood results
of five different models (Base, MC DropOut,
MC DropConnect, FlipOt, and Deep Ensem-
ble) evaluated on the dataset, Section 2.1 across
nine downsampling levels. Each column after the
”Sample” column represents the entropy for the
specified category in the label.
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Models Sample Entr. Bath. Bed Chai. Desk Dres. Moni. NigSt. Sofa Tabl. Toil.

Base 4096 0.41 0.66 0.24 0.14 0.44 0.76 0.11 0.77 0.28 0.55 0.17
MC DO 4096 0.40 0.28 0.25 0.08 0.74 0.95 0.10 0.78 0.23 0.35 0.18
MC DC 4096 0.46 0.32 0.44 0.15 0.87 0.90 0.13 0.88 0.12 0.43 0.34
FlipOt 4096 0.32 0.32 0.18 0.10 0.65 0.70 0.13 0.68 0.14 0.10 0.19
Ensemb 4096 0.46 0.63 0.28 0.14 0.89 0.55 0.20 0.75 0.35 0.54 0.28

Base 2048 0.37 0.22 0.26 0.10 0.71 0.81 0.08 0.82 0.15 0.37 0.19
MC DO 2048 0.31 0.35 0.24 0.07 0.56 0.39 0.19 0.69 0.12 0.36 0.14
MC DC 2048 0.35 0.33 0.23 0.19 0.45 0.73 0.11 0.88 0.19 0.20 0.23
FlipOt 2048 0.32 0.31 0.18 0.11 0.64 0.38 0.18 0.74 0.09 0.30 0.31
Ensemb 2048 0.45 0.65 0.25 0.12 0.70 0.68 0.22 0.64 0.31 0.66 0.27

Base 1024 0.39 0.29 0.28 0.03 0.68 0.57 0.29 0.80 0.13 0.58 0.29
MC DO 1024 0.37 0.26 0.13 0.06 0.82 0.62 0.09 0.82 0.25 0.43 0.20
MC DC 1024 0.36 0.38 0.28 0.18 0.47 0.58 0.18 0.77 0.08 0.32 0.33
FlipOt 1024 0.32 0.16 0.16 0.10 0.69 0.54 0.12 0.74 0.08 0.33 0.31
Ensemb 1024 0.40 0.54 0.24 0.16 0.86 0.49 0.28 0.75 0.19 0.23 0.28

Base 512 0.32 0.31 0.30 0.12 0.66 0.55 0.10 0.59 0.11 0.24 0.26
MC DO 512 0.44 0.66 0.50 0.13 0.82 0.75 0.14 0.74 0.12 0.29 0.22
MC DC 512 0.41 0.30 0.39 0.11 0.91 0.47 0.25 0.79 0.18 0.55 0.18
FlipOt 512 0.37 0.33 0.24 0.13 0.78 0.68 0.11 0.76 0.10 0.46 0.14
Ensemb 512 0.43 0.43 0.30 0.22 0.68 0.67 0.20 0.93 0.22 0.24 0.37

Base 256 0.33 0.26 0.25 0.14 0.80 0.44 0.14 0.73 0.21 0.21 0.16
MC DO 256 0.34 0.22 0.41 0.18 0.59 0.60 0.15 0.52 0.20 0.29 0.24
MC DC 256 0.41 0.26 0.33 0.10 0.73 0.65 0.22 0.86 0.11 0.46 0.32
FlipOt 256 0.35 0.27 0.22 0.14 0.52 0.56 0.18 0.74 0.19 0.46 0.25
Ensemb 256 0.47 0.55 0.34 0.22 0.90 0.61 0.19 0.84 0.36 0.40 0.32

Base 128 0.46 0.31 0.32 0.20 0.71 0.92 0.17 0.95 0.23 0.39 0.36
MC DO 128 0.43 0.52 0.31 0.19 0.81 0.63 0.13 0.79 0.37 0.25 0.31
MC DC 128 0.50 0.95 0.39 0.18 0.70 0.76 0.19 0.60 0.42 0.52 0.30
FlipOt 128 0.42 0.43 0.23 0.12 0.78 0.74 0.14 0.75 0.19 0.47 0.41
Ensemb 128 0.53 0.62 0.47 0.25 0.88 0.65 0.32 0.95 0.40 0.38 0.42

Base 64 0.50 0.72 0.32 0.14 0.76 0.98 0.17 0.93 0.30 0.42 0.30
MC DO 64 0.55 1.00 0.36 0.11 0.93 0.83 0.16 1.00 0.26 0.58 0.25
MC DC 64 0.61 0.58 0.34 0.23 1.09 1.09 0.40 1.09 0.26 0.61 0.46
FlipOt 64 0.55 0.76 0.67 0.20 0.81 0.76 0.09 0.97 0.42 0.67 0.19
Ensemb 64 0.64 0.83 0.50 0.41 1.00 0.98 0.29 1.04 0.48 0.41 0.42

Base 32 0.71 1.29 0.71 0.10 1.15 0.83 0.21 1.00 0.66 0.67 0.47
MC DO 32 0.72 0.96 0.64 0.37 1.23 0.95 0.30 0.91 0.72 0.60 0.53
MC DC 32 0.72 0.78 0.65 0.46 1.16 1.03 0.28 1.18 0.38 0.69 0.62
FlipOt 32 0.70 1.10 0.46 0.34 1.13 0.86 0.45 1.09 0.48 0.55 0.56
Ensemb 32 0.78 1.01 0.60 0.49 1.18 1.05 0.48 1.14 0.61 0.64 0.61

Base 16 0.99 1.23 0.85 0.52 1.40 1.23 0.24 1.41 0.89 1.20 0.90
MC DO 16 0.98 1.23 0.92 0.54 1.27 1.26 0.47 1.39 0.88 0.97 0.90
MC DC 16 0.99 1.24 0.81 0.55 1.26 1.38 0.51 1.39 0.97 0.85 0.92
FlipOt 16 0.94 1.25 0.88 0.69 1.09 1.29 0.66 1.28 0.75 0.62 0.92
Ensemb 16 1.02 1.25 0.90 0.63 1.30 1.34 0.50 1.34 0.79 1.04 1.06

Table B.2: The Entropy results of five different
models (Base, MC DropOut, MC DropConnect,
FlipOt, and Deep Ensemble) evaluated on the
dataset, Section 2.1 across nine downsampling
levels. Each column after the ”Sample” column
represents the entropy for the specified category
in the label.
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Class 4096 2048 1024 512 256 128 64 32 16

bathtub 1.12 1.128 0.932 0.904 0.926 1.114 2.168 2.26 3.406
bed 0.382 0.346 0.274 0.596 0.52 0.484 0.548 0.93 1.414
chair 0.138 0.114 0.132 0.132 0.216 0.174 0.314 0.356 0.822
desk 1.432 1.294 1.408 1.654 1.568 1.838 2.08 2.614 3.016

dresser 1.398 0.924 0.908 1.166 1.126 1.47 1.58 1.688 2.45
monitor 0.274 0.31 0.354 0.226 0.318 0.318 0.462 0.698 0.91

night stand 1.356 1.678 1.692 1.422 1.396 1.352 1.674 1.796 2.35
sofa 0.36 0.288 0.282 0.292 0.39 0.48 0.478 0.776 1.03
table 0.69 0.818 0.79 0.664 0.792 0.904 0.802 0.818 1.26
toilet 0.304 0.376 0.458 0.328 0.262 0.55 0.45 1.014 2.21

Total Model Avg. 0.744 0.726 0.722 0.738 0.752 0.868 1.054 1.292 1.888

Table B.3: Performance Averages per Class for
all Model Configuration Based on Point

Sampling including Avg. model performance:
NLL results of different models across

downsampling levels. Each column represents
the NLL for the specified sample in the label.

Class 4096 2048 1024 512 256 128 64 32 16

bathtub 0.442 0.372 0.326 0.406 0.312 0.566 0.778 1.028 1.24
bed 0.278 0.232 0.218 0.346 0.31 0.344 0.438 0.612 0.872
chair 0.122 0.118 0.106 0.142 0.156 0.188 0.218 0.352 0.586
desk 0.718 0.612 0.704 0.77 0.708 0.776 0.918 1.17 1.264

dresser 0.772 0.598 0.56 0.624 0.572 0.74 0.928 0.944 1.3
monitor 0.134 0.156 0.192 0.16 0.176 0.19 0.222 0.344 0.476

night stand 0.772 0.754 0.776 0.762 0.738 0.808 1.006 1.064 1.362
sofa 0.224 0.172 0.146 0.146 0.214 0.322 0.344 0.57 0.856
table 0.394 0.378 0.378 0.356 0.364 0.402 0.538 0.63 0.936
toilet 0.232 0.228 0.282 0.234 0.258 0.36 0.324 0.558 0.94

Total Model Avg. 0.41 0.36 0.36 0.394 0.38 0.468 0.57 0.726 0.984

Table B.4: The average Entropy results of the
five models (Base, MC DropOut, MC Drop-
Connect, FlipOt, and Deep Ensemble) evaluated
across the downsampling levels. Each column af-
ter the ”Class” column represents the entropy
for the specified sample in the label.
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