
Analysis and Optimization of the Accelerated

Argumentation-Based Learning Algorithm

Sander Kaatee

August 15, 2023

Abstract

Accelerated Argumentation-Based Learning (AABL) has been shown to have significant im-
provements in accuracy and learning speed when compared to other state-of-the-art machine
learning techniques. Despite its promising performance, the algorithm has certain limitations
and potential for optimization. In this paper, we provide an in-depth analysis of the AABL
algorithm, examine its limitations, and propose possible optimizations. Three algorithms, the
original implementation of AABL, Refactored Argumentation-Based Learning (RABL), and an
implementation of AABL as it is described in the paper, are compared in various scenarios.
The paper discusses the main differences between the algorithms and provides insights into
the argumentation-based and machine learning aspects of AABL, as well as its limitations and
potential for explainability.

1 Introduction

The increasing complexity of artificial intelligence models presents a fundamental challenge. The
lack of interpretability and transparency in these systems, i.e. their ’black box’ nature, raises con-
cerns about potential biases and discriminatory outcomes and hampers users’ trust and acceptance
of their decisions. Consequently, Explainable Artificial Intelligence (XAI) has emerged as a research
area, seeking to bridge the gap between human comprehension and AI reasoning. This paper delves
into one approach within the realm of XAI, namely Accelerated Argumentation-Based Learning
(AABL), which combines the power of machine learning with the structured reasoning of argumen-
tation to provide human-understandable explanations for AI decisions.

AABL is an optimization of Argumentation-Based Learning (ABL), a machine learning (ML) tech-
nique that outperforms state-of-the-art methods in terms of accuracy and learning speed [1]. Pro-
posed by Ayoobi et al.[1], Both methods claim to be based on the Bipolar Argumentation Framework
(BAF) [2], which in turn is an extension of the Abstract Argumentation Framework (AF) by Dung
[3].

Although AABL has been shown to have significant improvements over the original ABL pro-
cess [1], there is a need to further investigate why this approach yields such promising results and
explore its place in the machine learning/reinforcement learning literature. Additionally, for AABL
we aim to assess the adaptability of AABL to other settings beyond its initial domain of application.

1

In this paper, we aim to address these research questions by providing a thorough examination
of the AABL algorithm as proposed by Ayoobi et al. [1]. We will begin by providing a background
on AABL and an outline of the algorithm. We will then replicate the original results, after which
we propose an optimization as a result of refactoring the original implementation of AABL. We
will also make a comparison between AABL as it was implemented and AABL as it was described,
we will look at the discrepancies between these two version in the discussion section of this paper.
Lastly we compare all three algorithms on a novel situation. An in-depth discusison is provided in
the discussion (Section 5) as well as in the Appendix (Section 7).

2 Background

The original Argumentation Based Learning algorithm proposed by Ayoobi et al. in 2019 [1] has
made improvements in online incremental learning scenarios in comparison to other methods. The
original ABL exhibited good performance with increased accuracy and learning speed. However, it
was limited by its memory and computational efficiency [1]. The authors addressed these limita-
tions by introducing the AABL method, the pseudocode as given by Ayoobi et al. in [1] is shown
in Section 3.2 as ’Algorithm 1: Accelerated Argumentation-Based Learning’.

The authors state that the Bipolar Argumentation Framework (BAF) [2] is the basis of the AABL
method [1]. According to Dung [3], an Abstract Argumentation Framework (AF) consists of a set
of arguments and a binary relation that shows attacks between arguments. The BAF builds upon
Dung’s concept by incorporating the notion that some arguments may support a conclusion while
others may oppose it. In Algorithm 1, the support relations are used to determine what recovery
label the algorithm should use. The attack relations are added to the BAF graph in Algorithm 2,
note that in the provided pseudocode these attack relations are not accessed anywhere.

The purpose of the original ABL as presented in [1] is to provide a novel online incremental
learning approach that can autonomously handle external failures resulting from changes in the
environment. Existing research tends to offer special-purpose solutions, in [1] the authors claim
that ABL generates a set of hypotheses that can ”be used for finding the best recovery behavior
at each failure state”. Additionally, the authors claim that ABL addresses the issue of poor gener-
alization observed in current online learning algorithms, making it applicable to various domains,
including robotics. Moreover, as the approach is based on argumentation, it allows for generating
an explainable set of rules suitable for human-robot interaction.

3 Methods

We compare a total of three different algorithms: Accelerated Arugmentation Based Learning
(AABL), Refactored Argumentation Based Learning (RABL), and our implementation of how
AABL was described in the original paper [1] (Table 1).

We test and compare the algorithms on the original scenarios as described by [1] (scenario 1, 2
and 3) in experiment 0, 1 and 2. In experiment 3 we compare all algorithms together on three
newly described scenarios (i, ii, and iii).

2

Name Description
Detailed
description at

AABL
Accelerated Argumentation Based Learning,
as implemented by H. Ayoobi

RABL
Our refactored version of the original
implementation of AABL

Section 3.1

Pseudocode
Our implementation of AABL
as it is described in

Section 3.2

Table 1: The three algorithms compared in this paper

Scenario 1 Scenario 2

Scenario 3

Figure 1: The three original scenarios

3

Scenario i Scenario ii

Scenario iii

Figure 2: The three new scenarios

In the original paper, AABL is tested by having to find solutions to an obstacle course. AABL
is handed a state: a field consisting of 6 to 12 locations. The amount of locations depend on the
scenario: for scenario 1 there are six locations, for scenario 2 there are nine and for scenario 3 there
are twelve. For each location there can be an object consisting of a color and a concept (e.g. a blue
ball or a yellow person). For each state there is one correct action associated, either: ask, push,
alternative route or continue. Depending on the scenario there are only either one or two locations
relevant for determining the correct action, the other locations/objects function as noise for the
algorithm.

Our three new scenarios are based on the original three scenarios. However, instead of the correct
action being dependent on one or two locations, the correct action is dependent on whatever object
is colored ’red’. Again the other locations/objects function as noise.

In theory there should be no difference in performance for the algorithms on the new scenarios
as compared to the original scenarios. As the algorithms are expected to deduce what information
is relevant for the correct action (i.e. the correct set of arguments), they should be able to figure
out that the combination of red and a certain concept has a direct relation with the correct action.

3.1 Experiment 1: RABL vs AABL

Ayoobi’s original code, as taken from his GitHub1, contains large amounts of unnecessary and un-
used code. Apart from that, the original code contains hard-coded optimizations such as automatic
handling of empty locations.

1https://github.com/H-Ayoobi/Accelerated ABL

4

In response to these issues, we have performed a comprehensive refactoring of the code. We re-
moved all unused functions and variables, and introduced variable names that conceptually align
better with what the code is doing. We also changed certain types for more compact code while
improving ease of understanding. Most importantly, we made a significant change to the algorithm
as follows.

The original code calculated all possible subsets of features up to length L, even though it only
used these subsets to determine location numbers, as opposed to using the content of the subsets
themselves. Therefore, we rewrote the algorithm to keep track of a list of locations instead. It still
computes all possible combinations between these locations, however it is now more generalizable as
the algorithm no longer requires having the possible input values hard-coded to determine whether
something is a color or a concept.

We compared RABL against AABL on scenario 1, 2 and 3 (see Figure 1). We did 10 iterations of
200 steps using the original method for generating data as provided on the authors GitHub.

The initial hypothesis is that RABL performs the same as AABL.

3.2 Experiment 2: Pseudocode vs AABL

In Chapter 3 of [1] the following pseudocode is provided for describing the AABL algorithm, see
Algorithm 1. An in-depth description is presented in addition to this pseudocode. With this ex-
periment we will compare these descriptions to the working AABL. In the Appendix (Section 7) we
systematically go through the textual description as provided in [1], we provide literal quotations
and then compare them to the Pseudocode as well as AABL.

For this experiment we compared ’Pseudocode’ against AABL on Scenario 1,2 and 3 (see Fig-
ure 1). We did 10 iterations of 200 steps using the original method for generating data.

The initial hypothesis is that Pseudocode generates the same result as AABL since it is supposed
to be the literal description of the workings of AABL.

5

Algorithm 1 Accelerated Argumentation-Based Learning, taken from [1]

Require: Current BAF graph, Data Instance X entering the argumentation-based learning model,
feature values subsets’ length L, The class label or Best Recovery Behavior (BRB) for X

Ensure: The predicted label for X called Y
1: procedure Argumentation-Based-Learning(BAF , X, L, BRB)
2: Extract all feature value combinations in X with length L and add them to a list called

Combs.
3: Let SNs be the set of supporting nodes (in form of “supporting-node → supported-node”)

in the BAF.
4: for all sn in SNs do
5: for all comb in Combs do
6: if sn.supporting-node == comb then
7: Y .Add(sn.supported-node)
8: end if
9: end for

10: end for
11: if Y is not empty then
12: if Length(Y) == 1 then
13: Apply Y to environment and observe the result.
14: else
15: Select a prediction in Y at random (Y := Y [random index]) and observe the result.
16: end if
17: else
18: Randomly choose a prediction from the available class labels (observed recovery behav-

iors).
19: Increment L := Update the BAF unit (using Algorithm 2 with input parameters: current

BAF graph, BRB, Combs, SNs).
20: end if
21: while (should Increment L == True) do
22: L := L+ 1
23: Compute the combinations of the feature values again as Combs.
24: should Increment L := Update the model with Algorithm 2.
25: end while
26: return Y
27: end procedure

6

Algorithm 2 Updating the BAF Unit, taken from [1]

Require: Current BAF graph, class label (Best Recovery Behavior) BRB, Combinations of
feature values for X called Combs, Set of Supporting Nodes in the BAF graph SNs

Ensure: A Boolean variable “should Increment L” that tells whether L needs to be incremented
or not.

1: Let RNs be the set of all the class labels (Recovery behavior Nodes) in the BAF.
2: Let attacks be the set all the attack relations (for a ∈ RNs and b ∈ RNs the attack relations

are in form of “a → b”) among the class labels (recovery behavior nodes) in the BAF.
▷ Updating attack relations and class labels

3: if BRB is not in BAF then
4: add BRB to the BAF graph;
5: add bidirectional attacks between BRB and all the other class labels (recovery behavior

nodes) as follows:
6: for all rn in RNs do
7: attacks.add(BRB → rn)
8: attacks.add(rn → BRB)
9: end for

10: end if
▷ Updating support relations

11: Let should Increment L := True
12: for all comb in Combs do
13: Let Add Support := True
14: for all sn in SNs do
15: if sn.supporting-node == comb then
16: Add Support := False
17: if sn.supported-node ̸= BRB then
18: Mark comb as a non-unique node that can not support any node in future.
19: Remove sn from the set supporting nodes in BAF SNs.
20: end if
21: end if
22: end for
23: if comb is not Marked then
24: should Increment L := False
25: end if
26: if Add Support == True then
27: SNs.add(comb → BRB)
28: end if
29: end for
30: return should Increment L
31:

7

Table 2: Comparison of run-times for RABL and AABL.

Time (seconds)
AABL RABL

First Scenario 2.09 1.49
Second Scenario 22.37 24.49
Third Scenario 74.47 85.22

3.3 Experiment 3: AABL vs RABL vs Pseudocode

We compared all three algorithms AABL, RABL, and Pseudocode together on the three new sce-
narios as described in Section 3. Again we train for 200 instances over 10 iterations.

In addition to the three algorithms, we provide a reference level through a naive algorithm, ’Most-
Common’ that always returns the most often seen correct recovery behavior.

The initial hypothesis is that AABL, RABL and Pseudocode perform similarly to each other,
and will have accuracies on Scenarios i, ii and iii comparable to their respective Scenarios 1,2,3.
The naive algorithm ’Most-Common’ should be outperformed significantly by all three algorithms.

4 Results

4.1 Experiment 1: RABL vs AABL

Figure 3 shows the comparison between AABL and RABL. To evaluate the performance differ-
ences, we employed the independent samples t-test, a suitable statistical test for comparing two
independent algorithms on the same test scenarios. The independent samples t-test revealed no
significant difference between AABL and RABL for Scenario 1 (t(3998) = 0.245, p = .806) and Sce-
nario 2 (t(3998) = 1.94, p = .052), hence, this is consitent with our initial hypothesis that RABL
and AABL should perform similarly.

However on Scenario 3 RABL performs slightly worse than AABL (t(3998) = 2.40, p = .016).
This is likely due to RABL not discarding the empty locations.

In Table 2 the run-times are presented for each algorithm per scenario.

4.2 Experiment 2: Pseudocode vs AABL

Figure 4 shows the comparison between AABL and Pseudocode. The results show that the re-
implementation of the paper performed significantly worse than Ayoobi’s AABL algorithm at
accurately predicting correct recovery behaviors (for Scenario 1: t(3998) = 24.02, p < .001, for
Scenario 2: t(3998) = 15.21, p < .001, for Scenario 3: t(3998) = 17.29, p < .001). This contradicts
the original hypothesis that Pseudocode and AABL should perform the same.

8

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 3: Performance AABL vs RABL

9

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 4: Performance of Pseudocode vs AABL

10

(a) Scenario i

(b) Scenario ii

(c) Scenario iii

Figure 5: Performance of AABL vs RABL vs Pseudocode vs Most-Common on the newly described
scenarios

11

Table 3: Comparison of run-times for RABL, AABL and Pseudocode.

Time (seconds)
AABL RABL Pseudocode

First Scenario 201.47 134.51 50.85
Second Scenario 3225.84 1943.28 442.88
Third Scenario 40522.76 30030.65 2820.02

4.3 Experiment 3: AABL vs RABL vs Pseudocode

Figure 5 shows the comparison between AABL, RABL and Pseudocode with Most-Common as a
baseline comparison.

There is no difference between the performance of AABL, RABL and Most-Common. To eval-
uate the statistical significance of the (lack of) difference, we employed a One-Way ANOVA, an
appropriate test for comparing the means of three or more independent groups. The degrees of
freedom between groups, within groups, and the total degrees of freedom were 2, 1997, and 1999,
respectively. The obtained F-statistic of 0.11 (p = 0.90) for Scenario i, 0.94 (p = 0.39) for Sce-
nario ii, and 0.07 (p = 0.93) for Scenario iii, indicates that there is no significant difference in the
categorization accuracy among the algorithms.

Pseudocode performs better than AABL on Scenario ii (t(3998) = 14.36, p ¡ .001) and Scenario iii
(t(3998) = 10.02, p ¡ .001). There seems to be no difference in performance between Pseudocode
and AABL on Scenario i (t(3998) = 1.60, p = 0.11), however we note that Pseudocode seems to
still improve with more inputs, while the other three algorithms flatline.

These results cause us to reject our initial hypothesis that the algorithms should perform simi-
lar and all should outperform Most-Common.

Also note that RABL and AABL end with accuracies around 0.33 on the new scenarios, while
on Scenario 1 an accuracy of about 0.95 was reached, on Scenario 2 an accuracy of about 0.65 and
on Scenario 3 an accuracy of 0.60, which is quite a steep drop in performance while the scenarios
are quite comparable. Pseudocode, however, seems to enjoy slightly better performances on the
new scenarios.

5 Discussion

In Table 4 we present the main differences between the three tested algorithms. Neither AABL nor
RABL explicitly utilize the support and attack relations common in argumentation theory. Instead
these algorithms determine the relevant locations first by calculating the agreement between the
ordered lists combinations of locations and the ordered list of recovery behaviors and taking the list
with the highest agreement. Where-after it uses the previously seen scenarios as a lookup table.

One could argue that there is an implicit support relation between the recovery behavior and
the object that was determined on the relevant location. In a similar sense there is a support

12

Table 4: Difference between algorithms

AABL RABL Pseudocode
Support relations Implicit Implicit Explicit
Attack relations Implicit Implicit Explicit
Weights Yes Yes No
Subsets of features Yes No Yes
Hardcoded handling of empty locations Yes No No
Determines relevant locations first Yes Yes No

relation between the output heads of a neural network and the relevant class in a classification task,
or any other machine learning algorithm for that matter.

In a similar vein, we can make the argument that there are implicit attack relations between
all possible recovery behaviors as the problem is close-ended, there is only one correct recovery
behavior for each generated scenario. Again, in a similar vein you can make this argument for any
close-ended machine learning task.

The Pseucode algorithm explicitly implements both the attack and support relations. The sup-
port relations are used to determine what recovery behavior seems correct, however the attack
relations are not used in the algorithm and are therefore unnecessary.

Both AABL and RABL utilize weights for determining the relevant locations, the weights are
used as a metric for agreement between location and recovery behavior. In [1] Ayoobi et al. state
that the weights are removed and when we look at the pseudocode in algorithm 1 and 2 we indeed
see no mention of weights being updated.

Both AABL and Pseudocode calculate possible subsets of features, however RABL just calculates
the possible combinations of locations (split between concept and color), as the features themselves
are not used in AABL.

AABL has hardcoded information about the task, such as empty locations being discarded and
the label values to determine whether something is a concept or a color. This hardcoded informa-
tion has been removed in RABL as it was deemed unfair.

The mayor difference between AABL/RABL and Pseudocode is that AABL/RABL determines
the relevant locations first. We would argue that this is over-optimized on the task of the original
test scenarios. Ayoobi et al. [1] claim that ABL addresses the issue of poor generalization observed
in current online learning algorithms, however we have showed with Experiment 3 that AABL does
not even generalize to a small variation on the original task.

13

6 Conclusion

This paper explored the AABL algorithm as a part of Explainable Artificial Intelligence XAI. The
research aimed to investigate the effectiveness and applicability of AABL in machine learning and
reinforcement learning contexts, as well as identify possible optimizations and shortcomings.

The paper conducted a series of experiments comparing several versions of AABL, including the
original implementation, a refactored version (RABL), and a pseudocode representation. The ex-
periments replicated the original results, assessed the performance of the algorithms, and examined
the adherence of the pseudocode to the actual implementation.

The results showed that the refactored version (RABL) performed similarly to AABL in terms
of accuracy, while the pseudocode implementation yielded significantly lower accuracy. This find-
ing contradicted the hypothesis that the pseudocode and AABL would produce similar results.

The comparison between the algorithms highlighted several differences, including the utilization
of support and attack relations, the presence of weights, the consideration of subsets of features,
and the handling of empty locations. These differences shed light on the underlying mechanisms of
each algorithm and contributed to a deeper understanding of their strengths and limitations.

Although AABL provides some degree of explainability by indicating the object that influenced
its decision, it falls short of providing a comprehensive explanation of the reasoning behind the
selection. This limitation highlights the need for further advancements of AABL in terms of XAI.

In conclusion, this paper deepened the understanding of the AABL algorithm and its applica-
bility in various domains. It identified areas for optimization and improvement, paving the way for
future research and development in XAI.

References

[1] H. Ayoobi, “Explain what you see: argumentation-based learning and robotic vision,” Ph.D.
dissertation, University of Groningen, 2023.

[2] L. Amgoud, C. Cayrol, M.-C. Lagasquie-Schiex, and P. Livet, “On bipolarity in argumentation
frameworks,” International Journal of Intelligent Systems, vol. 23, no. 10, pp. 1062–1093, 2008.

[3] P. M. Dung, “On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games,” Artificial intelligence, vol. 77, no. 2, pp.
321–357, 1995.

7 Appendix

7.1 Comparison of pseudocode, textual description and implementation

In this subsection we will compare the three different forms of AABL that are available to us:

14

Table 5: Possible combinations of color-type with the best recovery behaviors

Order Color Concept Best Recovery Behavior

1 Red Ball Push
2 Red Box Alternative Route
3 Red Person Ask
4 Green Ball Push
5 Green Box Alternative Route
6 Green Person Ask
7 Blue Ball Push
8 Blue Box Alternative Route
9 Blue Person Alternative Route
10 Yellow Ball Push
11 Yellow Box Alternative Route
12 Yellow Person Ask
13 None None Continue

1. The textual description - the description of what AABL does in words as given in 3.4.1
of chapter 3 of [1] ”Explain what you see: argumentation-based learning and robotic vision”
by Ayoobi

2. The pseudocode - the description of what AABL does in pseudocode as given in 3.4.2 of
chapter 3 of [1] ”Explain what you see: argumentation-based learning and robotic vision” by
Ayoobi

3. The original implementation - AABL as implemented by Ayoobi taken from his GitHub.

This section follows the linear example used in the textual description to compare these three ver-
sions of AABL. Since the workings of each version differ, we will sometimes need a tangent from
the example in order to explain each method.

The example as given in 3.4.1 of chapter 3 of [1] is accompanied with the following table (5)
and figure (6), taken directly from [1]: We implemented the scenario exactly as described in Table 5
to ensure that our theoretical understanding is the same as the practical implementation of AABL.
Table 6 shows the theoretical guesses described in [1], the guesses made by AABL and RABL (they
are the same), and lastly the Pseudocode (as well as the correct guesses presented in Table 5). A
full walkthrough is provided in Section 7.1.1
The figure (6) supports the textual description as well as the pseudocode, as we shall see when
walking through the textual description that the pseudocode and the textual description only differ
in one aspect, namely: the pseudocode expects the correct answer to be handed as input while
the textual description implies that AABL figures out the correct answer by trial and error. The
original implementation does not correspond with the figure.

15

(a) Scenario 1

Figure 6: Example of Argumentation-Based Learning for the illustrating example

16

Table 6: Different guesses provided by the algorithms

Scenario Concept-Color Predicted by [1] AABL/RABL Pseudocode Correct
1 Red-Ball - - - Push
2 Red-Box Push - Push Alt
3 Red-Person - Push Random Ask
4 Green-Ball Push Push Push Push
5 Green-Box Alt Alt Alt Alt
6 Green-Person (correct, e.g. Ask) Ask Ask Ask
7 Blue-Ball (correct, e.g. Push) Push Push Push
8 Blue-Box (correct, e.g. Alt) Alt Alt Alt
9 Blue-Person Ask Ask Ask Alt
10 Yellow-Ball Push Push Random Push
11 Yellow-Box (correct, e.g. Alt) - Random Alt
12 Yellow-Person - Alt Random Ask
13 None - Alt Random Continue

7.1.1 Walk-through comparison

The textual description in Section 3.4.1 ”Explanation of the Method with an Illustrating Example”
from chapter 3 of [1] starts of with:

We first use the simplified version of the test scenarios with only one location ahead
of the agent (instead of 6, 9 or 12 locations). [...] the robot is initially confronted with a
Red-Ball (R-Ba) and tries different recovery behaviors to find out that the best choice
is Push.

However, in the pseudocode provided (Algorithm 1) we see that with an empty BAF graph the algo-
rithm will reach line 18 and will randomly choose an observed recovery behavior. Since no recovery
behavior has been observed yet, there will be no action. This corresponds with the original imple-
mentation: when the set of observed recovery behaviors is still empty, the original implementation
immediately returns an empty string rather than trying out different recovery behaviors. Therefore
on this point the pseudocode and implementation align while the textual description differs.

Instead of finding that the best choice is ’Push’, the original implementation is handed the correct
recovery behavior together with the confronted scenario. Although this differs from the textual
description, it matches the pseudocode: Algorithm 1 requires as input the Best Recovery Behavior
(BRB) for X.

The model initially gets updated by the subsets of feature values with size 1 (L :=
1). This means that the supporting nodes R and Ba are added to the Push recovery
behavior

This aligns with the pseudocode, at line 19 a new algorithm (Algorithm 2) is called, which adds
the features R and Ba as support relations to the ’Push’ behavior.

However, in the original implementation no such thing happens. There is no data structure that

17

tracks support relations, instead the features are appended as [0, red] and [0, ball] to a list called
subsets, where 0 indicates the location of the object.

The recovery behavior ’Push’ is uniquely added to a different list consisting of possible recovery
behaviors. If the list of possible recovery behaviors were to already contain this recovery behavior
then the recovery behavior is not added again: the original implementation does not track how
often the recovery behavior is encountered. No relation between the subsets and recovery behaviors
is tracked in any shape or form.

Instead, the the original implementation will now try to determine a list of feature-locations that
could possibly be influencing the recovery behavior (In the original implementation the list of
possible-feature-locations is called ”combination feature weights”, however we will refer to it as
”possible-feature-locations”). To determine these feature-locations the algorithm requires as input
a list of all previously encountered scenarios and the corresponding correct recovery behaviors. As
the Red-Ball is the first scenario we encounter, this list is currently empty. Thus the list of possible-
feature-locations stays empty as well. In the next paragraphs we will take a deeper look at how
possible-feature-locations is updated and what the feature-locations entail.

Subsequently, the agent encounters a Red-Box (R-Bo) for which the subsets of feature
values with size L = 1 consist of R and Bo. Looking at the current state of the BAF, R
supports the Push recovery behavior and it is chosen as the model’s prediction.

This aligns with the pseudocode, at line 6 of Algorithm 1 the if-statement resolves to ’true’ as
’red==red ’ and thus ’Push’ would be added to the possibly correct responses Y. Then, at line 12
and 13, ’Push’ is applied to the scenario as Y contains only one recovery behavior.

In the original implementation there is no ’BAF’ to look at, as the relations between ’Red’, ’Ball’
and ’Push’ were not tracked. Instead the original implementation looks at the list of possible-
feature-locations that could be influencing the correct recovery behavior. Currently this list of
possible-feature-locations is empty.

As the list of possible-feature-locations is empty the algorithm again returns an empty string as
recovery behavior. Thus on this point the original implementation again diverges from the pseu-
docode as well as the textual description.

Since, this is a wrong choice, the agent try other recovery behaviors and find “Alter-
native route” (Alt) as the best recovery behavior. Therefore, the Alt node gets updated
with its supporting nodes R and Bo and also a bidirectional attack among Alt and
Push nodes. Since R supports both Push and Alt recovery behaviors, it is not a unique
supporter for each of them and it will be pruned from both the recovery behaviors and
will be marked as a node which can no longer support any recovery behavior nodes in
the future

As pointed out already, neither the pseudocode nor the original implementation try other recovery
behaviors. However, the pseudocode does indeed update the ’Alt’ node with the supporting nodes
’R’ and ’Bo’ at line 27 of Algorithm 2. Next to that, ’R’ is indeed pruned and marked at line 18
and 19 of Algorithm 2.

18

The original implementation instead empties the list of subsets and appends [0, red] and [0, box]
to the list of subsets, which now consists of [[0,red],[0,box]] as [0,red] and [0,ball], have been removed.

As the lists of previously encountered scenarios is now no longer empty, the algorithm will de-
termine what possible-feature-locations could be influencing the correct recovery behavior. The
list of previous scenarios with their corresponding recovery behaviors currently only contains one
scenario, namely: [Red, Ball, Push] where Red is on column 0, Ball on column 1 and the recovery
behavior on the last column.

We loop over each subset in subsets. The first subset is [0, red], we take the location of this
subset which is 0. When the subset contains a color we just keep the location as is, when it con-
tains a concept we add 1 to the location. The algorithm will use these numbers to determine what
column in the list of previous scenarios is important. In this case 0 corresponds with Red in [Red,
Ball, Push]. We then count the amount of unique occurrences of features in this column as well
as the amount of unique occurrences of features in combination with recovery behaviors. If we
find that there is a difference between these counts then we find that the recovery behavior does
not correlate with this column and we discard the column. However as the list only contains one
instance we find that there is no difference between the counts and thus we add the column to
the list possible-feature-locations, as it might be that this feature influences the correct recovery
behavior.

When a column is added to possible-feature-locations a weight is calculated and added as well,
the formula for this weight is:

weight = p+ 1 + n ∗ −50

Where p is the amount of non-unique feature-recovery occurrences

p = TotalSelectedColumnsWithRecovery− TotalUniqueSelectedColumnsWithRecovery

for this location and n is the the amount of times this object appears in this location in combination
with a different recovery behavior.

n = TotalUniqueSelectedColumnsWithRecovery− TotalUniqueSelectedColumnsWithoutRecovery

The only mention of weights in the description of AABL [1] claims that the weights are removed,
namely the author states ” the [total amount of] supporting weights and argument weights are re-
duced from 40 to 0.”. Thus there is no further explanation as to why this formula is chosen.

Note that we only add this weight in the case that there is no difference between the amount of
unique occurrences of features in this column vs the amount of unique occurrences of features in
combination with recovery behaviors, thus n will always equal 0 when adding the weight. Which
means that

weight = p+ 1

for every feature-location.

For [0, red] the weight will be 0 as p equals zero since there is only one previously seen scenario

19

(thus the the amount of unique feature-recovery pairs is equal to the total of feature-recovery pairs).

The same thing happens for the next subset [0, ball], as this subset contains a concept we look
at column location + 1 = 1. Again there is no difference between the amount of unique items in
this column compared to the amount of unique ’items+recovery behaviors’. Thus we add column 1
to the list of possible-feature-locations with a weight of 0 as well.

For the third learning instance the robot is confronted with a Red-Person (R-P) and
the models does not have any prediction since no current recovery behavior node in the
BAF has either P or R in its supporting nodes

This corresponds with the pseudocode as we saw in the previous paragraph that R was indeed
pruned, next to that P has not been encountered yet. However for the original implementation,
there is no BAF but instead we now have two entries in our list of possible-feature-locations: column
0 and 1, corresponding to the color and concept of first object respectively.

The original implementation loops over these possible-feature-locations and selects the first highest
weight it encounters. Since both feature-locations in the list have equal weight, the algorithm se-
lects the first column it encountered with the highest weight, which in this case is column 0. The
algorithm then takes the feature associated with this location from the state, which is ’Red’ as the
current state contains [Red, Person]. The algorithm then counts how often a recovery behavior is
seen together with this feature in location 0. As we saw a Red-Ball and a Red-Box with recovery
behaviors Push and Alt respectively, we get 1 for Push and 1 for Alt. If there is no single recovery
behavior with the highest count, the algorithm instead returns the recovery behavior that has been
most observed overall. As there’s only been two observations: Push and Alt, the first one will be
returned. Thus finally the algorithm wrongly predicts ’Push’.

The BAF unit gets updated with only P as a supporting node for the Ask since R
has been previously marked as a non-supporting node and bidirectional attack relations
are added among all pairs of the recovery behaviors

This aligns with the pseudocode. However, the original implementation instead will update the
possible-feature-locations which for now contains [0,1] regarding column 0 and 1 respectively.

The list of subsets gets emptied and updated to [[0, Red],[0, Person]]. The list of previously seen
scenarios and their respective recovery behaviors will now be: [[Red,Ball, Push], [Red,Box,Alt]].

We loop over the subsets and start with [0, Red], converting this instance to column 0. We then
look in the previous scenarios and count the unique occurrences of features in this column: which
is only 1, Red as this is the feature we saw in both previously seen scenarios. Then we count the
amount of unique occurrences of features in combination with the respective recovery behaviors,
which is 2 as Red occurs together with Push as well as Alt. Since these counts now differ, we remove
column 0 from our list possible-feature-locations.

The second subset [0, Person] translates to column 1. We do the same counting and find two
different features, namely Box and Alt. Since there is no difference between the amount of unique
occurrences of features in this column vs the amount of unique occurrences of features in combina-
tion with recovery behaviors, this column stays in the list of possible-feature-locations with a weight
of 0, now being the only occurrence in this list.

20

Subsequently, the agent encounters with a Green-Ball (G-Ba) obstacle and since Ba
supports the Push in the BAF unit, Push is chosen as a prediction for the best recovery
behavior.

As the list of possible-feature-locations only contains column 1, we take the feature associated with
this column for this scenario, which is ’Ball’. We count the recovery behaviors associated with this
feature as they are found in column 1 for all previously encountered scenarios. Since only the [Red,
Ball, Push] had the ’Ball ’ feature in column 1, ’Push’ is correctly predicted as the best recovery
behavior.

The BAF gets updated using G supporting node for Push recovery behavior.

The list of subsets gets emptied and updated to [[0, Green],[0, Ball]]. The list of previously seen
scenarios and their respective recovery behaviors will now be:

[[Red,Ball, Push], [Red,Box,Alt], [Red, Person,Ask]]

We loop over the subsets and start with [0, Green], converting this instance to column 0. We then
look in the previous scenarios and count the unique occurrences of features in this column: 1 as we
so far have only encountered ’Red’. Then we count the amount of unique occurrences of features
in combination with the respective recovery behaviors, which is 3 as Red occurs with 3 different
recovery behaviors. Since both counts differ we do not add column 0 to our list of possible-feature-
locations.

The second subset is [0, Ball] which converts to column 1. The amount of unique occurences
of features in this column is 3 as we so far have seen a ’Ball’ a ’Box’ and a ’Person’. The amount of
unique occurences in combination with the respective recovery behavior is also 3 as each concepts
occurs with a different recovery behavior. Since both counts are equal we add column 1 to our list
of possible-feature-locations.

We then calculate the weight for column 1, there are a total of 3 rows in the previous scenar-
ios, each of which is unique thus the weight equals 0.

21

