
Deep Learning for Semantic Embedding and
Anomaly Detection in LOFAR Data

Master’s Thesis
University of Groningen

To fulfill the requirements for the degree of
Master of Science in Artificial Intelligence

at the University of Groningen under the supervision of
Prof. dr. L.R.B. Schomaker (Artificial Intelligence, University of Groningen)

and
Dr. Albert-Jan Boonstra (ASTRON)

and
Dr. Sarod Yatawatta (ASTRON)

Klemen Voncina
(s2900874)

August 15, 2023

2

Acknowledgement
I can only hope to convey in words my gratitude to Lambert, Albert-Jan and Sarod for their patience
and unwavering support throughout this project. With your guidance and the encouragement of a few
similarly persistant friends along the way I’ve learned more than I could possibly have imagined going
in. On the other side of it, I am truly grateful for the knowledge you’ve given me, and encouraged me
to find. And most importantly, for the lasting desire to keep learning both within the field of AI and
the myriad of enchanting disciplines outside of it.

3

Abstract
This thesis explores the application of several self-supervised representation learning techniques
for anomaly detection in spectral data. These techniques include five distinct methods, four deep
learning-based auto-encoder models, and a linear transform method known as Independent Com-
ponent Analysis (ICA). The data used in this research is obtained from an aperture synthesis radio
telescope, specifically LOFAR. The primary aim is to evaluate the potential of these techniques in
creating semantically meaningful embeddings. These embeddings are expected to aid in tasks such as
data inspection, classification, and unsupervised anomaly detection. To achieve this aim, the methods
are trained in a self-supervised manner and evaluated on a limited, labeled dataset curated for this
study. One of the deep learning models tested includes a novel cascading convolutional auto-encoder
architecture, uniquely adapted to account for time-frequency data characteristics and to include spa-
tial context within its encoding. The proposed method shows best average classification scores across
Random Forest and Gaussian Naive Bayes classifiers in long time-scale downsampled observations
(43.83%). We demonstrate second best average accuracy in short time-scale downsampled obser-
vations (76.14%). It is beaten out in the combined embedding by ICA, however still shows itself
to be the best all-round method with an average accuracy over all test conditions of 55.49%. The
next best method appears to be the Sliced Wasserstein auto-encoder with an average accuracy of
53.98%. Despite introduced sparsity constraints, our method shows further learning potential even
when compared to other AE based methods without overfitting, hinting at good data-efficiency prop-
erties. Additionally, this research highlights the challenge of evaluating models in a problem space
with sparse labels and large variances in data samples.

Contents

1 Introduction 6
1.1 Anomaly Detection in Radio Astronomy . 6
1.2 Thesis Outline . 8

2 Theoretical Background 11
2.1 Aperture Synthesis Radio Astronomy . 11
2.2 Machine Learning . 15

2.2.1 Supervised Learning . 15
2.2.2 Unsupervised Learning . 15
2.2.3 Self-Supervised Learning . 16

2.3 Dimensionality Reduction and Representation Learning 16
2.3.1 Principal Component Analysis . 17
2.3.2 Independent Component Analysis . 18
2.3.3 t-SNE . 18

2.4 Artificial Neural Networks . 19
2.4.1 Perceptron . 19
2.4.2 Multi Layer Perceptron . 20
2.4.3 Activation Functions . 21
2.4.4 Loss Functions . 22
2.4.5 Backpropagation and Optimization . 24
2.4.6 Regularization . 25
2.4.7 Convolutional Neural Networks . 26

2.5 Deep Learning Architectures . 27
2.5.1 Auto-Encoder Network Architecture . 27
2.5.2 Variational Auto-Encoder . 28
2.5.3 Sliced Wasserstein Auto-Encoder . 29

2.6 Clustering . 29
2.6.1 k-Means . 29
2.6.2 Gaussian Mixture Models . 30

2.7 Clustering Validity Evaluation . 31
2.7.1 Silhouette Score . 31
2.7.2 Bayesian Information Criterion . 31

2.8 Simple Classification . 32
2.8.1 Gaussian Naive Bayes Classifier . 32
2.8.2 Random Forest . 32

2.9 Related Work . 33

4

CONTENTS 5

3 Methods 34
3.1 The Dataset . 34
3.2 Representing Complex Data as an Image . 35
3.3 Data Labelling . 36
3.4 Data Preprocessing and Preparation . 38
3.5 Representation Learning . 39

3.5.1 ICA . 39
3.5.2 2D CNN Auto-Encoder . 40
3.5.3 Sliced Wasserstein Auto-Encoder . 41
3.5.4 Variational Auto-Encoder . 42
3.5.5 Proposed Architecture . 44

3.6 Tasks . 44
3.6.1 Unsupervised Clustering Evaluation . 44
3.6.2 Classification . 45
3.6.3 Visual Inspection . 45

4 Results 46
4.1 Model Training . 46

4.1.1 ICA . 47
4.1.2 Baseline Auto-Encoder Methods . 48
4.1.3 Proposed Architecture . 49

4.2 Evaluating the Models . 50
4.2.1 Visualizing the Latent Space . 51
4.2.2 Unsupervised Clustering Evaluation . 54
4.2.3 Classifier Evaluation . 58

5 Discussion 62
5.1 Visual Inspection . 62
5.2 Clustering Validity Indices . 62
5.3 Classification . 63
5.4 Evaluating Representation Learning Methods for Spectral LOFAR Data: Which Yields

the Optimal Embeddings? . 64
5.5 Comparison to Related Work . 64
5.6 Limitations and Future Work . 65

Chapter 1

Introduction

As part of any data collection task, one must contend with a range of anomalous and novel events.
What’s more is the original definition of a domain may not include all possible anomalous states.
Be it for the purpose of identifying malicious or faulty behaviour [1, 2, 3] or simply ensuring that
system faults do not propagate to later stages of a processing pipeline, it is necessary to ensure that
in large continuous operation systems tools are available for the identification and removal or repair
of anomalous data. Anomaly detection is a paradigm in AI which deals with the identification and
categorization of data samples that deviate significantly from what is expected as the normal [4].
When the negative connotations of ’anomaly’ are not appropriate, the term out of distribution detec-
tion may be used interchangeably. Techniques for anomaly detection fall into one of the following
three categories; supervised, semi-supervised and unsupervised. Supervised anomaly detection relies
on labeled datasets, which are generally partitioned into normal and anomalous subsets. The task then
becomes a typical classification problem. However, obtaining labeled data for anomaly detection is
often a challenge due to the scarcity of anomalous examples. Semi-supervised anomaly detection, on
the other hand, assumes that the training set only includes normal data. It creates a model representing
this normal behavior and identifies anomalies as significant deviations from this model. One may also
call this novelty detection [5, 6, 7]. In unsupervised anomaly detection, no labels are provided. These
methods rely on the intrinsic properties of the data, and they assume that anomalies are data points
that were generated by different mechanisms compared to the rest of the data. Clustering, density
estimation, and subspace methods are typical techniques used for unsupervised anomaly detection.
For low-dimensional data, it is convenient to determine the statistics directly from the raw data. How-
ever, in high-dimensional data, e.g. images or spectograms, this would entail computing the statistics
for each pixel. It is clear that for this kind of data, some form of dimensionality reduction is needed.
Usually this is done through the process of feature extraction where some lower dimensional features
are computed from higher dimensional data. This can come in the form of a linear transform or a more
complex method. In much the same way as Word2Vec [8] tries to map semantic relations between
words in text data, it is possible to perform a similar embedding for other forms of data.

1.1 Anomaly Detection in Radio Astronomy
The field of radio astronomy uses continuous monitoring systems to make observations in the spectral
domain between 10 MHz and 738 GHz [9]. The exact methods of collection and data processing
vary from system to system, but radio telescopes can be broadly divided into two major categories.
Large continuous filled-aperture systems consisting of a single large dish, and distributed systems
applying instead aperture-synthesis [10] to make high resolution observations. The latter carries

6

CHAPTER 1. INTRODUCTION 7

several benefits with regards to limitations on angular resolution at the cost of making the observation
process much more complex, compute and data intensive.
The LOw Frequency ARray (LOFAR) telescope in The Netherlands, operated by the Netherlands
Institute for Radio Astronomy (ASTRON) [11] is one such distributed aperture-synthesis system.
This telescope is geared towards extremely low frequency observations of radio waves originating
beyond the Earth. Its observations are made on the lower end of the spectrum with regards to the
range of explored frequencies in radio astronomy. LOFAR operates in the frequency ranges from
20-240M Hz or as far as radio astronomy is concerned right down to the practical limit of frequencies
which are able to pass through the Earth’s ionosphere [12]. This observation capacity is covered by
two different types of antennae: A low-band antenna and a high-band antenna. In Figure 1.1.1 both of
these antenna types are visible, the high band antennae as hexagonal arrangements of tiles and the low
band antennae are visible as the smaller rectangles interspersed between the tile arrays. These antenna
types cover most of the aforementioned range apart from a blind spot between about 85 MHz and 108
MHz where both antennae types’ sensitivity is low. Therefore, in the data as well as the physical
antennae, there is a clear delineation between low band (LBA) and high band (HBA) observations.
Among a variety of applications, LOFAR has enabled the study of a previously under-studied area
of early universe matter transitions, namely the Epoch of Reionization problem [13, 14] or the sec-
ond matter transition period after the Big Bang. Unlike some other radio telescopes receiving in the
hundreds of MHz or even GHz, LOFAR is designed to brush up right against the physical limit of
frequencies that are able to pass through the Earth’s ionosphere. This lower bound is found around
the 20 MHz mark and below this limit radio waves are not detected because of a range of phenomena,
namely scintillation, absorption and reflection [15]. Depending on precise conditions in the iono-
sphere the scintillation effect can be observed in higher frequencies as well. This manifests as an
unexpected signal delay between two antennae. An example of this phenomenon in data recorded by
LOFAR can be seen in Figure 1.1.2, the vertical bars tapering down through the frequency spectrum
represent the telltale signs of scintillation. The plot also shows signs of radio frequency interference
(RFI) which happens to be unavoidable in most observations. This is because most of the LOFAR
observation space is also covered by assigned communication frequencies. The reason LOFAR is able
to avoid most of these, however, is because there are gaps in this assignment schema where observa-
tions are able to be made [16]. Existing systems are in place to mitigate the effects of RFI on the final
data product [17]. However, it is yet another example of the challenges faced by the LOFAR team
in observing and categorizing anomalous behaviour in the observations produced. Even a nominally
clean data sample as seen in Figure 1.1.3 can still suffer from relatively heavy RFI.
LOFAR, functioning as an aperture synthesis telescope, allows each observation to be constructed
from numerous correlated baselines, corresponding to the total number of stations. This configuration
can result in the generation of a significant amount of data, potentially several terabytes, for a single
observation, posing challenges for manual inspection.
While the anomalies and defects are relatively easy to identify in the generated inspection plots, the
motivation to automate this detection and categorization process arises from the sheer volume of data
that requires processing. Unlike a filled-aperture or dish type telescope with a single receiver that can
be articulated or re-positioned above a static dish, an aperture synthesis telescope employs numerous
smaller telescopes that are individually pointed.
For instance, the Westerbork Synthesis Telescope utilizes a series of dishes organized in a perfect East-
West line which can be steered mechanically. Conversely, LOFAR simplifies this process by pointing
each station through the introduction of signal delays between adjacent antennas, a technique that is
subsequently repeated at the station level. Such a processing intensive strategy has been enabled by
the advancements in computational power over the past two decades.

CHAPTER 1. INTRODUCTION 8

Figure 1.1.1: The LOFAR Superterp. The central six LOFAR stations visible with a few of the
other stations in the LOFAR core visible in the foreground and background. Visible are high band
antennas (HBA) in the form of hexagonal tile arrays and low band antennas (LBA) in the form of the
’haphazardly’ arranged rectangles between each pair of hexagonal arrays. [11]

Comprised of 52 stations scattered across the Netherlands and other parts of Europe, LOFAR is
capable of producing an impressive volume of data, nearly 35 TB per hour [11]. Despite these large
figures, the primary practical consideration is the number of stations, as it dictates the number of data
streams or correlated baselines that require inspection for data integrity.
Each baseline is represented by an inspection plot. These plots offer a human-readable visualization
of the data, enabling anomalies to be easily identified. As such, various pre-existing visual techniques
can be adapted for this purpose, as demonstrated by prior work on this issue by Mesarick et al. [18].
Their research utilizes self-supervised learning to develop a tool that aids manual inspection. Initially
developed with synthetic data from the HERA simulator [19], the tool and associated model have
since been adapted for specific use with LOFAR.

1.2 Thesis Outline
Given a large sample of LOFAR data in the form of down-sampled spectral data with general an-
notations per observation, this project aims to address several key issues. First the identification of
anomalous behaviour and its categorization as separate from ’normal’ data. The aim is to make a
system that is able to learn a semantically salient representation of the data using self-supervised
techniques and distribute this in latent space such that it enables further use for both categorization of
already seen phenomena as well as out of distribution detection to spot novel sample instances when
and as they appear.

CHAPTER 1. INTRODUCTION 9

Figure 1.1.2: Example inspection plot showing strong scintillation. Closely spaced lines running from
wider at the top (lower frequency) to narrower bottom (higher frequency) show this scintillation oc-
curring. The additional horizontal frequency-invariant lines also shown in the plot are a separate but
similarly anomalous/undesirable Radio Frequency Interference (RFI) pattern. Both of these phenom-
ena show external sources of anomalies. This can be contrasted against system errors which would
also manifest as anomalous data.

Primarily the research question becomes: What is the most effective representation learning
method to use on spectral LOFAR data to generate embeddings which are relevant for down-
stream tasks? Secondly; how effective are evaluations based on small validation sets with pre-
liminary labels attached? How does this compare to unsupervised evaluation?

In the course of this project, we propose a novel cascading convolutional auto-encoder using LOFAR
specific context cues and a design geared towards learning a semantically relevant representation of
spectral time-frequency data. This is then tested against four baseline methods including an adaptation
of the Variational Auto-encoder method proposed in previous research on this topic [18]. The other
methods include two further auto-encoder based methods and Independent Component Analysis; a
well established linear transform whose primary application is blind source separation [20].
All of these methods are trained in a semi-supervised manner on the abundantly available LOFAR
data, then evaluated against three tasks which fit the needs of the LOFAR system specifically. Namely
these are data inspection, unsupervised data modelling by proxy of clustering and supervised evalua-
tion.
The thesis is structured in the following manner; further theoretical background on the relevant con-
cepts in radio astronomy and machine learning are given in Chapter 2. Following this, the creation of
a labelled dataset and the setup experimental setup as well as model parameters are given in Chapter
3. Results are described in Chapter 4. Finally the results are discussed and used to answer the earlier

CHAPTER 1. INTRODUCTION 10

Figure 1.1.3: Example of ’clean’ data. Note the persistent presence of horizontal lines in the data
representing radio frequency interference (RFI). Such interference is very prevalent in all observations
and there is very little possibility of obtaining data without such phenomena.

posed research question in Chapter 5.

Chapter 2

Theoretical Background

This chapter covers the essential background required to understand this thesis work. The segment
covering LOFAR is constrained to details of the data collection and processing pipeline which are
relevant to this work, with only minor points of interest straying outside of that bound. Following this
there is an in-depth overview of the machine learning building blocks which play a part in this work
as well as connections drawn back to past applications of machine learning on spectral data. This
includes a specific focus on computer vision and representation learning methods as well as a few
notes on the sub-field of anomaly detection.

2.1 Aperture Synthesis Radio Astronomy
Radio astronomy primarily focuses on the exploration of celestial entities within electromagnetic
(EM) spectrum segments beyond the optical telescopes’ purview. This field primarily deals with re-
gions of the EM spectrum characterized by wavelengths larger than those of light, extending up to
roughly 1 m. Additionally, there are applications exploiting detectors designed for very high frequen-
cies, such as those encountered with gamma radiation.
A critical aspect of radio astronomy is the ”radio window,” a band within the EM spectrum where
Earth-bound observations are possible. This window spans from about 1 mm to 30 m in wave-
length [12]. Below this range, the atmosphere reflects waves, making observations challenging due
to potential absorption of waves by certain atmospheric constituents above this band.
The methodologies of radio astronomy can be generally categorized into filled aperture and aperture
synthesis approaches. The former involves singular large dishes, exemplified by now-inoperative
instruments like the Arecibo telescope. Conversely, aperture synthesis employs an array of smaller
receivers, combining their signals to produce a comprehensive image of the observation target. This
technique is embodied by installations like the VLA in New Mexico [21], the Westerbork Synthesis
Radio Telescope [22], and LOFAR [11], which is the primary focus of this thesis.
These instruments, particularly LOFAR, operate in close connection with the limitations imposed
by the atmospheric radio window. For instance, LOFAR operates at frequencies as low as 20 MHz,
nearing the 10 MHz boundary where radio waves are more likely to reflect off than permeate the
ionosphere. Furthermore, at frequencies up to about 100 MHz, certain anomalies related to reflection
and scintillation can be detected, as the reflection characteristics of these waves are heavily dependent
on the local conditions of the Earth’s ionosphere.
Aperture synthesis is a technique used in radio astronomy to create high-resolution images of astro-
nomical objects beyond what is possible with a single telescope. Rather than a single receiver, it
involves combining the signals from multiple radio telescopes all observing the same target to create

11

CHAPTER 2. THEORETICAL BACKGROUND 12

a synthesized aperture which is equivalent to a single, much larger telescope. This allows for much
greater angular resolution when observing distant sources meaning better overall spatial resolution of
the targets. Underpinning this is the process of combining these disparate signals into one coherent
observation, this process is called interferometry. Interferometry is the process of taking signals of
a common origin recorded at different locations and combining them with a time delay in order to
to remove noise and obtain information about the properties of an object given its radio interference
patterns [23]. The signals first have to be carefully aligned in order to compensate for the time delays
from the signal hitting different antennae at different times. The basic interferometric correlation is
given by the following formula:

Rxy(τ) =
∫

∞

−∞

xx(t)x∗y(t− τ)dt (2.1.1)

Rxy(τ): This is the cross-correlation function. It measures the similarity between two signals xx(t)
and xy(t) as a function of a time-lag applied to one of them, which is τ in this case. τ: This represents
the time delay between the signals. xx(t) and xy(t): These represent the signals received at antennas
x and y respectively. x∗y(t− τ): This is the complex conjugate of xy(t− τ). The complex conjugate
is used here because the signals are generally complex in nature (having real and imaginary parts),
especially in the context of radio interferometry. The integral from −∞ to ∞: This signifies that we’re
considering the signals over all time. In practice this is a little different because the signals are not
infinite. However the assumptions made by this hold so long as t >>> 1/ω where ω = 2πv is the
angular frequency of the observation.
LOFAR is an array of receivers where each receiver is again composed of smaller receivers. For
example, the stations as can be seen in Figure 1.1.1 show the HBA units are themselves composed
of individual tiles (which are underneath split further into dipole antennas embedded in a rigid struc-
ture). This means that the phase adjustment step is performed once already at the station level before
being sent on to the central correlator where this is done again between pairs of stations before the
correlation step. Of the core stations at least, each has two distinct HBA clusters which are treated as
separate antennas/stations and are correlated as well into a baseline. This means that despite the fact
that LOFAR only includes 52 stations, there are effectively a total of 76 HBA antennas in the system.
To understand why this is relevant, let’s have a look at how the number of baselines recorded grows
with the number of antennas in the system. This is given by the following formula:

1
2
(N2−N) (2.1.2)

Where N refers to the number of stations in the system. This means that LOFAR with a total of 76
HBA stations produces about 2850 baselines in such an observation. The LBA antennas are not split
as such and therefore only produce about 1326 correlated baselines. Another important element is
the baseline length, meaning the distance between the pair of stations for which the correlation is
being computed. This distance is measured in multiples of λ where λ is the wavelength at which the
observation is being performed. This is because this distance, in the later computed Fourier space of
the correlation determines the frequency of the interference patterns which are seen in the baseline
plots. This parameter additionally relates back to equation 2.1.1 as the time delay τ is determined by
this distance.
The image plane in aperture synthesis serves a similar function as the image sensor with pixels in
an optical camera, once you account for the mathematical transformations required. As more data
is collected from more stations (each pair providing a unique baseline), the final image becomes
increasingly refined. In this context, the LOFAR telescope collects observations over several minutes

CHAPTER 2. THEORETICAL BACKGROUND 13

(a) LOFAR Core Stations - Map (b) LOFAR Core Stations - Fourier Plane

Figure 2.1.1: Images showing how LOFAR physical station locations are mapped to Fourier space
coordinates. Images retrieved from LOFAR informational video. Retrieved from [24].

or even hours to adequately populate the image plane. The coordinates within this plane are calculated
based on the target’s right ascension and declination, and the position of the stations relative to each
other forms the baseline distance. For this research, the correlated data from a pair of stations will
be referred to as a ’baseline’. Figure 2.1.1 provides an example of the image plane from LOFAR’s
central stations. The total number of baselines is calculated relative to the total number of stations
according to the formula in 2.1.2.
Now, imagine the image plane as an array that yields a higher resolution image as more of its elements
are filled. By extending the observation period from a few seconds to a few hours, we can compare
the completeness of the image plane with the quality and clarity of the resulting image. This process
is illustrated in Figure 2.1.2. Therefore, the more observations that can be integrated into this array,
the better the resolution and the greater the resilience against noise. However, this process does have
a caveat: inaccurate or corrupted data can actually hinder the image reconstruction. So, it is crucial to
remove such data to prevent it from introducing noise or confounding factors that could significantly
impact the final image quality.
Finally, correlation or the main component of the interferometry as described in equation 2.1.1 is
done per frequency bin that the array supports. The technical documentation puts this at a maximum
resolution of 195 kHz per bin [11], meaning that a typical observation made in the High Band Antenna
(HBA) range of 110-240 MHz will have around 200-250 frequency bins. This is slightly fewer for
the Low Band Antennas (LBA) where the frequency ranges it is able to record range between 20
MHz and 90 MHz. This forms a discontinuity in the designed observation range of 30-240 MHz.
For this reason, later when referring to the data from the array the reader should assume that the
frequency band will be specified. If this remains un-specified, assume that the observation is made in
the HBA range. The correlation is also done per polarization. Both sets of antennas (HBA and LBA)
are configured as cross shapes, meaning that they are able to record radio waves in both an X and Y
polarization configuration. If this is the case, the resulting data will include the pairwise correlated
polarizations which is to say (XX, YY, XY, YX).

CHAPTER 2. THEORETICAL BACKGROUND 14

(a) Initial Fourier plane state - no movement (b) Fourier plane state after 8.5 hours observation

(c) Initial snapshot sky image reconstruction at
first point of observation

(d) Refined reconstruction after 8.5 hours of
observation

Figure 2.1.2: Figures showing how filling out the Fourier plane with more data points provides more
data to de-noise observation and achieve better resolution. Images retrieved from LOFAR informa-
tional video [24].

CHAPTER 2. THEORETICAL BACKGROUND 15

2.2 Machine Learning
In broad terms, machine learning is a sub-set of techniques in AI used to create models capable of cer-
tain desirable tasks such as image classification [25] or segmentation [26] and which improve with the
amount of data given to them to train on. There are, of course, several sub-segments of machine learn-
ing as well. The key segments being supervised learning, unsupervised learning and self-supervised
learning as well as reinforcement learning. This thesis concerns mostly self-supervised and unsuper-
vised learning, however it is useful to contextualize them against supervised learning in order to gain
a better understanding of the problem space.

2.2.1 Supervised Learning
Supervised learning, an integral pillar of machine learning, operates on the principle of learning an
approximating function f from given input-output pairs. This process hinges on a training dataset
comprised of input features X and corresponding target outputs Y , which are presumed to be generated
by the function f . The task of supervised learning, therefore, is to construct an approximation of this
function, denoted f ′, that can accurately map inputs to their respective outputs.
Central to the supervised learning paradigm is the iterative process of prediction and correction. Given
an input x ∈ X , the model generates a prediction y′ = f ′(x). The discrepancy between this predicted
output y′ and the actual output y ∈ Y is quantified by an error metric or loss function g. This error
e = g(y,y′) is a measure of the deviation of the model’s prediction from the true output.
The learning process iteratively uses this error information to adjust the parameters of f ′, with the aim
of minimizing the overall loss. Ultimately, a well-trained model, through these cycles of prediction
and error-based correction, can generalize well to unseen data.
Supervised learning finds extensive applications in tasks such as image classification [25] and is foun-
dational to understanding other learning paradigms, such as self-supervised and weakly supervised
learning. A more nuanced introduction of error functions and optimization techniques, as well as the
extension of these principles to related learning methods, will be provided later in this section.

2.2.2 Unsupervised Learning
Unsupervised learning, another essential paradigm in machine learning, thrives in the exploration of
unlabeled data and its inherent patterns, with no explicit expected output to target. Unsupervised
learning predominantly covers clustering and other distribution or partition learning methods. Some
examples of clustering methods include k-Means clustering or fuzzy c-means being a hard and fuzzy
partitioning methods respectively. Distribution modelling includes such methods as Dirichlet process
clustering and Gaussian Mixture Models. Different density-based methods include DBSCAN and
OPTICS. To round out the gauntlet of clustering methods, hierarchical methods should be mentioned,
such as agglomerative clustering. There is therefore a myriad of methods available for unsupervised
data analysis. This thesis focuses primarily on k-Means clustering and Gaussian Mixtures, more on
those particular methods in Section 2.6.
In the absence of target data however, the matter of performance metrics in the unsupervised learning
case comes into question. How, for instance, does one ascertain the appropriateness of a derived clus-
tering solution? Several evaluation methods have been proposed for this, falling under the umbrella
term of clustering validity indices. Some basic examples include the elbow method [27], measuring
the frequency of co-occurence of two distinct points in the same cluster [28] or otherwise defined eval-
uation metrics such as the silhouette score [29]. Further exploration of these methods of evaluation is

CHAPTER 2. THEORETICAL BACKGROUND 16

made in Section 2.7.

2.2.3 Self-Supervised Learning
Self-supervised learning (SSL) represents a paradigm within the broader context of unsupervised
learning, where the objective is to discover insightful and compact representations of data. The un-
derlying principle of SSL is to exploit the intrinsic structure of the data to derive supervision signals,
thus negating the need for externally annotated labels.
The central tenet of SSL involves training a model to perform a task that is defined exclusively using
the input data itself. Formally, given a function f parameterized by weights θ, the goal is to find an
approximation x′ such that a specific error function g attains a minimum value, minθ g(x,x′). The
task itself requires the identification of a meaningful yet constrained representation of the data, either
through undercomplete or overcomplete mappings with associated sparsity or other regularization
constraints.
The superficial resemblance between supervised learning and SSL can mislead; the latter distin-
guishes itself through the innovative utilization of data. Unlike traditional supervised learning that
requires separate input X and target Y , SSL leverages the same data X as both input and target. This
offers the dual advantages of maximizing the utilization of available data and reducing reliance on
expensive human annotations.
A crucial aspect of SSL involves the design of pre-conditioning tasks or pretext tasks, which enable
the model to generalize better. These tasks are often devised to reflect essential properties of the data
or the specific downstream task at hand. Examples include:

• Masking Strategies: Portions of the data are randomly masked or corrupted, and the network
is trained to reconstruct the original data, thereby forcing it to learn salient features.

• Contrastive Learning: Utilizing pairs of similar and dissimilar data points to make the learned
representations discriminative.

• Data Augmentation: Applying systematic transformations (e.g., rotations, scaling) to the data
and requiring the model to predict the transformations or to recognize the unaltered data.

These pretext tasks, by virtue of their intrinsic nature, drive the model to learn universal features
that are expected to be beneficial for various downstream tasks. This emphasizes the essence of
self-supervised learning: learning valuable representations from data itself, without explicit external
supervision, but with the guidance of carefully designed tasks that align with the underlying data’s
inherent structure.

2.3 Dimensionality Reduction and Representation Learning
Dimensionality reduction techniques play an indispensable role in machine learning and data analysis,
as they provide a mechanism to transform high-dimensional data into a lower-dimensional format.
This transformation preserves the intrinsic structure of the original data, making it easier to handle
and interpret. Dimensionality reduction methods are broadly categorized into linear and non-linear
types.
Linear methods, such as Principal Component Analysis (PCA) and Independent Component Analy-
sis (ICA), involve linear projections of the high-dimensional data into a reduced-dimensional space.

CHAPTER 2. THEORETICAL BACKGROUND 17

These methods function on the premise of capturing the largest variance in the dataset or learning
components that can reconstruct the data through linear combinations.
On the other hand, non-linear methods, such as t-Stochastic Neighbour Embedding (t-SNE), engage
more complex approaches like manifold learning to achieve a similar goal. t-SNE is a widely used
technique for data visualization due to its ability to represent high-dimensional data in two or three
dimensions while preserving its overall structure.
An integral assumption for these techniques is the consistency of features across the dataset. This
means that each element of the data vectors must represent the same feature in the data. If this consis-
tency is not maintained, the efficacy of these dimensionality reduction methods may be compromised.
These techniques often serve as precursors to more sophisticated neural network-based approaches
such as auto-encoders. Auto-encoders are particularly useful for representation learning, which in-
volves transforming the data into a lower-dimensional space where the new representation retains
some semantic properties of the input.
In the following sections, we delve deeper into PCA, ICA and t-SNE. Auto-encoders are revisited
later in Section 2.5.1.

2.3.1 Principal Component Analysis
Principal Component Analysis or PCA for short is a widely applied method of dimensionality reduc-
tion [30]. It finds linear combinations of variables which define the axes of greatest variance in the
data. Mapped and sorted as a per-feature histogram where each feature is ranked by its amount of
explained variance (how important it is to describing the overall shape of the data) we generally find
that there is a large tail of features which add little to the overall ’explanation’ of the shape of the data.
This allows us to start cutting from this tail of the distribution features which are less relevant. While
this is a lossy operation, the assumption is that the most informative features are still kept, leaving
the structure of the data largely the same. PCA is calculated as follows; first, given data matrix X we
compute its covariance matrix

C =
1

(n−1)
X ′T X ′ (2.3.1)

Where X ′ is the normalized matrix X such that X ′ = X − X̂ where X̂ is the mean of matrix X . T
in this case is the transpose of matrix X ′. We then apply to this covariance matrix singular value
decomposition (SVD). While the original formulation of PCA uses eigenvalue decomposition, we
apply singular value decomposition instead as it yields the same results, but has some favourable
computational properties. Our singular values are of the same magnitude as the eigenvectors indicat-
ing the variance explained by each feature in the projected space. So then, given our singular value
decomposition

C =UΣV T (2.3.2)

We then use these components to create a more suitable projection of the data sorted by its eigenvalues
indicating the magnitude of variance in a particular dimension of this projection.
This method is not scale and transformation invariant, meaning that it only works well when each
feature in a data vector means the same thing between two consecutive data samples. Although this
is the case the method has been successfully applied to images [31]. Though, even with the images
it is necessary to ensure, beforehand that the features under analysis appear at the same scale and
roughly in the same positions from image to image. They key takeaway here is; the PCA transform
results in a de-correlated dataset, which is a pre-condition for the next method described; Independent
Component Analysis.

CHAPTER 2. THEORETICAL BACKGROUND 18

2.3.2 Independent Component Analysis
A linear method of dimensionality reduction which is rather more suited to signal processing is Inde-
pendent Component Analysis (ICA) [32]. To describe why ICA is appropriate for signal processing,
we should first explore its purpose. Given m mixed signals ICA will attempt to find n source sig-
nals where n < m and at most one of the signals n is Gaussian in nature. This is called blind source
separation and provides us with a very powerful means of de-mixing any number of signals with an
unknown prior mixing process [20].
In practice this method can be used on images as well to a similar effect to find repeating underlying
patterns in visual data [33]. The original image should then be able to be reconstructed as a linear
combination of these underlying patterns.
Unlike PCA’s assumption of co-linearity, ICA assumes that the disparate portions of a given signal are
both non-Gaussian and statistically independent. It uses this property to learn both component filters
or signals and a demixing matrix which, given the filters would reform the original signal again. This
can be considered a type of representation learning then as it is now possible to decompose a signal
or even an image into a series of signals. Given the assumption of non-Gaussian component signals,
ICA can furthermore be used for spotting and classification of persistent noise patterns. This has been
applied to great effect, for example in EEG research [34]. However in cases where the assumption of
non-gaussian components is somewhat weaker, methods are available to distinguish between useful
sources and sources which themselves may be some weakly learned combination of various Gaussian
noise components [35].

2.3.3 t-SNE
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a high-dimensional data visualization algo-
rithm [36]. t-SNE is particularly adept at preserving local structure within the data while maintaining
relative global arrangements. Unlike linear techniques such as PCA, t-SNE employs a probabilistic
approach to model similarity between data points, making it better suited for embedding non-linear
data manifolds. t-SNE accomplishes this by first measuring similarities in the high-dimensional space
and then minimizing the divergence between these measures and a t-distribution fit in the lower-
dimensional space.
The formulation of t-SNE involves a series of steps. First, it transforms the Euclidean distances
between high-dimensional data points into conditional probabilities, representing the likelihood that
one point would pick another as its neighbor if neighbors were picked in proportion to their probability
density under a Gaussian centered at the point. For a pair of points xi and x j in the high-dimensional
space, the conditional probability is given by

pi| j =
exp(−||xi− x j||2/2σ2

i)

∑k 6=i exp(−||xi− xk||2/2σ2
i)

(2.3.3)

where σi is the variance of the Gaussian that is centered on xi.
The similarities in the low-dimensional space are calculated similarly, but with a key difference -
instead of using a Gaussian distribution to compute the conditional probabilities, it uses a Student’s
t-distribution with one degree of freedom (a Cauchy distribution) to do so. The joint probabilities in
the low-dimensional space for points yi and y j are then given by

qi j =
(1+ ||yi− y j||2)−1

∑k 6=l(1+ ||yk− yl||2)−1 (2.3.4)

CHAPTER 2. THEORETICAL BACKGROUND 19

x1

x2

x3

∑ H(x) out put

(a) McCulloch-Pitts Neuron

x1

x2

x3

∑ H(x)

b

w0

w1

w2

out put

wb

(b) Rosenblatt Perceptron

Figure 2.4.1: A side by side graphical comparison of the formulation differences between the
McCulloch-Pitts neuron (Left) and the Rosenblatt Perceptron (Right). The McCulloch-Pitts neu-
ron takes N inputs which are summed and passed through an activation function H(a) to produce an
output of either 0 or 1. The Rosenblatt Perceptron takes N weighted inputs and one bias term b which
are summed and passed through a step activation function to produce an output of 0 or 1.

The t-SNE algorithm then minimizes the divergence between the high-dimensional and low-dimensional
distributions, typically using the Kullback-Leibler divergence (see Section 2.4.4):

C = KL(P||Q) = ∑
i

∑
j

pi jlog
pi j

qi j
(2.3.5)

Here, P and Q represent the joint probability distributions in the high-dimensional and low-dimensional
space, respectively. This cost function is minimized using a gradient descent method.

2.4 Artificial Neural Networks
Artificial Neural Networks (ANNs) are among the more powerful techniques which can be used
in machine learning. Inspired by the human brain, these networks are both versatile in their wide
range of potential application domains as well as powerful in being able to act as approximators for
arbitrary functions (given the correct conditions). ANNs have been applied to regression tasks [37],
to categorical classification [38] and control tasks [39]. Before we get too far ahead of ourselves
however, it is salient to look into the basic building blocks of these ANNs to see how they are able to
act as such powerful function approximators.
This section covers the concept from the basic building blocks, through the introduced non-linearities
and why they are important to both the ANNs ability to approximate arbitrary functions and its opti-
mization process. Following this we look at some common loss functions as well as the learning and
optimization process, ending up finally in the realm of more modern ANNs with the Convolutional
Neural Network (CNN) architecture and its applications to image-based tasks.

2.4.1 Perceptron
The conceptual basis of all artificial neural networks is its most basic building block; the artificial
neuron. The first iteration of this concept was devised in a 1943 paper by McCulloch and Pitts

CHAPTER 2. THEORETICAL BACKGROUND 20

forming the basis for a simplified mathematical formulation of a biological neuron [40]. This neuron
takes and sums a set of {x1..xn} inputs to produce an activation as shown in equation 2.4.1. Then the
activation level is compared to a threshold value θ based on which the activation is determined to be
either 0 or 1 as shown in equation 2.4.2. This mirrors the ’all or nothing’ response found in biological
neurons.

n

∑
i=1

xi = a (2.4.1)

H(a) =

{
0 if a < θ

1 if a≥ θ
(2.4.2)

While the McCulloch-Pitts concept of the artificial neuron is a sensible mathematical model by itself,
the Rosenblatt Perceptron [41], a formulation which adapted this with certain additions is what allows
this basic building block to go from a simple response mechanism to a workable method for iterative
learning. Namely, the added parameters are weights on each of the inputs to a neuron unit as well
as an additional bias term. The input summation function is then represented in equation 2.4.3. As
can clearly be seen, if the input space is reduced to a single item, the result is a standard linear
function y = wx+ b. Next, the activation is described by equation 2.4.4. This is a simple Heaviside
step function with the main difference to the threshold function being that it is centered around a 0
meaning that any positive non-zero activation causes the neuron to fire.

n

∑
i=1

wixi +b = a (2.4.3)

f (a) =

{
0 if a≤ 0
1 if a > 0

(2.4.4)

To distinguish between the two types of proposed neuron, refer to the visual representation of each
formulation in Figure 2.4.1.
Given the weight vector at state t as ~w(t), a learning rate of α and an input/target pair of (~x j,y j) with
y′j being the output of the perceptron at step t given input x, the update in weights is calculated using
the formula described in equation 2.4.5. This is a weighted update step and this learning process is
called the Hebbian rule or more generally, Hebbian learning is being applied to the perceptron.

wi(t +1) = wi(t)+α∗ (y j− y′j)xi j (2.4.5)

2.4.2 Multi Layer Perceptron
The drawback of a single perceptron is that it is only able to learn linearly separable functions. This
means function such as AND, OR are possible to learn, however XOR is not linearly separable,
meaning a different approach is needed. So while a single perceptron is a powerful tool in itself, it
would be more useful to be able to learn approximations of non-linear functions as well by stacking
multiple layers of perceptrons. This idea forms the basis of the Multi Layer Perceptron (MLP). One
remaining issue is that simply stacking several perceptrons does not achieve the desired effect of being
able to approximate non-linear functions, a further element is required. The last piece of the puzzle
are non-linear activation functions. Without them the MLP may be able to approximate very complex
linear functions and combinations thereof, but non-linear functions would still be out of reach.
Figure 2.4.2 shows a simple MLP with some inputs, one hidden layer worth of units and two outputs.
Conceptually this forms a directed acyclic graph where information flows from the input to the out-
put nodes. Representing the weights between the units as matrices is convenient because it allows

CHAPTER 2. THEORETICAL BACKGROUND 21

x01

x02

x03

x11

x12

x13

x21

x22

inputs hidden out puts

y1

y2

wih who

Figure 2.4.2: Diagram of a Multilayer Perceptron with one hidden layer. wih and who show the weights
of the layer connections, which it is convenient to imagine as matrices.

the understanding of our ’forward pass’ of this graph to be expressed as a simple series of matrix
multiplications. The activations Ah(x) of the hidden layer can be expressed by the following formula:

A(x) = g(xT wih +b) (2.4.6)

Where g represents the non-linear activation function, wih is the matrix of weights between the input
and the hidden layer, x is the matrix of inputs and b is the bias term. The same process is then repeated
with who between the hidden layer activations and the outputs. Having mentioned the ’forward pass’
or, the ’backward pass’ or learning step of this procedure is deferred to later in Section 2.4.5.

2.4.3 Activation Functions
As mentioned above, the key to having a neural network composed of artificial neurons be able to
solve non-trivial tasks is an appropriate choice of activation function. A good activation function
should meet two criteria, first it must be non-linear and second its derivative should ideally never be
zero. This latter requirement combats the problem in optimization of vanishing gradients [42].

ReLU - The Rectified Linear Unit or ReLU proposes a very simple non-linear function to be intro-
duced in the activation stage of a neural network. It introduces a non-linear function in the form of
a discontinuous linear function and a nulling element. This function is linear when the activation is
positive and zero everywhere else.

Leaky ReLU - The standard rectified linear unit can take us a very long way , however it does not
satisfy our second condition which is that the derivative of the function should be non-zero at every
point in the function space. The leaky ReLU solves this issue by modifying the function in the interval
[−∞,0] so that rather than being set to zero, the function is again linear but with a much smaller slope,
usually 0.01. A plot of the Leaky ReLU activation and its derivative can be found in Figure 2.4.3
where the slope in the aforementioned interval is exaggerated to 0.2 to clearly differentiate it from the
base ReLU.

ELU - Another activation function which attempts to solve the ReLU problem of weak gradient
transition around 0 as well as below 0. This function addresses this by introducing an additional

CHAPTER 2. THEORETICAL BACKGROUND 22

Figure 2.4.3: Comparison of 4 activation functions (top) and their derivatives (bottom).

parameter; an alpha value which determines the negative value which the function returns to asymp-
totically, this mostly affects the shape and definition of the gradient below 0 and remains the same as
the ReLU and Leaky ReLU above 0.

Sigmoid - Sigmoid activation must be mentioned here as it is adjacent to the step activation function
used in the perceptron and is itself used in the basic multi-layer perceptron model. It is also closely
related to the next function on the list; the tanh activation function. The sigmoid activation function
is bound between 0 and 1 on the y-axis with weak to zero gradients far from 0 on the x-axis. This
function is useful for ensuring that the output of a layer is bounded in a predictable range of values,
however far from 0 on the input backpropagation may struggle with weak gradients meaning it is
possible to get dead neurons.

Tanh - Similar in shape and derivative to the Sigmoid function, the Tanh activation function is
instead bounded between -1 and 1 on the y-axis. This addresses one of the shortcomings of the
Sigmoid function namely that it is asymptotic to 0 at highly negative values. This may result in entire
sections of network which remain unused. Primarily we are interested in this function because of its
asymptotes at -1 and 1 producing something akin to normalized output.

2.4.4 Loss Functions
Given that training a neural network is a function minimization problem, there has to be a function that
facilitates this optimization. The class of functions which compute this error between expected and
actual output are called loss functions. Because they inform our optimization, much like activation
functions, these must be differentiable in order to be applicable.
Loss functions are typically applied to the output of a network, however this is not a requirement.
Certain loss functions may also be applied to intermediate states in a network in order to produce
some kind of regularization effect. We will explore this further in parts of Section 2.5.1.

CHAPTER 2. THEORETICAL BACKGROUND 23

Mean Absolute Error Loss MAE Loss also known as L1 Loss is conceptually the most basic error
function available for use when comparing two continuous values. For an n length vector of values Ŷ
and target values Y the error is calculated as specified in formula 2.4.7

MAE =
1
n

n

∑
i=0
|Ŷi−Yi| (2.4.7)

This simply calculates the absolute deviation between the obtained value and the expected value for
all values in the result/target vectors. To simplify the contextualization of the next presented loss
function, one can imagine that the deviation calculation portion of this L1 loss function is raised to
the first power, so |(Ŷi−Yi)

1|. This formulation will become clear with the introduction of the next
loss function.

Mean Squared Error also known as L2 Loss is very similar to Mean Absolute Error, but instead
the principal deviation calculation is raised to the second power. This is where the formulation in the
L1 loss section comes in handy as the reader should see parallels immediately between this calculation
and the last. See formula 2.4.8 for details on how it is calculated.

MSE =
1
n

n

∑
i=0

(Ŷi−Yi)
2 (2.4.8)

As can be seen, all but the central deviation computation here remains the same and even there only
the power raised to is changed. This results in an error calculation that amplifies the error for values
which more heavily deviate from the target. This is useful as it allows for a very quick convergence in
general to a ’good enough’, however MSE has a tendency to over-represent outliers in data and miss
very small changes [43]

Wasserstein Distance Metric or ”earth mover’s distance” is a measure of similarity between two
distributions [44]. In the one-dimensional case, the distributions are compared using their cumulative
distribution functions. Given univariate distributions P and Q with corresponding density functions
P(x) and Q(x) for x ∈ R1, the Wasserstein distance can be calculated as follows:

R(P,Q) =
∫

∞

−∞

|P(x)−Q(x)|dx (2.4.9)

For a fixed sample space of N samples, where each point samples the cumulative distribution density
at that point, the Wasserstein distance can be approximated as:

R(P,Q) =
1
N

N

∑
n=0
|P(n)−Q(n)| (2.4.10)

The complexity of calculating the metric grows exponentially with the number of dimensions in
which the metric is calculated. However, an estimation trick called the Sliced Wasserstein Distance
(SWD) [45] can be used to mitigate this issue. In SWD, multivariate distributions are projected onto
K univariate vectors sampled from a unit hypersphere in Rd , where d is the dimensionality of the
compared point clouds. These projected samples are then used to evaluate the distributions in their
univariate decompositions, resulting in the SWD formula:

SWD(P,Q) =
K

∑
k=0

1
N

N

∑
n=0
|Pk(n)−Qk(n)| (2.4.11)

CHAPTER 2. THEORETICAL BACKGROUND 24

Here, Pk(n) represents distribution P sampled along random vector k in d dimensions, at the nth point
in the cumulative density function. Similarly, Qk(n) represents the same mapping for distribution
Q. It is important to note that SWD is an estimation of the true Wasserstein distance, and there are
considerations regarding its robustness and stability, which are addressed in the following papers [46,
47].

KL Divergence is another method of comparing two distributions using a measure called rel-
ative entropy [48]. However, unlike the commutative nature of the Wasserstein distance metric
(SWD(P,Q) = SWD(Q,P)), the Kullback-Leibler (KL) divergence is not commutative. The KL diver-
gence from distribution P to distribution Q, denoted as DKL(P||Q), is a divergence and is calculated
as follows:

DKL(P||Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
(2.4.12)

In the context of the KL divergence, P(x) and Q(x) are used to denote the density functions of distri-
butions P and Q respectively.
In general the difference between the KL-Divergence and the earlier presented Wasserstein metric is
that KL-Divergence is somewhat more sensitive to very small changes between distributions. This
effectively means that in the region of diminishing returns on optimization, the KL-Divergence might
give better performance as a metric.

Reconstruction ICA is a loss statistic which, in contrast to all the previously presented similarity
measures, rather enforces a sparsity constraint on a set of parameters. While it takes the name of
the Independent Component Analysis method presented earlier in Section 2.3.2, it is a less stringent
sparsity constraint [49]. Whereas ICA enforces a hard orthonormality constraint on the solutions it
is able to find, RICA foregoes that in favor of a soft reconstruction loss. ICA is unable to deal with
an overcomplete representation, for this RICA instead introduces a soft constraint instead of the hard
orthonormality constraint imposed by ICA. This is defined as follows:

min
W

λ||Wx||1 +
1
2
||W TWx− x||22 (2.4.13)

Where W are the RICA weights and x is the input to the RICA layer. The second portion of this
formula represents the reconstruction of the inputs and the first term is an ’activation penalty’ on the
intermediate result of the reconstruction. This is what promotes sparsity here. It should be noted that
W and W T are shared weights, meaning that it is the same set of weights each time.

2.4.5 Backpropagation and Optimization
While single layer networks can be updated using the perceptron update rule shown in Equation 2.4.5,
once artificial neural networks become deeper and include more than one layer, the update function
becomes somewhat more complicated. In order to best conceptually relay the problem, the task of
updating a network can be split into three distinct steps. Firstly, the forward pass takes an input and
calculates, based on current network parameters, the output. Based on the output a loss function
is calculated. Given this information, one can then calculate the error as propagated to any of the
network weights using back-propagation. Repeated application of the chain rule allows the partial

CHAPTER 2. THEORETICAL BACKGROUND 25

derivative to be calculated at every point in the network. Finally the weight update step; we can see
that the gradient at a node wi j is given by

∆i j =
∂e

∂wi j
=

∂e
∂ f

∂ f
∂wi j

(2.4.14)

Where f (x) is the network function and e(x) is the differentiable loss function used to compute the
deviation from the desired score. This partial derivative can be calculated using repeated application
of the chain rule. Given this, the weight update of node wi j is then given by

wnew
i j = wold

i j −η∆i j (2.4.15)

Where η is the scaling parameter or learning rate in this case which prevents the network from over-
fitting on single examples. Repeated application of these steps (forward, backward, optimization) is
how one trains a network.
The intuitive way of thinking of this back-propagation, at least with regards to the most common
operations used in neural networks (multiplication and addition) is that multiplication splits the gra-
dient backwards based on the weight’s total proportion of the multiplication operation it was in and
addition simply propagates the gradient backwards 1:1 such that the gradient at every connected node
backwards is the same as in the current node.
In gradient-based learning approaches one may face two types of problems. One wrought by improper
choice of non-linearity in the activation layers or network depth; vanishing gradients, and its oppostite
- exploding gradients. We have already addressed the problem of vanishing gradients somewhat with
the non-linear activation functions, the other solution are residual connections (ie. skip connections
that propagate larger gradients deeper into the network) [50]. Conversely, the exploding gradient
problem occurs when the incremental network adjustments become too large. This can happen either
due to a learning rate which is too high or due to lack of regularization. While the learning rate issue
is addressed further in the methods, the basics of regularization are covered in the following section.

2.4.6 Regularization
Regularization is the name given to a collection of methods which attempt prevent reaching local
minima during training. In most cases it is meant to prevent overfitting, which in the case of the auto-
encoder architecture is done by ensuring that the learned solution is undercomplete or sparse [51].
This means that this is an architecturally enforced constraint, however for something like explod-
ing gradients which affects the optimization process directly different approaches must be taken. As
mentioned in the above section on back-propagation and optimization, the exploding gradients prob-
lem may affect the quality of the optimization and in turn the quality of the solution. In this work,
the preferred method of dealing with exploding gradients is simply ensuring that the learning rate
is set properly. Batch normalization can be applied, while this is not directly a regularization tech-
nique it does have certain properties to that effect as well as providing other benefits in the course of
training [52]. Batch normalization is described by the following formula:

x̂ =
x−µ√
σ2 + ε

and y = γx̂+β (2.4.16)

The equation is split into two parts to represent the static portion and the learnable portion of a batch
normalization layer. x̂ is the normalized input batch x, however this is still scaled with a parameter γ

and bias β is also applied. Both of these are learnable parameters, much in the same way that these
terms apply to a regular layer in a network.

CHAPTER 2. THEORETICAL BACKGROUND 26

Another method applied in this research is RICA, however this has been described in some detail
already in Section 2.4.4. Suffice to say here that it enforces some degree of sparsity on the network
by means other than L1 regularization which has very good properties regarding the generalization
potential of a network.

2.4.7 Convolutional Neural Networks

0 0 0 0 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
0 0 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 2 2 3 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
2 2 1 1 0

I∗K

Figure 2.4.4: Example of how a convolutional kernel computes activation over a 2D image with one
single channel. Note in this example the input is padded with 0s as it would be in a normal input
scenario as well. This ensures that the original image size is preserved rather than cutting k//2 off
each side of the image during the process where k is the size of the kernel.

Convolutional Neural Networks (CNNs) represent an advanced architecture of artificial neural net-
works that is often utilized in image processing and other types of spatial data analysis. A pivotal
characteristic that differentiates CNNs from standard feedforward neural networks is the principle of
weight sharing. This denotes that the same set of weights, referred to as a kernel or filter, is utilized to
perform a convolution operation on different portions of the input data. This procedure is performed
at regular intervals across the data, thereby providing the network with a powerful capacity to learn
and recognize location invariant features.
In other words, CNNs are not restricted to recognizing patterns at specific locations within an image,
as is the case with feedforward neural networks. Instead, the shared weights allow the networks to
detect the same pattern regardless of its position in the input space. This weight sharing and spatial
invariance constitute a fundamental characteristic of CNNs, allowing them to excel in tasks such as
object detection within images, where the object of interest may appear at any location. Notably this
flexibility does not extend to scale or rotation invariance, where CNNs do not deal with variation very
well.
The filters within CNNs, which form the learnable parameters, are not predetermined as in certain
specialized applications such as Sobel edge detection [53]. Instead, they are learned during the train-
ing process, granting CNNs greater flexibility in learning more complex and specific features of the
data. This capacity to learn a vast variety of spatial features, coupled with the feature of weight shar-
ing, is what makes CNNs a powerful tool. Figure 2.4.4 shows an example of how an activation is
computed for a particular layer in a CNN. The kernel K in this diagram represents the shared weights
which learn a visual feature. This feature then shows various levels of activation for a particular re-
gion of the input. We represent the convolution operation as a ∗, this performs multiplication per unit
of overlapping space then adds the responses from these multiplications and adds them resulting in

CHAPTER 2. THEORETICAL BACKGROUND 27

Figure 2.5.1: Basic structure of an Auto-Encoder Network. For the most part these are bottlenecked
networks, meaning that the solution is undercomplete, however there exist sparse auto-encoders with
overcomplete solutions.

a per feature activation map in the output. Given an input matrix I of size (m,n), a kernel K of size
(f , f), a stride s, and padding p, the convolution operation can be expressed as:

output[i, j] =
f−1

∑
u=0

f−1

∑
v=0

I[i · s+u− p, j · s+ v− p] ·K[u,v] (2.4.17)

Here I[i · s+u− p, j · s+ v− p] refers to a specific coordinate in the input matrix, taking into account
the current position of the kernel (given by indices i, j), the stride s, and the padding p. K[u,v] refers
to the corresponding coordinate in the filter or kernel, at indices u,v and the summation over u and v
computes the weighted sum of the overlapping region between the input and the kernel at the current
position.
These convolutional operations can be stacked in many many layers to get feature maps of feature
maps for more and more detailed image processing [50].

2.5 Deep Learning Architectures
Deep Learning (DL) is a paradigm in machine learning which is simply an extension of the concept
of the MLP introduced earlier. If an MLP extends a perceptron by introducing several layers of them,
deep learning generalizes this concept and extends it to other network architectures such as the CNN
or recurrent networks. This section largely focuses on the application of deep learning to learning
representations of input in a self-supervised manner. Understanding the concept of an auto-encoder is
central to the work of this thesis, this section dives into the basic concept as well as a few variations.

2.5.1 Auto-Encoder Network Architecture
The idea of a bottlenecked network to learn lower dimensional representations of inputs is not a
novel one [54], however when referring to auto-encoders in this thesis, unless otherwise specified, the
implication should be that of convolutional auto-encoders. The auto-encoder consists of two distinct
segments, an encoder block and a decoder block. The encoder takes an input and maps it to an
intermediate representation, then the decoder takes the intermediate representation and attempts to
reconstruct the original data from it. Figure 2.5.1 shows this structure in abstract terms. In its most
basic form (one input layer, a bottleneck layer and an output layer) the auto-encoder architecture
can be equated to PCA with somewhat weaker mathematical assurances regarding the found linear
combinations of features. Auto-encoder architectures become powerful when we consider that they,
in fact, represent a generalization of this structure, and are able to learn non-linear combinations of
inputs as well, providing for much more flexibility.

CHAPTER 2. THEORETICAL BACKGROUND 28

Figure 2.5.2: Basic structure of a variational auto-encoder Network. The activation of the last layer of
the encoder is used to estimate a mean and variance for the sample passed in, this mean and variance
are then sampled to generate an embedding from which the decoder then works.

Because this is a self-supervised learning method, it means that meaningful information can be ex-
tracted so long as data is available, even without the presence of explicit labelling. Given a bottle-
necking constraint, we may learn useful features about the data in addition to creating a compression
of the data. In the case of an overcomplete solution with sparsity constraints we would still learn
useful features of the data in the representation. In this case, this representation that we pick out
from one of the hidden layers in the network (typically the middle one with fewest units) is our latent
representation. An interchangeable term for this may be an embedding. All told, a collection of these
embeddings for an entire set of data may be referred to as subspace or latent space.
These representations created using an auto-encoder composed of fully connected layers is missing
one key element that we are looking for, however. To make the leap from merely useful representa-
tions to semantically meaningful ones, one must consider the input as more than just a collection of
simple features, one must consider them as features in a particular context. Convolutional layers as
described earlier do this quite well for visual features. Various recurrent networks do this well for
sequences as well. Once we have representations of the data, be they semantic or otherwise, the em-
beddings may be amenable to analysis using other unsupervised methods to further learn the structure
of the underlying data and extract meaningful relations between the data points.

2.5.2 Variational Auto-Encoder
Variational Auto-encoders (VAEs) constitute a class of generative models that have gained consider-
able prominence in the domain of unsupervised learning. VAEs fuse the principles of deep learning
with Bayesian inference to facilitate the learning of complex data distributions, making them par-
ticularly valuable for tasks such as anomaly detection, image generation, and even reinforcement
learning.
VAEs extend the traditional auto-encoder architecture by incorporating a probabilistic spin. An auto-
encoder generally consists of two primary components: an encoder, which transforms the input data
into a latent representation, and a decoder, which reconstructs the original data from this latent space.
In the case of VAEs, the encoder generates not just a fixed point in the latent space but a distribution,
specifically, parameters of a Gaussian distribution. The decoder then generates the output by sampling
from this Gaussian distribution, thereby introducing a stochastic element. See Figure 2.5.2 for an
visual representation of how the variational auto-encoder works as compared to the earlier presented
basic auto-encoder.
The objective function of a VAE is composed of two parts: a reconstruction loss, which encourages
the decoded output to resemble the original input, and a regularization term, which forces the latent
distribution to align closely with a standard Gaussian. The balance between these terms determines
the quality of the generated samples and the structure of the latent space.

CHAPTER 2. THEORETICAL BACKGROUND 29

While the benefits of VAEs, such as the structured latent space and the ability to generate new data,
make them appealing for various applications, it is essential to consider their limitations as well,
including the potential for blurry generated images and the need for careful model tuning and training.
This blurriness comes from the way the latent embeddings are sampled (where multiple inputs may
map to identical samples). At the same time, this ability to explore the latent space by sampling
the generated distribution makes it ideal as a generative model and gives the model some degree of
explainability.

2.5.3 Sliced Wasserstein Auto-Encoder
Sliced Wasserstein Auto-Encoders (SWAEs) [55] represent a novel variant of auto-encoders, innova-
tively leveraging the principles of optimal transport theory, particularly the Sliced Wasserstein dis-
tance, to establish a more robust and meaningful latent space representation compared to VAEs.
Unlike VAEs, SWAEs work more like standard auto-encoders meaning that an input is mapped di-
rectly to a latent variable without an intermediate distribution modelling and sampling step. Then
instead of matching the sampler distribution to a prior, we match the aggregated posterior of the latent
space with a prior distribution. Typically this consists of a standard Gaussian or uniform distribution.
The Sliced Wasserstein distance provides a computationally efficient and differentiable means to
compare distributions, overcoming the computational challenges often associated with the Wasser-
stein distance. It operates by projecting the distributions to multiple 1-dimensional subspaces and
comparing these projections using the 1-dimensional Wasserstein distance, which can be computed
efficiently.
The objective function for a SWAE thus incorporates a reconstruction term, similar to VAEs and other
AEs, and a regularization term based on the Sliced Wasserstein distance. The equation for this is given
in 2.4.11.
The adoption of the Sliced Wasserstein distance empowers SWAEs with several appealing qualities,
including the ability to avoid the blurriness often associated with VAEs and the formation of a more
interpretable and better-structured latent space. Nevertheless, the application of SWAEs necessitates
careful consideration of the choice of prior distribution and the computation of Sliced Wasserstein
distance, requiring a level of understanding of optimal transport theory.

2.6 Clustering
Many methods of self-supervised learning then proceed to use quite basic means such as clustering
in order to evaluate their validity. The high-dimensional sub-space where all the embedding of these
self-supervised methods happens is very conducive to return to these methods given that we’ve now
gone from data where features may appear in various parts of the observation to a feature space where
features are once again always in the same position in a vector. To this end, we cover two clustering
methods later applied, k-means; a very scalable and fast method and Gaussian mixture modelling;
something which is able to much better model multivariate data, however struggles computationally
in high dimensions.

2.6.1 k-Means
k-means clustering is a method for unsupervised data partitioning commonly used in data analysis
tasks [56]. It applies vector quantization in order to learn a set of points which are prototypical of
groupings within our data, these are then also used to create a partition of the data. To this end,

CHAPTER 2. THEORETICAL BACKGROUND 30

the algorithm applied for computing the cluster means is called Lloyd’s algorithm and it repeats two
steps until convergence [57]. After initializing the starting k points from which we will contine with
quantization [58], we can start with the iterative refinement process. Given k means denoted as mi
where i ∈ {1,2, . . . ,k} we then assign points to these centres where point xp is assigned to cluster Ci
if D(xp,ci) is smaller than any other D(xp,c j) where j 6= i and j ∈ {1,2, . . . ,k}. D(x,y) here simply
denotes the distance metric between points x and y, in this case, this is the euclidean distance given by
D = ||x− y||2. Once the assignment stage is complete, set Ci contains all the points in our data which
are closest to mi according to our distance metric. Next we compute the new mean for each of these
clusters by:

m(t+1)
i =

1

|S(t)i |
∑

x j∈C(t)
i

x j (2.6.1)

Intuitively all this means is that in every iteration we first assign points to their closest mean, then
using these sets of points that we have just created, calcualte the new mean of the set and set that as
the new mean. This continues until convergence which can be conceptualized in one of two ways.
First we can imagine it as minimizing the total distance between every point and its closest prototype
in the whole set. Alternatively one can imagine that when the prototypes move less than a certain
amount between iterations, or not at all, the algorithm has converged.
k-means is unfortunately rather susceptible to the curse of dimensionality problem, however [59, 60].
The curse of dimensionality is a phenomenon specifically of the interaction of certain algorithms
and their use of the squared euclidean distance as a comparison metric. The greater the number of
dimensions that our dataset appears in, the less distinct comparisons become. An appropriate solution,
for example would be the application of the generalized Minkowski metric with a normalization term
in the interval [0,1] given that the higher the higher the norm, the faster this problem comes to a head.

2.6.2 Gaussian Mixture Models
Gaussian Mixture Models (GMMs) are a type of probabilistic model commonly used for clustering
and data representation tasks [61]. Unlike k-means, GMMs employ a soft assignment strategy for data
partitioning, which allows them to handle complex data distributions more effectively. They accom-
plish this by assuming that the data are generated from a mixture of several Gaussian distributions,
each characterized by its own parameters - mean (µ) and covariance matrix (Σ).
The GMM is represented as a weighted sum of M component Gaussian densities as shown in the
following equation:

p(x) =
M

∑
i=1

πiN (x|µi,Σi) (2.6.2)

where πi are the mixing coefficients satisfying ∑
M
i=1 πi = 1 and N (x|µi,Σi) denotes the i-th Gaussian

density function. Each of these component Gaussian densities contributes to the overall model pro-
portionally to its mixing coefficient, allowing the GMM to approximate diverse and complex data
distributions.
The parameters of a GMM, namely the set of means µi, covariance matrices Σi, and mixing coeffi-
cients πi, are typically estimated from data using the Expectation-Maximization (EM) algorithm [62].
This iterative algorithm optimizes the log-likelihood of the observed data given the parameters, and
consists of two steps: the E-step (Expectation) and the M-step (Maximization).
In the E-step, the posterior probabilities p(zi = 1|x) (also known as responsibilities) are computed,
where zi is a binary random variable indicating the component to which observation x belongs.

CHAPTER 2. THEORETICAL BACKGROUND 31

In the M-step, the model parameters are updated using the current responsibilities. The updates
are performed such that the expected log-likelihood of the complete data (observed data plus latent
variables) is maximized.
The EM algorithm is repeated until the parameters or the log-likelihood converge, typically yielding
a locally optimal solution. An advantage of GMMs is their ability to model different shapes and sizes
of clusters due to the flexibility of the Gaussian distribution. However, they can suffer from overfitting
in high-dimensional spaces, which can be mitigated by using regularization or choosing appropriate
covariance structures.

2.7 Clustering Validity Evaluation
Given that the general idea of this thesis is to create a reasonable embedding subspace for spectral
data in an unsupervised manner, there needs to be a way to evaluate this portion of the work in a
similarly unsupervised manner as well. Clustering on the latent space in order to test for density
estimates in this space is not a novel idea [63]. For the most part these methods all stem from the
same basic conceptual idea. Calculating the distance of points within a cluster or a partition and then
comparing that to the distances between points outside the cluster of interest. Through this several
metrics have been defined which can say something about the quality of a partitioning scheme [64].
For other clustering methods, such as Gaussian mixture modelling, there exist a few intrinsic methods
of evaluation which can be useful to find the optimal number of components. Several of these methods
are covered in this section as well.

2.7.1 Silhouette Score
According to [64] the Silhouette score [65] is the most robust metric available for evaluating the
partitioning scheme of basic clustering models like k-means. It is hardly surprising then that it is
also very widely applied then on simple problems where k-means is able to perform adequately. The
Silhouette score for a point i in a dataset is given by si

si =
bi−ai

max(bi,ai)

where;

bi = min
k 6=i

1
|Ck|∑jk

d(i, j)

ai =
1

|Ci|−1 ∑
ji,i6= j

d(i, j)

Here bi is the inter-cluster distance, meaning the average of the distance of point i to all points in the
closest cluster which it does not belong to and ai represents the intra-cluster score; so the average
distance of the point to all the points which belong to the same cluster as i.

2.7.2 Bayesian Information Criterion
The Bayesian Information Criterion (BIC), also known as the Schwarz Information Criterion [66],
is a widely used criterion for model selection among a finite set of models in the realm of statistical

CHAPTER 2. THEORETICAL BACKGROUND 32

inference and machine learning. It is based on the principles of Bayesian probability and provides a
measure of the trade-off between model complexity and goodness of fit.
BIC is defined mathematically as:

BIC = 2ln(L)+ kln(n) (2.7.1)

where L represents the maximum value of the likelihood function for the model, k is the number of
parameters in the model, and n denotes the number of observations or samples. The first term, 2ln(L),
is a measure of the model’s fit to the data, with a smaller value implying a better fit. The second term,
kln(n), penalizes model complexity, discouraging overfitting by adding a penalty that increases with
the number of parameters.
In the context of model selection, the model with the lowest BIC is preferred. BIC’s unique feature lies
in its asymptotic consistency, meaning that as the sample size increases, the probability of selecting
the true model also approaches one, assuming that the true model is within the set of candidate models.
Despite its ubiquity, BIC does make an assumption of a large sample size, and as such, may not
be as effective with smaller datasets. Additionally, the strict penalty term based on the number of
parameters may not always be suitable for all situations, particularly when a more complex model is
justifiably needed. Nonetheless, BIC remains an invaluable tool for model selection in a variety of
statistical and machine learning contexts.

2.8 Simple Classification

2.8.1 Gaussian Naive Bayes Classifier
The Gaussian Naive Bayes (GNB) classifier [67] embodies an integral application of probabilistic
classification methodologies in the realm of machine learning and data mining. This classifier capi-
talizes on the fundamentals of Bayes’ theorem in conjunction with an arguably simplistic assumption
of feature independence. The selection of GNB as a classifier is often predicated on its computational
efficiency and ease of implementation, thereby making it an apt choice for high-dimensional data
analysis. It works by ascertaining the conditional probability of each class given a sample, with the
class yielding the highest probability being selected as the prediction.
Inherent in the GNB model is the presumption that the continuous values linked with each class
conform to a Gaussian or normal distribution. Characterized by its symmetry and bell-like shape, a
Gaussian distribution is delineated by its mean µ and standard deviation σ, which respectively dictate
the central tendency and dispersion of the data. This assumption, while enabling a facile implemen-
tation of classification tasks, may not invariably be valid. Cases where the distribution deviates from
Gaussian, or where the features are not mutually independent, may lead to a suboptimal performance
of the model. Nonetheless, the inherent simplicity, scalability, and adaptability to high-dimensional
datasets underscore the widespread application of GNB classifiers, despite potential constraints.

2.8.2 Random Forest
Random Forest [68] is a potent and highly adaptable machine learning methodology that further en-
hances the utility of decision trees. As an ensemble algorithm, it amalgamates the predictive capacity
of several models, specifically decision trees, thereby optimizing the overall model performance and
stability. It demonstrates exceptional prowess in countering the prevalent issue of overfitting inherent
in single decision trees.
The element of ”randomness” in Random Forest emanates from two distinct aspects. Firstly, every
decision tree in the ensemble is constructed on a bootstrapped sample of the original dataset, a sample

CHAPTER 2. THEORETICAL BACKGROUND 33

drawn with replacement, adhering to the concept of bagging (bootstrap aggregating) with an intent to
mitigate variance. Secondly, at each decision tree node, a randomized subset of features is chosen to
discern the optimal split. This process effectively de-correlates the trees, augmenting the robustness
of the forest against the potential bias of a single dominant feature. The terminal prediction in a Ran-
dom Forest classifier is typically realized through a majority voting mechanism across the individual
decision trees for classification tasks.
Despite its relative simplicity and limited tuning parameters, Random Forest classifiers are revered
for their high predictive accuracy, resilience, and user-friendly nature. They are capable of processing
both numerical and categorical data, adept at handling missing values, and furnish an estimate of
feature importance. These qualities render them a go-to machine learning algorithm across a broad
spectrum of applications in both academic research and commercial industry sectors.

2.9 Related Work
There is a previous iteration of this research focusing on variational auto-encoders in order to create an
inspection method for radio astronomical data [18]. The research proposes a variational auto-encoder
which takes two separate inputs of the phase and amplitude information, then uses a concatenation
of both as a latent representation. In order to avoid the lengthy process of labelling LOFAR data,
in this research the authors instead elect to construct a proof of concept system on HERA [19] data,
both real and simulated. The research notably uses interpolation in order to fit the data to an auto-
encoder’s input constraints. In our research we choose to forego this in favour of patching which is
a different way to deal with this problem. Both methods ostensibly face challenges when it comes to
data of multiple time-scales, however we believe that [18] were somewhat more selective of their data
beforehand.

Chapter 3

Methods

Building on the concepts explored earlier in the theoretical background, this chapter collects those
theoretical components and presents a novel method for learning embeddings of spectral data as
well as an evaluation framework to test it. First the data format is explained alongside creating a
dataset to evaluate tasks against labelled data. Second, several representation learning methods are
discussed, including the justification and construction of the central model in this thesis. This model
as well as several other ’baseline’ models are implemented and their training processes detailed.
Lastly a series of tasks and evaluation metrics are defined which will give insight into the models’
empirical performance for this particular domain. For a clearer overview of this process, see the
pipeline diagram in Figure 3.0.1.

Figure 3.0.1: Proposed full pipeline from data to tasks that the components are evaluated on. Note
the partial reliance on a human expert. This is the portion of the pipeline which this project aims to
bypass as much as possible in order to streamline data processing, however some human labelling is
required to kick-start the process.

3.1 The Dataset
The LOFAR telescope collects and records data in very large streams when making observations.
Each station records the signals from tens of antennas at up to 200 MHz at the station level. This
results in very large observations consisting of several TB of time/frequency data in both the real
and imaginary domains. As a byproduct of this data collection, a downsampled version of these
observations is produced for long term availability and archiving. This is the data that this project

34

CHAPTER 3. METHODS 35

Figure 3.2.1: An example of a baseline spectrogram in phase format. Note that the frequency is on
the x-axis and time is on the y-axis. This is done purely out of convenience for use with the labelling
software. Using ’tall’ images made them harder to discern in the software. Any other images in this
format should be assumed to be in the same orientation.

aims to work with as it is on a more manageable scale and appropriate for most detection tasks and
proof of concept implementations. As part of normal operation, some data tagging is performed at
the observation level. For the purposes of this project these pre-existing labels are somewhat too
broad, however. In the hierarchical structure of the observations, the labels are applied at observation
level, where this project attempts to look at the data at a more granular per-spectrogram level. To
facilitate this, in addition to the learning methods and inspection tools, this project delivers a dataset
of about 4000 multi-attribute labelled samples. These examples come from the aforementioned real
down-sampled data. This labelled dataset is not used for training, but evaluation only. This results in
the ability to evaluate an un-supervised learning method with labelled data.

3.2 Representing Complex Data as an Image
The LOFAR telescope, as far as the data selection in this thesis is concerned, produces complex valued
data in 4 channels. Here a method is proposed for mapping these to an image in the RGB space which
is useful for a labelling task or similar. In this case the complex signal can be decomposed into two
distinct parts, the phase and the magnitude of the signal at each point. While both are informative
about the data in certain ways, the phase infromation is picked here as the definitive, because it
produces more distinct patterns which can be inspected. For the 4 polarization observations extracted
from the set of LOFAR data, the mapping of these 4 channels to RGB is a challenge. This is done with
the following formulas; R = cxx, G = 0.7cxy + 0.7cyx and B = cyy where for example cxy represents
the channel of the observation for the ’xy’ polarization. For an example of how the data looks when
mapped using this method and a few examples of the label classes which will be described later, see
Figure 3.3.2. See additionally Figure 3.2.1 for details on how the phase spectrograms are laid out with
regards to frequency and time axes.

CHAPTER 3. METHODS 36

Figure 3.3.1: Image of the label studio instance used during labelling. The
example image shows a partially labelled sample. Of the labels defined later

in this chapter, we would assign here ’source structure’ and ’narrow band
RFI’. (see the vertical lines in the extreme right and middle left of the

spectrogram)

3.3 Data Labelling

The full set of LOFAR observations includes 4̃,500,000 baselines in 1889 sub-array pointings across
371 observation files. However, a large majority of these are baselines recorded in very few frequency
bands. Too few to constitute a good spectrogram image for our considerations. For the most part
these are calibration observations. While these are likely to provide good information, we would like
to consider larger input patches in this study where a proof of concept is explored. Given certain base
requirements for data size (at least 90x90 in the time and frequency domains respectively and at least
4 polarizations) about 10% of the dataset is retained with 4̃40,000 valid baselines in consideration.
Of these 4438 baselines are taken as a subset (2 observations) and labelled. The annotations in this
case come in the form of a list of attributes assigned to a particular baseline based on visual features.
In order to expedite this process, the open source labelling tool Label Studio is used for attribute
labelling. Making a segmentation dataset is not in the scope of this study, so the smallest unit of
data considered here is a single baseline spectrogram. See Figure 3.3.1 for reference of the labelling
interface and process.
Leveraging the expertise of some frequent LOFAR users, several key label attributes are determined.
Some are simply descriptions of the visual patterns which are normal such as source structure and
others are attributes describing anomalies, such as data loss or decorrelation. A full account of
the label classes developed is given in Table 3.1 below. These labels span baselines in 2 sub array
pointings across 2 observations.

CHAPTER 3. METHODS 37

(a) Source strucutre, RFI

(b) Source structure, Decorrelation , RFI

(c) Data Loss

(d) Broadband RFI
Figure 3.3.2: Showing four sample observations as mapped to RGB by the scheme defined in Section
3.2. Examples show some characteristic samples of the labels that will be expanded on in Section
3.3. Figure 3.3.2a shows an example of a relatively clean observation with strong source structure
(low frequency background feature) additionally showing some Radio Frequency interference pat-
terns between 127 and 138 MHz. Figure 3.3.2b shows characteristic data for an example of strong
scintillation shown by the noisy region around 120 MHz. Figure 3.3.2c shows an example of data
loss, this is additionally an unusual sample as it presents data loss intermittently rather than dropping
out entirely until the end of the observation. Finally Figure 3.3.2d shows an example of broadband
radio interference along with source structure and generally a noisy background. This differentiates,
rather obviously, from the narrow band RFI shown earlier as it occupies and interrupts a wider range
of frequency bands.

CHAPTER 3. METHODS 38

Attribute Type Near/Far # Examples

Source Structure Feature Far 3109
Broadband RFI Anomaly Near 1159

Checkerboard Artifacting Feature Far 565
Data Loss Anomaly Near 339

Decorrelation Anomaly Near 173
Autocorrelation Feature System 128

Vertical Artifacting Anomaly Unknown 35

Table 3.1: All of the labelled examples available. Shown is the attribute or label, the type of feature
it represents (not all features are anomalous) as well as whether this is a near or far field effect. Near
field simply means that it is able to affect individual stations. And far field means that it is not a
terrestrial interference and can therefore affect larger portions of the whole observation. Also listed
are the counts per label class of available labels.

3.4 Data Preprocessing and Preparation
The requirements set out for the subset of ’usable’ data for this project do not state an exact set of
dimensions which each baseline must have, only a minimum. This means that the data is not of
uniform size, something which does not play very nicely with convolutional networks or independent
component analysis. For this reason the data passed to the models comes in the form of patches taken
from the data. These patches are of size 128x128, which is larger than the minimum required size
of the observation. This means that any empty space making up the difference between the actual
size and the patch size is zero padded. While this is possible to happen, both the training subset and
the validation subset entirely avoid this and use observations which are larger than one patch. These
patches have an overlap of 40% between them, meaning that some of the data is duplicated. This is
done in order to ensure that as few critical features as possible are cut by the boundary of the patches.
There of course remains the issue extremely high variance in the temporal scale. Considerations here
include re-scaling or re-sampling the data, this is not preferable however. There is not enough data in
the high data frequency observations to make a representative downsampling. On the other hand for
the low data frequency observations, the data which has been dropped in the downsampling process
is lost and irrecoverable, so no upsampling is possible here. The problem of different data scales is
addressed at length in the results and later discussion.
In the selected training data and across most of the data which is available for this study, the frequency
bins do not deviate in scale, staying rather stable at the LOFAR band-width of 195 kHz per bin. This
is in contrast to the time scale where variations are quite common, but grouped into certain set lengths
of observations. Observations do not necessarily share the same start and end points in absolute terms
for the frequency bins either. Often they do, however this is not uniform over the data. This is first
of all because of the different requirements of the observations and second of all because of the clear
split between data recorded with the HBA and LBA sets of antennas. This means that by taking
patches of this data, we are rather taking a ’pattern recognition’ approach in place of one based on an
absolute coordinate system.
An aside that must be made here; because of the constraints of the ICA algorithm, training of which
is described later in this section, the patches taken for training it are only 64x64 rather than 128x128.
This is because the nature of the operations performed by ICA, namely singular value decomposition

CHAPTER 3. METHODS 39

Figure 3.4.1: Example of how an observation is split into patches. This observation is originally
too small in the time dimension to fit exactly in the 128x128 format, so the lower segment of the
observation is padded with zero data. The process in this case results in 3 patches being taken with
enough overlap to covered the data more than once.

scale very poorly with increasing matrix dimensions where computational costs are concerned.

3.5 Representation Learning
In this section, we go over the main component of this thesis, the representation learning algorithms
used to embed the data into a sensible semantic embedding space. First presented is the baseline ICA
method followed by several auto-encoder models including our proposed cascading auto-encoder.

3.5.1 ICA
Among the various methods applied to the problem, certain characteristics make the ICA approach
distinct. One of the defining constraints of ICA is its hard orthonormality between the filters, which
is combined with a highly localized way of finding these filters. This combination may result in a
good likelihood of duplicate filters being discovered, a scenario that is not desired. Furthermore, the
ICA’s dependence on input size becomes a limiting factor, setting it apart as the least flexible method
among those considered.
In the data preparation section (3.4), it was mentioned that other methods perform operations on a
128x128 patch taken from the data. Such a process is unsustainable with ICA, as it would necessi-
tate computing an eigendecomposition for a 16384x16384 matrix at a minimum. Despite theoretical
efficiency gains with linear algebra approximations, the solution in practice represents a time com-
plexity O(n3), reducible only to O(n2.376) with advanced techniques[69] (not applied here), making
this approach infeasible at scale.
To mitigate this challenge, the input size is restricted to 64x64 patches. Although this compromise
leads to learning smaller feature filters, it brings about more manageable computational requirements,

CHAPTER 3. METHODS 40

Hyperparameter ICA Only2D SWAE VAE ProposedArch2D ProposdArch1D

Input Size 64x64 128x128 128x128 128x128 128x128 128x128
Training Epochs 10000 200 200 200 200 200
Batch Size 150000 128 128 128 128 128
Latent Size 256 256 256 256 256 32
Optimizer / ADAM ADAM ADAM ADAM ADAM
Learning Rate / 0.001 0.001 0.0001 0.0001 0.0001
Layer Activation / ELU ELU ELU ELU ELU
Last Layer Activation / Tanh Tanh Tanh Tanh Tanh
Kernel Size / 3 3 3 3 4

Table 3.2: Parameter Table

with eigendecomposition for a 4096x4096 matrix in each iteration.
While ICA’s hard orthonormality is effective at filtering degenerate solutions, it can lead to peculiar
situations where the orthonormal solutions are not necessarily relevant. In fact, stable solutions often
emerge where many of the ICA filters are learned combinations of noise. Therefore, reducing the
number of output filters is advisable, aligning the solution with the undercomplete nature of the other
presented algorithms.
A detailed list of parameters utilized for training this method can be found in the general parameters
table 3.2. The fitting of the ICA model comes with its own challenges, requiring all data to be
loaded into memory during each iteration. This constraint limits the training data to at most 150,000
64x64 patches in the matrix at any given time, assuming a 24GB system. The dataset sampling is
guided by torch.DataLoader’s pseudo-random randomization function, and the data is segmented
and accumulated by splitting the spectrogram channels, allowing for loading about 3000 baselines
into memory for training. This amounts to just over 10% of the training set used with other methods.
Although not ideal, the random sampling ensures representative data is chosen, and the system is able
to fit just over one full observation into memory at once, eliminating the need for batch processing of
observations. These practical considerations and their limiting factors are further discussed later.

3.5.2 2D CNN Auto-Encoder
The basic 2D CNN Auto-encoder is used as a template for constructing all the auto-encoder methods
applied here apart from the second half of the cascading AE design. This is to keep the comparison
later on as tightly focused on the latent space itself and how it was arrived at rather than the difference
in encoding sizes.
Per-layer statistics for both the encoder and decoder parts of the model may be seen in Figure 3.5.1.
Starting with an input size of 128x128 and a depth of 4 channels (one for each of the polarizations), the
input is run in an alternating manner through a 3x3 kernel convolutional layer with stride 1 and then
2 in order to slowly reduce the number of nodes in each layer. For each encoder step, ELU activation
is used in combination with batch normalization. Once we reach the final layer of the encoder, the
result is flattened into a layer with 12,288 units which is then fed through a fully connected layer
which reduces this further to 256 units. This is what forms the embedding. From the embedding, the
process is reversed. From 256 up to 12,288 units, then re-shaped into a 3d stack of 2d filters. The
same set of strides and activations are applied in the decoder with one notable exception. In the final

CHAPTER 3. METHODS 41

Figure 3.5.1: The basic encoder and decoder structures of every 2D auto-encoder used in the com-
parisons. The upper portion shows the encoder layers and the lower portion the decoder layers. For
each of these, consider how they fit in the more general encoder-decoder structure shown in Sections
2.5.1 and 2.5.2 for auto-encoders and variational auto-encoders respectively. Shown in the diagram
are convolutional layers in blue and batch normalization layers in purple. Also specified per layer are
the kernel size, the number of filters and stride where stride is greater than 1. For example ’3x3x48
/2’ means a convolutional or deconvolutional layer with kernel size of 3x3, 48 filters and a stride of 2.

Figure 3.5.2: The structure of the basic 2D Auto-Encoder model with encoder and decoder structures
described in greater detail in Figure 3.5.1

layer of the decoder the activation is changed to the tanh non-linearity in order to produce output
bounded in the range of -1 and 1 such that the result ends up being a normalized image. The more
generalized structure of the auto-encoder can be seen in Figure 3.5.2 where we see the overview of
the structure comprising of the encoder, two fully connected layers bracketing the latent encoding and
then the decoder.

3.5.3 Sliced Wasserstein Auto-Encoder
In structure the SWAE network is an exact match for the base 2D auto-encoder. The only difference
is the additional loss term imposed on the latent embeddings. The distribution of the embeddings
is enforced via the Wasserstein metric using a slicing trick in order to sample the distribution. The
Wasserstein metric or more colloquially ’earth mover’s distance’ is described in greater in Section
2.4.4. Accordingly, as the 256 dimensions of the latent embedding remain the same, an appropriate
number of projections to sample the latent distribution is selected at 50. This should give a reasonable
estimate of the true latent distribution so that it may inform the enforced distribution given. In this

CHAPTER 3. METHODS 42

Figure 3.5.3: A diagram showing the structure of the proposed cascading auto-encoder method. The
chart shows how the difference between the reconstruction and the original (aka. the residual) is taken,
split in half by absolute value, then flattened in either direction for each 1D auto-encoder following
the initial 2D auto-encoder. Diagram courtesy of S. Yatawatta.

case an N-variate Gaussian with a mean and variance of 1 centered around the origin of the embedding
domain. Having selected our K sampling vectors we can formulate the additional sliced Wasserstein
loss term using this. For each of these K vectors, the data is then mapped on them and represented as
a quantile function of the univariate distribution of the data along k where k ∈ K. A single quantile
function along k for either batch b or reference distribution r can then be represented as Fk

b and Fk
r

respectively. Given this, the Wasserstein distance along k is then given by SWDk(b,k) = Fk
b −Fk

r .
Now for every k in set K of all mapping vectors, the total estimated Wasserstein distance for the set
can be estimated. This method specifically affects the overall methodology and parameter choice in
that the batch size is specifically enlarged for all involved deep learning methods in order to ensure
better distribution estimates are enabled with the sliced Wasserstein metric giving a training batch
size of 128 for all auto-encoder methods.

3.5.4 Variational Auto-Encoder
The second variant form of the basic CNN auto-encoder architecture is the variational auto-encoder
which includes one additional fully connected layer in the space between the last feature map of the
encoder and the first feature map in the decoder. This additional layer is there because the layer
that creates the latent embedding for a particular item is composed of two heads. One estimating
the means of the embeddings and the other estimating the log variances. This is described in more
detail in the section covering vartiational auto-encoders in Section 2.5.2. A latent embedding is then
sampled from this distribution and used for the reconstruction. This means that there is somewhat of
a decoupling between the embedding created by the encoder and the one used by the decoder to make
a reconstruction. While this allows for the generation of novel data that looks like the data initially
trained on, the more desirable property here is the statistical map of the latent space. Namely the
latent space is forced to fit an N-dimensional normal distribution. Where N is the number of elements
in the latent space. The distribution is enforced by a second loss term on top of the means squared
error loss. This additional loss term is the Kullback–Leibler divergence between the distribution of
the data observed in a particular batch and a normal distribution in an equal number of dimensions.
The KL-Divergene statistic is described in more detail in Section 2.4.4.

CHAPTER 3. METHODS 43

Figure 3.5.4: Detailed overview of the layers in the 1D auto-encoder components of the proposed
architecture.

Figure 3.5.5: Overview of the encoder-decoder layers with the RICA regularization layers included.
This also includes the image plane coordinates concatenated into the fully connected layers before
the RICA input and output layers.

CHAPTER 3. METHODS 44

3.5.5 Proposed Architecture
Our proposed method consists of several parts. The 2D CNN auto-encoder structure is retained with
minor modifications. The image plane coordinates of the baseline are embedded into the fully con-
nected layers. This is achieved by concatenating the coordinates with the features before they enter
the fully connected layer. The coordinates are then added again just before the decoder to become
part of the reconstruction process.
Additionally, RICA is applied as normalization to the embedding layer to enforce a sparsity constraint,
as seen in Figure 3.5.5. Despite this constraint, the embedding remains the same size as previous
methods: a vector of size 256. The novelty in the signal processing domain is the introduction of two
additional 1D auto-encoders in a cascade.
As shown in Figure 3.5.3, input to the 1D auto-encoders is generated by taking the difference between
the original image and the reconstruction. This difference is then halved and flattened separately in
the time and frequency domains. It produces 1D vectors of size 16384, resulting from unfolding
the 128x128 patch. Two directionally unrolled patches are passed through the cascaded 1D auto-
encoders. These 1D auto-encoders are convolutional with a kernel of size 4. Their structure is similar
to the 2D auto-encoders but varies in the number of layers in the encoder and decoder components.
For the specific changes refer to Figure 3.5.4.
Each of the two 1D auto-encoders has a latent dimension of 32, also with a RICA-based sparsity con-
straint. Concatenating the latent space of all three auto-encoders results in a latent representation of
size 320. Although this size is larger than comparable methods, the RICA-imposed sparsity constraint
necessitates this larger latent space to encode the data effectively.
There are two training choices: end-to-end or cascading. We chose cascading as it leads to more stable
training. End-to-end training could result in the 1D auto-encoders not learning well, as changes in the
2D auto-encoder might present them with a moving optimization target.
The same adaptations are made in the 1D auto-encoders as were proposed earlier for the 2D auto-
encoder. Image plane coordinates from LOFAR are taken and concatenated with the flattened output
of the last 1D convolutional layer before it is passed through RICA. The two additional 1D auto-
encoders aim to pick up strong features in the frequency domain (RFI) or the time domain (data loss)
to enhance our reconstruction and embedding.
Comparable to the VAE’s KL-Divergence term, RICA is very sensitive affecting the chosen learning
rate for this approach as well. As such, VAE and our proposed architecture both operate with a
learning rate of 0.0001. Overall the training is also twice as long. Because we train in a cascading
manner, the 2D auto-encoder is trained first for 200 epochs, then the weights are frozen and the two
1D auto-encoders are also trained for another 200 epochs resulting in a total training regimen double
that of comparable methods.

3.6 Tasks

3.6.1 Unsupervised Clustering Evaluation
First, we borrow techniques from data-mining as a precursor to other evaluation methods. This is
due to labels only being applied to a few observations, with none reserved for the training set. The
evaluation’s first step will be to cluster the found embeddings and try to determine the number of
clusters in the data. We will do this using two separate clustering methods: k-means and GMMs.
K-means is highly scalable for large datasets and can test for nearly any value of k. In contrast, GMMs
are less scalable. Using them on embeddings of the intended size is near the limit of what can be fed

CHAPTER 3. METHODS 45

to GMMs. Expecting a converged model within a reasonable time frame may be challenging.
Following the actual clustering each of the partition schemes obtained from the clustering process is
evaluated. For k-means the most appropriate method is the Silhouette score [64] and for Gaussian
mixtures, the Bayesian information criterion will provide the basis for evaluation. While both the
Akaike information criterion and the Bayesian information criterion are appropriate for this task [70],
the Bayesian information criterion is picked as it much more strongly penalizes the model complexity.
This is a desirable property as we are trying to find the least number of mixtures to decompose the
dataset to.

3.6.2 Classification
Simple classification methods such as Random Forest and Naive Bayes classifiers, referred to in Sec-
tions 2.8.2 and 2.8.1 depend quite heavily on the quality of the features of a particular dataset for qual-
ity classifcation. We are able to effectively leverage these methods in order to evaluate our model’s
embedding potential by evaluating it through the embedding’s ability to support simple classification.
The latent spaces generated by our models have comparable dimensions, but ICA’s pre-processing is
dissimilar to the other methods. The smaller patch size means that it will generate more embeddings
per correlated baseline. For this reason, we compare the methods using two separate classification
methods. This additionally allows us to evaluate methods against a classifier’s base assumptions for
further comparison.

3.6.3 Visual Inspection
Lastly, as one of the stated purposes of this research is to create a method which presents a user with
a ’zoo of artifacts’ where similar items are grouped together thus creating clusters or regions of space
where certain features in the data all appear together, visual inspection is also an option. For this, we
leverage the power of t-SNE as described in Section 2.3.3 which is able to take data in an arbitrary
number of dimensions and map it to 2D in such a way that items in close proximity in N dimensions
also appear close in 2D. Neither this method nor simple visual inspection are robust enough to serve
as an empirical means of evaluation, however this can simply serve as the additional confirmation of
the results which come out of the classification stage. For this purpose we develop a tool which is
able to display side by side a t-SNE plot of the embedded data, then display elsewhere the images
associated with each of the points in the embedding as points are selected. This ability to explore the
data in an interactive manner should serve as invaluable in research where the empirical evaluation is
such a challenge.

Chapter 4

Results

In this section, an overview is given of the model training for each of the models presented previously.
Later in the section, we move on to model evaluation through the tasks which are defined in Section
3.6. The groundwork is laid for comparing the ICA model to the auto-encoder methods, then the auto-
encoder methods are compared by their common elements and evaluated on the disparate features of
their methodologies. We provide a brief overview of the clustering as well as the validity indices
which attempt to find the optimal latent space layout for each method. Later a slightly more in-
depth evaluation making use of Random Forest and Gaussian Naive Bayes classifiers is presented
as a potential downstream task and a method of evaluating the quality of the embeddings. Lastly a
manual inspection is made of the latent space as described by a t-SNE embedding, this is done with
an application developed for this work which is able to show images of corresponding points in latent
space in order to evaluate the latent embedding’s suitability for use as a data-inspection intermediary.
The findings presented in this section are then further discussed in the final chapter.

4.1 Model Training
Models are trained on a subset of the LOFAR downsampled visibilities dataset comprising of 22500
baselines except for ICA (see Section 3.5.1) which is trained on a further pared down randomly se-
lected subset of the training set. The deep learning models are trained until the maximal epoch without
early stopping. ICA is trained with the possibility of early stopping, however the data complexity and
the very low convergence threshold means that the method never converges. Lack of convergence in
this case puts it in line with the auto-encoder models which are also trained without early stopping
until 200 (or 400) epochs. Concerning the comparison of the auto-encoder models the plots in Figure
4.1.3 reflect only the Mean Square Error (MSE) or reconstruction loss as this is the only common
element between all the networks trained. This shows the reconstruction performance of each of the
models throughout the epochs of training. Other loss categories which differ are not comparable and
therefore not shown explicitly here. The potential problems of dual-target optimization are weighed
against the favourable constraints these additional targets force their respective models to adapt to.
Primarily, the sections following the details of model training will attempt to discern if reconstruction
quality or the additional constraints have the most favourable effects on the quality of the learned
representations.

46

CHAPTER 4. RESULTS 47

Figure 4.1.1: Learned ICA filters. Not ordered by eigenvalue importance. Seen are most of the
major recurring patterns including auto-correlation related features as well as many features indicating
source structure.

4.1.1 ICA
In this comparison study, we explore various methods, among which Independent Component Analy-
sis (ICA) stands out as unique. Unlike other techniques examined, ICA does not rely on deep learning.
Instead, it is a linear transform that has shown promising results on the given task, though not without
some drawbacks, which we will discuss later.
ICA’s working principle is straightforward: it creates a single set of filters that describe an input image
through a linear combination. These filters can be directly accessed as a collection. To fit the ICA
model, we used the same data-loader and pseudo-random order as for the deep learning methods,
loading the first 3000 baselines into memory simultaneously. This process is roughly equivalent to
handling 30 batches of data from a deep learning training perspective.
The result of this fitting process is a collection of 256 patch filters, each of 64x64 dimensions, as
shown in Figure 4.1.1. An examination of this image reveals that these filters primarily represent
features at various scales, rather than noise. An undercomplete ICA solution appears to work well
in this context, as it avoids the high proportion of noise filters often found in complete solutions, a
common problem when seeking a full solution or working with low-variance data.
One of ICA’s major advantages over deep learning methods is its interpretability. The filters that
comprise its component matrix are clearly displayed in the figure, allowing for easy visual inspection
of the important features of the input. This contrasts with deep learning models, where understanding
the significant features can be more complex.

CHAPTER 4. RESULTS 48

4.1.2 Baseline Auto-Encoder Methods
Similar to ICA, the latent representation for all baseline auto-encoder based methods is restricted to
256 in order to create a consistent latent embedding size between methodologies. Similar reasoning
is applied at least in this subset of methods to the input dimensions. ICA was the odd one out in this
case as the input dimension of 128x128 was simply not possible while retaining a relatively sizeable
training set. The latent size of 256 is already quite large, however during the course of a coarse
parameter search, sizes up to 4096 were attempted, however for the most part; larger latent spaces
tended to overfit much faster on the limited training set, therefore restricting this to 256 is appropriate
in this case. In addition to this, all the methods in this section are trained for 200 epochs on the data.
After this point, only the proposed architecture still has any further drop in validation accuracy, the
rest of the models plateau earlier and begin to overfit after this point.

Figure 4.1.2: Model training loss per epoch trained. Averaged over 3 training runs each.

Our simple 2D auto-encoder forms the baseline for the the deep learning methods. As the baseline, it
is the only method in this collection which relies only on a single optimization target. It focuses purely
on the reconstruction loss with no additional loss terms to detract from this. This shows its benefits in
the loss charts (4.1.2, 4.1.3). Here the simple auto-encoder showcases the fastest convergence to the
lowest reconstruction loss. While this is not an altogether surprising finding, the question to keep in
mind for later is how much the reconstruction loss alone plays a role in creating an appropriate latent
representation.
Further, we move on to the first model using multiple optimization targets. The Sliced Wasserstein
Auto-Encoder. This method is likely the most comparable to the basic 2D auto-encoder as it is exactly
the same apart from the additional optimization target. This additional target concerns minimizing
the Wasserstein distance between the observed distribution of the batch items in N dimensions (where
N is the number of elements of the latent embedding) and a Gaussian centered around 0 in the same

CHAPTER 4. RESULTS 49

Figure 4.1.3: Model validation loss per epoch. Averaged over 3 training runs each.

space. The Wasserstein distance estimate quality is greatly dependent on the batch size, meaning that
increasing it leads to more accurate results. After a coarse parameter search in this model space as
well, the batch size was increased among all models to keep comparison stable. Generally a larger
batch size (to a point) is beneficial even for other methods [71]. The additional optimization target, or
the Wasserstein distance is given a weight here of just 0.01 in order to prevent it from interfering too
strongly with the primary reconstruction target.
A method with even more difficultly tuning the weight of its secondary optimization target is the VAE
model. Moreso than the SWAE model, the VAE model is extraordinarily sensitive to the λ scaling
parameter. Set it too low and the network does not properly learn the distributions of the underlying
data, set it too high and the MSE performance reaches a hard limit long before any of the other
methods. In this case, the λ scaling parameter is set at 0.001, lower still than the SWAE extra target.
Because of the reliance of this loss term on logarithmic operations, the scaling parameter is far more
sensitive than the rather simpler to calculate Sliced Wasserstein Distance above. In this case, the
scaling parameter was found to very strongly influence the minimum achievable reconstruction loss
should it be balanced poorly.

4.1.3 Proposed Architecture
The training on the proposed architecture is done in two stages. First the 2D auto-encoder is trained
with RICA regularization applied to the latent encodings for some level of sparsity. Later the two
1D auto-encoders are added to the end of this cascading system once the weights from the 2D auto-
encoder are frozen. Training is then done for another 200 epochs on the same data in the same order.
This separation in the cascading training can be seen in the loss charts as the separtated 2D and 1D

CHAPTER 4. RESULTS 50

Figure 4.1.4: Showing how the output of the 2D and 1D auto-encoders used in our proposed cascading
model differ and how they compliment each other when making the final reconstruction. Evident on
the full reconstruction patch is that at least the vertical (frequency) components seem to have a marked
effect in this particular example.

epoch loss plots. Results show only a marginal drop in MSE loss over this additional training. The
plots show that this is perhaps one of the less stable methods with regards to validation and in some
cases during training as well, the loss experiences sudden surges and dips. This may be caused by
features changing to better fit the sparsity constraint then re-mapping further back with filters that
have not changed much. Much like the KL-Divergence term for the VAE, here the RICA penalty is
quite sensitive to changes in hyperparameters. While the scaling is not as big an issue, the learning
rate applied most certainly is. With a learning rate of 0.001, the model will quite often fail to converge,
meaning that this parameter has to be adjusted. It is in fact reduced by an order of magnitude to 0.0001
in order to support this additional loss parameter. By the looks of the loss plots for the 1D portion of
the cascading encoders, this learning rate might still be somewhat too high, however, it does not seem
to indicate any divergence.

4.2 Evaluating the Models
As described in the detailing of the labelling process in Section 3.3, a validation set of labelled exam-
ples is created using two observations; L620490 and L632613. Both observations appear in the HBA
frequency region, however their distinction lies in the time scale at which the observation is made.
For L620490 the original observation lasts 10 minutes and is downsampled to 128 time samples. By
contrast L632613 is an observation spanning 8 hours which is downsampled to 121 samples in this
reduced observation format. This presents a rather large difference in time scales between the two
observations. In this case, we are not only comparing model performance between each model, but
also accounting for how the model might be able to deal with different time scale features in the data.
These time scales and more were all seen during the training process. The observations themselves
were not seen during training or validation of the models, meaning that this data is entirely novel to

CHAPTER 4. RESULTS 51

each. This means that the embeddings they generate should be entirely novel and a generalization of
the previously learned data.
L620490 and L632613 are evaluated first separately then jointly. The joint embedding space is simply
referred to as ’Aggregate’ from this point forward for convenience. In essence the joint embedding is
simply the concatenation of the embeddings a method generates for L620490 and L632613.
So far the models have been compared by their results in training, only insofar as things like recon-
struction loss and other error terms may be compared. Because the training data does not include any
labels, the following sections focus entirely on gauging each model’s suitability for the given purpose
through the embeddings that it generates of both the observations in the holdout validation set. These
embeddings are considered either in their original dimensions, or when presented visually, through
the two dimensional projection learned t-SNE. We move through the evaluations by first presenting
the most qualitative evaluation method - visual inspection - then moving on through unsupervised
evaluation towards the capstone quantitative classifier evaluation.

4.2.1 Visualizing the Latent Space

(a) Visualization of observation L620490 as cap-
tured by the 2D t-SNE embedding learned on the
latent representation generated by our proposed
method for each sample in the observation.

(b) Visualization of observation L632613 as cap-
tured by the 2D t-SNE embedding learned on the
latent representation generated by our proposed
method for each sample in the observation.

Figure 4.2.1: Showing t-SNE plots drawn from the 2D embedding learned from per-point latent
embeddings generated by our proposed method for each of the two validation observations used in
this study.

In order to better understand the data we are working with and the underlying characteristics of each
of the two observations picked for the validation set, we first present a visualization of each. Both
of the observations are shown in a plot which is obtained using a t-SNE embedding of the latent
space generated by our proposed method. T-SNE as described in Section 2.3.3 is a manifold learning
method which is useful for giving an approximation in lower dimension of the shape of data in higher
dimension. In this case, our latent space consisting of 320 items (256 for the 2D portion of our
cascading method then twice 32 for each of the 1D portions of the cascading design) down to a 2
dimensional representation. The plot for L620490 can be seen in Figure 4.2.1a and the corresponding
plot for L632613 can be seen in Figure 4.2.1b. In addition to this, these same points were visualized
with images of the corresponding baselines replacing the points in order to give a basic visualization
of the groupings of visual features. These plots can be seen in 4.2.2a and 4.2.2b. From these four
plots it becomes apparent that in observation L620490 there are several very visually distinct features

CHAPTER 4. RESULTS 52

(a) Visualization of the latent space attached to the proposed architecture model for observation L620490.
Note the large amount of very distinct small clusters which can be seen in this plot

(b) Visualization of the latent space attached to the proposed architecture model for observation L632613.
Aside from a few autocorrelations grouped together, the vast majority of the data appears to be grouped
in a large indistinct clump.

Figure 4.2.2: Showing the same t-SNE plots as earlier in Figure 4.2.1, but this time the points are
replaced by images of the corresponding baselines showing the correlation of visual and semantic
similarity in the data.

CHAPTER 4. RESULTS 53

which we can tell apart as well as several groupings of somewhat less clear cut visual features. For
L632613, however there appears to be a much less clear cut latent space shape. Despite this, in the
points example we can see some denser regions emerging in the embedding space. This becomes
less apparent in the image plot where the images make a fine-grained view of the densities nearly
impossible. Some features appear to stay distinct even in this observation. These samples appear to
be autocorrelation baselines.
Already it is apparent from these visualizations that the longer time scale observations are not as
feature rich. This may imply that many of the important features for separation lie in a somewhat
shorter time-scale. While many similar features in L632613 still seem to group vaguely together, this
effect is much more prominent in the case of L620490 where there appear to be extremely clear small
groupings of very specific feature combinations. We make a further inspection of these regions using
an application specifically developed for data inspection. In this application we show a bounding
lasso around a selection of points in the t-SNE plot and the top three baseline spectrograms from
that collection of selected points. Examples of this being used to inspect some of the smaller distinct
clusters in the L620490 observation embedding space can be seen in Figure 4.2.6. The two distinct
clusters selected in Figures 4.2.3a and 4.2.3b show quite clearly that the groupings in this region focus
on the frequency of the overarching features. Inspecting other clusters shows that things like partial
data loss (which was not caught in the overall labelling effort) show up in distinct clusters as well.

(a) Distinct cluster with very low-frequency features inspected in L620490 t-SNE embedding.

(b) Different distinct cluster with much higher frequency features inspected in the t-SNE embedding.

Figure 4.2.3: Showing the same t-SNE plot as shown above in Figure 4.2.1a side by side with a
selection of points from there shown in full scale images for inspection. See selection box on the left,
images shown on the right.

Examining also the latent space drawn from observation L632613 in the same way, we can see that
similar regions do indeed group similar features, but it is hard to pick up boundaries between various
conditions. Figure 4.2.4 shows one selection of a dense region in L632613. Selecting larger areas
around these denser points however, shows a much more chaotic picture indicating again that the
boundaries in these areas are not very strictly defined at all. The baselines corresponding to autocor-
relation seem to be the most similar to how they appear in L620490 in that they are the only ones
distinctly sequestered from the general data population.
Overall the closer manual inspection of all the models latent spaces reveals similar findings for both

CHAPTER 4. RESULTS 54

Figure 4.2.4: Dense region of L632613 inspected. Showing fewer signs of similarity between the top
3 results than L620490 earlier.

observations. L620490 groups certain items into a few large clusters of similar data and many smaller
outlying clusters which show very distinctive features between each cluster. By contrast, observation
L632613 seems to always form less distinct boundaries between various feature groups. Subjectively
speaking it appears that the models with the best reconstruction loss performance make for the best
embeddings, at least insofar as this can be judged when the original data sits behind 2 layers of
abstraction (namely an auto-encoder, then t-SNE).

4.2.2 Unsupervised Clustering Evaluation
To begin with, we treat the found latent space as a data mining problem. For this, we apply two
clustering methods through which we attempt to find the optimal partitioning of the latent space in
order to best describe the underlying data. This is done in an attempt to find a number of relevant
features which could then be exploited in the further description of the data. Applied are k-means
clustering and Gaussian mixture modelling, then on each of the found clustering partitions defined by
the fit models, we apply either the Silhouette Statistic or the Bayesian Information Criterion (BIC).
In each of the conditions, the true clustering solution is assumed to be somewhere between 2 and 50
distinct clusters, meaning that this is the range for which we test each of the methods below. Testing
outside of this range becomes extremely slow and unwieldy for the Gaussian mixture models, making
this the primary restriction on the numbers of clusters tested.

k-means clustering

As a basis for the unsupervised evaluation of the latent embeddings, we apply the fastest and most
basic clustering algorithm, namely k-means clustering. To evaluate the quality of the clustering we
use the mean silhouette score overall for the entire dataset. For a few selected models, we additionally
show the per-point scores in order to show more detail. This aids in showing which clusters in either
observation are most distinct.
Average silhouette scores can be seen per observation condition in Figure 4.2.5. From this plot it
can easily be seen that there is no very distinct winner for the number of clusters in an arrangement
for any of the three observation conditions. In the case of the L620490 observation there appears to
be a section around 18 clusters where both ICA and the basic 2D auto-encoder agree on the optimal
number of clusters. After this point the near monotonic increase in the silhouette score indicates it is
likely that only the model complexity further contributes to increasing the score. In the plots shown
in Figure 4.2.5 higher score indicates better performance.
In data for observation L620490 the performance of the auto-encoder models seems to follow roughly
their earlier reconstruction losses where better reconstruction loss seems to lead to better groupings
under k-means. ICA briefly tops the charts, then becomes erratic and unstable before settling at

CHAPTER 4. RESULTS 55

(a) Silhouette scores per condition for L620490 (b) Silhouette scores per condition for L632613

(c) Silhouette scores per condition for Aggregate

Figure 4.2.5: Presenting the silhouette scores based on the k-means clustering partitions for each of
the three conditions in the dataset. Higher is better. The plots show very high average scores at lower
k. Some models, such as ICA and VAE also show quite high levels of instability over the range of
data conditions.

the lowest average score. Notably for L632613, ICA performs markedly worse than the rest of the
methods and this translates into the joint embedding space as well in the aggregate condition. The
other notable oddity in the chart is the high degree of instability which the VAE model experiences in
the L632613 observation’s embedding. While this instability carries over to the aggregate condition
it appears at a higher k possibly giving away at least information about the relative quality of the two
sets of data.
For further investigation we pick out a few of the models and analyze their silhouette scores on a
per-point basis. To do this we pick out the silhouette plots of the basic 2D auto-encoder with 18
clusters for the L620490 observation, the silhouette plot with 4 clusters for the VAE case in the
L632613 observation and lastly the silhouette plot of our proposed architecture with 26 clusters for
the aggregate observation case. These plots are shown in Figures 4.2.6a 4.2.6b and 4.2.6c. This
is done because the average silhouette scores presented in the previous plots show only part of the
picture, the overall score. However we can use the per-point silhouette scores to examine each of the
latent spaces and see if there are clusters which are nevertheless solidly grounded and separated from
the rest of the data despite the average score over the dataset not indicating anything of value.
The silhouette scores in these trials show rather different things for the different observations. First,
observation L620490 shows that the small distinct clusters of features are being identified, however

CHAPTER 4. RESULTS 56

(a) Per-point silhouette score with cluster membership for k = 18 and t-SNE embedding
of L620490 using Only2D model latent space.

(b) Per-point silhouette score with cluster membership for k = 4 and t-SNE embedding
of L632613 using VAE model latent space.

(c) Per-point silhouette scores with cluster membership for k = 26 and t-SNE embedding
of the aggregate observations using our proposed model’s generated latent space. The
large dark blue blob notably contains the entirety of L632613 separated from L620490.

Figure 4.2.6: Selected silhouette scores for clustering conditions covering each of the three observa-
tions, the two original separate ones and the aggregate set. Red lines in the plots indicate the average
silhouette score which is then reported also in the Figure 4.2.5 above.

CHAPTER 4. RESULTS 57

in batches rather than individually. It is also rather evident that there are two somewhat troublesome
clusters of data which are indistinct in this case as well. They can be seen in Figure 4.2.6a as clusters
0 and 1 with near zero or even negative silhouette scores for member points, the most distinctly
egregious clusters of this lot. Second, in Figure 4.2.6b we can see that where observation L632613
is concerned the results become rather strange. In the case of the VAE model, we find in the latent
space that 4 clusters seems to fit best according to the silhouette score, however this manifests as
simple grouping of almost all the data in a single large cluster and the exclusion of some smaller
clusters all of which appear to be very poorly defined. Of course, here is where some of the pitfalls
of t-SNE show through, where it is a generally reliable method for learning a projection by which to
represent the data in lower dimensional space, however here the shape of the clusters does not seem
to match what the silhouette score shows very closely. Lastly the aggregate case seems to de-mystify
this somewhat by showing that largely observation L632613 forms an entirely distinct cluster when
joined with the rest of the data. Then the smaller clusters of distinct features once again spring up
in the surrounding area. Finally this shows that picking the highest silhouette score is not always
favourable, which makes this a somewhat unreliable evaluation method.

(d) BIC scores per condition for L620490 (e) BIC scores per condition for L632613

(f) BIC scores per condition for Aggregate

Figure 4.2.6: Presenting the Bayesian Information Criterion scores based on the Gaussian mixture
modelling partitions for each of the three conditions in the dataset. Lower is better. Of particular note
are the very stable scores for L620490 and the extreme instability of SWAE in both the L632613 and
Aggregate conditions.

CHAPTER 4. RESULTS 58

Gaussian Mixture Modelling

With a latent size of 320 for our proposed architecture and 256 for the rest of the methods, we find our-
selves right at the limit of what Guassian Mixtures can handle (See 2.6.2 for clarification). Compared
to the faster k-means, this method may be able to tell us more about the underlying data.
Following the model fitting procedure, we use this to compute the partitioning scheme by assigning
each point to its most likely parent distribution. This partitioning scheme is then used to determine the
BIC score for a particular set of components. BIC adds a penalty term for model complexity (number
of components) meaning that the lower the score is the better.
Results of this evaluation can be seen in Figure 4.2.6. In the lower time-scale observation (L620490)
While Gaussian mixtures are generally a more robust clustering method than k-means given its greater
flexibility to find odd shapes in the data, it is far less scalable and almost not appropriate at all in the
case of the data which we find ourselves dealing with here. The 256 dimensional data and especially
the 320 dimensional data associated with our proposed architecture is reaching the limit of what
can and should be processed with Gaussian Mixture Modelling. Refer back to Section 2.6.2 for
clarification on how data dimensionality impacts the computational complexity of a model fit in a
cubic relationship. Components are not equivalent to clusters in k-means, however in the case of this
problem where we are trying to find overlapping attributes in the data space, Gaussian Mixtures may
prove to be more useful in determining points which have a chance of being drawn from more than
one distribution. To evaluate this method using the Bayesian Information Criterion, we still make a
hard partition where we assign points to the distribution it is most likely to have been drawn from,
however. In an inversion of the previous plots associated with k-means and the silhouette statistic,
here the BIC score indicates a better model when it is lower rather than higher. This is because BIC
penalizes the model quite heavily on increased complexity as can be seen by the monotonic increase
of the score as the number of components grows. Starkly contrasting with the previous method,
ICA in this case on the L620490 observation appears as a linear plot with its lowest point being the
2 component condition, then continuing with nearly no variation until coming to rest near 0 at 50
components. Either this is an indication that the solution should be given by one single component
here or this statistic is not well applied to this problem. The proposed architecture stands out here
for one particular reason, this being that with increased model complexity the degradation in BIC
score happens the fastest. Whereas the BIC scores initially are comparable with the variational auto-
encoder architecture, they are barely comparable with the simple 2D architecture here. Because of
how heavily the model complexity is penalized in the BIC statistic however, this different rate of
increase may be adequately explained by the additional 64 dimensions in the proposed architecture’s
latent space.

4.2.3 Classifier Evaluation
In addition to the unsupervised evaluation, the labels as defined in Section 3.3 are leveraged for
supervised evaluation. The simple classifiers are trained on the labels and the embedding outputs of
each of the models. For the classification, we select the Random Forest model and a Gaussian Naive
Bayes models as our classifiers. As explained previously, the labels are multi-attribute, meaning that
each point may have one or more label classes assigned to it. These classifiers are chosen because
they are both able to deal with multi-attribute data. In both cases this means that in the background the
classifier is configured as a ’one vs rest’ discriminator per class. The evaluation is done by splitting
the labels and data up using a stratified split which is necessary because of the enormous label class
imbalance. Once again see Section 3.3 for details. In the end there are sufficient samples to do a
5-fold cross validation the results of which are reported in Tables 4.1, 4.3 and 4.4.

CHAPTER 4. RESULTS 59

Table 4.1: Classifier performance in % accuracy

Embedding Random Forest Naive Bayes

L620490
ICA 91.17±1.1 35.23±2.0
Only2D 92.96±0.3 44.26±0.8
SWAE 90.95±0.9 67.08±0.4
VAE 93.26±0.4 43.86±3.1
Ours 92.89±0.3 59.39±1.5

L632613
ICA 40.21±1.1 28.16±1.9
Only2D 48.55±0.8 22.82±7.6
SWAE 42.24±0.4 21.19±1.6
VAE 49.51±0.4 14.62±0.9
Ours 47.57±1.1 40.09±4.9

Aggregate
ICA 66.3±0.8 30.44±1.2
Only2D 64.62±0.6 17.43±0.8
SWAE 60.2±0.6 42.21±0.4
VAE 64.59±0.5 11.69±0.2
Ours 65.03±0.7 27.97±0.4

Table 4.1 demonstrates the performance of the classifiers across different embeddings. The Random
Forest classifier’s accuracy ranged between 40.21±1.1 (ICA for L632613) to 93.26±0.4 (VAE for
L620490), while the Naive Bayes classifier exhibited a wider range of 14.62±0.9 (VAE for L632613)
to 67.08±0.4 (SWAE for L620490). The aggregate accuracy shows ICA leading with 66.3±0.8 in
Random Forest and SWAE leading with 42.21±0.4 in Naive Bayes. Our proposed method performs
above average in the L620490 condition under GNB (59.39±1.5) and beats other methods in L632613
with the same classifier by a comfortable margin (40.09±4.9) performing less favourably in the joint
observation condition. Its performance in the RF classifier condition is consistently above average,
however never reaching the top.

Table 4.2: Total averages over all classifier and observation performance conditions.

Model Total Average
ICA 48.59±1.4
Only2D 48.44±1.8
SWAE 53.98±0.7
VAE 46.26±0.9
Ours 55.49±1.5

Considering the average performances over all data and classifier conditions, we arrive at the figures
presented in Table 4.2. Here we show that overall our method is the most well rounded, though not

CHAPTER 4. RESULTS 60

by a significant margin.
From the tables, it is evident that the Random Forest classifier consistently outperforms the Gaussian
Naive Bayes classifier. For instance, in the Aggregate section, the Random Forest classifier’s lowest
accuracy is 60.2±0.6 (SWAE) compared to Naive Bayes’ 11.69±0.2 (VAE). This performance dif-
ference is likely due to the Naive Bayes’ assumption of independence in features, a condition not met
in all models.
The Sliced Wasserstein Auto-Encoder (SWAE) appears to be the most compatible with the Bayesian
classifier, with a remarkable performance of 67.08±0.4 in L620490. This is closely followed by the
proposed method (59.39±1.5), though it falls behind in the aggregate case (27.97±0.4), still outper-
forming the basic 2D auto-encoder (17.43±0.8) and VAE (11.69±0.2). The SWAE’s enforcement of
an N-variate Gaussian distribution on the latent space seems to synergize well with the Naive Bayes’
assumption of Gaussian feature distribution.

Table 4.3: Table showing the F1 Scores for the Random Forest classifier for each algorithm and
condition. Where a user assigned label is not present, no observations containing it are present at the
time.

Label Instances ICA Only2D SWAE VAE Ours Average
L620490

Autocorrelation 132 0.13 0.91 0.37 0.91 0.89 0.64
Data Loss 678 0.96 1.00 1.00 1.00 1.00 0.99
Decorrelation 344 0.41 0.61 0.40 0.64 0.63 0.54
Source Structure 2438 0.96 1.00 0.98 1.00 1.00 0.99
Vert. Artifacting 70 0.57 0.28 0.67 0.42 0.25 0.33

L632613
RFI High 2300 0.76 0.77 0.74 0.76 0.78 0.76
Autocorrelation 124 0.91 0.99 0.89 0.93 0.97 0.94
CB Artifacting 1130 0.09 0.39 0.29 0.48 0.38 0.33
Source Structure 3780 1.00 1.00 1.00 1.00 1.00 1.00

Aggregate
RFI High 2318 0.65 0.74 0.59 0.72 0.71 0.68
Autocorrelation 256 0.8 0.94 0.84 0.92 0.93 0.89
CB Artifacting 1130 0.01 0.31 0.29 0.37 0.35 0.27
Data Loss 678 1.00 1.00 1.00 1.00 1.00 1.00
Decorrelation 346 0.59 0.64 0.30 0.62 0.61 0.55
Source Structure 6218 0.98 1.00 0.99 1.00 1.00 0.99
Vert. Artifacting 70 0.20 0.03 0.00 0.03 0.17 0.09

The F1 scores further support these findings. Table 4.3 shows high consistency in Random Forest,
with the Source Structure label maintaining a 0.99 average across different observation conditions.
The Naive Bayes classifier, however, shows more variability as seen in Table 4.4, where the scores
for Autocorrelation fluctuate from 0.13 (ICA) to 0.38 (Ours) in L620490.
In general the F1 scores show a more granular overview of the classifier performance. This also
gives an insight into how well label classes are defined within the dataset. As already mentioned, the

CHAPTER 4. RESULTS 61

Table 4.4: Table showing the F1 scores reported per label class for each of the conditions using a Naive
Bayes classifier. Where no label is assigned, no item with that label appears in the set considered.
Note that the ’vertical’ and ’checkerboard’ artifacts are exclusive to the long time-span observation
L632713

Label Instances ICA Only2D SWAE VAE Ours Average
L620490

Autocorrelation 132 0.13 0.18 0.37 0.14 0.38 0.24
Data Loss 678 0.96 1.00 1.00 1.00 1.00 0.99
Decorrelation 344 0.41 0.34 0.4 0.35 0.32 0.36
Source Structure 2438 0.96 0.95 0.98 0.96 0.95 0.96
Vert. Artifacting 70 0.57 0.68 0.67 0.69 0.50 0.62

L632613
RFI High 2300 0.61 0.71 0.6 0.43 0.51 0.57
Autocorrelation 124 0.96 0.21 0.24 0.08 0.83 0.46
CB Artifacting 1130 0.47 0.35 0.39 0.42 0.41 0.41
Source Structure 3780 1.00 0.93 0.94 0.45 0.99 0.86

Aggregate
RFI High 2318 0.73 0.66 0.55 0.54 0.65 0.63
Autocorrelation 256 0.21 0.27 0.46 0.09 0.63 0.33
CB Artifacting 1130 0.45 0.4 0.38 0.31 0.4 0.39
Data Loss 678 0.92 1.00 1.00 1.00 1.00 0.98
Decorrelation 346 0.44 0.21 0.37 0.23 0.23 0.30
Source Structure 6218 0.98 0.97 0.97 0.59 0.99 0.90
Vert. Artifacting 70 0.04 0.03 0.29 0.04 0.03 0.09

Source Structure label class is very well defined throughout, or simply widely enough applicable with
enough examples available to be easily classifiable. Both classifiers and all methods show a very high
F1 score for this class label, averaging at 0.99. Data loss is another well defined class of which fewer
examples are available. Looking back to the data inspection portion of the evaluation, data loss is
visible in its own compact and distinct grouping in Figure 4.2.2a.
Decorrelation seems very well defined according to the RF classifier with an average F1 score of
0.89 where this score is 0.36 for the GNB classifier. Similarly the Autocorrelation condition appears
to depend heavily on the method applied regarding its exact performance. Notably ICA and VAE
perform consistently poorly in this category.

Chapter 5

Discussion

This thesis proposes a novel cascading auto-encoder to deal specifically with oddities in spectral
LOFAR data. The adaptation focuses on picking up high frequency features in both the time and
frequency domains separately. Finally with the results presented in the previous chapter, we have the
means to give an answer to the question posed at the start of this work. Namely, what is the best visual
representation learning method to apply to spectral data in order to facilitate downstream tasks such
as data inspection, label propagation, anomaly detection and classification? This section first goes
through a brief interpretation of the results seen in the previous chapter, focusing most strongly on
the classifier results. This analysis is used to answer the research questions posed in the introduction.
Following this, a few discussion points are raised about the methodology comparing it to related work.
Lastly we present a critique of of the applied methodologies and give pointers for further research.

5.1 Visual Inspection
Visually inspecting the data is certainly an unusual way to start model evaluation. Given that part of
the task of this project concerns data inspection as well as potential for further labelling using such
visual means it is salient to explore. As shown in Figures 4.2.2a and 4.2.2b, our proposed method
shows some promise regarding data inspection tasks. Specifically with the L620490 observation, the
abundance of distinct cluster groupings as further elaborated on in Figure 4.2.6 makes clear that we
have a good starting point for building this zoo of artifacts. Which may combine user expertise and
simple visual features to create a more extensive labelled dataset for further study. In Figure 4.2.4
we show that this does not hold quite as robustly for longer time-scale observations such as L632613.
This does not preclude such methods from being applied anyways with some more manual effort
involved.

5.2 Clustering Validity Indices
In the clustering evaluation, we see that while the visual inspection and t-SNE appear to very strongly
map certain features and groups together, clustering appears to struggle with creating sensible parti-
tions of the subspaces. In addition to gaining some more insight into the data as well as the problem
of the curse of dimensionality, we may glean some relative model performance from this analysis.
In particular, ICA and VAE appear to experience some stability issues in the silhouette score case.
Something similar occurs with SWAE when performing the BIC analysis on the Gaussian mixture
models. Showing extreme levels of instability where other methods experience only minor fluctu-
ations. Neither of these analyses show any conclusive evidence for the correct number of clusters

62

CHAPTER 5. DISCUSSION 63

or components being in the range of 2 to 50. Overall this points to difficulties using such methods
to perform unsupervised analysis on the LOFAR dataset embedded in this way. Specifically certain
anomaly detection methods relying on unsupervised methods may struggle to accurately identify the
relevant data, for example.

5.3 Classification
Evaluation using the GNB and RF classifiers represents the core of the quantitative analysis performed
in this thesis work. The classification performance is shown in the results over five folds of cross
validation with stratified data splitting to account for the highly unbalanced classes. This provides
enough data to be able to say something concrete about both the data and the methods employed.
The overall poorer performance of all the classification tasks on the L632613 observation shows that
the longer time scale observation with more data lost in the downsampling procedure no longer retains
good enough feature density to make for good embeddings. See Table 4.1 for the general classifier
performance comparison. Some confirmation at least for the separate nature of the two observations
in the latent space is shown by 3 of the 5 methods attaining the best silhouette score in the k-means
clustering task at just 2 clusters. While the joint embedding still shows solid performance, it is
clear from Tables 4.3 and 4.4 that the performance is largely held up by the rather ubiquitous source
structure class which appears well delineated in both sets of data.
Comparing the performance of the RF and GNB classifiers against each other with the same models
on the same dataset, we observe some differences. GNB performs markedly worse in all but two
cases. This can be seen by considering the averages per label class in Tables 4.3 and 4.4, as well
as per model condition in Table 4.1. This is likely due to the more stringent assumptions that GNB
makes about the underlying data [67] which RF does not make. The other notable difference here
may be the greater number of parameters and flexibility of the RF model.
ICA’s performance in the classification tasks is middling overall, though it does outperform all other
methods in the aggregate data condition using the RF classifier. It is somewhat surprising to see the
only method which does not rely on deep learning achieve this score. In the aggregate condition,
even its average score across both classifiers is impressive showing that, despite relatively poor per-
formance on L632613 and middle of the pack performance on L620490, it is somehow able to cope
well with the combination of both. The F1 scores however, show the method struggling quite a bit to
cope with certain rather distinct classes such as autocorrelations.
Our baseline 2D auto-encoder model performs remarkably well through the categories, showing that
solid reconstruction convergence goes a very long way to solving the classification problem. Despite
this, it does not clearly take the lead in any of the dataset or classifier conditions. This reinforces
the idea that the regularization and choice of secondary target are equally important in this problem
space.
Because of GNB’s assumption that the features follow a Gaussian distribution, the subspaces cre-
ated by SWAE appear to fit it best in 2 of the 3 dataset conditions. Surprisingly, with L632613, our
method outperforms SWAE. This is where SWAE has what appears to be uncharacteristically low
performance. This is corroborated by the strange instabilities in the BIC plot for the same observation
condition. It is unclear if this is due to the combination of SWAE’s least ideal reconstruction loss con-
vergence point and observation L632613’s over-compressed features or because of its regularization
conditions.
Largely our method performs above average in most label categories only dipping below the method
average score in the vertical artifacting class in both GNB and RF cases. Using the GNB classifier,
we note this below-average performance also in over half the label classes in L620490, the RFI high

CHAPTER 5. DISCUSSION 64

condition in L632613. The poor comparative performance with regards to the vertical artifacting
label class is rather surprising given that Figure 4.1.4 shows specifically an improvement in the re-
constructioni ability of vertical and horizontal elements after considering the base 2D reconstruction.
We noted that the base 2D auto-encoder’s performance comparatively mirrored its reconstruction loss
scores. We had hoped that this enhanced ability to reconstruct specific features would give our method
an advantage here.

5.4 Evaluating Representation Learning Methods for Spectral
LOFAR Data: Which Yields the Optimal Embeddings?

In our analysis of six different classification tasks, the proposed cascading auto-encoder method
achieved top classification accuracy only once, but it outperformed all other methods in overall aver-
age performance. This advantage, however, comes with a drawback—it is twice as computationally
intensive to train compared to other models, even more when accounting for the additional inference
that three separate auto-encoders leverage. Although this is somewhat offset by the sparsity con-
straint, the method’s reliance on the largest latent space representation indicates that it may not be the
ideal choice after all.
Variational Autoencoder (VAE) fares poorly overall due to its weak performance with the Gaussian
Naive Bayes (GNB) classifier but performs best under the Random Forest condition. The SWAE
model aligns well with the Naive Bayes classifier, as GNB’s assumptions align closely with the dis-
tribution that SWAE imposes on the latent dimension. Both VAE and SWAE exhibit some instability
during clustering tasks, but this is not a significant concern since clustering evaluation is less precise
than quantitative evaluation.
The baseline 2D auto-encoder illustrates the importance of latent constraints over achieving the best
absolute reconstruction loss, in achieving an optimal encoding. Independent Component Analysis
(ICA) deserves mention for its explainability, though it is also the least scalable and extendable. In
fact, our research pushed the method nearly to its limit where computational feasibility is concerned.
The final model selection depends on the specific goals. For a generative model, VAE is optimal; for
an easy-to-train model with softly enforced latent space boundaries, SWAE is preferred. If the aim is
to train a model on more data while maintaining a reasonably sized latent space, our proposed method
suggests further learning, at least in the 2D layers, may be possible for the cascading approach.
Addressing the second part of our research question, the somewhat inconclusive results from clus-
tering evaluations highlight the importance of proper application of these methods for understanding
data structure. To make substantial progress in evaluating self-supervised methods, a set of labeled
data is essential.

5.5 Comparison to Related Work
Previously work has been done on the problem of System Health Management with regards to LOFAR
data [18]. This method applies a VAE which, by contrast to our work, combines the use of both phase
and amplitude data obtained from observations. The method is trained on artificial data for evaluation
as opposed to creating a seed label set for future work. Furthermore, the data pre-processing, rather
than applying a pattern recognition approach (where absolute data positions are not preserved), the
authors apply interpolation to make the data fit into a fixed input size model. Overall, the end goals of
the two methodologies are aligned, we simply show that a different approach is also viable. The lack

CHAPTER 5. DISCUSSION 65

of a pre-existing labelled dataset makes comparative evaluation difficult, however it is hoped that this
work may push the envelope on that particular hurdle.

5.6 Limitations and Future Work
This section aims to outline the key challenges faced during this research and propose directions for
subsequent investigations. Being the second phase of an ongoing research endeavor, this study has
undoubtedly contributed to the field by introducing tools and techniques that facilitate faster and more
effective sample labeling. Nevertheless, this also leads us to the first significant limitation.
The scarcity of labels available for evaluating this research proved to be an obstacle. Though two
observations worth of labeled data allowed for some conclusions about the problem’s nature and the
models used, a larger quantity of labels would have undoubtedly led to more robust and conclusive
results. A feasible solution might include utilizing the data inspection tools developed in this work
to label large data portions rapidly. Achieving a balanced dataset may still remain a challenge due to
inherent distribution attributes, but the introduction of anomaly detection elements in this thesis work
anticipates issues like disbalanced classification and continuous system operation.
Regarding the clustering evaluation, a reconsideration of approaches may have been beneficial. Specif-
ically, discarding the poorly scaling Gaussian mixture modeling in favor of expanding the clustering
search with k-means clustering could be explored. However, high-dimensional spaces present the
curse of dimensionality, where traditional metrics such as Euclidean distance lose efficacy. Future
work may include exploring alternative distance measures, even though such efforts were not fruitful
in this research.
Expanding the training dataset further is another option. Given that the pattern recognition approach
seems to work rather well, the minimum data size requirement may be reduced and smaller patches
utilized instead in order to expand the pool of available data. This work explored self supervised
learning in broad strokes, applying several different and varied methods, future work may consider
exploring methods more in depth. Stronger sparsity constraints with appropriately picked pretext tasks
may yet yield better results. Rotation and jitter as methods of data augmentation may not be ideal
given the problem domain, however perhaps a contrastive loss method further exploring specifically
image plane coordinates may indeed be appropriate.
This thesis focuses strongly on visual methods and adapting them to the domain of spectral data. A
comparison to similarly sized sequence learning methods is a salient future direction as well. From
basic RNNs and LSTMs to more modern, Transformer-based approaches.

Bibliography

[1] Donghwoon Kwon et al. “A survey of deep learning-based network anomaly detection”. In:
Cluster Computing 22.1 (2019), pp. 949–961.

[2] Maarten Meire and Peter Karsmakers. “Comparison of deep autoencoder architectures for real-
time acoustic based anomaly detection in assets”. In: 2019 10th IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applica-
tions (IDAACS). Vol. 2. IEEE. 2019, pp. 786–790.

[3] Menno Liefstingh et al. “Interpretation of Deep Learning Models in Bearing Fault Diagnosis”.
In: Annual Conference of the PHM Society. Vol. 13. 1. 2021.

[4] Charu C Aggarwal. “An introduction to outlier analysis”. In: Outlier analysis. Springer, 2017,
pp. 1–34.

[5] “Novelty Detection”. In: Network Security 2003.3 (2003). 18, pp. 18–19. ISSN: 1353-4858.
DOI: 10.1016/S1353-4858(03)00313-1. URL: https://doi.org/10.1016/S1353-
4858(03)00313-1.

[6] Markos Markou and Sameer Singh. “Novelty detection: a review—part 2:: neural network
based approaches”. In: Signal Processing 83.12 (2003), pp. 2499–2521. ISSN: 0165-1684.
DOI: https : / / doi . org / 10 . 1016 / j . sigpro . 2003 . 07 . 019. URL: http : / / www .
sciencedirect.com/science/article/pii/S0165168403002032.

[7] Elaine R. Faria et al. “Novelty detection in data streams”. In: Artificial Intelligence Review :
An International Science and Engineering Journal 45.2 (2016). 235, pp. 235–269. ISSN: 0269-
2821. DOI: 10.1007/s10462-015-9444-8. URL: https://doi.org/10.1007/s10462-
015-9444-8.

[8] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013.
arXiv: 1301.3781 [cs.CL].

[9] Wikipedia. List of radio telescopes — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=List%20of%20radio%20telescopes&oldid=1109817148. [On-
line; accessed 22-November-2022]. 2022.

[10] W. N. Brouw. “Aperture Synthesis”. In: Image Processing Techniques in Astronomy. Ed. by C.
De Jager and H. Nieuwenhuijzen. Dordrecht: Springer Netherlands, 1975, pp. 301–307. ISBN:
978-94-010-1881-4.

[11] van Haarlem, M. P. et al. “LOFAR: The LOw-Frequency ARray”. In: A&A 556 (2013), A2.
DOI: 10.1051/0004-6361/201220873. URL: https://doi.org/10.1051/0004-6361/
201220873.

[12] James J. Condon and Scott M. Ransom. Essential Radio Astronomy. en. Google-Books-ID:
Jg6hCwAAQBAJ. Princeton University Press, Apr. 2016. ISBN: 978-1-4008-8116-1.

66

https://doi.org/10.1016/S1353-4858(03)00313-1
https://doi.org/10.1016/S1353-4858(03)00313-1
https://doi.org/10.1016/S1353-4858(03)00313-1
https://doi.org/https://doi.org/10.1016/j.sigpro.2003.07.019
http://www.sciencedirect.com/science/article/pii/S0165168403002032
http://www.sciencedirect.com/science/article/pii/S0165168403002032
https://doi.org/10.1007/s10462-015-9444-8
https://doi.org/10.1007/s10462-015-9444-8
https://doi.org/10.1007/s10462-015-9444-8
https://arxiv.org/abs/1301.3781
http://en.wikipedia.org/w/index.php?title=List%20of%20radio%20telescopes&oldid=1109817148
http://en.wikipedia.org/w/index.php?title=List%20of%20radio%20telescopes&oldid=1109817148
https://doi.org/10.1051/0004-6361/201220873
https://doi.org/10.1051/0004-6361/201220873
https://doi.org/10.1051/0004-6361/201220873

BIBLIOGRAPHY 67

[13] S Yatawatta et al. “Initial deep LOFAR observations of epoch of reionization windows-I. The
north celestial pole”. In: Astronomy & Astrophysics 550 (2013), A136.

[14] V Jelić et al. “Initial LOFAR observations of epoch of reionization windows-II. Diffuse polar-
ized emission in the ELAIS-N1 field”. In: Astronomy & astrophysics 568 (2014), A101.

[15] George Heald, John McKean, Roberto Pizzo, et al. “Low Frequency Radio Astronomy and the
LOFAR Observatory”. In: Springer International Publishing, doi 10 (2018), pp. 978–3.

[16] Rainer Beck, Marcus Brueggen, and Heino Falcke. “Lofar”. In: Astronomische Nachrichten
326.7 (2005), pp. 607–623. DOI: 10.1002/asna.200585007. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/asna.200585007. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/asna.200585007.

[17] AR Offringa et al. “A LOFAR RFI detection pipeline and its first results”. In: arXiv preprint
arXiv:1007.2089 (2010).

[18] Michael Mesarcik et al. “Deep learning assisted data inspection for radio astronomy”. In:
Monthly Notices of the Royal Astronomical Society 496.2 (2020). 1517, pp. 1517–1529. ISSN:
0035-8711. DOI: 10.1093/mnras/staa1412. URL: https://doi.org/10.1093/mnras/
staa1412.

[19] David R DeBoer et al. “Hydrogen epoch of reionization array (HERA)”. In: Publications of
the Astronomical Society of the Pacific 129.974 (2017), p. 045001.

[20] Christian Jutten and Juha Karhunen. “Advances in blind source separation (BSS) and inde-
pendent component analysis (ICA) for nonlinear mixtures”. In: International journal of neural
systems 14.05 (2004), pp. 267–292.

[21] NRAO. Very large array. Mar. 2023. URL: https://public.nrao.edu/telescopes/VLA/.

[22] Wikipedia. Westerbork Synthesis Radio Telescope — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Westerbork%20Synthesis%20Radio%
20Telescope&oldid=1127679637. [Online; accessed 25-May-2023]. 2023.

[23] A Richard Thompson, James M Moran, and George W Swenson. Interferometry and synthesis
in radio astronomy. Springer Nature, 2017.

[24] T.J. Dijkema. LOFAR interferometry demonstration video. [Video Presentation]. ASTRON,
2015.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems. Ed.
by F. Pereira et al. Vol. 25. Curran Associates, Inc., 2012. URL: https://proceedings.
neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[26] Martin Thoma. A Survey of Semantic Segmentation. 2016. DOI: 10.48550/ARXIV.1602.
06541. URL: https://arxiv.org/abs/1602.06541.

[27] MA Syakur et al. “Integration k-means clustering method and elbow method for identifica-
tion of the best customer profile cluster”. In: IOP conference series: materials science and
engineering. Vol. 336. 1. IOP Publishing. 2018, p. 012017.

[28] M Rehbein, P Sahle, and T Schaßan. “Codicology and Palaeography in the Digital Age”. In:
Norderstedt: Schriften des Instituts für Dokumentologie und Editorik. Recuperado de http://kups.
ub. uni-koeln. de/2939/el 20.02 (2009), p. 2017.

https://doi.org/10.1002/asna.200585007
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asna.200585007
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asna.200585007
https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.200585007
https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.200585007
https://doi.org/10.1093/mnras/staa1412
https://doi.org/10.1093/mnras/staa1412
https://doi.org/10.1093/mnras/staa1412
https://public.nrao.edu/telescopes/VLA/
http://en.wikipedia.org/w/index.php?title=Westerbork%20Synthesis%20Radio%20Telescope&oldid=1127679637
http://en.wikipedia.org/w/index.php?title=Westerbork%20Synthesis%20Radio%20Telescope&oldid=1127679637
http://en.wikipedia.org/w/index.php?title=Westerbork%20Synthesis%20Radio%20Telescope&oldid=1127679637
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.48550/ARXIV.1602.06541
https://doi.org/10.48550/ARXIV.1602.06541
https://arxiv.org/abs/1602.06541

BIBLIOGRAPHY 68

[29] Giovanna Menardi. “Density-based Silhouette diagnostics for clustering methods”. In: Statis-
tics and Computing 21.3 (2011), pp. 295–308.

[30] Svante Wold, Kim Esbensen, and Paul Geladi. “Principal component analysis”. In: Chemomet-
rics and intelligent laboratory systems 2.1-3 (1987), pp. 37–52.

[31] Andrew J Calder et al. “A principal component analysis of facial expressions”. In: Vision Re-
search 41.9 (2001), pp. 1179–1208. ISSN: 0042-6989. DOI: https://doi.org/10.1016/
S0042-6989(01)00002-5. URL: https://www.sciencedirect.com/science/article/
pii/S0042698901000025.

[32] Pierre Comon. “Independent component analysis, a new concept?” In: Signal processing 36.3
(1994), pp. 287–314.

[33] Jan Melchior, Nan Wang, and Laurenz Wiskott. “Gaussian-binary restricted Boltzmann ma-
chines for modeling natural image statistics”. In: PloS one 12.2 (2017), e0171015.

[34] Abdulhamit Subasi and M Ismail Gursoy. “EEG signal classification using PCA, ICA, LDA
and support vector machines”. In: Expert systems with applications 37.12 (2010), pp. 8659–
8666.

[35] Alon Vinnikov and Shai Shalev-Shwartz. “K-means recovers ICA filters when independent
components are sparse”. In: International Conference on Machine Learning. PMLR. 2014,
pp. 712–720.

[36] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.” In: Journal of
machine learning research 9.11 (2008).

[37] Donald F Specht et al. “A general regression neural network”. In: IEEE transactions on neural
networks 2.6 (1991), pp. 568–576.

[38] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of
the IEEE 86.11 (Nov. 1998), pp. 2278–2324. ISSN: 00189219. DOI: 10.1109/5.726791. URL:
http://ieeexplore.ieee.org/document/726791/ (visited on 07/26/2023).

[39] D. Psaltis, A. Sideris, and A.A. Yamamura. “A multilayered neural network controller”. In:
IEEE Control Systems Magazine 8.2 (Apr. 1988), pp. 17–21. ISSN: 0272-1708. DOI: 10.1109/
37.1868. URL: http://ieeexplore.ieee.org/document/1868/ (visited on 07/26/2023).

[40] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133.

[41] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and organi-
zation in the brain.” In: Psychological review 65.6 (1958), p. 386.

[42] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent Neural Nets
and Problem Solutions”. In: International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 06.02 (Apr. 1998). Publisher: World Scientific Publishing Co., pp. 107–116.
ISSN: 0218-4885. DOI: 10.1142/S0218488598000094. URL: https://www.worldscientific.
com/doi/abs/10.1142/s0218488598000094 (visited on 07/27/2023).

[43] Sergio Bermejo and Joan Cabestany. “Oriented principal component analysis for large margin
classifiers”. en. In: Neural Networks 14.10 (Dec. 2001), pp. 1447–1461. ISSN: 0893-6080. DOI:
10.1016/S0893-6080(01)00106-X. URL: https://www.sciencedirect.com/science/
article/pii/S089360800100106X (visited on 07/27/2023).

https://doi.org/https://doi.org/10.1016/S0042-6989(01)00002-5
https://doi.org/https://doi.org/10.1016/S0042-6989(01)00002-5
https://www.sciencedirect.com/science/article/pii/S0042698901000025
https://www.sciencedirect.com/science/article/pii/S0042698901000025
https://doi.org/10.1109/5.726791
http://ieeexplore.ieee.org/document/726791/
https://doi.org/10.1109/37.1868
https://doi.org/10.1109/37.1868
http://ieeexplore.ieee.org/document/1868/
https://doi.org/10.1142/S0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/s0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/s0218488598000094
https://doi.org/10.1016/S0893-6080(01)00106-X
https://www.sciencedirect.com/science/article/pii/S089360800100106X
https://www.sciencedirect.com/science/article/pii/S089360800100106X

BIBLIOGRAPHY 69

[44] Clark R. Givens and Rae Michael Shortt. “A class of Wasserstein metrics for probability
distributions.” en. In: Michigan Mathematical Journal (Jan. 1984). DOI: 10 . 1307 / mmj /
1029003026. URL: https://www.scinapse.io/papers/2040104067 (visited on 05/22/2023).

[45] Julien Rabin et al. “Wasserstein Barycenter and Its Application to Texture Mixing”. In: Scale
Space and Variational Methods in Computer Vision. Ed. by Alfred M. Bruckstein et al. Vol. 6667.
Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 435–446. ISBN: 978-3-642-24784-2 978-3-642-24785-9. DOI: 10.1007/978-
3-642-24785-9_37. URL: http://link.springer.com/10.1007/978-3-642-24785-
9_37 (visited on 05/22/2023).

[46] Sloan Nietert et al. Statistical, Robustness, and Computational Guarantees for Sliced Wasser-
stein Distances. en. arXiv:2210.09160 [cs, stat]. Oct. 2022. URL: http://arxiv.org/abs/
2210.09160 (visited on 05/22/2023).

[47] Soheil Kolouri et al. Generalized Sliced Wasserstein Distances. en. arXiv:1902.00434 [cs, stat].
Feb. 2019. URL: http://arxiv.org/abs/1902.00434 (visited on 05/22/2023).

[48] I. Csiszar. “I-Divergence Geometry of Probability Distributions and Minimization Problems”.
In: The Annals of Probability 3.1 (Feb. 1975). ISSN: 0091-1798. DOI: 10.1214/aop/1176996454.
URL: https://projecteuclid.org/journals/annals-of-probability/volume-3/
issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-
Problems/10.1214/aop/1176996454.full (visited on 05/23/2023).

[49] Quoc Le et al. “ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning”.
In: Advances in Neural Information Processing Systems. Ed. by J. Shawe-Taylor et al. Vol. 24.
Curran Associates, Inc., 2011. URL: https://proceedings.neurips.cc/paper_files/
paper/2011/file/233509073ed3432027d48b1a83f5fbd2-Paper.pdf.

[50] Kaiming He et al. Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs]. Dec.
2015. DOI: 10.48550/arXiv.1512.03385. URL: http://arxiv.org/abs/1512.03385
(visited on 07/29/2023).

[51] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. “Enhancing sparsity by reweighted
1 minimization”. In: Journal of Fourier analysis and applications 14 (2008), pp. 877–905.

[52] Shibani Santurkar et al. “How Does Batch Normalization Help Optimization?” In: Advances
in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates,
Inc., 2018. URL: https://proceedings.neurips.cc/paper_files/paper/2018/file/
905056c1ac1dad141560467e0a99e1cf-Paper.pdf.

[53] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. “Design of an image edge de-
tection filter using the Sobel operator”. In: IEEE Journal of solid-state circuits 23.2 (1988),
pp. 358–367.

[54] Mark A. Kramer. “Nonlinear principal component analysis using autoassociative neural net-
works”. en. In: AIChE Journal 37.2 (1991). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209,
pp. 233–243. ISSN: 1547-5905. DOI: 10.1002/aic.690370209. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/aic.690370209 (visited on 07/30/2023).

[55] Soheil Kolouri et al. Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative
Model. en. arXiv:1804.01947 [cs, stat]. June 2018. URL: http://arxiv.org/abs/1804.
01947 (visited on 06/29/2023).

[56] J Macqueen. “SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTI-
VARIATE OBSERVATIONS”. en. In: MULTIVARIATE OBSERVATIONS (1967).

https://doi.org/10.1307/mmj/1029003026
https://doi.org/10.1307/mmj/1029003026
https://www.scinapse.io/papers/2040104067
https://doi.org/10.1007/978-3-642-24785-9_37
https://doi.org/10.1007/978-3-642-24785-9_37
http://link.springer.com/10.1007/978-3-642-24785-9_37
http://link.springer.com/10.1007/978-3-642-24785-9_37
http://arxiv.org/abs/2210.09160
http://arxiv.org/abs/2210.09160
http://arxiv.org/abs/1902.00434
https://doi.org/10.1214/aop/1176996454
https://projecteuclid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.full
https://projecteuclid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.full
https://projecteuclid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.full
https://proceedings.neurips.cc/paper_files/paper/2011/file/233509073ed3432027d48b1a83f5fbd2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/233509073ed3432027d48b1a83f5fbd2-Paper.pdf
https://doi.org/10.48550/arXiv.1512.03385
http://arxiv.org/abs/1512.03385
https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://doi.org/10.1002/aic.690370209
https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209
https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209
http://arxiv.org/abs/1804.01947
http://arxiv.org/abs/1804.01947

BIBLIOGRAPHY 70

[57] S. Lloyd. “Least squares quantization in PCM”. en. In: IEEE Transactions on Information
Theory 28.2 (Mar. 1982), pp. 129–137. ISSN: 0018-9448. DOI: 10.1109/TIT.1982.1056489.
URL: http://ieeexplore.ieee.org/document/1056489/ (visited on 07/30/2023).

[58] David Arthur and Sergei Vassilvitskii. “k-means++: The Advantages of Careful Seeding”.
en. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms
(2007), pp. 1027–1035.

[59] Charu C Aggarwal. “On k-anonymity and the curse of dimensionality”. In: VLDB. Vol. 5. 2005,
pp. 901–909.

[60] Alexander Hinneburg and Daniel A. Keim. “Optimal Grid-Clustering : Towards Breaking the
Curse of Dimensionality in High-Dimensional Clustering”. In: Proceedings of the 25 th Inter-
national Conference on Very Large Databases, 1999. 1999, pp. 506–517.

[61] Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. “Finite Mixture Models”. en.
In: (2019).

[62] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete Data
Via the EM Algorithm”. en. In: Journal of the Royal Statistical Society: Series B (Methodologi-
cal) 39.1 (1977). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1977.tb01600.x,
pp. 1–22. ISSN: 2517-6161. DOI: 10.1111/j.2517-6161.1977.tb01600.x. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.2517- 6161.1977.tb01600.x
(visited on 07/30/2023).

[63] Xu Yang et al. “Deep Spectral Clustering Using Dual Autoencoder Network”. en. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,
CA, USA: IEEE, June 2019, pp. 4061–4070. ISBN: 978-1-72813-293-8. DOI: 10.1109/CVPR.
2019.00419. URL: https://ieeexplore.ieee.org/document/8953592/ (visited on
06/29/2023).

[64] Olatz Arbelaitz et al. “An extensive comparative study of cluster validity indices”. In: Pattern
recognition 46.1 (2013), pp. 243–256.

[65] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis”. In: Journal of computational and applied mathematics 20 (1987), pp. 53–65.

[66] Gideon Schwarz. “Estimating the Dimension of a Model”. In: The Annals of Statistics 6.2 (Mar.
1978). Publisher: Institute of Mathematical Statistics, pp. 461–464. ISSN: 0090-5364, 2168-
8966. DOI: 10.1214/aos/1176344136. URL: https://projecteuclid.org/journals/
annals- of- statistics/volume- 6/issue- 2/Estimating- the- Dimension- of- a-
Model/10.1214/aos/1176344136.full (visited on 06/29/2023).

[67] Harry Zhang. “The Optimality of Naive Bayes”. en. In: (2004).

[68] Tin Kam Ho. “Random decision forests”. In: Proceedings of 3rd International Conference on
Document Analysis and Recognition. Vol. 1. Aug. 1995, 278–282 vol.1. DOI: 10.1109/ICDAR.
1995.598994.

[69] James Demmel, Ioana Dumitriu, and Olga Holtz. “Fast linear algebra is stable”. In: Numerische
Mathematik 108.1 (2007), pp. 59–91.

https://doi.org/10.1109/TIT.1982.1056489
http://ieeexplore.ieee.org/document/1056489/
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1109/CVPR.2019.00419
https://doi.org/10.1109/CVPR.2019.00419
https://ieeexplore.ieee.org/document/8953592/
https://doi.org/10.1214/aos/1176344136
https://projecteuclid.org/journals/annals-of-statistics/volume-6/issue-2/Estimating-the-Dimension-of-a-Model/10.1214/aos/1176344136.full
https://projecteuclid.org/journals/annals-of-statistics/volume-6/issue-2/Estimating-the-Dimension-of-a-Model/10.1214/aos/1176344136.full
https://projecteuclid.org/journals/annals-of-statistics/volume-6/issue-2/Estimating-the-Dimension-of-a-Model/10.1214/aos/1176344136.full
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994

BIBLIOGRAPHY 71

[70] Zhidong Bai, Kwok Pui Choi, and Yasunori Fujikoshi. “Consistency of AIC and BIC in esti-
mating the number of significant components in high-dimensional principal component anal-
ysis”. In: The Annals of Statistics 46.3 (June 2018). ISSN: 0090-5364. DOI: 10.1214/17-
AOS1577. URL: https : / / projecteuclid . org / journals / annals - of - statistics /
volume-46/issue-3/Consistency-of-AIC-and-BIC-in-estimating-the-number-
of/10.1214/17-AOS1577.full (visited on 06/28/2023).

[71] Yang You et al. The Limit of the Batch Size. en. arXiv:2006.08517 [cs, stat]. June 2020. URL:
http://arxiv.org/abs/2006.08517 (visited on 06/27/2023).

https://doi.org/10.1214/17-AOS1577
https://doi.org/10.1214/17-AOS1577
https://projecteuclid.org/journals/annals-of-statistics/volume-46/issue-3/Consistency-of-AIC-and-BIC-in-estimating-the-number-of/10.1214/17-AOS1577.full
https://projecteuclid.org/journals/annals-of-statistics/volume-46/issue-3/Consistency-of-AIC-and-BIC-in-estimating-the-number-of/10.1214/17-AOS1577.full
https://projecteuclid.org/journals/annals-of-statistics/volume-46/issue-3/Consistency-of-AIC-and-BIC-in-estimating-the-number-of/10.1214/17-AOS1577.full
http://arxiv.org/abs/2006.08517

	Introduction
	Anomaly Detection in Radio Astronomy
	Thesis Outline

	Theoretical Background
	Aperture Synthesis Radio Astronomy
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Self-Supervised Learning

	Dimensionality Reduction and Representation Learning
	Principal Component Analysis
	Independent Component Analysis
	t-SNE

	Artificial Neural Networks
	Perceptron
	Multi Layer Perceptron
	Activation Functions
	Loss Functions
	Backpropagation and Optimization
	Regularization
	Convolutional Neural Networks

	Deep Learning Architectures
	Auto-Encoder Network Architecture
	Variational Auto-Encoder
	Sliced Wasserstein Auto-Encoder

	Clustering
	k-Means
	Gaussian Mixture Models

	Clustering Validity Evaluation
	Silhouette Score
	Bayesian Information Criterion

	Simple Classification
	Gaussian Naive Bayes Classifier
	Random Forest

	Related Work

	Methods
	The Dataset
	Representing Complex Data as an Image
	Data Labelling
	Data Preprocessing and Preparation
	Representation Learning
	ICA
	2D CNN Auto-Encoder
	Sliced Wasserstein Auto-Encoder
	Variational Auto-Encoder
	Proposed Architecture

	Tasks
	Unsupervised Clustering Evaluation
	Classification
	Visual Inspection

	Results
	Model Training
	ICA
	Baseline Auto-Encoder Methods
	Proposed Architecture

	Evaluating the Models
	Visualizing the Latent Space
	Unsupervised Clustering Evaluation
	Classifier Evaluation

	Discussion
	Visual Inspection
	Clustering Validity Indices
	Classification
	Evaluating Representation Learning Methods for Spectral LOFAR Data: Which Yields the Optimal Embeddings?
	Comparison to Related Work
	Limitations and Future Work

