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A B S T R A C T

Probing tasks can be used to explore the capabilities of large language models
(LLMs) in terms of their ability to encode linguistic knowledge and how they pro-
cess (coherent) sequences of text, by using the models’ representations to solve a
task (proxied by a dataset). Transformer-based LLMs, such as BERT, have shown
to be able to encode linguistic knowledge and dominate the state-of-the-art in a
variety of NLP tasks. The extend to which these pre-trained large language models
(PTLLMs) capture narrative coherence, given (coherent) sequences of text and a set
of possible ending/follow-up sequences, in a zero-shot, multilingual setting has not
been explored yet. This research presents an extensive study of the abilities of six
PTLLMs, two multi-lingual (mDeBERTaV3 and XML-RoBERTa) and four monolingual
language models (English: BERT, RoBERTa; Dutch: BERTje, RobBERTV2), to encode
narrative coherence across sixteen datasets, consisting of either: short fictional sto-
ries or short news article narratives, with each several alternative variations, with
varying narrativity types and coherence complexity. In addition we introduce a
(small) language specific dataset for Dutch.

Our results show that these PTLLMs can capture narrative coherence mostly
when having access to the full text and in simple cases, namely when the possible
follow-up sequences do not present subtle linguistic differences and do not require
complex commonsense reasoning. In most of these instances, the higher layers
(8-12) yield the best performance. Moreover, when the data presented consists of
short, coherent sentences with subtle linguistic differences between possible ending-
sequences, the models’ performance tends to drop (≈0.2 points) compared to the
simple(r) cases, however still capturing (some) coherence. However, the models
fail to capture coherence when the data presented consists of long(er) format sen-
tences and subtle linguistic differences are present between the possible follow-up
sequences. At the same time, simple probes show competitive results when com-
pared to state-of-the-art systems on the same task and outperform all our baselines.

Keywords: Probing; Pre-trained Large Language Models; Natural Language Pro-
cessing; Natural Language Understanding; Narrative Understanding; Narrative Co-
herence; Transformers; Cloze Task; Multilingual; Zero-shot; Contextualized Embed-
dings.
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1 I N T R O D U C T I O N

Narrative Understanding (NU) is a high-level cognitive ability requiring the disen-
tanglement and identification of multiple linguistic features based on the internal
coherence of logically and temporally connected sequences in a story, which can
have different degrees of narrativity (Abbott, 2014). Narrative coherence aims to
assess the degree to which a story makes sense (Fisher, 1984, 1985), where previous
work on narrative coherence focused on the temporal unfolding of event sequences
and the modeling of logical causal relations (Chambers and Jurafsky, 2009; UzZa-
man et al., 2013; Minard et al., 2015; Granroth-Wilding and Clark, 2016; Mirza and
Tonelli, 2016; Mostafazadeh et al., 2016; Caselli and Vossen, 2017; Weber et al., 2018),
with few works testing broader notions of narrative coherence involving storytelling
and commonsense reasoning between some input sequences and a set of possible
target sequences (Mostafazadeh et al., 2017; Sharma et al., 2018a; Angelidis et al.,
2019; Lal et al., 2021).

Transformer-based (Vaswani et al., 2017), using only its encoder, pre-trained
large language models (PTLLMs), also known as auto-encoders, such as Bidirec-
tional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) and
XLM-RoBERTa (XLM-R) (Conneau et al., 2019) have shown to be the state-of-the-
art in most Natural Language Processing (NLP) tasks, surpassing Recurrent Neural
Networks (RNNs) (Rumelhart et al., 1985; Hochreiter and Schmidhuber, 1997; Cho
et al., 2014; Huang et al., 2015) and static word-embeddings (such as word2vec
(Mikolov et al., 2013), GloVe (Pennington et al., 2014), fastText (Bojanowski et al.,
2017)). These transformer-based PTLLMs are able encode more linguistic infor-
mation in their representations compared to the earlier static pre-trained language
models, as they are able to retrieve contextualized word-embedding representa-
tions, due to the attention mechanism of the transformer architecture and novel
pre-training tasks.

The adoption of these PTLLMs (Howard and Ruder, 2018; Devlin et al., 2019;
Radford et al., 2019) and increasing research using these contextualized representa-
tions on several downstream natural language processing (NLP) tasks to increase
performance, invoked the interest and need for research focusing on the abilities of
PTLLMs to encode linguistic properties. Research investigating PTLLMs on their
abilities to encode linguistic properties is known as probing. Within the probing
framework, probing tasks function as ways to explore what linguistic knowledge is
possibly encoded in PTLLMs/(deep) neural models (Conneau et al., 2018), assum-
ing that PTLLMs are large repositories of linguistic information (Derby et al., 2021;
Mosbach et al., 2020; Miaschi et al., 2020), by using the models’ representations
to solve a task (proxied by a dataset). The main motivation behind these probing
tasks is the opaqueness of the PTLLMs’ representations (what and how much lin-
guistic information they encode/capture). Such probing consists of a probing clas-
sifier (simple (linear models) or complex (multilayer perceptron etc.), probing task
(i.e. specific linguistic property), probing dataset (which is used to probe the prob-
ing classsifier for the probing task), controls/evaluation-metrics (what and how to
evaluate the output of the probing classifier). Although the idea behind this prob-
ing framework seems quite straightforward - training a classifier to predict some
linguistic property using a models’ representations given some task/dataset - the
choice of task/dataset, classifier, evaluation metrics and interpretation of the re-
sults present each their own set of possible requirements and limitations (Belinkov,
2022).1 Such probing research has shown that BERT is able to represent the steps

1 For a critical discussion on probing see Belinkov (2022).
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introduction 2

of the traditional NLP pipeline (POS tagging, parsing, NER, semantic roles, corefer-
ence) (Tenney et al., 2019a), where recent discourse-level probing tasks have focused
on temporal processing (Vashishtha et al., 2020; Caselli et al., 2022), discourse struc-
ture (Kurfalı and Östling, 2021; Koto et al., 2021a), the information status of the
entities (Loáiciga et al., 2022), anaphoric relations (Sorodoc et al., 2020; Pandit and
Hou, 2021), discourse connectives and implicatures (Pandia et al., 2021), and script
generation (Jin et al., 2022; Sancheti and Rudinger, 2022).

Whilst probing research on transfomer-based PTLLMs have been done on sev-
eral NLP tasks (Tenney et al., 2019a; de Vries et al., 2020a, inter alia), probing multi-
ple PTLLMs for their ability to encode narrative coherence in a multilingual, zero-
shot setting has not been explored yet. To achieve this, specific cloze task datasets
can be presented - to a probing classifier using the PTLLMs’ representations - as
a device to probe for narrative coherence. Cloze tasks focusing on NU, such as
the Story Cloze Test (SCT) (Mostafazadeh et al., 2017) and the ((Coherent) Multi-
ple Choice) Narrative Cloze (((C)MC)NC) (Chambers and Jurafsky, 2008; Granroth-
Wilding and Clark, 2016; Weber et al., 2018), can be used to focus on exploring a
models’ capabilities of linguistic knowledge. Such cloze tasks require a model to
choose the next best-fitting text-sequence from a set of possible follow-up sequences,
given some context. Naturally, a key property of understanding such narratives and
identifying the next best-fitting text-sequence is understanding/assessing its inter-
nal consistency, i.e., narrative coherence. Furthermore, cloze task datasets are sparse
for languages other than English.

Given the ability of transformer-based PTLLMs to encode contextual represen-
tations, the lack of probing research testing broader notions of narrative coherence
and the availability of cloze task type datasets to possibly probe for a key property
in NU namely, narrative coherence, we can wonder if these contextual representa-
tions contain enough linguistic information to keep track of some form of coher-
ence when processing temporally and logically connected sequences. Or put more
simple, do contextualized representations encode linguistic information related to
narrative coherence?

This research focuses on the abilities of PTLLMs to encode narrative coherence.
The main research question for this research is: To what extent do PTLLMs encode
narrative coherence to address the identification of temporally and logically con-
nected sequences? This will be done using per layer simple probes (Tenney et al.,
2019b; Vulić et al., 2020; de Vries et al., 2020b; Caselli et al., 2022, inter alia) on sev-
eral different cloze task datasets. Our contributions can be summarised as follows:
(i) we explore pre-trained (large) language models for narrative coherence, using
single-layer simple probes, in a zero-shot, multi-lingual setting on sixteen cloze task
datasets, with varying degrees of narrativity (Abbott, 2014) and coherence complex-
ity in English and Dutch; (ii) we study the impact of multiple input representations,
ranging from full text to event triggers; (iii) we probe and evaluate six PTLLMs, two
multi-lingual (mDeBERTaV3 (He et al., 2021) and XLM-RoBERTa (Conneau et al., 2019))
and four mono-lingual models (English: BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019), Dutch: BERTje (De Vries et al., 2019) and RobBERTV2 (Delobelle et al.,
2020)), differing in their pre-training objectives, number of parameters, and size
of data used in pre-training; (iv) in addition we present a small Dutch cloze task
dataset.2

2 Code and data are publicly available: https://github.com/roydavid957/MRP_CCS.

https://github.com/roydavid957/MRP_CCS


2 B A C KG R O U N D

2.1 language models
Large language models (LLMs) develop a statistical understanding of the language/-
data it has been trained on by training these models on large amounts of raw text
data in a self-supervised way. However only this statistical understanding is not
enough to perform well on specific NLP tasks. These generic pre-trained large
language models (PTLLMs) are then fine-tuned in a supervised way given a spe-
cific (pre-training) objective/task/dataset. This process is also known as transfer-
learning.

Vaswani et al. (2017) introduced the Transformer model, relying on an atten-
tion mechanism to draw global dependencies between input and output, allowing
for more parallelization. They showed that their model reached a new state-of-
the-art in the (machine) translation space. The Transformer model consists of two
blocks: Encoder and Decoder. The Encoder block builds a representation of the in-
put, the Decoder block uses the representations of the Encoder, together with some
other inputs, to generate a target sequence. The Encoder is optimized for acquir-
ing information from the input, whereas the Decoder is optimized for generating
outputs (Figure 1).

Figure 1: Transfomer - model architecture. On the left the Encoder, on the right the
Decoder. Figure from Vaswani et al. (2017).

Transformer-based PTLLMs such as Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018), build upon (Vaswani et al., 2017), to
build contextualized word embeddings, only using the Encoder model. They used
masked language modeling (MLM) and Next Sentece Prediction (NSP) as pre-training
objective, which allows for pre-training a deep bidirectional Transformer. They
showed BERT to be state-of-the art at 11 NLP tasks. With the release of BERT
came mBERT, a multilingual version of BERT pre-trained on 104 languages using
Wikipedia. Following multi-lingual BERT (mBERT), Conneau et al. (2019) intro-
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2.2 probing 4

duced XLM-RoBERTa (XLM-R), surpassing mBERT on a variety of cross-lingual
benchmarks. They showed that the curse of multilinguality could be alleviated
by increasing model capacity. These contextualized language models/PTLLMs are
able to encode these contextualized representations, by leveraging the transformer’s
attention-mechanism, giving the model bidirectional access to the tokens in a se-
quence of text, and specific pre-training objectives such as MLM or Replaced Token
Detection (RTD). These mechanics allow these language models/PTLLMs to build
a contextualized representation of each token in a text-sequence by allowing bidi-
rectional access to each token in a sentence, replacing neural architectures, such as
RNNs (Rumelhart et al., 1985; Hochreiter and Schmidhuber, 1997; Cho et al., 2014;
Huang et al., 2015), that relied on static word embeddings (Mikolov et al., 2013; Pen-
nington et al., 2014; Bojanowski et al., 2017), where each word is assigned a single
(type-level) vector.

2.2 probing
With the rise of deep neural network models for natural language processing (NLP)
tasks, came the interest in interpreting and analyzing them. The main motivation
behind this is the opaqueness of the models’ representations (what and how much
linguistic knowledge they capture). These models are analyzed by probing them
for specific linguistic properties by solving a specific NLP task, proxied by a dataset.
Such probing tasks can be used to explore the capabilities of language models in
terms of their ability to encode linguistic properties, using the models’ represen-
tations, to solve a task (proxied by a dataset). Belinkov (2022) provided a critical
discussion on probing and showed that although the idea behind probing seems
quite straightforward, choice of task/dataset, classifier, evaluation metrics and in-
terpretation of the results are all key elements to take into account when designing
and executing probing research. Moreover, they conclude their work with some key
notions to keep in mind when designing probing experiments: (i) clearly define the
original task(s), dataset(s), model(s) and the probing task(s), dataset(s), classifier(s);
(ii) set upper and lower performance bounds and proper controls: control tasks
(for word-level properties), datasets (for sentence-level properties); (iii) measure the
probe’s complexity (if ease of extractability is in question), the accuracy–complexity
trade-off (when designing new probes), perform an intervention (to measure usage
of information by the original model); (iv) using simple probes may avoid some of
the issues about what the probe learns, compared to complex probes (i.e. linear clas-
sifier using the (zero-shot) representations from the internal model vs. a fine-tuned
PTLLM using a multilayer perceptron).

Previous, pre-transformer, probing work focused mainly on probing using a neu-
ral models’ hidden states and static embeddings, where some of the first probing
studies focused on providing more nuanced evaluations of word embeddings by
training classifiers on static word embeddings to predict various NLP properties,
rather than integrating them in downstream tasks (Köhn, 2015; Gupta et al., 2015).1

Recent work on probing contextualized PTLLMs on different NLP tasks, included
work on versions of BERT and XLM-R. Tenney et al. (2019a) and de Vries et al.
(2020a) showed that the pipeline-like behaviour is present in both a monolingual
pre-trained BERT-based model as well as a multilingual model even though task-
specific information is distributed between layers. Caselli et al. (2022) used XLM-R
to investigate how PTLLMs encode information about events and their temporal
ordering in a multilingual setting. They compared the default settings with: (i) only
the embeddings of the events in the pair; (ii) the embeddings from two XLM-R
base models previously fine-tuned with the EN-TimeBank and EN-TB-Dense cor-
pora; (iii) monolingual static word embeddings. Their probing results indicate

1 For a survey on the probing framework up to 2019 see Belinkov and Glass (2019).
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that adding more information to lexical entities is detrimental. Furthermore they
showed that temporal relation classification between events can be a tough task
for PTMLs. Both papers used single layer probes to train a linear Support Vector
Machine (SVM) (Boser et al., 1992).

Wilner et al. (2021) applied a transformer model on narrative event representa-
tions. Here, a narrative can be seen as a series of events, where an event consists of
a predicate and its relevant roles (Chambers and Jurafsky, 2008; Granroth-Wilding
and Clark, 2016). Using chains of events that are expected to be in the same story,
a model can be taught to encode something like a script (Wilner et al., 2021). Thus
to understand narrative representations, a system is required to have temporal and
logical knowledge of connected sequences of events. They showed that using at-
tention to re-contextualize events across the whole story achieves state-of-the-art
performance on the Multiple Choice Narrative Cloze (Granroth-Wilding and Clark,
2016) and scoring competitively on the Story Cloze Task (Mostafazadeh et al., 2017;
Sharma et al., 2018a). Furthermore they found that verbs carry event semantics in
BERT.

2.3 cloze tasks
Cloze tasks are usually "fill in the blank" tasks, such as the CLM and MLM pre-
training objective. These task require systems to fill in some blank spot by generat-
ing their own output or choosing from a set of possible options. Such tasks enable
models to show their NLP/U capabilities and requires some linguistic knowledge
when being proxied by such a task. By selecting, modifying and/or creating text-
based datasets to fit a specific cloze task, we can use them to probe (language)
models for specific linguistic knowledge. In this way cloze task datasets can be
presented as a device to probe language models for specific linguistic properties.

In line with Chambers and Jurafsky (2008), after the work of Rudinger et al.
(2015) and inspired by Sadeghi (2014), Granroth-Wilding and Clark (2016) proposed
a multiple choice version of the Narrative Cloze Task (NCT), Multiple Choice Nar-
rative Cloze (MCNC). In this task, a system is presented with a series of contextual
events and needs to choose the next, observed, event out of a set of multiple pos-
sible events. This procedure allows to compare models that take account of richer
information from the text about both context and candidate events. Building upon
Granroth-Wilding and Clark (2016), Weber et al. (2018) proposed a (filtered) version
of the MCNC, the Coherent Multiple Choice Narrative Cloze (CMCNC), that ac-
counts for frequency cutoffs of common events and improves coherency across the
narratives.

Similarly, but more story driven, is the LSDSem’17 shared task (Mostafazadeh
et al., 2017). The shared task included the Story Cloze Test, for the evaluation
of story understanding and script learning of systems. It involved a system to
choose the right ending to a given four-sentence story, out of two plausible story
ending sentences. The task was to determine which out of the two sentences is
most plausible given a short story as context. The cloze task was created using the
ROCStories dataset2. Following this Sharma et al. (2018a) shed some light on the
human-authorship biases discovered in the SCT (SCTv1.0) dataset. They created the
SCT-v1.5 dataset, to overcome some of the biases.

2.4 key findings
Vaswani et al. (2017), Devlin et al. (2018) and Conneau et al. (2019) are the foun-
dation of the model architecture and the PTLLMs/contextualized word embedding

2 https://www.cs.rochester.edu/nlp/rocstories/

https://www.cs.rochester.edu/nlp/rocstories/


2.4 key findings 6

models that will be used and probed in this research. Tenney et al. (2019a), de Vries
et al. (2020a) and Caselli et al. (2022) provide this research with a roadmap on how
to probe PTLLMs, using single layer probes and a linear classifier. Moreover, Wilner
et al. (2021) showed that transformer models can be used for narrative representa-
tions. Chambers and Jurafsky (2008); Granroth-Wilding and Clark (2016); Weber
et al. (2018) and Mostafazadeh et al. (2017); Sharma et al. (2018a) provide the source
of the data and objective of this research. Lastly, Belinkov (2022) provides us with
some key notions to keep in mind on the complexity, limitations and use of the
probing framework.



3 DATA A N D M AT E R I A L

In this chapter we will discuss and describe the datasets used for this research as
well as any preprocessing that has been done.

We have selected, created and used subsets of several (variations of) datasets,
varying in topic, complexity and language, resulting in sixteen datasets in total, in
both English and Dutch, where models have access to an initial context to make
decisions on what is the best ending or follow-up from a set of two possibilities.
The ending alternatives and their complexity offer variations in the expression of
narrative coherence. The datasets differ from each other in: (i) type: short fictional
stories, news-article narratives; (ii) complexity: short(er) format sentences (short
(fictional) sentences), long(er) format sentences (news-article style); (iii) incorrect
final sentence alternative (relative to the input context): random, coherent, same
document; (iv) narrativity (Abbott, 2014): short fictional stories with story-ending
final sentence and mostly one protagonist, short news-article narrative text excerpts
with a follow-up final sentence and (possibly) multiple protagonists; (v) language:
English and Dutch.

As cloze tasks type datasets are sparse/non-existent for Dutch and since we aim
to explore PTLLMs in a multi-lingual setting, we used an open-source machine-
translation (MT) model to translate the English datasets (and their variations) to
Dutch. The machine-translated (MT) Dutch variations of the English datasets were
created using an open-source English to Dutch machine-translation model (Tiede-
mann and Thottingal, 2020)1. They provide open translation services and tools
that are free from commercial interests and restrictions. Their models are based
on transformer-based neural machine translation (NMT), Marian-NMT (Junczys-
Dowmunt et al., 2018). Their models are trained on open-source parallel corpora
collected in the large bitext repository OPUS (Tiedemann, 2012). The architecture
is based on a standard transformer setup with 6 self-attentive layers, in both the
encoder and decoder network, with 8 attention heads in each layer.

For all datasets the event triggers have been identified by selecting the verbs
with ROOT label from the SpaCy dependency parsing. If the ROOT is not assigned to
a verb, then we select the first verb in the sentence. In case no verb is available, due
to parsing errors, we used the sentence token classified as ROOT.

All datasets are in the same format: a 4-sentence story as context, with two
possible ending options, one correct and one incorrect.

3.1 story cloze
The Story Cloze Test v1.0 (SCT-v1.0) (Mostafazadeh et al., 2017) and v1.5 (SCT-v1.5)
(Sharma et al., 2018b) are composed of short fictional stories elicited from crowd
workers, with a high degree of narrativity (Abbott, 2014). The benchmarks have
a common structure where the objective is to pick the best story-ending sentence
from two possible options, given a 4-sentence story context. The datasets require
access to some form of commonsense knowledge, reasoning and understanding of
storytelling, in order to make the correct decision for every story (Chaturvedi et al.,
2017; Liu et al., 2018). These benchmarks have been designed to evaluate systems’
NU abilities to identify the correct coherent story-ending sentence by relying en-
tirely on the information of the preceding 4-sentence context, requiring access to

1 https://huggingface.co/Helsinki-NLP/opus-mt-en-nl
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3.2 narrative cloze 8

some form of narrative coherence. Moreover, each sentence in the fictional stories
has on average ≈9 words.

SCT-v1.0 has known stylistic artifacts (e.g., differences in word-token count, sen-
timent, and sentence complexity between the right and the wrong ending) that in-
fluence the performance of systems but it has been previously used for discourse
probing (Koto et al., 2021a). SCT-v1.5 addresses the stylistic bias of SCT-v1.0. Un-
fortunately, we could not get access to the labels of the test set.2 We thus decided to
use the official validation data distribution in a 5-fold cross-validation experiment
setting. The more challenging nature of SCT-v1.5 will offer more realistic results on
the narrative coherence abilities of PTLLMs.

Table 1 shows the data distribution for SCT-v1.0 and SCT-v1.5. In all of our
experiments, the validation split has been used for training (or cross-validating) the
probing classifiers. Example (1) shows examples of data instances of the fictional
stories from both SCTv1.0 and SCTv1.5 versions of the SCT, where the first four sen-
tences function as input ((i) – (iv)), with two possible story-ending final sentences,
with one correct (True) final sentence and one incorrect (False), but still coherent
with the story, final sentence.

(1) SCTv1.0:
(i) Bindu planned a party with her friends.
(ii) They met at her house to discuss what food and band to use.
(iii) One of Bindu’s friends brought samosas and doogh.
(iv) Four friends played music at the party.
True: Everyone had a great time.
False:Bindu hates her friends and parties.

SCTv1.5:
(i) Mary wanted to make plans for New Year’s Eve.
(ii) She decided to have a party at her apartment.
(iii) She invited all her friends.
(iv) Her friends brought food and drinks to the party.
True: It was the best New Year’s Eve party ever.
False:She accepted the food, and asked them all to leave.

Split SCT-v1.0 SCT-v1.5

validation 1,871 1,571

test 1,871 –

Table 1: Data distribution of SCT-v1.0 and SCT-v1.5 used in our experiments. Fig-
ures refers to stories. Due to the unavailability of the golden labels for
the test set of SCTv1.5, we opted for 5-fold cross-validation to evaluate the
PTLLMs on this dataset.

3.2 narrative cloze
The original (Multiple Choice) Narrative Cloze Task ((MC)NCT) evaluated the abil-
ities of systems to identify coherent sequences of events (Chambers and Jurafsky,
2008; Granroth-Wilding and Clark, 2016). Here, an event sequence was represented
as a triplet of the form SUBJ|VERB|OBJ (e.g.,“Gorbachev | surprised | leaders”). Each
event sequence had a common protagonist, either in subject or in object position.

For our probing experiments, we carved two different NCT datasets, derived
from Granroth-Wilding and Clark (2016) and Weber et al. (2018), using the SCT

2 We have contacted the organizers of the 2018 Story Cloze Task but we did not manage to get the evalua-
tions of our predictions.
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format (4-sentence context, two possible final sentence options (one correct, one in-
correct)), by recovering the original sentence from the English Gigaword corpus for
each event triplet. We further limited the data to narrative passages composed by a
minimum of at least six sentences: four input sentences, one correct final sentence
and (at least) one incorrect final sentence alternative option. Systems are challenged
to decide on the correct next follow-up sentence between the held out target sen-
tence and a random final sentence. The random sentences have been selected from
the same dataset with the following criteria: they do not occur more than once and
they belong to text excerpts other than the one in analysis. We call this dataset
NCT-Full. The second dataset, NCT-Human, is a subset of NCT-Full where we select
only text passages with a human protagonist (either in subject or object position).
We used SpaCy3 to identify the human protagonists. NCT-Full and NCT-Human have
longer sentences than SCT, with an average of ≈26 words per sentence. As an
alternative we created versions of these datasets with a same document SameDoc
incorrect final sentence alternative, randomly selected from the same article text ex-
cerpt as the one in analysis, outside of the sentences already used for analysis (first
four as input, fifth as correct final sentence). The range of the SameDoc alternatives,
as a distance compared to the (last, fifth) correct final sentence, is between 1-181,
with a mean of ≈12 (SD≈8) sentences.

There are two major differences between the NCT and SCT datasets: (i) NCT
is based on text excerpts from news articles, having a lower narrativity than sto-
ries (Abbott, 2014); (ii) systems have to decide what is the next follow-up sentence,
rather than the best story ending sentence.

Table 2 summarises the data distribution for the NCT datasets. Example (2)
shows examples of data instances from both Full and Human versions of the NCT,
where the first four sentences ((i) – (iv)) function as input, the fifth sentence in the
narrative as the correct final sentence (True) with either a same document (SameDoc)
or random (Random) incorrect final sentence alternative. NCT-Full shows a short
narrative about a parking-lot at a graduation, NCT-Human shows a short narrative
about an obituary for a woman named Sophie.

(2) NCT-Full:
(i) THE parking lot at my son’s graduation is a sea of motorcycles:

black, yellow, loud, smoke-belching, flame-adorned, sparkling with
chrome so bright you have to look away.

(ii) Far from the dappled shade of any Ivy League campus, this blazing
blacktop belongs to the Motorcycle Mechanics Institute in Phoenix,
Ariz., a sprawling complex of freshly whitewashed, warehouse-size
buildings with red and blue accent lines.

(iii) My husband steers our rented Nissan through the lot, searching
for an empty spot among the motorcycles.

(iv) Hiding behind my sunglasses, I look around at the other parents
and friends in their halter tops and jeans, scarf shirts, sleeveless
T-shirts and turquoise bracelets.

True: And tattoos, of course, lots of them: roses, serpents, spiders, geo-
metric patterns and sunbursts, explosions of red, blue and green.

SameDoc:My son – this young man I love so much but who has caused
himself and his family such heartbreak over the past 20 years – is
absolutely filled with joy.

Random:Each plays point guard because his team needs a point guard,
but each is a true shooting guard not afraid to take the difficult
shot.

NCT-Human:
(i) Age 90, of Forest Hills, New York, died peacefully November 30,

2004.
3 https://spacy.io

https://spacy.io
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(ii) Beloved wife of Sidney, loving mother of Susan, Daniel, daughter-
in-law Adriane, adored grandmother of Michael Jake.

(iii) During WWII, Sophie worked for the Office of War Information
and then went on to serve in the US Embassy in Moscow.

(iv) She lived her life with dignity, courage and great strength.
True: Sweet Sophie, your family will miss and remember you always.
SameDoc:Funeral services will be held 9:45 AM, on Thursday, December

2, at Gutterman’s Funeral Home/Parkside Chapel, 98-60 Queens
Boulevard, Rego Park, New York.

Random:For my generation of movie lovers (born after ”A Streetcar Named
Desire” and now stunned to be old enough to be Elijah Wood’s
father), being a Marlon Brando fan meant absorbing his work in
reverse.

Split NCT-Full NCT-Human

train 3,159 1,470

test 4,757 2,148

Table 2: NCT datasets and splits used in our experiments. Figures refer to unique
blocks of text passages (narratives); NCT-Full, NCT-Human are binary.

3.3 narrative cloze dutch
We created a Dutch version of the NCT-Full and NCT-Human datasets, called NCT-
Full-Dutch, NCT-Human-Dutch, respectively or NCT-Dutch as a collective, using a sub-
set of publicly available Dutch data provided by Yeh et al. (2019). This dataset
was created for partisanship detection of Dutch news articles from DPG Media4.
We added/created this cloze task dataset since (i) due to the long(er) format sen-
tences of the NCT datasets, the open-source machine-translation models showed
some artifacts in the MT-Dutch datasets and (ii) such cloze task datasets are sparse
in languages other than English. To extract narratives following some common
protagonist for the Dutch NCT datasets (NCT-Dutch), we used a multi-lingual coref-
erence model and added this to the spaCy pipeline5. Since coreference models for
languages besides Dutch are quite sparse/non-existent, we opted for cross-lingual
coreference. This uses the assumption a trained model with English data and cross-
lingual embeddings should work for other languages with a similar sentence struc-
ture. In this way we aimed to extract narratives that are similar to the English
NCT dataset. This dataset is similar to NCT in that it has, on average, more words
per sentence than the SCT datasets, however less than the NCT datasets, with ≈16

words per sentence. Same as for the NCT datasets, we created versions of these
datasets with a same document (SameDoc) final sentence, randomly selected from
the same article text excerpt as the one in analysis, outside of the first five sentences
(first four used as input, fifth as correct final sentence). The range of the Same-
Doc alternatives, as a distance compared to the (last, fifth) correct final sentence, is
between 1-86, with a mean of ≈12 (SD≈7) sentences.

Due to the small(er) size of these datasets, we opted for 5-fold cross-validation to
evaluate the PTLLMs. Table 3 summarises the data distribution for the NCT-Dutch
datasets. Example (3) shows examples of data instances from both Full and Human

versions of the NCT-Dutch, where the first four sentences function as input, the fifth
sentence in the narrative as the True or correct final sentence with either SameDoc
or Random as the incorrect alternative final sentence. NCT-Full-Dutch shows a short

4 https://www.dpgmediagroup.com/nl-NL
5 https://spacy.io/universe/project/crosslingualcoreference

https://www.dpgmediagroup.com/nl-NL
https://spacy.io/universe/project/crosslingualcoreference
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narrative about colon-cancer research, NCT-Human-Dutch shows a short narrative
about a lawyer named Wevers.

(3) NCT-Full-Dutch:
(i) Het bevolkingsonderzoek naar darmkanker is een groot succes.
(ii) Dat blijkt vandaag uit onderzoek in opdracht van het RIVM.
(iii) De poeptest onder senioren toont meer darmkanker aan dan voorzien

en de opkomst is hoger dan verwacht.
(iv) Als darmkanker vroeg wordt ontdekt, is de kans groter dat behan-

deling succes heeft.
True: Door dit bevolkingsonderzoek verwacht het RIVM dat in de nabije

toekomst jaarlijks 2250 sterfgevallen kunnen worden voorkomen.
SameDoc:„Alhoewel elke complicatie er natuurlijk één te veel is.”
Random:Nergens op de wereld zijn mobiele netwerken zo goed en snel

als in Nederland.
NCT-Human-Dutch:

(i) Waarom het verdienmodel van jurist Wevers zo goed werkt We
dachten, zegt vader Henk Wevers als ik binnenkom, ’dat het nu
wel zo’n beetje voorbij zou zijn.’

(ii) Maar het is niet voorbij.
(iii) Kevin Wevers vond na zijn afstuderen als jurist geen baan, ging de

bijstand in en moest als gemeentelijke tegenprestatie papieren bloe-
men vouwen in een fabriekshal - hij kreeg de participatiesamenlev-
ing recht in zijn gezicht.

(iv) Begon in zijn ouderlijk huis een juridisch bureau, kocht een tweede-
hands Jaguar en werd in no-time held van ouderen en gehandi-
capten die vanwege de participatiesamenleving gekort worden op
huishoudelijke hulp.

True: En is dat tot zijn eigen verbazing nog steeds want de gemeenten,
zegt hij, krijgen de boel niet op orde.

SameDoc:De gemeenten vinden hem inmiddels een geldwolf, maar over-
schrijden zelf de juridische termijnen, ’en wij zijn meer dan coulant’,
zegt Kevin, ’dus wie heeft dan schuld?’

Random:Mannen nemen vaker verlof op om bij de kinderen te zijn als de
leidinggevende dat zelf ook gedaan heeft.

Split NCT-Full-Dutch NCT-Human-Dutch

train 856 314

test – –

Table 3: NCT-Dutch datasets and splits used in our experiments. Figures re-
fer to unique blocks of text passages (narratives); NCT-Full-Dutch and
NCT-Human-Dutch are all binary. Due to the small(er) size of the Dutch
datasets, we opted for 5-fold cross-validation instead of a separate train
and test set.



4 M E T H O D

In this chapter we will discuss and break-down the methods and analysis done
for this research. We will discuss the PTLLMs used in this research and their differ-
ences, explain how we executed the single layer probing of the PTLLMs and discuss
our evaluation metrics in detail, as well as the baselines used for comparison.

4.1 pre-trained large language models
For our cross-lingual experiments we chose two state-of-the-art PTLLMs with (some-
what) similar architectures: mDeBERTaV3-base and XLM-RoBERTa-base. mDeBERTaV3 (He
et al., 2021) is a multilingual PTLLM that improves on BERT and RoBERTa using
a disentangled attention and enhanced mask decoder, using the Replaced Token
Detection (RTD) pre-training objective (Clark et al., 2020). mDeBERTaV3-base uses
Wikipedia and the BookCorpus as training materials. XLM-R-base (Conneau et al.,
2019) is a multilingual version of RoBERTa, pre-trained on 2.5TB of filtered Com-
monCrawl data with 100 languages using the Masked Language Modeling (MLM)
pre-training task. The two models have the same number of attention heads (12)
but different sizes for the vocabularies and number of parameters.

For our monolingual experiments we needed monolingual PTLLMs that are
(somewhat) comparable, based on architecture, to the cross-lingual PTLLMs, and
available in both English and Dutch, for monolingual comparability. Based on
these requirements we settled for BERT-base (Devlin et al., 2018), RoBERTa-base (Liu
et al., 2019) for our monolingual English PTLLMs and BERTje (De Vries et al.,
2019), RobBERTV2 (Delobelle et al., 2020) for our monolingual Dutch PTLLMs, where
BERTje is the Dutch equivalent of BERT, however trained on Dutch data without the
NSP pre-training objective. Similarly, RobBERT is the Dutch equivalent of RoBERTa.

The main differences between all PTLLMs are: BERT was the first Transformer-
based (only using the Encoder model) PTLLM, using the MLM and NSP pre-training
objectives on English text. BERTje is the Dutch equivalent of BERT, but differs from
BERT as it only used the MLM pre-training objective. RoBERTa improved upon BERT

by increasing size of vocabulary and total number of trainable parameters and drop-
ping the NSP pre-training objective. RobBERT is the Dutch equivalent of RoBERTa

with lower vocabulary due to differences in raw text training data. XLM-RoBERTa is
a multilingual version of RoBERTa, pre-trained on 2.5TB of filtered CommonCrawl
data with 100 languages using the Masked Language Modeling (MLM) pre-training
task. mDeBERTa is a multilingual version of DeBERTa, built upon BERT and RoBERTa

with ELECTRA style pre-training: RTD, with half the model size of XLM-RoBERTa

(based on vocabulary and total number of trainable parameters).
Table 4 shows a detailed overview of the PTLLMs in terms of number of atten-

tion heads, parameters, vocabulary size, total number of trainable parameters and
pre-training objective(s).

pre-training objectives Pre-training objectives are used after a language model
has a statistical understanding of the raw text data is has been trained on. This is
known as fine-tuning or transfer learning and is used to improve the generic pre-
trained language models representations. Different pre-training objectives can be
used for different tasks/goals/datasets.

On of the more traditional pre-training tasks is known as Causal Language Mod-
eling (CLM). Here a system has to predict future tokens using the present and past

12



4.1 pre-trained large language models 13

Model L Hm Hff A V #params Obj huggingface.co/
XLM-RoBERTa 12 768 3072 12 250k 270M MLM xlm-roberta-base
mDeBERTaV3 12 768 3072 12 128K 98M RTD mdeberta-v3-base
RoBERTa 12 768 3072 12 50k 117M MLM roberta-base
BERT 12 768 3072 12 30k 110M MLM+NSP bert-base
BERTje 12 768 3072 12 30K 110M MLM GroNLP/bert-base-dutch-cased
RobBERTV2 12 768 3072 12 40K 117M MLM pdelobelle/robbert-v2-dutch-base

Table 4: Detailed per model overview. L: total number of layers; Hm: hidden size;
Hff: dimensions feed-forward layer; A: attention heads; V: vocabulary
size (in tokens); #params: total number of trainable parameters; Obj: pre-
training objective (MLM: Masked Language Modeling, RTD: Replaced To-
ken Detection, NSP: Next Sentence Prediction).

tokens (see Figure 2a for a CLM example). Most transformer-based PTLLMs use
the Masked Language Modeling (MLM) pre-training objective (Devlin et al., 2018),
this masks specific words in a sentence, the model then has to predict these words
based on the available words in the sentence, giving the need for bidirectional (past,
present, future) of each token in a sentence. Creating contextualized embeddings as
each token contains information about past and future tokens relative to the present
token (see Figure 2b for a MLM example). As an improvement upon the MLM pre-
training objective, Clark et al. (2020) introduced the Replaced Token Detection (RTD)
pre-training objective. This pre-training objective consists of training two models: a
generator and a discriminator, in a somewhat similar way as Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014). The generator is trained to predict and
replace masked words (using a small MLM), then the discriminator has to iden-
tify these replaced words. After pre-training the generator gets dropped and the
discriminator is kept. Recently, He et al. (2021) improved this ELECTRA-style pre-
training by using gradient-disentangled embedding sharing for the generator and
discriminator instead of sharing vanilla input word embeddings. They showed that
this vanilla input word embedding sharing between generator and discriminator
causes a tug-of-war dynamic as both models pull on these embeddings. This affects
the training losses of both models on the token embeddings (see Figure 2c for a
RTD example). Both the MLM and RTD pre-training objectives were introduced
after the introduction of the Transformer model architecture (Vaswani et al., 2017).

(a) CLM (b) MLM (c) RTD

Figure 2: Overview of different pre-training objectives for language models, from
left to right: Causal Language Modeling (CLM), Masked Language Mod-
eling (MLM), Replaced Token Detection (RTD).1

Alternatively, BERT uses a combination of the MLM and Next Sentence Predic-
tion (NSP) pre-training tasks. The NSP pre-training task consists of randomly se-
lecting and concatenating two random sentences from the data, then the model has
to predict if the sentences follow each other (binary task). Given the format of our
probing task, where a model has to pick the next best-fitting sentence from a set
of two possible options, given some context, BERT might have an advantage due to
it being pre-trained in a partially similar fashion because of this NSP pre-training
task.

1 https://bit.ly/44U3g4M

https://www.huggingface.co/
https://www.huggingface.co/xlm-roberta-base
https://www.huggingface.co/microsoft/mdeberta-v3-base
https://www.huggingface.co/roberta-base
https://www.huggingface.co/bert-base-cased
https://www.huggingface.co/GroNLP/bert-base-dutch-cased
https://www.huggingface.co/pdelobelle/robbert-v2-dutch-base
https://bit.ly/44U3g4M
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4.2 narrative coherence probing
Within the probing framework different probing tasks for different linguistic prop-
erties might need different probes in terms of complexity (Belinkov, 2022). One
might use simple probes using the PTLLM’s representations to train a linear prob-
ing classifier (Alain and Bengio, 2016; Hupkes et al., 2018; Liu et al., 2019; Maudslay
et al., 2020, inter alia), alternatively more complex probes can be used, either by task-
specific fine-tuning of the PTLLM’s representations or using more complex probing
classifiers, such as neural models (Conneau et al., 2018; Belinkov, 2018). However,
the latter (might) cause some issues about what the probe learns (Belinkov, 2022).
The simple probes use the (zero-shot) representations from the internal model to
train a linear classifier, without needing to learn new parameters. This avoids some
of the issues about what the probe learns. Since we are interested in analyzing the
abilities of PTLLMs to encode narrative coherence in a zero-shot setting, we opt for
simple probes.

Following previous work (Tenney et al., 2019b; Vulić et al., 2020; de Vries et al.,
2020b; Caselli et al., 2022, inter alia), we extract embedding representations from
each layer and use them to train a linear SVM whose objective is to predict the cor-
rect story ending for SCT or the correct follow-up sequence for NCT according to
the preceding 4-sentence context. By default, we feed the input context to the SVM
as concatenated embedding representations, each for every sentence in the context
and for each option (separately). We then perform a binary classification task ac-
cording to the dataset. Sentences are represented by averaging the embeddings of
the tokens, excluding special tokens. We compare the default setting with three
variations: (i) we merge all context sentences into a single text (Full), resulting in
one embedding representation of the input context; (ii) we concatenate the embed-
ding representations of the event triggers of each sentence context (EvTr); (iii) we
extract the representations of the event triggers from the full context representation
into a single vector, combining (i) and (ii) (FullEv). Example (1) shows examples of
the settings used.

(1) Default: [S1]+...+[Sn]
Full: [S1, ..., Sn]
EvTr: [Event(S1)+...+Event(Sn)]
FullEv: [Event(S1), ..., Event(Sn)]

The probing classifier (linear SVM) was trained with the contextual embed-
ding representations of these settings as input features, with either a 1 (true) or
0 (false) as a target, depending on whether or not the input feature contained
the correct or incorrect final sentence (representations). The decision-making pro-
cess of picking between the two possible final sentences was based on comparing
the true probability of both the correct and incorrect instances. The possible fi-
nal sentence alternative with the highest probability was predicted to be correct:
label = arg max({PTRUE(y1),PTRUE(y2)}) During the probing experiments we feed
the context and one of the final sentence options to the PTLLM, given an input
setting, the trained probing classifier then outputs the true probability based on the
contextualized representations of the input (4-sentence context + final sentence op-
tion). After we have retrieved the true probabilities for both final sentence options,
the final sentence option with the highest probability is predicted to be correct. Fig-
ure 3 shows the probing model architecture.

support vector machine We used scikit-learn (Pedregosa et al., 2011) for
the implementation of the linear Support Vector Classifier (SVC). The objective of
a support vector machine (SVM) in binary classification is to find a hyperplane
in an N-dimensional space, where N is the number of features, that classifies the
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Figure 3: Probing model architecture. All parameters inside the dashed lines are
fixed, while the SVM classifier uses the contextual vectors to output the
true probabilities of both final sentence options, highest probability is
predicted as the correct label.

data points, so that it maximizes the distance between data points of both classes,
providing some reinforcement/margin for the classification of future data points.

4.3 evaluation
We evaluated the performance on the data using accuracy and compared all ex-
periments to a random classifier (random baseline), a lexical classifier (lexical
baseline) and a simple SVM classifier using a Term Frequency Inverse Document
Frequency (TF-IDF) vectorizer (tf-idf baseline). Some datasets were evaluated
using a fixed test set (SCTv1.0, all NCT datasets), others were evaluated using 5-
fold cross-validation (SCTv1.5, all NCT-Dutch datasets).

The random baseline randomly picked between the two possible final sentence
alternatives. The lexical baseline chose between the two possible story-ending or
follow-up sentences based on lexical overlap between the 4-sentence context and
the possible alternatives/targets. This overlap was determined by first removing
stopwords and punctuation from the text. After that the remaining words were
converted to their lemma. Then the lemmatized context was compared to the pos-
sible lemmatized story-ending/follow-up sequences. The possible alternative with
the most overlap was chosen as the correct final sentence. Removing of the stop-
words as well as the lemmatization of the remaining words were done using spaCy.
Figure 4 shows the lexical baseline pipeline.

The TF-IDF baseline consisted of a SVM using a Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) vectorizer to turn the text into vectors. The tf-idf for a
word is calculated by multiplying the term-frequency of a word in a document
by the inverse-document-frequency of the word across a set of documents: tf-
idf(t,d)=tf(t,d)×idf(t). The idf shows the rarity of a word in the entire document

set and is computed as: idf(t) = log
N

1+ df(t)
, where N is the total number of docu-

ments and df(t) the number of documents that contain term t. The resulting tf-idf
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Figure 4: Lexical baseline pipeline. The 4-sentence context and each final sentence
option goes through the pipeline of removing stopwords, lemmatizing
the remaining words. After that the we count the overlap between the
lemmatized words from the context and each final sentence option, the
final sentence option with the most overlap is predicted to be the correct
final sentence.

vectors are then normalized by the L2/Euclidean norm, by taking the square root
of the sum of the squared vector values: vnorm=

v√
v21 + v22 + ... + v2n

. The text was

fed to this model by merging/joining the 4-sentence context and the possible final
sentence options individually (i.e. 4-sentence context+final sentence option 1 or fi-
nal sentence option 2). The model was trained on these vectorized context input
features with as target either a 1 if the input feature contained the correct final
sentence option or 0 if the input feature contained the incorrect final sentence op-
tion. The decision-making process of picking between the correct/incorrect final
sentence option was done in the same way as was done for the probing task. We
used scikit-learn (Pedregosa et al., 2011) for the implementation of the TF-IDF
baseline.

Lastly, where possible we compared the performance to the state-of-the-art on
the same task. This was only possible for the SCTv1.0 dataset.



5 R E S U LT S A N D D I S C U S S I O N

In this chapter we will give an overview of the scores per layer (1–12) for each model
(multilingual: mDeBERTaV3, XLM-RoBERTa; monolingual English: BERT, RoBERTa; mono-
lingual Dutch: BERTje, RobBERTV2) in the four experiment conditions (default, Full,
EvTr, FullEv) per dataset (SCT: SCTv1.0, SCTv1.5; NCT: NCT-Full-Random, NCT-
Human-Random, NCT-Full-SameDoc, NCT-Human-SameDoc; NCT-Dutch: NCT-
Dutch-Full-Random, NCT-Dutch-Human-Random, NCT-Dutch-Full-SameDoc, NCT-
Dutch-Human-SameDoc. Detailed per layer, per PTLLM, per dataset results are
reported in Appendix 7.1.

5.1 story cloze
sctv1.0 Figure 5 shows the per layer accuracy score for each model for the
SCTv1.0 dataset. Figure 5a and Figure 5b show the per layer per cross-lingual
model accuracy score results on the English and MT-Dutch variants of the dataset,
respectively. Figure 5c and Figure 5d show the per layer per monolingual model
accuracy score results. All figures show a similar trend in that the PTLLM’s scores

(a) Cross-lingual EN (b) Cross-lingual NL

(c) Monolingual EN (d) Monolingual NL

Figure 5: Per layer accuracy scores on the SCT-v1.0 dataset. In the legends on
the left: XLM-R, mDeBERTa (cross-lingual); RoBERTa, BERT (monolingual En-
glish); RobBERT, BERTje (monolingual Dutch), for the default concatenated
setting, Full for context sentences as a single text/representation; EvTr for
concatenation of event trigger representations only; FullEv for the merg-
ing of all event contexts into a single representation.

tend to (slowly) increase in performance, based on accuracy score, as the layers
increase.

Furthermore, we can see that most models across all dataset variants outperform
all baselines, across all layers, compared to the lexical and random baselines, or at

17
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least one/some layers, compared to the TF-IDF baseline, with the TF-IDF baseline
being most competitive, compared to the best single-layer PTLLM scores. However
as mentioned in Chapter 3, there is a known bias present within this dataset which
might be the cause of the relative competitive performance of the TF-IDF baseline,
compared to the PTLLMs’ performance. For all models, the performance is lower
in the earlier layers (1-4) of the model and tends to be the highest around the higher
layers (8-12) of the model. Best performing model on the English datasets is the
monolingual RoBERTa model with the full context as a single vector representation
(Full) (0.759, ∆ = 0.59 compared to the best performing baseline (tf-idf) = 0.7). The
worst performing model on the English datasets is BERT with the FullEv setting,
failing to outperform the tf-idf baseline (0.697, ∆ = -0.003), based on best single
layer score. Best performing model on the MT-Dutch datasets is mDeBERTa with Full
settings (0.723), with RobBERT with FullEv settings as the worst performing model
(0.677), based on best single layer score. The best performing layer per model were
in the 8–11 layers, showing that the final layer does not result in best performance
on the task.

Both cross-lingual figures (Figure 5a, 5b) show similar trends. The mDeBERTa
models tend to (slightly) outperform the XLM-RoBERTa models on all experiment
conditions apart from event triggers, with the default and Full context experiment
conditions yielding the best performance for both models individually. Moreover,
when the extracted event representations were used, both FullEv (extracted main
events as one vector) and EvTr (extracted concatenated main event representations),
these models tend to yield the worst performance, for both mDeBERTa and XLM-
RoBERTa.

The monolingual figures (Figure 5c, 5d) show similar trends as well. Again
the default and Full context settings appear to yield best performance, whilst the
extracted event representations (FullEv, EvTr) yield the worst performance. Here the
monolingual RoBERTa models (RoBERTa for English, RobBERTV2 for Dutch) tend to
outperform the monolingual BERT models (BERT for English, BERTje for Dutch). For
the English monolingual models the RoBERTa models tend to outperform the BERT

models more clearly, whereas for the Dutch monolingual models the performance
of the different PTLLMs tend to be a bit closer.

Comparing the performance on the English datasets to the MT-Dutch variants,
we see a slight drop in performance. However this slight drop might be caused by
machine-translation artifacts. The monolingual RoBERTa models tend to outperform
the multilingual RoBERTa models, as expected. More notably is that the multilingual
DeBERTa models tend to outperform some monolingual BERT models. These results
show that multilingual models are able to be competitive with and in some cases
outperform monolingual models.

Comparing our best performing PTLLM, based on single-layer accuracy, to the
state-of-the-art on the same task, we see that our zero-shot PTLLM with the Full
setting is able to outperform a comparable model using static pre-trained word-
embeddings (∆ = 0.59) and score competitive with a fine-tuned ELECTRA model (∆
= -0.131).

sctv1.5 Figure 7 shows the per layer accuracy score for each model for the
SCTv1.5 dataset. Figure 7a and Figure 7b show the per layer per cross-lingual
model accuracy score results on the English and Dutch variants of the dataset, re-
spectively. Figure 7c and Figure 7d show the per layer per monolingual model accu-
racy score results. Most dataset and model variants, apart from monolingual Dutch,
show a similar trend in that they tend to increase in performance, based on accu-
racy score, as the layers increase. However, the best performing layers per model
range from the mid to high layers (6-10). Furthermore, we can see that all mod-
els across all dataset variants outperform the random and lexical baselines, across
all layers (lexical- and random baseline) and for most models at least one/some
layers compared to the TF-IDF baseline, with the TF-IDF baseline being most com-
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Figure 6: Per layer accuracy scores on the SCT-v1.0 dataset. Best model vs. state-of-
the-art on same task, based on (single layer) accuracy. acoli used a com-
parable model, using SVM+static pre-trained word-embeddings (GloVe,
word2vec) (Mostafazadeh et al., 2017), Koto et al. (2021b) used a fine-
tuned ELECTRA model.

(a) Cross-lingual EN (b) Cross-lingual NL

(c) Monolingual EN (d) Monolingual NL

Figure 7: Per layer accuracy scores on the SCT-v1.5 dataset. In the legends on
the left: XLM-R, mDeBERTa (cross-lingual); RoBERTa, BERT (monolingual En-
glish); RobBERT, BERTje (monolingual Dutch), for the default concatenated
setting, Full for context sentences as a single text/representation; EvTr for
concatenation of event trigger representations only; FullEv for the merg-
ing of all event contexts into a single representation.
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petitive. RoBERTa with default settings (0.747) and mDeBERTa with default settings
(0.703) yield the best performance on the English and MT-Dutch datasets, respec-
tively. Whereas XLM-R with FullEv settings (0.669) and BERTje with EvTr settings
(0.646) yield worst performance on the English and MT-Dutch datasets, respec-
tively. Similar to the SCTv1.0 results, the extracted event representation settings
(FullEv, EvTr) yield the worst results, whilst the default and Full settings yield the
best results across all models and dataset variants. The multilingual models in the
extracted event representation settings barely outperform (mDeBERTa with event
triggers ∆ = 0.01) or perform slightly worse than the TF-IDF baseline (XLM-R-EvTr
∆ = -0.006, XLM-R-FullEv ∆ = -0.022, mDeBERTa-FullEv ∆ = -0.008). Interestingly,
even though this dataset does account for the bias that was present in SCTv1.0, the
TF-IDF baseline performs only slightly worse (∆ = -0.009) on this dataset compared
to SCTv1.0. As expected, for three out of the four experiment conditions, the perfor-
mance is lower in the earlier layers of the model (1–4) and tends to be the highest
around the higher layers of the model (8–12). The only exception here being the
monolingual Dutch models, where we see less of an upwards trend as the layers in-
crease, where for some models, the performance even tends to stagnate or decrease
as the layers increase (BERT-FullEv, -EvTr).

Both cross-lingual figures (Figure 7a, 7b) show similar trends. The mDeBERTa

models tend to overall slightly outperform the XLM-RoBERTa models, with the de-
fault and Full settings yielding the best performance for both models individually.
Moreover, when the extracted event representations were used, both FullEv and
EvTr, these models tend to yield the worst performance, for both mDeBERTa (FullEv:
0.683, EvTr: 0.692) and XLM-RoBERTa (FullEv: 0.669, EvTr: 0.685).

The monolingual figures (Figure 7c, 7d show somewhat different trends. Again
the default and Full settings appear to yield best performance, whilst the extracted
event representations (FullEv, EvTr) yield the worst performance. Here the monolin-
gual RoBERTa models (RoBERTa for English, RobBERTV2 for Dutch) tend to outperform
the monolingual BERT models (BERT for English, BERTje for Dutch). For the English
monolingual models the RoBERTa models tend to outperform the BERT models more
clearly, whereas for the Dutch monolingual models the performance of the differ-
ent PTLLMs tend to be a bit closer. However, the Dutch monolingual models seem
to increase less as the layers increase, compared to the monolingual English mod-
els. Comparing cross-lingual Dutch with the monolingual Dutch models, we can
see that the cross-lingual models appear to perform better or at least be very com-
petitive/on par with the monolingual Dutch models. Showing that cross-lingual
models can be very competitive and even outperform monolingual models in some
instances.

Comparing the performance on the English datasets to the MT-Dutch datasets,
we see a drop in overall performance. However this drop might be caused by
machine-translation artifacts. The monolingual RoBERTa models tend to outperform
the cross-lingual RoBERTa models, as expected. More notably is that the multilin-
gual DeBERTa models tend to outperform the monolingual BERT models. Similar
to SCTv1.0, these results show that multilingual models are able to be competitive
with and in some cases outperform monolingual models.

5.2 narrative cloze
nct-full-random Figure 8 shows the per layer accuracy score for each model
for the NCT-Full-Random dataset. Figure 8a and Figure 8b show the per layer per
cross-lingual model accuracy score results on the English and MT-Dutch variants of
the dataset, respectively. Figure 8c and Figure 8d show the per layer per monolin-
gual model accuracy score results. As already seen, all figures show a similar trend,
as the layers increase the performance, based on accuracy score, tends to increase
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(a) Cross-lingual EN (b) Cross-lingual NL

(c) Monolingual EN (d) Monolingual NL

Figure 8: Per layer accuracy scores on the NCT-Full-Random dataset. In the legends
on the left: XLM-R, mDeBERTa (cross-lingual); RoBERTa, BERT (monolingual
English); RobBERT, BERTje (monolingual Dutch), for the default concate-
nated setting, Full for context sentences as a single text/representation;
EvTr for concatenation of event trigger representations only; FullEv for
the merging of all event contexts into a single representation.

as well, with all models outperforming the random baseline (0.5) and most models
outperforming both the lexical (0.79) and tf-idf baselines (0.824). The best perform-
ing layers per model range from the mid to higher layers (6–11), where the models
on the English datasets have better performance compared to the MT-Dutch version.
Similar to the Story Cloze results, this might be due to machine-translation artifacts,
as artifacts might reduce the quality of the text and therefore possibly the coherence
of the text passages. As expected, we can see that the models perform quite well on
the random dataset where its easier to choose the correct option since the alternative
has very minimal coherence or lexical overlap with the preceding context, as can be
seen from the relatively high lexical baseline score (0.79). Best performing model on
the English datasets is RoBERTa with default settings (0.905), with XLM-R with EvTr
settings as the worst performing model (0.789), based on best single layer score.
Best performing model on the MT-Dutch datasets is mDeBERTa with Full settings
(0.873), with XLM-R with EvTr settings as the worst performing model (0.729), based
on best single layer score. Interestingly we see that some models are outperformed
by the TF-IDF baseline and are on par with/barely outperform the lexical baseline
(XLM-R-EvTr = 0.795, RoBERTa-EvTr = 0.823, BERT-EvTr = 0.795, XLM-R-FullEv = 0.8,
BERT-FullEv = 0.812), all of them in either the FullEv or EvTr setting.

mDeBERTa models outperform XLM-R models on all settings on both the English
and MT-Dutch datasets apart from the event-trigger settings on the MT-Dutch
dataset. Compared to the monolingual models, the multilingual models show com-
petitive results, where on the English dataset mDeBERTa models outperform BERT

on all settings, based on best single layer score, where on the MT-Dutch dataset
XLM-R models outperform monolingual RobBERT models on all settings and mDeBERTa

models on all settings apart from event-triggers. The monolingual RoBERTa models
outperform the monolingual BERT models on all settings on the English dataset,
whereas the BERTje models outperform RobBERT on all settings on the MT-Dutch
dataset. Again, the FullEv and EvTr settings tend to yield the worst performance
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across both datasets, whereas the default and Full settings yield the best perfor-
mance, based on best single layer score.

nct-human-random Figure 9 shows the per layer accuracy score for each model
for the NCT-Human-Random datasets. Figure 9a and Figure 9b show the per layer
per cross-lingual model accuracy score results on the English and MT-Dutch vari-
ants of the dataset, respectively. Figure 9c and Figure 9d show the per layer per
monolingual model accuracy score results. In general we see similar trends here,

(a) Cross-lingual EN (b) Cross-lingual NL

(c) Monolingual EN (d) Monolingual NL

Figure 9: Per layer accuracy scores on the NCT-Human-Random dataset. In the legends
on the left: XLM-R, mDeBERTa (cross-lingual); RoBERTa, BERT (monolingual
English); RobBERT, BERTje (monolingual Dutch), for the default concate-
nated setting, Full for context sentences as a single text/representation;
EvTr for concatenation of event trigger representations only; FullEv for
the merging of all event contexts into a single representation.

compared to the NCT-Full-Random datasets. Higher layers (7–11) generally yield
best performance. With the default and Full settings yielding best per model perfor-
mance and EvTr, FullEv yielding worst per model performance, where for the MT-
Dutch dataset all EvTr and FullEv models, apart from XLM-R-EvTr score lower than
the tf-idf baseline (0.789), with RobBERT-FullEv, -EvTr scoring even lower than the
lexical baseline (0.76, ∆ = -0.032, -0.039, respectively). We see a similar trend in the
English dataset results, where all FullEv and EvTr models, apart from XLM-R-FullEv

fail to outperform the lexical baseline (0.82), with BERT-EvTr, -FullEv failing to
outperform the tf-idf baseline as well (0.8, ∆ = -0.007, -0.013). Similar to the NCT-
Full-Random dataset the lexical and tf-idf baselines are relatively high, indicating
less complexity within these random datasets. RoBERTa with default settings yields
best overall performance on the English dataset (0.915) and mDeBERTa with default
settings yields best overall performance on the MT-Dutch dataset (0.883), basde on
best single layer score.

nct-full-samedoc Figure 10 shows the per layer accuracy score for each model
for the NCT-Full-SameDoc dataset. Figure 10a and Figure 10b show the per layer
per cross-lingual model accuracy score results on the English and MT-Dutch vari-
ants of the dataset, respectively. Figure 10c and Figure 10d show the per layer per
monolingual model accuracy score results. Most models tend to outperform the
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(a) Cross-lingual EN (b) Cross-lingual NL

(c) Monolingual EN (d) Monolingual NL

Figure 10: Per layer accuracy score on the NCT-Full-SameDoc dataset. In the leg-
ends on the left: XLM-R, mDeBERTa (cross-lingual); RoBERTa, BERT (mono-
lingual English); RobBERT, BERTje (monolingual Dutch), for the default
concatenated setting, Full for context sentences as a single text/repre-
sentation; EvTr for concatenation of event trigger representations only;
FullEv for the merging of all event contexts into a single representation.

random (0.5) and lexical baselines (English: 0.52, MT-Dutch: 0.49) across all layers
and settings or at least some/one layer compared to the tf-idf baseline (English:
0.535, MT-Dutch: 0.542), apart from RobBERT-FullEv, -EvTr (∆ = -0.003, -0.01) and
BERTje-EvTr, -FullEv (∆ = -0.005, 0). Overall we see the models struggle more
with consistency across the layers, yielding best layer performance as soon as layer
2 (RobBERT-EvTr) and layer 12 at the latest (mDeBERTa-EvTr, BERT-EvTr, -FullEv).
Again the models show higher performance on the English datasets, compared to
the MT-Dutch datasets, where the default and Full settings yield best per model per-
formance. RoBERTa with Full setting yields best overall performance (0.584), show-
ing that the monolingual model outperforms the multilingual model on the English
dataset, whereas on the MT-Dutch dataset, multilingual DeBERTa with default set-
tings yields best overall performance (0.573), based on best single layer performance.
Worst performing model on the English dataset is RoBERTa with EvTr settings (0.541),
with BERTje with EvTr settings being the worst performing model on the MT-Dutch
dataset (0.537), based on best single layer score.

Overall we can see that the results, in absolute numbers, are (much) lower com-
pared to NCT-Full-Random, making this a very challenging task. That this task is
challenging is further indicated by the low(er) performance, small(er) differences be-
tween models, based on scores. The low performance and small differences, might
also indicate that these results might be noise. We need statistical tests to verify
what models are actually different from each other, however as we are only inter-
ested in the capabilities of PTLLMs to encode narrative coherence using different
probing settings, this is beyond the scope of this research and leave this for future
work. These results show that the PTLLMs fail to capture narrative coherence, due
to the increased complexity of this dataset.

nct-human-samedoc Figure 11 shows the per layer accuracy score for each
model for the NCT-Human-SameDoc dataset. Figure 11a and Figure 11b show
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the per layer per cross-lingual model accuracy score results on the English and MT-
Dutch variants of the dataset, respectively. Figure 11c and Figure 11d show the
per layer per monolingual model accuracy score results. Similar to the NCT-Full-

(a) Cross-lingual EN (b) Cross-lingual NL

(c) Monolingual EN (d) Monolingual NL

Figure 11: Per layer accuracy scores on the NCT-Human-SameDoc dataset. In the leg-
ends on the left: XLM-R, mDeBERTa (cross-lingual); RoBERTa, BERT (mono-
lingual English); RobBERT, BERTje (monolingual Dutch), for the default
concatenated setting, Full for merged context sentences in a single text;
EvTr for concatenation of event trigger representation only; FullEv for
the merging of all event contexts into a single vector.

SameDoc datasets we see a drop in performance compared to the random equiv-
alent of this dataset. Showing less consistency across the layers, with best layer
scores as early as layer 3 and as late as layer 12. All models and settings best per-
forming layer outperform all baselines (random: 0.5, lexical: 0.52, tf-idf: 0.537) on
the MT-Dutch datasets, whereas on the English dataset all models best performing
layer outperform the random (0.5) and tf-idf (0.505) baselines, however we see that
both the RoBERTa and BERT models with FullEv and EvTr settings fail to outperform
the lexical baseline (RoBERTa-FullEv, -EvTr: ∆ = -0.023, -0.017; BERT-FullEv, -EvTr:
∆ = -0.016, -0.012). In general FullEv and EvTr settings yield the worst per model
performance, whereas the default and Full settings yield best per model perfor-
mance. With BERTje-Full and mDeBERTa with defaul settings yielding best overall
performance (0.576, 0.592 respectively).

As already seen in NCT-Full-SameDoc, overall the results, in absolute numbers,
are (much) lower compared to NCT-Human-Random, making this a very challeng-
ing task. That this task is challenging is, again, further indicated by the low(er)
performance, small(er) differences between models, based on scores. The low per-
formance and small differences indicate that these results might be noise. We need
statistical tests to verify what models are actually different from each other, how-
ever as we are only interested in the capabilities of PTLLMs to encode narrative
coherence using different probing settings, this is beyond the scope of this research
and leave this for future work. These results show that the PTLLMs fail to capture
narrative coherence, due to the increased complexity of this dataset.
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5.3 narrative cloze dutch
nct-dutch-full Figure 12 shows the per layer accuracy score for each model
for the NCT-Dutch-Full dataset. Figure 12a and Figure 12b show the per layer per
cross-lingual model accuracy score results on the Random and SameDoc (same ar-
ticle/narrative alternative follow-up sentence) variants of the dataset, respectively.
Figure 12c and Figure 12d show the per layer per monolingual model accuracy score
results on the Random and SameDoc variants of the dataset, respectively. Again we

(a) Cross-ling. Random (b) Cross-ling. SameDoc

(c) Monoling. Random (d) Monoling. SameDoc

Figure 12: Per layer, 5-fold cross-validation, accuracy scores on the NCT-Dutch-Full
dataset. In the legends on the left: XLM-R, mDeBERTa (cross-lingual);
RobBERT, BERTje (monolingual), for the default concatenated setting, Full
for context sentences as a single text/representation; EvTr for concatena-
tion of event trigger representations only; FullEv for the merging of all
event contexts into a single representation.

see a clear difference in performance between random and SameDoc version of the
dataset. Not only in performance but also in trends, where in the random ver-
sions the peformance tends to increase as the layers increase, with best per layer
performance in the higher layers (9–12). The SameDoc version show worse over-
all performance and less consistency across the layers, with per layer best models
ranging from layers 6–12. All models outperform all baselines on both datasets
(Random: Random: 0.5, lexical: 0.62, tf-idf: 0.751; SameDoc: random: 0.5, lexical: 0.43,
tf-idf: 0.496). With default and Full settings yielding best per model performance
and FullEv, EvTr yielding worst per model performance. With BERTje-Full and
mDeBERTa with default settings yielding best overall performance on the random
and SameDoc version of the dataset, (0.881, 0.604) respectively. These results indicate
that the models are less capable of capturing coherence between context and possi-
ble follow-up sequences when the differences between the possible alternatives are
linguistically more subtle, showing increased complexity.

nct-dutch-human Figure 13 shows the per layer accuracy score for each model
for the NCT-Dutch-Human dataset. Figure 13a and Figure 13b show the per layer
per cross-lingual model accuracy score results on the Random and SameDoc (same
article/narrative alternative follow-up sentence) variants of the dataset, respectively.
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Figure 13c and Figure 13d show the per layer per monolingual model accuracy score
results on the Random and SameDoc variants of the dataset, respectively. We see

(a) Cross-ling. Random (b) Cross-ling. SameDoc

(c) Monoling. Random (d) Monoling. SameDoc

Figure 13: Per layer, 5-fold cross-validation, accuracy scores on the
NCT-Dutch-Human dataset. In the legends on the left: XLM-R, mDeBERTa
(cross-lingual); RobBERT, BERTje (monolingual), for the default concate-
nated setting, Full for context sentences as a single text/representation;
EvTr for concatenation of event trigger representations only; FullEv for
the merging of all event contexts into a single representation.

similar trends compared to the NCT-Dutch-Full datasets. With the overall perfor-
mance on the random dataset being higher compared to the SameDoc version. Fur-
thermore showing the inconsistency in performance on the SameDoc version with
best performing layers between layers 2–12, whilst the random version best perform-
ing layers are between layers 6–11. All models’ best performing layer do outperform
all baselines, both on random (random: 0.5, lexical: 0.62, tf-idf: 0.665) and Same-
Doc (random: 0.5, lexical: 0.41, tf-idf: 0.415). The default and Full settings yield
best per model performance (SameDoc: BERTje with default settings (0.607), ran-
dom: BERTje-Full (0.863)) and FullEv, EvTr yielding lowest per model performance
(SameDoc: XLM-R-FullEv: 0.53; random: RobBERT-EvTr: 0.668). Again, showing
that the contextualized extracted representations capture less linguistic information
than the full text contextualized representations. Baselines scores on the SameDoc
dataset are also lower than the random baseline, showing the added complexity
of this dataset. Additionally, since this is a very small dataset, the tf-idf baseline
might not have enough datapoints to train a well-fitted model. The PTLLMs are
less effected by this, as we see less of a drop in performance compared to the drop
in performance of the baselines (other than the random baseline), compared to the
results on the NCT-Dutch-Full datasets.

5.4 discussion
Overall we see the same main trends across all models, datasets and experiment con-
ditions. In general the default setting (input context as a per sentence concatenated
embedding representations) or the input as the full context (Full: the input context
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as one embedding representation) yield the best performing models. This shows
that the contextual embedding representations in these settings contain the most
amount of useful information to complete the task. The event triggers (EvTr: per in-
put context sentence extracted, concatenated main event embedding representation)
and full context event triggers (FullEv: main event embedding representation extrac-
tion from the input context sentences as one embedding representation), showed to
yield the worst performance. Indicating that these representations, although ex-
tracted from the context and therefore they should contain some contextual infor-
mation about the sentence, given the attention mechanism of transformer models,
contain less/not enough information to perform well on these tasks. However even
the worst performing experiment conditions are able to consistently outperform
most baselines, based on best single layer score, on most datasets. This shows that
these embedding representations contain at least more contextual information than
simple baselines in most of our experiments.

As the English BERT model has been pre-trained using the MLM and NSP ob-
jectives, we might expect better performance on these probing experiments, as
the objective somewhat resembles the NSP pre-training objective. To reiterate, in
this NSP pre-training objective two sentences were concatenated and the (BERT)
model had to decide if the two sentences follow each other or not (binary task).
For our probing experiments, the probing classifier was trained to predict if a fi-
nal sentence fitted a 4-sentence input story/narrative (also binary task), using the
PTLLM’s representations of the text. As only the monolingual English BERT model
was trained using this NSP pre-training objective we can only compare its results
on the English datasets (6 in total: SCTv1.0-EN, SCTv1.5-EN, NCT-Full-Random-EN,
NCT-Full-SameDoc-EN, NCT-Human-Random-EN, NCT-Human-SameDoc-EN). Our results
show that in general, on 5 out of the 6 English datasets, monolingual RoBERTa mod-
els rather than monolingual BERT models, are the best performing language model
on the English datasets. Indicating that size, rather than the NSP pre-training objec-
tive, is more effective in capturing narrative coherence for these tasks. Interestingly
on 1 out of the 6 datasets multilingual DeBERTa yielded the best performing model,
showing that multilingual models can compete with and even outperform monolin-
gual models in some scenarios.

Interestingly, we see competitive results comparing the multilingual and mono-
lingual PTLLMs. This might be because the multilingual models such as mDeBER-
TaV3 are the current state-of-the-art, whereas the monolingual BERT and RoBERTa

models are previous state-of-the-art. However, this also shows the evolution of
current state-of-the-art multilingual models compared to previous state-of-the-art
monolingual ones and their ability to compete with them. That being said, our re-
sults show that the monolingual PTLLMs outperform the multilingual PTLLMs on
most datasets. Moreover, we can see that mDeBERTa tends to be the best performing
multilingual PTLLM, even-though it is a smaller model, compared to XLM-RoBERTa,
indicating that pre-training objective, rather than model size might be more ben-
eficial. Comparing English to Dutch results, we see a small consistent drop in
performance on the Dutch datasets. For the MT-Dutch datasets, this might be due
to machine-translation artifacts.

Comparing random to non-random dataset results, we can clearly see the mod-
els’ struggling to find consistency across the layers, due to increased complexity in
the SameDoc datasets. A possible explanation for this extra complexity compared
to the SCT datasets is: (i) the NCT datasets consists of parts of text excerpts from
news articles, therefore the sentences are long(er) (≈26 (NCT)/≈16 (NCT-Dutch)
words per sentence compared to ≈9 words per sentence for the SCT datasets), and
(ii) possibly contain multiple protagonists per story, therefore the contextualized
embedding representations possibly need to encode more information about more
context. Furthermore, (iii) the correct follow-up sentence is not a story-ending sen-
tence, therefore it can be more flexible in terms of what is (more) correct and what
is less/not correct as the follow-up sentence does not necessarily function as a con-
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clusion to the input context. In comparison, the SCT datasets contain short(er)
sentences with mostly one protagonist. Whilst also having a final story-ending sen-
tence, providing/needing a more conclusive sequence, relative to the input context
sequences.

Comparing English to Dutch results we see that the performance on the Dutch
version of the datasets tend to be lower. This might also be due to machine-
translation artifacts, so we cannot say with certainty that these models perform
worse on Dutch datasets. However, we do see a similar trend comparing the English
NCT datasets to the (monolingual, not machine-translated) NCT-Dutch datasets.
But, this might due to differences in text-domain, rather than just the difference in
language.

Our results indicate that the PTLLMs perform worse when being proxied with
the Human variant of a dataset, i.e. only human protagonists, compared to Full.
This might indicate that it’s harder to encode some sort of linguistic coreference
information in the embedding representations about a specific person across tem-
porally and logically connected sequences in a short narrative. Especially when
there might be multiple different persons present in such a short narrative. More-
over, the PTLLMs show to struggle more when the difference between the correct
and incorrect final sentence is linguistically more subtle. The PTLLMs have no is-
sue performing well on the random datasets, whereas we see a drop, in absolute
numbers, compared to the performance on the non-random datasets. For the SCT
datasets we see a drop in performance (≈0.2 points), showing that the PTLLMs are
able to capture some forms of narrative coherence, with increasing scores as the
layers increase. Whereas for the SameDoc NCT datasets the drop is larger (≈0.3–
0.4 points), with inconsistent, fluctuating scores as the layers increase. The low(er)
scores and small(er) differences between the models on the SameDoc probing ex-
periments indicate that (i) the PTLLMs fail to capture narrative coherence in these
settings and (ii) the results might be noise as we need statistical tests to verify if the
models actually follow different trends.

Our probing experiments and datasets better qualify the narrative coherence
abilities of PTLLMs. Primarily, our probing results indicate that in a zero-shot
setting these PTLLMs perform well under coherent vs. random conditions (NCT-
Random, NCT-Dutch-Random), with decent performance on short coherent short(er)
sentence fictional stories (Story Cloze), whilst struggling with performance and con-
sistency under coherent vs. same document conditions (NCT-SameDoc, NCT-Dutch-
SameDoc). Fine-tuning these models, on especially the SameDoc task, might signifi-
cantly improve performance. Our results - in absolute terms - range between a min-
imum of 0.573 (NCT-Full-Dutch) to a maximum of 0.915 (NCT-Human-Random), based
on single layer accuracy score. As described in Chapter 3, our datasets have differ-
ent levels of complexity for narrative coherence. Not surprisingly, performances on
the SameDoc NCT datasets, highest complexity, are the lowest because they require
a deeper understanding of the context that PTLLMs partially capture. Our probing
results on the SCT-v1.0 dataset suggest that PTLLMs’ representations are less sen-
sitive to stylistic bias, with our best results being higher (∆ = 0.059) than those of a
comparable approach using SVM and static pre-trained embeddings (Mostafazadeh
et al., 2017). The difference with Koto et al. (2021a) is larger (∆=-0.131), however
they use a fine-tuned ELECTRA model, using a multilayer perceptron with the [CLS]

token.



6 C O N C L U S I O N

This work offers a broad investigation of the abilities of six different PTLLMs to
encode narrative coherence across sixteen cloze task datasets in English and Dutch,
investigating multiple different input settings and different linguistic variations of
the final sentence alternative.

In general, our probes indicate that having access to the full text yield better
performance when probing for narrative coherence, than extracted single lexical
items such as (main) event triggers. Moreover, our probes show that the models fail
to capture narrative coherence when using these extracted contextualized represen-
tations, indicating that these contextualized representations alone do not contain
enough linguistic information to perform well when being probed for narrative
coherence. More specifically, our results show that PTLLMs are able to capture
narrative coherence in simple cases, when the data consists of short news-article
narratives with a random final sentence alternative, without subtle linguistic differ-
ences, when having access to the full text. Moreover, PTLLMs are able to capture
some narrative coherence when the data consists of short fictional stories with sub-
tle linguistic differences between final sentence alternatives, when having access to
the full text. However, the PTLLMs fail to capture narrative coherence when they
do not have access to the full text, only (main) event triggers, and when the data
consists of short news-article narratives and subtle linguistic differences between
final sentence alternatives are present. Monolingual PTLLMs, in general, outper-
form multilingual PTLLMs. However, the multilingual PTLLMs show competitive
results with the monolingual PTLLMs and are able to outperform the monolingual
PTLLMs in some scenarios. Furthermore, increased model size, rather than the next
sentence prediction (NSP) pre-training objective, seems to yield better performance
on this task. Comparing the multilingual PTLLMs’ results show that, pre-training
objective, rather than size obtain better results when probing for narrative coher-
ence. Lastly, where possible, we have shown that our probe models are competitive
with state-of-the-art systems on the same task, indicating that improvements are
due either to specific architectures, fine-tuning or extra features capturing addi-
tional linguistic information not immediately available in the zero-shot contextual
representations.

This work shows that although PTLLMs are able to capture some forms of nar-
rative coherence across temporally and logically connected sequences, narrative co-
herence remains challenging, especially when subtle linguistic variations, requiring
deeper forms of understanding of the context, are present in the final sentence al-
ternatives.

6.1 limitations & future work
Future work could focus on expanding this research across more and different lan-
guages, such as comparing all Germanic languages and extend this research to Latin
or Asian/Arabic languages, to see if similar trends are present. Furthermore, the
impact of fine-tuning these models would be interesting to see if it significantly im-
proves performance. Specifically on datasets where a deeper understanding of the
context is required to deal with long(er) format sentences and to differentiate be-
tween subtle (same document) linguistic variations. Moreover, experimenting with
more linguistic variations of possible final sentence alternatives could be explored
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to get a better understanding of how PTLLMs perform when being challenged by
specific linguistic variations (i.e. tense, negation etc.). Also extending this research
using more (different) PTLLMs, such as encoders from generative LLMs (such as
(m)T5 (Raffel et al., 2020; Xue et al., 2021)), would be insightful to see if similar
trends are found across a wider scope of PTLLMs.

Another angle to extend this exploratory research could be to see how PTLLMs
react to the distance of a sentence given a context (i.e. given a story of n sen-
tences, use the first n sentences as input, n+ 1 as the correct final sentence, with the
next n+ 1+ n sentence as the incorrect final sentence alternative, with increasing
distance from the correct (n + 1) final sentence). Running the same experiments
with increased/-ing input context size would be interesting, to see if these PTLLMs
benefit from larger input context or that they struggle with processing increased
amounts of information, when choosing between a set of final sentence alternatives
given some context (inspired by Liu et al. (2023)).

Lastly, a comparison to static word embeddings on the same tasks would pro-
vide more insights into if these contextualized embeddings are better at capturing
narrative coherence.
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7 A P P E N D I C E S

7.1 detailed probing results
The following tables illustrate the detailed per layer results of each model in the
experiment settings we have described in § 4.2 per model for each dataset, in detail.
Best score per layer is in bold, best overall layer score is highlighted in yellow.

7.1.1 English Datasets

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.537 0.53 0.542 0.537 0.566 0.554 0.554 0.554 0.563 0.55 0.558 0.561 –
mDeBERTaV3-base 0.54 0.537 0.55 0.554 0.556 0.564 0.567 0.576 0.569 0.568 0.573 0.559 –
RoBERTa-base 0.559 0.566 0.572 0.569 0.578 0.583 0.578 0.565 0.574 0.578 0.573 0.555 –
BERT-base 0.546 0.552 0.555 0.555 0.56 0.547 0.554 0.564 0.553 0.566 0.571 0.564 –
XLM-R-base_Full 0.536 0.537 0.538 0.547 0.564 0.558 0.562 0.557 0.569 0.551 0.55 0.561 –
mDeBERTaV3-base_Full 0.535 0.536 0.54 0.564 0.55 0.563 0.561 0.571 0.569 0.564 0.565 0.559 –
RoBERTa-base_Full 0.557 0.562 0.569 0.573 0.575 0.584 0.576 0.57 0.574 0.573 0.575 0.555 –
BERT-base_Full 0.546 0.555 0.556 0.559 0.559 0.545 0.555 0.559 0.556 0.569 0.572 0.569 –
XLM-R-base_EvTr 0.478 0.536 0.539 0.528 0.532 0.546 0.542 0.544 0.542 0.539 0.53 0.543 –
mDeBERTaV3-base_EvTr 0.52 0.526 0.53 0.533 0.531 0.525 0.546 0.546 0.552 0.548 0.538 0.555 –
RoBERTa-base_EvTr 0.53 0.534 0.532 0.541 0.54 0.539 0.536 0.523 0.534 0.532 0.538 0.531 –
BERT-base_EvTr 0.517 0.52 0.516 0.518 0.535 0.542 0.529 0.526 0.539 0.529 0.537 0.548 –
XLM-R-base_FullEv 0.491 0.53 0.535 0.528 0.526 0.554 0.536 0.545 0.535 0.537 0.532 0.542 –
mDeBERTaV3-base_FullEv 0.517 0.522 0.526 0.527 0.535 0.524 0.544 0.543 0.549 0.544 0.543 0.547 –
RoBERTa-base_FullEv 0.533 0.545 0.532 0.535 0.538 0.546 0.529 0.527 0.528 0.523 0.541 0.532 –
BERT-base_FullEv 0.513 0.524 0.521 0.521 0.526 0.538 0.527 0.526 0.536 0.527 0.536 0.547 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.52

TF-IDF_BASELINE – 0.535

Table 7.1.1: Per layer per model accuracy (binary classification) for the NCT-Full
dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.788 0.804 0.819 0.84 0.859 0.877 0.875 0.882 0.883 0.875 0.881 0.877 –
mDeBERTaV3-base 0.788 0.792 0.808 0.835 0.843 0.853 0.86 0.871 0.881 0.89 0.893 0.878 –
RoBERTa-base 0.835 0.859 0.866 0.889 0.896 0.898 0.898 0.896 0.895 0.905 0.899 0.888 –
BERT-base 0.798 0.808 0.815 0.821 0.835 0.846 0.859 0.865 0.869 0.861 0.867 0.862 –
XLM-R-base_Full 0.802 0.814 0.827 0.847 0.867 0.884 0.881 0.889 0.886 0.877 0.88 0.879 –
mDeBERTaV3-base_Full 0.793 0.802 0.816 0.841 0.849 0.858 0.866 0.879 0.884 0.891 0.901 0.887 –
RoBERTa-base_Full 0.84 0.863 0.881 0.894 0.901 0.899 0.903 0.894 0.897 0.904 0.899 0.89 –
BERT-base_Full 0.805 0.811 0.82 0.825 0.838 0.847 0.867 0.87 0.872 0.871 0.873 0.867 –
XLM-R-base_EvTr 0.674 0.687 0.694 0.725 0.746 0.778 0.787 0.788 0.785 0.789 0.786 0.785 –
mDeBERTaV3-base_EvTr 0.661 0.683 0.711 0.743 0.759 0.774 0.79 0.817 0.832 0.838 0.834 0.8 –
RoBERTa-base_EvTr 0.722 0.726 0.752 0.784 0.816 0.823 0.816 0.812 0.809 0.799 0.8 0.799 –
BERT-base_EvTr 0.688 0.7 0.719 0.711 0.742 0.766 0.778 0.78 0.795 0.795 0.792 0.786 –
XLM-R-base_FullEv 0.679 0.693 0.702 0.739 0.761 0.788 0.799 0.8 0.795 0.79 0.789 0.791 –
mDeBERTaV3-base_FullEv 0.659 0.688 0.711 0.745 0.766 0.78 0.797 0.832 0.835 0.841 0.84 0.805 –
RoBERTa-base_FullEv 0.728 0.739 0.767 0.8 0.826 0.833 0.83 0.829 0.814 0.814 0.816 0.81 –
BERT-base_FullEv 0.697 0.706 0.715 0.722 0.758 0.772 0.784 0.792 0.812 0.806 0.807 0.79 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.79

TF-IDF_BASELINE – 0.824

Table 7.1.2: Per layer per model accuracy (binary classification) for the NCT-Full
Random dataset.
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Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.547 0.535 0.568 0.543 0.564 0.544 0.561 0.548 0.555 0.568 0.562 0.567 –
mDeBERTaV3-base 0.541 0.546 0.562 0.553 0.568 0.591 0.554 0.582 0.592 0.56 0.56 0.567 –
RoBERTa-base 0.568 0.576 0.562 0.562 0.581 0.566 0.567 0.582 0.568 0.554 0.572 0.58 –
BERT-base 0.524 0.57 0.549 0.554 0.572 0.562 0.547 0.572 0.556 0.53 0.546 0.543 –
XLM-R-base_Full 0.541 0.525 0.556 0.55 0.564 0.553 0.551 0.55 0.549 0.55 0.563 0.576 –
mDeBERTaV3-base_Full 0.548 0.56 0.572 0.537 0.559 0.587 0.555 0.573 0.583 0.553 0.551 0.568 –
RoBERTa-base_Full 0.568 0.578 0.562 0.583 0.588 0.548 0.566 0.585 0.58 0.551 0.555 0.564 –
BERT-base_Full 0.543 0.555 0.547 0.561 0.586 0.572 0.562 0.563 0.563 0.533 0.533 0.54 –
XLM-R-base_EvTr 0.497 0.515 0.504 0.52 0.534 0.562 0.585 0.578 0.561 0.542 0.54 0.561 –
mDeBERTaV3-base_EvTr 0.49 0.489 0.493 0.521 0.518 0.488 0.505 0.542 0.546 0.537 0.559 0.56 –
RoBERTa-base_EvTr 0.536 0.514 0.517 0.543 0.531 0.524 0.529 0.518 0.505 0.531 0.531 0.511 –
BERT-base_EvTr 0.483 0.489 0.492 0.505 0.495 0.53 0.548 0.535 0.531 0.516 0.496 0.49 –
XLM-R-base_FullEv 0.507 0.533 0.514 0.527 0.54 0.561 0.572 0.564 0.542 0.538 0.541 0.567 –
mDeBERTaV3-base_FullEv 0.491 0.49 0.484 0.533 0.521 0.509 0.509 0.534 0.557 0.531 0.569 0.56 –
RoBERTa-base_FullEv 0.515 0.522 0.521 0.518 0.536 0.518 0.537 0.52 0.51 0.525 0.528 0.507 –
BERT-base_FullEv 0.489 0.482 0.495 0.497 0.505 0.531 0.537 0.538 0.544 0.51 0.514 0.48 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.56

TF-IDF_BASELINE – 0.505

Table 7.1.3: Per layer per model accuracy (binary classification) for the NCT-Human
dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.782 0.805 0.815 0.827 0.856 0.882 0.891 0.888 0.893 0.885 0.888 0.866 –
mDeBERTaV3-base 0.774 0.785 0.811 0.843 0.83 0.857 0.862 0.883 0.892 0.91 0.907 0.872 –
RoBERTa-base 0.837 0.858 0.875 0.899 0.901 0.909 0.904 0.899 0.915 0.897 0.89 0.859 –
BERT-base 0.769 0.774 0.805 0.808 0.811 0.849 0.857 0.86 0.864 0.87 0.864 0.862 –
XLM-R-base_Full 0.782 0.793 0.821 0.824 0.857 0.879 0.893 0.888 0.89 0.875 0.882 0.873 –
mDeBERTaV3-base_Full 0.773 0.792 0.817 0.841 0.844 0.857 0.857 0.88 0.882 0.908 0.899 0.873 –
RoBERTa-base_Full 0.843 0.869 0.869 0.907 0.908 0.912 0.907 0.905 0.911 0.895 0.897 0.873 –
BERT-base_Full 0.768 0.773 0.805 0.806 0.82 0.844 0.859 0.858 0.864 0.858 0.857 0.86 –
XLM-R-base_EvTr 0.662 0.692 0.686 0.711 0.723 0.783 0.818 0.808 0.815 0.82 0.811 0.795 –
mDeBERTaV3-base_EvTr 0.626 0.645 0.665 0.702 0.697 0.721 0.714 0.791 0.817 0.808 0.791 0.74 –
RoBERTa-base_EvTr 0.685 0.711 0.728 0.756 0.786 0.807 0.812 0.812 0.8 0.808 0.8 0.78 –
BERT-base_EvTr 0.641 0.651 0.647 0.651 0.684 0.695 0.735 0.747 0.766 0.763 0.773 0.74 –
XLM-R-base_FullEv 0.672 0.69 0.695 0.731 0.73 0.769 0.82 0.814 0.812 0.822 0.82 0.806 –
mDeBERTaV3-base_FullEv 0.638 0.641 0.663 0.71 0.698 0.723 0.728 0.793 0.804 0.813 0.805 0.737 –
RoBERTa-base_FullEv 0.683 0.703 0.716 0.756 0.802 0.802 0.794 0.811 0.782 0.806 0.8 0.778 –
BERT-base_FullEv 0.639 0.651 0.653 0.66 0.691 0.708 0.738 0.753 0.767 0.766 0.762 0.743 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.82

TF-IDF_BASELINE – 0.8

Table 7.1.4: Per layer per model accuracy (binary classification) for the NCT-Human
Random dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.683 0.669 0.681 0.709 0.7 0.695 0.716 0.722 0.712 0.705 0.694 0.716 –
mDeBERTaV3-base 0.672 0.666 0.668 0.712 0.7 0.724 0.732 0.726 0.736 0.738 0.719 0.704 –
RoBERTa-base 0.701 0.699 0.711 0.719 0.731 0.743 0.745 0.751 0.747 0.753 0.754 0.736 –
BERT-base 0.681 0.687 0.676 0.671 0.706 0.707 0.721 0.733 0.712 0.707 0.706 0.697 –
XLM-R-base_Full 0.68 0.663 0.683 0.708 0.7 0.69 0.711 0.722 0.701 0.707 0.7 0.694 –
mDeBERTaV3-base_Full 0.68 0.683 0.692 0.701 0.695 0.73 0.722 0.716 0.73 0.726 0.723 0.706 –
RoBERTa-base_Full 0.7 0.702 0.725 0.714 0.727 0.743 0.734 0.759 0.751 0.751 0.756 0.743 –
BERT-base_Full 0.687 0.692 0.687 0.681 0.709 0.708 0.725 0.731 0.721 0.715 0.703 0.71 –
XLM-R-base_EvTr 0.653 0.642 0.648 0.66 0.667 0.686 0.689 0.689 0.706 0.709 0.708 0.686 –
mDeBERTaV3-base_EvTr 0.636 0.648 0.66 0.656 0.662 0.686 0.689 0.708 0.699 0.702 0.694 0.669 –
RoBERTa-base_EvTr 0.669 0.671 0.672 0.692 0.7 0.706 0.711 0.72 0.72 0.716 0.724 0.724 –
BERT-base_EvTr 0.667 0.665 0.649 0.665 0.678 0.676 0.688 0.684 0.684 0.698 0.699 0.691 –
XLM-R-base_FullEv 0.655 0.648 0.65 0.659 0.661 0.676 0.683 0.696 0.701 0.69 0.684 0.683 –
mDeBERTaV3-base_FullEv 0.651 0.647 0.659 0.666 0.662 0.667 0.687 0.701 0.702 0.708 0.7 0.662 –
RoBERTa-base_FullEv 0.672 0.675 0.677 0.702 0.69 0.702 0.706 0.728 0.72 0.722 0.718 0.716 –
BERT-base_FullEv 0.656 0.661 0.653 0.663 0.672 0.664 0.687 0.686 0.68 0.697 0.695 0.684 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.32

TF-IDF_BASELINE – 0.7

Table 7.1.5: Per layer per model accuracy (binary classification) for the SCT-v1.0
dataset.
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Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.677 0.671 0.673 0.671 0.692 0.725 0.713 0.706 0.724 0.728 0.708 0.712 –
mDeBERTaV3-base 0.65 0.669 0.672 0.687 0.708 0.706 0.701 0.731 0.724 0.731 0.706 0.689 –
RoBERTa-base 0.696 0.71 0.704 0.714 0.729 0.747 0.739 0.747 0.736 0.745 0.741 0.731 –
BERT-base 0.703 0.686 0.699 0.697 0.692 0.702 0.728 0.725 0.721 0.721 0.718 0.71 –
XLM-R-base_Full 0.671 0.673 0.655 0.673 0.682 0.711 0.696 0.711 0.713 0.731 0.701 0.706 –
mDeBERTaV3-base_Full 0.662 0.662 0.669 0.701 0.699 0.704 0.696 0.734 0.72 0.725 0.694 0.689 –
RoBERTa-base_Full 0.699 0.715 0.71 0.725 0.724 0.742 0.733 0.738 0.743 0.738 0.74 0.735 –
BERT-base_Full 0.694 0.68 0.696 0.68 0.697 0.706 0.714 0.726 0.734 0.718 0.729 0.696 –
XLM-R-base_EvTr 0.632 0.624 0.641 0.646 0.657 0.685 0.67 0.672 0.669 0.683 0.653 0.65 –
mDeBERTaV3-base_EvTr 0.629 0.629 0.646 0.648 0.655 0.65 0.647 0.692 0.68 0.677 0.688 0.645 –
RoBERTa-base_EvTr 0.643 0.626 0.665 0.675 0.701 0.708 0.711 0.714 0.704 0.72 0.716 0.694 –
BERT-base_EvTr 0.652 0.631 0.625 0.614 0.637 0.663 0.657 0.665 0.667 0.697 0.691 0.685 –
XLM-R-base_FullEv 0.636 0.625 0.662 0.642 0.642 0.658 0.65 0.659 0.661 0.669 0.663 0.66 –
mDeBERTaV3-base_FullEv 0.627 0.636 0.636 0.643 0.64 0.647 0.645 0.683 0.675 0.676 0.682 0.638 –
RoBERTa-base_FullEv 0.652 0.638 0.648 0.669 0.709 0.696 0.704 0.716 0.708 0.709 0.713 0.688 –
BERT-base_FullEv 0.636 0.641 0.619 0.611 0.646 0.655 0.648 0.646 0.668 0.704 0.696 0.681 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.34

TF-IDF_BASELINE – 0.691

Table 7.1.6: Per layer per model accuracy 5-fold cross-validation (binary classifica-
tion) for the SCT-v1.5 dataset.
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7.1.2 Dutch Datasets

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.549 0.547 0.55 0.553 0.562 0.556 0.551 0.556 0.556 0.554 0.548 0.555 –
mDeBERTaV3-base 0.54 0.539 0.545 0.537 0.552 0.542 0.552 0.558 0.56 0.573 0.566 0.542 –
RoBERTV2 0.549 0.546 0.545 0.544 0.551 0.543 0.549 0.553 0.556 0.566 0.545 0.552 –
BERTje 0.536 0.551 0.545 0.54 0.542 0.542 0.548 0.554 0.555 0.55 0.549 0.549 –
XLM-R-base_Full 0.55 0.544 0.549 0.559 0.562 0.558 0.547 0.557 0.55 0.546 0.553 0.552 –
mDeBERTaV3-base_Full 0.54 0.544 0.54 0.539 0.543 0.549 0.552 0.561 0.559 0.572 0.56 0.539 –
RoBERTV2_Full 0.541 0.552 0.545 0.539 0.549 0.542 0.546 0.554 0.554 0.562 0.544 0.547 –
BERTje_Full 0.54 0.55 0.543 0.544 0.546 0.544 0.548 0.556 0.557 0.554 0.546 0.547 –
XLM-R-base_EvTr 0.523 0.53 0.522 0.514 0.525 0.527 0.544 0.544 0.541 0.526 0.535 0.532 –
mDeBERTaV3-base_EvTr 0.511 0.515 0.52 0.526 0.532 0.524 0.53 0.532 0.545 0.547 0.546 0.539 –
RoBERTV2_EvTr 0.518 0.541 0.531 0.531 0.54 0.522 0.528 0.525 0.531 0.53 0.538 0.517 –
BERTje_EvTr 0.517 0.518 0.522 0.515 0.514 0.518 0.528 0.536 0.537 0.522 0.526 0.53 –
XLM-R-base_FullEv 0.49 0.532 0.521 0.515 0.53 0.536 0.544 0.54 0.539 0.532 0.528 0.523 –
mDeBERTaV3-base_FullEv 0.511 0.509 0.519 0.53 0.529 0.528 0.533 0.534 0.546 0.539 0.544 0.538 –
RoBERTV2_FullEv 0.523 0.538 0.539 0.529 0.535 0.52 0.526 0.531 0.534 0.531 0.539 0.512 –
BERTje_FullEv 0.513 0.518 0.522 0.516 0.514 0.519 0.532 0.542 0.532 0.52 0.529 0.529 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.49

TF-IDF_BASELINE – 0.542

Table 7.1.7: Per layer per model accuracy (binary classification) for the NCT-Full
Dutch dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.76 0.768 0.79 0.805 0.825 0.831 0.841 0.849 0.846 0.844 0.846 0.845 –
mDeBERTaV3-base 0.745 0.752 0.773 0.784 0.801 0.813 0.826 0.851 0.854 0.863 0.862 0.837 –
RoBERTV2 0.782 0.797 0.788 0.802 0.799 0.814 0.813 0.817 0.818 0.822 0.821 0.821 –
BERTje 0.775 0.798 0.802 0.819 0.829 0.829 0.83 0.851 0.851 0.857 0.862 0.858 –
XLM-R-base_Full 0.759 0.776 0.797 0.812 0.835 0.839 0.852 0.852 0.859 0.853 0.851 0.85 –
mDeBERTaV3-base_Full 0.752 0.761 0.784 0.788 0.81 0.815 0.835 0.859 0.861 0.873 0.866 0.845 –
RoBERTV2_Full 0.787 0.798 0.796 0.806 0.808 0.82 0.824 0.832 0.827 0.826 0.827 0.827 –
BERTje_Full 0.784 0.803 0.814 0.825 0.831 0.836 0.84 0.856 0.852 0.864 0.862 0.868 –
XLM-R-base_EvTr 0.666 0.684 0.691 0.718 0.744 0.781 0.788 0.78 0.797 0.789 0.792 0.783 –
mDeBERTaV3-base_EvTr 0.635 0.643 0.645 0.683 0.698 0.727 0.758 0.776 0.79 0.797 0.787 0.754 –
RoBERTV2_EvTr 0.703 0.693 0.7 0.71 0.705 0.72 0.72 0.719 0.716 0.713 0.728 0.729 –
BERTje_EvTr 0.696 0.718 0.728 0.72 0.736 0.744 0.752 0.753 0.765 0.787 0.797 0.792 –
XLM-R-base_FullEv 0.676 0.685 0.695 0.718 0.749 0.783 0.804 0.795 0.799 0.798 0.797 0.782 –
mDeBERTaV3-base_FullEv 0.628 0.639 0.649 0.689 0.712 0.735 0.757 0.787 0.794 0.808 0.792 0.758 –
RoBERTV2_FullEv 0.704 0.706 0.712 0.712 0.72 0.731 0.735 0.726 0.735 0.732 0.747 0.74 –
BERTje_FullEv 0.692 0.727 0.73 0.733 0.738 0.755 0.763 0.769 0.776 0.797 0.807 0.802 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.73

TF-IDF_BASELINE – 0.802

Table 7.1.8: Per layer per model accuracy (binary classification) for the NCT-Full
Random Dutch dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.549 0.536 0.548 0.563 0.553 0.511 0.537 0.538 0.537 0.546 0.535 0.544 –
mDeBERTaV3-base 0.547 0.535 0.566 0.555 0.538 0.536 0.509 0.543 0.555 0.542 0.555 0.548 –
RoBERTV2 0.543 0.551 0.56 0.55 0.534 0.516 0.568 0.548 0.583 0.556 0.549 0.575 –
BERTje 0.53 0.529 0.54 0.525 0.563 0.568 0.572 0.564 0.55 0.55 0.549 0.534 –
XLM-R-base_Full 0.54 0.531 0.53 0.54 0.557 0.518 0.524 0.547 0.542 0.554 0.542 0.55 –
mDeBERTaV3-base_Full 0.549 0.538 0.56 0.547 0.528 0.549 0.529 0.548 0.562 0.55 0.566 0.542 –
RoBERTV2_Full 0.543 0.543 0.564 0.561 0.533 0.527 0.57 0.536 0.575 0.546 0.547 0.574 –
BERTje_Full 0.536 0.534 0.542 0.536 0.563 0.569 0.576 0.54 0.535 0.559 0.549 0.537 –
XLM-R-base_EvTr 0.525 0.515 0.527 0.533 0.534 0.549 0.525 0.516 0.555 0.52 0.525 0.537 –
mDeBERTaV3-base_EvTr 0.511 0.491 0.498 0.469 0.521 0.535 0.509 0.559 0.541 0.521 0.531 0.52 –
RoBERTV2_EvTr 0.498 0.542 0.529 0.541 0.562 0.531 0.518 0.544 0.518 0.544 0.541 0.528 –
BERTje_EvTr 0.54 0.514 0.546 0.51 0.475 0.497 0.509 0.544 0.535 0.54 0.559 0.536 –
XLM-R-base_FullEv 0.529 0.496 0.521 0.534 0.514 0.559 0.529 0.531 0.54 0.527 0.528 0.527 –
mDeBERTaV3-base_FullEv 0.48 0.486 0.504 0.476 0.502 0.528 0.544 0.56 0.54 0.515 0.55 0.508 –
RoBERTV2_FullEv 0.533 0.523 0.524 0.525 0.556 0.529 0.515 0.546 0.512 0.527 0.529 0.52 –
BERTje_FullEv 0.529 0.53 0.538 0.522 0.452 0.473 0.48 0.544 0.52 0.54 0.559 0.546 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.52

TF-IDF_BASELINE – 0.537

Table 7.1.9: Per layer per model accuracy (binary classification) for the NCT-Human
Dutch dataset.
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Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.711 0.733 0.759 0.76 0.821 0.844 0.845 0.849 0.847 0.828 0.844 0.831 –
mDeBERTaV3-base 0.721 0.731 0.764 0.776 0.783 0.826 0.851 0.864 0.867 0.879 0.883 0.808 –
RoBERTV2 0.772 0.775 0.774 0.769 0.778 0.811 0.819 0.822 0.812 0.824 0.831 0.811 –
BERTje 0.766 0.787 0.798 0.811 0.843 0.83 0.821 0.834 0.824 0.859 0.865 0.84 –
XLM-R-base_Full 0.733 0.749 0.763 0.767 0.827 0.852 0.84 0.854 0.843 0.828 0.844 0.821 –
mDeBERTaV3-base_Full 0.731 0.731 0.767 0.775 0.792 0.828 0.844 0.849 0.867 0.88 0.871 0.807 –
RoBERTV2_Full 0.756 0.78 0.773 0.775 0.786 0.813 0.813 0.827 0.806 0.827 0.83 0.824 –
BERTje_Full 0.756 0.796 0.809 0.819 0.843 0.824 0.818 0.841 0.84 0.857 0.846 0.846 –
XLM-R-base_EvTr 0.622 0.646 0.65 0.67 0.714 0.772 0.762 0.78 0.793 0.783 0.772 0.762 –
mDeBERTaV3-base_EvTr 0.588 0.599 0.614 0.604 0.653 0.675 0.725 0.749 0.722 0.785 0.757 0.673 –
RoBERTV2_EvTr 0.645 0.647 0.658 0.675 0.666 0.682 0.672 0.667 0.695 0.692 0.721 0.708 –
BERTje_EvTr 0.647 0.693 0.683 0.679 0.68 0.671 0.692 0.69 0.718 0.767 0.781 0.76 –
XLM-R-base_FullEv 0.625 0.651 0.662 0.669 0.707 0.767 0.768 0.78 0.782 0.8 0.778 0.772 –
mDeBERTaV3-base_FullEv 0.602 0.613 0.619 0.624 0.658 0.685 0.728 0.76 0.741 0.78 0.742 0.665 –
RoBERTV2_FullEv 0.641 0.653 0.654 0.69 0.666 0.68 0.695 0.684 0.703 0.708 0.724 0.722 –
BERTje_FullEv 0.644 0.688 0.684 0.679 0.685 0.675 0.696 0.68 0.72 0.764 0.786 0.774 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.76

TF-IDF_BASELINE – 0.789

Table 7.1.10: Per layer per model accuracy (binary classification) for the NCT-Human
Random Dutch dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.487 0.536 0.519 0.544 0.58 0.595 0.57 0.547 0.58 0.57 0.574 0.565 –
mDeBERTaV3-base 0.502 0.501 0.543 0.519 0.56 0.589 0.556 0.557 0.604 0.559 0.55 0.503 –
RoBERTV2 0.546 0.545 0.527 0.543 0.559 0.568 0.55 0.542 0.531 0.532 0.547 0.559 –
BERTje 0.542 0.563 0.538 0.549 0.536 0.54 0.554 0.575 0.563 0.577 0.599 0.582 –
XLM-R-base_Full 0.456 0.525 0.508 0.542 0.582 0.587 0.567 0.551 0.575 0.551 0.559 0.549 –
mDeBERTaV3-base_Full 0.503 0.474 0.54 0.518 0.565 0.581 0.54 0.557 0.599 0.556 0.567 0.522 –
RoBERTV2_Full 0.561 0.544 0.527 0.506 0.552 0.544 0.547 0.54 0.523 0.529 0.523 0.553 –
BERTje_Full 0.546 0.549 0.547 0.53 0.536 0.509 0.532 0.57 0.564 0.556 0.588 0.589 –
XLM-R-base_EvTr 0.529 0.542 0.503 0.49 0.502 0.481 0.531 0.543 0.494 0.531 0.523 0.531 –
mDeBERTaV3-base_EvTr 0.456 0.449 0.465 0.505 0.532 0.503 0.517 0.547 0.525 0.547 0.529 0.505 –
RoBERTV2_EvTr 0.464 0.455 0.47 0.489 0.502 0.482 0.522 0.494 0.487 0.465 0.504 0.523 –
BERTje_EvTr 0.526 0.516 0.531 0.517 0.533 0.52 0.52 0.49 0.524 0.54 0.55 0.545 –
XLM-R-base_FullEv 0.549 0.517 0.505 0.477 0.496 0.482 0.516 0.553 0.48 0.53 0.537 0.543 –
mDeBERTaV3-base_FullEv 0.433 0.462 0.462 0.524 0.532 0.523 0.518 0.537 0.526 0.556 0.513 0.509 –
RoBERTV2_FullEv 0.478 0.456 0.492 0.51 0.496 0.505 0.519 0.488 0.475 0.502 0.524 0.531 –
BERTje_FullEv 0.503 0.484 0.544 0.51 0.522 0.508 0.529 0.509 0.532 0.529 0.544 0.538 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.43

TF-IDF_BASELINE – 0.496

Table 7.1.11: Per layer per model accuracy 5-fold cross-validation (binary classifi-
cation) for the NCT-Full-Dutch dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.673 0.698 0.717 0.76 0.772 0.806 0.814 0.832 0.833 0.835 0.837 0.82 –
mDeBERTaV3-base 0.662 0.69 0.695 0.733 0.768 0.779 0.804 0.816 0.827 0.826 0.843 0.85 –
RoBERTV2 0.754 0.784 0.782 0.786 0.795 0.791 0.796 0.789 0.8 0.805 0.821 0.8 –
BERTje 0.745 0.768 0.77 0.779 0.804 0.812 0.839 0.863 0.865 0.875 0.863 0.867 –
XLM-R-base_Full 0.671 0.691 0.719 0.763 0.778 0.799 0.819 0.819 0.836 0.822 0.832 0.822 –
mDeBERTaV3-base_Full 0.655 0.684 0.689 0.735 0.768 0.779 0.813 0.812 0.826 0.836 0.841 0.84 –
RoBERTV2_Full 0.761 0.789 0.789 0.788 0.792 0.789 0.792 0.804 0.796 0.804 0.805 0.805 –
BERTje_Full 0.754 0.761 0.76 0.793 0.816 0.808 0.837 0.862 0.871 0.881 0.878 0.858 –
XLM-R-base_EvTr 0.609 0.604 0.623 0.675 0.709 0.735 0.744 0.73 0.76 0.76 0.761 0.747 –
mDeBERTaV3-base_EvTr 0.593 0.596 0.628 0.655 0.681 0.689 0.683 0.749 0.756 0.761 0.767 0.738 –
RoBERTV2_EvTr 0.63 0.661 0.683 0.687 0.674 0.683 0.695 0.677 0.673 0.687 0.713 0.684 –
BERTje_EvTr 0.639 0.694 0.694 0.691 0.712 0.712 0.737 0.724 0.765 0.779 0.812 0.786 –
XLM-R-base_FullEv 0.596 0.593 0.63 0.67 0.701 0.719 0.739 0.738 0.752 0.768 0.749 0.752 –
mDeBERTaV3-base_FullEv 0.579 0.592 0.62 0.641 0.687 0.697 0.685 0.732 0.753 0.78 0.77 0.751 –
RoBERTV2_FullEv 0.636 0.669 0.688 0.699 0.676 0.681 0.69 0.674 0.665 0.684 0.709 0.704 –
BERTje_FullEv 0.649 0.697 0.681 0.688 0.71 0.716 0.742 0.733 0.761 0.78 0.816 0.795 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.62

TF-IDF_BASELINE – 0.751

Table 7.1.12: Per layer per model accuracy 5-fold cross-validation (binary classifi-
cation) for the NCT-Full-Dutch Random dataset.
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Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.499 0.466 0.482 0.527 0.524 0.533 0.469 0.553 0.54 0.501 0.514 0.505 –
mDeBERTaV3-base 0.467 0.486 0.549 0.502 0.514 0.466 0.517 0.463 0.483 0.54 0.422 0.508 –
RoBERTV2 0.441 0.501 0.517 0.486 0.537 0.534 0.512 0.502 0.425 0.428 0.495 0.476 –
BERTje 0.591 0.607 0.585 0.572 0.547 0.544 0.514 0.563 0.531 0.47 0.55 0.543 –
XLM-R-base_Full 0.489 0.485 0.492 0.527 0.527 0.524 0.479 0.572 0.511 0.508 0.508 0.527 –
mDeBERTaV3-base_Full 0.495 0.518 0.527 0.534 0.527 0.495 0.518 0.479 0.467 0.521 0.428 0.492 –
RoBERTV2_Full 0.463 0.498 0.495 0.476 0.54 0.527 0.508 0.463 0.418 0.412 0.476 0.47 –
BERTje_Full 0.601 0.601 0.579 0.562 0.534 0.537 0.498 0.553 0.534 0.489 0.527 0.553 –
XLM-R-base_EvTr 0.482 0.45 0.425 0.476 0.476 0.499 0.461 0.514 0.428 0.47 0.54 0.565 –
mDeBERTaV3-base_EvTr 0.473 0.498 0.521 0.501 0.511 0.537 0.457 0.479 0.527 0.54 0.502 0.527 –
RoBERTV2_EvTr 0.444 0.511 0.496 0.511 0.467 0.512 0.47 0.502 0.53 0.537 0.438 0.476 –
BERTje_EvTr 0.498 0.518 0.55 0.537 0.514 0.515 0.54 0.524 0.511 0.549 0.489 0.581 –
XLM-R-base_FullEv 0.454 0.489 0.419 0.46 0.495 0.476 0.448 0.501 0.457 0.489 0.527 0.53 –
mDeBERTaV3-base_FullEv 0.473 0.482 0.518 0.466 0.511 0.54 0.479 0.486 0.508 0.559 0.499 0.546 –
RoBERTV2_FullEv 0.463 0.518 0.464 0.498 0.473 0.502 0.482 0.479 0.55 0.547 0.425 0.469 –
BERTje_FullEv 0.489 0.486 0.543 0.512 0.524 0.505 0.543 0.514 0.492 0.546 0.469 0.556 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.41

TF-IDF_BASELINE – 0.415

Table 7.1.13: Per layer per model accuracy 5-fold cross-validation (binary classifi-
cation) for the NCT-Human-Dutch dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.719 0.731 0.748 0.78 0.805 0.844 0.844 0.84 0.847 0.859 0.841 0.808 –
mDeBERTaV3-base 0.674 0.681 0.671 0.725 0.757 0.783 0.78 0.792 0.856 0.853 0.837 0.843 –
RoBERTV2 0.744 0.757 0.77 0.767 0.805 0.821 0.812 0.773 0.738 0.78 0.786 0.729 –
BERTje 0.741 0.751 0.764 0.773 0.821 0.827 0.843 0.856 0.834 0.863 0.847 0.818 –
XLM-R-base_Full 0.719 0.735 0.747 0.786 0.805 0.831 0.856 0.831 0.85 0.853 0.844 0.786 –
mDeBERTaV3-base_Full 0.665 0.687 0.668 0.716 0.77 0.78 0.783 0.789 0.853 0.856 0.843 0.85 –
RoBERTV2_Full 0.741 0.77 0.764 0.763 0.786 0.799 0.799 0.78 0.738 0.776 0.773 0.741 –
BERTje_Full 0.744 0.732 0.748 0.786 0.808 0.818 0.846 0.863 0.837 0.847 0.85 0.831 –
XLM-R-base_EvTr 0.642 0.633 0.62 0.655 0.639 0.69 0.709 0.741 0.779 0.741 0.725 0.703 –
mDeBERTaV3-base_EvTr 0.514 0.537 0.556 0.55 0.553 0.556 0.581 0.636 0.7 0.716 0.709 0.671 –
RoBERTV2_EvTr 0.62 0.597 0.639 0.639 0.632 0.604 0.617 0.661 0.568 0.623 0.668 0.633 –
BERTje_EvTr 0.53 0.642 0.645 0.652 0.687 0.687 0.677 0.69 0.738 0.757 0.767 0.738 –
XLM-R-base_FullEv 0.626 0.626 0.626 0.661 0.648 0.684 0.709 0.751 0.77 0.757 0.725 0.725 –
mDeBERTaV3-base_FullEv 0.527 0.556 0.588 0.553 0.553 0.572 0.562 0.626 0.706 0.738 0.709 0.677 –
RoBERTV2_FullEv 0.629 0.601 0.629 0.629 0.613 0.591 0.629 0.668 0.581 0.613 0.681 0.636 –
BERTje_FullEv 0.546 0.652 0.658 0.674 0.709 0.719 0.687 0.709 0.709 0.757 0.773 0.741 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.62

TF-IDF_BASELINE – 0.665

Table 7.1.14: Per layer per model accuracy 5-fold cross-validation (binary classifi-
cation) for the NCT-Human-Dutch Random dataset.

Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.66 0.664 0.651 0.66 0.68 0.679 0.696 0.691 0.694 0.681 0.685 0.683 –
mDeBERTaV3-base 0.665 0.687 0.688 0.685 0.702 0.691 0.707 0.72 0.706 0.719 0.695 0.702 –
RoBERTV2 0.683 0.699 0.696 0.704 0.689 0.693 0.692 0.702 0.721 0.707 0.714 0.712 –
BERTje 0.678 0.685 0.673 0.675 0.671 0.683 0.684 0.686 0.69 0.696 0.7 0.695 –
XLM-R-base_Full 0.668 0.661 0.672 0.665 0.689 0.692 0.703 0.695 0.696 0.694 0.691 0.697 –
mDeBERTaV3-base_Full 0.665 0.67 0.684 0.681 0.693 0.696 0.7 0.723 0.707 0.713 0.707 0.707 –
RoBERTV2_Full 0.679 0.698 0.7 0.701 0.692 0.678 0.701 0.69 0.719 0.712 0.706 0.717 –
BERTje_Full 0.679 0.687 0.682 0.681 0.678 0.686 0.68 0.689 0.693 0.692 0.689 0.694 –
XLM-R-base_EvTr 0.629 0.624 0.614 0.625 0.64 0.649 0.66 0.672 0.672 0.671 0.68 0.676 –
mDeBERTaV3-base_EvTr 0.611 0.62 0.616 0.614 0.665 0.65 0.657 0.664 0.678 0.692 0.703 0.649 –
RoBERTV2_EvTr 0.648 0.645 0.66 0.657 0.662 0.665 0.662 0.658 0.663 0.663 0.684 0.669 –
BERTje_EvTr 0.639 0.649 0.658 0.66 0.666 0.653 0.658 0.663 0.658 0.655 0.683 0.684 –
XLM-R-base_FullEv 0.631 0.625 0.622 0.629 0.638 0.647 0.655 0.68 0.664 0.664 0.681 0.68 –
mDeBERTaV3-base_FullEv 0.605 0.63 0.614 0.604 0.658 0.651 0.663 0.679 0.667 0.693 0.688 0.635 –
RoBERTV2_FullEv 0.641 0.642 0.647 0.646 0.656 0.657 0.651 0.66 0.661 0.67 0.677 0.666 –
BERTje_FullEv 0.644 0.647 0.662 0.652 0.643 0.661 0.649 0.659 0.651 0.658 0.687 0.678 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.29

TF-IDF_BASELINE – 0.688

Table 7.1.15: Per layer per model accuracy (binary classification) for the SCT-v1.0
Dutch dataset.
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Layer Score Score
Model 1 2 3 4 5 6 7 8 9 10 11 12
XLM-R-base 0.653 0.666 0.661 0.68 0.668 0.684 0.68 0.649 0.669 0.67 0.673 0.657 –
mDeBERTaV3-base 0.654 0.655 0.646 0.674 0.667 0.67 0.688 0.698 0.703 0.673 0.671 0.669 –
RoBERTV2 0.671 0.667 0.677 0.659 0.685 0.66 0.655 0.654 0.666 0.668 0.682 0.694 –
BERTje 0.668 0.654 0.659 0.669 0.664 0.646 0.66 0.678 0.666 0.667 0.671 0.685 –
XLM-R-base_Full 0.655 0.659 0.661 0.669 0.669 0.669 0.682 0.648 0.666 0.673 0.671 0.662 –
mDeBERTaV3-base_Full 0.649 0.655 0.658 0.651 0.664 0.662 0.673 0.685 0.697 0.671 0.664 0.664 –
RoBERTV2_Full 0.663 0.658 0.667 0.659 0.678 0.655 0.651 0.66 0.666 0.674 0.694 0.693 –
BERTje_Full 0.666 0.654 0.661 0.668 0.671 0.653 0.668 0.678 0.672 0.662 0.671 0.669 –
XLM-R-base_EvTr 0.617 0.627 0.599 0.615 0.626 0.617 0.631 0.639 0.634 0.657 0.661 0.629 –
mDeBERTaV3-base_EvTr 0.583 0.611 0.609 0.617 0.631 0.628 0.647 0.664 0.668 0.659 0.673 0.631 –
RoBERTV2_EvTr 0.645 0.629 0.627 0.642 0.622 0.629 0.624 0.64 0.65 0.643 0.672 0.678 –
BERTje_EvTr 0.632 0.646 0.644 0.62 0.617 0.623 0.629 0.646 0.622 0.638 0.632 0.631 –
XLM-R-base_FullEv 0.61 0.618 0.588 0.605 0.634 0.615 0.622 0.639 0.641 0.64 0.654 0.622 –
mDeBERTaV3-base_FullEv 0.583 0.603 0.605 0.612 0.623 0.622 0.659 0.659 0.654 0.657 0.661 0.631 –
RoBERTV2_FullEv 0.636 0.642 0.634 0.638 0.61 0.623 0.613 0.643 0.646 0.641 0.662 0.675 –
BERTje_FullEv 0.624 0.65 0.643 0.634 0.611 0.63 0.632 0.633 0.637 0.635 0.646 0.629 –
Random_BASELINE – 0.5
Lexical_BASELINE – 0.31

TF-IDF_BASELINE – 0.672

Table 7.1.16: Per layer per model accuracy 5-fold cross-validation (binary classifi-
cation) for the SCT-v1.5 Dutch dataset.
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