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1 Introduction
In industry some assembling steps consist of attaching one part to another via a snap fit.
When done by hand, validation of the connection is inherent in the process due auditory,
visual or tactile feedback. If the assembly is robotized validation becomes necessary to
ensure correct manufacturing of the product. This project is focused on snap fits in shaver
components from Philips. Previous work on this topic was done by Kasper Hendriks at FMI
ImProvia using tactile feedback, which showed promising results. However, the results were
not satisfactory and an acoustic approach was desired instead because of the no-contact
measurement possibilities. This report explores the feasibility of validating a snap fit using
acoustics. In the next section the design goals are stated together with the system boundaries.

1.1 Design boundary and goals
The system contents are given in table 1. Endogenous variables describe the system, where
the system design and the variable influence each other. Exogenous variables are ones that
affect the design of the system but cannot be changed to fit the system. The last column
features excluded variables which were not considered in the system.

Endogenous Exogenous Excluded
Number of microphones
for the sensor

Noise levels in the factory The effect of temperature
or humidity on operation.

Number of snap fits that
can be validated
simultaneously

Number of snap fits that
are connected
simultaneously

Assembly of snap fits of
another process

The source of power for
the system

The type of flaw that
occurs

The method to detect
flaws
The method to indicate
flaws
Distance between the
microphone and snap fit

Table 1: System boundaries.

The acoustic sensor should have the following criteria:

1. Differentiate between “good” and “bad” snap fits.
The sensor should have a precision, recall and true negative rate of 99.5% for the good
snap fit.

2. Relatively cheap initial and operational costs.
The sensor should not cost more than e1000 in initial costs and no more than e400
annually.
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3. Robustness in operation:

(a) Perform in a noisy, industrial environmental.
The sensor will operate in an assembly line at Philips during typical factory op-
eration within specified criteria.

(b) Run 24/7.
The sensor should be able to run continuously without intervention, given the
sensor is well maintained.

(c) Handle small product variations.
The sensor should be able to discern flaws in a snap fit, even with small variation
in the components.

(d) Handle multiple types of products.
The sensor should be able to discern flaws in a snap fit for different parts without
a hardware-based change.

And lastly the stakeholders for this project are FMI ImProvia, Philips and the customer
of Philips or FMI ImProvia. For FMI ImProvia and Philips the interest is high, and only
FMI ImProvia also has high influence.

1.2 Literature
No articles specifically on the detection of flaws in a snap fit with sound have been found. So a
more broad search has been applied. There do exist studies on snap fit validation using force.
One such study uses machine learning and a mixed human and robot assembly [1]. Others
looks at features in the force profile [2] or forces in the robotic arm itself, supplemented with
machine learning [3]. Fault detection is an emergent field and an ever growing number of
papers and reviews exist on the topic [4, 5, 6]. Acoustic based monitoring is also increasing in
interest with are multiple names for more or less the same subject, namely acoustic anomaly
detection (AAD), anomaly detection in sound (ADS) and anomalous sound event detection
(anomalous SED). More broad is the term subsequence outliers in time series [7]. Various
papers exist outlining the challenges and possible solutions from detection and equipment
setup to various methods of signal analysis, anomaly detection and data classification [8, 9].
Relevant papers overview classification methods and machine learning models and are often
linked with databases to test the anomaly detection, e.g. the ones available from the DCASE
2020 event [10, 11, 12]. All of the mentioned articles use some form of machine learning to
detect anomalies, however, the sound data usually spans a longer time period of seconds to
minutes, instead of milliseconds such as from a snap-fit. An overview of machine learning
approaches often used in literature can be seen in Figure 1.1. Feature extraction and selection
are the front-end processing, which determine which data is put into the machine learning
model. Multiple types of feature extraction can be used simultaneously.
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Figure 1.1: Overview of common machine learning approaches for anomaly detection.
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2 Design choices

2.1 Snap fit
Since this is a proof-of-concept design, the type of snap fit could be chosen. At FMI ImProvia
multiple different snap fits related to a shaver were available. From these only one was
supposed to be reversible, which is a snap fit used in the attachment of a shaver front plate
to a rack used in a spray paint line. Although the snapping sound was weaker for this
attachment than compared with some others, the reversible design was preferred as many
tests are desired. In the other cases the quality of the joints would degrade quickly or many
shaver parts would be required. In figure 2.1 the snap fit in question can be seen. To keep
the hook part in a steady horizontal position a holder was created, which can also be seen.
Wrong snaps were introduced as a missing hook (snap 3) and a deformed hook (snap 6).

Hook holder

Shaver front plate

Snap part

Figure 2.1: Shaver front plate and the two-sided hook in the middle on top of the
hook holder.

2.2 Microphone
The microphone ideally has a good signal to noise ratio for both internal noise and external
noise. The external noise rejection methods considered were: using a directional microphone,
using multiple microphones and minimizing the distance between microphone and snap.
Directional microphones can quickly become expensive and do not filter out the noise coming
from the direction they are pointed in. This means they have to be used in conjunction
with a sound-absorbing backdrop and/or multiple microphones. Sound absorbing materials
generally only work in some range and adding more microphones drives up the cost even
more. Measurements of the noise background at Philips showed levels reasonably below the
sound of a snap at 10 cm, as can be seen in figure 2.2. This means that omnidirectional
microphones would also work when positioned close enough to the source. Since a snap
sound has a very short duration – the main envelope has a duration of up to 10 ms – high
temporal resolution is especially beneficial. For this a microphone with a high frequency
range, coupled together with a fast analogue to digital converter (ADC) would be required. A
micro-electromechanical systems (MEMS) microphone is suited for this. These microphones
are very cheap, with a general price of around e2 per piece. The microphone chosen was
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the Infineon IM73A135V01, as seen in figure 2.3. The ADC used was the Motu M2, which
measured with a sample rate of 192 kHz and is purchasable for around e235 [13], although a
sufficient ADC can be bought for less. The microphones required a typical power of 2.75V
which was supplied using a lab power supply. The measurements were performed at very
close range and in the case of two microphones, these were employed on either side of the
snap fit.
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Figure 2.2: Average signal amplitude for both noise and snaps. Noise average
amplitude is taken as the average of the maxima of 1000-sample frames.

Figure 2.3: MEMS microphone top and bottom [14].

2.3 Actuator
For consistency of the snap fit mating an actuator from Festo Automation was used. Since
design of a specific gripper to undo the snap fit was out of the scope of this project, a simple
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attachment was applied to a linear motor. The attachment consists of four legs, pressing
on the corners around the snap fit to ensure reasonably uniform pressure, as can be seen in
figure 2.4.

Figure 2.4: Linear actuator with attachment for snapping the front plate into place.

2.4 Data acquisition & storage
The data was gathered in the following way: first the setup was configured for the session,
such as the position of the microphone and the hook holder. Then multiple measurement sets
were performed in which 25 to 35 times the actuator pushed down a chosen front plate, which
was manually undone. During each whole set the computer collected data from microphone
via Audacity®. Afterwards the snaps were extracted from the big audio file to small ones
by selecting a up to 8000 samples around a peak to form a so-called frame. This last step
is done to make each snap easily accessible for labelling and training. For convenience and
speed these small audio files are also used for testing, although in principle also the full
session audio files could be used with a sliding window method.

2.5 Feature extraction
The features can be classified into temporal and spectral features. Many features have been
looked at for classification but for brevity only a couple will be explained here. Two important
temporal features are the cross-correlation of the audio sample (frame) with a training set
and the root mean square (RMS) of the sample. Cross-correlation is used as it is a very
powerful tool in comparing sequential data. It can be described as a normalized sliding dot
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product, from this sliding dot product the time step with the highest value is selected and
is taken to be the correlation between the two audio vectors (or matrices). This sliding dot
product is necessary as the signals are not aligned by the pre-processing step. To compare
two collections of vectors (train and test sets), a matrix of these cross correlations needs to
be constructed. To get a single feature per audio vector this matrix needs to be collapsed
down into a vector. This can be done by using e.g. the 0.85’th percentile or the mean of the
5 top correlating entries for each test sample. The advantage of using the percentile seems
to be that it works better with the local outlier factor (LOF) classifier due to a higher spread
in the training set, but is not as robust as using the mean of the top 5 as the latter is not
sensitive to adding different types of snaps, see figure 2.5, which means the classifier is less
prone to false positives.

A spectral feature implemented is a short-time Fourier transform on a sliding window of
512 samples, a step size of 64 samples and unless specified otherwise the window function
used was the Hann window. The windows are combined together into a spectrogram for
the whole frame. The cross-correlation of this spectrogram is the final feature. Spectral (or
rather cepstral as it’s called for Mel) features such as Mel filter banks and their energies and
derivatives, as suggested by literature [11, 15], were found to be lacking in performance. In
general, the spectral features do not seem to contain large contrast between good and bad
snaps, which might be due to the very short and impulse-like sound, which do inherently
have a low frequency resolution.
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(a) Cross correlation with 0.85 percentile setting
and RMS.
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(b) Cross correlation with highest 5 setting and
RMS.

Figure 2.5: The features from the single MEMS microphone session with different
choices for the cross-correlation. In both cases good and bad are reasonably disjoint
but the mean of the top 5 correlations creates a larger separation. The average of
the training set however (x = 0) is much higher, causing the LOF to classify many
good snaps as wrong.

In table 2 an overview of features investigated is gives, where they have been ranked by
sequential feature elimination to maximize the F0.2 score when training on the dataset from
figure 3.5.
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2.6 Classification
The OCSVM classifier attempted first did not show a great fit, partially as it assumed the
data contained some incorrect snap samples. Hence a different classifier was employed called
‘local outlier factor’ (LOF), with ‘novelty detection’ enabled which means the model can be
trained on good snaps only. The reason to train the classifier on good snaps only is because
the actual failures that can occur can be very diverse and rare. A representative failure
database to train on is therefore not feasible to obtain. This density-based classifier showed
very good results. One downside with the local outlier factor was that when the training set
increased, the decision boundary seemed to become stricter, as the model became even more
sensitive to variation. To alleviate this, a custom classifier could be created which sets the
decision boundary for the temporal cross correlation at e.g. either 30% or at 4 sigma from
the training mean, depending on which is the highest. This classifier was found to have an
equal to slightly better performance in one situation, as can be seen in 3.1. The downside
of such a custom classifier is of course that it does not generalize well to more features or
different situations and hence for ease of use the LOF was chosen as classifier and care was
taken to make the training set not too large.

3 Results & Discussion

3.1 Preliminaries
Preliminary measurements were done with a in the factory to gather various samples from
the environment. With the smartphone as microphone also 45 good snaps were performed
where the actuator was set to 0.4 cm/s and a bit of tape was applied to the interface, both
to minimize the sound from the attachment striking the shaver front plate. With a 30/70
train/test split, the model with only the raw signal cross correlation performed flawlessly on
the test set. The test set was duplicated five times and each one was distorted by adding
noise from a different sample from the factory. From these 5 times 32 snaps sounds, only
one was flagged as wrong, given the signal was fed through a high pass filter first, indicating
a strong capability for noise rejection. A minor dataset of five situations, of which two good
and three wrong, containing three snaps each was also measured with the phone. This minor
dataset was classified as all wrong by the former model. This is most likely due to the small
changes in the test setup and indicates the model is actually quite specific.

3.2 Follow up
Measurements with the MEMS microphone have been performed and comparable results as
the preliminary measurements were found, see figure 3.1. Classification in a single measure-
ment run using cross-correlation on the raw data shows incredibly high accuracy. However,
when e.g. the hook component or the front plate was swapped, the cross correlation between
the two measurements runs dropped significantly, from 69% to 59% on average, indicating
differentiation capabilities. Because of this, if the decision boundary is set relatively high
the classification will largely exclude these different, yet correct, snaps. Setting the bound-
ary too low, e.g. lower than 30%, causes inclusion of incorrect snaps. The accuracy of the
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classification in this case depends on the classifier and the variety of training data. Because
the model already showed precision and recall of over 99.5% in some situations, the main
focus moving forward was on investigating the robustness to product variations.

(a) Custom classifier. (b) LOF classifier.

Figure 3.1: Model performance using raw signal correlation and RMS features with
two different classifiers. The training data consists of 30% of snap 1, snap 4 and
snap 5 with part 18 measurement runs.

3.3 Binaural recording

Figure 3.2: Binaural measuring with the robuster setup.

A more robust version of the setup was created and can be seen in figure 3.2. Measuring
with two microphones showed both microphones pick up roughly the same signal envelope,
however, the correlation between the two raw signals is quite low at around 30%. This is
most likely due to the different location. Since they pick up roughly the same signal, we
expect the features to be linearly related. Indeed, in figure 3.3 can be seen that this is the
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case. The incorrect snap outliers are due to non-snap sounds, such as a clap or undoing a
snap fit. The linear relation implies that the symmetric placement of the microphones does
not drastically improve distinction between good and bad clicks. Investigation of this by
comparing the classification of either channel alone versus using both channels indeed shows
the classification of dual channel to be somewhat better: the F0.2 score improved from 0.996
to 0.997 and for the later test from 0.983 or 0.956 to 0.987. The improvement being more
significant for one channel indicates that the position of the sensor most likely also plays
some role, which can be reduced by using more microphones.
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(a) Correlation features.
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Figure 3.3: Binaural feature plots, showing a linear relation between the two record-
ing channels. The off-diagonal incorrect outliers in the RMS features are unrelated
sounds such as undoing the snap fit.

3.3.1 Product variation

To investigate the effect of the product variation, six different snap components have been
tested, all with the same front plate. It was found that the signals differed significantly
between the measurement runs. In figure 3.4 the smoothed absolute signals of the different
measurement sets can be seen. As can be seen snap 9 and snap 10 (red and blue lines) look
similar but differ from the rest. The same is the case for the light green and orange lines.
Lastly note that the signal from snap 7, which was measured twice, differed significantly. It
appears the process of placing the hook on the holder as well as the hook part itself cause
major variation in the signal. Another experiment with a different hook holder, as seen in
figure A.1, shows the same effects in addition to variation within some measurement, see
figure 3.5. This high variability between measurement sets means that training on only a
couple of measurement sets causes false negatives for sets not included. The other measure-
ment runs can be added to the training data to account for the misclassification of these runs
as was done before in figure 3.1. However, there are a couple downsides with that approach:
firstly, the amount of processing required for prediction increases as more cross-correlations
will need to be computed and secondly, there is no guarantee that this will eventually be
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robust to future variations in the products or setup. Moreover, if the runs that are added
contain too much variation or are similar to incorrect snaps, the classifier can become too
broad and cause false positives.

From figure 3.5 it can also be seen that a bad snap (snap 3, for which one hook was
removed) can have a very similar envelope to a good snap, e.g. snap 7 part 18 run 4. This
similarity means that if only snap 7 is used for training it will more easily classify snap
3 as good, while snap 9 for example will be classified as bad. And indeed, only training
on snap 7 has as result that almost primarily only snap 7 is recognized even when many
features are included. Of course, it might be the case that there exists some feature that
belongs exclusively and necessarily to a good snap in general but if it exists it is very hard
to find. Secondly, there is no salient difference in features between the two channels for snap
3, indicating that this double microphone setup does not clearly differentiate between the
location of the snap for this type of snap fit. This latter observation is most likely due to
the small distance between the hooks, and multi-channel recording might still be useful for
other snap fits where the hooks have a larger spacing.

4 Conclusion
Whereas initially the classification seemed highly successful, robust snap-fit sound classi-
fication was frustrated by large variation of the signal due to (re)placement of the hook
components. High accuracy is mainly only obtained when the model is trained and tested
on measurement sets where the hook component has not been replaced. Since components
are expected to be replaced often, or even only are supposed to snap once, training on ex-
actly the same components as the test set is not possible. If acoustic snap-fit validation is
to be used in industry the variation in the snap sounds should be brought to a minimum to
successfully find outliers. The number of microphones and the amount of snap fits that can
be validated simultaneously were both determined to be one, in the specific snap fit of this
study.

Regarding the design criteria, the sensor does in come conditions have a remarkably high
precision and recall of over 99.5%. The true negative rate reached 98.9% due to a lack of
negatives. If however only a small set of hook components can be used for the test set,
some these requirements are not met. The setup was very cheap and hence under budget
due to the microphones being very cheap. From the few tests the noise rejection of both
the microphone and the model was found to be very good. The robustness to small product
variations is where the sensor fails. The sensor can in principle also be used for different
products, given the location of the microphones is fixed or refixable.
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Figure 3.4: The audio envelopes of multiple measurement sets. The averaging
window length is set at 75 points.

13



0 200 400 600 800 1000 1200
Sample

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Si
gn

al
1e8 Mean Signal with 95% Confidence Interval

Set Good_snap7_part18_03
Set Good_snap7_part18_04
Set Good_snap7_part18_05
Set Good_snap7_part20_01
Set Good_snap8_part18_02
Set Good_snap9_part18_02
Set Good_snap9_part19_02
Set Wrong_snap3_part18_01
Set Wrong_snap3_part18_02
Set Wrong_snap6_part18_03

Averaging window length 75

(a) Channel 1.

0 200 400 600 800 1000 1200
Sample

0

1

2

3

4

5

Si
gn

al

1e8 Mean Signal with 95% Confidence Interval
Set Good_snap7_part18_03
Set Good_snap7_part18_04
Set Good_snap7_part18_05
Set Good_snap7_part20_01
Set Good_snap8_part18_02
Set Good_snap9_part18_02
Set Good_snap9_part19_02
Set Wrong_snap3_part18_01
Set Wrong_snap3_part18_02
Set Wrong_snap6_part18_03

Averaging window length 75

(b) Channel 2.
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Appendices
A Pictures

Figure A.1: Replacement of the hook part holder.
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B Feature list

Feature name Ranking set 1 Ranking set 2
Cross correlation 6 17

Spectral coherence 12 14
Spectral correlation 9

Spectral correlation, Blackman-Harris 7
Spectral correlation, Nutall <6
Spectral correlation, Taylor 8

Spectral centroid 10 <6
Spectral flatness 11 16
Spectral polyfit 15

Spectral brightness <6 6
Spectral peak frequency <6 <6

Spectral centroid maximum <6
RMS <6 11
Flux <6

Loudness 13
Spectral peaks 8
Distribution 7

Entropy <6
Crest 12

Strong decay 10
Attack time 9

Attack steepness <6

Table 2: Feature ranking list. The notation <6 implies the feature is in the top 5.
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