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Abstract: As the volume of biomedical data continues to expand at a rapid pace, the potential
of extracting valuable insights from this data through deep learning models is also increasing.
However, this process typically necessitates labeled data, which has traditionally been manually
annotated. This manual approach is associated with various constraints, including time, finan-
cial resources, and expertise, and it can also be prone to errors due to fatigue. The objective
of this study is to utilize diffusion models, specifically diffusion denoising probabilistic models
(DDPMs), for the segmentation of organoid culture data. Two different methods are employed
using DPPMs. Firstly, segmentation will be carried out by utilizing feature maps of DDPMs
that have been trained to generate samples of organoid culture data. These feature maps will
be combined with an ensemble of multi-layer perceptrons. Secondly, DDPMs will be trained to
directly generate segmentation maps for organoid culture data. The methods were evaluated on
the MIoU, Dice and HD95 score on a maximum of 42.348 images. On 100% of the data, the
representation approach (MIoU=0.92, Dice=0.96, HD95=35) outperformed the direct segmenta-
tion approach (MIoU=0.62, Dice=0.71, HD95=62) for all metrics. The representation approach
also proved to be suitable for label-efficient segmentation since the aforementioned performance
for the representation approach is achieved with as little as 20 labelled images in the training
pipeline.

1 Introduction

High-throughput imaging technologies enable the
rapid creation of microscopic images (Pegoraro &
Misteli, 2017). These technologies use automated
microscopy and analysis, allowing researchers to
collect data on large sample sets. The vast volume
of data has revolutionized biological studies, reveal-
ing detailed components of cellular and molecular
systems (Pegoraro & Misteli, 2017). Valuable
insights include identifying cellular structures and
organelles (Yudistira et al., 2020), quantifying
protein expression and localization (Crowe & Yue,
2019), and discovering new biological phenomena
(Zeune et al., 2020).

Manual analysis of high-dimensional data in
microscopy is challenging due to the need for
expertise, potential bias, time consumption, and

fatigue (Zhu et al., 2021; Adhikari et al., 2021).
Deep learning offers an alternative by discovering
complex patterns in data. Moreover, it has been
successful in various domains, including microscopy
(Dargan et al., 2020). However, deep learning relies
on large amounts of annotated data. Manual
annotation of data leads to similar challenges as
manual analysis, leaving much microscopy data
unlabeled due to these constraints (Chakraborty &
Mali, 2023). Nevertheless, large amounts of intrin-
sic information can be learned from unannotated
data. Several unsupervised deep learning tech-
niques such as Variational Autoencoders (VAEs),
Generative Adversarial Networks (GANs) and
Deep Belief Networks (DBNs) have been shown to
be successful in learning data representations (Wei
& Mahmood, 2021; Goodfellow et al., 2020; Roder
et al., 2021).
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Another model that can be used for learning
data representations is the Diffusion Denoising
Probabilistic Model (DDPM). First discovered
by Sohl-Dickstein et al. (2015) and inspired by
non-equilibrium statistical physics. DDPMs, a
type of diffusion model, are able to learn data
distributions by iteratively noising data and
learning to reverse this process. Recently several
works have shown that by making adjustments or
extending DDPMs, they can also successfully be
utilized for (label-efficient) segmentation of images
(Amit et al., 2021; Baranchuk et al., 2021).

Organoid culture data is one type of biomed-
ical data that can lead to insightful insight through
the employment of deep learning models (Drost &
Clevers, 2018; Fatehullah et al., 2016). Organoid
culture data refers to the collection of information,
results, and observations derived from the study of
organoids in a controlled environment (de Souza,
2018). Organoids are miniature, self-organized,
three-dimensional tissue cultures derived from
stem cells. This paper attempts to utilize DDPMs
to effectively segment organoid culture images.
This allows for the identification of organoids,
which is useful for further analysis using deep
learning models. Currently, still little research has
been performed on using DDPMs for segmentation.
Moreover, existing organoid segmentation methods
have several limitations such as relying on large
annotated datasets (Borten et al., 2018; Matthews
et al., 2022; Powell et al., 2022). For these rea-
sons, this work aims to further investigate the
usefulness of DDPMs for segmentation, specifically
of organoid culture data. This work specifically
analyses the performance of two different methods
utilizing DDPMs parameterized by the U-Net
architecture. One in which a DDPM is used as
a representation learner after which the learned
representations are used as input to an ensemble
of multi-layer perceptrons (MLPs) to perform
segmentation. In the other method, a DDPM is
trained to directly create segmentation maps by
utilizing the ground truth images.

This study attempts to investigate to what
extent the two methods can serve as effective
methods for (label-efficient) segmentation of
organoid culture data by answering six research
questions. The following four research questions

are investigated with respect to the method where
a DDPM is used as a representation learner:

· How does the size of the dataset used to train
the diffusion model impact the quality of the
segmentation result?

· How does the size of the dataset used to train
the ensemble of MLPs influence the quality of
the segmentation result?

· How do the specific blocks used from the U-Net
impact the quality of the segmentation result?

· How does the amount of noise added during
the forward diffusion process affect the perfor-
mance of the segmentation result?

Moreover, the following two research questions are
investigated with respect to the method where
a DDPM is used to directly create segmentation
maps:

· How does the size of the dataset used to train
the diffusion model impact the quality of the
segmentation result?

· How does the number of samples generated by
the diffusion model affect the performance of
the segmentation?

This work is organized into 6 sections, with the
following structure: Section 2 presents a review of
the related works, providing a deeper insight into
organoid culture data, semantic segmentation, the
U-Net architecture, diffusion models and seman-
tic segmentation performed by generative models.
Section 3 describes the method of the investiga-
tion, where the two different ways of using DDPMs
to perform segmentation are explained, the uti-
lized hyperparameters are discussed and the per-
formance metrics are explained. Section 4 is re-
served for the experimental design, describing the
data distribution and the manner in which the re-
search questions have been investigated. Section 5
provides an analysis of the results. Lastly, section
6 encompasses the conclusion and future work.
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2 Related Work and Defini-
tion

2.1 Organoid Culture Data

Growing three-dimensional structures termed
organoids from stem cells or tissue samples is done
in the lab using the process known as organoid cul-
ture (de Souza, 2018). In organoid culture, the cells
are given the essential nutrition, growth factors,
and physical conditions to enable self-organization
and development into miniature organ replicas.
Organoid culture data has many important uses
in cell research, such as modelling human diseases
in a laboratory setting (Drost & Clevers, 2018;
Fatehullah et al., 2016), providing insights into
the fundamental processes that govern organ
development and maturation (Huch & Koo, 2015),
and guiding the development of tissue engineering
approaches (Takebe et al., 2014). In order to
analyse the organoids, precise measurements of
their morphology are required, which is done by
segmenting the organoid objects.

2.2 Semantic Segmentation

In the deep learning task of semantic segmentation,
each pixel of an image is given a meaningful label,
such as an object category or a scene component.
Semantic segmentation is frequently carried out
using deep convolutional neural networks (CNNs)
and has applications in a variety of industries such
as healthcare, autonomous driving and robotics
(Sharifani & Amini, 2023). These networks learn
features from the input images using convolutional
and pooling layers and use fully connected layers
to make predictions. Once trained, the CNN can
be used for inference on new images to create
a semantic segmentation map, where each pixel
is given a class label based on the features that
are learned. In the context of organoid semantic
segmentation, this would be either 0 or 1, corre-
sponding to the background or the organoid itself,
respectively.

Multiple software tools have been developed
specifically for organoid culture segmentation,
such as OrganoSeg (Borten et al., 2018), OrganoID
(Matthews et al., 2022), and deepOrganoid (Powell
et al., 2022). However, these tools have certain

limitations that need to be considered.

Firstly, OrganoSeg provides a user-friendly graphi-
cal interface but requires manual thresholding and
parameter tuning. This can be time-consuming
and subjective, as optimal values may vary de-
pending on the specific organoid culture and image
characteristics. The accuracy of the segmentation
may also be affected by variations in image quality,
illumination, and contrast.

Secondly, OrganoID uses deep learning tech-
niques for single organoid detection, but it may
be sensitive to changes in image quality, such as
variations in brightness or contrast. This can result
in inaccurate segmentations or missed organoids,
especially when dealing with diverse organoid
cultures or images with low contrast.

Thirdly, the deepOrganoid model is a deep
learning-based tool that can be used for high-
throughput screens. More specifically, the model
is designed to handle a large number of organoid
samples or images in a fast and efficient manner.
However, it requires a sufficiently large labeled
dataset for training. Obtaining a large annotated
dataset for a specific organoid culture may be
challenging, as labeling organoids accurately can
be time-consuming and labor-intensive. This
limitation may restrict the applicability of the
model to datasets with limited annotations.

To conclude, all methods carry several limita-
tions with the main concern being the strong
reliance on supervised learning of all methods,
which requires sufficient labeled data for training.
This can be a limitation in the organoid field, as
obtaining a large annotated dataset for diverse
organoid cultures may be challenging. Moreover,
the lack of labeled data may limit the ability of
these tools to generalize well to different organoid
culture datasets.

2.3 U-Net Architecture

For image segmentation tasks, notably in the
study of microscopy image analysis, the U-Net
architecture is a neural network architecture that
is often utilized. First introduced by Ronneberger
et al. (2015), the architecture proved to be ef-
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Figure 2.1: A visual representation of the U-Net
architecture. Source: Ronneberger et al. (2015).

fective in segmenting images of cells, nuclei, and
other structures. The intuition behind the U-Net
architecture is to enable the network to learn
high-level features from the input image while also
preserving spatial information.

The U-Net architecture consists of two paths.
The contracting path, also referred to as the
encoder, employs a sequence of convolutional
and pooling procedures to decrease the spatial
resolution of the feature maps while increasing
the number of feature channels in order to extract
high-level features and extract context from the
input picture. The contracting path’s high-level
characteristics are used by the expanding path,
sometimes referred to as the decoder, to recon-
struct the output segmentation map. A dense
pixel-wise map the same size as the input picture
is finally produced as an output. This output is
produced by the decoder through a sequence of
transposed convolutions and concatenation opera-
tions that incrementally raise the spatial resolution
of the feature maps while reducing the number of
feature channels. A visual representation of the
U-Net architecture can be seen in Figure 2.1.

2.4 Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015), a
subset of generative models, approximate the dis-
tribution of real images. The specific diffusion tech-
nique explained in this section will be the Denoising

Diffusion Probabilistic Model (DDPM), however,
the terms DDPM and diffusion model will be used
interchangeably, since in the literature diffusion
models usually refer to DDPMs. Essentially, diffu-
sion models operate by modifying training data by
the sequential addition of Gaussian noise, where-
after the model learns to recover the original data
by reversing this process. Following the training
process, diffusion models generate data by gradu-
ally transitioning a simple known distribution xT ∼
N(0, I) into a target distribution x0 via an iterative
denoising procedure. Here I refers to the identity
matrix and N refers to the normal distribution. A
deep neural network effectively learns to reverse the
diffusion process using a known Gaussian kernel to
describe each Markov step. For a certain image x
at step t, the forward noising process q is given by:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (2.1)

where β1, ..., βT denotes a fixed variance schedule
and T denotes the final noising step of the diffu-
sion process. Importantly, a noisy sample xt can be
derived straight from the data x0:

q(xt|x0) := N (xt;
√
αtx0, (1− αt)I), (2.2)

where αt := 1 − βt and αt :=
∏t

s=1 αs. With the
reparametrization trick, xt can be directly written
as a function of x0:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I). (2.3)

The reverse process pθ learned by the model pa-
rameters θ is given by:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),
∑

θ(xt, t)) (2.4)

Where µθ(xt, t) and
∑

θ(xt, t) refer to the mean
predictor and covariance predictor respectively. As
shown by Ho et al. (2020), xt−1 can then be pre-
dicted from xt with:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ σtz,

z ∼ N (0, I)

(2.5)

where ϵθ(xt, t) refers to the noise predictor and σt

denotes the variance scheme that can be learned
by the covariance predictor

∑
(xt, t), as opposed to
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applying a predetermined sequence of scalar covari-
ances. Learning the covariances has been demon-
strated to enhance the model’s quality (Nichol &
Dhariwal, 2021). Instead of predicting the mean of
the distribution in Equation (2.4), in reality, the
noise predictor network ϵθ(xt, t) predicts the noise
component at step t; a linear combination of xt

and this noise component then forms the mean.
The training objective of the model amounts to
maximizing the log-likelihood of the generated sam-
ple xt belonging to the original data distribution.
To achieve this objective, the following variational
lower-bound loss is utilized:

Lvlb := DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) (2.6)

Here q and pθ refer to the posterior and prior
respectively. Additionally, DKL refers to the
KL-Divergence, a measure of dissimilarity between
two probability distributions. During training, the
goal of the deep-learning model is to approximate
the parameters of the posteriors such that the
KL divergence is minimal. The publications by
Ho et al. (2020) and Nichol & Dhariwal (2021)
include the whole derivations of the formulas above.

Several variations of the U-Net architecture
are commonly used to parameterize the denoising
model ϵθ(xt, t) (Ronneberger et al., 2015). The
state-of-the-art model architecture proposed by
Dhariwal & Nichol (2021) is used to parameterize
the denoising model in this work.

2.5 Semantic Segmentation with
Generative Models

While there is currently significant research in the
area of generative models for image segmentation,
the majority of approaches that have been inves-
tigated are GAN-based. The first line of research
(Voynov & Babenko, 2020; Voynov et al., 2021;
Melas-Kyriazi et al., 2021) is based on the discov-
ery that the latent spaces of state-of-the-art GANs
contain directions that can selectively influence the
foreground and background pixels in synthesized
images. This has paved the way for the devel-
opment of techniques that utilize synthetic data
generated by GANs to train segmentation models.
However, because of the ability to distinguish
between foreground-background pixels these lines

of work were especially useful to perform binary
segmentation. A Second line of works focused on
intermediate representations obtained in GANs,
which were shown to allow for multi-class segmen-
tation (Zhang et al., 2021; Tritrong et al., 2021; Xu
& Zheng, 2021; Galeev et al., 2021). Inspired by
this line of works, Baranchuk et al. (2021) inves-
tigated the intermediate representations obtained
by DDPMs and used those to train an ensemble
of neural networks for semantic segmentation.
This minimized the need for extensive labelling.
The setup of Baranchuk et al. (2021) is used
to assess label-efficient organoid segmentation
using a DDPM as a representation learner in
combination with an ensemble of neural networks.
Simultaneously, Wolleb et al. (2022) and Amit et
al. (2021) investigated the use of diffusion models
for image segmentation by using a different type
of method. Instead of training a diffusion model
to generate images from the original domain, they
trained diffusion models to generate segmentation
maps directly. The setup from Wolleb et al. (2022)
is utilized to assess organoid segmentation using a
DDPM to directly create segmentation maps given
input images.

Looking at the most recent line of works.
Rahman et al. (2023) proposed a diffusion model
for ambiguous medical image segmentation, such
that it can segment images with multiple possible
interpretations. Moreover, Hu et al. (2023), also
facilitate weakly supervised segmentation with
higher efficiency using a conditional diffusion
model with guidance from an external classifier,
allowing models to be trained with limited labelled
data. Lastly, Laousy et al. (2023) proposed a
diffusion model that combines diffusion models
with randomized smoothing to produce segmen-
tation masks that are more robust to adversarial
attacks. These varied applications underscore the
substantial contributions and potential of diffusion
models in image segmentation tasks.

3 Method

Ultimately, this work aims to utilize two different
approaches of using DDPMs for the segmentation
of organoid culture data. In this section, both meth-
ods and their respective implementations will be
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explained. First, the data on which the experiments
are performed will be discussed in section 3.1. Sec-
ondly, how DPPMs are utilized as representation
learners in conjunction with an ensemble of neural
networks will be explained in section 3.2. There-
after, how DPPMs are used to directly produce
segmentation maps of organoid culture data will
be explained in section 3.3.

3.1 Data and Augmentation

The dataset utilized for this experiment comprised
of liver progenitor organoids obtained from the
University Medical Center Groningen (UMCG)
in the Netherlands. The organoid images were
captured using a specialized microscope at five
different time points, spanning from 0 to 96 hours
with 24-hour intervals. Two growing conditions
were considered: (1) organoids grown in a complete
medium and (2) organoids grown in a medium
lacking essential amino acids required for their
growth. As a result, a total of 10 CZI images were
obtained. A CZI image refers to a 3D represen-
tation consisting of 2D image slices captured at
various depths within the organoid culture (Figure
3.1).

Figure 3.1: A CZI representation: a 3D image
that consists of a stack of 2D slices taken at var-
ious depths within the organoid culture. Source:
Brouwer (2022).

Each CZI file contains 14 2D slices, with each
slice having an image size of 3828x2870 pixels.
Since the upper and lower slices contain limited
relevant information, an average of 4 middle slices
is used. The organoid images underwent semantic

segmentation using the OrganelX service∗, with
manual correction performed to ensure accurate
segmentation.

Given the high resolution of the initial im-
ages (3828x2870 pixels), which is computationally
demanding for deep learning networks, a sliding
window technique is employed to create smaller
image sections called crops (Figure 3.2). Crops of

Figure 3.2: Sliding window crop: a window, rep-
resented by a blue square, is chosen and used to
create a crop of the image. The window is then
shifted by a certain number of pixels, and a new
crop is generated within a red square. This pro-
cess is repeated, sliding the window across the
entire image and producing crops from different
parts of the image. As a result, the entire image
is covered, and crops are obtained from all re-
gions of the image. Source: Brouwer (2022).

size 636x636 pixels are generated with a window
increment of 60 pixels per step. These cropped
images are subsequently resized to 256x256 pixels
to expedite model training time for all experi-
ments. Crops containing less than 5% relevant
information (presence of organoids) are removed
from the dataset. To augment the dataset and
increase its diversity, image rotation is applied as
an augmentation technique. This process results
in approximately 100,000 cropped and augmented
images, of which subsets are used to train the dif-
fusion models in all the experiments with the aim
of investigating label-efficient segmentation. More
information about the exact data distributions
used for the experiments can be found in sections
4.1 and 4.2.

∗https://organelx.hpc.rug.nl/organoid/
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Figure 3.3: Overview of the representation learning method. In this method, noise is added to an
image for t timesteps. The U-Net then predicts the image for timestep t− 1. The feature maps of
the expanding path used for this process are then concatenated and upsampled to the image size.
Finally, the pixels of these concatenated feature maps are then fed into an ensemble of MLPs to
predict the labels of these pixels. Source: Baranchuk et al. (2021).

3.2 DDPM as Representation
Learner

For the method where representations are utilized,
the approach brought up by Baranchuk et al. (2021)
has been implemented. In this method, a DDPM
parameterized by the U-Net architecture is learned
to produce organoid culture data after which an
ensemble of neural networks is trained on learned
feature maps to classify pixels by utilizing majority
voting to decide the pixel labels. A visual represen-
tation of this method can be seen in Figure 3.3. The
method consists of the following steps:

1. Noise is added to x0 according to q(xt|x0).

2. The feature maps of the noise predictor θ(xt, t)
used for the reverse diffusion process are ex-
tracted.

3. The feature maps are upsampled to the picture
resolution and concatenated to gather pixel-
level representations.

4. The pixel-wise feature vectors are used to train
an ensemble of MLPs to determine the class
that each pixel belongs to.

The loss function used to train the diffusion model
is the variational lower-bound loss which was ex-
plained in Section 2.5. Moreover, the loss function
used to train the ensemble of MLPs is the binary
cross-entropy loss which can be seen in equation
3.1.

L = −y log(p)− (1− y) log(1− p) (3.1)

In this formula, y is the true label and p is the
predicted probability for class 1 (organoid). Binary
cross-entropy loss is particularly effective for
class-imbalanced segmentation problems since it
heavily penalizes confident incorrect predictions
and hence, naturally encourages the model to
adjust predictions closer to the actual class distri-
butions. This makes it a good fit for the problem
at hand since the organoids are underrepresented
in the images.

To parameterize the diffusion and denoising
model, the state-of-the-art model suggested by
Dhariwal & Nichol (2021) is utilized. In this
section, when talking about hyperparameters, a
distinction is made between the diffusion model
and the denoising model. With the term diffusion
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model, all hyperparameters associated with the
diffusion process are referred to, including the
noise schedule (e.g., linear, cosine), the maximum
number of noise steps (1000 in all experiments),
and the schedule sampler. The schedule sampler
refers to whether all timesteps are sampled from
e.g. a uniform distribution during training or
whether another method is used for sampling,
such as giving priority to timesteps with a high
loss. In this research, the former is used. The
hyperparameters associated with the U-Net, such
as the attention resolutions or the dropout rate,
are referred to as the denoising model.

Specifically, the same hyperparameters are
used as Dhariwal & Nichol (2021) used for training
their model on the LSUN bedroom dataset (Yu
et al., 2015), with which they showed high perfor-
mance in segmenting a multi-class dataset. The
hyperparameters for the denoising model can be
seen in Table 3.1. The hyperparameters shown in

Table 3.1: Selection of denoising model hyper-
parameters. The hyperparameters are based on:
Dhariwal & Nichol (2021).

Attention Resolutions 32x32,16x16,8x8
Dropout 0.1
Learn Sigma True
Number of Channels 256
Number of Head Channels 64
Number of Resolution
Blocks

2

Resolution Blocks True
on Both Paths
Using Scale Shift Norm True

the Table are not all hyperparameters but those
which showed the highest impact on performance
in Baranchuk et al. (2021) their work. Some of
these hyperparameters, which might be unfamiliar,
are briefly explained in the following paragraphs.
The full list of hyperparameters can be found in
Table A.1 and Table A.2 in the appendix.

The hyperparameter Learn Sigma refers to
learning the covariance of the reverse process as
opposed to applying a predetermined sequence
of scalar covariances. Learning sigma has been
demonstrated to enhance the model’s quality

(Nichol & Dhariwal, 2021). The hyperparameter
Using Scale Shift Norm changes the manner in
which the temporal information (time step) is
added to the image features. Instead of adding the
embedded temporal representations to the image
features, two chunks are created from the temporal
representations of which one is used to scale the
image and the other is added to the image, which
has been shown to improve performance (Nichol &
Dhariwal, 2021). Some of the hyperparameters for
the diffusion model can be seen in Table 3.2. The

Table 3.2: Selection of diffusion model hyperpa-
rameters. The hyperparameters are based on:
Dhariwal & Nichol (2021).

Diffusion Steps 1000
Noise Schedule Linear
Use KL True
Predict x start False

Noise Schedule parameter refers to the manner
in which the betas for the forward process are
sampled. The betas in the experiments will be
sampled from a linear function. Another commonly
used function to sample the betas from is a cosine
function which causes the images to be noised more
gradually. Nevertheless, Nichol & Dhariwal (2021)
showed greater performance with the less gradual
noising that the linear beta schedule provided.
For the ensemble of MLPs, the architecture from
Zhang et al. (2021) is used, which they used to
train a model to label images generated by Gener-
ative Adversarial Networks (GANs). The ensemble
of MLPs consists of 6 independent models. These
models consist of two hidden layers with ReLU
nonlinearity and batch normalization. The sizes of
the hidden layers are 128 and 32.

3.3 DDPM for Direct Segmentation

For the second method, the implementation of
Wolleb et al. (2022) is used. In this method, a
DDPM parameterized by the U-Net architecture
learns to directly create segmentation maps. This
is done by training the DDPM on the segmenta-
tion maps and concatenating the original images
(the actual organoid images) at each step of the
reverse diffusion process. A visual representation
of this method can be seen in Figure 3.4. By
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Figure 3.4: Overview of the direct segmentation method. In this method, a diffusion model is
trained to produce segmentation maps of organoid culture data. To ensure that the segmentation
maps are not random segmentation maps but segmentation maps of the input organoid image.
The organoid image is concatenated during each step of the reverse diffusion process. By sampling
several segmentation maps and averaging over the produced samples, the quality of the segmen-
tation is expected to increase. Source: Wolleb et al. (2022)

concatenating the images at each step of the
reverse diffusion processes the model does not
produce any random segmentation map but a
segmentation map tailored towards the input
image since the anatomical information is induced
at every step. Since DDPMs are stochastic models,
the segmentation map that is generated for a
given input varies each time the model produces
a sample. For this reason, the model is used to
generate several samples, which are then averaged
to provide a more accurate segmentation. The loss
function used to train the diffusion model is the
variational lower-bound loss which was explained
in Section 2.5.

For the U-Net architecture, the same archi-
tecture and hyperparameters are used as those
used for the method where a DDPM is used as
a representation learner, which can be seen in
Table 3.1 and Table 3.2. Moreover, the number of
segmentation maps created for each sample n is set
to n = 3. However, an experiment to investigate
different sample sizes is also performed. All of
The models’ training, validation, and testing were
completed on a single NVIDIA V100 GPU node.

4 Experimental Design

In this work, as explained in Section 1, two sets of
experiments will be performed to evaluate the two
methods of using diffusion models for segmentation.
The aim of these experiments is firstly to evaluate
the performance of a DPPM used as a represen-
tation learner in combination with an ensemble of
neural networks in its segmentation performance.
Secondly, the aim is to evaluate the performance
in segmenting organoid culture data by using a
DDPM being trained to directly produce segmen-
tation maps. In this section, the two sets of experi-
ments are explained. In section 4.1, the experimen-
tal designs for the method where a DDPM as a
representation learner is used are explained. In sec-
tion 4.2, the experimental designs for the method
where a DDPM is used for direct segmentation are
explained.

4.1 DDPM as Representation
Learner

The data distribution used to investigate the
DDPM as a representation learner can be found
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in Figure 4.1. The numbers of images in the blue
blocks of the Figure: (42.348, 20, 20, 20), refer to
the total amount of images used in the entire deep
learning pipeline (training, validating, testing).
However, dependent on the different experiments,
different percentages of the data in each stage
are used. Observing the upper blocks of Figure

Figure 4.1: Experimental Design:
Representation Learner

4.1 and moving from the left to right, it can be
observed that the first block (Diffusion Train)
contains 42348 images. This number refers to
the number of images used to train the diffusion
model. All of these images are unlabeled since
training the diffusion model requires the actual
organoid images and not the organoid masks.
The number 42348 is chosen such that it is high
enough to have the diffusion model be able to learn
the data distribution. Since training the other
method requires these images to be labelled for
training and the aim is to use as limited labelled
images as possible, a higher number is not utilized.
Moving on to the next block (Seg Train and Seg
Validation), it can be observed that the block
contains 20 images twice, 20 images are used for
training and 20 images are used for validating the
diffusion model. This may seem like a low number,
however, the ensembles are meant to classify pixels
based on the features of these pixels. To put
it, each image fed to the pixel classifiers equals
256x256 (image resolution) samples. The number
1310720 (256x256x20) that can be seen in the
block refers to the total amount of pixels used to
train and validate the segmentation model. To put
it differently, the method can be investigated as a
means of performing few-shot image segmentation,
as only little annotated data is used to train the
model. To train and validate the model, labelled

data is used since the predicted segmentations
are compared to the ground truth segmentations.
Lastly, moving to the block completely at the right
(Seg Evaluation), it can be observed that this block
contains 20 images, which is the total amount of
images used to evaluate the entire model. Again,
the number 1310720 refers to the total amount of
pixels used, this time for the evaluation.

Moving to the lower blocks and starting from
the left, it can be observed that the block contains
the numbers: [10%,50%,100%]. These numbers
refer to the different percentages of data used
to train the diffusion models in the different
experiments. In the training stage, the diffusion
models are trained for a total of 70 epochs. Moving
one block to the right, again a block can be
observed containing the values: [10%,50%,100%].
These numbers refer to the different percentages of
data used to train and validate the segmentation
models in the different experiments. The ensemble
of MLPs is trained for 40 epochs. The number of
epochs for training the segmentation part of the
method is lower in practice since early stopping
is performed, which means that the models only
train for 3 to 4 epochs.

In the following subsections, the different experi-
ments are briefly explained and the corresponding
amount of data used is explained.

4.1.1 The Effect of the Blocks and
Timesteps

The first experiment attempts to investigate how
the specific blocks used from the U-Net impact
the quality of the segmentation result and how
the amount of noise added during the forward
diffusion process/timestep affects the performance
of the segmentation result. For this experiment,
100% of the diffusion training data is used and
100% of the segmentation training data. To test
the effect, the following blocks are used from the
18 decoder blocks: [2,4,6,8,10,12,14,16,18], where
the decoder blocks are numbered from deep to
shallow blocks in the U-Net, such that a higher
number refers to a higher resolution feature map.
The decoder blocks are used since they also ag-
gregate the information from the encoder blocks
because of the skip connections between the en-
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coder and decoder path of the U-Net. More-
over, the following timesteps are investigated:
[25,50,75,100,200,300,400,500,600,700,800,900,925,
950,975]. These timesteps refer to the timesteps of
the reverse diffusion process, such that t=0 refers
to an image composed of entirely random Gaussian
noise and t=1000 refers to a fully denoised image.
For these timesteps and blocks, the high to low-level
features of the fully noised and fully denoised im-
ages and most gradations in between are captured,
to test their effectiveness in the segmentation.

4.1.2 The Effect of the Training Size

To test the effect of the training dataset size, the
diffusion model is trained on 100%, 50% and 10%
of the diffusion training data. Moreover, to test the
effect of the training dataset size the segmentation
model is trained on, 100%, 50% and 10% of the dif-
fusion training data is used. Moreover, the blocks:
[6,8,10] and the timesteps: [850,900,950] are used to
obtain the feature maps in this experiment. These
blocks and timesteps are chosen as they were found
to be the most informative in the blocks/timesteps
experiment. See section 5.1.1 for more details.

4.2 DDPM for Direct Segmentation

The data distribution used to investigate the
DDPM used for direct segmentation can be found
in Figure 4.2. Dependent on the different exper-
iments, different percentages of the data in each
stage are used.

Observing the upper blocks of Figure 4.2 and
moving from left to right, it can be observed that
the first block (Diffusion Train) contains 42368
images. These images refer to the number of images
used to train the diffusion model. The number of
images used to train the diffusion model for this
method is the same as the total number of training
images used for the representation method. For this
method, however, the annotations of the images
are required for the entire training process, since
the diffusion model needs to learn how to sample
segmentation maps instead of actual organoids.
Moving to the next block (Seg Evaluation), it can
be observed that this block contains 1000 images.
This number refers to the number of images used
for the evaluation of the diffusion model. Since this

Figure 4.2: Experimental Design:
Direct Segmentation

method is highly time-consuming while sampling
a single image can take up to 80 seconds, using
more images for the evaluation is not feasible.
Moving to the lower blocks and starting from the
left, it can be observed that the block contains the
numbers: [10%,50%,100%]. These numbers refer to
the different percentages of data used to train the
diffusion models in the different experiments. In
the training stage, the diffusion models are trained
for a total of 70 epochs. Moving one block to the
right, again a block can be observed containing
the values: [50%,100%]. These numbers refer to
the different percentages of data used to evaluate
the diffusion model in the different experiments.
Moreover, 1 up to 10 samples are used in the
evaluation to produce a final segmentation map.
This number differs dependent on the specific
experiment. In the following subsections, the
different experiments are briefly explained and the
corresponding amount of data used is explained.

4.2.1 The Effect of the Ensemble Size

All of the diffusion training data is used to examine
the impact of the number of samples produced on
the final segmentation. However, only 50% of the
total data is used for the evaluation. This is due to
the fact that sampling takes a long time, and adding
more samples to the evaluation prolongs the pro-
cess even more. The evaluation is performed with
1 up to 10 samples. Moreover, the diffusion model
underwent 70 epochs of training.

4.2.2 The Effect of the Training Size

To test the effect of the training data size, 100%,
50% and 10% of the training data is used. More-
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over, the entire evaluation dataset is used in this ex-
periment. The number of samples generated in this
experiment is n=3, ensuring better performance
compared to using a single sample but not increas-
ing evaluation time significantly.

4.3 Metrics

Three prevalent metrics for the binary seman-
tic segmentation task—the mean intersection over
union (MIoU), the Dice coefficient, and the Haus-
dorff distance—are used in the quantitative analy-
sis of the experimental results. These measurements
are chosen because of their diversity and their ap-
plicability to the data.

4.3.1 MIoU

The predicted and actual segmentation masks’
overlap is evaluated using the intersection over
union (IoU), commonly referred to as the mean in-
tersection over union (MIoU), since intersections
are computed for different classes (in this work
organoids and background). It calculates the inter-
section area to union area ratio of the two masks.
By calculating the IoU, a thorough knowledge of
how well the model represents the target regions
of interest is gained. The equation for the MIoU is
presented in equation 4.1.

MIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi
(4.1)

The total number of classes is represented by N ,
the number of true positive predictions for class i
is represented by TPi, the number of false positive
predictions for class i is represented by FPi and the
number of false negative predictions for class i is
represented by FNi. The average intersection over
union for all classes is determined by the MIoU.

4.3.2 Dice

Another key metric used for binary segmentation
evaluations is the Dice coefficient, often known as
the Dice similarity coefficient. It quantifies the sim-
ilarity between the predicted and the ground truth
masks, similar to the IoU. The Dice coefficient cal-
culates the proportion of the areas of both masks
added together to twice the junction area. In situa-
tions where there are class imbalances (which is the

case for organoid culture data), it provides a clear
indicator of segmentation accuracy.

Dice =
2× TP

2× TP + FP + FN
(4.2)

The equation for the Dice score is presented in
equation 4.2. In this equation, TP stands for the
total number of accurate positive predictions, FP
for false positive predictions, and FN for false neg-
ative predictions. The similarity or overlap between
the predicted and actual segmentation masks is de-
termined by the Dice score.

4.3.3 Hausdorff Distance

The Hausdorff distance is another metric used
to measure the dissimilarity between two sets of
points, which in this case represents the predicted
and ground truth masks. It calculates the maxi-
mum separation between any two points in one set
and their nearest neighbours in the other set. By in-
tegrating the Hausdorff distance, an understanding
of the model’s capability to capture spatial infor-
mation and accurately designate object boundaries
is gained. The equation for the Hausdorff distance
is presented in equation 4.3.

Hausdorff(A,B) = max

(
sup
a∈A

inf
b∈B

∥a− b∥, sup
b∈B

inf
a∈A

∥a− b∥
)

(4.3)
In this equation, A and B stand for two sets of
points, and ∥ · ∥ indicates the distance metric that
is employed, which could be the Euclidean distance
or any other compatible metric. In this work, the
Euclidean distance is applied. The Hausdorff dis-
tance quantifies the greatest separation between
the nearest point in one set and the point in the
other set. The Hausdorff distance at the 95th per-
centile, or HD95, is applied in this work. The HD95
distance represents the distance between the 95th
closest point in one set and the closest point in the
other set. Due to its reduced sensitivity to outliers,
the HD95 is a more reliable indicator of segmen-
tation accuracy than the traditional Hausdorff dis-
tance. It is to be noted that the Hausdorff distance
is fundamentally a relative measure, and as such, it
is not suitable for direct comparisons across differ-
ent domains.
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5 Results

For all performed experiments described in sections
3 and 4, different DDPMs were trained, tested, and
evaluated on the MIoU, Dice and HD95 score. In
the following two subsections, the results of the two
different methods are presented. Subsequent sub-
sections will go over the results of the different ex-
periments performed for the two different methods.

5.1 DDPM as Representation
Learner

5.1.1 The Effect of the Blocks and
Timesteps

In this subsection, an attempt is made to answer
the research questions: ”How do the specific blocks
used from the U-Net impact the quality of the
segmentation result?” and ”How does the amount
of noise added during the forward diffusion process
affect the performance of the segmentation result?”
Figures 5.1, 5.2 and 5.3 display the results of the
experiment performed to evaluate the effect of the
different timesteps and blocks on the segmentation.

Figure 5.1: Performances of the different
blocks/timesteps. The x-axis corresponds to the
timesteps of the reverse diffusion process. The
y-axis corresponds to the MIoU. The different
colours represent the different blocks of the U-
Net. The bounds represent the measured uncer-
tainty.

Figure 5.2: Performances of the different
blocks/timesteps. The x-axis corresponds to the
timesteps of the reverse diffusion process. The
y-axis corresponds to the Dice score. The dif-
ferent colours represent the different blocks of
the U-Net. The bounds represent the measured
uncertainty.

Figure 5.3: Performances of the different
blocks/timesteps. The x-axis corresponds to the
timesteps of the reverse diffusion process. The
y-axis corresponds to the HD95 distance. The
different colours represent the different blocks
of the U-Net.

Figures 5.1 and 5.2 display the results of the
MIoU and Dice against different timesteps for the
different blocks. Each line illustrates a different
block of the U-Net. The bounds displayed for
each graph correspond to the uncertainties of
the predictions as the predictions were made by
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an ensemble of MLPs. It is to be noted that the
timesteps in these Figures and in the remaining
Figures in the results section refer to the timesteps
of the reverse diffusion process (contrary to most
literature where t refers to the forward diffusion
process), this is done such that it is more intuitive
to understand how the performance increases.
It can be observed in both Figures that as the
timesteps increase, the overall performance in-
creases as well. To put it, when the images contain
little noise, the predictive power of the features
increases. This is likely the case due to the overall
structure of the images still being present in these
later timesteps, from which useful features can
be learned for the segmentation, whereas for the
earlier timesteps not much can be learnt from
the heavily noised images. The largest increase in
performance occurs between t=400 and t=600,
whereafter the performance starts to flatten out.
The strong increase in performance between the
aforementioned timesteps can likely be attributed
to the overall structure of the images starting to
appear between these timesteps. Comparing the
different blocks of the U-Net, it can be observed
that the middle to high blocks have the best predic-
tive performance. The lacking performance of the
lower blocks is likely due to these blocks picking up
on large abstract features which are less relevant
in detecting the uniformly shaped and uniformly
looking organoids. This hypothesis is evaluated
later in this section. This is also supported by the
fact that the uncertainty is the largest for block
2, whereafter the uncertainty decreases for each
consecutive higher block (Uncertainty block 2 is
0.013, uncertainty block 14 is 0.006). In Figure
5.3, the HD95 distance can be observed for the
different blocks and timesteps. Similar effects as
were seen for the MIoU and Dice can be observed
in this Figure. Since a lower Hausdorff distance
indicates better performance, it can be observed
that the performance increases later on in the
reverse diffusion process. Different from the MIoU,
the worst-performing block in terms of Haussdorf
distance is block 14, whereafter blocks 2 and 12
follow. The poor performance of the high blocks
might be attributed to the fact that the HD95
distance compares structures. The high blocks
capture fine-grained details in the images which
are not useful in capturing the exact shape of the
organoids and thus there can be large differences

between the structures of the predictions and the
true segmentations.

In order to investigate what the blocks in
combination with the timesteps pick up upon and
to examine the aforementioned hypotheses for
the observed results, it is necessary to perform
visual analyses of the segmentation maps and the
feature maps of the U-Net. Figure 5.4 and Figure
5.5 show segmentations for two different images
with respect to different blocks and timesteps.
It can be observed that the blocks only start to
pick up upon the organoids from timestep 500
onwards, which confirms the hypothesis that the
overall structures of the organoids start to appear
around this timestep and which explains the
earlier observed performance increase around this
timestep. Moreover, the middle (Block 8) and later
block (Block 14) show the best performance, where
block 8 shows the overall highest performance.
It can be observed that block 14 compared to
block 8 is failing to pick up on pixels within the
organoid. To get a better insight into the causes
of the differences between the segmentations, a
k-means algorithm (k=5) has been trained to
investigate the representations of the different
blocks and timesteps. Figure 5.6 and Figure 5.7
display the clusters that have been picked up upon
by different blocks and different timesteps for 2
images. It can be noticed that block 2 captures
low-level features which are not useful for the
segmentation of the organoids. This explains the
overall worst performance of the lower blocks.
Block 14 in contrast picks up on fine-grained
details. The features of this block explain the
worst performance of this block in terms of HD95
as the exact structure of the organoids are not
picked up upon by these blocks. It can be observed
that in the later timesteps (t=975) of block 14,
boundary identification of the organoids starts to
occur. However, since there exist different clusters
within the organoids for this block, it is difficult
to segment the organoids based on these feature
maps. This inability of these later blocks in full
segmentation of the organoids is in line with the
results of block 14 in Figure 5.5, in which it could
be seen that the block is not predicting all pixels
within the cells correctly. Block 6 and 8, on the
other hand, are more accurately able to identify
the entire organoids, where block 8 compared
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Figure 5.4: Segmentation maps and ground truth segmentations for 2 images for blocks=[2,8,14]
and timesteps T=[25,200,500,800,975]. Under each image, the MIoU is displayed in order to allow
for a better comparison of the segmentation maps.

Figure 5.5: Segmentation maps and ground truth segmentations for 2 images for blocks=[2,8,14]
and timesteps T=[25,200,500,800,975]. Under each image, the MIoU is displayed in order to allow
for a better comparison of the segmentation maps.

to block 6 is also able to identify the borders of
the organoids. To answer the research questions

mentioned at the beginning of the subsection,
the features that result from the layers in the
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Figure 5.6: Examples of k-means clusters (k=5) formed by the features extracted from the U-Net
decoder blocks= [2,14] on the diffusion steps = [25, 200, 500, 800, 975]

Figure 5.7: Examples of k-means clusters (k=5) formed by the features extracted from the U-Net
decoder blocks= [6,8] on the diffusion steps = [25, 200, 500, 800, 975]

middle of the U-Net decoder appear to have the
most semantic meaningness for the task at hand
when compared across different blocks. Moreover,
the later timesteps (t=800 and onwards) are the
timesteps with the most semantic meaningness.

5.1.2 The Effect of the Training Size

In this subsection, an attempt is made to answer
the research questions: ”How does the size of the
dataset used to train the diffusion model impact
the quality of the segmentation result?” and ”How
does the size of the dataset used to train the
ensemble of MLPs influence the quality of the
segmentation result?”.

Figures 5.8, 5.9 and 5.10 display the results
of the experiment performed to evaluate the
effect of the different training sizes used. The
graphs present the performance versus the training
percentages used, where the x-axis shows the
different percentages used to train the MLPs and
the different colours represent the different per-
centages used to train the actual diffusion model.

Figure 5.8: Performances of the different train-
ing percentages used. On the x-axis, the per-
centage of data used for training the MLPs
is displayed. On the y-axis, the MIoU is dis-
played. The different colours refer to the differ-
ent amounts of training data used for training
the diffusion model. The bounds display the un-
certainty of the predictions.
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Figure 5.9: Performances of the different train-
ing percentages used. On the x-axis, the per-
centage of data used for training the MLPs is
displayed. On the y-axis, the Dice score is dis-
played. The different colours refer to the differ-
ent amounts of training data used for training
the diffusion model. The bounds display the un-
certainty of the predictions.

Figure 5.10: Performances of the different train-
ing percentages used. On the x-axis, the per-
centage of data used for training the MLPs is
displayed. On the y-axis, the HD95 score is dis-
played. The different colours refer to the differ-
ent amounts of training data used for training
the diffusion model.

The bounds in Figure 5.8 and Figure 5.9 represent
the uncertainties, which were measured for the
MIoU and Dice. It can be observed in Figure 5.8
and Figure 5.9 that the percentage of training

data used to train the MLPs has the largest effect
on the performance, where the largest increase
happens going from 10% to 50% of the data. The
segmentation performance of only using 10% of the
data is relatively weak compared to using 100%,
which shows high performance, with the MIoU
ranging between 0.91 and 0.93 and the Dice score
ranging between 0.94 and 0.96. The decreasing
uncertainties when using more data to train the
MLPs also support the superiority of using more
data for the segmentation. When comparing the
different amounts of diffusion data used, it can be
observed that this difference is large when little
segmentation data is used. This difference, how-
ever, starts to become more and more negligible
once the amount of segmentation data increases.
Moreover, using 100% of the diffusion data only
shows the best performance, when 100% of the
segmentation data is used as well. This suggests
that to accurately make use of the feature maps
by the U-Net, sufficient data needs to be used
to train the segmentation models, otherwise, the
model cannot effectively map the feature maps
to correct segmentation maps. Figure 5.10, which
shows the HD95 distance, shows the same effect as
the other two Figures. However, the effect of using
more segmentation training data is better visible.
The Figure illustrates that the structures of the
organoids are hard to determine when using little
data to train the diffusion model, as the red graph
shows by far the worst performance when using
100% of the segmentation training data.

To conclude and answer the research questions
mentioned at the beginning of this subsection,
using more training data for the MLPs improves
the performance the most. Moreover, the diffusion
model training percentage is more sensitive to
limited segmentation data, but using 100% of both
types of data achieves the best results (MIoU=0.92,
Dice=0.96, HD95=35). Finally, using 50% (21174
images) of the diffusion training data results in
similar results as using 100% (42348 images) of
the diffusion training data. This implies that using
50% of the diffusion training data is enough to
achieve close to optimal results.
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5.2 DDPM for Direct Segmentation

5.2.1 The Effect of the Ensemble Size

This section answers the research question: ”How
does the number of samples generated by the dif-
fusion model affect the performance of the segmen-
tation?”. Table 5.1 displays the results of the ex-
periment that was performed to evaluate the effect
of the different sample sizes used to generate the
final segmentation, where n represents the sample
size. It can be observed that over all performance

Table 5.1: The effect of the sample size (n)
on the performance. The best performances for
each metric are in bold.

MIoU Dice HD95

n=1 0.53 0.62 73.43
n=2 0.50 0.42 74.75
n=3 0.62 0.71 62.20
n=4 0.52 0.61 67.70
n=5 0.65 0.75 58.97
n=6 0.58 0.67 63.62
n=7 0.69 0.78 55.46
n=8 0.62 0.72 60.8
n=9 0.69 0.78 56.23
n=10 0.65 0.74 57.18

metrics, the performance increases as the number
of sampled images increases. The largest improve-
ments in performance start to occur from n=5 after
which the overall highest performance is reached
when n=7. Moreover, n=9 shares the highest per-
formance with n=7 in terms of MIoU and Dice.
In general, there is a lot of fluctuation in terms
of performance when the sample size is increased.
Overall, the trend is however upward until n=7. To
conclude, using more samples to produce the final
segmentation map improves the quality of the pro-
duced segmentation maps. The results suggest that
with a sample size of 7, increasing the sample size
further does not provide better results.

5.2.2 The Effect of the Training Size

This section answers the research question: ”How
does the size of the dataset used to train the
diffusion model impact the quality of the segmen-
tation result?”. Table 5.2 shows how the dataset

sizes affect the segmentation outcomes. It is clear
that there are significant disparities between the
various data percentages; for example, utilizing
50% and 10% compared to 100% of the data
yields no effective segmentations at all because the
MIoU and Dice are both below 0.5 and the HD95
distance is also about twice as large compared to
the other Dice scores. Clearly, a large annotated
dataset is required for training a diffusion model
to directly produce segmentation maps.

Table 5.2: The effect of the training data on the
performance. The best performances for each
metric are in bold.

MIoU Dice HD95

100% 0.62 0.71 62.15
50% 0.37 0.49 81.94
10% 0.11 0.20 157.73

Figure 5.11: Predictions for different training
sizes for 2 example images

Figure 5.11 shows sampled segmentation maps
for two example images for different training
percentages used. When observing these visual
results, it can be seen that when the models are
trained on only 10% of the data, they are not able
to learn the data distribution at all. Moreover,
when only half of the data was used to train the
model, only rough representations of the data
are learned. With 100% of the data, the model is
clearly able to identify the organoids.

To conclude, increasing the number of data
used to train the diffusion model strongly improves
the quality of the segmentation map. It is however
necessary to use a large annotated dataset to
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ensure the highest performance as using 100%
of the data (42368 images) gave a much higher
performance (MIoU=0.62, Dice=0.71, HD95=62)
compared to the performance (MIoU=0.37,
Dice=0.49, HD95=82) of using 50% of the data
(21184 images).

6 Conclusions

6.1 Discussion

In this work, the ability of DDPMs to effectively
segment organoid culture data as a representation
learner or by directly sampling segmentation maps
has been evaluated.

The representation approach showed to be effective
as a label-efficient segmentation method by show-
ing high performance (MIoU=0.92, Dice=0.96,
HD95=35) with as little as 20 labelled training
samples. This is a significant advantage over the
contemporary organoid segmentation techniques
since those techniques all rely on sizable annotated
datasets. Do, however, note that a large dataset
is still required since another 42348 unannotated
images were used in the training process. Moreover,
for the representation method, it is found that
the middle blocks and early timesteps provide the
best predictive performance (see section 5.1.1).
Also, it has been found that in the entire training
pipeline, the size of the segmentation dataset is
more important for performance than the size of
the diffusion dataset (see section 5.1.2).

The direct segmentation approach cannot be
used for label-efficient segmentation as labelled
images are required in the entire training process.
For the direct segmentation approach, it is found
that increasing the sample size facilitates more
stable segmentation maps and consequently better
performance (see section 5.2.1). The amount of
training data used also greatly impacted the
performance considering that the performance of
using 10% (42368 images) of the training data
(MIoU=0.11, Dice=0.20, HD95=158) was signifi-
cantly lower than the performance (MIoU=0.62,
Dice=0.71, HD95=62) of using 100% (42368
images) of the training data (see section 5.2.2).

Overall, a conclusion can be drawn that the
approach that uses a DDPM as a representation
learner is greatly superior for segmenting organoid
cultures. When using 100% of the data (42368
images) for all stages of the two methods, the
representation approach (MIoU=0.92, Dice=0.96,
HD95=35) outperformed the direct segmentation
approach (MIoU=0.62, Dice=0.71, HD95=62)
across all metrics (See Figure 5.8, 5.9, 5.10 and
Table 5.1 of the result section). Given the high
performance of the representation method and
the little amount of annotated data required, the
method is found to be effective for label-efficient
segmentation of organoid culture data. The direct
segmentation approach is found to be ineffective
in the overall segmentation of organoid data. Even
when a large annotated dataset is used, the overall
performance is much lower than the representation
approach.

6.2 Future Work

Several aspects with regard to the performed
research can be further investigated. The method
used to construct segmentation maps directly is
picking up on organoid-looking objects that are
not categorized as organoids in the ground-truth
segmentation. When observing the predicted
segmentations on the test set, this is a recurrent
phenomenon that lowers the overall performance
of all approaches. These objects appear much
more blurred compared to the actual organoids.
Experimenting with different loss functions such
as the Structural Similarity Index (SSIM) loss
could help prevent the issue. The SSIM loss for
example better takes into account luminance,
contrast, and structure information (Wang et al.,
2004), making it more perceptually relevant than
pixel-wise metrics like the used Cross-Entropy
loss. The chaotic losses that can be observed for
the representation learner on the validation data
(Figure A.1 of the appendix) support the idea that
other loss functions may be better suited for the
task.

The impact of larger sample sizes for the di-
rect segmentation approach is another area to
research in the future since it is unclear whether
even greater sample sizes than those currently
investigated would improve the performance. As

19



the later sample sizes are still fluctuating a lot,
this might suggest that a plateau might not have
been reached yet. Moreover, the same area can be
investigated for the segmentation training data.
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A Appendix

Table A.1: Full list of Diffusion Model Hyperpa-
rameters(For an explanation of all hyperparam-
eters we refer to Nichol & Dhariwal)

Diffusion Steps 1000
Noise Schedule Linear
Learn Sigma False
Sigma Small False
Use KL True
Predict xstart False
Rescale Timesteps False
Rescale Learned Sig-
mas

False

Timestep Respacing False

Table A.2: Full list of Denoising Model Hyper-
parameters (For an explanation of all hyperpa-
rameters we refer to Nichol & Dhariwal)

Attention Resolutions 32x32,16x16,8x8
Dropout 0.1
Learn Sigma True
Number of Channels 256
Number of Head Channels 64
Residual Block up/down True
Number of Residual
Blocks

2

Residual Blocks True
on Both Paths
Using Scale Shift Norm True
Num of heads upsample 0
New attention order False

Figure A.1: Example validation losses for the
representation learner
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