
The Influence of
Ecosystem-Wide Experience and

Collaboration on Pull Request Acceptance
in Open-Source Software Ecosystems

Willem Meijer

University of Groningen

The Influence of Ecosystem-Wide Experience and Collaboration on
Pull Request Acceptance in Open-Source Software Ecosystems

Master’s Thesis

To fulfil the requirements for the degree of
Master of Science in Computing Science – Software Engineering and Distributed Systems

at the University of Groningen under the supervision of
Asst. prof. dr. A. Rastogi (Bernoulli Institute, University of Groningen)

and
Asst. prof. dr. M. Riveni (Bernoulli Institute, University of Groningen)

Willem Meijer (s4509412)

August 30, 2023

3

Acknowledgements
I don’t think a document like this should dare to present itself without a proper “thank you” to every-
one who helped me set up and execute this project.

Thank you, Ayushi, for the endless support, feedback, thoughts, talks, and the various walks we have
had throughout this project. I don’t know what this project would’ve looked like if you weren’t in-
volved, but it likely wouldn’t have reached the same results, and it most definitely wouldn’t have been
as much fun. I couldn’t have wished for a better supervisor.

Thank you as well, Mirela, for your help throughout the project. There were about a thousand things
I wouldn’t have known about social network analysis if you hadn’t pointed me in the right direction.

Thank you to the other professors and peers, both at the University of Groningen and outside, who
inspired me both before and during the execution of this project. Thanks to the technical staff who
gave me access to the resources necessary to complete this work, as I would’ve been completely lost
without them.

Thanks to the Computing Science programme and all of the staff in it. I genuinely appreciate the
effort you put in and the opportunities you have given me. Following the programme was an absolute
blast. I am genuinely a little sad to think it’s over after this.

Thanks to everyone. To those who joined my life. To those who stayed in my life. To those who left
my life. Thank you. Thank you. Thank you. May our paths cross again someday.

– Willem

4

Samenvatting
Het pull-based ontwikkelingsmodel ligt ten grondslag aan wereldwijde samenwerking in open-source
softwareontwikkeling. Dit model onderscheidt zichzelf door de beslissingen die over software worden
gemaakt los te koppelen van softwareontwikkeling. Dit wordt mogelijk gemaakt door ontwikkelaars
aanpassingen te laten maken in een lokale versie van de code. Dit geeft hen de mogelijkheid om
een voorstel te doen deze te integreren in de publieke versie door middel van pull requests (aanpass-
ingsverzoeken). Deze methode wordt vaak gecombineerd met issue-beheer systemen. Gebruikers en
ontwikkelaars kunnen hier “issues” plaatsen om nieuwe ideeën te presenteren, vragen te stellen of
problemen te beschrijven.

Onderzoek dat in de afgelopen tien jaar is uitgevoerd heeft verscheidene factoren gevonden die beïn-
vloeden of een pull request wordt geaccepteerd of afgewezen. Veel hiervan zijn gemeten binnen één
project. Moderne software bestaat echter zelden nog als solitaire projecten omdat ze deel zijn gewor-
den van grotere software ecosystemen.

Omdat er weinig onderzoek is gedaan naar het belang van software ecosystemen in relatie tot pull-
based softwareontwikkeling, getuigt deze these voor de relevantie door het effect op pull request
acceptatie te testen. Dit is gedaan door de impact te testen van opgedane werkervaring binnen een
ecosysteem, opgedane werkervaring binnen projecten met een onderlinge technische afhankelijkheid,
en directe en indirecte samenwerking waar een ontwikkelaar aan deel heeft genomen. Dit onderzoek
benadrukt dit effect op een speciale groep ontwikkelaars: nieuwkomers. Dit zijn ontwikkelaars die
voor het eerst een pull request indienen binnen een project.

Om deze studie uit te voeren, is een dataset van ongeveer 1.8 miljoen pull requests en 2.1 miljoen
issues verspreid over 20.052 projecten, verzameld uit het NPM ecosysteem — een open-source soft-
ware ecosysteem voor JavaScript projecten. Deze studie gebruikt een combinatie van sociale netwerk-
analyse, gemengde logistieke regressie en random forest om de impact en de voorspellende kracht van
de gemeten variabelen te testen.

De resultaten van dit onderzoek tonen aan dat alle ecosysteem-brede factoren pull request accep-
tatie positief beïnvloeden. Dit suggereert dat opgedane werkervaring binnen het ecosysteem door
actieve deelname in issue-tracking systemen, het indienen van pull requests, en samenwerking met
de integreerder van de pull request en ervaren ontwikkelaars een positief effect heeft op open-source
ontwikkelaars. Dit geldt met name voor nieuwe ontwikkelaars. De resultaten van dit onderzoek sug-
gereren dat het voorspellen of een pull request die ingediend is door een nieuwkomer lastig is, gezien
slechts een F1 score van 0.83 werd behaald. Het complete model bereikte wel een goede score van
0.92.

Vervolgonderzoek kan uitbreiden op dit werk door het te repliceren in andere ecosystemen (bijvoor-
beeld PyPI of OpenStack), te beschrijven waarom dit effect bestaat, en te beschrijven hoe dit optimaal
ingezet kan worden binnen projecten.

5

Abstract
The pull-based development model is one of the fundamental methods used for global collaboration in
open-source software engineering. This model defines itself by separating software decision-making
from software development. This is possible because it allows individual developers to make changes
on a separate branch of the program. Then, they can propose to include these changes in the publicly
available code by submitting pull requests (change requests). This method is frequently combined
with issue-tracking systems. Users and developers can use this to post “issues” which contain new
ideas, describe problems, or ask questions.

Research performed in the last decade identified various factors that affect whether a pull request is
accepted or rejected, many of which are tracked within a single project. However, modern-day soft-
ware rarely exists as solitary entities as they have grown to become part of a larger software ecosystem.

Because little prior literature studied the importance of software ecosystems with respect to pull-
based development, this thesis vouches for its relevance by testing its relationship with pull request
acceptance. This is done by measuring the impact of experience acquired in an ecosystem, experience
acquired in projects involved in a technical dependency, and the number of direct and indirect collab-
orations a developer has been part of. This thesis highlights one special case: first-time contributors.
These are contributors who make their first technical contribution to a project.

To conduct this study, a dataset of approximately 1.8 million pull requests and 2.1 million issues was
collected, spanning 20.052 projects sampled from the NPM ecosystem — an open-source software
ecosystem for JavaScript projects. This study employed a combination of social network analysis,
mixed effects logistic regression and random forest to measure the impact and predictive strength of
identified features.

The results showed that ecosystem-wide factors uniformly positively influence pull request accep-
tance. This suggests that gaining experience within the ecosystem through active participation in
issue-tracking systems, submitting pull requests, and collaborating with integrators and experienced
developers benefit all open-source contributors. This is especially important for first-time contrib-
utors. The results suggest that predicting the outcome of a pull request submitted by a first-time
contributor is more difficult as it yielded only an F1 score of 0.83. However, the overall classification
performance reached a good score of 0.92.

Future work could expand on the suggestions of this study by observing the same phenomena in other
ecosystems (e.g., PyPI or OpenStack), by identifying why this effect occurs, and how projects can
harness it.

Keywords: open-source software ecosystem, mining software repositories, social coding platform,
software dependencies, first-time contributors.

6 CONTENTS

Contents

Page

1 Introduction 8
1.1 Research Questions . 8
1.2 Thesis Outline . 9

2 Theoretical Framework 10
2.1 Background . 10
2.2 Related Work . 11

2.2.1 Factors influencing pull request decisions 11
2.2.2 Project-transcending and Ecosystem-Wide Factors 12

3 Methodology 13
3.1 Data Collection . 13

3.1.1 Project Selection . 13
3.1.2 Development Activity Selection . 14
3.1.3 Data Collection Process . 15

3.2 Metrics . 17
3.2.1 Developer Experience Variables . 17
3.2.2 Collaboration Variables and Social Network Analysis 18

3.3 Data Analysis . 21

4 Results 25
4.1 General Overview . 25
4.2 Answering Questions . 27

4.2.1 Ecosystem-wide Experience . 27
4.2.2 Experience in Dependent Projects . 27
4.2.3 Direct and Indirect Collaboration . 28
4.2.4 First-time Contributors . 29

5 Discussion 30
5.1 Implications . 30

5.1.1 Implications for (First-Time) Contributors 30
5.1.2 Implications for Software Teams . 30
5.1.3 Implications for Researchers . 30

5.2 Threats to Validity . 30
5.2.1 Internal Validity . 30
5.2.2 Construct Validity . 31
5.2.3 External Validity . 31

6 Conclusion 32
6.1 Future Work . 32

Bibliography 34

CONTENTS 7

Appendices 40
A Data Distributions . 40
B Variable Log-Linearity . 42
C Variable Correlation and Multicollinearity . 44

List of Figures
1 Overview of the data collection process. 16
2 Distribution of pull requests across projects. 21
3 Distribution of pull requests across time. 25
4 Feature importance plot showing the mean decrease in Gini. 26

List of Tables
1 Overview of control variables suggested by Zhang et al. [4] used in this study. 11
2 Overview of the considered developer experience types. 17
3 Overview of the considered collaboration activities and their edge weights. 19
4 Overview of the coefficients and standard error calculated by the mixed effects logistic

regression models, describing the general relationships. 23
5 Overview of the coefficients and standard error calculated by the mixed effects logistic

regression models, distinguishing between first-time contributors and non-first-time
contributors. 24

6 The mean and standard deviation of the F1 scores calculated with the random forest
models. 27

8 Chapter 1 INTRODUCTION

1 Introduction
Pull-based development [1], [2] is one of the fundamental processes used for global collaboration in
open-source software engineering. The strength of this method is that it separates software decision-
making from software development. It allows developers to create a separate “branch” of the soft-
ware that can be changed without affecting the public version. Once these changes can be integrated
into the public version, the developer can propose this through a “pull request.” Typically, this pull
request is then reviewed by a core project member, who can choose to apply the changes to the code,
decline them altogether, or request some changes. Open-source software teams commonly combine
pull-based development with issue-tracking systems [3]. These systems track “issues,” containing
new ideas, bug reports, and questions.

Research done in the past decade has explored the dynamics of the pull-based development model,
describing topics like pull request decision-making [4] or the time it takes to reach these decisions [5].
Most of these studies addressed “intra-project factors” of pull request acceptance, referring to things
that can be measured within a single project, like the number of comments a pull request has [4], [6],
[7], or the number of previously accepted pull requests someone has submitted [4], [8]–[10].

While several studies included factors that reach beyond the borders of a single project [4], [11]–
[14], only the work by Dey et al. [15] studied the effect of ecosystem-wide factors of pull request ac-
ceptance. An open-source software ecosystem can be defined as “a network of open-source software
communities working on a common technology” [16], [17]. An example is the NPM ecosystem, which
contains millions of open-source software JavaScript packages built to be reused in other software. In
their work, Dey et al. [15] concluded that pull requests submitted by developers with ecosystem-wide
experience are more likely to be accepted than those by people who do not.

1.1 Research Questions
The starting point of this study is the work of Dey et al. [15], who suggested the importance of
ecosystem-wide experience in pull-based development. Consequently, the main question of this study
is very similar to theirs:

“Do ecosystem-wide experience and collaboration influence pull
request acceptance decisions in another project within the

software ecosystem?”

To answer this research question, this study first attempts to replicate the results of Dey et al. [15]
using an exact independent replication study [18]. Their study identified a relationship between pull
request acceptance ecosystem-wide experience acquired through pull requests and code commits.
Although pull requests and code commits have been studied in relationship with pull request ac-
ceptance [4], experience acquired by submitting issues by commenting on other people’s issues/pull
requests has not been studied. This is a notable gap in the literature, as research has shown that de-
velopers commonly employ non-developer roles before making a contribution [19]. Therefore, this
thesis includes experience acquired in issue-tracking systems and by commenting on issues and pull
requests as both are non-contributor activities. Consequently, the first research question is:

RQ1 Does prior experience (including non-code contributions) within the ecosystem influence the
chances of developer pull request acceptance in another project within the ecosystem?

Chapter 1 INTRODUCTION 9

A second topic of interest is the relevance of dependencies between projects inside the ecosystem. Dey
et al. [15] studied this factor to some extent by including whether a pull request submitter contributed
to any dependent project and found that this positively affects pull request acceptance. Although
this is a highly relevant find, their work did not consider the direction of a dependency (projects can
have incoming and outgoing dependencies) by only including incoming dependencies. Therefore, the
second research question is:

RQ2 Does prior experience in projects involved in a technical dependency influence developer pull
request acceptance in the projects they have a technical dependency with?

In the past, various studies observed the impact of “social distance” between developers (measured
using GitHub’s follower feature), suggesting that changes proposed by developers who are closely
connected to their pull request integrator [11], [12] and developers who are well-connected inside
GitHub [13], [14] have a higher chance of being accepted.

These studies measured the social distance between developers using GitHub’s follower feature. Al-
though this feature provides insights into the social component of software engineering, it might not
accurately represent professional connections as there are no restrictions on who can follow whom.
To test the effect of professional connectedness, this study includes two new factors: direct and in-
direct collaboration between developers. Respectively, these address the number of collaborations
between two developers and the quality of their collaboration. Therefore, the third research question
is:

RQ3 Does collaboration within the ecosystem influence the chances of developer pull request accep-
tance in another project within the ecosystem?

Finally, this thesis tests the effect of all aforementioned factors with a special type of developer: first-
time contributors. First-time contributors are developers who have never made a technical contribu-
tion to a project. First-time contributors have indicated that lack of technical expertise is a barrier
when contributing to a new project [20]. Consequently, Rastogi et al. [21] hypothesised that new-
comers who acquired experience within the same ecosystem might suffer less from this problem.
However, they have not evaluated this expectation yet. Therefore, to evaluate their hypothesis, the
final research question of this thesis is:

RQ4 Does prior experience within the ecosystem influence the chances of first-time contributor pull
request acceptance in another project within the ecosystem?

1.2 Thesis Outline
The rest of this thesis is organised as follows. Section 2 introduces the necessary background infor-
mation and several related studies. The methodology is described in Section 3, elaborating on the
data collection process, metrics, and data analysis methods. The results are presented in Section 4,
of which the implications are described in Section 5. Finally, Section 6 concludes this work and
describes potential future research directions.

10 Chapter 2 THEORETICAL FRAMEWORK

2 Theoretical Framework
The following section draws the theoretical framework of this work. Section 2.1 introduces the nec-
essary literature describing open-source software ecosystems, the pull-based development model, and
first-time contributors. Then, section 2.2 introduces several recent studies directly related to this study.

2.1 Background

The open-source concept is designed with the premise that it is publically accessible, allowing anyone
to examine and modify it according to their requirements. One widely used method for collaboration
among open-source communities is the pull-based development model [1], [2]. The pull-based de-
velopment model separates decision-making and software development. In this model, developers
can create a local copy of the code and propose changes to be “merged” into the public version by
submitting a “pull request.” One advantage of this development process is that although anyone can
make changes to software, not every change is immediately applied to the public version of the code.

Open-source development commonly uses issue-tracking systems as well [3]. In this system, users
and developers can post “issues” posing new ideas, submit bug reports, or ask questions in a blog-
like fashion. Issues clearly distinguish themselves from pull requests as they do not require writing
any code, making them much more accessible to the general public and enabling gaining experience
with the project without making any code contributions. Code hosting platforms like GitHub facili-
tate pull-based development and issue-tracking systems to simplify software development, making it
relatively accessible to software developers and users.

An open-source software ecosystem refers to “a network of open-source software communities work-
ing on a common technology” [16], [17]. These ecosystems are crucial as very few open-source
software exists in complete isolation because these systems very frequently interact and depend on
other projects [22]. An example is the NPM package library, a package repository for JavaScript
software, which contains over two million projects at the time of writing. In this ecosystem, most
packages reuse the functionalities in another project, creating a technical dependency between them.
For example, a web application can be built using the React framework, reusing its functionality (e.g.,
the functionality necessary to make a button) and expanding it wherever necessary.

Software ecosystems make it possible to transfer the knowledge acquired in one project to another.
People who transfer this knowledge are called knowledge brokers, and previous studies have reported
their influence on project downloads [23]–[25]. These studies suggest that participating in multiple
projects can be beneficial and harmful depending on the level of involvement of the contributor [23]–
[25].

Most studies addressing pull-based development have reported that development experience within
singular projects [1], [8]–[12], [26]–[29] is beneficial for the productivity of continued development
in it. Consequently, it will be interesting to see how the experience acquired in one project translates
to another, which is addressed in the first research question.

One type of knowledge broker is a first-time contributor with experience inside the software ecosys-
tem. First-time contributors take their ecosystem-related knowledge and bring it to the new project.
Many open-source software communities depend on the arrival of newcomers as, at face value, the

Chapter 2 THEORETICAL FRAMEWORK 11

threshold of leaving and joining a project is relatively low [30]. Previous work has identified various
reasons why first-time contributors choose to discontinue cooperation even though they might have
been motivated to contribute at the start [20]. They found that the changes proposed by newcomers
are more frequently refused [7], [26], [29], [31].

One of the barriers to participation mentioned in the literature is the lack of technical expertise, as
some tasks are too complicated for newcomers. At the same time, integrators have said to evaluate
newcomers on their technical merit [32]. In contrast, experience is shown to speed up the onboarding
process of recruits in private companies [33], and another study hypothesize that prior ecosystem
experience matters [21]. This raises two questions: 1) do newcomers with expertise within the same
ecosystem perform better? Moreover, 2) do newcomers who have cooperated with integrators and had
a chance to prove their technical merit perform better? Both of these can be answered by addressing
RQ4 of this study in tandem with the other three research questions.

2.2 Related Work

2.2.1 Factors influencing pull request decisions

Recently, Zhang et al. [4] performed a systematic literature review on pull request decision-making,
identifying 94 factors of pull request acceptance, which they tested across different scenarios (e.g.,
the general case vs. self-integrated pull requests). Most of these are intra-project factors (i.e., factors
within a single project). An example of this is the number of pull requests submitted in a project [1],
[4], [8]–[10]. Reading the work of Zhang et al. [4] is recommended for a complete overview of these

Name Description

PR commit count The number of commits in the pull request [1], [7], [9], [10], [13], [26], [34],
which Zhang et al. [4] found has a positive impact on pull request acceptance,
however, its effect is inconsistent throughout the literature.

PR age in minutes The time between the pull request was opened and when it was closed [10], [26],
[35], which has a negative impact on pull request acceptance.

Integrator experience The experience of the pull request integrator in terms of the number of integrated
pull requests at an intra-project level [36], having a positive impact.

PR is self-integrated Whether the pull request submitter and integrator are the same contributors [4],
which they found has a negative impact.

PR has comments Whether the pull request has comments [6], [7], having a negative impact.
PR has com. ext. contr. Whether someone who is not a contributor to the project nor is the submitter or

integrator commenting on the pull request [6], which has a positive impact.
PR text contains “#” Whether the title or description of the pull request contains a “#” [1], [13], which

in GitHub is used to reference another issue or pull request and has a positive
impact.

First-time contributor Whether the submitter of the pull request has successfully contributed to the
project before [7], [26], [29], [31], which generally has a negative impact. Al-
though this feature is not part of the recommended list of control variables, it is
added as it is an integral variable to this study (as described in section 1).

Table 1: Overview of control variables suggested by Zhang et al. [4] used in this study.

12 Chapter 2 THEORETICAL FRAMEWORK

factors. However, the control variables used in this paper are listed in Table 1.

Although most existing factors explaining pull request decisions are technical, various studies have
identified the importance of human and social factors for pull request acceptance. For example, the
work of Yu et al. [13] identified the fraction of core developers who interacted within the past month
as a proxy of the social strength between the core developers and the project. The study shows that
social strength positively influences pull request acceptance [13]. Another work of Rastogi et al. [8],
[37] identified a relationship between the geographical location of a contribution and pull request
acceptance, indicating a disparity in pull request decision-making depending on the region. Finally,
the work of Terrell et al. [38] identified a relationship between a contributor’s gender and pull request
acceptance.

2.2.2 Project-transcending and Ecosystem-Wide Factors

Some prior studies have explored the effect of factors that transcend a single project on pull request
acceptance [4], [11]–[14], [39]. Most of these [4], [11]–[14] measured the effect of the follower fea-
ture in GitHub on pull request acceptance, using this as a proxy for social connectedness within the
platform. These studies found that general popularity (measured using the number of accounts some-
one follows and how often they are followed) positively affects pull request acceptance [13], [14].
Similarly, following the integrator of your pull request was found to have a positive impact too [11],
[12].

Celińska [39] studied the effect of various social factors on the number of pull requests and forks a
developer receives. They included the number of comments placed on the repositories of other people
and the number of issues submitted in their repositories. They found that this positively affects project
forks and pull requests received, suggesting the positive influence of ecosystem-wide collaboration.
This study expands on these studies by asking RQ3.

Finally, the work of Dey et al. [15] lies closest to ours in addressing the effect of ecosystem experi-
ence on pull request acceptance. They consider three ecosystem factors: the submitter’s pull request
track record (measured as the submitted pull request count and acceptance rate), their general ex-
perience (via commits in the ecosystem and number of projects worked on), and whether they have
worked on a dependent project before. The study showed that the pull request acceptance rate, code
commits, projects worked on, and experience in a dependent project increases the chances of pull
request acceptance and the total number of pull requests submitted decreases it. They identified sev-
eral non-monotonic elements in the relationship between ecosystem-wide experience and pull request
acceptance by evaluating the partial dependence plots of their models (partial dependence plots in-
dicate how the model’s prediction changes when a single variable is changed) However, they largely
attributed this to bots as they were overwhelmingly present in these sections of their dataset. This
thesis expands on their results by asking RQ1 and RQ2.

Chapter 3 METHODOLOGY 13

3 Methodology
The following section describes the methodology of this work. Section 3.1 describes the data collec-
tion process, identifying the used data sources and the criteria used to sample these. This is followed
by Section 3.2 that introduces the metrics used in this study to represent developer experience and
collaboration. Finally, Section 3.3 introduces the predictive and statistical methods used to answer
the posed research questions.

3.1 Data Collection

Three types of data are required to answer the posed research questions: pull requests, issues and an
index of project dependencies from a software ecosystem. Although various open-source projects use
media like mailing lists, this study limits itself to issues and pull requests as these are integrated into
popular social coding platforms like GitHub or GitLab, whereas other media are not. A consequence
is that there is no systematic means of testing whether projects use these media and if they do, where
the relevant archival data for this is kept.

The starting point of this research is the dataset created by Katz [40] that contains project archive data
of 32 software package ecosystems (including platforms like NPM, Maven, Go, and PyPI). The data
contains information like package names, descriptions of repository data, and technical dependencies.
Although Katz’s dataset only contains data up to 2020, thus missing recent data, it is still valuable as
creating a similar dataset from scratch is very time-consuming. Even though Katz’s dataset contains
data on many different ecosystems, this study focuses on the NPM ecosystem, a JavaScript package
library. The NPM ecosystem is chosen for three reasons: because Dey et al. [15] used this ecosys-
tem as well, for which results can be directly compared, 2) because it is the largest ecosystem in the
dataset, and 3) because NPM packages have explicit dependencies on each other.

Because the dataset of Katz [40] does not contain any information about pull requests and issues, this
data is collected separately. However, to facilitate this, their dataset needs to be sampled as it contains
a total of 1.2 million NPM packages which is too large. This is done in two stages: 1) collecting pull
request and issue data of a set of popular projects, and 2) collecting this data from projects that have
an incoming/outgoing dependency on any of the popular projects.1 This process is shown in Figure 12

(this diagram is elaborated in Section 3.1.3). This second set of projects is added to ensure that the
dataset contains projects with a technical dependency on another project in the dataset, making it
possible to answer RQ2.

3.1.1 Project Selection

To simplify the data collection and analysis processes, a simple set of inclusion criteria was de-
fined that the selected projects had to meet: 1) they must have a working GitHub repository URL
in Katz [40]’s dataset, 2) they must not be a fork of another project, and 3) the project must have at
least five valid pull requests to ensure that the project uses pull requests systematically (“validity” is

1Note: to improve the validity of the study, this last step was performed a second time. However, the process finished
too late, and thus this data was ultimately not included in this study.

2Although the diagram makes it seem that the data collection was highly structured, the process was much more
iterative. Following the steps of this diagram would (should), however, yield the same results as those presented in this
thesis.

14 Chapter 3 METHODOLOGY

elaborated in Section 3.1.2). Although some NPM projects use platforms like GitLab or Bitbucket,
their total count was lower by two orders of magnitude. Therefore, these were excluded from this
study.

In addition, popular projects were sampled using an additional criterion: “the project must have at
least 10,000 downloads in the past 16 months.” This definition aligns with the work of Dey et al. [15]
and acts as a proxy measurement for project activity, assuming that more popular projects have more
development activities.

Similarly, dependency projects were sampled with one additional criterion: “the project must be an
incoming or outgoing dependency of a popular project.” This ensures that the experience acquired
in projects involved in a technical dependency is collected. If only popular projects were considered,
this would not be fully possible as these projects might be unrelated.

Although the number of projects that popular projects had an outgoing dependency on was within the
scope of this research, the number of projects that popular projects had an incoming dependency on
went well beyond that scope.1 Therefore, this last set was randomly sampled to match the number
of outgoing dependent projects. However, as it became apparent that these projects use about half as
many pull requests, the sample was increased to approximately twice its size.2

3.1.2 Development Activity Selection

The previous paragraph introduced the notion of validity for pull requests. Development activities
(i.e., pull requests and issues) can be invalid for many different reasons, for which they are removed
from the dataset. To filter these, a series of four inclusion criteria were defined:

• They cannot be submitted by a deleted account. When users delete their account, their devel-
opment activity data are assigned to a “ghost” user. Because the ghost user has a substantial
number of activities assigned to it, it might skew the results.

• The development activity is closed. This is done to ensure the discussion in the activity has
come to fruition.

• The development activity has no missing data. In some cases, development activities have
missing data (e.g., missing user details), which cannot be used for inference.

• They cannot be submitted by a bot. Because some of the observations measured by Dey et
al. [15] were attributed to the presence of bots, these are explicitly left out in this study. Many
actions in GitHub can be automated using bots (e.g., “Dependabot”, which can manage de-
pendency updates and send notifications), which, when unaccounted for can affect research
outcomes when studying developer behaviour as bots create a substantial number of develop-
ment activities.

Although the first three criteria are relatively easy to apply, dealing with bots is not. GitHub metadata
was used as a first line of defence, as bots can be marked by their creators. Although many bots
could be filtered in this manner, various bots use user accounts for which this method does not work

1The number of new projects with an incoming dependency from the popular projects was 12.566 whereas, the number
of projects with an outgoing dependency was 444.803, which is approximately a third of the dataset created by Katz [40].

2From 12.556 to 26.376 projects.

Chapter 3 METHODOLOGY 15

perfectly. Luckily, bot detection in social coding platforms is an active field of research [41]–[44], for
which there are various solutions to detect bots using different data sources. None of these classifiers
could be directly applied to this because of stringent data requirements and the amount of manual
evaluation or classification required to use them. However, the classifications of Dey et al. [41], [45]
and Golzadeh et al. [44], [46] are publicly available. Therefore, the accounts identified in these stud-
ies were removed as well.

Since neither of these methods is perfect either (by nature, but also because neither is very recent),
this study expands on these methods even further. To ensure no major bots are missed, all users with
over 400 closed pull requests (slightly less than 500 users) have been manually checked and added to
a separate blacklist, excluding four additional bots. To determine whether a user is a bot, their GitHub
account is visited, and if anything on it suggests it is a bot, it is marked. For each user marked as a
bot, it is very obvious that they are. An example of this is “Mrs Flux”1 whose account description
is “I’m a bot!” Frequently, a minimal amount of information is shared on a user account. This
makes it impossible to identify them as either a bot or a real developer. In these cases, minimising
false-positive classifications was given priority, for which these accounts are kept in the dataset.

3.1.3 Data Collection Process

The data used in this study is composed of different sources: libraries.io [47], NPM,2 and GitHub3

which is queried using GrimoireLab [48] and the public GitHub API (wherever GrimoireLab could
not reach). The basic process consists of three stages: 1) collecting popular projects, 2) collecting
dependency projects, and 3) merging and pre-processing the data (shown in Figure 1).

To identify popular projects, the popularity of each project in the Katz [40] is collected using the NPM
API. If these projects met the popularity criterion described in Section 3.1.1, they were kept, resulting
in a list of 25.545 projects. This is then followed by collecting their respective pull request data.
After, any project with fewer than five pull requests was removed.4 Then, issues were collected using
the resulting project list. Finally, the inclusion criteria described in Section 3.1.1 and Section 3.1.2
were applied.

Using the pre-filtered project list, dependency projects were sampled using more or less the same pro-
cess. The major difference is that projects are sampled using incoming and outgoing dependencies
of the previously collected projects. Although the number of outgoing dependencies was sufficiently
small to collect entirely, the number of incoming dependencies went well beyond that. Therefore, this
set was randomly sampled. Initially, the sample size was equal to that of the outgoing dependencies.
However, it became apparent that this group contains about 53% fewer pull requests, for which the
sample was increased. Finally, the pull request and issue data were collected and filtered using the
defined inclusion criteria.

1See Mrs Flux at github.com/mrsflux.
2See the NPM website: https://www.npmjs.com/.
3See the GitHub website: https://github.com/.
4The primary reason for this was to minimise the time required to collect all the issue data (as collecting pull request

data for popular projects took approximately two weeks of continuous querying), and, by definition, these projects could
not meet the required minimum number of “valid” pull requests (described in Section 3.1.1 and Section 3.1.2).

https://github.com/mrsflux
https://https://www.npmjs.com/
https://https://github.com/

16
C

hapter3
M

E
T

H
O

D
O

L
O

G
Y

1.6 million
NPM projects

Libraries.io

Filter Projects that are
forks and projects
without repository.

25.545
projects

Filter Projects with less
than 10K downloads in all
of the months for the past

16 months.

NPM GrimoireLab +
GitHub

Download PR data for
projects

Filter PRs for projects
with less than 5 PRs

in total.

1.531.518
closed PRs

Filter PRs using
development activity

inclusion criteria

Retrieve Issue data

GrimoireLab +
GitHub

1.920.242
closed issues

Filter issues using
development activity

 inclusion criteria

15.439
projects

P

I

dependencies
444.803
projects

that depend
on initial projects

12.566 new
projects that

initial projects
depend on

Identify project
dependencies.

Libraries.io

D

26.376 new
projects that

initial projects
depend on

Randomly subsample
26.376 projects

GrimoireLab +
GitHub

Retrieve pull
request data Retrieve Issue data

GrimoireLab +
GitHub

184.459 + 92.786
closed issues

Filter issues using
development activity

 inclusion criteria

177.345 + 162.141
closed PRs

Filter PRs using
development activity

 inclusion criteria
P

I

2.197.487 Issues

1.848.492 PRs
P

I
dependencies

Libraries.io

1.829.987 PRs and
2.197.487 Issues
in 20.063 Projects

Filter projects with
less than 5 valid PRs

in total.

1.829.987
data points

Dataset generation
using sliding window

algorithm

D

Figure 1: Overview of the data collection process. The top shows data collection of core projects, the middle shows data collection of periphery
projects, and the bottom shows the data aggregation process.

Chapter 3 METHODOLOGY 17

An observant reader might notice that at point D of the data collection process, not all of the defined
inclusion criteria are applied to the core projects that are used to generate the dependency data.1 Al-
though this certainly has some effect, it is unlikely it affects the results substantially as of those 15.439
projects, 14.506 (94%) met the inclusion criteria. Although this means that 6% of the dependencies
were lost, the vast majority is still present in the final dataset.

Finally, the data collected in the separate stages are merged, and the data entries of projects with fewer
than five valid pull requests are removed. Because software changes over time, meaning that older
experiences might not be as relevant as recent experiences, this data is further pre-processed using a
“sliding window” algorithm using a 90-day time window.2 Simply put, sliding window means that
the algorithm iterated through all the development activities in chronological order (sorted using their
closing date), and whenever a new entry was added to the “window,” all entries older than 90 days
(with respect to the new entry) were removed. Then, the metrics described in the next section were
calculated for each pull request, using the data entries in the 90-day time window preceding it.

3.2 Metrics
This study considers two types of variables: developer experience and collaboration variables. Devel-
oper experience variables make it possible to evaluate the impact of experience within the software
ecosystem and within dependent projects, which is necessary to answer RQ1 and RQ2. Similarly, col-
laboration variables are calculated using social network analysis, making it possible to answer RQ3.
This leaves RQ4, which addresses the impact of the measured variables for first-time contributors,
which can be calculated by observing whether a user ever submitted a pull request.

3.2.1 Developer Experience Variables

There are various ways to measure developer experience. A vast number of studies have previously
taken the number of pull requests submitted [1], [4], [8]–[10] or the number of code commits [1],
[4], [7], [9], [10], [13], [26], [34], not considering the experience acquired in alternative sources, like
issue tracking systems or the comment section of issues and pull requests. Notably, developers in
open-source software communities commonly wield non-developer roles before making a contribu-
tion [19]. This study considers the developer experience factors in Table 2.

1This decision was made with the mindset “collect data now and figure out what to do with it later,” as data collection
is a slow process and waiting with this step until a formal set of criteria was defined would likely only cause delays.

2This window size was selected by testing various ones. Although 30 days is a more common time window, this
yielded too sparse a dataset for ecosystem and dependency experience.

Name Description

Pull request merge ratio The fraction of accepted pull requests.
Pull requests submitted The total number of submitted pull requests.
Pull request comments The number of comments placed on pull requests.
Issues submitted The number of submitted issues.
Issue comments The number of comments placed on issues.

Table 2: Overview of the considered developer experience types.

18 Chapter 3 METHODOLOGY

Given a software ecosystem, developer experience can be measured at different levels: intra-project,
ecosystem-wide, and in projects with an incoming and outgoing dependency. Here, “ecosystem-wide
experience” is defined as all experience acquired in the ecosystem, excluding intra-project experi-
ence (i.e., when calculating ecosystem-wide experience with respect to project Xi, it is the sum over
all experience in ecosystem projects X j minus that of Xi). Distinguishing between intra-project ex-
perience and ecosystem-wide experience is important, as intra-project experience has shown to be an
important factor of pull request acceptance [1], [4], [8]–[10], and would likely confound the results.
It is important to note that this is a fundamentally different notion than the one used by Dey et al. [15].

Most modern software is built by re-using the functionality of other projects, typically referred to
as implementing packages [22]. An example of this is a web application that is built using the Re-
act framework: it re-uses the functionality of the framework and builds upon it wherever necessary.
When software does this, it is said to have a dependency on the package, as any change in the package
could affect and break the projects that implement it. In this thesis, dependency data is acquired from
Katz [40].1

Generally, dependencies are perceived in two manners: incoming and outgoing. Here, an incoming
dependency refers to a dependency from another project to the focal project. For example, for Re-
act, the web application is an incoming dependency. Conversely, an outgoing dependency refers to
the inverse: to the web application, React is an outgoing dependency. Although previous work has
suggested that dependency networks are not always congruent with the social structure of a commu-
nity [49], in the cases where they are congruent, it might have some impact.

The work of Dey et al. [15] explored the impact of experience acquired in incoming dependencies,
measured as a binary variable, suggesting that experience acquired in these projects matters. An-
swering this research question then becomes important for two reasons: 1) does the direction of the
dependency matter? As this has not been studied yet, and 2) to what extent does the level of involve-
ment in those projects matter?

Incoming and outgoing dependency experience is measured very similarly to ecosystem experience,
however, with the added requirement that there exists an incoming/outgoing dependency between the
two projects. Put concretely, when calculating the incoming dependency experience for project Xi, it
is the sum of all experience in ecosystem projects X j such that there exists a dependency X j → Xi. For
outgoing dependency experience such that there exists a dependency Xi → X j (i.e., the inverse). As
each of the experience types (Table 2) is measured for each level (i.e., intra-project, ecosystem-wide,
or in a dependency project), 20 features are measured, making it possible to answer RQ1 and RQ2.

3.2.2 Collaboration Variables and Social Network Analysis

Some studies have already stepped beyond the boundaries of singular projects by exploring the social
connections between developers, suggesting that both general connectedness [13], [14], [39] and di-
rect connectedness with your pull request integrator [11], [12] can, but does not ensure [4], a positive
impact on pull request acceptance. In these studies, social connectedness is measured using the fol-
lower feature in GitHub.

1This study included both regular and development dependencies. Katz [40] differentiates between dependencies
listed in the repository and those listed in the NPM archive. This study includes both of these to maximise the amount of
developer experience observed in the dataset.

Chapter 3 METHODOLOGY 19

Although a follower network provides insights into the social component of software engineering, it
can hardly serve as a measurement of professional connectedness. This is because it is accessible to
anyone and follow-connections can be made for arbitrary reasons. Therefore, this study includes a
new measure of connectedness: connectedness through professional collaboration.

Collaboration in an ecosystem refers to the extent to which a contributor cooperates with others,
gaining experience and potentially establishing a sense of trust with other developers. In this study,
collaboration is considered in two manners: direct collaboration and indirect collaboration, both of
which can be measured using social network analysis. Direct collaboration refers to the number of
times two developers have directly cooperated (for example, by discussing something in an issue),
emphasising the number of collaborations. Similarly, indirect collaboration is measured to account
for the quality of the interaction, as cooperating with well-experienced developers might be more
valuable than cooperating with inexperienced developers. This study considers five types of collabo-
ration, which are shown in Table 3.1

Social network analysis is an extension to graph theory that explicitly addresses social dynamics
within groups of individuals and is commonly applied in software development research to study
project organisation and knowledge management [50]–[52]. Although many analysis methods and
metrics exist [50], [53], this study applies link strength and node centrality showing how well-
connected two nodes are and how important a node is in the graph, respectively.

Using graph theory, a software ecosystem can be defined as a multi-layered graph Γ= (V,L,E), where
V is a set of nodes (i.e. contributors), L a set of layers (in this study the development activity types
shown in Table 3), and E = {Eλ | λ ∈ L} the set of sets of edges of the different layers, such that the
set Eλ contains all edges of layer type λ, and each edge ⟨a,b, t⟩ ∈ Eλ is a triple containing the source
and target node a,b as well as a timestamp t at which the edge is created (i.e. when the development
activity occurred). In this study, it is equal to the closing time of a pull request or issue. Considering
time is important as this makes it possible to consider events chronologically.

1These five were selected because they are used in most projects. In GitHub, pull requests can have “assignees” and
“reviewers” too, however, these are less frequently used.

Name Description Weight

PR submitted and integrated Collaboration activity where person x integrates the pull re-
quest submitted by person y.

0.247

PR submitted and commented Collaboration activity where person x comments on the pull
request submitted by person y.

0.243

PR discussion participation Collaboration activity where person x and y both participated
in the comment section of a pull request.

0.193

Issue submitted and commented Collaboration activity where person x comments on the issue
submitted by person y.

0.237

Issue discussion participation Collaboration activity where person x and y both participated
in the comment section of an issue.

0.079

Table 3: Overview of the considered collaboration activities and their edge weights.

20 Chapter 3 METHODOLOGY

Using this definition, link strength (i.e., direct collaboration) is the number of edges connecting two
nodes, and node centrality (i.e., indirect collaboration) is the general importance of the node in the
graph. Various well-known metrics for global centrality exist, like HITS or PageRank [53]. However,
their high computation time makes it impossible to use them with this study’s granularity level.

Alternative methods are betweenness centrality, which estimates a node’s centrality by how often it
connects different clusters in a graph, or degree centrality, which estimates a node’s centrality by the
number of connections it has [53]. As this study attempts to measure indirect collaboration, an alter-
native of degree centrality is used: first-order degree centrality.1 This method is suitable for this study
as it measures the centrality of a node by counting the collaborations of the nodes it is connected to;
i.e., indirect collaboration.

In this study, both in-degree and out-degree are calculated. First-order in-/out-degree centrality can
be calculated using the following formulas:

δ
in(a, t,λ,µ) =

E in
λ
(a,t)

∑
⟨bi,ti⟩

din
µ (bi, ti)−|Eµ(a,bi, ti)| (1)

δ
out(a, t,λ,µ) =

E in
λ
(a,t)

∑
⟨bi,ti⟩

dout
µ (bi, ti)−|Eµ(bi,a, ti)| (2)

Where a ∈ V , t is the time the centrality is measured, and λ,µ ∈ L. Here, the intuition is that to
calculate the first-order in-degree for node a, the µ in-degree of all neighbours b that are connected
to a through a λ-edge are summed. Here, the edges that connect a and bi directly are subtracted as
this is equal to the number of times they collaborated directly, defying the point of measuring indirect
collaboration. Here, t is included to account for the time at which the metric is calculated and the
chronology of the collaborations between a, bi, and the neighbours of bi. Concretely, this is used to
ensure only collaborations between a and bi are considered before t and that only collaborations of
bi and its neighbours are considered that happened before ti, the time at which a and bi collaborated.
This is important, as not doing so would likely inflate the calculated metrics as it unintentionally as-
sumes events in at time t could have affected events at time t −1 [54].

Instead of calculating link strength and first-order degree centrality separately for each of the edge
types, this study aggregates the results. This decision was made to reduce the complexity of the
statistical and predictive analysis described in Section 3.3. To aggregate the metrics of the multiple
layers, this study adopts a method described by Kivelä et al. [55], which is to simply normalise by
taking the weighted sum of the metric calculated per layer using the reciprocal of the total number
of edges in that layer (i.e., wλ = 1

|Eλ|
)2. (Although this is technically true, the implementation does

this slightly differently, as the weights are normalised afterwards, for which we have ∑
L
λ

wλ = 1 as
otherwise, the resulting values are very small due to a very large number of edges in each layer.)

1Although, in hindsight, the study should have included betweenness centrality as well as this could have highlighted
the importance of developers that connect different clusters of people (which is what knowledge brokers very likely do).
Calculating this using the full graph would likely have been computationally difficult. However, calculating it within a
neighbourhood around a node should be completely feasible. It was not included because of simple oversight.

2Some testing was done using the analytic hierarchy process [56], however, was ultimately excluded because no
notable effect was observed.

Chapter 3 METHODOLOGY 21

The used weights are shown in Table 3. Because first-order degree considers two edge types (the
connecting edge λ and the experience edge µ), the weight of both edges is applied:

Cin(a, t) =
L

∑
λ,µ

wλ ·wµ ·δin(a, t,λ,µ) (3) Cout(a, t) =
L

∑
λ,µ

wλ ·wµ ·δout(a, t,λ,µ) (4)

3.3 Data Analysis
This study uses mixed-effects logistic regression to describe the linear impact of the measured vari-
ables, as it can calculate general coefficients while respecting random effects across projects. To
place the calculated effects in context, control variables for general pull request acceptance research
introduced by Zhang et al. [4] are used (shown in Table 1). Although Zhang et al. suggests including
“whether continuous integration is used”, it is not included as this data is non-trivial to collect due to
the diversity of CI platforms. Similarly, they suggest including “whether the pull request submitter is
a core member,” which is excluded because it is multicollinear with “intra-project pull request merge
ratio.” Finally, although “integrator experience” is included in the random forest models, it is ex-
cluded from the regression models as it interacts with the tested variables, causing inconsistent results.

To correctly estimate the effect of the variables, three models are created: ecosystem experience,
dependency ecosystem experience, and collaborative experience. This makes it possible to answer
RQ1, RQ2, and RQ3. In addition to that, a distinction is made between first-time and non-first-time
contributors, making it possible to answer RQ4.

When observing pull request distribution across projects, it showed that the top 2% of the projects
were responsible for 49% of the data, which might skew the results. To account for this, a cap of
694 pull requests is put on the number of pull requests from the top 2% projects. This matches the
number of pull requests of the largest project that is not part of the top 2%. The pull requests from
these projects are randomly sampled.

(a) Pull requests per project. (b) Pull requests per project up to the 98th percentile.

Figure 2: Distribution of pull requests across projects.

Mixed effects logistic regression models make three assumptions about the used data: linearity be-
tween the variables and the log-odds ratio, absence of multicollinearity, and no strong outliers. To

22 Chapter 3 METHODOLOGY

improve the log-linearity of the models, several variables were transformed using add-one log trans-
formation (i.e. x′ = ln(x+ 1)).1 Multicollinearity is tested using the variance inflation factor (VIF)
and using the Spearman correlation coefficient between pairs of features. Variables that strongly cor-
related with another (|ρ| ≥ 0.5) or were highly multicollinear (V IF ≥ 5) were removed.

An exception to this rule is when “PR has comments” and “PR has comment by external contribu-
tor,” as these correlate strongly with each other. After a thorough examination, this interaction was
included as it only affected the variables involved and no others. Finally, outliers were removed using
Cook’s distance, using a cut-off threshold of 4/(n− k− 1), where n is the number of observations,
and k is the number of predictors. This removed between 0.1% and 2.6% of the observations.

Finally, to identify the predictive strength of each feature and feature group, random forest is used [57],
[58]. To measure the importance of individual factors, the mean decrease in Gini is calculated, which
estimates the amount of information lost when a predictor is removed [57], [58]. To evaluate the
predictive strength of each variable, separate models are trained using subsets of features. Their
performance is evaluated using the F1 metric (see Equation (7)), which is calculated using 5-fold
cross-validation.

precision =
T P

T P+FP
(5) recall =

T P
T P+FN

(6) F1 = 2× prec× rec
prec+ rec

(7)

For context, the mean decrease in Gini (also referred to as “mean decrease in impurity”) represents
the amount of information lost as indicated by the Gini impurity function after removing a predictor.
The Gini function (shown in Equation (8)) is a measure of the amount of information in a set, which
random forest models use to evaluate the impact of a decision rule. The Gini function uses the
probability of observing a class (in this case merged vs. rejected pull requests) given some decision
rule t (e.g., “does the PR have comments?”). If after applying this rule, the uniformity of the set
increases (i.e., the probability of observing one specific class becomes very high), the amount of
information in that set decreases as the rule extracted that amount of information. Given a set of pull
requests, random forest models evaluate the impact of a decision rule by comparing the amount of
information before applying it versus the amount of information after applying it. If the amount of
information in the subsequent sets2 is lower, the amount of information gain increases. For a single
decision tree (as a random forest model is simply an ensemble of many decision trees), the decrease
in Gini then represents the amount of information that is lost after a variable is removed from the
dataset (i.e. when the decision rules related to that variable are removed). Consequently, the mean
decrease in Gini is simply the mean of the decrease in Gini of the separate trees. Most generally, the
mean decrease in Gini is a value between 0 and 1, however, technically does not have an upper bound
of 1 as it is bound by the number of decision rules related to the variable.

Gini(t) = 1−
C

∑
ci

p(ci | t)2 = 1−
(

p(PR merged | t)2 + p(PR rejected | t)2
)

(8)

1This transformation was chosen after a thorough evaluation of various others and had the overall best impact on the
log-linearity of the model. The data distributions of the transformed data can be found in Appendix A and the log-linearity
in Appendix B. Appendix C elaborates on the multicollinearity process.

2Sets, plural, because a decision rule virtually splits a dataset into two parts: one that complies with the rule and one
that does not.

C
hapter3

M
E

T
H

O
D

O
L

O
G

Y
23

Ecosystem Model Dependency Model Collaborative Model

Control Variables Coef. (std. err.) Coef. (std. err.) Coef. (std. err.)

Pull request is self-integrated −0.261∗(0.001) −0.255∗(0.001) n/a
Pull request has comments −0.127∗(0.001) −0.130∗(0.001) −0.108∗(0.001)
Pull request contains a “#” 0.037∗(0.001) 0.036∗(0.001) 0.038∗(0.001)
First-time contributor −0.129∗(0.001) −0.141∗(0.001) −0.062∗(0.001)
PR has comment from ext. contr. 0.031∗(0.001) 0.030∗(0.001) −0.005∗(0.001)
Pull request lifetime⋄ −0.482∗(0.002) −0.484∗(0.002) −0.427∗(0.002)
Pull request commit count⋄ 0.191∗(0.005) 0.170∗(0.005) 0.064∗(0.005)

Exp. & Collab. Variables Coef. (std. err.) Coef. (std. err.) Coef. (std. err.)

Intra-Pull project issues⋄ 0.272∗(0.003) 0.286∗(0.003) n/a
Ecosystem Pull requests⋄ 0.252∗(0.002) n/a n/a
In-dependency Pull requests⋄ n/a 0.232∗(0.005) n/a
Out-dependency Pull requests⋄ n/a 0.140∗(0.006) n/a

Weighted first-order in-degree⋄ n/a n/a 0.144∗(0.004)
Integrator to submitter link strength⋄ n/a n/a 0.380∗(0.004)

Table 4: Overview of the coefficients and standard error calculated by the mixed effects logistic regression models, describing the general
relationships. ⋄Log-transformed variable; *p < 0.001.

24
C

hapter3
M

E
T

H
O

D
O

L
O

G
Y

Ecosystem Model Dependency Model Collaborative Model
FTC non-FTC FTC non-FTC FTC non-FTC

Control Variables Coef. (std. err.) Coef. (std. err.) Coef. (std. err.) Coef. (std. err.) Coef. (std. err.) Coef. (std. err.)

Pull request is self-integrated −0.562∗(0.002)−0.125∗(0.001)−0.563∗(0.002)−0.122∗(0.001) n/a n/a
Pull request has comments −0.155∗(0.002)−0.116∗(0.001)−0.161∗(0.002)−0.118∗(0.001)−0.044∗(0.002)−0.106∗(0.001)
Pull request contains a “#” 0.045∗(0.001) 0.031∗(0.001) 0.045∗(0.001) 0.031∗(0.001) 0.047∗(0.002) 0.031∗(0.001)
PR has comment from ext. contr. 0.024∗(0.002) 0.048∗(0.001) 0.023∗(0.002) 0.048∗(0.001)−0.067∗(0.002) 0.037∗(0.001)
Pull request lifetime⋄ −0.503∗(0.003)−0.493∗(0.002)−0.510∗(0.003)−0.495∗(0.002)−0.205∗(0.003)−0.465∗(0.002)
Pull request commit count⋄ 0.216∗(0.010) 0.285∗(0.005) 0.192∗(0.010) 0.275∗(0.005)−0.149∗(0.012) 0.223∗(0.005)

Exp. & Collab. Variables Coef. (std. err.) Coef. (std. err.) Coef. (std. err.) Coef. (std. err.) Coef. (std. err.) Coef. (std. err.)

Intra-project issues⋄ 0.259∗(0.016) 0.170∗(0.003) 0.284∗(0.016) 0.179∗(0.003) n/a n/a
Ecosystem Pull requests⋄ 0.385∗(0.004) 0.164∗(0.002) n/a n/a n/a n/a
In-dependency Pull requests⋄ n/a n/a 0.606∗(0.018) 0.151∗(0.004) n/a n/a
Out-dependency Pull requests⋄ n/a n/a 0.500∗(0.016) 0.092∗(0.006) n/a n/a

Weighted first-order in-degree⋄ n/a n/a n/a n/a 0.351∗(0.010) 0.083∗(0.003)
Integrator to submitter link strength⋄ n/a n/a n/a n/a 0.595∗(0.016) 0.350∗(0.003)

Table 5: Overview of the coefficients and standard error calculated by the mixed effects logistic regression models, distinguishing between
first-time contributors and non-first-time contributors. ⋄Log-transformed variable; *p < 0.001.

Chapter 4 RESULTS 25

4 Results
The following section describes the results of the analysis. Section 4.1 provides a general overview of
the results, elaborating some descriptive details of the collected dataset, discussing the types of results
generated in this study, and addressing the effect of the observed control variables. Then, Section 4.2
addresses each research question, answering them using the presented results.

4.1 General Overview
The collected dataset consists of 1.8 million pull requests and 2.1 million issues spread across 20.052
projects, submitted by 190.898 unique users, across a period of 9 years (visualised in Figure 3). Of
these, 72% of the projects were collected using the popularity criterion and 28% with the dependency
criterion, which is almost equally split into projects with an incoming and an outgoing dependency
on a popular project.

In the complete dataset, 17.280 projects have an outgoing dependency on another project, whereas
only 2.217 have an incoming dependency, suggesting a core-periphery structure in the dependency
network. Since few projects are responsible for the majority of the pull requests, for representative-
ness, only 1.2 million data points are used for statistical and predictive modelling.

Figure 3: Distribution of pull requests across time. The stark decline in 2020 is because only data is
collected up to early January 2020.

Table 5 presents the results of the mixed effects logistic regression models. The calculated coefficients
suggest the direction of the effect of the predictor, such that negative values decrease the odds of ac-
ceptance and positive values increase them. During the analysis phase, it became apparent that all
experience types strongly positively correlate with each other. Therefore, only one developer experi-
ence variable is included in the model per experience level (i.e., intra-project, ecosystem-wide, etc.).
Concretely, this means that ecosystem-wide, incoming and outgoing dependency and intra-project
experience, most experience variables shown in Table 2 had a Spearman coefficient greater than 0.5.
Similarly, collaboration metrics calculated using either in- or out-degree strongly correlated as well.1

1For a complete overview of correlating factors, refer to Appendix C.

26 Chapter 4 RESULTS

The results show that each measured variable significantly relates to pull request acceptance. Here,
the effect of each control variable is largely in line with the results presented by Zhang et al. [4], hav-
ing only one difference: the impact of a comment placed by an external contributor, which became
negative. However, this effect is likely due to an interaction with “PR is self-integrated” as the same
is observed when that variable is removed from other models. Interestingly, however, the non-first-
time contributor model does align with prior research.

To identify the importance of the used features, Figure 4 provides an overview of the mean decrease
in Gini of the top ten most important features of the random forest model trained on the full dataset
as well as their respective scores of the models trained using the (non-)first-time contributor subsets.
Note that the FTC model has such low scores for intra-project pull request experience because they
do not contain any information by definition of “first-time contributor” as they have not submitted a
single pull request yet.

It stands out that a relatively large amount of information is acquired from the control variables: PR
lifetime, integrator experience, self-integrated PRs, and commit count. This is not surprising as this
is what these variables are included for. Conversely, the absence of comment count and comment of
external contributor is interesting as this suggests various newly added features wield more important
information than these two control variables.

Table 6 provides the broadest view of the analysis, showing the F1 scores calculated using random
forest models trained using subsets of predictors. When observing the ratio of merged pull requests,
it became apparent that there exists a considerable class imbalance in each of the used data models,
as there are many more merged pull requests than rejected ones. To account for this, Table 6 includes
a baseline for each model equal to the probability of observing a merged pull request in that dataset.
Therefore, although any model with an F1 score over 0.5 would have some predictive power, only
models outperforming this baseline perform better than a probabilistic guesser.

Figure 4: Feature importance plot showing the mean decrease in Gini calculated using random forest
trained using the full dataset and the (non-)first-time contributor subsets.

Chapter 4 RESULTS 27

4.2 Answering Questions
4.2.1 Ecosystem-wide Experience

The analysis phase showed that the measured experience types (i.e., pull requests submitted, com-
ments on issues, etc.) positively correlate, for which only one is included in the regression models.
The results of the logistic regression models show that ecosystem-wide experience positively impacts
pull request acceptance, even when accounting for intra-project experience. This suggests that the
findings of Dey et al. [15] generally hold. However, a notable difference is that they included both
pull request submission count and pull request merge rate, measuring a negative effect of submission
count. The results of this study initially showed this effect with each experience type too (excluding
merge ratio). However, it disappeared when testing these variables separately. This suggests the effect
was likely due to an unaccounted-for interaction between variables. When comparing the importance
of ecosystem-wide experience with intra-project experience, it shows that their predictive power and
coefficients are very similar. However, removing intra-project experience does yield a higher loss of
information in the random forest models.

RQ1: Does prior experience (including non-code contributions) within the ecosystem influence
the chances of developer pull request acceptance in another project within the ecosystem?

Yes. The experience acquired through submitting pull requests, submitting issues, and partici-
pating in their discussions has a significant positive effect on pull request acceptance in another
project in the same ecosystem. Compared to intra-project experience, the effect size and predictive
power of ecosystem-wide experience are very similar. However, intra-project experience did result
in a higher loss of information when removed from a random forest model.

4.2.2 Experience in Dependent Projects

Although it is important to understand the general impact of ecosystem experience, what makes
ecosystems special is that projects can have technical dependencies on one another. Consequently,

Predictors Full Model FTC Model nFTC Model

Baseline 0.788 0.659 0.857

Control 0.885 (0.0003) 0.797 (0.0008) 0.921 (0.0005)
Intra-project 0.881 (0.0007) 0.794 (0.0010) 0.925 (0.0004)
Combined 0.911 (0.0006) 0.809 (0.0008) 0.957 (0.0004)

Ecosystem 0.877 (0.0007) 0.783 (0.0012) 0.920 (0.0003)
In-dependency 0.881 (0.0004) 0.794 (0.0013) 0.923 (0.0004)
Out-dependency 0.881 (0.0005) 0.794 (0.0008) 0.923 (0.0005)
Collaboration 0.872 (0.0005) 0.769 (0.0011) 0.917 (0.0006)
Combined 0.874 (0.0004) 0.777 (0.0009) 0.920 (0.0004)

Full Model 0.923 (0.0004) 0.833 (0.0007) 0.961 (0.0003)

Table 6: The mean and standard deviation of the F1 scores calculated with the random forest models,
calculated using 5-fold cross-validation. The different models are trained using the full dataset and the
(non-)first-time contributor datasets. The baseline is equal to the probability of observing a merged
pull request.

28 Chapter 4 RESULTS

these projects have some explicit technical relevance towards one another as experience with imple-
menting a package could help build it further (an in-dependency). Similarly, experience in building
a package could help to implement it (an out-dependency). When observing the results in Table 5 it
stands clear that in- and out-dependency experience is relevant as both are positively related to pull
request acceptance. However, the effect of experience in out-dependent projects is slightly lower.

These findings align with the prior work by Dey et al. [15] and add that both in- and out-dependencies
are relevant, not just in-dependencies. Regardless of its relatively large coefficients, it stands out that
the importance scores in the random forest model for dependency experience are relatively low (none
of them appears in the top ten of any model), suggesting that they have relatively little predictive value
in general. This could, however, be explained by the rarity of dependency experience as only ±10%
of all data points have non-zero values for dependency experience. This suggests that although its
impact is relatively high, no information can be derived from it for most observations.

RQ2: Does prior experience in projects involved in a technical dependency influence developer
pull request acceptance in the projects they have a technical dependency with?

Yes. The experience acquired in in- and out-dependent projects has a significant positive effect
on pull request acceptance. Of these, experience acquired in in-dependent projects is relatively
more important. However, its overall predictive strength is lower because relatively few develop-
ers have experience in dependent projects.

4.2.3 Direct and Indirect Collaboration

This study addressed collaboration in software ecosystems in twofold: direct and indirect collabo-
rations. Both of these measures were calculated using a directed graph. However, the data analysis
showed that direction does not matter as they positively correlate. The results in Table 5 showed
that each of these measures has a significant positive effect on pull request acceptance. These results
suggest that the number of direct collaborations with pull request integrators and collaboration with
experienced developers are important indicators of a developer’s success within a software ecosys-
tem. The results in Table 5 suggest that direct collaboration is of greater importance than indirect
collaboration. This could be explained by it being more tangible. However, figure 4 shows that di-
rect collaboration provides relatively little additional information compared to indirect collaboration.
Compared to previous work, then, this suggests that both the social connectedness [4], [11]–[14], [39]
and professional connectedness have a beneficial impact on a developer’s success.

RQ3: Does collaboration within the ecosystem influence the chances of developer pull request
acceptance in another project within the ecosystem?

Yes. Both direct collaborations with pull request integrators and indirect collaboration have been
shown to increase pull request acceptance in software ecosystems. This suggests that both the
number of collaborations and their quality matter when participating in an open-source software
ecosystem. Although the logistic regression models suggest that direct collaboration has a greater
effect on pull request acceptance, indirect collaboration has been shown to provide more informa-
tion to the random forest model.

Chapter 4 RESULTS 29

4.2.4 First-time Contributors

Prior research has shown that unit changes proposed by first-time contributors are more likely to be
rejected [7], [26], [29], [31], a finding that is successfully replicated in this study as well. Conversely,
the theory proposed by Rastogi et al. [21] suggested that first-time contributors with experience in the
same ecosystem have greater odds of their proposed changes being accepted with the expectation that
an increased trust is established. When observing the results presented in Table 5 it is clear that their
expectation was right as the impact of all of the measured ecosystem-wide experience and collabora-
tive factors are positive and substantially higher for first-time contributors compared to non-first-time
contributors.

Notably, intra-project experience is more relevant in this scenario as well. This could suggest that
active participation within the project before submitting a pull request benefits first-time contributors.
When comparing the coefficients of ecosystem-wide experience to intra-project experience, however,
it shows that their impact is substantially higher. The combination of all these factors shows the impact
of: 1) prior domain knowledge and 2) a connection built with the development team before proposing
a unit change. In the case of intra-project experience, a potential explanation is that participation
in discussion before submitting pull requests could shed light on details the contributors might have
otherwise overlooked. Similarly, it is possible that participating in these discussions might allow them
to prove their capabilities to the development team, increasing their trust. These findings are in line
with prior work on first-time contributors who identified a lack of technical expertise as a barrier [20],
[32], [33]. This study, then, suggests that prior domain experience lifts this barrier.

RQ4: Does prior experience within the ecosystem influence the chances of first-time contributor
pull request acceptance in another project within the ecosystem?

Yes. The results presented in this study show a substantial difference between the impact of intra-
project experience, (dependency) ecosystem-wide experience, and direct and indirect collaboration
for first-time contributors when compared to non-first-time contributors. The study shows that prior
participation inside a software ecosystem by submitting pull requests and issues or participating in
their discussion benefits newcomers. The results of ecosystem-wide experience suggest that under-
standing the system positively benefits a first-time contributor’s odds of pull request acceptance.
The same applies to prior collaboration with pull request integrators.

30 Chapter 5 DISCUSSION

5 Discussion
The following section briefly discusses the presented results. Section 5.1 describes some implications
of this work concerning developers and researchers. Then, Section 5.2 describes the threats to the
validity of this work.

5.1 Implications
5.1.1 Implications for (First-Time) Contributors

The results of this study suggest that experience acquired through posting issues, submitting pull re-
quests, and participating in their discussions is valuable. This holds for experience within a project,
in a project with an incoming or outgoing dependency, or within the same ecosystem This is true for
all developers and especially for first-time contributors. Furthermore, the results suggest that collab-
orating with experienced developers and your pull request integrator is also beneficial. This suggests
that who you collaborate with should be an active consideration, not just whether you collaborate.

5.1.2 Implications for Software Teams

The results show that pull requests submitted by contributors with ecosystem experience are more
likely to be accepted and merged. A similar effect is measured with developers who are professionally
closely connected with project members. This implies that the success of newcomer onboarding
could be increased when considering their prior experience in the ecosystem. This could go as far as
recruiting potential developers who contributed to a dependent project or a developer a core member
priorly collaborated with.

5.1.3 Implications for Researchers

This study expanded the knowledge on pull-based development in open-source software ecosystems
by including experience acquired in issue-tracking systems at an intra-project, project dependency,
and ecosystem level. This study empirically confirms the hypothesis presented by Rastogi et al. [21]
to show that the ecosystem-wide experience could influence the success of first-time contributors in a
project within the software ecosystem.

Further, the study adds that applying social network analysis to identify direct and indirect connec-
tions between developers can indicate the knowledge flow and inner social structures in open-source
ecosystems. The results suggest that ecosystem-wide factors improve predicting the outcome of pull
requests submitted by first-time contributors. However, classifying these remains difficult, suggesting
a direction for future research.

5.2 Threats to Validity
5.2.1 Internal Validity

Since the core collection of projects used in this study was generated based on their popularity, this
collection might misrepresent the NPM ecosystem. Although a set of periphery projects was added
to account for technical dependencies among projects, which included various less popular projects,
this does not ensure that the general representation of NPM projects improved.

Chapter 5 DISCUSSION 31

Another consequence of this method is a stark skewness in the distribution of pull requests across
projects such that only 2% of the projects contained 49% of the pull requests. To account for this,
the pull requests of these dominating projects have been capped and randomly sampled to limit their
effect.

Previous work identified that people commonly use multiple aliases in open-source software ecosys-
tems [59] and that accounting for these can substantially affect the structure of social networks [60].
Although various solutions exist in the literature [60], [61], none of these is applied here due to strin-
gent data requirements and the substantial amount of manual labour required to apply these methods
at an ecosystem scale accurately.1

The dataset created by Katz [40] is the foundation of this study because of the large amount of archival
data it contains. A consequence of this is that our study inherits the flaws in this dataset, one of which
is the potential accuracy of the identified dependencies. The dependencies measured in the dataset are
generated using the data contained in the NPM and GitHub. The data, however, represent a snapshot
in time with no explicit regard for the changes that happen over time. Therefore, although the listed
dependencies were likely correct at some point, they might not accurately represent the project’s
dependencies across time. Similarly, some dependencies might have been missed because various
projects do not explicitly list them.

5.2.2 Construct Validity

Many methods exist to identify the relationship between independent factors and a binary independent
variable. This study employs two of them: mixed effects logistic regression to identify the general
relationship between features and random forest to identify the predictive power of each feature and
each feature group. To ensure that the measured effects reflect reality, several control variables sug-
gested by Zhang et al. [4] that are known to affect pull request acceptance significantly have also
been included in this study. Furthermore, although this study intended only to include development
activities performed by humans by filtering bots using the lists composed in previous research [41],
[44]–[46] as well as those identified in a manual sweep of submitters with over 400 pull requests, it
cannot be assured that no bots are included in this study.

5.2.3 External Validity

This work exclusively addresses the tested hypothesis in the NPM ecosystem. There exist many open-
source software ecosystems, each serving different purposes (e.g., packaging ecosystems like NPM
compared to functional ones like OpenStack). The conclusions drawn here might not represent these
other ecosystems and should be verified in future research.

1For example, conservatively applying the method proposed by Vasilescu et al. [61] required that the 45K identified
matches were checked manually because it had an estimated error rate of ±60%. Their method is still a substantial
improvement over manually identifying these. However, it is inapplicable in ecosystem-scale research where time is
limited and alias unmasking is not a primary goal.

32 Chapter 6 CONCLUSION

6 Conclusion
The goal of this thesis was to identify the influence of ecosystem-wide experience and collaboration
on pull request acceptance in open-source software ecosystems. Understanding this relationship is
important for two reasons. Firstly, modern software projects rarely exist in complete isolation be-
cause they commonly depend on other projects in the same ecosystem. Therefore, understanding the
dynamics of software ecosystems is paramount to understanding software development as a whole.
Secondly, developers and projects seek meaningful ways to engage in open-source software develop-
ment. Therefore, understanding how they can do this meaningfully is important to their success.

This study explored the effect of four topics: 1) ecosystem-wide experience, 2) experience in projects
with a dependency, 3) collaboration in an ecosystem, and 4) the impact of ecosystem-wide experience
and collaboration on first-time contributors. To test the effect of these factors, a collection of approx-
imately 1.8 million and 2.1 million issues was collected from 20.052 projects sampled from the NPM
ecosystem.

The results show that ecosystem-wide experience and collaboration have a significant and positive
effect on pull request acceptance. This vouches for the relevance of ecosystem-wide experience and
collaboration. However, its relevance is still lower than the experience gained within the project itself.
This effect is especially important for first-time contributors as the measured effect sizes are substan-
tially higher for this subgroup. For them, the measured effect size even exceeded the importance of
intra-project experience acquired by submitting issues and commenting on pull requests and issues.

The results show that ecosystem-wide and collaboration factors complement previously known intra-
project factors of pull request acceptance. The results of the random forest models suggest that
predicting the outcome of pull requests submitted by first-time contributors is relatively difficult,
yielding only an F1 score of 0.82. However, similarly, pull requests submitted by non-first-time
contributors reached an astounding F1 score of 0.96, for which the overall F1 score reached a good
0.92.

6.1 Future Work

There are several directions future work can pursue. First and foremost, this study and the study per-
formed by Dey et al. [15] are performed using data acquired from the NPM ecosystem, limiting the
generalizability of the combined results. A logical first step for future studies would be to perform a
replication study in other package management systems, like PyPI, Maven or Go. Such a study could
be set up very similarly to this one because the dataset created by Katz [40] contains information
on 32 package repositories. Such a study should not limit itself to package ecosystems, as studying
solution-oriented ecosystems like OpenStack or Apache is equally interesting.

This study laid the groundwork for the application of social network analysis in software development
research by using a social network built using collaborations. This study suggested the importance
of connectedness in such a network, however, did not address this at a deeper level yet. A first step
could be to emphasise the impact of knowledge brokers in open-source ecosystems. This could start
as simple as calculating the betweenness centrality (an indicator of whether a person connects two
otherwise unconnected graph components, and could go as far as to study the socio-technical con-
gruence between projects. To the best of my knowledge, only one case study has been done in this

Chapter 6 CONCLUSION 33

direction [49] using the Ruby ecosystem, therefore awaiting validation in a larger study. The results
of this thesis suggest that in cases where socio-technical congruence exists, it is valuable, for which
future work could study how this can be further utilised.

As of now, although a lot is known about open-source software ecosystems and the software within
them, a lot is left to be studied still [21]. This thesis attempted to do its small part and hopes to see
what follows in the future.

34 BIBLIOGRAPHY

Bibliography
[1] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-based software

development model,” in Proceedings of the 36th International Conference on Software Engi-
neering, ser. ICSE 2014, New York, NY, USA: Association for Computing Machinery, May
2014, pp. 345–355, ISBN: 978-1-4503-2756-5.

[2] G. Gousios, A. Zaidman, M.-A. Storey, and A. v. Deursen, “Work Practices and Challenges in
Pull-Based Development: The Integrator’s Perspective,” in 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering, ISSN: 1558-1225, vol. 1, May 2015, pp. 358–
368.

[3] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G. Antoniol, “How Developers’ Col-
laborations Identified from Different Sources Tell Us about Code Changes,” in 2014 IEEE In-
ternational Conference on Software Maintenance and Evolution, ISSN: 1063-6773, Sep. 2014,
pp. 251–260.

[4] X. Zhang, Y. Yu, G. Georgios, and A. Rastogi, “Pull Request Decisions Explained: An Empiri-
cal Overview,” IEEE Transactions on Software Engineering, pp. 1–1, 2022, Conference Name:
IEEE Transactions on Software Engineering, ISSN: 1939-3520.

[5] X. Zhang, Y. Yu, T. Wang, A. Rastogi, and H. Wang, “Pull request latency explained: An
empirical overview,” en, Empirical Software Engineering, vol. 27, no. 6, p. 126, Nov. 2022,
ISSN: 1382-3256, 1573-7616.

[6] M. Golzadeh, A. Decan, and T. Mens, “On the effect of discussions on pull request decisions,”
en, 2019.

[7] D. M. Soares, M. L. De Lima Junior, L. Murta, and A. Plastino, “Rejection Factors of Pull
Requests Filed by Core Team Developers in Software Projects with High Acceptance Rates,”
in 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA),
Dec. 2015, pp. 960–965.

[8] A. Rastogi, N. Nagappan, G. Gousios, and A. van der Hoek, “Relationship between geograph-
ical location and evaluation of developer contributions in github,” in Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ser. ESEM ’18, New York, NY, USA: Association for Computing Machinery, Oct. 2018, pp. 1–
8, ISBN: 978-1-4503-5823-1.

[9] N. Khadke, M. H. Teh, and M. Shen, “Predicting Acceptance of GitHub Pull Requests,” en,
2012.

[10] F. Zampetti, G. Bavota, G. Canfora, and M. D. Penta, “A Study on the Interplay between
Pull Request Review and Continuous Integration Builds,” in 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), ISSN: 1534-5351,
Feb. 2019, pp. 38–48.

[11] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical factors for evaluating
contribution in GitHub,” in Proceedings of the 36th International Conference on Software En-

BIBLIOGRAPHY 35

gineering, ser. ICSE 2014, New York, NY, USA: Association for Computing Machinery, May
2014, pp. 356–366, ISBN: 978-1-4503-2756-5.

[12] R. N. Iyer, S. A. Yun, M. Nagappan, and J. Hoey, “Effects of Personality Traits on Pull Request
Acceptance,” IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2632–2643,
Nov. 2021, Conference Name: IEEE Transactions on Software Engineering, ISSN: 1939-3520.

[13] Y. Yu, G. Yin, T. Wang, C. Yang, and H. Wang, “Determinants of pull-based development in
the context of continuous integration,” en, Science China Information Sciences, vol. 59, no. 8,
p. 080 104, Jul. 2016, ISSN: 1869-1919.

[14] M. Soto, Z. Coker, and C. Le Goues, “Analyzing the Impact of Social Attributes on Commit
Integration Success,” in 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), May 2017, pp. 483–486.

[15] T. Dey and A. Mockus, “Effect of Technical and Social Factors on Pull Request Quality for
the NPM Ecosystem,” in Proceedings of the 14th ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), ser. ESEM ’20, New York, NY,
USA: Association for Computing Machinery, Oct. 2020, pp. 1–11, ISBN: 978-1-4503-7580-1.

[16] O. Franco-Bedoya, D. Ameller, D. Costal, and X. Franch, “Open source software ecosystems:
A Systematic mapping,” en, Information and Software Technology, vol. 91, pp. 160–185, Nov.
2017, ISSN: 0950-5849.

[17] G. K. Hanssen and T. Dybå, “Theoretical foundations of software ecosystems,” en, 2012.

[18] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of replications in Empirical Software
Engineering,” en, Empirical Software Engineering, vol. 13, no. 2, pp. 211–218, Apr. 2008,
ISSN: 1573-7616.

[19] J. L. Cánovas Izquierdo and J. Cabot, “On the analysis of non-coding roles in open source
development,” en, Empirical Software Engineering, vol. 27, no. 1, p. 18, Nov. 2021, ISSN:
1573-7616.

[20] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social Barriers Faced by New-
comers Placing Their First Contribution in Open Source Software Projects,” in Proceedings
of the 18th ACM Conference on Computer Supported Cooperative Work & Social Comput-
ing, ser. CSCW ’15, New York, NY, USA: Association for Computing Machinery, Feb. 2015,
pp. 1379–1392, ISBN: 978-1-4503-2922-4.

[21] A. Rastogi and G. Gousios, How does Software Change? arXiv:2106.01885 [cs], Jun. 2021.

[22] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of dependency network evo-
lution in seven software packaging ecosystems,” en, Empirical Software Engineering, vol. 24,
no. 1, pp. 381–416, Feb. 2019, ISSN: 1573-7616.

[23] R. Méndez-Durón and C. E. García, “Returns from social capital in open source software net-
works,” en, Journal of Evolutionary Economics, vol. 19, no. 2, pp. 277–295, Apr. 2009, ISSN:
1432-1386.

36 BIBLIOGRAPHY

[24] C. Fershtman and N. Gandal, “Direct and indirect knowledge spillovers: The “social net-
work” of open-source projects,” en, The RAND Journal of Economics, vol. 42, no. 1, pp. 70–
91, 2011, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1756-2171.2010.00126.x,
ISSN: 1756-2171.

[25] G. Peng, Y. Wan, and P. Woodlock, “Network ties and the success of open source software
development,” en, The Journal of Strategic Information Systems, vol. 22, no. 4, pp. 269–281,
Dec. 2013, ISSN: 0963-8687.

[26] D. M. Soares, M. L. de Lima Júnior, L. Murta, and A. Plastino, “Acceptance factors of pull
requests in open-source projects,” in Proceedings of the 30th Annual ACM Symposium on Ap-
plied Computing, ser. SAC ’15, New York, NY, USA: Association for Computing Machinery,
Apr. 2015, pp. 1541–1546, ISBN: 978-1-4503-3196-8.

[27] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The Secret Life of Patches: A
Firefox Case Study,” in 2012 19th Working Conference on Reverse Engineering, ISSN: 2375-
5369, Oct. 2012, pp. 447–455.

[28] G. Pinto, L. F. Dias, and I. Steinmacher, “Who gets a patch accepted first? comparing the
contributions of employees and volunteers,” in Proceedings of the 11th International Workshop
on Cooperative and Human Aspects of Software Engineering, ser. CHASE ’18, New York,
NY, USA: Association for Computing Machinery, May 2018, pp. 110–113, ISBN: 978-1-4503-
5725-8.

[29] A. Lee and J. C. Carver, “Are One-Time Contributors Different? A Comparison to Core and
Periphery Developers in FLOSS Repositories,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), Nov. 2017, pp. 1–10.

[30] A. Forte and C. Lampe, “Defining, Understanding, and Supporting Open Collaboration: Lessons
From the Literature,” en, American Behavioral Scientist, vol. 57, no. 5, pp. 535–547, May 2013,
Publisher: SAGE Publications Inc, ISSN: 0002-7642.

[31] V. Kovalenko and A. Bacchelli, “Code review for newcomers: Is it different?” In Proceedings of
the 11th International Workshop on Cooperative and Human Aspects of Software Engineering,
ser. CHASE ’18, New York, NY, USA: Association for Computing Machinery, May 2018,
pp. 29–32, ISBN: 978-1-4503-5725-8.

[32] D. Wermke, N. Wöhler, J. H. Klemmer, M. Fourné, Y. Acar, and S. Fahl, “Committed to Trust:
A Qualitative Study on Security & Trust in Open Source Software Projects,” in 2022 IEEE
Symposium on Security and Privacy (SP), ISSN: 2375-1207, May 2022, pp. 1880–1896.

[33] A. Rastogi, S. Thummalapenta, T. Zimmermann, N. Nagappan, and J. Czerwonka, “Ramp-Up
Journey of New Hires: Tug of War of Aids and Impediments,” in 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), ISSN: 1949-3789,
Oct. 2015, pp. 1–10.

[34] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. de Water, “Studying pull
request merges: A case study of shopify’s active merchant,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering: Software Engineering in Practice, ser. ICSE-SEIP

BIBLIOGRAPHY 37

’18, New York, NY, USA: Association for Computing Machinery, May 2018, pp. 124–133,
ISBN: 978-1-4503-5659-6.

[35] D. Legay, A. Decan, and T. Mens, “On the impact of pull request decisions on future contribu-
tions,” en, in Belgium-Netherlands Software Evolution Workshop (BENEVOL), May 2019.

[36] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “Investigating technical and non-
technical factors influencing modern code review,” en, Empirical Software Engineering, vol. 21,
no. 3, pp. 932–959, Jun. 2016, ISSN: 1573-7616.

[37] A. Rastogi, “Do Biases Related to Geographical Location Influence Work-Related Decisions
in GitHub?” In 2016 IEEE/ACM 38th International Conference on Software Engineering Com-
panion (ICSE-C), May 2016, pp. 665–667.

[38] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill, C. Parnin, and J. Stallings,
“Gender differences and bias in open source: Pull request acceptance of women versus men,”
en, PeerJ Computer Science, vol. 3, e111, May 2017, ISSN: 2376-5992.

[39] D. Celińska, “Coding together in a social network: Collaboration among GitHub users,” in
Proceedings of the 9th International Conference on Social Media and Society, ser. SMSociety
’18, New York, NY, USA: Association for Computing Machinery, Jul. 2018, pp. 31–40, ISBN:
978-1-4503-6334-1.

[40] J. Katz, Libraries.io Open Source Repository and Dependency Metadata, Jan. 2020.

[41] T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A. Filippova, and A. Mockus, “Detecting
and Characterizing Bots that Commit Code,” in Proceedings of the 17th International Confer-
ence on Mining Software Repositories, ser. MSR ’20, New York, NY, USA: Association for
Computing Machinery, Sep. 2020, pp. 209–219, ISBN: 978-1-4503-7517-7.

[42] M. Golzadeh, D. Legay, A. Decan, and T. Mens, “Bot or not? Detecting bots in GitHub pull
request activity based on comment similarity,” in Proceedings of the IEEE/ACM 42nd Interna-
tional Conference on Software Engineering Workshops, ser. ICSEW’20, New York, NY, USA:
Association for Computing Machinery, Sep. 2020, pp. 31–35, ISBN: 978-1-4503-7963-2.

[43] N. Chidambaram and P. R. Mazrae, “Bot detection in GitHub repositories,” in Proceedings of
the 19th International Conference on Mining Software Repositories, ser. MSR ’22, New York,
NY, USA: Association for Computing Machinery, Oct. 2022, pp. 726–728, ISBN: 978-1-4503-
9303-4.

[44] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A ground-truth dataset and classification
model for detecting bots in GitHub issue and PR comments,” en, Journal of Systems and Soft-
ware, vol. 175, p. 110 911, May 2021, ISSN: 0164-1212.

[45] T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A. Filippova, and A. Mockus, A dataset of
Bot Commits, Jan. 2020.

[46] M. Golzadeh, A. Decan, D. Legay, and T. Mens, A ground-truth dataset to identify bots in
GitHub, Jan. 2020.

38 BIBLIOGRAPHY

[47] J. Katz, Libraries.io Open Source Repository and Dependency Metadata, version 1.6.0, Zen-
odo, Jan. 2020.

[48] S. Dueñas, V. Cosentino, J. M. Gonzalez-Barahona, A. d. C. S. Felix, D. Izquierdo-Cortazar,
L. Cañas-Díaz, and A. P. García-Plaza, “GrimoireLab: A toolset for software development
analytics,” en, PeerJ Computer Science, vol. 7, e601, Jul. 2021, Publisher: PeerJ Inc., ISSN:
2376-5992.

[49] M. M. M. Syeed, K. M. Hansen, I. Hammouda, and K. Manikas, “Socio-Technical Congruence
in the Ruby Ecosystem,” in Proceedings of The International Symposium on Open Collabora-
tion, ser. OpenSym ’14, New York, NY, USA: Association for Computing Machinery, Aug.
2014, pp. 1–9, ISBN: 978-1-4503-3016-9.

[50] R. R. Schreiber and M. P. Zylka, “Social Network Analysis in Software Development Projects:
A Systematic Literature Review,” International Journal of Software Engineering and Knowl-
edge Engineering, vol. 30, no. 03, pp. 321–362, Mar. 2020, Publisher: World Scientific Pub-
lishing Co., ISSN: 0218-1940.

[51] K. McClean, D. Greer, and A. Jurek-Loughrey, “Social network analysis of open source soft-
ware: A review and categorisation,” en, Information and Software Technology, vol. 130, p. 106 442,
Feb. 2021, ISSN: 0950-5849.

[52] S. Herbold, A. Amirfallah, F. Trautsch, and J. Grabowski, “A systematic mapping study of
developer social network research,” en, Journal of Systems and Software, vol. 171, p. 110 802,
Jan. 2021, ISSN: 0164-1212.

[53] M. Newman, “Measures and metrics,” in Networks, M. Newman, Ed., Oxford University Press,
Jul. 2018, p. 0, ISBN: 978-0-19-880509-0.

[54] P. Holme and J. Saramäki, “A Map of Approaches to Temporal Networks,” en, in Temporal
Network Theory, ser. Computational Social Sciences, P. Holme and J. Saramäki, Eds., Cham:
Springer International Publishing, 2019, pp. 1–24, ISBN: 978-3-030-23495-9.

[55] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, “Multilayer
networks,” Journal of Complex Networks, vol. 2, no. 3, pp. 203–271, Sep. 2014, ISSN: 2051-
1310.

[56] V. Casola, A. Fasolino, N. Mazzocca, and P. Tramontana, “An AHP-Based Framework for
Quality and Security Evaluation,” in 2009 International Conference on Computational Science
and Engineering, vol. 3, Aug. 2009, pp. 405–411.

[57] L. Breiman, “Random Forests,” en, Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001,
ISSN: 1573-0565.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.
Perrot, and É. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.

[59] I. S. Wiese, J. T. Da Silva, I. Steinmacher, C. Treude, and M. A. Gerosa, “Who is Who in the
Mailing List? Comparing Six Disambiguation Heuristics to Identify Multiple Addresses of a

BIBLIOGRAPHY 39

Participant,” in 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), Oct. 2016, pp. 345–355.

[60] S. Amreen, A. Mockus, R. Zaretzki, C. Bogart, and Y. Zhang, “ALFAA: Active Learning Fin-
gerprint based Anti-Aliasing for correcting developer identity errors in version control sys-
tems,” en, Empirical Software Engineering, vol. 25, no. 2, pp. 1136–1167, Mar. 2020, ISSN:
1573-7616.

[61] B. Vasilescu, A. Serebrenik, and V. Filkov, “A Data Set for Social Diversity Studies of GitHub
Teams,” in 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, ISSN:
2160-1860, May 2015, pp. 514–517.

40 APPENDIX

Appendices

A Data Distributions

APPENDIX 41

42 APPENDIX

B Variable Log-Linearity

APPENDIX 43

44 APPENDIX

C Variable Correlation and Multicollinearity
In the figures, it is visible that there is a strong correlation between the experience types, as their
respective components in the graph are almost always fully connected. It is visible that “PR has
comments” and “PR comment from external contributor” correlate. It is visible that link intensity
variables are correlated (30 and 31). The same holds for in-dependency experience (5, 16, 16). In-
terestingly, these variables negatively correlate with self-integrated pull requests. It is visible that
first-order degree variables correlate (28 and 29) and create a bridge between intra-project experience
and intra-project experience. Finally, it is visible that being a first-time contributor (7) negatively
correlates with intra-project experience (3, 12, 13).

(a) Spearman correlation matrix. (b) Strongly correlated variables (s.t. |ρ| ≥ 0.5).

Control variables
0 PR Self-integrated
1 PR has comments
2 PR has “#”
7 First-time contributor
8 PR has comment by external contributor
9 PR lifetime
10 PR commit count
11 Integrator experience

Intra-project experience
3 Pull request merge rate
12 PR submission count
13 PR comment count
20 Issue submission count
21 Issue comment count

Ecosystem experience
4 Pull request merge rate
14 PR submission count
15 PR comment count
22 Issue submission count
23 Issue comment count

In-dependency experience
5 Pull request merge rate
16 PR submission count
17 PR comment count
24 Issue submission count
25 Issue comment count

Out-dependency experience
6 Pull request merge rate
18 PR submission count
19 PR comment count
26 Issue submission count
27 Issue comment count

Collaborative variables
28 Weighted first-order in-degree centrality
29 Weighted first-order out-degree centrality
30 Integrator to submitter link intensity
31 Submitter to integrator link intensity

	Introduction
	Research Questions
	Thesis Outline

	Theoretical Framework
	Background
	Related Work
	Factors influencing pull request decisions
	Project-transcending and Ecosystem-Wide Factors

	Methodology
	Data Collection
	Project Selection
	Development Activity Selection
	Data Collection Process

	Metrics
	Developer Experience Variables
	Collaboration Variables and Social Network Analysis

	Data Analysis

	Results
	General Overview
	Answering Questions
	Ecosystem-wide Experience
	Experience in Dependent Projects
	Direct and Indirect Collaboration
	First-time Contributors

	Discussion
	Implications
	Implications for (First-Time) Contributors
	Implications for Software Teams
	Implications for Researchers

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	Future Work

	Bibliography
	Appendices
	Data Distributions
	Variable Log-Linearity
	Variable Correlation and Multicollinearity

