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Abstract

With the growing capabilities of artificial agents, it is essential to shed light on the extent
intelligent systems are willing to lie in negotiations. The current study examines lying in
the game of Colored Trails, which is a negotiation setting in which two agents want to
reach their own goal location that the other agent doesn’t know and take turns proposing a
new distribution of resources.

Previous research suggests that a theory of mind capability, that is, the capability of an
agent to attribute mental content such as beliefs to another agent, is needed for an agent
to lie. The Colored Trails setting has previously been used to investigate the benefits of
theory of mind in negotiations. We extend this research by introducing agents that are
capable of theory of mind with the ability to lie. Since the classical framework of Colored
Trails did not enable agents to lie, we incorporated the possibility for both agents to send a
message that tells the receiver that a particular goal location is the sender’s goal location.

This thesis presents two main contributions. First, a graphical user interface has been
made where the behavior of the agents in Colored Trails can be analyzed. Second, different
experiments have been performed to examine to what extent agents that can lie are able to
achieve better outcomes than their honest counterparts.

The results of the experiments show that, in general, higher orders of theory of mind
provide more benefit to an agent in Colored Trails than the ability to lie. Moreover,
comparing our work with previous research revealed that, in the uncertain environment of
our Colored Trails setting, even the ability to send goal location messages influenced the
results to a lesser extent than the theory of mind capability of an agent.

Overall, an honest agent performed as well as an agent with the ability to lie. The
results contribute to a foundation for making artificial intelligence more trustworthy. Future
research could extend this work by investigating more specific conditions in Colored Trails
where lying might be beneficial or expanding this work to other frameworks.
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1
Introduction

Programs using Artificial Intelligence (AI) that communicate with people such as Alexa,
ChatGPT, and Bard are becoming more commonplace. An article by IBM (n.d.) starts
with: “AI is no longer the future – it’s now here in our living rooms and cars and, often,
our pockets.” Unfortunately, with these AI tools, the spread of misinformation is growing
(Hurst, 2023). Besides the spread of misinformation, agents are already claimed to be
able to lie to humans (Kneer, 2021; Rogers, Webber, & Howard, 2023). A recent article
investigates how trustworthiness can be regained by humans in human-robot interactions
after a robot tells a lie (Rogers et al., 2023).

An example where agents can use a lying strategy is negotiation. It is not new that
artificial agents are used in negotiations (Kraus, 1997). What is new, is that these AI
systems become more sophisticated and that artificial agents get integrated into more
fields, such as smart buildings (Li, Logenthiran, Phan, & Woo, 2017). Within these smart
buildings, agents negotiate over the energy supply and demand to provide optimal energy
usage and minimal electricity costs. AI agents may use lying in such negotiations to obtain
a better position. If we aim to (re)gain trust in AI, we need transparency of the AI system
and examine when and in what ways an AI system is “willing” to lie. But first, we will
delve into the definition of lying.
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CHAPTER 1. INTRODUCTION

Definition of Lying. The concept of lying is familiar to most human beings. Lying is a
fact of daily life (DePaulo & Kashy, 1998; DePaulo et al., 2003). Intuitively and generally
speaking, people care about social norms and honesty; however, in daily diaries, adults
report telling on average one or two lies a day (DePaulo & Kashy, 1998; DePaulo et
al., 2003). People lie about their feelings, preferences, attitudes, opinions, achievements,
failures, and so forth. Lies can but do not have to be harmful. Examples of lies that may
not be considered harmful are so-called white lies. A parent might tell white lies to their
child to increase the child’s confidence. Just as common might be lies to children about
whether Santa is real. While many everyday lies may not be especially harmful to other
people, other lies may harm close friendships.

Deception may not be limited to humans only. Some forms of lying and deception
have evolved in communication by other animals as well. An example of an animal that
uses deceit in communication is the firefly of the Photuris species (El-Hani, Queiroz, &
Stjernfelt, 2010; Peterson, 2011). The light of the Photuris species is hard to distinguish
from the light of the Photinus species, even for other fireflies. (The light of the two
species may be hard to distinguish, but the names too.) The Photinus firefly uses light
to communicate with other Photinus fireflies and to attract mates. Male fireflies of the
Photinus species send out signals and wait for a Photinus female to respond. When they
find a Photinus female firefly responding to their signal, they approach the source to mate.
The Photuris firefly adapted to this behavior and emits deceitful light signals that mimic
a female Photinus firefly. The Photuris firefly thus deceives and attracts male Photinus
fireflies. Whenever the Photinus male comes too close, the Photuris firefly, which is larger
than the Photinus firefly, eats the male Photinus firefly.

This example of the Photuris firefly deceiving the Photinus firefly involves evolution.
Another example of deception that has evolved by some animals, such as the chameleon,
is the use of camouflage to blindside their prey or hide from predators (Green, Duarte,
Kellett, Alagaratnam, & Stevens, 2019). Many argue that there is no intentional aspect
of inducing a false belief in a target in these examples (Hyman, 1989), and it may thus
not be considered a form of lying. Chevalier-Skolnikoff (1986), however, has argued that
there are primates - adult chimpanzees - that can develop cognitive capacities sufficient
for intentional deception, at least in some forms. Besides primates, Corvids show signs of
“tactical” deception by withholding intentions and providing false information (Bugnyar
& Heinrich, 2006; Bugnyar & Kotrschal, 2002). Corvids may pretend to cache food in
a location while actually hiding it elsewhere to deceive other Corvids that observed the
caching behavior and later try to steal the food.
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CHAPTER 1. INTRODUCTION

Lying is a phenomenon that comes in many forms, so its definition is not so obvious
and it is hard to define. The dictionary definition (Merriam-Webster, n.d.) of lying is:

“to make an untrue statement with intent to deceive”.

There are numerous problems with this definition. According to Mahon (2016), (a similar
version of) this definition is both too narrow and too broad. It is too narrow, as the definition
requires falsity of the statement. According to this definition, someone that makes a true
statement but believes that said statement is false is not lying although the statement was
intended to deceive. The definition is too broad, as it allows for intended deceit about
something other than what is being stated without intended deceit about what is actually
stated. For example, the intent of the speaker might be that the addressee does not have to
believe the said statement, but rather the speaker intends to deceive the addressee about
something else.

Definitions of lying have been discussed at length (see, e.g., Fallis, 2009; Mahon, 2016;
Van Ditmarsch, Hendriks, & Verbrugge, 2020). The definition given by Van Ditmarsch et
al. (2020) is:

Definition 1 (Lying). You lie if you say something that you believe to be false with
the intention that the addressee believes that you and the addressee commonly believe
that it is true (Van Ditmarsch et al., 2020).

Using this definition, the liar intends that the addressee must not only believe that the
statement said by the liar is true but also that the addressee believes that the liar believes
that the statement is true. Additionally, the addressee must believe that the liar believes
that the addressee believes the statement is true, and so on. The result of this “and so on”
reasoning is called common belief (Van Ditmarsch, Van Eijck, & Verbrugge, 2009) of
which the definition of lying given above is a result (Van Ditmarsch et al., 2020).

Van Ditmarsch et al. (2020) make a few distinctions between lying and closely related
phenomena. Lying is a verbal act, and it should be distinguished from deceiving without
lying, bullshit (nonsense), bluffing (uncertainty), white lies (intention is good), and omis-
sions. Moreover, there is a difference between lies, on the one hand, and metaphoric and
ironic statements, on the other hand. The speaker in the former intends to deceive, while the
intention of the latter is for the listener to recognize the falsehood. For specific definitions
and examples of these differences, we refer to Van Ditmarsch et al. (2020). Additionally,
we refer to Frankfurt (2005) for a comprehensive explanation of the difference between
bullshit and lying. Briefly, Frankfurt (2005) differentiates a bullshitter from a liar by their
lack of concern of the truth.

3



CHAPTER 1. INTRODUCTION

While definitions of lying and deception differ between scholars, we distinguish
between deception and lying as follows. According to Mahon (2016), deception is defined
as follows:

Definition 2 (To deceive). To intentionally cause to have a false belief that is known
or believed to be false (Mahon, 2016).

In contrast to lying, Mahon (2016) calls deception an achievement or success verb. While a
false belief of the receiver must be achieved to call something deception, lying is concerned
with the “intent” of the speaker.

The present studies. In this thesis, we investigate the influence of lying in negotiations.
This is done by modeling agents in a multi-agent system capable of lying. Agents that are
capable of lying will have a theory of mind capability. Theory of mind is what Premack and
Woodruff (1978) termed the capability of someone being able to attribute mental states to
someone else, such as beliefs, desires, knowledge, goals, and so forth. Using Definition 1
of lying, theory of mind is required for lying to capture the intent of an agent to deceive the
other agent with its lie. We will look into lying as a possible negotiation strategy within a
(mixed-motive) framework where both cooperation and competition are important to reach
a beneficial outcome for the participating agents.

The modeling will be done in the influential setting of the Colored Trails game, first
introduced by Grosz, Kraus, and colleagues (2004; 2010). In this negotiation setting,
agents alternate in making offers of the distribution of the available colored chips with
which they can obtain points. Agents aim to obtain the highest number of points possible.
Because we aim to include lying in this setting, which is not possible by only making
offers, we introduce the concept of sending goal location messages in Colored Trails. As
such, agents will be able to communicate their goal position to the trading partner besides
making offers.

Now that the main concepts of this thesis are introduced, we provide the following core
research question:

What is the influence of lying by artificial agents in the multi-agent negotiation

setting of Colored Trails?

In particular, we seek an answer to what extent agents capable of lying outperform similar
agents that are not capable of lying.

The remainder of this thesis is organized as follows. In Chapter 2, we present related
work to lying in AI. Since the definition of lying we adopt requires a theory of mind
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CHAPTER 1. INTRODUCTION

capability, we also discuss some research on theory of mind. Additionally, we discuss
related research that used the negotiation setting of the Colored Trails game. In Chapter 3,
we explain the specific Colored Trails game that we have adopted, how agents can use
theory of mind, and how agents can lie in our model. The graphical user interface we
developed in Java is discussed in this chapter, as well as the experiments we performed.
The results of these experiments can be found in Chapter 4. Finally, we conclude and
discuss in Chapter 5.
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2
Related Work

The topic of lying was already of interest in ancient times. Many philosophical works on
lying quote the church father St. Augustine, who was active around the 4th century and
analyzed lying in his work called De Mendacio (Augustine, 1956). Another example of
early interest in lying is the so-called Liar Paradox (see, e.g., Beall, Glanzberg, & Ripley,
2020) that is credited to the Cretan prophet Epimenides of Knossos and dates back to
around 600 BC. The paradox follows from the statement of Epimenides, a Cretan, who says:
“All Cretans are liars”. This statement was long considered to have no reasonable truth
value, since both the statement being true and it being false would lead to a contradiction.
However, Van Ditmarsch et al. (2020), for instance, justify that this seeming paradox is not
necessarily a paradox since the negation of “All Cretans are liars” is not “All Cretans tell
the truth” but “Some Cretan tells the truth”, and this Cretan does not have to be Epimenides.
Therefore, Epimenides’ statement can simply be false. A more modern example (and a
real paradox) is “This sentence is false”. If this sentence is false, it must be true, but if this
sentence is true, it must be false. The research question of how to resolve these paradoxes
has still been asked in recent discussions (Beall et al., 2020).

Current research on lying includes the article by Van Ditmarsch et al. (2020) where
some recent trends in research on lying are described from a multidisciplinary perspective.

7
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They argue that a comprehensive account of lying requires a multidisciplinary approach,
since the act of lying involves many aspects. For example, among other skills needed
to tell a lie such as linguistic knowledge, a speaker wishing to tell a lie must compute
the change in beliefs brought about by the lie (studied in dynamic epistemic logic). Van
Ditmarsch et al. (2020) outline seven articles that focus on various aspects of the human
trait of lying, which are included, together with the article of Van Ditmarsch et al. (2020),
in a special issue on lying of Topics in Cognitive Science (topiCS) (Gray, 2020). Another
recent example is the broadly multidisciplinary Oxford Handbook on Lying (Meibauer,
2019). Compared to Meibauer (2019), Van Ditmarsch et al. (2020) more strongly focus
on the logical aspect of lying as well as the philosophical, linguistic, and psychological
aspects of lying.

In the remainder of this chapter, we discuss some literature on communication in AI in
Section 2.1 and, more specifically, on negotiation in AI in Section 2.2. In Section 2.3, we
will see that AI systems already attempt to lie and deceive. In particular, we will look at
why it is important to investigate agents that are capable of lying. While the “intent” of
an AI system to deceive might still be debatable (Livet & Varenne, 2020; Roff, 2020),1

AI agents become more sophisticated, so if they don’t lie and deceive already, they might
be able to in the near future. Next, since we consider lying to require the use of theory
of mind, we discuss some related work on theory of mind in Section 2.4. We conclude
this chapter with Section 2.5 about related research within our negotiation framework, the
setting of Colored Trails.

2.1 On the interface of communication and artificial intel-
ligence

While there are many definitions of communication, in this thesis we focus on com-
munication expressed as messages in linguistic form. We thereby exclude behavioral
communication such as communication between fireflies, where fireflies transmit light
signals to effect a certain response, as mentioned in the introduction of this thesis. His-
torically speaking, communication has been conceptualized mostly as a human process
(Dance, 1970). However, nowadays communication is an important aspect of computer
science and AI as well, as it enables an AI system to interact with its environment and

1There is still an ongoing (philosophical) debate about whether AI systems can think (Livet & Varenne,
2020). This debate also captures the discussion about whether these systems can hold beliefs and intentions,
and therefore whether they can have an intent to deceive.
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make decisions based on the information it receives. Communication in AI refers to the
exchange of information between AI systems and humans, or between different AI systems.
Examples of communication between AI systems and humans are dialogue systems such
as chat-bots or Siri. Communication between machines, i.e., machine-to-machine com-
munication, involves the exchange of data and information between different AI systems.
Machine-to-machine communication is, for example, a critical component of the Internet
of Things, where billions of physical devices around the world are connected, enabling
them to communicate real-time data without involving a human being (Ranger, 2020).
Other examples of machine-to-machine communication are autonomous vehicles that com-
municate with one another to avoid collisions, industrial sensors that communicate with
one another to optimize processes, and a smart grid system where devices communicate
with one another to optimize energy distribution.

Communication plays an important role in multi-agent systems (Wooldridge, 2009).
Communication is needed to share information and knowledge, and agents can perform
communicative actions in an attempt to influence or alter the mental state of other agents
(Wooldridge, 2009). There exist various agent communication languages. Two commonly
used agent communication languages are KQML and FIPA-ACL (for a review on these two
agent communication languages, see, e.g., Soon, On, Anthony, & Hamdan, 2019). Agent-
based models have also been used to explore the origins and evolution of communication
and language (Scott-Phillips, Kirby, & Ritchie, 2009; Steels, 2003, 2011). In addition, De
Weerd, Verbrugge, and Verheij (2015) use agent-based models to determine to what extent
higher orders of theory of mind help agents to establish effective communication.

Grice’s maxims of communication (the maxim of quantity, quality, relation, and manner)
describe how people intuitively communicate (Grice, 1975). These four maxims also
provide a framework for effective communication. Grice was also aware that these maxims
are often not respected. For example, according to the maxim of quality, one should not
tell a lie.

For humans, there is more to communication than simply communicating information
to another human with a plain verbal statement. Besides a clear verbal statement, non-
verbal communication such as intonation and body language play a role in how a statement
is received (Mehrabian, 1971). Effective communication in negotiations, for example,
requires more than solely effectively communicating your interests. It also requires active
listening, an openness to different perspectives, and building trust. Raiffa, Richardson,
and Metcalfe (2002) describe a thorough analysis of such collaborative decision making.
While non-verbal communication may be less fundamental in machine-to-machine com-
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munication, it is important to keep in mind other aspects of communication in dialogues
between AI systems and humans.

2.2 Negotiating agents

Negotiation is the process of joint decision making, and it is widely studied in AI (Baarslag
et al., 2013; Chen & Weiss, 2012; Jennings et al., 2001; Kraus, 1997; Parsons, Sierra, &
Jennings, 1998; Sierra, Jennings, Noriega, & Parsons, 1997; Weiss, 1999). Parsons et al.
(1998) propose a framework for negotiation for autonomous agents.2 Weiss (1999) provides
a book on distributed artificial intelligence, which is an important subject in industrial and
commercial applications and involves agents that cooperate and negotiate. Jennings et al.
(2001) developed a generic framework for classifying and viewing automated negotiations.
Chen and Weiss (2012) introduce an effective approach called OMAC for automated
negotiation in complex environments. There also exist challenges to advance the state-of-
the-art in the area of negotiating agents. An example of such a challenge is the (Second)
International Automated Negotiating Agents Competition (ANAC 2011). Analysis and
insights gained from this challenge are presented by Baarslag et al. (2013). Upcoming
application domains for negotiating agents are, for instance, autonomous driving or the
smart electrical grid, where agents have to negotiate about the division of the available
electricity (see, e.g., Alam, Gerding, Rogers, & Ramchurn, 2015). While many successes
have been made in the field of autonomous negotiating agents, fully-deployed and truly
autonomous negotiators may not yet be present (Baarslag, Kaisers, Gerding, Jonker, &
Gratch, 2017).

The article of Baarslag et al. (2017) discusses various challenges and opportunities
for (almost) entirely autonomous negotiators. According to Baarslag et al. (2017), we
can distinguish three strands of research in automated negotiation. The first strand is
Negotiation support systems, where people are assisted and trained in negotiation by
these systems (see, e.g., Johnson, Gratch, & DeVault, 2017). The second strand is Game-

theoretical approaches and trading bots. This part of the research focuses more on
equilibrium strategies according to game theory, and on algorithmic trading and bidding
by agents, for instance, in the financial sector (see, e.g., Wellman, Greenwald, & Stone,
2007). The third strand is Negotiation analytical approaches that considers agents to create
a belief about the opponent types or strategies. Because of these three strands of research,

2While there are many definitions of the word agent, we adopt the definition as given by Wooldridge
(1999): “An agent is a computer system that is situated in some environment, and that is capable of
autonomous action in this environment in order to meet its design objectives.”
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we now have agents that can exist independently in the real world, choose independently
among a set of strategies, and engage in supportive interdependence; however, not all at
the same time. To enhance research on (fully-)autonomous negotiation, Baarslag et al.
(2017) argue that three major themes have to be aligned and advanced together: accurate
representation, long-term perspective, and user trust.

Another active area of research within multi-agent negotiation is argumentation-based
communication, which is defined as the exchange of arguments between autonomous
agents in negotiations to reach a shared understanding or make a decision (Rahwan et al.,
2003; Sierra et al., 1997). Argumentation-based negotiation is commonly used in multi-
agent systems where agents may have different preferences, beliefs, or goals, and need
to negotiate and cooperate to make a decision or resolve a conflict. Argumentation-based
communication requires agents to reason about uncertain or incomplete information and to
handle conflicts or inconsistencies in a structured manner. Kraus, Sycara, and Evenchik
(1998) propose a formal logical framework of mental attitudes of agents based on argument
types identified from human negotiation patterns. Kraus (1997) describes some of her
group’s projects where they have successfully taken an interdisciplinary approach to
build coordinated and cooperative intelligent agents by combining AI techniques with
techniques from fields such as game theory, operations research, and philosophy. Rahwan
et al. (2003) identify the main research motivations and ambitions behind work in the
field of argumentation-based communication and provide the main challenges and open
questions in the field.

Recently, AI methods have also been applied in complex games that involve cooperation
and negotiation such as Diplomacy (Bakhtin et al., 2022; Kramár et al., 2022). An important
and challenging part of the board game Diplomacy is the negotiation phase, where humans
coordinate their actions to both cooperate and compete with each other. In previous
research on Diplomacy with multi-agent systems, the “negotiation” phase was eliminated
(see, e.g., Paquette et al., 2019), and thus an explicit communication channel between
agents was not considered. Kramár et al. (2022) constructed agents for Diplomacy that can
communicate the plans they have for future steps in the game. While Kramár et al. (2022)
do not model lying or deceiving agents explicitly, the agents were able to deviate from
their contracts made in the game (and might thus be considered dishonest). Bakhtin et al.
(2022) present an AI agent, named Cicero, that achieved human-level performance in the
game of Diplomacy in an online league of human players, where Cicero ranked in the top
10% of participants who played more than one game. Using both a dialogue and strategic
reasoning module, Cicero was able to form “intents” and communicate its corresponding
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(dis-)honest message. In the next section, we will discuss research that focuses more on
lying agents.

2.3 Lying agents

The idea of machines being able to lie and deceive may originate from Turing’s imitation
game in 1950 (Turing, 1950), where a machine is tested to send messages indistinguishable
from a human participant. Castelfranchi (2000) predicted in 2000 that “there will be
problems of deception – and consequently of trust – not between humans (via machines)
but between humans and artificial entities and among the artificial agents themselves.
Agents are and will be designed, selected, or trained to deceive, and people will be
deceived by and will deceive their own agents.”

For the moment, let us not consider the subtle difference (or ambiguity) between
definitions of lying and deception that exist in the literature. Recent developments in
the growing area of research at the interface between deception and AI are presented by
Masters, Smith, Sonenberg, and Kirley (2021). The complexities that arise with machine
deception are addressed by Sarkadi (2018). Although deception by machines is still
primarily used as a tool by humans (Masters et al., 2021), it might not be a long shot before
autonomous agents can deploy deceptive and lying behavior without human intervention,
along with the inherent risks (Sarkadi, 2018). Hence, one of the main reasons to study
and model lying and deceptive behavior is that it could be adopted by autonomous and
malicious (software) agents (see, e.g., Sarkadi, Panisson, Bordini, McBurney, Parsons, &
Chapman, 2019). When we understand all the possible ways an AI agent can lie or deceive,
only then might we be able to mitigate unwanted deception by AI agents.

Panisson, Sarkadi, McBurney, Parsons, and Bordini (2018) are some of the first to
attempt to model agent attitudes such as lies, bullshit, and deception in the practical context
of an Agent-Oriented Programming Language. The dishonest agents provided by Panisson
et al. (2018) work under the assumption of complete certainty. A perfect model of the
other party might, however, in most practical cases not be available. Hence, Sarkadi,
Panisson, Bordini, McBurney, Parsons, and Chapman (2019) follow up on this research
and design, implement, and evaluate a model for deception in which agents engage in
mental simulation (theory of mind) to determine the optimal deceptive action. Moreover,
in their multi-agent system, they integrate components of two major theories of deception,
namely Information Manipulation Theory 2 and Interpersonal Deception Theory. In the
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model of deception by Sarkadi, Panisson, Bordini, McBurney, Parsons, and Chapman
(2019), deceptive behavior does not have to be a lie.

When we limit ourselves to lying behavior only, there is little research on modeling
lying agents. For one, this might be due to differences in definitions that researchers adopt
for deceptive and lying behavior (Masters et al., 2021). Panisson et al. (2018) model lies
explicitly besides deception, but use a rather simple definition of lying. They model lying
as only making a false statement (without intent to deceive). Others have also tried to
model lies (Caminada, 2009; Sklar, Parsons, & Davies, 2005).

Lying is also attempted to be included in logic (Ågotnes, van Ditmarsch, & Wang,
2018; Van Ditmarsch, 2014; Van Ditmarsch, Van Eijck, Sietsma, & Wang, 2012). Ågotnes
et al. (2018) mainly investigate true lies (announcement of something false that makes
it true) in the setting of Gerbrandy’s logic (Gerbrandy & Groeneveld, 1997) of believed
(public) announcement logic, wherein agents may have or obtain incorrect beliefs. Besides
the analysis of true lies, they present results relating to lying in general. Ågotnes et al.
(2018), however, restrict themselves to a simple definition of lying where they call an
announcement a lie if the announced formula is false. Van Ditmarsch et al. (2012) do
take into account the intent to deceive (more specifically, the intent to be believed) in
the definition of lying, and model lying as a communicative act intended to change the
beliefs of the agents in a multi-agent system. Van Ditmarsch (2014) discusses some further
literature on the intentional aspect of lying but also discusses some alternatives on the
view of taking intention into account. Moreover, Van Ditmarsch (2014) proposes various
logics of lying for different speaker perspectives (the agent who is lying) and addressee
perspectives.

Verbrugge and Mol (2008) experimented with humans playing a competitive game
where a limited form of communication could be used to mislead the other player. They
investigated the tactics and related this to the order of theory of mind used by a player. In
the next section, we will look more closely at work related to theory of mind.

2.4 Theory of mind

Theory of mind (Premack & Woodruff, 1978) is the capability of an individual to attribute
mental content to others such as beliefs, intentions, knowledge, and goals. Without this
theory of mind, so-called zero-order theory of mind, individuals are limited to reasoning
about world facts only. An individual capable of zero-order theory of mind only under-
stands sentences such as “Alice is reading a book”. First-order theory of mind allows
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individuals not only to reason about world facts but also to reason about the unobservable
mental content of others. An individual capable of first-order theory of mind should
understand, for example, a sentence that includes the reason why Alice is reading: “Alice
is reading a book since she believes reading strengthens her brain”. Finally, an individual’s
ability to recursively model the mental states of other individuals is called higher-order
theory of mind (Verbrugge, 2009). In this thesis, we follow Verbrugge (2009) and say that
higher-order theory of mind is second-order theory of mind or higher. Using higher orders
of theory of mind, individuals understand sentences such as “Bob does not know that Alice
believes that reading strengthens her brain”. In this example, an individual capable of
second-order theory of mind can attribute mental content to what Bob does not know about
the beliefs of Alice.

The human ability to make use of higher orders of theory of mind is well-established
experimentally (see, e.g., Miller, 2009; Perner & Wimmer, 1985). Possible explanations
for the emergence of social cognition, which includes theory of mind and lying, are the
Machiavellian intelligence hypothesis (Whiten & Byrne, 1988), the Vygotskian intelli-
gence hypothesis (Vygotsky & Cole, 1978), and the mixed-motive interaction hypothesis
(Verbrugge, 2009).

According to the Machiavellian intelligence hypothesis, there is a competitive advan-
tage to the cognitively demanding ability of (higher-order) theory of mind. Empirical
research using agent-based models shows that there is indeed an advantage of using higher-
order theory of mind in competitive settings (see, e.g., Devaine, Hollard, & Daunizeau,
2014; De Weerd, Verbrugge, & Verheij, 2013b).

In contrast, the Vygotskian intelligence hypothesis explains the emergence of higher-
order theory of mind in humans in cooperative settings instead of competitive settings. De
Weerd, Verbrugge, and Verheij (2015) show that agents with a first-order theory of mind
capability achieve a cooperative solution more efficiently compared to a situation where
both agents use only a zero-order theory of mind capability. Higher-order theory of mind
only helps agents to achieve a cooperative solution more quickly but does not benefit these
agents when such a solution has already been found.

The third hypothesis for the emergence of social cognition in humans is the mixed-
motive interaction hypothesis. In mixed-motive settings, both cooperation and competition
play a role, such as negotiations. While agents may benefit from a theory of mind capability
in either purely cooperative or purely competitive settings, it seems more likely that the
capability of theory of mind has emerged from mixed-motive settings (De Weerd, 2015).
Studies suggest that theory of mind allowed us to survive and deal with more complex and
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unpredictable environments (De Weerd, Verbrugge, & Verheij, 2017, 2022). Higher-order
theory of mind has also been associated with better negotiation skills (De Weerd et al.,
2017).

Other research on theory of mind includes but is not limited to the work of Panisson,
Sarkadi, and colleagues. In particular, Panisson, Sarkadi, McBurney, Parsons, and Bordini
(2019) propose formal semantics for agents to update their theory of mind through com-
munication with other agents. Sarkadi, Panisson, Bordini, McBurney, and Parsons (2019)
add uncertainty to the modeling of other agents’ minds during communication.

It is clear that theory of mind is needed, for example, to reason about what others believe,
or to predict how our actions influence other people. In particular, studies suggest that
the ability to tell a lie requires theory of mind (Lavoie & Talwar, 2020; Talwar, Gordon,
& Lee, 2007; Talwar & Lee, 2008; Wimmer & Perner, 1983). Talwar and Lee (2008)
found that there is a close connection between children’s development of lie-telling and
their development of theory of mind. When children grow older, the way a lie is told goes
through various stages, but in essence, their ability to tell and maintain a lie improves.
Lavoie and Talwar (2020) suggest that as children’s theory of mind abilities (and working
memory) improve, their abilities to conceal information from others develop. Theory of
mind allows them to reason about the mental content of the addressee, and thus to tell a
consistent story around the lie. Talwar et al. (2007) show that understanding the concept of
lying and being able to maintain a lie over time requires second-order theory of mind (e.g.,
your ability to infer what the addressee believes about your (the lie-teller’s) thoughts).

For a lie to be maintained successfully in subsequent statements, the lie-teller must
assess the mental state of the addressee to avoid leaking semantic information that contra-
dicts earlier formed beliefs by the addressee. For example, the lie-teller aims to ensure
that subsequent statements are consistent with the addressee’s beliefs. In the literature, the
ability to maintain consistency between verbal statements during deception is referred to
as semantic leakage control (Talwar & Lee, 2002). By explicitly modeling the mental state
of the addressee, the lie-teller can make statements that are consistent with the mental state
that the lie-teller assigns to the addressee, which includes the beliefs the addressee has
about the lie-teller’s beliefs or plans. For the lie-teller to assign beliefs to the addressee
about the beliefs or plans of the lie-teller, the lie-teller needs to be capable of second-order
theory of mind.

In the study by Talwar and Lee (2002), children between 3 and 7 years of age were
left alone in a room with a music-playing toy placed behind their backs. Before the
experimenter left the room and the child was left alone, the child was told not to look
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at the toy. After the experimenter entered the room again, the experimenter asked the
child whether the child had looked at the toy or not. Talwar and Lee (2002) found that
the majority of children between three and five years old blurted out the name of the toy
while they denied having turned around and peeked at the toy. Children who were six
to seven years old were better at semantic leakage control and feigned ignorance of the
toy’s identity. This clearly shows that younger children are more susceptible to semantic
leakage. This result is in line with the theory of mind capability of children.

Just like humans, it is reasonable to assume that software agents require theory of mind
to “actively” deceive or to detect deception (Isaac & Bridewell, 2017). Hence, in this
thesis, agents that can lie also have the ability to use theory of mind.

2.5 Colored Trails

The Colored Trials setting, introduced by Grosz, Kraus, and colleagues (2004; 2010),
is a framework that is commonly used to investigate decision making in mixed-motive
situations, that is, situations where the agents have conflicting motives to cooperate or to
compete with each other.3 Colored Trails is a multi-agent system setting where agents
negotiate the exchange of resources to achieve their individual goals. A typical setting
of the Colored Trails game consists of a five-by-five board of colored tiles, where two or
more agents attempt to reach a certain (different) goal location. Using colored chips, the
agents may move onto a tile with the same color. An agent obtains points with each step in
the shortest path to its goal position, by reaching its goal position, and by having left-over
chips.

The Colored Trails setting represents a multi-issue bargaining situation, where each
issue is represented by a color, while different paths toward the goal location represent
different acceptable solutions. Agents competing in the Colored Trails game have over-
lapping issues, so both competitive and cooperative elements are involved. Negotiation in
such a mixed-motive setting can be seen as the task of sharing a metaphorical pie (Raiffa
et al., 2002). Agents participating in Colored Trails aim to both cooperate to achieve a
high number of points for both negotiators (enlarge the pie) and compete to reach their
individual goal location and have a large number of chips in possession (obtain as large a
piece of the pie as possible).

Besides agents, the Colored Trails game can be played by humans or a heterogeneous
group of humans and agents (Kraus et al., 2004). In particular, the Colored Trails frame-

3Also see https://coloredtrails.atlassian.net/wiki/spaces/coloredtrailshome/.
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work is a useful research test-bed for investigating the decision making of agents in a
negotiation setting (Gal et al., 2010). Previous research used this framework to investigate
the benefits of using theory of mind in negotiations (De Weerd, Verbrugge, & Verheij,
2013a; De Weerd et al., 2017, 2022; Ficici & Pfeffer, 2008).

De Weerd et al. (2013a) include incomplete information in Colored Trails, where agents
do not know each other’s goal location. In this uncertain setting, they show how theory
of mind can present individuals with an advantage over others who lack a theory of mind
ability. De Weerd et al. (2013a) argue that this may be a reason why our ability to reason
about the mental content of others may have evolved. De Weerd et al. (2017) follow up on
this and identify settings in which there is an evolutionary incentive to reason using higher
orders of theory of mind, which could explain the emergence of the human-like theory of
mind abilities. They show that the use of higher-order theory of mind can be beneficial in
settings where agents can observe more of the behavior of their trading partner (multiple
rounds of offers), and thus the ability to make use of higher-order theory of mind can be
associated with better negotiation skills.

De Weerd et al. (2022) investigate how the predictability of the environment affects the
effectiveness of (higher-order) theory of mind. They studied agents with different theory of
mind capabilities in the Colored Trails setting as a single-shot bargaining situation where
three agents meet one another in a negotiation. Using three types of environments differing
in predictability, they show that, within a given setting, theory of mind reasoning is more
beneficial when the environment is less predictable.

Finally, Ficici and Pfeffer (2008) investigate the use of theory of mind by humans and
construct different computer agents that fit human reasoning. They show that humans
use theory of mind by modeling other players to think strategically. Moreover, with an
experiment using software agents as trading partners for human participants, De Weerd
et al. (2017) show that theory of mind agents can even encourage the use of higher-order
theory of mind in human participants (also see De Weerd, Broers, & Verbrugge, 2015), and
may thus be used to train people in the application of their theory of mind and negotiation
skills.
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3
Methodology

This chapter deals with describing our implementation of an extension of the Colored
Trails game and the set-up of our experiments. The Colored Trails game has been used in
research settings to investigate various aspects of communication and negotiation between
agents (see Section 2.5). In our setting, we will use the Colored Trails game to implement
lying and investigate the influence of lying.

In Section 3.1, our Colored Trails game is described in detail. Then, in Section 3.2,
we discuss the implementation of theory of mind in the Colored Trails setting, adapted
from De Weerd et al. (2017). We discuss how our agents can lie in Section 3.3. Finally,
we describe our graphical user interface and experiments in Section 3.4 and Section 3.5,
respectively.

3.1 Game setting: Colored Trails

We will adopt the typical setting of the Colored Trails game consisting of a five-by-five
board of colored tiles, where two agents attempt to reach a certain goal location using
colored chips (De Weerd et al., 2013a, 2017). Both agents start in the center square and get
assigned a certain number of colored chips similar to the colors of the tiles of the board. A
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colored chip can be used by an agent to move onto an adjacent tile with the same color to
get closer to its goal location. The ultimate goal of an agent is to get the highest number
of points possible. An agent obtains points by moving toward its goal location, reaching
its goal location, and by having leftover chips after moving toward its goal location. An
agent obtains 100 points for every tile it can move onto in the shortest path from its starting
location to its goal location. When an agent reaches its goal location, it obtains 500 points.
An agent receives 50 points for every colored chip it has left.

At initialization of the game, the tiles of the game board are randomly colored from five
different colors. Moreover, each agent obtains four randomly colored chips, and each agent
gets assigned a goal location randomly chosen from twelve possible goal locations. The
possible goal locations are three or four steps away from the center square. The starting
position is the same for both agents and is the center square of the game board. The goal
locations of the agents can be different but also the same.

An example of the described Colored Trails game board is given in Figure 3.1. Agent
i can take two steps toward its goal location using a yellow and a fuchsia-colored chip.
After these two steps, agent i is left with two chips. This gives agent i a total of 300 points
with the initial distribution of colored chips. In contrast, agent r can take one step toward
its goal location using a yellow chip and is left with three chips. This gives agent r a total
of 250 points with the initial distribution of colored chips.

While an agent knows its own goal location, the goal location of the trading partner
is not known by the agent. Hence, an agent has incomplete information about the game.
An agent is thus uncertain about the preferences of its trading partner. By negotiating,
agents can offer a new distribution of chips. Agents alternate in making offers, and either
agent can make a new offer, accept the previous offer, or withdraw from negotiation. Both
agents cooperate and compete to get a higher number of points. However, to stimulate the
negotiation process, one point is subtracted from both agents for every offer that is made.

3.2 Theory of mind in Colored Trails

In this section, we describe the model used for agents to achieve a theory of mind capability
following De Weerd et al. (2017). This model allows for agents to generalize over different
games of Colored Trails and allows for sequential games, that is, a Colored Trails game
where the agents make offers one after the other. We follow De Weerd et al. (2017) and
say that
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Figure 3.1: Example setup for a five-by-five Colored Trails game with two agents, agents i and r.
The board consists of the following five colors (top row, from left to right): light blue, dark orange,
dark yellow, purple, and fuchsia (dark pink). The starting position of both agents is denoted with S,
and the goal positions of agents i and r are denoted with Gi and Gr, respectively. Both agents i
and r have one chip short to reach their goal, that is, agent i needs a dark orange chip, while agent
r needs a fuchsia-colored chip. If the two were to exchange a fuchsia chip for a dark orange chip,
both agents would reach their goal location, which increases the metaphorical pie. This can be
achieved by negotiating over the distribution of colored chips.

“an agent achieves theory of mind by taking the perspective of its trading

partner, and determining what its own decision would be if the agent had been

in the position faced by its trading partner.”

For convenience, we use the shorthand ToMk, k ≥ 0, for an agent that can use theory of
mind up to and including the kth-order, but not beyond.

While reading this section, we strongly advise also looking at the paper by De Weerd
et al. (2017) as it contains examples and a more elaborate intuition on how higher-order
theory of mind may benefit agents. Nevertheless, we tried to be as clear and specific as
possible in describing the (implemented) model of De Weerd et al. (2017). For clarity,
we indicate occurrences where we deviate from the notation of De Weerd et al. (2017).
Moreover, following De Weerd et al. (2017), we omit variables from functions if they can
be derived from the context.

Following the representation of De Weerd et al. (2017), a Colored Trails game is a
tuple CT = ⟨N ,D,L, πi, πr, D0⟩, where:

• N = {i, r} is the set of agents;

• D is the set of possible distributions of chips;

• L is the set of possible goal locations;
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• πi, πr : L × D → R are the utility functions for agents i and r, respectively, such
that, for example, πi(l, D) is the utility agent i obtains when l ∈ L is its goal location
and D ∈ D is the chip distribution; and

• D0 is the initial distribution of chips.

In addition, we define C, with |C| = 5, to be the set of possible colors the chips and the
tiles of the board can take on.

Note that this representation does not model the board explicitly. Namely, as the
utility functions contain information about the board configuration, the board is implicitly
modeled through the utility functions of the agents. In particular, utility is a function of a
possible goal position and a distribution of chips and represents the score the agent obtains.
The score is calculated as mentioned in Section 3.1.

Note that the notation in De Weerd et al. (2017) uses a time index in the utility
function indicating that one point is subtracted for every offer that is made. For notational
convenience, we can exclude the time index of the utility function and subtract points
for making offers only at the end of the negotiation. After the negotiation has ended, the
total score of the agent is thus given by the utility score minus the points subtracted from
the negotiation (the total number of offers). An important note, however, is that agents
do take into account the point subtraction for each offer that they make; this is only not
incorporated in the utility function.

To calculate the utility, an agent needs to have a starting position and a goal position.
Both the starting position and the goal position are inherently defined in the utility function.
By using the utility function, we abstract away from each agent finding the optimal route
from its starting position toward its goal position. Hence, we assume that an agent does
not make any mistakes in finding the optimal route and that an agent does not consider the
possibility of the other agent making such mistakes. Note that, while an agent knows its
goal position, it does not know the goal position of the other agent.

By negotiating and making offers, agents can improve their final score. Let Ot ∈ D
denote an offer made by an agent at time step t, t ∈ {0, 1, 2, . . . }. The chips of the trading
partner are known to an agent, so both agents know the set of possible offers D. During
negotiation, the initiator and responder take turns in making offers. Consequently, we
obtain a finite sequence of offers that we denote by {O0, O1, . . . }, followed by withdraw
or accept.

In the following subsections, we describe in detail how agents capable of theory of mind
play the Colored Trails game. Without loss of generality, we consider the point of view
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of agent i. By changing the subscripts from i to r (or vice versa), one obtains analogous
formulas for the point of view of agent r. Before diving into the mathematical model of
the agents, let us describe the general procedure that the agents follow.

The agent that makes the first offer O0 ∈ D is called the initiator, and its trading partner
is called the responder. The first offer O0 is thus always made by the initiator, but the
initiator can also choose to withdraw from negotiation instantly (see Section 3.2.1). Both
agents form beliefs about the likelihood of an offer going to be accepted. Offers that have
been rejected by the trading partner as well as offers that are received give information
about the likelihood of an offer going to be accepted by the trading partner. These beliefs
are updated during a game by discriminating the offers based on the colors of the chips
(see Section 3.2.5). At the beginning of a new round of negotiation, the beliefs are set to
the learned behavior of the trading partner (see Section 3.2.6). Besides the beliefs about
whether specific offers are going to be accepted by the trading partner, agents that can use
theory of mind construct beliefs about the goal position of the trading partner. These goal
location beliefs are updated whenever an offer is received. After updating all its beliefs,
the agent decides whether to accept the previous offer Ot−1, make a counteroffer Ot, or
withdraw from negotiation, based on which of the three options yields the highest expected
utility. For agent i with goal location li ∈ L, the utility corresponding to accepting the
previous offer is πi(li, Ot−1), and the utility corresponding to withdrawing from negotiation
is πi(li, D0). The utility corresponding to making a new offer is non-deterministic and is
based on the beliefs of the agent.

3.2.1 Initial offer

The initiator makes the first offer. Previous research has shown that making the first offer
in negotiations, in general, is influential (Raiffa et al., 2002; Rosette, Kopelman, & Abbott,
2014; Van Poucke & Buelens, 2002). The first offer in Colored Trails is special because
the initiator can decide first on negotiating or keeping the initial chip distribution, so it
serves as an anchor for the entire negotiation process. In the following sections, we will
describe the exact mathematical model of an agent deciding on its action as it depends on
the theory of mind capability of the agent, but for now, we point out the difference between
making the initial offer to making the other offers.

Each agent constructs beliefs about whether an offer will be accepted. A ToMk agent,
k ≥ 0, calculates the expected value EV

(k)
i of making an offer O ∈ D (see the next

subsections). The agent compares the expected value of making the best possible offer,
that is the offer yielding the highest expectation, with the utility of withdrawing. Different
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from the other steps in the negotiation, the initiator cannot choose to accept the previous
offer, since there simply has not been made a previous offer in the current negotiation
round. When the expected value of making the best offer is greater than the utility resulting
from withdrawing from negotiation, the agent makes the offer and starts the negotiation.
Otherwise, the agent withdraws from the negotiation and both agents keep their initial set
of colored chips.

3.2.2 Model of zero-order theory of mind

Let us consider agent i as being an agent limited to using zero-order theory of mind, that is,
a ToM0 agent. A ToM0 agent is not able to attribute mental content to the trading partner
or reason about the trading partner’s goal position. However, a ToM0 agent can model the
behavior of its trading partner by constructing zero-order beliefs b(0) : D → [0, 1] about the
likelihood b(0)(O) that the trading partner accepts certain offers O ∈ D. These zero-order
beliefs will be used to get an estimated value of continuing negotiations and are based on
observations only.

Using these zero-order beliefs, a ToM0 agent will still be able to make reasonable offers
by forming an expectation about how its score would change if it were to make a particular
offer. More specifically, the expected value a ToM0 agent assigns to making counteroffer
O ∈ D given its goal location li ∈ L and its zero-order beliefs b(0) is given by

EV
(0)
i (O, li, b

(0)) = b(0)(O) · πi(li, O) +
(
1− b(0)(O)

)
· πi(li, D0)− 1. (3.1)

This equation results from a summation from the zero-order belief that offer O ∈ D is
going to be accepted multiplied by the utility corresponding to this offer, πi(li, O), and
the zero-order belief that offer O ∈ D is going to be rejected multiplied by the utility of
the initial distribution, πi(li, D0). We subtract one point as making an offer comes with
a cost of one point.1 There is of course the possibility that the trading partner makes a
counteroffer, but since a ToM0 agent does not attribute mental content to the trading partner,
it simply considers two cases: an offer can either be accepted or rejected.

A ToM0 agent calculates the expected value of each of the possible offers it can make.
Then, the ToM0 agent randomly selects an offer that maximizes the expected value, that is,

O∗
t = argmax

O∈D
EV

(0)
i (O, li, b

(0)). (3.2)

1Because we leave out the time index in the utility function, we subtract here one point for making an
offer compared to the notation by De Weerd et al. (2017).
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A ToM0 agent will decide rationally between making an offer, accepting the previous
offer, or withdrawing from negotiation by choosing the option that will yield the agent the
highest (expected) score. Mathematically, a ToM0 agent will select the option that is in
accordance with its response function:

ToM0i(Ot−1, li, b
(0)) =



O∗
t if EV

(0)
i (O∗

t , li, b
(0)) > πi(li, D0) and

EV
(0)
i (O∗

t , li, b
(0)) > πi(li, Ot−1)

accept if πi(li, Ot−1) > πi(li, D0) and

πi(li, Ot−1) ≥ EV
(0)
i (O∗

t , li, b
(0))

withdraw otherwise.

(3.3)

Herein, observe that a ToM0 agent chooses to offer O∗
t when the expected score correspond-

ing to this offer is higher than the utility corresponding to accepting the previous offer
made by the trading partner and the utility corresponding to withdrawing from negotiation.
If this is not the case, but the utility corresponding to accepting the previous offer made by
the trading partner is higher than the utility corresponding to withdrawing from negotiation,
then the ToM0 agent accepts offer Ot−1. If both cases are not satisfied, the agent chooses
to withdraw from the negotiation. Notice that an agent can’t accept any offer made in
previous steps of the negotiation except for the very last offer made by the trading partner.
So, once an offer is rejected, it cannot be accepted in later steps in the negotiation.

3.2.3 Model of first-order theory of mind

Let us now consider agent i as a ToM1 agent. Being a ToM1 agent allows the agent to
attribute mental content such as beliefs and goals to the trading partner. A ToM1 agent can
reason about whether the trading partner will accept certain offers using this attributed
mental content, that is, a ToM1 agent can make predictions about the future behavior of
its trading partner using attributed mental states. To achieve this, a ToM1 agent can place
itself in the position of its trading partner and model what its action would have been if the
ToM1 agent were in the position of the trading partner.

A ToM1 agent can construct first-order beliefs b(1) : D → [0, 1] that represent what the
zero-order beliefs of the ToM1 agent would have been if it had been in the position of his
trading partner (De Weerd et al., 2017). More specifically, using the first-order beliefs, a
ToM1 agent considers that its trading partner believes that the probability of the ToM1 agent
accepting a given offer O ∈ D is b(1)(O). While a ToM0 agent only looks at whether or not
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an offer will be accepted by the trading partner, a ToM1 agent can also make predictions
about what counteroffer the trading partner could make and take this into account when
deciding on its action. Because of the sequential nature of the negotiation process, a ToM1

agent can look one step further ahead into the negotiation.

When an agent receives an offer, its beliefs may change. A ToM1 agent uses this
belief adjustment to model what the trading partner’s action will be after making an offer
O ∈ D. In particular, a ToM1 agent determines how making offer O ∈ D would change its
zero-order beliefs if it had been in the position of its trading partner, and makes further
calculations using the adjusted first-order beliefs U(b(1), O) (see also De Weerd et al.,
2017). A ToM1 agent uses these adjusted first-order beliefs to predict its trading partner’s
behavior by using the ToM0 response function as given by Equation (3.3).

Now, the expected value the ToM1 agent assigns to making counteroffer O ∈ D given
its goal location li ∈ L, its first-order beliefs b(1), and the partner’s goal position l ∈ L is
given by

EV
(1)
i (l, O) =


πi(li, D0)− 1 if Ô(1) = withdraw,

πi(li, O)− 1 if Ô(1) = accept,

max
{
πi

(
li, Ô

(1)
)
, πi(li, D0)

}
− 2 otherwise,

(3.4)

where
Ô(1) = ToM0r(O, l, U(b(1), O)) (3.5)

is the offer the ToM1 agent expects its trading partner to make in response to offer O ∈ D.
Here, we also subtract one point for every offer that is made. Hence, we subtract two
points when the ToM1 agent expects its trading partner to make a counteroffer.

Note that we used goal location l ∈ L in the above equations for the goal location of
the trading partner. The actual goal location of the trading partner is not known, but a ToM1

agent can construct beliefs about the goal location of the trading partner. Each offer the
trading partner makes reveals some information about its goal location, as a rational trading
partner would not offer a distribution that decreases its score. Goal location beliefs are
given by a probability distribution p(1) : L → [0, 1], where p(1)(l) denotes the likelihood
that a ToM1 agent assigns to its trading partner having goal location l ∈ L.

While a ToM1 agent has an additional toolkit by modeling the beliefs and goals of the
trading partner, a ToM1 agent might learn through repeated interactions that its first-order
beliefs fail in accurately modeling the behavior of the trading partner. A ToM1 agent,
therefore, has a confidence variable c1 ∈ [0, 1] that denotes the likelihood the ToM1 agent
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assigns to the predictions of its first-order theory of mind. A ToM1 agent weighs its
predictions about the (expected) utility of an offer according to this confidence variable.

More specifically, the expected value a ToM1 agent assigns to making counteroffer
O ∈ D is given by

EV
(1)
i (O) = (1− c1) · EV

(0)
i

(
O, li, b

(0)
)
+ c1 ·

∑
l∈L

p(1)(l) · EV
(1)
i (l, O) . (3.6)

A ToM1 agent randomly selects an offer that maximizes the expected value, that is,

O∗
t = argmax

O∈D
EV

(1)
i (O). (3.7)

A ToM1 agent will decide rationally between making an offer, accepting the previous
offer, or withdrawing from negotiation by choosing the option that will yield the ToM1

agent the highest (expected) score. A ToM1 agent will thus select the option that is in
accordance with its response function:

ToM1i(Ot−1) =



O∗
t if EV

(1)
i (O∗

t ) > πi(li, D0) and

EV
(1)
i (O∗

t ) > πi(li, Ot−1)

accept if πi(li, Ot−1) > πi(li, D0) and

πi(li, Ot−1) ≥ EV
(1)
i (O∗

t )

withdraw otherwise.

(3.8)

3.2.4 Model of higher-order theory of mind

Finally, let us consider agent i as a ToMk agent, k ≥ 2. A ToMk agent is capable of
higher-order theory of mind and considers the possibility that its trading partner takes into
account that the ToMk agent has beliefs and goals as well. This allows a ToMk agent to
manipulate the beliefs of its trading partner when its trading partner uses a lower-order
theory of mind. A ToMk agent might also decide to reveal its goal position to the trading
partner by choosing its offer such that the trading partner can exclude many other goal
locations. Whether a ToMk agent decides to reveal its goal location or manipulate the
beliefs of the trading partner depends on which of the options yields the ToMk agent the
highest expected score.

Analogously to a ToM1 agent, for every order of theory of mind, an agent has additional
beliefs b(k) : D → [0, 1], goal location beliefs p(k) : L → [0, 1], and a confidence ck ∈ [0, 1]
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in its kth-order theory of mind. Therefore, a ToMk agent has k + 1 hypotheses about the
future behavior of its trading partner. A ToMk agent continuously updates these beliefs
according to which hypothesis fits the behavior of its trading partner best.

Recall that the beliefs of the trading partner may change when it receives an offer.
Just like a ToM1 agent, a ToMk agent, k ≥ 2, uses adjusted beliefs to predict its trading
partner’s behavior by using the response function of a ToMk−1 agent. Assuming that the
trading partner’s goal position is l ∈ L, the expected value a ToMk agent assigns to making
counteroffer O ∈ D is given by

EV
(k)
i (l, O) =


πi(li, D0)− 1 if Ô(k−1) = withdraw,

πi(li, O)− 1 if Ô(k−1) = accept,

max
{
πi

(
li, Ô

(k−1)
)
, πi(li, D0)

}
− 2 otherwise,

(3.9)

where
Ô(k−1) = ToM(k−1)r(O) (3.10)

is the offer the ToMk agent expects its trading partner to make in response to offer O.
Using the expected values of the lower orders of theory of mind recursively, the expected
value a ToMk agent assigns to making counteroffer O ∈ D is given by

EV
(k)
i (O) = (1− ck) · EV

(k−1)
i (O) + ck ·

∑
l∈L

p(k)(l) · EV
(k)
i (l, O) . (3.11)

A ToMk agent randomly selects an offer that maximizes the expected value, that is,

O∗
t = argmax

O∈D
EV

(k)
i (O). (3.12)

A ToMk agent will decide rationally between making an offer, accepting the previous
offer, or withdrawing from negotiation by choosing the option that yields the highest
(expected) score. A ToMk agent will thus select the option that is in accordance with its
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response function:

ToMki(Ot−1) =



O∗
t if EV

(k)
i (O∗

t ) > πi(li, D0) and

EV
(k)
i (O∗

t ) > πi(li, Ot−1)

accept if πi(li, Ot−1) > π(li, D0) and

πi(li, Ot−1) ≥ EV
(k)
i (O∗

t )

withdraw otherwise.

(3.13)

3.2.5 Learning within games

The ToM0 agents discussed in Section 3.2.2 form beliefs about the likelihood that a certain
offer will be accepted. An agent updates these beliefs when it receives an offer from its
trading partner and when the trading partner rejected its offer. Whether or not an offer
will be accepted depends on the game board, the distribution of chips, the goal locations
of the agents, the history of offers made in this game, and the history of offers made in
previous games. (For more about learning across games, see Section 3.2.6.) To generalize
the behavior of ToM0 agents, we discuss a simple learning heuristic in this subsection as
provided by De Weerd et al. (2017).

Many of the belief updates in this subsection make use of an agent-specific learning
speed λ ∈ [0, 1]. The learning speed is a fixed parameter that represents the degree to
which new information influences the beliefs of the agent. A high learning speed means
that the agent updates its beliefs fast and based on the latest information, and a low learning
speed means that the agent needs a longer time to take the information into account. Agents
do not try to model the learning speed of their trading partners. Hence, the beliefs of the
agent about the trading partner are generally incorrect, unless the learning speed of the
agents is the same.

When a ToM0 agent receives offer Ot−1, the ToM0 agent decreases its belief that its
trading partner will accept an offer O ∈ D when offering O ∈ D assigns more chips of
some color c ∈ C to the agent itself than offer Ot−1 does. For a ToM0 agent, this results in
a belief update

U(b(0), Ot−1)(O) = (1− λ)m · b(0)(O), (3.14)

where m is the number of colors for which offer O ∈ D assigns more chips to the agent
itself than offer Ot−1. For example, if the trading partner offers two blue chips and two red
chips to the agent, the agent considers it to be less likely that any offer that assigns more
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than two blue chips, more than two red chips, or at least one chip of another color to the
agent itself will be accepted by the trading partner.

When the trading partner rejects offer Ot (by making a new offer), the agent decreases
its belief that its trading partner will accept any offer O ∈ D that assigns at least as many
chips of a given color c ∈ C to the agent itself as offer Ot does. For a ToM0 agent, this
results in a belief update as given by

UR(b(0), Ot)(O) = (1− λ)m
′ · b(0)(O), (3.15)

where m′ is the number of colors for which offer O assigns at least as many chips of a
given color c ∈ C to the agent as offer Ot does. For example, if the agent offers two blue
chips and two red chips to the trading partner and the trading partner rejects the offer, the
agent considers it to be less likely that any offer that assigns at least two blue chips, at least
two red chips, or at least zero chips of another color to the agent itself will be accepted
by the trading partner. In the case of five available chip colors in the game, this means
that all offers are considered to be less likely to be accepted because any offer assigns at
least zero chips of the other colored chips. However, the offers that assign at least two blue
chips or at least two green chips will be considered even less likely, as can be verified with
Equation (3.15).

Agents that are capable of theory of mind also have beliefs about the goal location of the
trading partner. These beliefs are updated whenever an agent receives an offer from the
trading partner. Agents assume that the trading partner is rational and that the trading
partner only makes offers that increase the score of the trading partner. Hence, when a
ToMk agent, k ≥ 1, receives an offer Ot−1, the ToMk agent considers it impossible that
the goal location of its trading partner is l ∈ L for which πr(l, Ot−1) + 1 ≤ πr(l, D0),
since for these goal locations the trading partner would be better off by withdrawing from
negotiation. For the other possible goal locations l ∈ L, the belief update is proportional
to the expected increase in the score of the trading partner if offer Ot−1 would be accepted.
That is, after receiving offer Ot−1 from its trading partner, a ToMk agent updates its goal
location beliefs p(k) of goal location l ∈ L as follows:

p(k)new(l) :=


0 if πr(l, Ot−1) + 1 ≤ πr(l,D0)

β · p(k)old(l) ·
1 + EV

(k−1)
i→r (l, Ot−1)

1 + maxO∈D EV
(k−1)
i→r (l, O)

otherwise,
(3.16)
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where p
(k)
old are the old goal location beliefs, p(k)new are the new goal location beliefs, and β

is a normalizing constant to ensure
∑

l∈L p
(k)
new(l) = 1. For the sake of clarity, we used the

notation EV
(k−1)
i→r to indicate that the expected value is calculated using the (k− 1)th-order

beliefs that agent i, a ToMk agent, assigns to agent r, a ToMk−1 agent.

Furthermore, agents that are capable of theory of mind update their confidence in their
order of theory of mind. It might be that an agent’s model of the trading partner is not
accurate using its order of theory of mind. In that case, the agent can choose to place
more confidence in a lower-order of theory of mind that better fits the behavior of its
trading partner. Because its trading partner may also change its order of theory of mind,
confidences are updated using adaptive expectations. After a ToMk agent, k ≥ 1, receives
offer Ot−1 from its trading partner, the ToMk agent updates its confidence in using its
kth-order theory of mind c(k) by using the update formula

c(k)new := (1− λ) · c(k)old + λ ·
∑
l∈L

p
(k)
old(l) ·

1 + EV
(k−1)
i→r (l, Ot−1)

1 + maxO∈D EV
(k−1)
i→r (l, O)

. (3.17)

Herein, c(k)old and c
(k)
new are the old and new confidence in using its kth-order theory of mind,

respectively. A ToMk agent assigns higher confidence to its kth-order theory of mind
when the agent assigns a high expected value to the offer Ot−1 made by the agent’s trading
partner compared to the offer that the agent would have selected itself if it had been a
ToMk−1 agent in the position of its trading partner.

At the start of a new round of negotiation, a ToMk agent, k ≥ 1, resets its confidence
in its kth-order theory of mind to 1. Moreover, note that a ToMk agent, k ≥ 1, can model
its trading partner as a ToMk−1 agent. This means that for k ≥ 2, a ToMk agent can model
its trading partner being able to put higher confidence in its lower-order of theory of mind
capability. If that were to happen, a ToM2 agent could model its trading partner to be
a ToM1 agent but the ToM1 trading partner using a zero-order theory of mind strategy.
Since a ToM2 agent can also model its trading partner to be a ToM0 agent by putting more
confidence in its own first-order beliefs, a ToMk agent models its trading partner with the
trading partner’s confidence fixed to 1. This means that the partner model of a ToMk agent
is modeled as a ToMk−1 agent with its confidence in its (k − 1)th-order theory of mind
fixed to 1. If the ToMk agent uses its (k − 1)th-order theory of mind, the ToMk agent
models its trading partner as a ToMk−2 agent but the ToMk−2 agent’s confidence is fixed,
etc.

A visual representation of how agents capable of theory of mind model their trading
partner and use their theory of mind of lower orders is given in Figure 3.2. A ToMk agent,
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k ≥ 1, has a model of itself with a lower-order of theory of mind and a model of its trading
partner with a lower-order of theory of mind because an agent capable of kth-order theory
of mind can model its trading partner as a ToMk−1 agent. Since the model of the trading
partner is confidence-locked, that is, all its confidence is assigned to its highest order of
theory of mind capability, the model of the trading partner does not have a model of itself
where it can use a lower-order of theory of mind.

self

partner

self

k

2

k-1

partner

self

0

0

if k is even: partner
otherwise: self

1 0

self

1

partner

1

self

0

if k is even: self
otherwise: partner

Figure 3.2: Model structure of a ToMk agent. A ToMk agent, k ≥ 1, models its trading partner
as a ToMk−1 agent. A partner model is always confidence-locked, which means that a modeled
partner does not have a (direct) model of itself with a lower-order theory of mind capability. An
agent that is not confidence-locked also has a model of itself where it can use its lower-order theory
of mind capability. Note that the kth-order beliefs of an agent with at least a kth-order theory of
mind capability of whether an offer is going to be accepted are the modeled (k − 1)th-order beliefs
of the trading partner (where k ≥ 1).

3.2.6 Learning across games

An offer such as three blue chips and one red chip might be much better in one Colored
Trails game setting than in another setting. The number of possible game boards in our
version of Colored Trails is 525 as there are 25 colored tiles and each tile can have 5
possible colors.2 Moreover, we have two players each with initially four chips that can

be colored in five different ways, so there are
((

(5+4−1
4

))2

= 4900 possible distributions
of an initial set of chips, where we take the power of 2 to account for the initiator and the

2Since agents have the same starting position, the starting position will never be moved on (again) when
finding the shortest path to the goal position. Hence, agents will never have to hand in a chip for moving to
the starting position, and so the color of the starting position is irrelevant to the game. As a consequence, it
could be excluded from the total possible game boards, but for completeness, we left it here.
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responder.3 In addition, we have twelve possible goal locations for each player, resulting in
122 possible distributions of goal locations. Taken together, we have over 2 · 1023 different
initial game settings, so it is infeasible for agents to form beliefs for each game setting
within our Colored Trails game.

For ToM0 agents to generalize across the over 2 ·1023 different initial game settings, De
Weerd et al. (2017) propose a simple learning heuristic that allows ToM0 agents to make
mutually beneficial offers after a short learning period. In this subsection, we discuss how
ToM0 agents learn across different Colored Trails games.

To distinguish between offers in different games, the color of the chips is not taken into
account. Instead, offers are classified by the number of chips that are transferred from the
agent to its trading partner, and the number of chips that are transferred from the trading
partner to the agent. Since agents initially possess four colored chips, an agent can offer
zero to four chips to the trading partner and vice versa. Hence, there are a total of 25
classes of offers that agents distinguish. For example, agents distinguish between an offer
that trades one (blue) chip for one (red) chip and an offer that trades two (blue) chips for
two (red) chips, but agents do not distinguish between an offer that trades one blue chip
with one red chip and an offer that trades one green chip for one red chip.

During negotiation, for each of the 25 classes of offers, agents keep track of the total
number of offers (received and made) and the total number of offers that are accepted by
the trading partner. Here, agents consider offers made by the trading partner also as offers
that are accepted by the trading partner (as a rational trading partner only makes offers that
the agent itself would accept). At the instantiation of a new negotiation round, an agent
resets the belief of an offer going to be accepted equal to the observed frequency of similar
types of offers that have been accepted. To provide an agent with beliefs before any offer
has been observed and to circumvent complete disbelief of an offer going to be accepted,
the agent assumes to have had five positive encounters with every offer type.

3.3 Lying in Colored Trails

In Section 3.2, we discussed how agents can have a theory of mind capability, which is
adapted from De Weerd et al. (2017). In this section, we will deviate from De Weerd et
al. (2017) and other existing literature by introducing agents that are capable of lying in

3To calculate the number of combinations with repetition, the formula
(
n+k−1

k

)
can be used, where n is

the number of different elements and k is the sample size.
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Colored Trails. In this thesis, lying is defined as an agent making a false statement with
the intent to deceive. More specifically, we define lying in Colored Trails as follows:

Definition 3 (Lying in Colored Trails). An agent is said to be lying if and only if the
agent makes a statement p that the agent believes to be false with the intent that its
trading partner believes that p is true and that its trading partner believes that the lying
agent also believes p is true.

Regarding this definition, one might argue that the agents discussed in Section 3.2
do not have intentions,4 since these agents make decisions based on an expected value
and choose the action that leads to the highest expected value. In this definition and the
subsequent part of our thesis, we adopt the intentional stance (Dennett, 1989) toward
our agents. This means that we use the strategy of ascribing intentions to our agents in
predicting and explaining their behavior.

Definition 3 of lying in Colored Trails is adapted from the definition of lying as given
by Van Ditmarsch et al. (2020), which is also stated in the introduction of this thesis (recall
Definition 1). Following Definition 1, common belief is required for lying; however, if we
were to require common belief in our setting, a lying agent would need an infinite theory
of mind capability. Hence, we restrict the definition of lying in Colored Trails such that
a lying agent needs to be capable of second-order theory of mind to capture the intent to
change the beliefs that the receiver has about the lying agent itself.

Agents that are not capable of second-order theory of mind, i.e., ToM0 and ToM1 agents,
are not considered agents capable of lying. When a ToM0 agent makes a statement that the
agent believes to be false, it does so without the intent to change the beliefs of the trading
partner, since it does not model its trading partner having beliefs. Hence, we say that a
ToM0 agent simply utters a false statement. However, when a ToM1 agent makes a false
statement, it might intend to change the beliefs of the trading partner without intending
to change the beliefs the trading partner attributes to the ToM1 agent itself, since a ToM1

agent does not model its trading partner attributing beliefs to the ToM1 agent itself. A
ToM1 agent is, therefore, not able to lie according to Definition 3; however, we say that a
ToM1 agent can mislead:

4Or one might argue whether a computer agent can have intentions at all. Like mentioned in the
introduction of Chapter 2, there is still an ongoing (philosophical) debate about whether AI systems can hold
beliefs and intentions (Livet & Varenne, 2020).
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Definition 4 (Misleading in Colored Trails). An agent is said to be misleading if and
only if the agent makes a statement p that the agent believes to be false with the intent
to change the beliefs of the trading partner.

Note that misleading is a more general term than lying, that is, an agent capable of lying is
also capable of misleading, while an agent capable of misleading is not necessarily capable
of lying. The difference lies mainly in that an agent misleading with statement p does
not have to model the beliefs of the trading partner about statement p, but with stating
statement p, the misleading agent intends to change some beliefs (which can be about
statement p but do not have to).

Recall that an offer is simply a distribution of colored chips that an agent offers to the
trading partner. Agents capable of theory of mind can use offers to change the beliefs of
the trading partner. Offers can therefore be used to deceive the trading partner by making
an offer with the intent to cause the trading partner to hold a false belief about something
that the deceiving agent knows to be false (recall Definition 2 of deceiving). A ToM2 agent
who makes an offer that results in its trading partner deducing false information about the
agent’s goal location is an example of deceptive behavior.

Example 1 (Deceptive behavior in the original Colored Trails setting (De Weerd et al.,
2017)). In Figure 3.3, a ToM2 agent deceives the trading partner by making an offer
that results in the trading partner deducing false information about the ToM2 agent’s
goal location. The initiator is the ToM2 agent and the responder is a ToM1 agent. In
this example, both agents can only communicate through offers, so we consider the
setting as described in Section 3.2.

In this example, the goal location of agent i is goal location 1. Agent i can move
two steps toward its goal location after which it has two chips left; so, with its initial
set of chips, agent i can reach a total of 300 points.

Agent i decides to offer two purple and two light blue chips to agent r; so, it offers
to exchange a purple chip for a dark orange chip. Agent i models with its second-
order theory of mind capability that this offer results in agent r only considering goal
locations 2 and 8 as possible goal locations for agent i, assuming agent r is a ToM1

agent. Agent i places itself in the position of its trading partner (agent r) and calculates
the score change for agent i if agent r would accept the offer, for each possible goal
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location. The higher the increase in score for agent i, the more likely agent r finds that
location to be the actual goal location of agent i.
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Figure 3.3: Example of deceptive behavior by a ToM2 agent (the initiator), agent i, negotiating
with a ToM1 agent (the responder), agent r. Agent i offers to exchange a purple chip for a dark
orange chip. The (larger) centered numbers in the tiles indicate the change in score for agent
i if agent r were to accept the offer of agent i and agent i were to have that goal location as
its actual goal location. The (smaller) numbers in the top right corner of a tile indicate the
goal location numbers. The tile highlighted with the dashed border is the actual goal location
of agent i, which is unknown to agent r. The goal location of agent r is not relevant for this
example and is therefore not indicated. The starting position of both agents is denoted with S.

In this example, agent i chooses to offer a distribution of chips that does not
increase its score; however, agent i calculated that the expected value of this offer was
the highest among all distributions of chips it could offer. Agent i might expect that
agent r makes a counteroffer in response to this offer that it would accept.

As a result of receiving the offer from agent i, agent r places zero probability
mass on goal location 1, the actual goal location of agent i, and only considers goal
locations 2 and 8 as possible goal locations for agent i. In this example, agent i, a
ToM2 agent, deceives agent r as agent i intentionally causes agent r to have false goal
location beliefs (recall Definition 2 of deceiving).

While agents capable of second-order theory of mind as described in Section 3.2 are
able to deceive, these agents are not able to lie. According to Definition 3, agents cannot
possibly lie to the trading partner by simply making offers since an offer is a distribution
of chips an agent offers to the trading partner and thereby a commitment: If the trading
partner decides to accept the offer, the offer becomes final. Hence, in the original game of
Colored Trails, an agent cannot make a statement p that the agent believes to be false. In
Sections 3.3.1–3.3.3, we extend the traditional Colored Trails game by introducing agents
that will be able to communicate with each other by making statements besides making
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offers. This enables agents capable of second-order theory of mind to lie to their trading
partners.

More specifically, we explain how agents can use the additional communication option
in Section 3.3.1. Section 3.3.2 follows with explaining when agents decide on sending a
goal location message. In Section 3.3.3, we introduce agents that are capable of lying.

3.3.1 Communication

We first introduce an additional communication option for an agent to be able to make false
statements in Colored Trails. One may think of multiple ways an agent can usefully com-
municate some information about the Colored Trails game to the trading partner. Examples
of useful communication by an agent in the Colored Trails setting are communicating a
goal position (as an agent’s goal position is unknown to the trading partner), a preference
order of offers, or the number of chips needed to reach its goal location. These three
examples are useful communication in Colored Trails in the sense that communicating a
goal position, a preference order of offers, or the number of chips needed to reach its goal
location gives (additional) information about the game to the trading partner.

In our specific case of Colored Trails with five different colors and each agent having
initially four colored chips, there are 9 to 108 offers an agent can make, depending on the
initial division of colored chips. In the simple case where all chips have the same color, an
agent can make nine different offers. Consequently, an agent can construct (9× 8 =) 72

different preference orders of two different offers. However, in cases where the colors
are evenly distributed over the chips, the agent can make (108× 107 =) 11,556 different
preference orders of two different offers. When an agent has to decide which of these
preference orders to communicate, it must reason about the effect of communicating each
of these different preference orders. This means that a ToM0 agent has to store and compute
the effect of every different preference order of two different offers.

On the other hand, in our Colored Trails setting of a five-by-five board, goal locations
are the locations that are at least three or four steps away from the starting location.
Communicating the number of chips needed to reach its goal location is limited to three
and four chips. Hence, there would be only two possibilities to communicate.

Since communicating a preference order would be highly computationally expensive
but communicating the number of chips needed to reach its goal location may be too simple,
agents in this thesis can communicate a goal location to the trading partner by a goal

location message, that is, a message communicating to the receiver that the goal location
in the message is the sender’s goal location. There are twelve possible goal locations
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in our Colored Trails game, so reasoning about which goal location to communicate is
less computationally expensive than reasoning about which preference order of offers to
communicate.

Before sending an offer, an agent has the opportunity to communicate a goal location
to the trading partner. Agents can also decide not to send a goal location message before
an offer. In that case, an agent only makes an offer and the trading partner takes its turn.
Besides making an offer, an agent can decide to withdraw from negotiation or accept the
previous offer as mentioned in Section 3.2. In the case that an agent decides to accept the
previous offer or withdraw from negotiation, a goal location message cannot be sent since
the distribution of chips is already final.

Using the additional communication method of agents being able to send goal location
messages, we can construct five new types of agents (in addition to the agents capable of
theory of mind in De Weerd et al. (2017)):

• a ToM0 agent that can send goal location messages, including goal location messages
containing a goal location that is not its actual goal location;

• an honest ToM1 agent that can send goal location messages but is not capable of
sending goal location messages containing a goal location that is not its actual goal
location;

• a misleading ToM1 agent that can send goal location messages and can send goal
location messages containing a goal location that is not its actual goal location;

• an honest ToM2 agent that can send goal location messages but is not capable of
sending goal location messages containing a goal location that is not its actual goal
location;

• a lying ToM2 agent that can send goal location messages and can send goal location
messages containing a goal location that is not its actual goal location.

Note that by adopting the intentional stance of Dennett (1989), we may ascribe the intention
of agents that are not capable of sending goal location messages containing a goal location
that is not its actual goal location, to be honest. We explain the capabilities of the different
agents in the subsequent part of Section 3.3.

3.3.1.1 Receiving a goal location message

The result of receiving a goal location message depends on the theory of mind capability
of the agent. When a ToM0 agent receives a goal location message from the trading partner,
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the ToM0 agent cannot understand the meaning of the message like agents with a first-order
or second-order theory of mind capability do, since a ToM0 agent cannot model a goal of
the trading partner. While a ToM0 agent cannot construct beliefs about the trading partner
having a goal, it constructs beliefs about the probability of an offer going to be accepted.

When a ToM0 agent receives a goal location message, it decreases its belief that its
trading partner will accept an offer O ∈ D that does not contain a chip of the color
corresponding to the goal location indicated by the goal location message. If it is indeed
the case that the sender’s goal location is the goal location mentioned, the sender needs at
least one chip of that color to reach its goal location. When a ToM0 agent receives a goal
location message containing goal location l ∈ L, the belief update is given by

URG(b(k), l)(O) = (1− λ)(1−1{contains color(O,c(l))}) · b(k)(O). (3.18)

Herein, 1{x} is the indicator function that evaluates to 1 if x is true, and 0 otherwise;
c : L → C a function that returns the tile color of the goal location; and
contains color : D×C → {true,false} a function that returns true if and only
if offer O ∈ D contains a chip with input color c ∈ C.

While ToM0 agents do not model the trading partner having a goal location, ToMk

agents with k ≥ 1 do; so ToMk agents, k ≥ 1, will be able to infer a goal location of
the trading partner from receiving a goal location message and adjust their goal location
beliefs. When a ToMk agent, k ≥ 1, receives a goal location message, it first checks
whether it already received a goal location message in the current negotiation round and
acts accordingly.

If the ToMk agent did not receive a goal location message from its trading partner
before, it agent checks if its goal location belief of the communicated goal location is
greater than zero (i.e., a nonzero probability that the trading partner has indeed the goal
location as mentioned in the goal location message). If it is the case that the ToMk agent’s
goal location belief of the communicated goal location is greater than zero, then it believes
the trading partner and sets its goal location belief to 1 for the communicated goal location
and zero for all other goal locations. If the ToMk agent’s goal location belief of the
communicated goal location is equal to zero, it does not believe the trading partner, and
it will not change its goal location beliefs. Note that this means that an agent capable of
theory of mind believes that the goal location in the goal location message is the sender’s
actual goal location even when the agent considers there to be a really small probability
that the mentioned goal location is the sender’s actual goal location. However, since they
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are only beliefs of the agent, the ToMk agent still considers it possible that the goal location
mentioned in the goal location message is not the actual goal location of the trading partner.

When a ToMk agent, k ≥ 1, receives its first goal location message in the current
negotiation round and believes the trading partner, the ToMk agent stores its goal location
beliefs before updating them. A ToMk agent, k ≥ 1, stores its goal location beliefs because
the ToMk agent considers a possibility that the goal location mentioned in the goal location
message is not the actual goal location of the trading partner. A ToMk agent, k ≥ 1, may
disbelieve its trading partner when an additional goal location message is sent containing a
different goal location, contradicting the previous goal location message, or when an offer
of the trading partner is not rational assuming the goal location of the trading partner is
indeed the goal location mentioned by the trading partner. In both cases, after the updates
have taken place, all goal location beliefs would be zero, resulting in the ToMk agent
believing that no goal location is the actual goal location of the trading partner, which is not
possible since each agent has a goal location. Hence, in such cases, a ToMk agent, k ≥ 1,
restores its saved goal location beliefs (its goal location beliefs without the influence of a
goal location message) and uses these saved goal location beliefs as its new goal location
beliefs.

If a ToMk agent, k ≥ 1, were to receive a new goal location message, but the ToMk

agent already revoked its goal location beliefs, the agent will not believe the trading partner
anymore. Consequently, the ToMk agent will not update its goal location beliefs in response
to the goal location message and acts as if the new message had not been sent.

As explained in Section 3.2.5, a ToMk agent, k ≥ 1, updates its goal location beliefs
after an offer is made by the trading partner. The ToMk agent will still update its goal
location beliefs according to Equation 3.16 due to offers that the trading partner makes
even when it received a message in the current negotiation round. Moreover, the saved
goal location beliefs are also updated as if the saved goal location beliefs of the ToMk

agent were the actual goal location beliefs. Finally, the confidence of the ToMk agent in its
kth-order theory of mind, is updated using Equation (3.17) using its current goal location
beliefs.

Example 2 (Receiving a goal location message). In Figure 3.4, agent i, a ToM2 agent
(the initiator), sends a goal location message with its actual goal location, goal location
1, to agent r, a ToM1 agent (the responder). Since agent r did not receive a goal
location message in this negotiation round yet, agent r checks whether its goal location
belief of goal location 1 is nonzero. Since there had not been sent an offer yet, its goal
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location belief was 0.08 (because there are 12 possible goal locations and each goal
location is equally likely). Hence, agent r sets its goal location belief to 1 for goal
location 1 and zero for all other goal locations. Agent r stores its goal location beliefs
(all with 0.08) because agent r considers the possibility that goal location 1 is not
the actual goal location of agent i in which case it will use these saved goal location
beliefs again.
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Figure 3.4: Example of an agent receiving a goal location message. The ToM2 agent (the
initiator), agent i, negotiates with a ToM1 agent (the responder), agent r. The initiator sends a
goal location message with its actual goal location, goal location 1. Moreover, the initiator
offers to exchange one yellow chip for two orange chips. The (larger) centered numbers in the
tiles indicate the change in score for the initiator if the responder were to accept the offer of
the initiator and the initiator were to have that goal location as its actual goal location. The
(smaller) numbers in the top right corner of a tile indicate the goal location numbers. The tile
highlighted with the dashed border is the actual goal location of agent i, which is unknown
to agent r. The goal location of agent r is not relevant for this example and is therefore not
indicated. The starting position of both agents is denoted with S.

Together with the goal location message, an offer is sent by agent i. Agent i offers
one yellow chip against two orange chips. After receiving the offer from agent i, agent
r updates its current goal location beliefs, which remain the same, since the offer is
rational when assuming that goal location 1 is the goal location of agent i, that is, agent
r remains to believe with probability 1 that the goal location of the trading partner
is goal location 1. In case it turns out that there occurs a contradiction in the beliefs
of agent r later in the negotiation, that is, all goal location beliefs become 0, agent r
will revoke its goal location beliefs and use its saved goal location beliefs. During
negotiation, these saved goal location beliefs are also updated.
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3.3.1.2 Sending a goal location message

Whether an agent sends a goal location message depends partly on its theory of mind
capability. While zero-order and first-order theory of mind agents will be able to send
goal location messages, only an agent that is capable of second-order theory of mind will
be able to model the effects of sending messages that reveal a goal location to its trading
partner, since agents that are capable of second-order theory of mind can model the trading
partner having beliefs about the focal agent’s goal location.

A ToM0 agent does not model beliefs or a goal location of the trading partner but
constructs beliefs only about the probability of an offer going to be accepted. Hence, a
ToM0 agent does not consider a change in the beliefs of the trading partner resulting from
it sending a goal location message. Instead, a ToM0 agent sends a goal location message
according to some small probability (see Section 3.3.2). When the ToM0 agent sends a
goal location message, its actual goal location has the highest probability of being chosen.
This kind of behavior fits with the interpretation of signals by ToM0 agents and is inspired
by the caching behavior of ravens (Van der Wall, 1990). When caching their food on a
specific site, ravens look out for the presence of potential raiders, and as a consequence,
frequently interrupt caching, change cache sites, or recover their food items from a cache
site (Bugnyar & Kotrschal, 2002).

While ToM0 agents cannot model beliefs and a goal location of their trading partner,
agents capable of theory of mind can. A ToMk agent, k ≥ 1, models its trading partner
having beliefs. Since agents change their beliefs as a result of receiving a goal location
message, a ToMk agent, k ≥ 1, will be able to reason what the effect of sending a goal
location message is. Whether a ToMk agent, k ≥ 1, actually sends a goal location message,
is discussed in the next section, Section 3.3.2.

Now that we discussed the changes in beliefs that occur when an agent sends a goal
location message and receives a goal location message, we can summarize the changes in
beliefs due to sending or receiving a goal location message as follows:

• When a ToM0 agent receives or sends a goal location message, it changes its zero-
order beliefs, that is, the beliefs of the probability of an offer going to be accepted.

• When a ToM1 agent receives a goal location message, it may change its goal location
beliefs (depending on whether it believes the trading partner). The ToM1 agent also
changes its first-order beliefs, since they are the zero-order beliefs of the trading
partner who sent the goal location message, and a ToM0 agent sending a goal
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location message changes its zero-order beliefs. Moreover, when a ToM1 agent sends
a message, it changes its first-order beliefs, but it does not change its goal location
beliefs.

• When a ToM2 agent receives a goal location message, it changes its goal location
beliefs. Moreover, the ToM2 agent changes its second-order beliefs, as they are the
modeled zero-order beliefs of itself what the trading partner models as its first-order
beliefs, and thus what the ToM2 agent’s second-order beliefs are. When a ToM2

agent sends a goal location message, it does not change its goal location beliefs, but
it does change its second-order beliefs.

Moreover, note that a ToMk agent, k ≥ 1, has a model of itself where it is a ToMk−1

agent with (k − 1)th-order beliefs. Hence, when a ToMk agent, k ≥ 1, receives or sends a
message and its beliefs change, its (k − 1)th-order beliefs also change.

3.3.2 When to send a goal location message?

Recall from Section 3.2 that an agent can make an offer, withdraw from negotiation, or
accept the previous offer of the trading partner. In Section 3.3.1, we introduced how an
agent can communicate a goal location message before making an offer. Now, we discuss
when a ToMk agent will decide to communicate a goal location message together with an
offer.

Before an agent decides on its action, the agent determines the expected value of all
possibilities and chooses the combination that results in the highest expected value. An
agent first calculates the best offer without sending a goal location message according to
the model as described in Section 3.2. After this, the procedure differs depending on the
theory of mind capability of the agent.

When a ToM0 agent decides to make offer O ∈ D, i.e., the expected value of making
offer O ∈ D is maximal, there is a probability p0 ∈ [0, 1] that the ToM0 agent communicates
a goal location message together with making offer O ∈ D. When a ToM0 agent sends a
goal location message, the ToM0 agent chooses each goal location that is not its actual goal
location with probability p1 ∈ [0, (|L| − 1)−1], where |L| is the number of possible goal
locations. The upper limit on p1 is set such that the sum of the probabilities of sending
a false goal location, i.e., (|L| − 1) · p1, does not exceed 1. Here, we assume that there
are at least two goal locations such that there is a goal location that is not the actual
goal location of an agent. (Note that, in our Colored Trails setting, we have |L| = 12.)
The probability that a ToM0 agent sends its actual goal location follows from p1. More
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specifically, when a ToM0 agent sends a goal location message, it chooses its actual goal
location with probability 1 − (|L| − 1) · p1. Probability p1 will be chosen such that the
probability of sending its actual goal location is the highest, that is, p1 is chosen such that
1− (|L| − 1) · p1 > p1, which boils down to p1 < (|L|)−1.

As discussed in Section 3.2, a ToMk agent, k ≥ 1, models the expected response of
its trading partner when deciding on an offer. When sending a goal location message
with an offer, the ToMk agent models what it would do if it were in the position of its
trading partner and received a goal location message with location l ∈ L together with
offer O ∈ D. The ToMk agent models the change in beliefs and models what the response
of the trading partner will be as discussed in Section 3.2 and calculates the expected value
of sending the goal location message in combination with the offer. Agents do not model a
response of the trading partner where it sends a goal location message.

If a combination of a goal location message together with an offer yields a strictly
higher expected value than any offer without a goal location message, the ToMk agent
chooses the best combination of a goal location message with an offer. Otherwise, the
ToMk agent chooses the best offer without any goal location message similar to De Weerd
et al. (2017). Note that an agent only sends an offer (with goal location message) if the
expected value of sending that offer (with goal location message) is higher than the value
of withdrawing from negotiation and higher than the value of accepting the previous offer
of the trading partner, as discussed in Section 3.2.

Example 3 (Sending a goal location message). Consider the same setting as in
Figure 3.4 from Example 2 where agent i, a ToM2 agent (the initiator), sends a goal
location message with its actual goal location, goal location 1, to agent r, a ToM1

agent (the responder). Agent i is being honest about its actual goal location. This
message is the first goal location message sent as well as the first offer made in this
negotiation round.

Agent i chooses to send a goal location message together with an offer since it
expects to obtain the highest score from this combination. This means that sending
an offer without any goal location message yields a lower expected value than this
offer with a goal location message. An agent would not send a goal location message
if there was an offer without a goal location message that has the same or a higher
expected score.
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3.3.3 Lying and misleading agents

Following Definition 3 of lying in Colored Trails, an agent (the sender) can lie by com-
municating a goal location l ∈ L to the trading partner that is different from the sender’s
actual goal location li ∈ L, that is, l ̸= li, with the intent that the trading partner believes
that the sender’s goal location is goal location l ∈ L and that the trading partner believes
that the sender believes the sender’s goal location is goal location l ∈ L. Since a ToM2

agent models the trading partner being a ToM1 agent, and it thus models that the trading
partner attributes beliefs and a goal location to the ToM2 agent, a ToM2 agent can lie. We
have that ToM0 and ToM1 agents cannot lie, because ToM0 agents do not model the trading
partner having beliefs at all, and ToM1 agents do not model the trading partner having
beliefs about the agent itself.

Example 4 (Lying agent). In Figure 3.5, agent i, a ToM2 agent (the initiator), sends a
goal location message with a false goal location, goal location 9, to agent r, a ToM1

agent (the responder). The actual goal location of agent i is goal location 0. With
its initial set of chips, agent i can take one step toward its goal location with the
fuchsia-colored chip after which agent i has three colored chips left, giving it a total
of 250 initial points. In contrast, agent r has goal location 8 and cannot take one step
toward its goal location, giving it a total of 200 initial points.

Agent i calculates that sending a goal location message with goal location 9 to
agent r together with an offer that assigns the single fuchsia-colored chip to itself
results in the highest expected value. This goal location message is a lie as the goal
location of agent i is not goal location 9, but goal location 0, and agent i intends
(or expects) to change the beliefs of agent r by sending this goal location message.
Note that the offer is consistent with the message as the score of agent i would have
increased if the offer were accepted and agent i’s actual goal location would be goal
location 9.

Since agent r needs a fuchsia-colored chip to move one step in the direction of its
goal location, most of the offers that agent r benefit assign the fuchsia-colored chip
to itself (agent r). While agent i does not know the goal location of agent r, agent
i expects an offer in return that assigns one purple, three orange, and one light blue
chip to itself, giving agent i a total of 950 points. Whether agent r responds with the
expected offer depends on agent r’s actual goal location and whether agent i models
agent r correctly.

45



CHAPTER 3. METHODOLOGY

r
S

i

700 650 650 150

50650

0

50 550 600 100

600

i r
0

1

2

3

4

5

6

7

8

9

10

11

Gi = 9;

Figure 3.5: Example of an agent lying. The ToM2 agent (the initiator), agent i, negotiates
with a ToM1 agent (the responder), agent r. Agent i sends a goal location message with a false
goal location, goal location 9. Moreover, the agent i offers to exchange one orange and one
light blue chip for one purple and one fuchsia-colored chip. The (larger) centered numbers in
the tiles indicate the change in score for agent i if agent r were to accept the offer of agent i
and agent i were to have that goal location as its actual goal location. The (smaller) numbers
in the top right corner of a tile indicate the goal location numbers. The tile highlighted with
the dashed border is the actual goal location of agent i, which is known to agent r. The goal
location of agent r is not relevant for this example and is therefore not indicated. The starting
position of both agents is denoted with S.

While ToM1 agents are not able to lie, recall that ToM1 agents can mislead (recall
Definition 4 of misleading in Colored Trails). A ToM1 agent models the trading partner
having beliefs but not about the ToM1 agent itself. However, when a ToM1 agent sends a
goal location message, it models its trading partner, a ToM0 agent, to receive its message
and models its trading partner to update its beliefs. As discussed in Section 3.3.1.1, when
a ToM0 agent receives a goal location message, the ToM0 agent considers offers that do not
contain the color corresponding to the goal location as less likely to be accepted. Hence,
a ToM1 agent can still attempt to manipulate the beliefs of a ToM0 agent. Hence, ToM1

agents can mislead about the color they want by sending a false goal location message. A
ToM0 agent can make false statements although that is not considered lying or misleading,
but rather a behavioral aspect of a ToM0 agent.

3.3.3.1 Exceptions and conventions on lying and misleading

An agent uttering a statement p that it believes to be false without intending to deceive
the trading partner on statement p is not a lying agent according to our definition, but
rather an agent that utters a statement p that it believes to be false. There might occur a
special case in the Colored Trails game where a ToM2 agent sends a false goal location
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message, but the intent of the ToM2 agent was not to let the trading partner believe the
false statement, i.e., the sender expects that the receiver will not believe the message. This
might happen, for example, when the sender intends to cause the receiver to revoke its
current goal location beliefs. In that case, the receiver will change its goal location beliefs
back to how they were before a goal location message had been sent (i.e., using the saved
goal location beliefs). In the case where an agent sends a goal location message that is
a false statement, but the intent is not to let the trading partner believe that the sender’s
actual goal location is the goal location mentioned, the false goal location message is not
considered a lie according to our definition of lying. Since there might still be an intent to
change the beliefs of the trading partner, the agent can be considered to have misled the
trading partner.

Example 5 (Revoking goal location beliefs). Consider the setting as in Figure 3.6,
where a ToM2 agent, agent i (the initiator), negotiates with a ToM1 agent, agent r (the
responder). In this negotiation round, agent i already sent a goal location message
with goal location 10, its actual goal location, which agent r also believes. Then, agent
r sent a counteroffer. It is now agent i’s turn.
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Figure 3.6: Example of an agent that sends a goal location message to revoke the beliefs
of the trading partner agent. The ToM2 agent (the initiator), agent i, negotiates with a ToM1

agent (the responder), agent r. The initiator sends a goal location message with a false goal
location, goal location 3, to revoke the beliefs of the responder. Moreover, the initiator offers
to exchange two purple chips and one fuchsia-colored chip for an orange chip, two light-blue
chips, and a yellow chip. The numbers in the top right corner of a tile indicate the goal location
numbers. The starting position of both agents is denoted with S, and the goal positions of
agents i and r are denoted with Gi and Gr, respectively.
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Since it is not rational to make an offer that does not increase the value of that
agent, an offer provides information about the goal location of the trading partner.
After the offer of agent r, agent i updates its goal location beliefs. It calculates all
possible combinations of offers and location messages and determines that sending a
goal location that is not the same as the previous goal location message, obtains the
highest expected value. In this case, agent i intends to revoke the goal location beliefs
of agent r (mislead agent r) such that agent r uses its saved goal location beliefs
(without the influence of a goal location message) and such that agent r does not put
all probability mass on agent i’s previously announced goal location. The reason agent
i might make such a decision is based on what agent i expects agent r to respond to
the offer and goal location message.

Recall that ToMk agents, k ≥ 1, have a confidence variable that indicates the confidence
in using its kth-order theory of mind. Thus, a ToMk agent, k ≥ 1, also models itself as an
agent with a lower-order of theory of mind and weighs its predictions about the utility of
an offer according to this confidence variable. There might be cases where a goal location
message is sent by a ToM2 agent because its ToM1 model expects this goal location message
to yield a high utility. Hence, the expected value might be the highest for this combination
of goal location message and offer. While we observe the ToM2 agent sending the goal
location message, it is a weighted decision between all its models. Because of this weighted
decision, it is difficult to capture the intent of an agent sending a goal location message
and thus determine whether an agent lies according to our definition.

Hence, in the following part of the thesis, we say that a ToM2 lies whenever it sends a
false goal location, a ToM1 misleads whenever it sends a false goal location, and a ToM0

agent simply makes a false statement whenever it sends a false goal location.

3.4 Implementation

We implemented the described agents in this chapter in the programming language Java.
In addition, we made a graphical user interface (GUI) where two AI agents can play the
Colored Trails game, and information about the negotiation is shown to the user. An
example of a Colored Trails game in the GUI is given in Figure 3.7. The user takes the role
of observer and cannot participate in the negotiation, although the GUI could be extended
such that the user can partake in the negotiation. In Chapter C in the appendix, we explain
some more details about where to find the code for the GUI and how to run it.
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Figure 3.7: Example of a Colored Trails game using the graphical user interface, as explained in
Section 3.4.

The center part of the GUI (see Figure 3.7) is the game board of the Colored Trails
game. It contains the colored tiles, the start location (denoted by X), and the goal locations
of the initiator (Gi) and the responder (Gr). The numbers in the top left of the twelve
colored tiles denote the goal location index. The bottom center part of the GUI contains
additional information about Pareto improvements in the game. (See Chapter A in the
appendix for a more in-depth explanation of the Pareto principle in the context of this
thesis.)

On the left and right of the GUI, we have the initiator and responder, respectively. The
theory of mind level (ToM) is given next to the agent’s name. In the same information box,
the initial chips and the initial points are given. Moreover, when the negotiation round has
ended, the final distribution of chips, the total number of offers from both agents, and the
final points are given (without the points subtracted from making offers).

In the legend in the bottom left part of the GUI, the list indices of colors are given.
Thus, an agent offering [1, 2, 1, 0, 1] means that the agent offers a distribution where it
offers one purple chip, two fuchsia-colored chips, one orange chip, zero light blue chips,
and one yellow chip to itself.
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During negotiation, agents can send offers and goal location messages to each other,
which will be depicted in the Messages box. An offer is depicted by two lists. The first
list of chips is always for the initiator, while the second list is for the responder. The user
can obtain some extra information about (the beliefs of) the initiator and the responder
by clicking on the Initiator information and Responder information

buttons, respectively. Finally, in the bottom right corner of the GUI, there are buttons
for the user. The user can view the next step in the negotiation round (step), view the
agents playing the whole negotiation round (play), create a new negotiation round (New
round), view the agents playing a new negotiation round (Play new round), forward
a predefined number of negotiation rounds (Rounds forward), restart the agents in the
negotiation with new beliefs (Full restart), and exit the game (Exit).

Example 6 (Lying agent in our GUI). Recall Example 4 of a lying agent, where agent
i lies about its goal location to obtain a certain response from agent r, its trading
partner. This example is also shown in Figure 3.8 in our GUI. The initiator (agent
i) calculates that sending a message with goal location 9 to the responder together
with an offer that assigns the single fuchsia-colored chip to itself results in the highest
expected value. Note that this is a lie because the goal location of the initiator is not
goal location 9, but goal location 0. The offer that assigns the fuchsia-colored chip to
the initiator is consistent with the goal location message announcing goal location 9 to
the responder since this offer increases the points of the initiator if the initiator were
to have goal location 9 as its actual goal location.

In this example, the initiator offers a purple, two orange, and a light blue chip to
the responder. If the responder were to accept this offer, the responder could take
no steps toward its goal location and would be left with four chips, resulting in 200
points, which is lower than its initial points of 250. Hence, the responder chooses not
to accept the offer of the initiator. After receiving the goal location message together
with the offer from the initiator, the responder updates its beliefs. Since the location
message and offer are consistent with its beliefs, the responder believes the initiator
and assigns a higher value to the fuchsia-colored chip. Since the responder also needs
the fuchsia-colored chip to move one step toward its goal location, the responder
does not offer the fuchsia-colored chip to the initiator, but instead, the responder
offers more chips from another color to the initiator. The responder offers a purple, a
fuchsia-colored, and a light blue chip to itself such that it can take three steps toward
its goal location and obtain 300 points if the offer is accepted.
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Figure 3.8: Example of a lying agent in our GUI.

The initiator, who has lied about its goal location, now receives the offer from the
responder and accepts the offer, because the initiator can now reach its goal location
0 and have one leftover chip, thereby reaching a total score of 950 points. Without
the lie of the initiator, the responder might not have given an additional chip to the
initiator.

3.5 Experiments

The goal of this thesis is to contribute to research on lying and deceiving by AI systems by
investigating the influence of lying in a negotiation setting, i.e., the Colored Trails game.
In particular, we seek an answer to what extent agents capable of lying and misleading
outperform similar agents that are not capable of lying and misleading. In the previous
sections of this chapter, we discussed agents that are capable of different levels of theory
of mind and agents that are capable of sending and receiving goal location messages. In
this section, we discuss the experiments performed in this thesis.

Before delving into the specifics of each experiment, we provide a parameter table
in Section 3.5.1. The remainder of Section 3.5 discusses different experiments using the
agents described in this chapter. Starting with Section 3.5.2, we describe an experiment to
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set the probability p0 of a ToM0 agent sending a goal location message together with an
offer. This probability is then used in the remaining experiments. Section 3.5.3 follows by
describing an experiment where our different agents negotiate with each other. In addition,
we outline an experiment with the agents of De Weerd et al. (2017) in Section 3.5.4 to
compare the performance of our agents that are capable of sending goal location messages
with the agents of De Weerd et al. (2017). Since the learning speed λ influences the results
(see De Weerd et al., 2017), we vary the learning speed in the experiment described in
Section 3.5.5. Finally, we will look at specific games where a Pareto improvement is
possible in the initial situation in an experiment that is described in Section 3.5.6.

Since previous research has shown that making the first offer is influential because
it serves as an anchor for the entire negotiation round (Raiffa et al., 2002; Rosette et al.,
2014; Van Poucke & Buelens, 2002), we differentiate between initiators who make the
first offer in a negotiation round and responders. The results of the experiments discussed
in this section can be found in Chapter 4.

3.5.1 Experiments settings and parameter table

Table 3.1 provides an overview of the parameters set in the experiments, their descriptions,
and their values. Regarding our five-by-five game board of Colored Trails, we fix the
number of possible goal locations to twelve, where each goal location is at least three tiles
away from the start location, that is, the center square. There are five colors the chips and
tiles of the board can take on.

In our experiments, we fix the learning speed λ of both agents to 0.5 unless men-
tioned otherwise. In particular, we vary the learning speed in Experiment 4 discussed in
Section 3.5.5.

Note that a ToM0 agent chooses each goal location that is not its actual goal location
with probability p1 = 0.02 when the ToM0 agent sends a goal location message. Since our
Colored Trails setting consists of twelve possible goal locations, this means that, when a
ToM0 sends a goal location message, the ToM0 agent chooses its actual goal location with
a probability of 0.78.

In each experiment, the first 100 negotiation rounds for all pairs of agents are considered
to be a set-up phase for the zero-order beliefs of the ToM0 agents and are not used for
gathering results. Namely, at the start of a negotiation round, the zero-order beliefs of a
ToM0 agent are set to 1, that is, the agent believes that any offer will be accepted with
probability 1. This is done by providing the agent with five positive encounters of each
offer. After several negotiations, a ToM0 agent will learn that an offer that offers zero chips
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Parameter Value Description

|L| 12 Number of possible goal locations.

|C| 5 Number of possible colors the chips and the tiles of
the board can take on.

λ 0.5 Agent-specific learning speed that represents the de-
gree to which new information influences the beliefs
of the agent. This value is changed in Experiment 4
(see Section 3.5.5).

p0 [0,1] The probability of a ToM0 agent sending a goal lo-
cation message with an offer. This value is set in
Experiment 1 (see Section 3.5.2).

p1 0.02 The probability of a ToM0 agent choosing a specific
goal location that is not its actual goal location when
the ToM0 agent sends a goal location message.

- 500 Points an agent obtains for reaching its goal location.

- 100 Points an agent obtains for each step in the shortest
path to its goal location.

- 50 Points an agent obtains for each leftover colored chip.

- -1 Points subtracted from the score for both agents for
each offer made in the negotiation round.

- 5 Number of positive encounters of every offer type at
instantiation of a new negotiation round to set the zero-
order beliefs of a ToM0 agent.

Table 3.1: A summary table containing parameters, their description, and their value. These values
are fixed in this thesis, but they can be changed. The purpose of this table is to provide an overview
of the parameters and their values in this thesis.
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to the trading partner will not be accepted. Following De Weerd et al. (2017), we exclude
games in which an agent can reach its goal location with its initial set of chips to ensure
that both agents have the incentive to negotiate to increase their scores. However, we do
not exclude these games in the warm-up phase, i.e., in the warm-up phase all possible
game board variations are possible.

In theory, a negotiation round could never terminate because each agent could continue
making an offer. Hence, we set a limit on the number of offers that can be made in a
negotiation round: We set this limit to 100. However, agents are not aware of this limit and
negotiate as if this limit does not exist. In case the limit is reached, the initial distribution
of chips becomes final.

Our main measure will be the score gain for both agents. The score gain is calculated
as the score of the agent after the negotiation round has ended (either an agent accepts an
offer, withdraws from negotiation, or the limit of 100 offers has been reached) minus the
initial score of the agent. In the results, we do not subtract the cost of making an offer, but
the agents still reason as if one point is subtracted from their score for each offer they make.
We can take the number of offers made in a negotiation round as a separate measure.

3.5.2 Experiment 1: Setting the probability of a ToM0 agent sending
messages

In Section 3.3.2, we discussed that a ToM0 agent sends a goal location message with
probability p0 ∈ [0, 1]. In this experiment, we determine whether probability p0 ∈ [0, 1]

influences the score gain for a ToM0 agent against the average trading partner. Consequently,
we set p0 for the remaining experiments.

We let a ToM0 agent as an initiator and as a responder negotiate with the five different
agents as given in Section 3.3. We will vary p0 ∈ {0.0, 0.1, 0.2, . . . , 1.0} in each of these
interactions. When two ToM0 agents negotiate with each other, they will be having the
same probability p0, that is, we do not gather results where ToM0 agents have a different
probability of sending a goal location message together with an offer. As a warm-up phase
for the zero-order beliefs of the ToM0 agents, we use 100 negotiation rounds for all pairs of
agents, after which we gather one round of results. We repeat this 1000 times and measure
the score gain of the ToM0 agent.

We will average the score gain for each p0 ∈ {0.0, 0.1, 0.2, . . . , 1.0} over the 1000
games, five different trading partners, and the ToM0 agent as an initiator and responder.
Consequently, we obtain for each p0 ∈ {0.0, 0.1, 0.2, . . . , 1.0} a score gain for (1000 ×
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5× 2 =) 10,000 games for the ToM0 agent. Finally, p0 is set in the remaining experiments
such that p0 is a good approximation of a possibly best probability for a ToM0 agent to
send a goal location message together with an offer against the average trading partner in
terms of score gain.

3.5.3 Experiment 2: Does lying and misleading outperform honesty?

After setting p0, that is, the probability that a ToM0 agent sends a goal location message
together with an offer, we perform an experiment where we let the five agents as discussed
in Section 3.3 negotiate with each other, each performing the role as initiator and as
responder. We will be using 100 negotiation rounds for all pairs of agents as a warm-up
phase for the zero-order beliefs of ToM0 agents, after which we gather one round of results.
We repeat this 1000 times and measure, among other things, the score gain for both the
initiator and the responder.

Agents that are capable of lying or misleading have an extra instrument, i.e., they can
send goal location messages that contain a false goal location. Hence, in this experiment,
we test the core hypothesis of whether lying and misleading agents outperform similar
agents that are not capable of lying or misleading in terms of score gain.

3.5.4 Experiment 3: Is there a benefit to sending goal location mes-
sages in Colored Trails?

In this experiment, we let the agents of De Weerd et al. (2017) with different orders
of theory of mind negotiate with each other and compare the results with the results of
Experiment 2. For this, we let zero-order, first-order, and second-order theory of mind
agents negotiate with each other, each performing the role of initiator and responder. We
will be using 100 negotiation rounds for all pairs of agents as a warm-up phase for the
zero-order beliefs of ToM0 agents, after which we gather one round of results. Similar to
the other experiments, we repeat this 1000 times and measure, among other things, the
score gain for both the initiator and the responder. Moreover, if applicable, the settings of
Table 3.1 also apply to these agents. In particular, the learning speed λ is set to 0.5.

We test the core hypothesis that agents with the ability to send goal location messages
to each other obtain a higher average score gain compared to the agents of De Weerd et al.
(2017). Moreover, we hypothesize that our agents will need fewer offers than the agents of
De Weerd et al. (2017) to reach a mutually beneficial outcome.
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3.5.5 Experiment 4: Varying the learning speed

In this experiment, we let the five agents as discussed in Section 3.3 negotiate with
each other, each performing the role of initiator and responder, similar to Experiment
2. However, in this experiment, we also vary the learning speed λ of agents, which is
an agent-specific learning speed that represents the degree to which new information
influences the beliefs of the agent. With this experiment, we aim to shed light on the
influence of the learning speed λ in the negotiation process of our agents.

3.5.6 Experiment 5: Games where a Pareto improvement exists

In the final experiment, we again let the five agents as discussed in Section 3.3 negotiate
with each other, each performing the role of initiator and responder. De Weerd et al. (2017)
only considered games where neither agent was initially able to reach its goal location with
the purpose to give both agents an incentive to negotiate; however, this does not necessarily
result in games where either agent has an incentive to negotiate. For example, consider a
game board with only one color, say purple, and none of the agents has a purple-colored
chip. In this case, neither agent can reach its goal location, but they both do not have
an incentive to negotiate. Although this may be an extreme case, similar cases are not
excluded.

In Experiment 5, we only consider games where neither agent can initially reach its
goal location and where the initial state is Pareto inefficient, that is, there exists a Pareto
improvement. Hence, we only consider games where, compared to the initial distribution
of chips, there exists at least one offer where one of the agents can be better off in terms of
the score without the other agent being worse off. In Chapter A in the appendix, one can
revisit the general Pareto principle as well as a more in-depth explanation of the Pareto
principle in the context of this thesis.
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4
Results

This chapter presents the findings obtained from conducting the experiments described
in Section 3.5 to address the research question and objectives outlined in the previous
chapters. By examining the results, this thesis seeks to contribute to the existing research
on lying and deceiving by AI systems. Hence, in the results, we mainly focus on whether
there are differences between agents that are able to lie or mislead and agents that are
honest.

Before delving into the results of each experiment, we would like to stress that the
distribution of the score gain is discrete and takes on values that are multiples of 50. There
might be cases where an agent makes an offer that results in a negative score gain because
it expects a counteroffer, in which case a negative value (multiples of 50) is possible. Note
that an agent would never accept an offer that yields a negative score gain, since the agent
would always be better off withdrawing from negotiation. However, it is still possible that
an agent makes an offer that results in the agent itself obtaining a negative score gain, but
the agent expects its trading partner to make a counteroffer. Cases where an agent obtains
a negative score gain are rare. The most common values of the score gain are in the set
{0, 50, 100, 150, 200, 500, 550, 600, 650, 700, 750}. We did not encounter cases where an
agent achieves a score gain of over 750 points. This is only possible when an agent secures
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six colored chips and, thus, the trading partner receives only two colored chips with which
it cannot obtain a positive score gain. Furthermore, note that there is a gap between 200
and 500 points, which is mainly caused by the score gain of 500 points when an agent can
reach its goal location and an agent not accepting offers with a nonzero score gain.

For example, a score gain of 200 is possible when an agent initially cannot make any
step toward its goal location yielding 200 points (50 points for each chip) and after the final
distribution, the agent can make three steps toward its goal location and has two left-over
chips yielding 400 points, which results in a 200 points score gain. This distribution offers
the trading partner three chips, which the trading partner can accept when the three chips
yield a higher score than the four initial chips. With only two chips, an agent can obtain a
score of at most 200 points (two steps toward its goal location). Hence, an agent will never
accept or rarely make an offer that offers itself two chips.

To get a higher score gain than 200 points, an agent will need to reach its goal location,
resulting in 500 points. Consequently, a score gain between 200 and 500 points is not
possible with the trading partner also being better off. Furthermore, a score gain of over
750 points is not possible with the trading partner being better off since the lowest initial
number of points is 200 and the highest final points with at most five chips (and thus at
least three chips for the trading partner) is 950 points (four steps toward the goal location,
reaching the focal agent’s goal location, and having one left-over chip) yielding a score
gain of 750 points.

As a final note, we did not encounter many cases in our experiments where the limit of
100 offers was reached in a negotiation round; hence, this limit did not influence the length
of the negotiation in general. Exceptions, where we did find negotiations where agents
reached this limit, are Experiments 4 and 5. In Experiment 4, for example, the limit of 100
offers is reached for low values for the learning speed.

4.1 Experiment 1: Setting the probability of a ToM0 agent
sending messages

The results in this section are obtained by conducting the experiment as described in
Section 3.5.2 to set the probability p0 of a ToM0 agent sending a goal location message
together with an offer.

Figure 4.1 shows the score gain of the ToM0 agent in a box plot of the 10,000 data
points for each value of probability p0. The whiskers of this box plot capture at least 95%
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of the data, so the outliers drawn in the plot are points that are not in reach of the whiskers
and are either in the top or the bottom 2.5% of the data points. Moreover, the mean value
for each of the probabilities p0 ∈ {0.0, 0.1, 0.2, . . . , 1.0} is indicated by a green diamond.
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Figure 4.1: A box plot of the score gain per value of p0, i.e., the probability of a ToM0 agent
sending a goal location message together with an offer. In this experiment, a ToM0 agent negotiated
as initiator and as responder in 1000 negotiation rounds with the five different agents as described
in Section 3.3. The lower and upper whiskers of the box plot reach the bottom 2.5% and the top
97.5% data points, respectively. Data points (outliers) are scattered normally along the x-axis to
increase readability.

From Figure 4.1, it might seem that some of the probabilities p0 yield higher scores
than the other probabilities p0 because of the height of the third quartile of the box plot
indicating a different distribution of score gains. However, the seemingly big difference
between the box plots is more likely to be caused by the odd distribution of the score gain
as mentioned at the beginning of this chapter. In Figure B.1 in the appendix, we plotted
the data points on top of this figure. It becomes clear that there are no results where the
score gain is between 200 and 500 points. Hence, an extra data point above 200 points
might change the view of the box plot drastically.

The score gain varies from 0 to 750 points. The median score gain is 50 for each
of the probabilities p0 except for p0 = 0.1. We can test whether the data points for the
eleven groups originate from the same distribution using the one-way analysis of variance
(ANOVA). However, since we cannot assume normality (of the residuals) of data points
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for each of the probabilities p0, we use the non-parametric alternative of ANOVA, that is,
the Kruskal-Wallis test (Kruskal & Wallis, 1952). The Kruskal-Wallis test does not assume
the normality of data and is less sensitive to (extreme) outliers, which are both problems in
our data. Hence, a Kruskal-Wallis test was conducted to compare the score gain among the
eleven groups with different p0 values. The Kruskal-Wallis test did not reveal a significant
difference between the groups (H=8.99, df=10, p=.53), indicating that there is insufficient
evidence to conclude a difference in score gain among the groups. We might, therefore,
argue that the probability of a ToM0 agent sending a goal location message together with
an offer does not influence the negotiation score gain of the ToM0 agent in general.

The means and standard deviations for each of the probabilities p0 are in the range
[151; 157] and [231; 236], respectively. Figure 4.2 shows a bar plot of the sample means
with their 99.91% Bonferroni-adjusted confidence intervals to ensure a family-wise error
rate of less than 0.05 (Dunn, 1961). The error margins are calculated using the t-statistic
with the following formula:

margin of error = t1−(α/k),n−1 ·
s√
n
, (4.1)

where s is the standard deviation, α = 0.05 the significance level, k =
(
11
2

)
= 55 the

number of comparisons for the Bonferroni adjustment, and n = 10,000 the number of
observations per category. Note that the Bonferroni adjustment is rather conservative and
other multiple comparison adjustments exist. However, we chose to err on the side of
caution and use the intuitive Bonferroni adjustment.

The 99.91% (Bonferroni-adjusted) confidence intervals around the sample mean indi-
cate that if we were to repeat this experiment an infinite number of times, we would expect
that 99.91% of such calculated confidence intervals contain the true population mean. Note
that when comparing two mean values at a significance level of, e.g., 0.05, we should
use 83.4% confidence intervals around the mean instead of 95% confidence intervals (see,
e.g., Goldstein & Healy, 1995; Knol, Pestman, & Grobbee, 2011). This means that, in
contrast to expanding the confidence intervals to capture the multiple comparisons, one
should decrease the confidence intervals around the mean to increase the power of the test.
However, for interpretability and to err on the side of caution, we only used the Bonferroni
adjustment.

The results might still be inconclusive as to which probability p0 is best in terms of score
gain against the average trading partner, and, thus, to which value we set p0. Hence, we
performed an additional experiment, in the same context, where we determined the fraction
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Figure 4.2: A bar plot of the mean score gain per value of p0, i.e., the probability of a ToM0 agent
sending a goal location message together with an offer. The means contain 99.91% Bonferroni-
adjusted confidence intervals (55 comparisons) to ensure a family-wise error rate of less than 0.05.
The 99.91% confidence intervals are constructed using a t-statistic. If two confidence intervals do
not overlap, we have evidence to conclude that the mean values significantly differ between groups.

of offers that are accompanied by a goal location message for the other four types of
agents (see Section 3.3). We let each of the four types of agents (excluding ToM0 agents)
negotiate as initiator and responder with all five types of agents as trading partners. We
set the probability of ToM0 agents sending a goal location message together with an offer
to zero, that is, ToM0 agents were not able to send goal location messages. Note that the
ToM0 agents are still able to interpret goal location messages. As a warm-up phase for the
zero-order beliefs of ToM0 agents, we used 100 rounds of negotiations. After the warm-up
phase, we collected results for one round of negotiation. This was repeated 1000 times for
each of the four types of agents as an initiator and a responder with all five types of agents
as trading partners.

The total number of offers made and the total number of goal location messages sent
were recorded per agent type. We divided the total number of goal location messages
sent by the total number of offers made to get an estimate of the fraction of offers that
are accompanied by a goal location message. The results are shown in Figure 4.3. A
chi-square test of independence was performed to examine the relationship between agent
type and the proportion of offers that is accompanied by a goal location message. The
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relation between these variables was significant, χ2(3, N=50,081)=3188.73, p<.00001,
indicating that agent type influences the proportion of offers that are accompanied by a
goal location message.
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Figure 4.3: Bar plot of the fraction of offers that are accompanied by a goal location message for
four types of agents (see Section 3.3). The Total bar indicates the weighted average fraction over
all four types of agents. The proportions contain 99.5% Bonferroni-adjusted confidence intervals
(10 comparisons) to ensure a family-wise error rate of less than 0.05. The 99.5% confidence
intervals are constructed using the Wald method. If two confidence intervals do not overlap, we
have evidence to conclude that the proportions significantly differ between agent types.

Figure 4.3 suggests that lying and honest ToM2 agents send more goal location messages
than misleading and honest ToM1 agents. Moreover, misleading ToM1 agents send more
goal location messages than honest ToM1 agents, and lying ToM2 agents send more goal
location messages than honest ToM2 agents. This result is to be expected, since lying ToM2

agents and misleading ToM1 agents can send false goal location messages in addition to
the capabilities of honest ToM2 agents and honest ToM1 agents, respectively.

While the average fraction of goal location messages sent with an offer is 0.28, we
observe that ToM1 agents send fewer goal location messages than ToM2 agents. Hence, all
points considered, we round probability p0 down to 0.2, that is, agents with a zero-order
theory of mind capability send, on average, goal location messages together with 20% of
their offers. This value for p0 will be used in the subsequent experiments.
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4.1.1 Separating ToM0 initiators and ToM0 responders

Before discussing the main experiment in Section 4.2, it is interesting to note the differences
between the results of the experiment discussed in this section for initiators and responders.
Note that both the initiator and the responder negotiate with the five different agents.
Figure 4.4 shows the same results as in Figure 4.1 but the results of the ToM0 agent as
initiator and as responder are separated.
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Figure 4.4: Box plot of the score gain per value of p0, i.e., the probability of a ToM0 agent sending
a goal location message with an offer, separated into initiators and responders. The lower and upper
whiskers of the box plot reach the bottom 2.5% and the top 97.5% data points, respectively. Data
points (outliers) are scattered normally along the x-axis to increase readability. The green dashed
line indicates the value of the highest mean point and serves as a reference line.

While the median value is 50 for almost all values of p0 (except for p0 = 0.1) and for
both the initiator and the responder, the mean values differ consistently between the ToM0

agents as initiator and responder. The ToM0 responder consistently obtains a higher mean
score gain over the different probabilities p0 than the ToM0 initiator.

To test for each of the probabilities p0 whether there is a difference in mean score gain
between the initiator and responder, we plotted the differences in means in Figure B.2 in
the appendix. We added 99.5% Bonferroni-adjusted confidence intervals (11 comparisons)
to control that the family-wise error rate is lower than 0.05. We observe that the differences
in means are significant only for some p0 values (in particular p0 ∈ {0.4, 0.9}). In general,
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we cannot reject the null hypotheses of the differences in means of the responder and
initiator to be equal to zero.

A similar separation between the results of the initiator and responder is done for
the results shown in Figure 4.3, where we plotted the estimated proportion of offers
accompanied by a message for each type of agent (excluding ToM0 agents). The bar plot
where the results are separated for the initiator and responder for the four different types of
agents is shown in Figure 4.5.
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Figure 4.5: Bar plot of the fraction of offers that are accompanied by a goal location message for
four types of agents (see Section 3.3) where the results are separated for initiators and responders.
The Total bar indicates the weighted fraction over all four types of agents. The proportions contain
99% Bonferroni-adjusted confidence intervals (5 comparisons) to ensure a family-wise error rate
of less than 0.05. The 99% confidence intervals are constructed using the Wald method. If the
confidence intervals of the initiator and the responder (of similar agent types) do not overlap, we
have evidence to conclude that the proportions significantly differ from each other.

From Figure 4.5 it becomes apparent that overall the responder sends a goal location
message with a higher fraction of offers than the initiator. This result is especially caused
by ToM2 responders sending significantly more goal location messages together with their
offers compared to ToM2 initiators.
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4.2 Experiment 2: Does lying and misleading outperform
honesty?

The results in this section are obtained by conducting the experiment as described in
Section 3.5.3, where the five different agents negotiate with each other. In total, we
obtained results of 25,000 negotiations. In 11.0% of the negotiations, the negotiation
process was terminated by the initiator before an initial offer was made. In 53.5% of the
negotiations, a new distribution of colored chips became final.

Since each agent negotiated with every other agent in 1000 experiments, both as
initiator and responder, we have 10,000 score gains for each agent type. A box plot of the
score gain per agent type is given in Figure 4.6. The median values are 50 for each of the
agent types but the mean values differ. Moreover, the distribution mass of the score gain is
more located to the lower values for the ToM0 agent, which can be seen from the location
of the third quartile of the box plot. However, this can also be due to the odd distribution
of the data as mentioned at the beginning of this chapter.
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Figure 4.6: Box plot of the score gain for the five different types of agents (see Section 3.3). The
lower and upper whiskers of the box plot reach the bottom 2.5% and the top 97.5% data points,
respectively. Data points (outliers) are scattered normally along the y-axis to increase readability.

A Kruskal-Wallis test was conducted to compare the score gain among the five agents.
The Kruskal-Wallis test reveals a significant difference between the groups (H=124.53,
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df=4, p<.0001), indicating that there are differences in the distribution of the score gain
between the groups. A post hoc test was done on the differences in means. The results
are shown in Figure 4.7, where the differences in means of ten combinations of agents are
shown together with 99.5% Bonferroni-adjusted confidence intervals (10 comparisons)
such that the family-wise error rate is below 0.05. This graph indicates that the differences
in mean score gain are significantly different from zero for all combinations of agents
except for combinations where the agents have a similar theory of mind capability.
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Figure 4.7: Difference in score gain mean values between the five different types of agents (see
Section 3.3). The differences in means contain 99.5% Bonferroni-adjusted confidence intervals (10
comparisons) to ensure a family-wise error rate of less than 0.05. The 99.5% confidence intervals
are constructed using a t-statistic. If a confidence interval contains 0, we do not have enough
statistical evidence to conclude that the difference is unequal to zero, i.e., that there is a difference
in score gain mean values between two different agents.

Interestingly, although a misleading ToM1 agent can send false goal location messages,
the misleading ToM1 agent does not significantly outperform the honest ToM1 agent. Since
a misleading ToM1 agent can send goal location messages containing a false goal location,
it has more possible actions than an honest ToM1 agent. While a misleading ToM1 agent
has this extra toolkit, it does not benefit the agent in terms of mean score gain. Moreover,
when we compare a lying ToM2 agent with an honest ToM2 agent, we observe that the
mean score gain is slightly lower for the lying ToM2 agent. Even though this difference is
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not statistically significant, the extra toolkit of making false statements does not benefit a
ToM2 agent.

There are two cases where an agent achieves a negative score gain, as can be seen from
Figure 4.6. Upon further inspection, these cases concern a ToM1 agent and a ToM2 agent
who make an offer that decreases their score and gets accepted by their trading partners. A
reason for a ToM2 agent to send an offer that decreases its score is to deceive the trading
partner into not believing that the actual goal location of the agent is the goal location
mentioned. The ToM2 agent then expects that the trading partner makes a better offer.
However, in these two cases, the offer made by the focal agent was accepted by the trading
partner, yielding the agent a negative score gain. While a ToM1 agent does not have the
capability to deceive the trading partner into believing a false goal location for the agent
(recall Definition 2 of deceiving), it can still expect the trading partner to make a better
counteroffer as a response to its own offer.

In Figure 4.8, we distinguish between the results with respect to the agents being initiators
and responders. There are no differences between the median score gains for the initiators
and responders, but there may be differences between the mean scores of the initiators and
the responders.

In Figure 4.9, we plotted the differences in means with 99% Bonferroni-adjusted
confidence intervals (5 comparisons) to control that the family-wise error rate is lower than
0.05. We observe that none of the differences in mean score gain are significantly different
from zero. While not significant, the difference between the initiator and responder in
terms of score gain for a ToM0 agent is in favor of the responder. This result is in line
with the results found in Section 4.1, where for each value of p0 it was found that the
ToM0 responder slightly outperforms the ToM0 initiator against the average trading partner
in terms of mean score value. Another interesting point that may be highlighted from
Figure 4.9 is that only an agent that has a first-order theory of mind capability is better off
being the initiator.
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Figure 4.8: Box plot of the score gain for the five different types of agents (see Section 3.3)
separated into initiators and responders. The lower and upper whiskers of the box plot reach
the bottom 2.5% and the top 97.5% data points, respectively. Data points (outliers) are scattered
normally along the y-axis to increase readability.
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Figure 4.9: Difference in score gain mean values between the responder and initiator for different
types of agents (see Section 3.3) with 99% Bonferroni-adjusted confidence intervals (5 comparisons)
to ensure a family-wise error rate of less than 0.05. The confidence intervals are constructed using
a t-statistic. If a confidence interval contains 0, we do not have enough statistical evidence to
conclude that the difference is unequal to zero, i.e., that there is a difference in score gain mean
values between the responder and the initiator.
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4.2.1 Investigating other metrics

Figure 4.10 shows a box plot of the total number of offers in a negotiation round when a
specific agent type takes part in the negotiation. Here, the number of offers per agent type
depends on each other since each agent type negotiates with each agent type. However, we
observe that in negotiations where ToM0 agents are participating, the total number of offers
does not reach high values. This can be seen from the maximum total number of offers
being equal to 5 when a ToM0 agent participates in the negotiation. In contrast, the mean
total number of offers in a negotiation round is lower for lying and honest ToM2 agents
than for the other agent types. This result is more pronounced when we look at the total
number of offers in a negotiation round when the initiator and responder are of the same
agent type. In that case, we observe more clearly that lying and honest ToM2 agents need,
on average, fewer offers than ToM1 and ToM0 agents (see Figure B.3 in the appendix).
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Figure 4.10: A box plot of the total number of offers in a negotiation round. In this plot, data points
are gathered where each agent type negotiates with each agent type, both as responder and initiator.
The lower and upper whiskers of the box plot reach the bottom 2.5% and the top 97.5% data points,
respectively. Data points (outliers) are scattered normally along the y-axis to increase readability.

Figure 4.11 shows the fraction of offers that are accompanied by a true goal location
message, a false goal location message, or no goal location message. Compared to the
results in Figure 4.3, Figure 4.11 shows a similar fraction of offers that are accompanied
by a goal location message (either true or false). This implies that the fraction of offers
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that are accompanied by a goal location message is not influenced by including negotiation
results with a ToM0 agent (that is capable of sending goal location messages).
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Figure 4.11: A stacked bar plot of the fraction of offers that are accompanied by a true goal location
message, a false goal location message, or no goal location message. The Total bar indicates the
weighted fraction of offers over all five types of agents.

A lying ToM2 agent sends more goal location messages than an honest ToM2 agent,
which is to be expected since the capabilities of a lying ToM2 agent extend the capabilities
of an honest ToM2 agent. Similarly, a misleading ToM1 agent sends more goal location mes-
sages than an honest ToM1 agent. Interestingly, the fraction of offers that are accompanied
by a true goal location message is not the same for an honest agent compared to its lying
or misleading counterpart. The number of true goal location messages increases signifi-
cantly for honest ToM2 agents compared to lying ToM2 agents, χ2(1, N=23,668)=687.18,
p<.00001. Moreover, the number of true goal location messages increases significantly
for honest ToM1 agents compared to misleading ToM1 agents, χ2(1, N=25,800)=673.76,
p<.00001. While a lying ToM2 agent lies in approximately 56% of its sent goal location
messages, a misleading ToM1 agent misleads in approximately 91% of its sent goal location
messages.

Figure 4.12 shows the fraction of offers that are accompanied by a true message, a
false message, or no message, separated by initiators and responders. While lying ToM2

initiators and responders send true messages with approximately the same fraction of offers,
lying ToM2 responders send false goal location messages with a higher fraction of offers
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than lying ToM2 initiators. Honest ToM2 responders send true goal location messages with
a higher fraction of offers than honest ToM2 initiators.
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Figure 4.12: A stacked bar plot of the fraction of offers that are accompanied by a true goal location
message, a false goal location message, or no goal location message with the results separated by
initiators (init) and responders (resp).

Finally, Figure 4.13 shows a box plot of the social welfare gain of every negotiation an
agent type participates in. As seen in Figure 4.6, the score gain data points are skewed to
the right. This is mainly due to the many negotiations that yield a social welfare gain of
zero and the odd distribution of the score gain. This right-skewness is also pronounced
in Figure 4.13. From Figure 4.13, we observe that negotiations, wherein an honest ToM2

agent participates, yield the highest mean social welfare gain. The results suggest that
negotiations, where agents with a higher theory of mind capability participate, yield a
higher mean social welfare gain. However, the difference between lying ToM2 agents and
honest ToM1 agents in terms of the mean social welfare gain is rather small.
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Figure 4.13: Box plot of the social welfare gain for the five different types of agents (see Sec-
tion 3.3). The lower and upper whiskers of the box plot reach the bottom 2.5% and the top 97.5%
data points, respectively. Data points (outliers) are scattered normally along the y-axis to increase
readability.
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4.2.2 Comparing the score gain for each combination of agent types

We will now investigate each agent type by looking at the score gain results where we also
separate the results by initiators and responders. The following figures fix one of the five
agent types and show the results for that agent as initiator and responder.

Each of the following box plots follows from 1000 data points. The standard deviation
deviates per combination of agent types and ranges between 230 and 270. This means
that the standard error of a mean score gain is between 7 and 9. Practically this means
that, since the standard error of a difference in means is even higher, differences in the
mean score gain greater than 20 points might be relevant to be tested in order to reveal a
significant difference. However, a multiple-comparison correction should also be applied
such as the Bonferroni correction to ensure a family-wise error rate of less than 0.05. To err
on the side of caution, in this section, we will not explicitly mention whether a difference
is significant based on its p-value, but rather highlight some of the differences in mean
score gain.

ToM0 agent. Figure 4.14 shows the results when we fix the initiator or responder to a
ToM0 agent. It becomes apparent that a ToM0 agent is outperformed by every other agent
in terms of mean score gain. A ToM0 initiator performs rather homogeneously against
each of the different trading partners, while the score gain of a ToM0 responder varies
considerably against different types of trading partners. A ToM0 responder performs best
against a ToM0 initiator in terms of mean score gain, and the ToM0 responder performs
worst against an honest ToM2 initiator.

When comparing lying with honest ToM2 agents and misleading with honest ToM1

agents, we observe that honest ToM1 and honest ToM2 agents perform better than their
lying and misleading counterparts against a ToM0 initiator. However, due to the high
variance in the data, misleading ToM1 agents (M=198.3, SD=258.92) did not significantly
differ from honest ToM1 agents (M=206.55, SD=264.31), both set against a ToM0 initiator,
in terms of score gain, t(1997.2)=0.70, p=.48. Moreover, there is no significant evidence
that lying ToM2 agents (M=195.8, SD=260.18) perform differently from honest ToM2

agents (M=210.25, SD=267.23), both set against a ToM0 initiator, in terms of score gain,
t(1996.6)=1.23, p=.22. Another point of interest is that the results suggest that the honest
ToM2 agent (M=210.25, SD=267.23) set against a ToM0 initiator performs better than an
honest ToM2 agent (M=182.9, SD=252.14) set against a ToM0 responder, t(1991.3)=2.35,
p=.019. Thus, the results suggest that an honest ToM2 agent is better off being the responder
against a ToM0 agent than being the initiator.
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(a) The initiator is a ToM0 agent.
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(b) The responder is a ToM0 agent.

Figure 4.14: Box plots of the score gain for the five different agents where the initiator (a) or
the responder (b) is fixed as a ToM0 agent. The lower and upper whiskers of the box plot reach
the bottom 2.5% and the top 97.5% data points, respectively. Data points (outliers) are scattered
normally along the y-axis to increase readability.
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Honest ToM1 agent. Figure 4.15 shows the results when we fix the initiator or responder
to being an honest ToM1 agent. An honest ToM1 initiator performs best against a ToM0

agent and worst against a lying ToM2 agent. This difference is even more pronounced
when the honest ToM1 agent is the responder. Interestingly, the honest ToM1 agent obtains
a higher mean score gain against an honest ToM1 agent compared to the mean score gain
obtained against a misleading ToM1 agent, both as initiator and responder. Similarly,
the honest ToM1 agent obtains a higher mean score gain against an honest ToM2 agent
compared to the mean score gain obtained against a lying ToM2 agent, again both as
initiator and responder.

Comparing an honest ToM1 agent with a misleading ToM1 agent, both set against an
honest ToM1 trading partner, we observe only slight (insignificant) differences in the mean
score gain. Moreover, comparing an honest ToM2 agent with a lying ToM2 agent, both
set against an honest ToM1 trading partner, we observe again only slight (insignificant)
differences in the mean score gain. Hence, while the honest ToM1 agent performs slightly
better against honest agents than against misleading/lying agents, its honest trading partner
seems not to benefit from the negotiation in terms of score gain; however, there is no
statistical evidence supporting these differences.

Misleading ToM1 agent. Figure 4.16 shows the results when we fix the initiator or
responder to being a misleading ToM1 agent. Both as initiator and responder, the misleading
ToM1 agent performs best against a ToM0 agent as a trading partner. A misleading ToM1

initiator performs worst against a misleading ToM1 agent as a trading partner, while a
misleading ToM1 responder performs worst against an honest ToM2 agent as a trading
partner. Except against a ToM0 agent as a trading partner, the misleading ToM1 agent
performs worse as a responder than as an initiator against each agent type in terms of mean
score gain.

Comparing an honest ToM1 agent with a misleading ToM1 agent, both set against a
misleading ToM1 trading partner, we observe only minor (insignificant) differences in
the mean score gain. Moreover, comparing an honest ToM2 agent with a lying ToM2

agent, both set against a misleading ToM1 trading partner, we observe again only slight
(insignificant) differences in the mean score gain.

When comparing the results of an honest ToM1 agent (see Figure 4.15) with the results
of a misleading ToM1 agent, we observe no significant differences. The results might
suggest that a misleading ToM1 agent (M=184.05, SD=247.99) performs better than an
honest ToM1 agent (M=162.35, SD=236.90), both set against a lying ToM2 responder,
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(a) The initiator is an honest ToM1 agent.
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(b) The responder is an honest ToM1 agent.

Figure 4.15: Box plots of the score gain for the five different agents where the initiator (a) or
the responder (b) is an honest ToM1 agent. The lower and upper whiskers of the box plot reach
the bottom 2.5% and the top 97.5% data points, respectively. Data points (outliers) are scattered
normally along the y-axis to increase readability.
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(a) The initiator is a misleading ToM1 agent.
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(b) The responder is a misleading ToM1 agent.

Figure 4.16: Box plots of the score gain for the five different agents where the initiator (a) or the
responder (b) is a misleading ToM1 agent. The lower and upper whiskers of the box plot reach
the bottom 2.5% and the top 97.5% data points, respectively. Data points (outliers) are scattered
normally along the y-axis to increase readability.
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t(1993.8)=2.00, p=.046. However, in contrast, there is no significant difference between
the mean score gains of an honest ToM1 agent (M=155.6, SD=236.93) and a misleading
ToM1 agent (M=163.85, 240.05), both set against a lying ToM2 initiator, t(1997.7)=0.77,
p=.44.

Honest ToM2 agent. Figure 4.17 shows the results when we fix the initiator or responder
to being an honest ToM2 agent. Interestingly, an honest ToM2 initiator performs best
set against an honest ToM2 trading partner. However, an honest ToM2 agent responder
performs best set against a ToM0 agent. The ToM0 agent is on average the worst off against
an honest ToM2 agent compared to the other agents. There are no notable differences
between honest and lying/misleading agents.

Lying ToM2 agent. Figure 4.18 shows the results when we fix the initiator or responder
to being a lying ToM2 agent. In both cases where the lying ToM2 agent is an initiator
and responder, the mean score gain is highest against a ToM0 agent as a trading partner.
Compared to other types of agents, a ToM0 agent performs worst against the lying ToM2

agent. The lying ToM2 initiator performs worst against an honest ToM2 responder, and a
lying ToM2 responder performs worst against a lying ToM2 initiator.

When comparing the results of an honest ToM2 agent (see Figure 4.17) with the results
of a lying ToM2 agent, we observe no clear differences. In both cases, the ToM2 agents
perform well against a ToM0 agent, and the ToM2 responders perform worse against a
ToM2 initiator compared to other types of agents.
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(a) The initiator is an honest ToM2 agent.
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(b) The responder is an honest ToM2 agent.

Figure 4.17: Box plots of the score gain for the five different agents where the initiator (a) or
the responder (b) is an honest ToM2 agent. The lower and upper whiskers of the box plot reach
the bottom 2.5% and the top 97.5% data points, respectively. Data points (outliers) are scattered
normally along the y-axis to increase readability.
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(a) The initiator is a lying ToM2 agent.

100 0 100 200 300 400 500 600 700 800
Score gain

ToM0

Honest ToM1

Misleading ToM1

Honest ToM2

Lying ToM2

In
iti

at
or

 ty
pe

145
196

162
190

184
191

189
184

192
177

  Initiator
  Responder (Lying ToM2)

Mean
Outlier

(b) The responder is a lying ToM2 agent.

Figure 4.18: Box plots of the score gain for the five different agents where the initiator (a) or the
responder (b) is a lying ToM2 agent. The lower and upper whiskers of the box plot reach the bottom
2.5% and the top 97.5% data points, respectively. Data points (outliers) are scattered normally
along the y-axis to increase readability.
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4.3 Experiment 3: Is there a benefit to sending goal loca-
tion messages in Colored Trails?

The results in this section are obtained by conducting the experiment as described in
Section 3.5.4, where agents of De Weerd et al. (2017) with a zero-order, first-order, and
second-order theory of mind capability negotiate with each other. In total, we obtained
results of 9000 negotiations. In 9.1% of the negotiations, the negotiation process was
terminated by the initiator before an initial offer was made. In 52.3% of the negotiations,
a new distribution of colored chips became final. Compared to Experiment 2, these
percentages lie within 2 percent points from each other.

Since each agent negotiated with every other agent in 1000 negotiation rounds, both as
initiator and responder, we have 6000 score gains for each agent type. A box plot of the
score gain is given in Figure 4.19. The median values are 50 for each of the agent types
but the mean values differ. Here, the mean score gain increases with the theory of mind
capability of agents.
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Figure 4.19: Box plot of the score gain for agents of De Weerd et al. (2017) with different theory of
mind capabilities (see Section 3.2). The lower and upper whiskers of the box plot reach the bottom
2.5% and the top 97.5% data points, respectively. Data points (outliers) are scattered normally
along the y-axis to increase readability.

A Kruskal-Wallis test was conducted to compare the score gain among the three
agents with different levels of theory of mind capability. The Kruskal-Wallis test reveals a
significant difference between the groups (H=43.61, df=2, p<.00001), indicating that there
are differences in the distribution of the score gain between the groups. A post hoc test was
done on the differences in score gain mean values. The results are shown in Figure 4.20,
where the difference in means of three combinations of agents are shown together with
98.3% Bonferroni-adjusted confidence intervals (3 comparisons) such that the family-wise
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error rate is below 0.05. This graph indicates that the differences in mean score gain are
significantly different from zero for each combination of agents.
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Figure 4.20: Difference in score gain mean values between agents from De Weerd et al. (2017) with
different levels of theory of mind. The differences in means contain 98.3% Bonferroni-adjusted
confidence intervals (3 comparisons) to ensure a family-wise error rate of less than 0.05. The 98.3%
confidence intervals are constructed using a t-statistic. If a confidence interval contains 0, we do
not have enough statistical evidence to conclude that the difference is unequal to zero, i.e., that
there is a difference in score gain mean values between two different agents.

There are two cases where an agent achieves a negative score gain as can be seen from
Figure 4.19. Upon further inspection, both cases concern a ToM2 agent who makes an
offer that decreases its score and gets accepted by the trading partner. Recall that a reason
for a ToM2 agent to send an offer that decreases its score is to deceive the trading partner
into believing that the actual goal location of the ToM2 is not its actual goal location. In
return, the ToM2 agent expects that the trading partner makes a better offer. However, in
these two cases, the offer made by the ToM2 agent was accepted by the trading partner,
yielding the ToM2 agents a negative score gain.

Compared to agents that are capable of sending goal location messages (see Figure 4.6),
we observe that agents with an equal theory of mind capability obtain similar mean score
gains. Moreover, the distributions seem to be indistinguishable between agents with a
similar theory of mind capability, suggesting that the ability to send goal location messages
does not benefit the score gain.

Figure 4.21 shows the total number of offers in a negotiation round where a specific
agent type is participating. We observe that the median values have shifted to 3 instead of
2 when comparing the agents from De Weerd et al. (2017) with our agents that can send
goal location messages (compare Figure 4.21 with Figure 4.10, respectively). In addition,
while the mean value for a ToM0 agent that is capable of sending goal location messages
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is rather similar to a ToM0 agent that is not capable of sending goal location messages, a
ToM2 agent capable of sending goal location messages uses fewer offers, on average, than
a ToM2 agent that is not able to send goal location messages. These results suggest that
agents being able to send goal location messages use fewer offers in a negotiation round,
especially for ToM2 agents.

0 2 4 6 8 10 12 14 16 18 20 22 24
Total nr. of offers in a negotiation round

ToM0

ToM1

ToM2

Ag
en

t t
yp

e

2.6

3.03

3.09

Mean Outlier

Figure 4.21: A box plot of the total number of offers in a negotiation round for agents of De Weerd
et al. (2017). In this plot, data points are gathered where agents capable of different levels of theory
of mind negotiate with each other, both as responders and initiators. The lower and upper whiskers
of the box plot reach the bottom 2.5% and the top 97.5% data points, respectively. Data points
(outliers) are scattered normally along the y-axis to increase readability.
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4.4 Experiment 4: Varying the learning speed

The results in this section are obtained by conducting the experiment as described in
Section 3.5.5, where the learning speed λ is varied. A box plot of the score gain for
different learning speeds is given in Figure 4.22.
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Figure 4.22: Box plot of the score gain for the five different agents (see Section 3.3) for different
values for the learning speed λ. Both agents in a negotiation have the same learning speed. The
lower and upper whiskers of the box plot reach the bottom 2.5% and the top 97.5% data points,
respectively. Data points (outliers) are scattered normally along the y-axis to increase readability.

First of all, Figure 4.22 shows an increase in the mean score gain for a ToM0 agent. A
Kruskal-Wallis test reveals that the learning speed indeed significantly changes the score
gain of a ToM0 agent (H=25.04, df=2, p<.00001). Moreover, a Kruskal-Wallis test suggests
that the learning speed changes the score gain of a misleading ToM1 agent (H=7.87, df=2,
p=.020); however, when we use a Bonferroni correction for the 5 comparisons (agent
types) we can make, this result is not significant (p > 0.01). No significant differences for
the other types of agents have been found. These results suggest that a ToM0 agent benefits
from a lower learning speed, which might be in favor of a misleading ToM1 agent. Another
point of interest is that there are more occurrences where an agent obtains a negative score
gain when the learning speed is lower.

Figure B.4 shows the results separated by initiators and responders. However, there are
no notable differences between the results of the initiators and responders similar to what
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we found in Experiment 2 (see Section 4.2). Nevertheless, it is noticeable that for lower
learning speeds, the responder seems to consistently outperform the initiator for all agent
types against the average trading partner.

Figure 4.23 shows the total number of offers in a negotiation round for each agent
type. Note that each agent type has negotiated with each agent type, so the total number of
offers may also depend on its trading partner. We observe that for lower learning speeds,
the distribution of the total number of offers gets a heavier right tail. Moreover, the mean
value increases when the learning speed decreases for all agent types. In all three plots,
the mean total number of offers in a negotiation round is the smallest for lying and honest
ToM2 agents and the largest for misleading and honest ToM1 agents.
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Figure 4.23: A box plot of the total number of offers in a negotiation round for different levels of
learning speeds λ. In this plot, data points are gathered where each agent type (see Section 3.3)
negotiates with each agent type with a similar learning speed, both as responder and initiator. The
lower and upper whiskers of the box plot reach the bottom 2.5% and the top 97.5% data points,
respectively. Data points (outliers) are scattered normally along the y-axis to increase readability.

Figure 4.24 shows the fraction of offers that are accompanied by a true goal location
message, false goal location message, or no goal location message. For lower values of the
learning speed, we observe that fewer goal location messages are sent. An exception is
the ToM0 agent, whose probability p0 of sending a goal location message together with an
offer is fixed to 0.2.
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Figure 4.24: A stacked bar plot of the fraction of offers that are accompanied by a true goal location
message, a false goal location message, or no goal location message for different learning speeds λ.
Percentages are given for reference provided that they are greater than 5%. The Total bar indicates
the weighted fraction of offers over all five types of agents.
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4.5 Experiment 5: Games where a Pareto improvement
exists

In Experiment 2, we found that in 77.4% of the negotiations, a Pareto improvement is
possible from the initial situation, that is, there exists a distribution of colored chips where
at least one agent is better off than the initial situation without hurting the trading partner
in terms of the score gain. In only 55.1% of the negotiations of Experiment 2, there was a
strict Pareto improvement, which means that there is a distribution where both agents can
simultaneously be better off than the initial situation in terms of the total score. When we
consider only the negotiations of Experiment 2 where a Pareto improvement was possible,
the percentage of negotiations with a new final distribution increases from 53.5% to 69.1%.
If we consider only the negotiations of Experiment 2 with a strict Pareto improvement,
the percentage of negotiations with a new final distribution is 96.8%. Because in all
negotiations of Experiment 2 where a new distribution was accepted a Pareto improvement
was possible from the initial situation, the results in this section are obtained by conducting
the experiment as described in Section 3.5.6, where only games with a possible Pareto
improvement are considered. In total, we have results of 25,000 negotiations.

In 4.5% of the negotiations, the negotiation process was terminated by the initiator
before an initial offer was made. In Experiment 2, we found that 11.0% of the negotiations
were terminated by the initiator before an initial offer was made. The percentage found in
Experiment 5 is thus 6.5 percent point lower than found in Experiment 2, indicating that
the initiator starts a negotiation process more often. In 68.8% of the negotiations, a new
distribution of colored chips became final. This percentage is 15.3 percent point higher
compared to Experiment 2, where we found a new distribution of colored chips became
final in only 53.5% of the negotiations.

A box plot of the score gain per agent type for Experiment 5 is given in Figure 4.25.
The median values are 50 for each of the agent types but the mean values differ.

A Kruskal-Wallis test was conducted to compare the score gain among the five agents.
The Kruskal-Wallis test reveals a significant difference between the groups (H=218.56,
df=4, p<.00001), indicating that there are differences in the distribution of the score gain
between the groups. A post hoc test was done on the differences in means. The results
are shown in Figure 4.26, where the difference in means of ten combinations of agents are
shown together with 99.5% Bonferroni-adjusted confidence intervals (10 comparisons)
such that the family-wise error rate is below 0.05. The graph indicates that the differences
in mean score gain are significantly different from zero for almost all combinations of

87



CHAPTER 4. RESULTS

100 0 100 200 300 400 500 600 700 800
Score gain

ToM0

Honest ToM1

Misleading ToM1

Honest ToM2

Lying ToM2

Ag
en

t t
yp

e

193

229

231

239

240

Mean Outlier

Figure 4.25: A box plot of the score gain for the five different types of agents (see Section 3.3).
The lower and upper whiskers of the box plot reach the bottom 2.5% and the top 97.5% data points,
respectively. Data points (outliers) are scattered normally along the y-axis to increase readability.

agents except for combinations where the agents have a similar theory of mind capability
or the combination of an honest ToM2 with a misleading ToM1 agent.

Compared to Experiment 2 (see Figure 4.7), we now have no statistical evidence of
the difference in score gain means between an honest ToM2 agent and a misleading ToM1

to be unequal to zero. Hence, when we only consider games where there is a possible
Pareto improvement, the difference in performance between an honest ToM2 agent and a
misleading ToM1 agent is not significant anymore.

Even though we only consider games with a possible Pareto improvement, there is a
case where a ToM2 agent obtains a negative score gain. There thus still exists cases where
the expected value of making an offer that yields the agent a negative score gain is the
highest among all other offers.

Figure 4.27 shows the experiment results separated by initiators and responders. Com-
pared to Experiment 2 (see Figure 4.8), the mean score gain is higher for each agent type,
both as initiator and responder.

In Figure 4.28, we plotted the differences in means with 99% Bonferroni-adjusted
confidence intervals (5 comparisons) to control that the family-wise error rate is lower
than 0.05. Compared to the results in Experiment 2, the differences between the initiator
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Figure 4.26: Difference in score gain mean values between the five different types of agents (see
Section 3.3). The differences in means contain 99.5% Bonferroni-adjusted confidence intervals (10
comparisons) to ensure a family-wise error rate of less than 0.05. The 99.5% confidence intervals
are constructed using a t-statistic. If a confidence interval contains 0, we do not have enough
statistical evidence to conclude that the difference is unequal to zero, i.e., that there is a difference
in score gain mean values between two different agents.

and responder remain insignificant except for the ToM0 agent. In games where there is a
possible Pareto improvement, the ToM0 agent is significantly better off being the initiator
than the responder against the average trading partner.

Figure 4.29 shows the distribution of the total number of offers in a negotiation round
when a specific agent type takes part in the negotiation. In comparison with Experiment
2 (see Figure 4.10), there are some outliers with a total number of offers in a negotiation
round greater than 20. Interestingly, most of these outliers are created by lying and honest
ToM2 agents. The mean values are also higher for each agent type. Furthermore, the mean
total number of offers in a negotiation round is now higher for lying and honest ToM2

agents compared to ToM0 agents, which was not the case in the previous experiments. This
may be partly due to the extreme outliers for lying and honest ToM2 agents.

Figure 4.30 shows the fraction of offers that are accompanied by a true goal location
message, a false goal location message, or no goal location message. In general, the
number of offers without a goal location message increases when we only consider games
with a possible Pareto improvement.
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Figure 4.27: A box plot of the score gain for the five different types of agents (see Section 3.3)
separated into initiators and responders. The lower and upper whiskers of the box plot reach the
bottom 2.5% and 97.5% data points, respectively. Data points (outliers) are scattered normally
along the y-axis to increase readability.

Finally, Figure 4.31 shows a box plot of the social welfare gain of every negotiation
an agent type participates in where only games with a possible Pareto improvement are
considered. Compared to Experiment 2 (see Figure 4.13), the social welfare gain has
increased. While there might have been a difference between the social welfare gain of
ToM1 and ToM2 agents, this difference is not pronounced in Figure 4.31. Interestingly, the
median values have shifted from 100 to 550 for each of the agent types.
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Figure 4.28: Difference in score gain mean values between the responder and initiator for different
types of agents (see Section 3.3) with 99% Bonferroni-adjusted confidence intervals (5 comparisons)
to ensure a family-wise error rate of less than 0.05. The confidence intervals are constructed using
a t-statistic. If a confidence interval contains 0, we do not have enough statistical evidence to
conclude that the difference is unequal to zero, i.e., that there is a difference in score gain mean
values between the responder and the initiator.
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Figure 4.29: A box plot of the total number of offers in a negotiation round. In this plot, data points
are gathered where each agent type negotiates with each agent type, both as responder and initiator.
The lower and upper whiskers of the box plot reach the bottom 2.5% and the top 97.5% data points,
respectively. Data points (outliers) are scattered normally along the y-axis to increase readability.
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Figure 4.30: A stacked bar plot of the fraction of offers that are accompanied by a true goal location
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fraction of offers over all five types of agents.
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Figure 4.31: Box plot of the social welfare gain for the five different types of agents. The lower and
upper whiskers of the box plot reach the bottom 2.5% and the top 97.5% data points, respectively.
Data points (outliers) are scattered normally along the y-axis to increase readability.
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5
Discussion & Conclusion

The aim of this thesis was to contribute to the existing research on lying and deceiving
by AI systems in order to contribute to trustworthy AI. More specifically, the goal was to
examine the influence of lying in the negotiation setting of Colored Trails by answering
the following research question:

What is the influence of lying by artificial agents in the multi-agent negotiation

setting of Colored Trails?

The Colored Trails game, introduced by Grosz, Kraus, and colleagues (2004; 2010) is
a framework that is commonly used to investigate decision making in mixed-motive
situations, that is, situations where the agents have conflicting motives to cooperate or to
compete with each other. In the Colored Trails game, agents negotiate over the distribution
of the available colored chips with which they aim to get the highest number of points
possible.

By adapting the definition of lying by Van Ditmarsch et al. (2020) to the context of
Colored Trails, we defined lying to be an agent that makes a statement that the agent
believes to be false with the intent that its trading partner believes that the statement is
true and that its trading partner believes that the lying agent also believes said statement is
true. First, in order for an agent to lie according to this definition, it needs a theory of mind
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capability, i.e., the ability to attribute mental content such as beliefs, desires, and goals
to another individual (Premack & Woodruff, 1978). To provide our agents with a theory
of mind capability, we used the agents of De Weerd et al. (2017). We used their notation
where a ToMk agent means that the agent is capable of theory of mind up to the kth-order
but not beyond. Second, in order for an agent to lie in Colored Trails, an agent needs to
be able to send false messages. We determined that this was not possible in the original
setting of Colored Trails by only making offers, so we introduced agents that were able to
send a goal location message, that is, a message that states to the receiver that the sender
has the goal location mentioned.

While we adopt the definition of lying as given by Van Ditmarsch et al. (2020), various
other definitions or ideas of lying exist. In this thesis, we distinguish between the notions
of deceiving (Definition 2), lying (Definition 3), and misleading (Definition 4). In our
definitions, for each of these concepts, a theory of mind capability is needed. While agents
capable of only a first-order theory of mind can mislead and not deceive or lie, agents
capable of a second-order theory of mind can use all three concepts. Hence, we constructed
five different agents, all capable of sending and receiving goal location messages: a ToM0

agent, an honest ToM1 agent, a misleading ToM1 agent, an honest ToM2 agent, and a lying
ToM2 agent. Using these agents, we contributed to the existing literature in multiple ways.

We first made a graphical user interface (GUI) where a user can observe two agents
negotiate in Colored Trails. This GUI is used to examine the behavior of the agents in
Colored Trails and to provide examples of agents lying or misleading. The user has various
options to choose the negotiation setting. Although the user cannot participate in the
negotiation itself, the GUI can be extended such that humans can play against agents.

As a second contribution to this thesis, we performed several experiments to determine
the effect of lying in the negotiation setting of Colored Trails. Here, we tested the core
hypothesis that agents that are capable of lying or misleading outperform similar agents
that are not capable of lying or misleading in terms of score gain. However, we found that
this is not the case. Although agents that are capable of lying or misleading have an extra
instrument, i.e., they can send goal location messages that contain a false goal location in
addition to the capabilities of their honest counterparts, they seem not to benefit from this
extra toolkit.

An explanation for the lack of improved performance of lying agents compared to
honest agents may be the uncertain environment in which the agents negotiate. Agents do
not know the goal location of the trading partner and do not know the agent type of the
trading partner. Other studies have suggested that theory of mind allowed us to survive and
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deal with more complex and unpredictable environments (De Weerd et al., 2017, 2022).
Moreover, higher-order theory of mind (that includes second-order theory of mind) has
been associated with better negotiation skills (De Weerd et al., 2017). These results are also
pronounced in our experiment results and might explain why theory of mind influences the
results to a greater extent than the ability to lie or mislead.

Although agents with a theory of mind capability form beliefs about the goal location
of the trading partner and about the theory of mind capability of the trading partner, the first
offer must be made with absolute uncertainty about the goal location of the trading partner.
Hence, it is interesting to observe that ToM2 responders send more goal location messages
than ToM2 initiators. ToM2 responders are likely to have obtained some information about
the trading partner because they received an offer from the initiator. Consequently, ToM2

responders can use information deduced from this offer to lie to the trading partner such
that the expected value for the ToM2 agent of a counteroffer increases. Note, that making
the environment less uncertain by making the goal locations known to both agents is also
no option because in that case, agents cannot lie about their goal location.

While we found that lying is not beneficial for artificial agents in our negotiation
setting, there is no consensus among researchers on whether lying is beneficial for humans
in negotiations. Howard Raiffa’s work (1982; 2002) primarily focused on negotiation
analysis and decision making, and he acknowledged that parties may choose to misrepresent
information to gain a negotiating advantage. Humans may choose to use various kinds of
lies, deception, or misrepresentations of information in negotiations. One can lie about a
subject matter or price, but one can also make pro-social lies. In this work, we focused
on lying on a subject matter, i.e., lying about your goal. Although some (researchers)
argue that lying is always wrong (Sherwood, 2022), others argue that not all forms of
lying are selfish (Levine & Schweitzer, 2015). Lying is a short-term strategy, but it can
have an impact on longer relationships; hence, negotiators should consider the long-term
consequences of using lying and deception. Whether or not lying is beneficial for humans,
it is clear that it is used in negotiations intentionally.

Comparing our agents with the agents of De Weerd et al. (2017) suggested that the ability
to send goal location messages does not benefit the score gain. In general, the distributions
of the score gain seem to be indistinguishable between agents with a similar theory of mind
capability. However, the negotiation length, i.e., the total number of offers in a negotiation,
is reduced by the ability of agents to send goal location messages. While the number
of new distributions of colored chips that became final is about equal, the length of the
negotiation reduces when agents can send goal location messages. These results indicate
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that the negotiation becomes more efficient without decreasing performance when agents
are given the ability to send goal location messages.

Furthermore, we found that the learning speed, an agent-specific parameter that repre-
sents the degree to which new information influences the beliefs of the agent, influences
some of the results significantly. In particular, we observed that the mean score gain
significantly increases for a ToM0 agent when the learning speed decreases. Moreover, the
total number of offers in a negotiation round increases when the learning speed decreases.
These two results are evident since more offers are needed to change the beliefs of the
agents. This also explains why there were more occurrences where an agent obtained a
negative score gain when the learning speed is lower; namely, an agent might expect the
trading partner to make a counteroffer instead of accepting the offer.

The game of Colored Trails has many initial configurations. These configurations influ-
ence the results of the experiments. Following De Weerd et al. (2017) in our experiments,
we only considered games where neither agent could initially reach their goal location,
in order to ensure that both agents have the incentive to negotiate to increase their score.
However, even with these restrictions, we found that in 22.6% of the games, neither agent
could improve their score without hurting the trading partner, that is, there was no Pareto
improvement possible. Moreover, we found large variances in the score gains. In our
final experiment, we considered only initial settings in which a Pareto improvement was
possible. Considering only these games, we observed more games with a new distribution
of colored chips. Consequently, the mean score gain increased significantly for each of
the agent types. However, the variance of the score gain remained about the same. These
results suggest that due to the large number of settings of Colored Trails, many negotiation
results should be obtained to draw conclusions. Alternatively, one can investigate only
certain settings so that the results are less susceptible to chance. While it might be worth-
while to investigate the influence of lying in certain settings only, this could jeopardize
generalizability of the results.

It should be noted that the interpretation of goal location messages by ToM0 agents is
rather limited. When a ToM0 agent receives a goal location message, it considers offers
that do not contain the color of the mentioned goal location less likely to be accepted. This
might have resulted in the misleading ToM1 agent sending false goal location messages in
many cases to increase the likelihood of its offer going to be accepted or to increase the
likelihood of a better counteroffer in terms of score gain. A ToM1 agent might simply aim
to get a chip color of another goal location by its misleading message. While a ToM0 agent
cannot model the trading partner having a goal, another interpretation of a goal location
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message by a ToM0 agent would be using the length of the path to the mentioned goal
location in determining offers that are less likely to be accepted.

Finally, due to the agents being able to adopt lower orders of theory of mind, it was
hard to tell whether an agent intended to lie, mislead, or simply send a false goal location.
Another idea was to fix the order of theory of mind, but then there were still problems with
second-order theory of mind agents intending to change the beliefs of the trading partner
but based on intentions that are not considered lying. For example, a lying agent might
send a second goal location message that contradicts the previously sent goal location
message in order to change the beliefs of the trading partner. Hence, it is important to keep
in mind that what is considered lying in the results, might not actually be a lie.

5.1 Conclusion

In the year 2000, Castelfranchi (2000) predicted that there will be problems of deception
and trust between humans and artificial entities and among artificial agents themselves.
Presently, researchers found that people ascribe intentions of lying and deception to robots
and agents (Kneer, 2021; Rogers et al., 2023). With the rising use of artificial intelligence
in advanced systems that include automated negotiations, we need transparency of the AI
system and examine when and in what ways an AI system is “willing” to lie. When an AI
system becomes sufficiently smart, nothing prevents it from lying. We might be able to
mitigate unwanted deception by AI agents when we understand all the possible ways an
AI agent can lie or deceive.

In this thesis, we found that the effect of lying by artificial agents in the multi-agent
negotiation setting of Colored Trails is insignificant in terms of score gain compared to an
honest agent, in general. Against the average trading partner, the results seem to be largely
influenced by the theory of mind capability instead of the capability to lie. Since, in many
other applications, there are consequences to (being caught) lying for an agent in possibly
next encounters with the trading partner, the results may suggest that honesty is the best
policy. These results are hopeful in the sense that, while agents are becoming increasingly
smart, there are no benefits for them to lie in (mixed-motive) negotiation settings.

5.2 Future work

Various assumptions and considerations have led to the thesis as it is. Therefore, several
improvements and suggestions for future directions can be derived from this thesis. We
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have split them into improvements to the settings of Colored Trails and to the lying of
agents. We close this discussion with future research directions for applications of this
work.

Colored Trails. The Colored Trails setting provides many possible initial situations that
influence the negotiation process. Because the initial configuration (e.g., whether there
exists a possible Pareto improvement from the initial situation) impacts the negotiation
process, the number of data points that we considered (1000) might be insufficient to
capture whether there are differences in the average performance of agents. Additionally,
this has been noticed from the high standard deviations of the results leading possibly to
many insignificant results. A reason for this high standard deviation is the odd score gain
distribution, which is discrete with multiples of 50, highly skewed, and contains grossly
two groups of points. While we employed the score calculation from De Weerd et al.
(2017) and others, it might be interesting to look at the influence of the score calculation
on the performance of the agents (see, e.g., de Jong, Hennes, Tuyls, & Gal, 2011, for
another score calculation). Similarly, we can compare the performance of agents in the
same setting instead of averaging the performance over random games as we did in this
thesis.

Another consideration in this thesis was the static positions in which the initiator and
the responder negotiated in the warm-up phase. The warm-up phase was meant for ToM0

agents to learn across games. However, these fixed positions of initiators and responders
might yield overfitting of the zero-order beliefs in a particular position, meaning that these
zero-order beliefs perform worse in the other position. Although we suspect the influence
of this to be insignificant, a possible alteration of the fixed positions of the initiator and
the responder is to randomly place the agent in the position of the initiator or responder at
the start of each negotiation. However, agents might still adapt to the trading partner type.
Hence, an additional idea is to make a pool of agents with different types of agents and let
them negotiate with each other through random encounters.

In our Colored Trails game, we fixed the learning speed of the agents to 0.5. Since the
learning speeds are similar for both agents, it is possible that an agent models the beliefs
of its trading partner correctly. Another idea would be to make the learning speed differ
between agents or to make it normally distributed. This difference in learning speed might
result in the agents modeling the trading partner incorrectly and obtaining counteroffers
that the agent would not expect. Consequently, the negotiation process and results might
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change (see, e.g., De Weerd et al., 2017, for results on agents with differing levels of theory
of mind and varying learning speeds).

Lying. While there are many controversies with the definitions of lying and deceiving,
we distinguished between the two definitions in this thesis and added a definition for
misleading.

While, in this thesis, agents were given the capability to send goal location messages in
order to provide a possibility for lying, other alternatives exist. In Section 3.3.1, we already
discussed that an agent in the Colored Trails game could also have been given the ability
to send a preference order of offers or to send the number of chips needed to reach its goal
location. It might be interesting to investigate these options for communication too.

Lying may be beneficial (see, e.g., Levine & Schweitzer, 2015) or can have undesirable
consequences. In this thesis, agents can lie about their goal location without direct
consequences for themselves. When the trading partner of a lying/misleading agent
stumbles upon a contradiction in its beliefs, it revokes its beliefs and does not believe the
lying/misleading agent in subsequent statements in the current negotiation round. While
this might influence the current negotiation round, the lying/misleading agent is only
implicitly caught to lie/mislead. An interesting addition to the current model is to add
an explicit award when the receiver catches a liar by, for example, receiving points for
pointing out liars and deducting points for being caught lying.

Furthermore, in this thesis, agents believe the trading partner instantly when a goal
location message is sent (under the condition that the message does not contradict its
beliefs), even if the agent believes that the probability of that goal location being the actual
goal location of the trading partner is extremely small (but nonzero). However, agents do
consider the possibility that the goal location mentioned is not the actual goal location
of the trading partner by being able to revoke their beliefs. Another option would have
been that the trading partner believes the agent only when the believed probability of the
mentioned goal location being the actual goal location of the trading partner is highest
among the goal location probabilities. Another alternative could be to construct agents with
a trust parameter that models the relation of trust and is used to update the goal location
beliefs. Namely, if agents are caught lying, trust by the other party may be damaged and
could lead to retaliation. Agents might also be more suspicious if they found out that the
trading partner can lie about its goal location.

The results showed that ToM2 agents sent, on average, more goal location messages
with their offers than ToM1 agents. An interesting addition to this thesis would be to
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let agents reason about why the trading partner did (not) send a particular goal location
message. While we exclude this reasoning, an agent could be able to reason about what it
would have messaged if it were in the position of the trading partner. Consequently, the
agent can adapt its belief in the goal location of the trading partner and its confidence in
the theory of mind capability of its trading partner.

Moreover, we found that, for higher learning speeds, many goal location messages are
sent with offers. An interesting alternative would be to add a cost (e.g., 1 point) to sending
a goal location message. We expect that fewer goal location messages will be sent with an
offer.

While we found that there is no general benefit to agents being capable of lying, given
the opportunity, agents did lie anyway. A separate study may shed light on more specific
situations where it may (not) be optimal for an artificial agent to lie in a negotiation setting.
On the one hand, the potential benefits and risks of artificial agents lying in negotiation
settings may vary depending on the specific context, and, thus, specific situations that
foster lying should be determined. On the other hand, we might be more interested in the
benefits of artificial agents in negotiations in general such as whether they can achieve a
better outcome for themselves, or whether it is better to build trust with the other party.

Applications. The results in this thesis are gathered using the Colored Trails framework.
Colored Trails is a useful research test-bed for investigating the decision making of agents
in a negotiation setting. Besides artificial agents, a heterogeneous group of humans and
agents can play the Colored Trails game (Kraus et al., 2004). Previous research used this
framework to show that theory of mind agents can encourage the use of higher-order theory
of mind in human participants (De Weerd, Broers, & Verbrugge, 2015). Our research could
be extended by letting humans negotiate with lying agents to train them to expose liars
in negotiations. This could help them to be aware of situations that encourage agents to
lie, which might help them to even catch people lying in negotiations. Moreover, since
we added an extra communication option besides making an offer, this research could be
used to train people to recognize situations where it is beneficial to communicate more
than simply an offer, or maybe when it might be beneficial to lie (or when not to lie).

We found that lying is not beneficial for artificial agents in the Colored Trails, a mixed-
motive setting. De Weerd (2015) found that mixed-motive settings are more likely to be
the main contributor to the emergence of higher-order theory of mind in humans than
either purely competitive or purely cooperative settings. Lying is seen as a Machiavellian
tactic (Christie & Geis, 2013) and may only be effective in strictly competitive settings.
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Raveenthiran (2023) analyzed human behavior in human-human and human-agent play
in the mixed-motive setting of the Mod-Signal Game. Raveenthiran (2023) found that
humans tend to play competitively and be dishonest with their signal despite there being
a higher payoff of playing cooperatively. Future research may also look at the influence
of lying in strictly competitive settings or strictly cooperative settings, for example, to
explain which of these settings contributed to the emergence of lying from an evolutionary
perspective as De Weerd (2015) did for the emergence of higher-order theory of mind in
humans.

Besides Colored Trails, other frameworks where agents negotiate over the distribution
of resources exist. Ebrahimnezhad and Fujita (2023) introduce NegoSim, a new negotiation
simulator that includes protocols, negotiating parties, and analytic tools. Ebrahimnezhad
and Fujita (2023) claim to have made an appropriate platform for researchers to investigate
negotiations. Relating to our research, one can add agents with and without a lying strategy
to investigate whether there is no benefit to lying in other negotiation settings too. Another
example where agents can be analyzed in a negotiation setting is introduced by Facebook
Artificial Intelligence Research (Lewis, Yarats, Dauphin, Parikh, & Batra, 2017). Similar
to this thesis, they studied negotiation on a multi-issue bargaining task. In contrast to
this thesis, they used reinforcement learning to train their dialog agents to use effective
natural language in negotiations. It might be interesting to observe whether these agents
are capable of lying and if so, whether it is beneficial to lie in more complex negotiations
involving natural language and, possibly, humans.
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Panisson, A. R., Sarkadi, Ş., McBurney, P., Parsons, S., & Bordini, R. H. (2018). Lies,

bullshit, and deception in agent-oriented programming languages. In 20th Interna-

tional Trust Workshop (Co-Located with AAMAS/IJCAI/ECAI/ICML 2018) (Vol. 14,
pp. 50–61).
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A
The Concept of Pareto Efficiency

Vilfredo Pareto (1848 – 1923), an Italian economist, introduced the concept of Pareto
efficiency (Corporate Finance Institute, 2021). Pareto efficiency is a state where it is not
possible to reallocate goods such that at least one individual is better off without making
another individual worse off. A Pareto inefficient state is thus a state where a reallocation
of goods is possible and where an individual can be better off without making another
individual worse off. This introduces the concept of a Pareto improvement, which is a
condition in which a reallocation of goods makes at least one individual better off without
making another individual worse off. Ultimately, by Pareto improvements, we can move
from a Pareto inefficient state to a Pareto efficient state.

In the context of this thesis, Pareto efficiency is reached when no offer can be made
such that the new distribution of colored chips yields a higher score for one agent without
decreasing the score for another agent. Here, we do not subtract the penalty for making an
offer from the final score. A Pareto improvement in our context thus means that an offer
exists such that the new distribution yields a higher score for one agent without decreasing
the score of the trading partner. A Pareto inefficient state is consequently a distribution of
chips in a particular game where a Pareto improvement is possible.
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B
Additional Plots

B.1 Experiment 1: Setting the probability of a ToM0 agent
sending messages
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Figure B.1: Box plot of the score gain per value of p0, i.e., the probability of a ToM∗
0 agent sending

a goal location message together with an offer. Compared to Figure 4.1, the data points are plotted
on top of the box plot to show the distribution of the score gain. The lower and upper whiskers of
the box plot reach the bottom 2.5% and the top 97.5% data points, respectively. Data points are
scattered normally along the x-axis to increase readability.
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Figure B.2: Difference in score gain mean values between the responder and initiator for different
values of p0, i.e., the probability that a ToM0 agent sends a goal location message together with an
offer, with 99.5% Bonferroni-adjusted confidence intervals (11 comparisons) to ensure a family-
wise error rate of less than 0.05. The confidence intervals are constructed using a t-statistic. If
a confidence interval contains 0, we do not have enough statistical evidence to conclude that the
difference is unequal to zero, i.e., that there is a difference in score gain mean values between the
responder and the initiator. Note that we cannot use matched samples here since we consider the
score gain means of the ToM0 agents, and the ToM0 agents also negotiate with other types of agents.
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B.2 Experiment 2: Does lying and misleading outperform
honesty?
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Figure B.3: A box plot of the total number of offers in a negotiation round. In this plot, data points
are gathered where each agent type (see Section 3.3) only negotiates with a similar agent type, both
as responder and initiator. The lower and upper whiskers of the box plot reach the bottom 2.5%
and the top 97.5% data points, respectively. Data points (outliers) are scattered normally along the
y-axis to increase readability.

118



APPENDIX B. ADDITIONAL PLOTS

B.3 Experiment 4: Varying the learning speed
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Figure B.4: Box plot of the score gain for the five different types of agents (see Section 3.3) for
different levels of learning speeds λ separated into initiators and responders. Agents in a negotiation
have the same learning speed. The lower and upper whiskers of the box plot reach the bottom 2.5%
and the top 97.5% data points, respectively. Data points (outliers) are scattered normally along the
y-axis to increase readability.
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C
Installation

This appendix includes the instructions to run the GUI in Java. The GUI has been tested on
Windows using IntelliJ IDEA and Eclipse and Java versions 17 and 19. Moreover, we ran
experiments on the Hábrók high-performance computing cluster (Center for Information
Technology, 2023) that uses a Linux operating system, where we tested the code on Java
versions 11 and 17.

Below, I explain the steps to download Eclipse and IntelliJ to run the GUI on a Windows
operating system. Moreover, I provide an intuition on how to run the GUI in a Linux
environment. One may also prefer to use its own Java tool to run the GUI.

Might the problem arise that the GUI does not fit your screen, try the following. Go to
Settings on your laptop by selecting Start > Settings > System > Display.
Then, to change the size of your text and apps, choose an option (either 125% or 100%
(recommended)) from the drop-down menu next to Scale. Now, the GUI should fit your
screen!
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C.1 Windows

C.1.1 Eclipse

C.1.1.1 Installation Eclipse

One can follow the steps below to install Eclipse to run Java:

1. One can install Eclipse via the following link: https://www.eclipse.org/
downloads/.

2. Click on Download under Get Eclipse IDE, and then again on Download on the
next page for installation of Eclipse.

3. After the files have been downloaded, click on the downloaded executable and follow
the steps of the eclipseinstaller.

4. Once you finished downloading Eclipse, open the executable of Eclipse to start
Eclipse.

C.1.1.2 Run the graphical user interface

1. Download the code from https://github.com/SverreBr/MasterThesis

(a zip file) or clone the git repository.

2. Place the zip file in the preferred folder and extract all files. You should now have a
folder that is named MasterThesis-master (or any other folder name where
you placed the files) and contains at least two subfolders: fig and src.

3. In your Eclipse workspace, click on file > new > Java Project. The follow-
ing should appear:
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4. Untick Use default location and browse to the folder named
MasterThesis-master. Further, untick Create module-info.java

file. It should look like the following:
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5. Click on Next and ensure that src/main/java is labeled as a source folder. If
this is not the case, it can be done by clicking on the icon indicated by a red rectangle
in the following figure. Then, click on Finish.
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6. First open the file Main.java that is located in the folder
src/main/java/lyingAgents. Then, run the GUI by clicking on the icon
indicated by a red rectangle in the following figure. This should look at follows:
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C.1.2 IntelliJ IDEA

C.1.2.1 Installation IntelliJ IDEA

One can follow the steps below to install the IntelliJ IDEA (community edition) to run
Java:

1. One can follow the steps of the following link to install the IntelliJ IDEA: https://
www.jetbrains.com/help/idea/installation-guide.html

2. Once you finished downloading the IntelliJ IDEA by following, open the IntelliJ
IDEA.

C.1.2.2 Run the graphical user interface

After opening IntelliJ IDEA, one can choose to either download the code from https://

github.com/SverreBr/MasterThesis (a zip file) or clone the git repository. In
case one chooses to download the code, you can follow these steps:

1. Download the code from https://github.com/SverreBr/MasterThesis

(a zip file).

2. Place the zip file in the preferred folder and extract all files. You should now have a
folder that is named MasterThesis-master (or any other folder name where
you placed the files) and contains at least two subfolders: fig and src.
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3. In your IntelliJ IDEA workspace, click on open (see Figure C.1) and search for the
folder where you placed the code. You might be asked to trust the project. After that,
one can simply run the code by clicking on the run button.

Figure C.1: IntelliJ IDEA workspace

In case one chooses to clone the git repository, one can click on Get from VCS in
the IntelliJ IDEA workspace (see Figure C.1) and enter the repository URL.

C.2 Linux

We only tested running experiments in a Linux environment. Since we used the Hábrók
high-performance computing cluster, we were not able to test the GUI. Nevertheless, an
example of the commands to run the GUI in a Linux environment may be as follows:

1. javac --source-path src/main/java -d bin src/main/java/lyingAgents/Main.java

2. java -cp bin lyingAgents/Main

Make sure that Java is installed or loaded.
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