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Abstract

Modern enterprise networks are becoming increasingly heterogeneous due to the proliferation of read-
ily available open source technologies, which allow for new applications and infrastructure to be
brought online in short spans of time. This presents an extremely large attack surface for software
supply chain attacks which focus on compromising these commonly used technologies to exfiltrate
data and gain control of private enterprise networks.

Monitoring such networks for vulnerabilities and weaknesses is nontrivial, often requiring significant
effort from Security Operations teams. The concept of a Software Bill of Materials (SBOM) is fre-
quently used to simplify this monitoring in the context of applications and containers. This thesis
explores the feasibility of extending the SBOM concept to programmable network infrastructure in
describing Infrastructure as Code (IaC) deployments.

More specifically, the thesis investigates whether a system that employs SBOMs augmented with
information such as Common Vulnerability Enumeration (CVE) entries can be used as a representa-
tion of a given IaC deployment, and whether such a representation can be used for business impact
assessment, i.e. allowing enterprises to make more informed security decisions, and for security
orchestration, i.e. enabling existing remediation systems to enact security policies programmatically.

For this purpose, a system is designed and developed that creates a representation of an IaC by con-
structing a Graph Based Representation (GBR) of a given infrastructure deployment, and then con-
structing an SBOM. Using this system, it is found that SBOMs are able to represent a given IaC
deployment, but their verbose, static nature precludes their application to business impact analysis or
security orchestration.

To demonstrate the efficacy of the developed system, it is compared against two existing open source
solutions that create an SBOM for an IaC deployment from the perspectives of functionality and
execution time. It is found that the developed system performs better in both aspects.
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1 Introduction

Modern software systems exhibit staggering complexity, most of which is abstracted by extensive
open source technologies. It is now not only possible but routine to have an application that appears
to be only a few lines of code deployed in a manner that makes it globally available using simple
configuration files. Simultaneously, legacy applications, services, and devices persist, especially in
enterprise networks. In this extremely heterogeneous technological landscape, it is not uncommon
to see software being developed that makes use of a number of open source libraries, each possibly
with their own dependencies, that will run on a combination of public cloud resources and special-
ized hardware, for example, a smart home solution whose operations involve hardware sensors, an
IoT gateway, user devices, and a cloud-based back end, most of which are facilitated by the con-
cept of Infrastructure as Code (IaC), network and information infrastructure deployed, operated, and
maintained using configuration files akin to managing software.

A complex network such as this is increasingly referred to as a Software Supply Chain, borrowing a
term from industrial supply chain management. In traditional operations, defects in upstream com-
ponents percolate (either through negligence or malfeasance) downstream into the finished product,
sometimes with catastrophic consequences. Consider the 2014 recall of General Motors automo-
biles[56]: Due to faulty standards and material choices, ignition switches used in GM cars were
found to slip, deactivating the car’s engine during run-time, which in turn deactivated safety features
such as airbags. This fault was present in cars that were sold resulting in 124 deaths[60], and an
eventual USD 2.6 billion paid in damages.

The software supply chain is not significantly different. Defects can take the form of vulnerabilities,
weaknesses, and non-adherence to best practices. A complicating factor is the significance of external
adversaries who can cause extreme financial and reputational damage. An extensive reliance on open
source technology creates a broad surface for Software Supply Chain Attacks, where an upstream
dependency of a particular software is compromised. The effectiveness of these attacks lies in their
abuse of developer trust[51] in systems such as package management and build automation, both
virtually essential to accelerating the deployment of any application. This is in turn exacerbated by
the fact that some widely used packages are maintained by individual open source contributors[69]
who may not be able to spend time in addressing vulnerabilities in their projects, and that many
popular packages have malicious alternatives with names designed to trick developers into using them
by having low Levenshtein distances to the target packages, a practice known as typosquatting [14].
The clandestine nature of such an attack renders the monitoring of vulnerabilities within an enterprise
network a significant challenge, often requiring extensive manpower to analyze, monitor, and patch
vulnerabilities as they are discovered within a system. Meanwhile, the cost associated with the breach
of such software systems and networks continues on a steeply upward trajectory.

As a motivating example, in the 2020 cyber attack on the United States Federal Government, a cyber-
espionage group was able to compromise a number of government and private enterprise organiza-
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tions by compromising the Continuous Integration / Continuous Deployment (CI/CD) pipeline of
Orion, a network monitoring platform by an upstream provider SolarWinds[57]. Similarly, through a
backdoor introduced in Microsoft Exchange Server, over 20000 US governmental organizations were
compromised. [45] IBM’s[27] annual report into the cost of a data breach found that:

1. 1 in 6 breaches occurs due to a supply chain compromise.
2. The Mean Time to Discovery (MTTD) of a breach is 277 days, seen as an improvement from

287 days in 2021 .
3. 45% of respondents operated a hybrid model of cloud and on premises operations.
4. The average cost of a data breach is above USD 4 million.

An exploration of the current needs in the domain of enterprise security suggests that security teams
routinely face challenges in:

1. Automating the processes of monitoring and response to cyber attacks [65].
2. The large number of technology stacks to be understood, monitored, and maintained [65].
3. Communicating the risks posed by these cyber attacks and the need to formulate a response to

executive leadership[21] [5].

This combination of ecosystem complexity, pervasive use of software with multiply nested depen-
dencies, and increased costs associated with a data breach provides an imperative to implement trace-
ability in software ecosystems. That Clarke, Dorwin, and Nash [10] found open sourcing to not
significantly increase the risk vulnerabilities in code suggests that closed source software is no more
secure, and would too need to implement traceability. Traditional supply chains once again provide
a template to address this in the form of a Bill of Materials, a structured document enumerating the
components, assemblies, and other raw materials that constitute a given product, imparting trans-
parency and traceability to it. Its analogue, the Software Bill of Materials (SBOM) is being set as a
requirement by multiple governments. Koran et al.[31] and Muirı́ [46] assert that SBOMs can mitigate
cybersecurity risks by:

1. Enhancing the identification of vulnerable systems and the root cause of incidents.
2. Reducing duplication of effort by standardizing formats across multiple sectors.
3. Identifying suspicious or counterfeit software components.
4. Collecting and communicating this information in such a manner can lower the cost, increase

the reliability of, and increase our ability to trust our digital infrastructure.

SBOMs can now be generated for a given piece of software, a set of files, an operating system, or even
a container image hosted in a repository such as Docker Hub, and there exist a number of widely used
tools that can generate such SBOMs. There are also a handful of solutions, at least one of them open
source, that perform the arduous task of tracking the Bills of Materials generated for an enterprise,
and flagging outdated, vulnerable, or otherwise weak software. Yet, the potential of SBOMs as a
concept in the context of cloud and hybrid environments might still be unrealized; vulnerabilities
and weaknesses in dependencies would represent a subset of supply chain vulnerabilities for such a
software deployment. Properties such as which ports of a computer running a given piece of software
are open, or what services in a given network are open to other parts of the network would also
constitute useful information to document. Further, the concept of an SBOM could potentially form
a base for more than simple enumeration and documentation. Thus, it would be interesting to explore
the concept of the SBOM in the context of cloud environments, specifically:

1. What useful information about cloud environments can be captured using existing SBOM for-
mats?

2. What additional information is needed to make these truly representative of the deployment?
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3. How can the SBOM be integrated to other systems such that it can achieve a greater measure
of security for the deployment, if at all?

A survey of the existing landscape of SBOM generators demonstrated that While there are a number
of existing solutions that create SBOM for container images, machine file systems, or similar objects,
few tools generate SBOMs for cloud environments, and none attempt to use the generated SBOMs
for any purpose other than reporting. It would thus be a novel concept to develop a system based on
SBOMs that not only perform this reporting, but can also alleviate the challenges of automation, re-
porting, and heterogenity faced by security teams. This leads us to identify a set of research questions,
stated formally in section 1.1, that will be explored through the course of this thesis.

The work presented is undertaken in the framework of the Automated Security Operations (ASOP)[62]
project led by De Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
(TNO), continuing a theme [70] of research in the field of defence against attacks on Informa-
tion and Communications Technology (ICT) networks. This project is undertaken by a consortium
with the Communications Service Provider KPN, the Software-as-a-Service based Enterprise Ar-
chitecture solution provider BizzDesign, the cloud infrastructure technology provider VMWare as
members. The project undertaken consists of three phases, namely validate, operationalize, and scale
up. One of the stated goals of the second phase, the creation of an abstraction layer for infrastructure,
guided the research questions posed.

In chapter 5.1 it will be shown that a set of existing standards were evaluated against the purpose
of creating such a system for an IaC deployment that could model multiple type of deployment, and
were found to not support one or more key requirements. It would thus be a temptation from an
academic perspective to devise a new standard that supports all identified requirements, and attempts
to be future-ready. In their study on factors that contribute to the success of a standard Van de Kaa and
De Vries [29] concluded that the commitment of the standard promoter, diversity of the standard’s
network of users, and support for the creation of complimentary goods (here, third party solutions)
were common to all winning formats surveyed. A standard presented without these factors is likely
to meet a fate demonstrated in figure 1.1. One such standard that should in fact have facilitated a
significant portion of the work to be presented is discussed in section 5.1.2. It is thus preferable to
leverage an existing standard that meets these criteria should the work presented in this thesis have
any aspirations of being adopted by the wider community.

Figure 1.1: The eventual fate of a new standard[47]
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This thesis shall first briefly explain some of the key concepts discussed throughout the material in
chapter 2, along with a more detailed description of the standards that were chosen for the purpose of
answering the research questions posed, and a selection of the tools used in practice. Chapter 3 will
then provide the conceptual approach used in answering the research questions posed, and the con-
siderations that needed to be taken in the process of answering them. The technical implementation
of these concepts will then be presented in chapter 4, along with a framework for their evaluation,
and the results thereof. Chapter 5 will then present a summary of related academic work, discuss the
results and the relevance of the work presented. Finally, chapter 6 will summarize the conclusions
drawn, and suggest possible avenues for future development.

1.1 Research Questions

The primary research questions may be stated as follow:

RQ1. Can Software Bill of Materials (SBOM) based techniques be used to describe Infrastructure as
Code (IaC) deployments, providing information such as Common Vulnerability Enumeration
(CVE) entries affecting a given component?

(a) If not, is there some set of tools and techniques that can be used to impart similar trace-
ability?

RQ2. If such a technique is possible, can it be used to integrate with the existing open-source enter-
prise architecture systems

(a) Can such a technique be used to facilitate business impact assessment?

RQ3. If such a technique is possible, can it facilitate security orchestration by integrating with ex-
isting orchestration systems?

(a) Can such a technique be used to enact security policy, or security instructions?



6 CHAPTER 2. BACKGROUND

2 Background

This thesis borrows from three domains - cloud infrastructure, business modelling, and network secu-
rity. In order to provide a greater understanding of the relevant concepts that will be used in chapters
3 and 4, a brief introduction to them is provided in this chapter.

Beginning with the concept of Infrastructure as Code (IaC), the workings of the platform selected for
this thesis, Kubernetes (K8s) will be described. Then, the concept of a Software Bill of Materials
(SBOM) will be introduced, along with this work’s standard of choice CycloneDX (CDX). This com-
bination is intended to provide sufficient understanding of the challenges to be addressed in answering
RQ1.

A brief introduction to the concept of business modelling and Business Impact Assessment (BIA)
will then be given, along with the standard of choice ArchiMate. These concepts will be used in
addressing RQ2.

Finally, the concept of Integrated Active Cyber Defense (IACD) will be introduced, which gives
us a framework to understand how autonomous cyber security may be implemented. Our chosen
implementation OpenC2 (OC2) will then be discussed, giving us a means to answer RQ3. These
concepts will then be put to practice in chapter 3.

2.1 Infrastructure as Code

Hütterman[26] describes the notion of infrastructure as including “every part of the solution that is not
the developed software application itself”, typically seen as the purview of System Administrators,
involved in software operations rather than development. The term “IaC” would thus suggest handling
such resources similar to the application code delivered by the development team. Practically, this
translates to a requirement that infrastructure resources such as servers, network devices, operating
systems etc. be provisioned by means of machine readable configuration files, typically deployed and
maintained using concepts borrowed from Continuous Integration / Continuous Deployment (CI/CD)
practices used in software development. The deployment of these resources may then be in the form
of virtual machines and containerized instances, but may also include physical devices.

A number of open standards implement the concept of IaC at differing levels of abstraction. Salt,
Ansible, and Puppet for example focus on event driven automation and configuration management.

Amazon Web Services, Microsoft Azure, and Google Cloud maintain AWS CloudFormation, Azure
Resource Manager, and Deployment Manager respectively as IaC interfaces for their cloud environ-
ments. OpenStack’s Heat templates provide similar functionality. HashiCorp’s Terraform provides
a more vendor-neutral approach to managing cloud computing environments. Pulumi, another such

https://github.com/saltstack/salt
https://github.com/ansible/ansible
https://github.com/puppetlabs/puppet
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Figure 2.1: Kubernetes objects

standard, attemtps to address the same problems as Terraform. It, however, expresses itself as pro-
gramme code instead of configuration files.

IaC concepts also extend to the realm of application deployment with tools like Kubernetes (K8s) and
Docker Swarm, which use containerization to deploy applications on top of existing physical or cloud
infrastructure. K8s has become the de-facto standard[9] of IaC for workload management due to its
ability to simplify container-based application deployment, to the point that all major cloud providers
such as AWS, Google Cloud, and Azure and Alibaba Cloud offer managed K8s instances.

2.2 Kubernetes

K8s defines itself [33] as an “open source system for automated deployment, scaling and management
of containerized applications”. It can be run either standalone on a single machine, or as a cluster of
arbitrary size. Its architecture consists of one or more controller nodes in high availability mode
managing a number of worker nodes which run a number of containerized applications or workloads.
K8s implementations deploy an API server to interact with the controller over REpresentational State
Transfer (REST), and a scheduler that handles workload allocation. K8s configurations are typically
written and parsed in YAML files, colloquially termed “manifests”.

This section uses the official K8s documentation[32] as primary reference.

2.2.1 Kubernetes Objects
The key K8s objects of relevance to the work of this thesis shall be presented in increasing order of
abstraction. A pictorial reference is given in figure 2.1

A container runtime in the context of K8s is thus a standardized, isolated environment running on
some host machine. These runtime environments are typically instantiated from pre-packaged con-
tainer images. While container runtimes form the fundamental functional units in a K8s cluster, they
are not deployed directly, as in the case of a Docker environment, but through a “pod”.

K8s guides refer to pods as the smallest deployable units in K8s. These are logical groupings of
containers, defined using a specified image, with a given number of replicas with shared network

https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine
https://azure.microsoft.com/en-us/products/kubernetes-service
https://www.alibabacloud.com/product/kubernetes
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resources, and possibly shared storage. In practice, pods are rarely instantiated and interacted with
by themselves. Instead, one typically makes use of “workload resources”, having defined behavioural
characteristics, which aim to reduce pod micromanagement. The work presented in this thesis makes
use of two such resources - Deployments and StatefulSets. Both run pods with identical application
code. The key difference lies in the fact that pods in a StatefulSet have distinct identities, and therefore
predictable names, while pods in a Deployment are meant to be completely interchangeable, running
stateless applications, and therefore have no need for predictable naming.

The preferred method of exposing network applications within a cluster as well as to the outside world,
services provide invariant, predictable, DNS resolved endpoints that are fulfilled by a set of pods that
meet certain selection criteria described in section 2.2.2. This structure allows for pods exposing
an application to be changed arbitrarily without impacting the means by which other applications in
the cluster address it. In the case of intra-cluster communications, it is typically possible to derive a
service endpoint as <service-name>.<namespace>:<port>.

For example, a service defined as given in listing 2.1 it is possible to address the service as
legacy-lab-svc.lab:8080.

1 metadata:
2 name: legacy -lab-svc
3 namespace: lab
4 spec:
5 ports:
6 - name: legacy -lab-svc-port
7 protocol: TCP
8 port: 8080

Listing 2.1: Deriving a service endpoint

Namespaces serve as a means of conceptual partitioning of resources into “distinct, non intersecting
collections” for ease of resource management. Resources within a namespace must have unique
names, but names can be repeated across namespaces, and accessed using the combination of the
namespace and resource name.

2.2.2 Labels and Selectors
Taking the form of key-value pairs, contained in Pods’ metadata, Labels form an integral part of
K8s orchestration. These labels are matched against Selectors, similar sets of key-value pairs used
to identify and select resources in a non-unique manner. The official documentation[34] states the
motivation for this system to be a means of imposing arbitrary organization onto the cluster without
enacting fundamental semantic changes to the means of operation. Consider the example given in
listing 2.2 describing a deployment. Here, the section template describes the pods that will be
instantiated for specifically for the deployment. With multiple labels in place used to describe the
pods, here app = minio-pods, and track = stable.

The selector is used by K8s to identify pods that will be used to create the deployment. The
matchLabels here are necessarily a subset of the labels given in the template. Thus, any

(2
1

)
or

(2
2

)
of app = minio-pods and app = minio-pods will satisfy the deployment.

1 spec:
2 selector:
3 matchLabels:
4 app: minio -pods
5 template:

https://kubernetes.io/docs/concepts/workloads/controllers/
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6 metadata:
7 labels:
8 app: minio -pods
9 track: stable

Listing 2.2: Labels describing a deployment, with a pod template

In the example provided a single matchLabel : app = minio-pods is provided. Thus, if a new
pod is declared as given in 2.3, this pod too will satisfy the selection criteria for the deployment, and
therefore be included. On the other hand, if a service is defined, as in 2.4, only the pods defined in the
template of 2.2 will satisfy the requirement, and thus be used. A similarly defined service 2.5 with
an additional matchLabel not contained in either set of labels will not be fulfilled.

1 metadata:
2 labels:
3 app: minio -pods
4 track: canary

Listing 2.3: Labels describing another pod, with an additional label

1 spec:
2 selector:
3 app: minio -pods
4 track: stable

Listing 2.4: Match Labels required by a service

1 spec:
2 selector:
3 app: minio -pods
4 track: stable
5 version: 1

Listing 2.5: Unsatisfiable match labels

2.2.3 Network Fabric and Network Policy
While K8s is capable of orchestrating cluster operations, handling scaling and fault handling, it per-
forms no traffic flow management. This is instead the purview of Container Network Interface (CNI)
plugins such as Flannel, Cilium, and Calico, each with a unique set of features, and underlying tech-
nology (for example VXLAN vs eBPF). One such feature is the support of K8s’ NetworkPolicy
specification, integral to enabling cluster security. In their review of mainstream CNIs Qi et al. [52]
found that most CNIs support this specification, with the exception of Flannel. Shamim et al. [55]
determined that having a CNI in place with sensible, secure network policy is integral to cluster se-
curity. However, Minna et al. [41] highlight that careful, vigilant, monitoring is required as the CNI
plugins run as privileged programmes on worker nodes, and a compromise to these processes could
affect the entire network.

The typical structure of a network policy is given in 2.6. Affected resources are typically identified
using the namespace of the policy, and the matchLabels given in the podSelector, evaluated as
described in section 2.2.2. A given NetworkPolicy may contain any

(2
1

)
or

(2
2

)
policyTypes from

"Ingress" and "Egress".

If one of the above policyTypes is defined, it is typical to have a corresponding section contained
within the NetworkPolicy’s spec, containing an array of modular rules that explicitly allow certain
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flows of traffic. An example of one such flow rule is presented in listing 2.7 intended to allow traffic
originating from the resources having the label app = legacy-lab-pods situated in the lab names-
pace. It is also possible to combine these rules in parallel, by having them form separate array entries
under the flow label from, resulting in traffic being allowed from the lab namespace OR from pods la-
belled app = legacy-lab-pods. Similarly it is possible to specifically allow traffic on certain ports
and protocols, or certain IP blocks. Multiple network policies may be implemented that affect a given
resource, the resultant behaviour being the logical OR of all rules.

1 apiVersion: networking.k8s.io/v1
2 kind: NetworkPolicy
3 metadata:
4 name: <policyname >
5 namespace: <targetnamespace >
6 spec:
7 podSelector:
8 matchLabels:
9 <targetlabels >

10 policyTypes:
11 - Ingress
12 ingress:
13 <ingressrules >

Listing 2.6: NetworkPolicy structure

1 ingress:
2 - from:
3 - namespaceSelector:
4 matchLabels:
5 user: lab
6 podSelector:
7 matchLabels:
8 app: legacy -lab-pods

Listing 2.7: NetworkPolicy structure

There exist a few special rules to note:

1. (Default) Deny All - Implemented by declaring a policyType and either omitting the corre-
sponding section in the NetworkPolicy or declaring no rules within it. In conjunction with other
rules, this ensures that only explicitly allowed communication paths exist within the network

2. Allow all - Implemented by using "{}" as the only rule for a given flow type. This precludes
the enforcement of any other rules.

2.3 Software Supply Chain

In traditional operations a supply chain refers to a network of entities and processes that, through a
number of intermediate steps, transforms raw materials into finished products and delivers them to
the end user. Its analogue in software may be thought of as the set of components and processes that
constitute a finished software product to the end consumer.

With this definition, Software Supply Chain Security may be thought of as an analogue to supply
chain risk management in the traditional operations realm, the principal difference being what flows
through the supply chain: products in the traditional, data or information in software. Thus, security
in the software domain is primarily concerned with the confidentiality, integrity, and availability of
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the information that flows through it, along with the risks posed by the disruption of this information
flow [59]. Here, the work of Ellison et al. [15] is used as primary reference.

Ellison et al. discussed a set of risks that contributed to a security breach in a supply chain:

1. Poorly defined security requirements.
2. Coding and design defects or weaknesses.
3. Poor access control.
4. Insecure deployment configurations.
5. Operational changes in the use of a product in the field that introduce other security flaws.
6. Information mishandling or manhandling.

Two broad approaches were provided by Ellison et al. with the intention that they be used in a
complementary manner :

1. Attack surface analysis.
2. Risk assessment through threat modelling.

The goal of the former is to create a comprehensive understanding of the existing system state from a
defensive, bottom-up perspective including the software used as well as the dependencies that a given
system or piece of software may have on other components within the system, thereby allowing for
the creation of a vulnerability map.

Threat modelling on the other hand attempts to identify security risks within the system by taking a
top-down adversarial approach, first considering the normal operation of the system, and then deter-
mining exploitable weaknesses or vulnerabilities within the system.

2.4 Software Bill of Materials

The role of a BOM in traditional operations is to serve as a structured record of the raw-materials, in-
termediate components, and assemblies that go into the creation of a product. Typically each of these
entities is provided a unique identifier that allows bills of materials to be connected hierarchically in
the form of a Directed Acyclic Graph (DAG).

DAGs as the name would suggest are directed graphs without cycles, i.e. it is not possible to trace
a path from any given node back to itself, and no two nodes have bidirectional connections. DAGs
have at least one vertex with zero in-degree (i.e. a root), and one vertex with zero out-degree (i.e. a
leaf).[61]. DAGs differ from trees by virtue of the fact that a parent node in a DAG may also be a
parent of one of its children’s child nodes. Trees may thus be considered to be a subset of DAGs.
Like a tree, a DAG allows for a path to be traced from root to leaf through an arbitrary set of branches
within the DAG.

Such a structure provides a number of useful benefits, such as:

1. Improved resource planning.
2. Increased product traceability.
3. The ability to evaluate similarity between products.

The Bill of Materials concept translates well in the software domain[1], especially in its identification
of vulnerable software components, underlying the importance of its adoption in modern software
supply chains. From Ellison et al.’s mitigation strategies given in section 2.3, SBOMs may be consid-
ered to fall under the category of Attack Surface Analysis.
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Scan Type
Filesystem Image Run-time Design-time

Snyk ✓ ✓ X X
Trivy ✓ ✓ X ✓
Syft + Grype ✓ ✓ X X
Kubescape X X ✓ X
Aqua CSP X X ✓ X
Falco (Sysdig) X X ✓ X
sbom-operator X ✓ X ✓
ksoclabs/KBOM X ✓ ✓ ✓
kubernetes-sigs/bom X ✓ X ✓

Open
Source

BOM
Reporting

Drift
Detection

Hybrid
Environments

Snyk ✓ ✓ X X
Trivy ✓ ✓ X ✓
Syft + Grype ✓ ✓ X ✓
Kubescape ✓ X X X
Aqua CSP X X ✓ X
Falco (Sysdig) ✓ X ✓ X
sbom-operator ✓ ✓ X X
ksoclabs/KBOM ✓ ✓ X X
kubernetes-sigs/bom ✓ ✓ X X

Table 2.1: Comparison of Infrastructure Vulnerability Scanning Tools

As of 2023, three major standards exist. This chapter shall elaborate on CycloneDX in section 2.5.
The other standards will now be discussed briefly. A survey of the existing tools supporting these
standards shall be presented at the end of section 2.5.

First published by the ISO (IEC 19770)[4] in 2009, Software Identifier (SWID) is the first major
standard to satisfy the conditions of an SBOM. SWID tags typically contain information such as a
unique tag ID, the software name, vendor, version number, patch number, or similar, used to uniquely
identify a given piece of software. Used in conjunction with the SWID tags of dependent software,
it is possible to construct a bill of materials. However in isolation, SWID tags can only serve as
identification.

The Software Package Data eXchange (SPDX), supported by the Linux Foundation was first drawn up
in 2011 [17]. As of 2021, it has been accepted and published by the ISO (IEC 5962:2021). The orig-
inal,stated purpose behind its inception was to “enable companies and organizations to share license
and component information (metadata) for software packages and related content with the aim of fa-
cilitating license and other policy compliance.” Seeing the utility of the standard in capturing more
than simple license information, SPDX has since broadened this scope to vulnerability enumeration
and redundancy reduction[18].

Several tools have been developed for the cloud infrastructure ecosystem to address the challenge of
vulnerability scanning and enumeration. A selection of the most widely-used ones is presented along
with a summary of their capabilities in table 2.1.
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2.5 CycloneDX

Buttner and Martin [7] describe the standard as lightweight, open, and suitable for use in application
security applications and supply chain component analysis. This is evidenced by the organization
of the typical SBOM it generates, as shown in listing 2.8, where the constituents and vulnerabilities
of a given object may be accessed readily. A number of Bill of Materials types and use cases are
supported.

The CDX specification may be expressed in three primary schemas : JSON, XML, and Google’s
Protocol Buffer. The methods employed by this thesis restrict themselves to interacting with the
standard in its JSON form.

Each SBOM must contain a unique serialNumber compliant to the UUID / RFC-4122 specification.
Should a given object be scanned multiple times, even if the SBOMs are otherwise identical, the
serialNumbers must differ. The version field is an integer tracking the number of scans performed
on an object. The metadata component field contains three identifying subfields, namely:

1. type : The class of object described by the SBOM, e.g. application, container, library, or
operating-system.

2. bom-ref : A static, unique identifier for a given SBOM. In contrast to the serialNumber, this
identifier should persist for identical scans.

3. name : A short nominative of the object being described.

An object captured in CDX (typically an application) may have one or more services exposed by
it, enumerated in the corresponding field. As services in a network represent abstractions by which
parts of the system communicate with each other, it is informative to capture these. The expression
of a service is given in listing 2.9. Each entry should contain a list of valid endpoints to address the
service, and the nature of data flows through the service. Such flows are described using the format
given in listing 2.11. The direction of traffic and intended source/destination may thus be captured.

Each object’s description, expressed as a component, may list a number of subcomponents within
it. This enables the construction of the Directed Acyclic Graph that a Bill of Materials format must
create. Each referenced subcomponent must be described as in listing 2.10

1 {
2 "bomFormat": "CycloneDX", // required
3 "specVersion": "1.5", // required
4 "serialNumber": "urn:uuid:<rfc -4122-compliant >",
5 "version": 1,
6 "metadata": {
7 component:{
8 "type": "<cdx-type >",
9 "bom-ref": "<unique -static -id-pref -rfc -4122-compliant >",

10 "name": "object -name"
11 }
12 }, // required
13 "services": [...],
14 "components": [...],
15 "vulnerabilities":[...]
16 }

Listing 2.8: CycloneDX BOM structure

1 {
2 "bom-ref": "<unique -static -id-pref -rfc -4122-compliant >",

https://github.com/CycloneDX/bom-examples
https://cyclonedx.org/use-cases/
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3 "name" :
4 "properties": [...],
5 "endpoints": [...],
6 "data":[...]
7 }

Listing 2.9: CycloneDX Service Description

1 {
2 "bom-ref": "<unique -static -id-pref -rfc -4122-compliant >",
3 "name" :
4 "type": "<cdx-type >",
5 "properties": [...],
6 "components": [...],
7 "vulnerabilities":[...]
8 }

Listing 2.10: CycloneDX Component Description

1 {
2 "flow" : ""<inbound/outbound/bi-directional/unknown >",
3 "classification" : "<string : data -sensitivity/type >",
4 "source" : "<bom-ref >",
5 "destination" : "<bom-ref >"
6 }

Listing 2.11: CycloneDX Component Description

While SPDX and CycloneDX are both capable of generating SBOMs, and thus seen as competing
standards, the intended purposes behind the two are significantly different. The primary goal of SPDX
since its inception has been license discovery and compliance, with more recent versions adding
support for a Bill of Materials description compliant with the description given by Muirı́ et al. [46]
from the NTIA Framing Working Group. CycloneDX on the other hand was constructed with the
goals of component description in mind. While the two standards are now roughly equivalent in
terms of their ability to describe a given image or file system, the extensibility of CycloneDX suggests
suitability for use in describing IaC systems in their entirety.

2.6 Business Impact Assessment

Part of the broader field of Business Continuity Planning, BIA refers to the process of quantifying
the risk posed to an organization, or process, by an adverse event outside the nominal scope of oper-
ations. Doughty [13] suggests that, depending on the context of analysis, the impact being measured
could be financial, i.e. losses incurred or operational, i.e. service outages, inability to meet quality
standards etc. The information required for such analysis is typically a mixture of subjective and
objective sources. The objective sources used are usually records of technology platforms, software
and equipment used, and data stored, while the subjective information pertains to the criticality of the
objective data captured.

Enterprise Architecture systems are typically used to simplify the process of collecting and represent-
ing the information collected. It aims to convert abstract concepts such as communication within the
organization, operations flows, and organizational roles into objects that can be related with the data
that flows through them, and support BIA by demonstrating the effects of events occurring in one part
of the system on the remainder. Two open source standards exist, both published by the Open Group,
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Figure 2.2: The Hierarchy of ArchiMate concepts[20]

namely The Open Group Architecture Framework (TOGAF) and ArchiMate, and are largely interop-
erable with most third party tools supporting both standards. Lankhorst et al. [35] discuss the need
from an enterprise architecture perspective for an object-relation basis for architecture description,
drawing similarities to standards such as the Universal Modelling Language (UML) and Business
Process Modelling Notation (BPMN).

2.6.1 ArchiMate

ArchiMate aims to serve as a modelling language for both enterprise architecture as well as informa-
tion exchange. This section uses the publications The Anatomy[35] and The Architecture[36] of the
ArchiMate Language by Lankhorst et al. along with the ArchiMate 3.2 specification published by
The Open Group[20] as primary references.

In the ArchiMate language, a model is considered to be a collection of concepts. Each concept could
be an element, i.e. an object of some sort, or a relationship between elements. Elements can be of
multiple types, behavioural, structural, motivational, or a composition of one or more sub-elements.
This hierarchy is demonstrated in figure 2.2

Elements in ArchiMate belong to one of four (core framework) or six (full framework) layers, de-
pending on their granularity and scope. Elements in the business layer, for example, pertain to the
services, events, and objects pertaining to the operations of the enterprise, while technology layer
elements describe the physical and logical entities that make up the infrastructure that supports the
enterprise. These layers can be thought of as another hierarchy, where technology layer elements
enable application layer elements, which further realize business processes. The elements of interest
in the context of this thesis belong to the technology layer.

Aspects, on the other hand, describe the nature of a given element. Likening aspects to parts of
sentence structure, Lankhorst et al. describe active structures as subjects or actors. Active structure
elements represent objects whose purpose is to perform a certain action. Behaviour elements specify
what these actions are. Meanwhile, passive structure elements represent the objects upon which the
actions are performed. For example, a physical computer (an active structure element) may read a set
of static files (passive structure elements) to deploy a web service (a behaviour element).



16 CHAPTER 2. BACKGROUND

Figure 2.3: ArchiMate layers and aspects[20]

In order to facilitate interoperability between different implementations of the ArchiMate standard,
the OpenModel Exchange format was devised, using XML as a base. It contains a set of key sections,
namely elements, relationships, propertyDefinitions, and views. The structure of the file
is given in listing 2.12, while the formats used for elements, relationships, and custom properties
attached to elements are given in listings 2.13, 2.14, and 2.15 respectively.

1 <model xmlns="..." xmlns:xsi="..." xsi:schemaLocation ="..." identifier="[Unique -
ID]">

2 <name xml:lang="en">[Model Name]</name >
3 <elements >
4 ...
5 </elements >
6 <relationships >
7 ...
8 </relationships >
9 <propertyDefinitions >

10 ...
11 </propertyDefinitions >
12 <views >
13 ...
14 </views >
15 </model >

Listing 2.12: OpenModel Exchange Structure

1 <element identifier="[Unique -ID]" xsi:type="[Element -Type]">
2 <name xml:lang="[ISO_639 -1_Code]">[Element -Name]</name >
3 <properties >
4 <property propertyDefinitionRef ="[Property -Identifier]">
5 <value xml:lang="[ISO_639 -1_Code]">[Value]/value >
6 </property >
7 </properties >
8 </element >

Listing 2.13: OpenModel Element Format

1 <relationship identifier="[Unique -ID]"
2 source="[Source -ID]"
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3 target="[Target -ID]"
4 xsi:type="[Relationship -Type]"/>

Listing 2.14: OpenModel Relationship Format

1 <propertyDefinition identifier="[Property -ID]" type="string">
2 <name xml:lang="ISO_639 -1_Code]">[Property -Name]</name >
3 </propertyDefinition >

Listing 2.15: OpenModel Property Format

2.7 Integrated Active Cyber Defense

Mavroedis[39] described the challenges faced in securing modern network and cloud infrastructures
exemplified by the statistic that the average time to compromise a network is in the order of minutes,
while the time to identification and containment of such a breach averages at 280 days. In order
to bridge this gap, he identified the concept of Integrated Active Cyber Defense (IACD) introduced
by the Johns Hopkins University Applied Physics Laboratory [12] as a conceptual framework to
implement, requiring three principal capabilities:

1. Automation
2. Information sharing
3. Interoperability

Mavroedis’ envisioned implementation of IACD comprises three principal components:

1. Structured Threat Information Exchange (STIX) [3]
2. Collaborative Automated Course of Action Operations (CACAO) playbooks [40]
3. OpenC2 (OC2) [39]

2.7.1 OpenC2
Mavroedis [39] describes the motivation behind its development to be the creation of a structured,
data driven language that would enable automation of cybersecurity operations, thereby implement-
ing the IACD framework, in an operations environment with heterogeneous, proprietary infrastruc-
ture. OpenC2 is a specification designed to achieve this by facilitating communication to, from, and
between cyber defense systems present within a given infrastructure in a standardized manner. This
section uses Mavroedis et al. and the OASIS OC2 Specification [49] as primary sources.

The standard OC2 implementation is a producer-consumer model as demonstrated in figure 2.4. The
producer generates a command to a set of systems with a given set of instructions. The consumers of
this command perform the requested action, and return the result or status to the producer in the form
of a response. Each consumer may implement one or more actuators which interpret the received
message into the intended actions.

OC2 makes use of the JSON format for its messages. Each message must conform to the format given
in listing 2.16. A message can be one of two types: command or response. Each message allows for
multiple recipients. The payload of the message is contained in the “content” field.

1 {
2 "content_type": application/openc2, // Mandatory
3 "msg_type": <command -or-response > // Mandatory
4 "request_id": <RFC4122 >, // Mandatory
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Figure 2.4: OC2 Operation

5 "created": <unix -timestamp >,
6 "from": <message -source >,
7 "to": <message -dest(s)-str-or-list >,
8 "content": <payload >
9 }

Listing 2.16: OpenC2 Message Format

The format of an OC2 command is given in listing 2.17. Each command must necessarily contain
an action which takes one of 32 predefined values (for example "scan","allow", or ,"redirect").
Actuators may implement a subset of the actions, on a defined set of targets. A valid consumer must
implement a method to query it for supported features and actuator profiles. A single target must
be provided in each message, having a single specified target type. Arguments may be provided in
addition to the target depending on the actuator and the action to be performed. If multiple actuators
are defined in a system, the actuator may be specified.

1 {
2 "action": "<action >", // Mandatory
3 "target": {...}, // Mandatory
4 "args": {...},
5 "actuator": {...}
6 }

Listing 2.17: OpenC2 Command Format

A valid response, as seen in listing 2.18 must at least contain a status, which implements a subset
of HTTP response codes. A response may optionally contain a human readable status message and,
if required by the issuing command, results of the query made.

1 {
2 "status": <http -response -code >, // Mandatory
3 "status_text" : "<human -readable -status -message >"
4 "results": {...}
5 }

Listing 2.18: OpenC2 Response Format



CHAPTER 3. CONCEPTUAL APPROACH 19

3 Conceptual Approach

The inferences drawn from section 5.1.4 led to the conceptualization of a system that would generate
an SBOM for a given cloud infrastructure, attempt to use it to create a representation of the infras-
tructure for Business Impact Assessment, and effect changes to the infrastructure given commands
from a security orchestrator. This chapter catalogues the efforts to implement this, first discussing
the key features required for an accurate representation of a cloud infrastructure environment, two
approaches for SBOM creation given an IaC deployment expressed in Kubernetes, and highlighting
which method is preferred based on the features provided by them. A number of considerations to be
factored in the creation of this representation are also presented, along with brief descriptions of their
operational significance. Then approaches to extend the preferred method to extend to a BIA system
expressed in ArchiMate, and security orchestration using OpenC2 are detailed.

3.1 Capturing Infrastructure in CycloneDX

As described in section 5.1.1, current SBOM standards and tools tend to focus on the Bill of Materials
for a given image, file-system, or application. Representing a given IaC configuration file, or a set
thereof, is not currently supported. A method must therefore be implemented that creates such a
representation. In order to do this for K8s, the following resource types are considered

1. Services
2. Deployments
3. StatefulSets
4. Containers

A logical dependency graph may then be created. It is noted here that

1. The pods denoted by Deployments and Statefulsets are logical groupings : once applied, a
service mapped to such a pod truly depends on the containers that comprise the pod. However,
these logical groupings are still useful to the model to be created due to the method employed
by K8s to map requirements to resources, i.e. match labels.

2. A non-K8s top layer “Application” has been created. This allows for a simplified singular
SBOM representation instead of a number of lower layer SBOMs that would subsequently
need to be associated, while staying consistent with the notion of a web application consisting
of a number of linked services.

3.1.1 Identifiers
A key requirement of the model to be created, i.e. traceability, mandates the use of unique identifiers
for all components. Two approaches have been employed to obtain such identifiers, with the choice
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Figure 3.1: K8s Dependency Graph

of approach contingent on the state of the infrastructure:

1. Design Time : UUIDs complying with RFC 4122
2. Run Time : Use the UUIDs created for each object by K8s itself

3.1.2 Approaches to creating SBOM
Two approaches were also made for the creation of the SBOM itself, namely:

1. A naı̈ve direct conversion
2. Creation of a GBR

The second approach materialized as a result of investigating RQ2 and RQ3. In order to evaluate
the effectiveness of the two approaches in their ability to accurately represent the infrastructure, five
principal features were selected to determine the most appropriate method:

1. Capturing the infrastructure used and services exposed
2. Hierarchical enumeration of network elements
3. Vulnerability enumeration
4. Traceability of fulfillment between services and the underlying infrastructure
5. Traceability of communication between elements in the network

3.1.3 Direct Conversion
A script was written that ingests static K8s manifests in YAML form and creates a bill of materials
in the hierarchical structure presented in 3.1 . Each element (e.g. a Deployment) is converted into a
Bill of Materials entry, assigned with a unique identifier, here termed "bom-ref". This "bom-ref"
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Figure 3.2: Graph based representation

is then used to trace dependencies and relationships. Manifests of Deployments and StatefulSets
must necessarily contain an "image" tag, referring to a container image from a repository such as
Docker Hub, to spawn the containers that form the pod. This tag is used to generate an SBOM for the
image using a standard 3rd party generation tool. The SBOM created has a static "bom-ref" of its
own, constant for a given container image. The image SBOMs are then referenced within the SBOM
entries of the associated pods.

Here, a terminology change is introduced. In its specification CDX provides two principal classes of
elements:

1. Services
2. Components

While the former represents a corresponding K8s concept exactly, the latter has no direct analogue.
CDX requires components to be assigned a pre-defined "type". In order to comply with the intent
behind the enumerated types, StatefulSets and Deployments are classified as "application", while
the containers they are fulfilled by are labelled "container". It is noted here that "container" is
an overloaded type; the SBOMs created by 3rd party tools for container images will also carry the
type "container". It was found that of the five features identified in section 3.1.2 this method was
capable of the first three, but not the remaining two, i.e. traceability in infrastructure fulfillment, or
communication between elements.

3.1.4 Graph Based Representation
Retaining terminology from CDX an intermediate Graph Based Representation (GBR) was created,
as given in figure 3.2

The graph was designed to enumerate all resources present within each namespace of the network
such that each resource could be connected in the logical hierarchy described in section 3.1.3.

This representation was maintained in memory in order to interact with other modules of the imple-
mented system. Relationships between upper layer and lower layer objects (for example, between a
service and the pods exposing it) were represented using a pair of properties:
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1. realized-by : Mapping an upper layer object to a lower layer object
2. realizes : Mapping a lower layer object to an upper layer object

In order to ensure vertical traceability, both objects in an upper layer - lower layer pair would bear
the corresponding properties. An example of such a connection represented by the graph is as given
in the Listing examples 3.1 and 3.2. As a beneficial side effect, this approach is compliant with the
Essential Deployment Metamodel discussed in section 5.1.2.

1 {
2 "legacy -lab-svc":{
3 "name":"legacy -lab-svc",
4 ...
5 "realized -by":
6 {
7 "name":"legacy -lab-statefulset",
8 }
9 }

10 }

Listing 3.1: Example service with component linkage

1 {
2 "legacy -lab-statefulset":{
3 "name":"legacy -lab-statefulset",
4 ...
5 "realizes":
6 {
7 "name":"legacy -lab-svc",
8 }
9 }

10 }

Listing 3.2: Example component with service linkage

Enumeration of intranetwork communication

A standard manoeuvre post initial compromise in most cyber attacks is “Lateral Movement”, TA0008
in the MITRE ATT&CK framework [42]. This involves targeting systems within a network through
exposed communication links to a compromised system. It is thus informative from a risk assessment
perspective to know what communication paths are exposed within the infrastructure.

In section 2.2.3 it was discussed that in its default state a K8s cluster places no restrictions on intra- and
inter-cluster communication, except for port closure. Such restrictions may instead be implemented
by a suitable CNI. The assumed presence of a CNI that implements NetworkPolicy is believed to be
a reasonable one as the alternative, akin to a physical network without a firewall, is anarchy. This was
thus chosen as a base to represent communication flow within the cluster. A method was created to
interpret K8s standard network policy manifests to :

1. Identify the objects within the cluster that would be affected by a given network policy
2. Identify the connections to other objects that have been explicitly allowed by the policy

By interpreting all network policies affecting a given cluster, it was possible to create a granular set
of rules pertaining to each object, and enumerate them within the graph, under the key "flowrules"

1 {
2 "legacy -lab-svc":{

https://attack.mitre.org/tactics/TA0008/
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3 ...
4 "flowrules":[
5 {
6 "name":"np.lab.legacy -lab-svc",
7 "flow":"ingress",
8 "rule":"allow",
9 "components":[

10 {
11 "name":"minio -deployment",
12 }
13 ],
14 "services":[
15 {
16 "name":"minio -svc",
17 }
18 ]
19 }
20 }
21 }
22 }

Listing 3.3: Sample rules enumerated

However, while it was possible to enumerate these rules in the GBR, it was found that in the CDX 1.4
specification, there is no standard method by which to capture this information. The 1.5 specification
contains a limited method to capture this, in the context of service communication as "dataflow"
pertaining to a given service. The information that is captured is presented in the listing 3.4.

1 // Specifies the data flow.
2 message DataFlow {
3 // Specifies the flow direction of the data.
4 DataFlowDirection flow = 1;
5 // Data classification tags data according to its type, sensitivity, and value

if altered, stolen, or destroyed.
6 string value = 2;
7 // Name for the defined data
8 optional string name = 3;
9 // Short description of the data content and usage

10 optional string description = 4;
11 // The URI, URL, or SBOM -Link of the components or services the data came in

from
12 repeated string source = 5;
13 // The URI, URL, or SBOM -Link of the components or services the data is sent

to
14 repeated string destination = 6;
15 }

Listing 3.4: CycloneDX 1.5 service dataflow description

3.1.5 Handling Design Time vs Run Time Differences
During the requirements gathering process for 3.1, it became apparent that the information pertaining
to the images used may only be valid at the beginning of the application’s deployment, and there may
be significant drift as the application is used. Consider the following flow of events as an example:

1. A system is deployed with a postgres:buster image, with known vulnerabilities that have miti-
gations in place



24 CHAPTER 3. CONCEPTUAL APPROACH

2. In order to debug some runtime issues, an engineer wishes to examine container logs, and
installs neovim

3. The version of neovim that ships with Debian Buster is 0.3.4-3, which is affected by CVE-
2019-12735, a critical remote code execution vulnerability

4. This induces serious discrepancy between the original SBOM and the current running container

This scenario has also been discussed in the documentation of CDX, where the concept of an Oper-
ations Bill of Materials (OBOM), i.e. a bill of materials generated for runtime use, is used to track
run-time containers. While the CDX standard does not suggest how an OBOM should be generated,
most existing tools offer functionality that can be repurposed to perform this, namely file-system
scanning. Using this, two methods have been found and demonstrated, namely:

1. Host file-system scanning
2. Remote SBOM generator execution

Both methods come with a set of caveats, explained in sections 3.1.5 and 3.1.5

Host File-system Scanning

Containers running on a given host in the linux system reside in well understood locations. For
example, all docker containers reside as directories in /var/lib/docker/overlay2 with machine-
friendly (human-unfriendly) names. Through the describe function of the K8s API it is possible to
map a running container to its directory and perform a scan of that directory using an SBOM generator
of choice. Running such a scan, however, typically requires elevated privileges, and tends to place a
higher load on host CPU and memory for the duration of the scan.

Remote SBOM generator execution

Most SBOM generator tools are compiled statically. This allows for simple installation as part of
design time by creating a volume mount with the requisite binaries, and adding it to each resource.
The K8s API may then be used to

1. Trigger SBOM generation through a shell call
2. Copy the resultant SBOM file to the host

This method makes an implicit assumption that the running containers are equipped with the tar binary
required by K8s for its copy command. While the vast majority of images would have tar present,
“distroless” images (preferred for their added security, minimal nature, and lack of an interactive shell
[63]) may invalidate this assumption. This process does, however, add a component to the SBOM,
i.e. the SBOM generator itself, with associated vulnerabilities.

3.1.6 Vulnerability Enumeration
In addition to generating a BOM for a given container or file-system as described in section 3.1.5,
most SBOM generation tools also support the enumeration of vulnerabilities in CDX format. Using
these, two methods of enumeration were developed for the GBR:

1. Capturing vulnerabilities in the associated container or image CDX SBOMs
2. Storing a list of vulnerabilities within the artifact graph, against the corresponding object

These methods serve different purposes and it is intended that they be used in conjunction. The former
method serves as a record of the system, suitable for historical analysis, while the latter implements
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K8s Object ArchiMate Equivalent
Service Technology Service

Pod Technology Node
Container System Software

Image Technology Artifact
Namespace Grouping

Table 3.1: ArchiMate equivalents of K8s objects

real-time query of the in-memory GBR.

3.1.7 Rescan Trigger

While periodic scans of running containers as part of OBOM tracking are useful for traceability, some
changes of a more ephemeral nature might be missed if they fall between scan intervals. Extending
the example from section 3.1.5, if the re-scan interval is 7 days, and the engineer installs neovim on
day 2, realizes the added vulnerability on day 5 and removes it, there is a 3 day period of increased risk
that will not appear on the OBOM history. In order to avoid this problem, an event driven approach
is necessary in addition to periodic scans.

Such a system in K8s was implemented by making use of K8s internal audit logs. Disabled by default,
audit logs may be configured to record API calls to kubectl, the main interface for managing a K8s
cluster. Further, the detail at which logs are maintained may be varied based on numerous conditions.
For example, API calls that may cause some alteration of the running services or containers, such as
CREATE, UPDATE, EXEC, or EXPOSE coming from human administrators may be logged at a "Request-
Response" level, allowing enhanced scrutiny of the cluster’s resources.

After configuring the audit logs in such a manner, a scanner was created that continuously monitors
the logs generated and triggers a re-scan of a given resource when a suspicious API call has been
made. A complication that was observed, which indirectly demonstrated the validity of the technique,
was that if the scanner used the remote execution technique, then the re-scan trigger would also
appear in the logs, triggering yet another scan. This behaviour was mitigated by creating a whitelist
of safe commands (the SBOM scanners), and performing a sub-string match of the API call with the
whitelist.

3.1.8 Historical Record Maintenance

For record keeping purposes the module implementing the GBR was augmented with a history
dictionary field, and a method snapshot() that would push the current state of the graph, with the
timestamp at the time of scanning acting as key. This method could then be called at the time of
re-scan, and the history could be presented and accessed by querying for history’s keys.

3.2 Composing an ArchiMate model from the GBR

From the ArchiMate 3.x specification it was determined by the author that all elements of the K8s
infrastructure would reside in the Technology layer. Based on the descriptions provided by the 3.x
standard, equivalents were selected for the concepts present in K8s as given in table 3.1
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From Type To Type Relationship
Grouping All other Composition

Technology Artifact System Software Realization
System Software Technology Node Assignment
Technology Node Technology Service Realization

Technology Node
Technology Node

Flow
Technology Service

Technology Service
Technology Node

Technology Service

Table 3.2: Relationship types employed

It may be noted here that no equivalent was found for the concept of a vulnerability. However,
ArchiMate allows for the enrichment of objects with custom properties. This was therefore the chosen
approach for vulnerability enumeration.

With these equivalents so selected, the types of ArchiMate relationships required to accurately rep-
resent the infrastructure were to be determined. Based on the specification, it was concluded that a
subset of allowed relationships would be employed, listed in 3.2

The rationale for selection is as follows:

1. Composition: The objects within a group
2. Realization:

(a) Artifact to Software: Creation of software entities from abstract technology artifacts
(b) Node to Service: Operation of the abstract service by the node

3. Assignment:
(a) Software to Node: Allocation of functional execution of the node’s responsibilities by

the system software
4. Flow: Transfer of information within the network

As the OpenModel Exchange is one of many possible ArchiMate formats the overall method of con-
verting the GBR into ArchiMate representation was divided into two parts:

1. A module that receives the GBR as input and interprets its elements and relationships between
them as ArchiMate concepts

2. A handler that receives these ArchiMate concepts and constructs an OpenModel file

3.2.1 ArchiMate interpreter

On receiving the GBR, the keys of the root, except metadata were used to reconstruct the namespaces
present in the model. These would subsequently be used to create ArchiMate groups. The model was
then scanned per namespace in a depth first manner to obtain all objects, i.e. services, components,
and containers, present in the model. These objects were then passed to the handler to create in the
appropriate format. For each object to be written, the dictionary pertaining to the object from the
GBR was passed to the handler.

For a given object, if vulnerability information was found within the entry of a given object, the list
of vulnerabilities was iterated over and an entry was created under a "vulnerability" property of
the corresponding object.
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Field Description
identifier The unique identifier of the relationship
source The unique identifier of the source object
target The unique identifier of the target object
type The type of ArchiMate relationship to create
source name The source object’s name
target name The target object’s name
source namespace The source object’s namespace
target namespace The target object’s namespace

Table 3.3: Fields passed to the handler to create relationships

Once all objects were written, the model was walked a second time to write the relationships between
objects. Two passes were necessitated by the eventuality that some handlers might require objects to
exist before relationships can be made between them, which is discussed further in section 3.2.2. A
dictionary with keys as given in table 3.3 was passed from the interpreter to the handler to create a
given relationship. This dictionary contains a super-set of all information that could be used to create
a given relationship.

3.2.2 OpenModel handler
The ArchiMate OpenModel Exchange format follows the structure given in listing 3.5. It is not re-
quired that all fields exist. For example, an exchange file without the views section is still considered
valid. The open source programme Archi appears to impose an order restriction, however, requir-
ing the existing sections to be ordered as elements, relationships, propertyDefinitions, and,
views. Archi, further, does not accept UUID identifiers, instead mandating identifiers of the form
"id-<IDENTIFIER>" where <IDENTIFIER> is a unique 32 or 64 bit hexadecimal.

The OpenModel handler was designed to create this structure on instantiation.

1 <model xmlns="...">
2 <name>"..."</name>
3 <elements>
4 ...
5 </elements>
6 <relationships>
7 ...
8 </relationships>
9 <propertyDefinitions>

10 ...
11 </propertyDefinitions>
12 <views>
13 ...
14 </views>
15 </model>

Listing 3.5: OpenModel Exchange Structure

If vulnerability information was found in the GBR, the handler was instructed to create a correspond-
ing property definition as shown in listing 3.6

1 <propertyDefinitions>
2 <propertyDefinition identifier="propid -1" type="string">
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3 <name xml:lang="en">Vulnerability</name>
4 </propertyDefinition>
5 </propertyDefinitions>

Listing 3.6: Vulnerability property definition

ArchiMate objects and relationships created by the interpreter were then appended to the relevant
sections as demonstrated in 3.7 and 3.8

1 <elements>
2 <element identifier="[some -element -identifier]" xsi:type="Grouping">
3 <name xml:lang="en">lab</name>
4 </element>
5 </elements>

Listing 3.7: Kubernetes objects in OpenModel Exchange

1 <relationships>
2

3 <relationship identifier="[relationship -identifier]"
4 source="[some -element -identifier]"
5 target="[other -element -identifier]"
6 xsi:type="Composition"/>
7

8 </relationships>

Listing 3.8: Kubernetes relationships in OpenModel Exchange

Vulnerabilities were then appended to the properties section of the relevant objects as shown in
listing 3.9.

1 <element identifier="[some -element -identifier]" xsi:type="Node">
2 <name xml:lang="en">workstation -statefulset</name>
3 <properties>
4 <property propertyDefinitionRef="propid -1">
5 <value xml:lang="en">CVE -2022-3924</value>
6 </property>
7 </properties>

Listing 3.9: Vulnerability enumeration

The resultant XML generated by the handler was imported as an OpenModel Exchange file in Archi,
demonstrated in figure 3.3. It is noted here that by default, no ordering is implemented by Archi; the
elements of the graph were arranged manually.

3.2.3 Business Impact Functionality
As described in section 2.6, given an enterprise architecture model, business impact assessment typi-
cally evaluates the effect of changes in one part of a network on other parts. When viewed as a graph,
this amounts to determining the presence of paths between affected objects, and other objects in the
network. Thus business impact use cases were considered:

1. Describing an object, listing objects adjacent to it, and associated vulnerabilities
2. Determining objects affected by a given vulnerability

Using these methods, it would then be possible to get a comprehensive report of all objects that could
adversely be affected by a given vulnerability by first querying for directly affected objects, then
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Figure 3.3: Output ArchiMate OpenModel

tracing upward fulfillment paths from those objects to the services or components they fulfil, and
finally open communication paths between services.

A module was designed and developed that, given an OpenModel Exchange file, parsed the model
and stored information pertaining to the identified use cases. Given an input OpenModel Exchange
file, a query for adjacent objects would first find the queried element within the XML using its name.
On finding the relevant element, the element ID was then extracted, queried for in the relations
contained in the XML, and parsed based on the type of the relation given in table 3.2 into categories
"realizes" and "realized-by" for layer positioning, and "flow" for communication paths.

Scanning for objects affected by a given vulnerability was performed by iterating over all elements
contained in the XML, and further iterating through its list of properties to verify the presence of the
input vulnerability. If present, details pertaining to the element in question were appended to a list
and returned.

3.3 Implementing IACD using OpenC2

With the in-memory GBR implemented as described in section 3.1.4, and the architecture of OC2
deployments given in section 2.7.1 it was determined that the developed system could be integrated
into OC2 by employing a two layer approach, with the top layer implementing an OC2 actuator in
Yuuki, and the bottom layer composed of the GBR. Methods were implemented to create a minimum
viable actuator, listed in 3.3.2.

Given that a significant set of operations in IACD pertain to controlling the flow of traffic to, from,
and within the network, a method was designed to convert pairs of objects within the GBR into valid
K8s network policy, thereby explicitly allowing connections between them. This method is described
in section 3.3.1. Its extension to IP blocks, while feasible, was not performed in the scope of this
implementation.
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3.3.1 Dynamic Network Policy Creation
With the behaviour of K8s network policies explained in section 2.2.3, it was determined that default
deny all is a necessary prerequisite to implementing programmatic network policy. Further, it was
determined that in conjunction with deny all, the creation of atomic network policies explicitly allow-
ing communication between selected components within the network for given traffic types would
achieve the objective of allowing intended communication paths without side effects.

A method was designed and developed that creates such atomic network policies given a pair of
objects and a traffic flow direction between them, within the GBR. This method would then obtain
the relevant matchLabels for source and destination, and create a valid network policy. This policy
would then be implemented by passing it to the kubectl wrapper’s apply function to enact it in the
infrastructure.

A point of consideration in the implementation of programmatic network policy is the policy name.
While policy names should ideally themselves be programmatic in order to identify rules in O(1) time,
K8s objects names must adhere to RFC 1123 with a maximum length of 63 characters, regardless of
object type. It would thus be possible for a programmatic name pertaining to resources which have
longer names to exceed the limit and therefore render the manifest invalid. Thus, it was instead
decided to use UUIDs for the network policy names. This results in a lookup complexity of O(n), but
guarantees the creation of a network policy for a given pair of objects.

3.3.2 OpenC2 Command Creation
A custom OC2 actuator profile titled "kubernetes" was created to interact with the GBR. The list
of verbs implemented by this actuator as a proof of concept are given in table 3.4. It is noted here
that this is one possible interpretation of the verbs listed by the OC2 standard; it is intended that these
verbs be overloaded such that a command producer can perform a wide range of fine-grained actions
in using comparatively terse expressions.

Verb Target Action

scan Cluster
Capture the latest status of the cluster.
Optionally capture vulnerabilities

query Object Return the artifact graph entry of the object

locate Object or IPv4
Present the object in its logical hierarchy
and network information

allow Object pair
Create a network policy to allow communication
between the given object pair for a given direction

deny Object pair Delete a network policy between the given object pair
create Component Add a resource to the given component
delete Component Delete a resource from the given component

Table 3.4: OpenC2 verbs implemented for the K8s actuator
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4 Technical Implementation, Evaluation and
Results

This chapter concerns itself with the technical aspects of implementing the conceptual approach de-
scribed in chapter 3. A description of the test infrastructure created to verify the workings of the
approach is provided first, along with the software libraries used in the approaches’ construction, and
their quirks that would need to be considered in the process of implementation. Then, a set of quan-
titative evaluation criteria were constructed, and the developed method was then compared with the
two existing solution implementations ksoclabs/KBOM and kubernetes-sigs/bom. These existing
solutions were also compared with the developed method on a feature basis. Finally, the results of
these evaluations are provided

4.1 Technical Implementation

For the purpose of the experiment, a model Infrastructure Under Test (IUT) was created using K8s,
given in figure 4.1, meant to simulate an environment with legacy, mission critical, hardware which
interacts with some form of cloud storage, and is operated on through a set of computers denoted
workstations. Here K8s was chosen for its ease of modelling heterogeneous network topology. The
IUT could also be modelled using other IaC frameworks such as OpenStack or Terraform using the
appropriate virtual network appliances.

A Virtual Machine (VM) was created with Ubuntu 22.04 as the base image, with the K8s stack
and kubectl installed to deploy and manage the infrastructure under test. Python was selected as
implementation language for the methods to be created. A single node K8s cluster was instantiated,
and code was developed that executes in the VM, thereby effectively running on the K8s control node.

While a standard library Python exists for interacting with K8s environments, it was found that the
shell based kubectl tool provided greater range and flexibility of expression in querying resources
and enacting policy. A wrapper was thus created in python around kubectl.

The GBR was constructed using the dictionary data structure in python, with K8s namespaces
acting as first level keys. A class was constructed around this dictionary to construct the representation
given a set of manifest files from the kubectl wrapper through a set of steps:

1. Construct the top level keys from the namespaces found in the manifests.
2. Sequentially populate Services, Deployments and StatefulSets, and then Pods as services,

components, and pods respectively.
3. Link services to components based on matchLabels. Similarly link components to pods.
4. Create flowrules between elements based on available NetworkPolicy manifest files
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Figure 4.1: Infrastructure Under Test

This class was then extended with a set of functions such as describe() and locate(), that serve
as queries to the GBR forming a base for OC2 interaction.

As discussed in section 2.4, a number of pre-existing tools are available for the generation of SBOMs
given a container image, file-system, or file. The combination of Syft and Grype by Anchore has been
selected for this purpose, but any third party tool that generates valid CDX SBOMs given a container
image name or file system target in JSON format would be compatible. No standard library in Python
exists for the creation of a new bill of materials in CDX format. However, CDX may be expressed in
JSON, which may be readily constructed using Python dictionaries.

No standard library exists in Python for the creation of ArchiMate models. However, the ArchiMate
Open Model Exchange is an XML file with a registered namespace. A library was created to generate
ArchiMate models in this format using the standard LXML python library. The open source programme
“Archi” was used to validate generated open model exchange files. Further, a python module was
created to ingest generated ArchiMate models and maintain an XML representation in memory was
extended with functions similar to those implemented in the GBR, so as to facilitate Business Impact
Assessment.

While the OC2 language is typically expressed in JSON a standard library in Python exists, the
OpenC2-Lycan library, to facilitate the construction of OC2 messages. OpenC2-Lycan itself is built
upon the Stix2 library. It is noted here that since version 1.0.5 OpenC2-Lycan is incompatible with
Stix2 versions higher than 1.3.0.

A consumer-specific Python library also exists, OpenC2 Yuuki, which allows for simplified instan-
tiation of OC2 consumers along with customized actuator profiles. A caveat noted is that while the
message bodies accepted by Yuuki are standard OC2, the messages expected by the consumer are not
according to the standard implementation.

4.2 Evaluation

A suite of tests was developed to measure the execution time of various aspects of the system
developed, as well as compare it with the identified existing solutions and ksoclabs/KBOM and
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kubernetes-sigs/bom. Each test was performed 1000 times, and a 3 sigma treatment was per-
formed for outlier removal. The evaluative experiments performed may be summarized as below:

1. Comparison of execution time between the existing solutions and developed method.
2. Decomposition of the execution time of the developed method to create an SBOM.
3. Measuring the effect of the number of running containers on the method’s execution time.
4. Comparison of the execution times of API calls made to the GBR versus their equivalents in

the developed ArchiMate model.
5. Comparison of the execution time of image name based SBOM generation versus container

runtime generation.

The implemented method was also demonstrated to members of the ASOP consortium, along with a
set of interested external parties as part of a larger discussion on efforts to automate security opera-
tions. The results obtained from feature and quantitative evaluation are presented in section 4.3. The
findings from the consortium discussion are presented in section 5.3.

The time to generate an SBOM for the infrastructure under test was measured for the developed
system against those of the existing solutions. For the developed system, the overall time in each
iteration was computed as the sum of the times for the steps:

1. Obtaining all manifests of the IUT from kubectl via the wrappers created.
2. Constructing the GBR of the infrastructure.
3. Obtaining container SBOMs and constructing the final K8s SBOM.

The effect of increasing infrastructure complexity was measured by varying the number of running
containers in the system, from 0 to 50 containers. The effect was measured on 2 parameters, namely
the time taken to compose the graph, and the time taken to collect run-time manifests from K8s.

In order to determine the overhead of querying vulnerability information from generated ArchiMate
models compared to the GBR, the execution time of describe() calls.

The overhead caused by triggering SBOM scans from within running containers was measured by
comparing the execution time against obtaining the SBOM using the image name from the host. The
number of vulnerabilities listed was then compared for one of the containers using both methods
before and after installation of an extraneous package vim.

4.3 Results

A summary of the features implemented using the GBR in comparison with the two existing solutions
selected, i.e. ksoclabs/KBOM and kubernetes-sigs/bom, is presented in table 4.1. It may be seen
that ksoclabs/KBOM only performs the capture of K8s infrastructure in SBOM format, and does not
attempt any hierarchical representation of the infrastructure, vulnerability enumeration, or communi-
cations tracing. Similarly, the functionality implemented by kubernetes-sigs/bom is exclusively
vulnerability enumeration through the creation of an SPDX SBOM.

It may be seen from figure 4.2 and table 4.2 that the developed method takes on average 1.4 seconds
less than the existing solution ksoclabs/KBOM and 5.5 seconds less than kubernetes-sigs/bom.
While the execution time for the developed method demonstrates a significantly larger standard devi-
ation than kubernetes-sigs/bom, its worst case performance is close to 1 second better.

Figure 4.3 shows the time spent by the method in the three steps discussed in section 4.2. It is
observed that the creation of the graph based representation causes minimal overhead, in the order of
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Feature ksoclabs/KBOM kubernetes-sigs/bom Developed Method
Infrastructure capture ✓ X ✓
Hierarchical enumeration X X ✓
Vulnerability enumeration X ✓ ✓
Fulfillment traceability X X ✓
Communication traceability X X ✓

Table 4.1: Feature comparison between developed method and existing solutions

Figure 4.2: Comparison of execution time between developed method and existing solutions

Mean Standard Deviation
Method 9.682 0.175
ksoclabs/KBOM 11.073 0.017
kubernetes-sigs/bom 14.103 1.192

Table 4.2: Descriptive statistics of execution time
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milliseconds. The single longest activity is the creation of the SBOM itself, with an average of 8.3
seconds per SBOM. Fetching run-time manifests also adds a measurable overhead of 1.25 seconds on
average.

Comparing the histograms of execution time taken by the K8s SBOM generator and the set of calls
made by it to the underlying image SBOM tool Trivy, it was found that there is a large overlap between
the two, suggesting that the conversion of the graph based intermediate to CDX did not add significant
overhead to the process of creating the final set of SBOMs. A Z test of the two distributions against a
null hypothesis of the means being identical returned a p-value of 0.94, providing evidence to accept
the same.

The response of the system to increased network resources was measured in the contexts of graph
generation and interaction with the K8s API, as shown in figure 4.5. It may be seen that in both cases
there is a reduction in execution time between 0 and 6-7 resources, and a roughly linear increase in
execution time up to 30 resources. The reason for higher execution times for low resource counts is
unknown. It may be noted that the worst case performance for graph generation is 5 milliseconds.

Figure 4.6 shows that container based scanning results in a 100% overhead compared to creating
an SBOM using the image name of the container. Prior to installing the extraneous software both
methods reported 75 vulnerabilities. Post installation the reported values diverged with the image
scan remaining at 75, while the container scan reported 172 vulnerabilities, an increase of 98. In the
interest of completeness, the vulnerability count comparison was also performed for the containers
from the other pods, i.e. legacy-lab-statefulset and minio-deployment. Here it transpired that
the vulnerabilities reported in the container scan were less than what was reported in the image. This
is likely because of an incorrect set of scanners provided to the SBOM tool, and were thus invalid. For
unmodified containers, the vulnerabilities listed in the file-system scan must match that of the image
scan.

From figure 4.7 it may be observed that the both API calls exhibit Poissonian behaviour and typically
take under 10 milliseconds per call in both cases. A significant difference is observed between the
means of the two distributions, with the average execution time for API calls to the graph based
representation being 3 milliseconds versus 3.5 milliseconds for the calls to the ArchiMate OpenModel
representation.
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Figure 4.3: Time taken to fetch manifests from kubectl

Figure 4.3: Time taken to construct the GBR
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Figure 4.3: Time taken to construct the complete, referenced SBOM

Figure 4.4: Comparison of SBOM generator vs. constituent syft calls
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Figure 4.5: Effect of increasing network resources on execution time
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Figure 4.6: Comparison of execution time static image versus running container scanning

Figure 4.7: Comparison of execution time between Graph and ArchiMate API calls
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5 Discussion

This chapter shall provide a brief overview in section 5.1 of the current academic work pertaining
to the key concepts discussed. It will then provide a commentary on the results obtained from the
experiments performed, and the implementation of the devised method. Findings from the discussion
with the larger ASOP consortium will then be presented, followed by a set of identified threats to this
work’s validity.

5.1 Related Work

This section presents a cross section of current academic work in the fields of Software Bill of Mate-
rials, attempts at the creation of an Infrastructure Model for cloud environments, and the challenges
faced in the domain of Software Supply Chain Security. Finally, it lists a set of inferences that may
be drawn from the review of this work, that influence the conceptual approach presented in chapter 3.

5.1.1 Software Bill of Materials
Muirı́ [46], on behalf of the NTIA, published a set of requirements that any standard intending to
serve as an SBOM would need to fulfil in order to be useful in:

1. Improving vulnerability identification.
2. Improving traceability.
3. Reducing software counterfeiting.
4. Increasing vendor trust.

Summarizing the list of requirements, a minimum viable SBOM must contain:

1. Baseline component information.
2. Component relationships.
3. Authentication.

The first two requirements were also listed by Camp and Andalibi[8] in their exploration of the min-
imal SBOM. Here, baseline component includes, but is not limited to, the component name, the
supplier name, a unique identifier (preferably a version 4 or version 5 UUID / RFC 4122 identifier), a
version string, and a cryptographic hash.

Stating that an SBOM does not, and should not exist in isolation, the component relationships serve
to create a Directed Acyclic Graph of between the elements of a given piece of software, where each
relationship asserts some form of composition between an upstream and a downstream component.
Muirı́ categorized the possible relationships that a given software component may have with other
components as:



CHAPTER 5. DISCUSSION 41

1. Unknown - A default state where no relationship is known between the given component and
any others.

2. Root - The given component has no upstream dependencies.
3. Partial - At least one upstream component exists, but the complete list of upstream dependencies

is not known.
4. Known - The full set of upstream dependencies is known.

At the time of publication, Muirı́ commented that no single standard had been developed with the
specific intention of addressing SBOM use cases. However, they identified two standards that met the
required criteria, namely SWID, an XML-based standard adapted by NIST, and SPDX, backed by the
Linux Foundation. Camp and Andalibi[8] identify a third standard,CycloneDX, backed by OWASP.

Camp et al., in their comment, also provided a set of risks that in their view would materialize upon
widespread adoption of SBOMs . A summary of these risks has been provided below.

1. Current standards allow for self-attestation without verification of SBOMs by the organizations
that deliver the software under description.

2. SBOMs are not made available in a standardized, accessible manner.
3. The hashing algorithms supported, both for the BOM as a whole as well as its individual com-

ponents are not collision free. The insecure[67, 58] SHA-1 algorithm has been mandatory for
component hashes in SPDX, while it is accepted as valid, but not required, in CycloneDX.

Some of these risks have had remediation efforts since the publication of Camp et al.’s paper. Sig-
Store[48] proposed by Newman et al. and backed by the Linux Foundation and the Open Source
Security Foundation aims to simplify the processes of signing and verification of open source soft-
ware. SigStore’s reference implementation, Cosign, allows for signing container images uploaded
to Docker Hub, a major repository, with a single command. Signature verification is more involved,
requiring the user to know the certificate publisher’s identity and OIDC issuer in advance.

Despite these shortcomings, the concept of an SBOM has gained significant traction due to its utility.
The Linux Foundation’s 2022 report [22] on the state of SBOMs showed that 47% of the organizations
it surveyed already employed SBOMs in practice. A helpful factor would have been Executive Order
14028 from the President of the United States of America[23] that made it a requirement for any
enterprise that provides software solutions to the United States Federal Government to make available
an SBOM for a given product. A similar proposal has been drafted by the European Commission[11].
While Xia et al. [74] found that most industry experts believe that a large percentage of open source
projects do not have SBOMs it is conjectured that the situation will improve with two major political
blocs mandating their generation.

5.1.2 Infrastructure Modelling and Representation
Due to the heterogenity of cloud infrastructures, in terms of architecture, scope, and function, a num-
ber of attempts have been made to devise some form of technology and vendor agnostic abstraction,
usually with differing objectives. For example Martino et al. [38] devised the Object Design Ontol-
ogy Layer (ODOL) and the Ontology Web Language (OWL) to express patterns in the composition
of services in the cloud. Similarly, Oberle et al. [50] attempted to create a language for service de-
scription aimed at technology agnostic service modelling. Veselý et al. [64] evaluated a number of
existing tools aimed at representation and modelling of virtual network infrastructure.

A number of open source standards have also been published that aim to allow for vendor agnostic
specification of cloud artifacts, the most significant among them being OASIS TOSCA. The Open-

https://nvd.nist.gov/products/swid
https://spdx.dev/
https://cyclonedx.org/
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Stack Heat format is TOSCA compatible [24]. Platform specific standards also exist in the industry,
such as AWS CloudFront, Terraform, and Cloudify. These will however not be explored in detail
in the context of this thesis by virtue of their specificity being antithetical to the goal of a vendor
agnostic cloud infrastructure representation. The Topology and Orchestration Specification for Cloud
Applications (TOSCA) is an XML based modelling language created with three objectives in mind,
summarized by Brogi et al.[6] as:

1. Automated application deployment and management.
2. Application portability.
3. Interoperability and component reusability.

In order to simplify the process of modelling TOSCA based applicaitons Kopp et al. [30] developed
Winery, a web based tool for the creation of TOSCA CSARs.

Saatkamp et al. [54] have demonstrated TOSCA’s extensibility to the domain of threat modelling and
subsequent control of virtual network resources and functions.

Wurster has made significant contributions toward adapting the TOSCA language for industry use.
They had identified that, though studied extensively in academic circles, TOSCA sees little adoption
in the industry [73].

Through a systematic analysis of the major cloud deployment models available in the industry they
created the Essential Deployment Metamodel (EDMM) [71], containing the set of concepts that fulfil
a complete semantic mapping to all declarative deployment models.

Using this metamodel they constructed TOSCA Light [72], a minimal TOSCA specification, with
the aim of reconciling the disparity between the TOSCA standard’s view of cloud computing and the
industry’s implementations. Finally, they created TOSCA Lightning [73], integrating Winery to create
a tool that is capable of converting TOSCA Light representations into deployment specific artifacts.
However, it appears that development of TOSCA Lightning has ceased as of 2021, suggesting that it
may not have seen more mainstream adoption.

5.1.3 Software Supply Chain Security
A number of high profile cyber-attacks in recent history have underscored the difficulty in securing
large scale software pipelines due to their large attack surface, the increased time to discovery for
severe vulnerabilities and simultaneously their reduced time to exploitation.

The SolarWinds hack, raised in chapter 1 as a motivating example, was dissected by Willett [68].
Over the course of several months, beginning at least as early as October 2019, attackers infiltrated
SolarWinds’ systems, compromising their update pipeline in order to push a malicious version of
the company’s Orion IT network monitoring solution with valid signatures, infecting over 18,000
of the organization’s clients. Willett posits that SolarWinds as an organization likely did not follow
strong security practices, allowing for the hack to be possible in the first place. He also highlighted
the relative rarity of large-scale state sponsored cyber-attacks, stating that the majority of attackers
are significantly less sophisticated, and that adhering to standard security best practices significantly
reduces the overall risk of a breach.

The 2017 Equifax hack is another often used example of a software supply chain attack. Wang and
Johnson [66] present a timeline of the attack, highlighting the potentially extremely short time-to-
exploit for vulnerabilities. On 8th March 2017 US-CERT announced the discovery of CVE-2017-
5638 affecting Apache Struts 2. Attackers exploited this vulnerability 2 days later, performed lateral
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Figure 5.1: FAIR Risk Taxonomy [19]

movement tactics undetected, and had access to Personally Identifiable Information (PII) by 13th May.
Equifax first detected unusual traffic on their network on 29th July, but by then 2.4 million American
citizens had been affected.

Feutrill et al. [16] found that between 2017 and 2018 the median time to population for CVSS metrics
rose from 1 day to 19 days, while the median time to exploit for a vulnerability during the same period
shrank from 296 days to 6 days.

Reed, Miller, and Popick [53] performed a comprehensive analysis of supply chain attack patterns,
codifying a number of standard attacks, and mapping them across the phases in the attack life-cycle.
They also provided a set of countermeasures, along with their expected risk reductions. Among the
countermeasures deemed to have significant impact are:

1. Maximize visibility into all supply chain tiers.
2. Restrict traffic on supply chain networks.
3. Establish pedigree/provenance across the supply chain.
4. Require (good) cryptographic techniques for authentication.
5. Closely monitor and regulate the software update process.

Miller’s position as a chief engineer at the MITRE corporation at the time of publication likely aided
the creation of the MITRE ATT&CK [42] and DEF&ND[43] frameworks, which present expanded
sets of attack tactics, classified by goal, and similarly classified countermeasures.

With the intent of simplifying the process of determining and communicating information security
risks Freund and Jones [19] devised the FAIR approach, a framework to arrive at temporally-bound
probabilities of adverse events. In order to facilitate computing risk, what was thought to be difficult
to meaningfully evaluate, they decomposed the notion of risk into “loss event frequency” and “loss
magnitude”. Successive decomposition led to them presenting a risk taxonomy as presented in figure
5.1, which was then used to formulate a framework to arrive at a quantitatively oriented risk mitigation
strategy. Wang et al. proposed an improvement to the quantitative techniques used in the FAIR
framework, using Bayesian Networks in combination with the Monte Carlo method suggested in the
original implementation.

Hubbard and Seiersen [25] further codified this by proposing an an algorithm and model-centric
approach to arrive at risk estimates, finding that machine driven techniques frequently arrive at more
accurate estimates for risk than human expert opinion. They too proposed using Bayesian techniques
to arrive at more accurate quantitative estimates for loss event frequency and loss estimates.

Band et al.[2] proposed a means of performing risk analysis using the ArchiMate language, and
demonstrated the same using a case study.
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Moore et al. [44] found that most private sector organizations are increasingly concerned about infor-
mation security, and are correspondingly increasing their spending on security. They found that the
key bottleneck in implementing security operations is no longer funds but skilled personnel to enact
security policy. Among Chief Information Security Officers, the use of frameworks and tools to for-
mulate decision making is relatively high, the key motivating factors being perceived risk reduction
and compliance.

Boone [5] states in no uncertain terms that cyber-security must be a core part of organizational strategy
at the executive level, citing exploding attack surface and omnipresent connectivity as motivating
factors.

On the other hand, Haney and Lutters [21] find that cyber-security advocates must carefully formu-
late their communication in order to elicit action from executive leadership. They find that three
complaints need to be overcome in order to generate decisive action: “it’s scary”, “it’s confusing”,
and “it’s dull”, implying that:

1. The communication must be discerning in the risks portrayed, demonstrating what is at stake
without inducing a sense of helplessness.

2. The risks, actions, and consequences should be explained without invoking too much technical
detail.

Islam et al. [28] found that a lack of automation is still a significant barrier; routine activities constitute
a large part of SOC engineer workloads. Due to the large number of differing infrastructure standards,
uniform monitoring of network resources is a challenge. A lack of run-time modelling tools similarly
limits team effectiveness. A lack of standardization between the interfaces of security tool vendors
further cripples automated operations.

5.1.4 Inferences Drawn
A number of findings from the related work inform the direction of exploration shown in chapter 3.
Section 5.1.2 leads us to conclude that:

1. While a number of infrastructure modelling standards may exist, TOSCA appears to be the
most mature, open, vendor agnostic standard.

2. However, despite TOSCA Light and associated implementations, uptake by the industry is low.

The governmental pressure to adopt SBOMs discussed in 5.1.1 suggests that SBOMs may present a
viable alternative, provided that they can implement Wurster’s EDMM.

From section 5.1.3, it may be inferred that

1. Basic security monitoring and hygiene significantly reduces attack risk and potential severity
2. Security tools have to focus on automation, standardization, and integration with modelling

tools in order to reduce engineer load
3. In order to get executive buy-in, the potential impact of security incidents must be clearly com-

municated

This implies that even though SBOMs will likely see increased adoption, it may be beneficial to
create a layer of abstraction over the raw data provided by them, and attempt to translate vulnerability
and weakness information into business impact terms, suggesting a translation chain from network
infrastructure to SBOM to enterprise architecture models such as ArchiMate. While this visibility is
beneficial, it is most effective when paired with a means of automating response.
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5.2 Comments on implementation and results

The work presented in this thesis demonstrates the following novel concepts:

1. An approach to represent cloud infrastructure defined in K8s in a hierarchical manner using
Software Bill of Materials approaches, and existing SBOM tools.

2. A means of leveraging existing K8s network policy to enhance observability and impact assess-
ment.

3. A means of representing K8s cloud infrastructure artifacts in the ArchiMate language to inte-
grate with business impact assessment.

4. An OC2 adaptor for K8s infrastructure

Some aspects of the method implemented warrant deeper discussion, such as the choice of the Graph
Based Representation, its performance against the chosen existing solutions, and operational findings
through the course of implementation and experimentation.

5.2.1 Necessity of the graph based approach
The direct interpretation of K8s YAML files achieved limited success. It was found that while it was
possible to construct a valid CDX SBOM that performed criteria 1 and 2 identified in section 3.1.2,
i.e. capturing infrastructure and expressing it hierarchically, it was not possible to perform 3 and 4, as
this would require context to be retained across files. Thus, direct conversion was deemed unsuitable.

While the graph based approach required two steps to compose a valid SBOM, as opposed to one step
in the direct approach, it was found to satisfy all four evaluation criteria. As a result of this approach
the process of creating the SBOM was decoupled from the process of scanning the cluster, leading to
a modular system.

Further, it was found on comparing the output of the graph based approach against the two existing
solutions that only the developed method composed a hierarchical SBOM, where services were linked
to their fulfilling components, and these components were further linked to the images declared, and
the containers they would eventually be composed of. In the view of the author this is a key feature
of the SBOM format that allows for the representation of arbitrarily complex infrastructure in an
efficient manner, lending itself well to expressing the logical hierarchy created by IaC deployments
such as K8s from the services they expose to the running containers. This also helps stay true to the
goal of any Bill of Materials format i.e. traceability from the raw materials to the finished product via
a number of intermediate steps.

5.2.2 Comparison of the developed method against existing solutions
It may be seen from section 4.3 that the feature-set supported by the method developed is superior
to both existing solutions, save for the ability to scan the complete cluster including control plane
nodes, network fabric et al. While this is technically supported, it was disabled in code by creating
a blacklist of control plane namespaces, thereby limiting graph creation to those namespaces in the
Infrastructure Under Test. The feature disparity is due to the fact that both existing solutions were
developed with the goal of BOM generation purely for reporting, and not for the goals identified in
section 1.1.

The existing solution ksoclabs/KBOM demonstrates a very low variance in execution time, with a
near deterministic performance. This is very likely attributable to the fact that it exclusively queries
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the K8s API and represents the artifacts returned by it as components. Thus, while the image names
used in the cluster may be seen within the BOM generated by this tool, no vulnerability or package
information is provided for it. Further, it is not currently possible for third party SBOM solutions to
parse the output to provide this information.

The other existing solution, kubernetes-sigs/bom, performs a similar reporting by default; it was
only possible to obtain software package and vulnerability information by supplying the container
image names to the tool instead of the cluster name. The high execution time and variance for this
tool may possibly be attributed to the fact that the scanning implementation is ostensibly custom
made. The developed method likely benefited greatly from reusing existing state of the art methods
for retrieving the relevant SBOMs.

5.2.3 Performance of the graph based method
From the results in section 4.3 it may be inferred that the use of a graph based intermediate causes
no significant overhead in the generation of the infrastructure’s SBOM. Given that the graph creation
time is in the order of milliseconds, it can be said that the technique’s advantage discussed in section
5.2.1 comes at no significant cost. It must be noted though that this inference may only apply to the
developed method which:

1. Makes extensive use of Python’s dictionary data structure, which may prove more difficult
to scale development in production environments

2. Runs entirely on the K8s control node, which may not be preferable in production environments.

The results presented in section 4.3 lead to a similar inference for the creation of the SBOM from
the graph based representation, with an average execution time under 1 ms excluding the calls to the
external tool in order to fetch image SBOMs. This suggests that in production, the cost of generating
a new snapshot SBOM is insignificant, provided a database is maintained for the image and container
SBOMs.

5.2.4 Scanning approaches
When correctly configured, the process of scanning running containers is likely to capture more ac-
curate vulnerability information than simply generating a scan using the given image name. Still, the
significant overhead, over 100%, seen for the former as latter might diminish its suitability to produc-
tion environments. Based on the results obtained, it may ostensibly be prudent to instead minimize
the mutability of the containers by:

1. Using scratch containers containing only the minimum required binaries for operation.
2. Have default deny all network policies in place to ensure that unregulated update operations

cannot be performed using the shell.
3. Disable access to the containers’ shells altogether.

Even so, immutability is not guaranteed. For example the containers of the Cilium network fabric
allow access to shells. A proposed hybrid solution would be to enforce these policies, and have
container based rescans only on access to the shell as described in section 3.1.7.

5.3 Findings from consortium discussion

The consensus obtained from the consortium discussion in section 4.2 are presented below,
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1. The architecture of the developed method is good and serves as a suitable proof of concept for
automated security, but would need further effort in order to reach maturity

2. It is important that a standard for representation, once made or selected , is committed to and
promoted. The decision to rely on open source standards will be helpful in this regard

3. diversity and heterogenity of infrastructure present in production systems would complicate
modelling efforts due to a lack of discoverability

4. This lack of discoverability may be mitigated through integration with existing tools, which
requires greater involvement from major infrastructure vendors.

5. The integration with BIA systems is both warranted and useful. It would, however, place ma-
turity requirements on enterprises that hope to adopt this manner of system that would need to
be met by the enterprises themselves.

6. Without this maturity being present, it is unlikely that an organization would have the necessary
information to convert the impact analysis performed in the techology layer into meaningful risk
assessment at the business or enterprise levels.

7. The effect of vulnerabilities presented at increased levels of abstraction would be interesting
from a security expert’s perspective, especially the effect across multiple organizations

5.4 Threats to validity

While the methods developed in the process of answering the research questions outlined appear
promising, a few caveats to be noted are presented as below.

5.4.1 Results of Performance Evaluation
All evaluation experiments were performed with a local K8s cluster and the developed method run-
ning on the control node. This combination is unrepresentative of IaC deployments used in practice,
which can span entire countries. The results therefore present a far more optimistic scenario than
might be seen in such real world conditions. Still, the obtained results suggest that the GBR and
SBOM generation methods will not add significant overhead to existing workloads.

5.4.2 SBOM Integrity
Lin[37] et al. experimented with CDX and DependencyTrack to automate the process of licence
compliance and vulnerability tracking. They state that while the system was able to track and analyze
SBOMs in real time as expected, it was possible to for an attacker to alter an SBOM in order to avoid
detection. At the time of writing, Lin’s work was not available publicly, and thus it was not possible
to evaluate the method by which such alterations were performed.

While the system described in 3 makes use of a few countermeasures to detect alteration in running
containers, it does not perform such checks on the SBOMs themselves once they have been written
to database. A more mature version of this implementation should extend the runtime audit principle
to the SBOM database and restrict API privileges to ensure immutability.

It is still possible for a sophisticated attacker to compromise the system by creating a spurious SBOM
generator, employing techniques similar to the software supply chain attacks discussed in order to
prime targets by masking some critical vulnerabilities. While far fetched, it is not outside the realm of
possibility given the increased prevalence of Advanced Persistent Threats. There is thus no substitute
for constant vigilance.
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5.4.3 SBOM as a representation
The goal of this thesis was to explore the possibility of SBOM creating a vendor and technology
agnostic network representation. While this was technically achieved, it can be argued that the SBOM
is not the representation in itself, rather a manifestation. The true representation, it could be argued,
is the GBR created to represent the network and its features. The CDX SBOM generated would then
simply be a translation of the graph into a standardized format.

5.4.4 Utility of ArchiMate models in Business Impact Analysis
In the scope of this thesis two methods were developed to help identify objects affected by a given
vulnerability and enumerate neighbours of a given object. In conjunction, it is possible to trace a
path of objects that could be adversely affected by a given event in an automated manner. However,
this implementation is limited to the Technology layer. Unless the services and components created
from the graph are linked to their counterparts in the Application and Business layers it will not
be possible to perform such an analysis at these levels. Such linkage would typically need to be
performed manually by an enterprise architect on consultation with the teams responsible for the
business function and infrastructure.

Further, while these methods allow for identification of affected objects, they cannot provide any in-
formation pertaining to the risks posed. While querying the NIST CVE database for vulnerability
score might provide partial information, the criticality of the resources a given vulnerability may af-
fect is not machine-derivable. Similarly, the quantified potential impact of a given vulnerability, for
example in days of lost revenue, or penalties from class action lawsuits, cannot be derived program-
matically and need to be estimated by human experts. Thus, the methods developed are of limited
utility, in that they can only facilitate human-driven business impact analysis, not replace it.

5.4.5 More cloud more problems
This thesis demonstrated the possibility of representing a network defined in K8s YAML in CDX.
While it is widely adopted and most production loads would likely make use of it even if running on
public cloud infrastructure such as AWS or Azure, it is far from the only standard. A cloud environ-
ment deployed using Terraform or Pulumi for example would have a significantly different structure.
This was not explored in the context of this thesis, and further research would be required to determine
the suitability of this method to other IaC tools. It is expected that while some representations such
as Terraform or OpenStack Heat may be able to use the concepts directly, others such as Pulumi may
require reimplementation or be limited to interacting with information provided by the API server.
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6 Conclusions and Future Work

This section provides a set of concise answers to the research questions proposed in section 1.1, based
on the work presented in this thesis. It shall then speculate on possible avenues for extending the work
presented.

6.1 Conclusions

From the evaluation of the developed method and its demonstration to the focus group the following
conclusions may be drawn against the research questions identified in section 1.1:

RQ1. Can Software Bill of Materials based techniques be used to describe Infrastructure as Code
deployments, providing information such as Common Vulnerability Enumeration (CVE) entries
affecting a given component?

Yes, by creating a graph based representation of an infrastructure as code deployment, a method
to convert this graph into a Bill of Materials, and using existing SBOM enumeration tools
it is possible to completely describe a given deployment including vulnerability information,
communication flow, and service fulfillment.

RQ2. If such a technique is possible, can it be used to integrate with the existing open-source
enterprise architecture systems?

No, using the SBOM generated, it is not possible to integrate this technique with existing en-
terprise architecture systems. It is however possible, and straightforward, to integrate the graph
based representation to enterprise architecture systems.

(a) Can such a technique be used to facilitate business impact assessment?

Partially: it is possible to identify dependencies between components, and realization
paths, to obtain the set of objects that would be affected by compromise of a given object
in the deployment, but this information is binary in nature. Comprehensive Business Im-
pact Assessment requires information regarding the business importance of a given asset
along with risk information. While the latter can be obtained by querying the appropriate
databases, e.g. MITRE, business importance cannot be inferred technologically, and must
be assigned by the enterprise architect.

RQ3. If such a technique is possible, can it facilitate security orchestration by integrating with
existing orchestration systems?

Similar to the answer to RQ2, no, using the SBOM generated, it is not possible to integrate
this technique with existing orchestration systems. It is however straightforward to integrate
the graph based representation.
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(a) Can such a technique be used to enact security policy, or security instructions?

Yes, it has been demonstrated that allowed communication paths within the infrastructure
may be altered programmatically via OpenC2 commands.

6.2 Future work

During the formulation of the research questions to be answered, it was envisioned that the work
undertaken in this thesis form a stepping stone to further development towards programmable in-
frastructure security. A number of extensions of this work made themselves evident at the time of
implementation, and have been summarized below.

6.2.1 Extension to other formats
In order to maximize the likelihood of the developed system being adopted in practice, it is essential
that it be applicable to a wide variety of infrastructure formats, not tied down to a single format, i.e.
K8s. This can be done by:

1. Surveying the structures of other infrastructure formats, and creating a common set of concepts
to build a technology agnostic graphical representation.

2. Building adaptors to represent these infrastructures in the derived common graph format.
3. Creating OC2 actuators that translate commands issued to the graph into the requisite infras-

tructure specific calls.

Figure 6.1: CycloneDX as a possible technology agnostic Infrastructure as Code representation

6.2.2 Using a Graph Database
Given the potential development challenges the implemented dictionary-based approach may pose,
it would be interesting to compare the performance of this method with a more production-friendly



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 51

graph database method. While such a comparison was considered, it was concluded that reimplemen-
tation would not be feasible in the time remaining.

It is expected that while populating and querying such a model implemented in a graph database
might cause some overhead, it would not significantly affect the overall execution time to generate a
bill of materials given that the process that forms the bottleneck is the existing SBOM tool.

These steps are trivial to list, but would require significant effort in order to actually implement. The
author hopes that the work presented in this thesis may simplify the process. A possible shortcut may
be to create an adaptor for the Essential Deployment Metamodel, leveraging the work of Wurster[71].

6.2.3 Integrating other infrastructure security tools
Vulnerabilities represent only one aspect of infrastructure security. The developed graph based rep-
resentation may be used to capture arbitrary information about the underlying infrastructure. One
potential extension may be the integration of a secret scanning tool such as trufflehog. In the exist-
ing implementation, a flags field was created for each service and component in the cluster, where
objects not affected by any network policy for a given flow type were marked as "exposed ingress"
or "exposed egress". It would be straightforward to create a module that would enrich the graph
with flags for exposed access credentials based on the analysis from trufflehog. In such a manner it
would be possible to maintain a single graph based representation that receives inputs from a number
of such modules, each scanning for a specific weakness or antipattern.

6.2.4 Petitioning SBOM Standards bodies to adopt extensions
Through the course of implementation it became apparent that while CDX supports a number of the
features desired to capture IaC deployments there is still scope for improvement. A number of prop-
erties that were created to impart traceability between objects within the infrastructure, for example
realizes and realized-by, could be incorporated into the core specification. The list of component
types may also be expanded to support the objects typically used in IaC deployments. For example,
the component type is "container" both for a container image such as nginx:latest, as well as
that of a running container deploying this image. While the CDX specification makes no distinction
between these two concepts, in the domain of programmable infrastructure they differ in meaning,
making the terminology confusing for all parties involved. Explicit types such as "container im-
age" and "container runtime" would swiftly fix this problem.

It was also found that the main competitor format of CDX, SPDX, while ostensibly feature equivalent
for traditional BOM use cases, lacks the extensibility inherent in the CDX format. The lack of a
custom "properties" tag precluded its use for any application outside of what has already been
defined in the specification. Further, the now published CDX 1.5 specification has in-built structures
to handle the flow of data in a system, which was used in the developed method to determine adjacent
systems. This disparity may eventually prove to be an existential threat to the standard, as CDX
increases the variety of systems it can capture within a single standard. Petitioning for the inclusion
of such features and future-proofing may help the standard remain relevant.
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