groningen

university of

faculty of science
and engineering

SOLVING “ARE YOU THE ONE?” GAME WITH ENTROPY
BASED DECISIONS

Bachelor’s Project Thesis

N.S.N. Bosgoed, n.s.n.bosgoed@student.rug.nl
Supervisor: Dr H.A. de Weerd

Abstract: The reality TV show “Are you the one?” is a game show loosely based on the game
Mastermind. Mastermind is a 2-player 6-colour code cracking game. The purpose of this project is
to produce Python-based programs which solve the “Are you the one?” game for an n-digit code
within n steps, with n a number between 1 and 10 inclusive. The programs apply an algorithm
which chooses the best move based on highest entropy. One program shows that it is always
possible to solve the game in n steps up to 7 couples. The other program shows that it is most
likely to solve the game in n steps up to 10 couples.

1 Introduction

If one thinks about reality shows on TV, one
might think that such a show does not contain
any logic or mathematical background. However,
a social experiment reality television dating show
called “Are you the one?”[f] contains some traces
of a game called Mastermind in it. In this dating
show 10 young single women and 10 young single
men must find their perfect match in 10 rounds.
The correct matches are determined beforehand
by experts through in-depth interviews, question-
naires, and compatibility testing. Each round the
contestants must couple up the 10 men with the 10
women. This coupling up is called the “matchup
ceremony”. The show lets them know how many of
these matches are correct through the lighting of
an amount of beams. As determining the correct
way to match 10 couples is fairly difficult, an extra
round is introduced: the truth booth. Before each
matchup ceremony with 10 couples, one single
couple can be sent into the truth booth. For this
couple, it will be revealed whether they are a
‘perfect’ match or not. If they are a match, they
do no longer need to switch and the problem
of matching up the men and women has one
uncertain couple fewer.

The game outlined in the previous paragraph

*https://www.mtv.com/shows/are-you-the-one

has some interesting similarities with Mastermind.
Mastermind is a 2-player code cracking game. One
player starts the game by making a code with
4 tokens which each contains one of 6 possible
colours. These tokens may be the same colour. The
opponent has 10 rounds to guess the code. Each
round the opponent can guess a code and the first
player responds with black and white pegs. Each
white peg indicates a correct colour at the correct
position and each black peg indicates a correct
colour at an incorrect position. If a token is not
a token of a correct colour, one of the response
positions will be empty. The minimum number
of these pegs is 0 and the maximum is 4. The
gameboard of Mastermind is shown in Figure [I.1

The case of “Are you the one?” occurs when the
number of coloured tokens would be 10, the amount
of colours would be 10 and each colour may only
occur once. The number of rounds is still 10. The
men denote the places of the tokens and the women
denote the colours of the tokens. Only the white
pegs, denoted by light beams, play a role in this
TV show. Since each colour is used exactly once,
the white pegs would be complemented with black
pegs to a total of 10. This means that the num-
ber of black pegs is not important, because with-
out them the empty positions would indicate the
exact same, and therefore the black pegs are omit-
ted. The truth booth round can be seen as an extra

https://www.mtv.com/shows/are-you-the-one

Figure 1.1: The game board of Mastermind. At
the top on the left the guessed codes are shown
with on the right the response pegs. At the bot-
tom under the hood the code to guess is shown.

inbetween round where only one colour is tried at
one of the positions. If it is correct there would be
one white peg, if it is incorrect there would be no
pegs. The adjusted game board is shown in Figure
L2

Solutions for Mastermind itself, to produce an
optimal strategy which requires the minimum
amount of rounds, go back to the seventies. Knuth
[1977], a computer scientist, used the strategy to
choose the candidate code which would result in
the minimum set of possible codes after a round.
Neuwirth| [1982], a statistician, researched One-
Step-Ahead Expectation Minimizing-Strategies,
where entropy measured “goodness” of a partition
of data for information. Currently there are still
several fields that examine algorithms to find the
best strategy to play Mastermind. Examples of
fields are Machine Learning and Reinforcement
Learning. In Machine Learning are for instance
Genetic Algorithms, cluster-based algorithms and
population-based algorithms elaborated in the
papers of Berghman et al.| [2009], |[Partynski| [2014]
and [Ugurdag et al.| [2006]. Some researchers nowa-
days have pointed out the potential usefulness of
entropy, just like Neuwirth, in solving Mastermind
[Merelo-Guervds et all 2013]. At the moment
Mastermind still does not have a perfect solution.
In the course of time, all these strategies have in
common that they use traditional Mastermind.
The difference between the research methodologies
is that some methodologies only use the 4-colour
code whereas other methodologies use longer

colour codes.

However, in this research it is not about Mas-
termind, but about the game show “Are you
the one?”. As stated in the previous paragraphs,
this is an interesting variation on Mastermind
where the candidates go on dates to gather extra
information. This will help them in the matchup
ceremony because the matchmaking algorithm is
based on everyone’s personal value. However, it
may be possible to determine the correct match-up
without use of this external information. It would
be interesting to see whether a pure entropy-based
search algorithm would be able to solve ” Are you
the one” within the limits outlined in the game
show. In this paper, it is therefore investigated
whether it is possible to uncover the correct
match-up of n couples using at most n rounds
of matchup ceremonies and truth booths without
external information. Here the n is up to 10 couples
since the TV show has set that amount as level of
difficulty.

To uncover this, two Python based programs are
used with the Numpy package. Through entropy
it is determined which action would be best in
each step. All possible combinations of codes are
produced with permutation. The outcome will be
the maximum amount of rounds needed for each
number of couples through working out a game
tree and through playing the game a 1000 times
with random solutions.

In the section Methods it will be explained how
the programs work in detail. In the section Results,
it will be elaborated how many rounds were needed
to solve the game for random solutions and the
maximum amount of rounds needed through com-
putations of game trees. The last section Discussion
will explain the performance and further research.

2 Methods

As mentioned in the introduction, the matches for
a 10 couple game can be seen as a 10-colour code.
However, for a program it is more logical to use
digits instead of colours. So, a matchup can be
represented as a n-digit code that includes each of
the digits from 0 to n-1 exactly once. An example

Figure 1.2: The adjusted game board of Mastermind to show the ” Are you the one” variation.
At the top on the left the guessed codes are shown with on the right the response pegs. At the
bottom under the hood the code to guess is shown.

of a possible solution would be: “0 1234567
8 9”. In this instance, man 0 would be coupled
with the woman 0, man 1 with woman 1, and so
forth. To get other solutions the digits need to be
switched. The truth booth codes consist of -1’s
and one digit; this digit and its place corresponds
to the couple. For example: “1-1-1-1-1-14-1
-1 -1” means that man 6 and woman 4 are asked
in the truth booth in a 10 couple game. Since the
truth booth does not entail all couples but only
one, only a matchup ceremony can end the game.
The contestants have solved the game if they
manage to get all beams lit up during a matchup
ceremony.

2.1 By hand

To get more insight a game tree can be used.
The tree in Figure 2.I] represents the actions that
should be taken in order to solve “Are you the
one” in the minimal number of rounds. One can

see that, for a game of 3 persons, every round in
the game has either 3 possible outcomes (in case
of a matchup ceremony) or 2 possible outcomes
(in case of a truth booth). For 10 persons that
would be 10 or 2 possible outcomes. In the worst
case scenario, contestants would be able to solve
the game (i.e. get 3 beams in a match-up) in the
second round of play (i.e. at the second iteration
of truth booth and match-up). The tree excludes
cases wherein no strategy would be used and
illogical decisions, for example a couple that is
already confirmed not to be a match, would be
entered. Nevertheless, one can imagine, the game
tree with all logical, still strategical options would
have a lot more branches. A worked out version by
hand would take far too long and would be prone
to many duplications and errors.

To show how immense the game tree can grow,
the amount of possible solutions can be calculated
with permutations. At the start of the original
game there are 10! = 3628800 permutations

3 beams:

Match up 1: FINISHED

[0.1,21
1 beam:
BLACKOUT

3 beams:
FINISHED

Truth booth 1:
[0.-1,-1]

Match up 1:

— NOMATCH — "

1beam:

Truth booth 2: Match up 2: 3beams:

Random [0,2,11 FINISHED

3 beams:

Match up 2:
Truth booth 2: FINISHED

[1.2,0]
[1-1-11, [-1.2.-1]
or [-1,-1,0] .
NO MATCH Match up 2:

[2.0.11

3 beams:
FINISHED

possibilities reduced

0 beams:
BLACKOUT

3 beams:
FINISHED

Match up 2:

[2.01]
Truth booth 2: S
[2-1-11,6-1,0-11 NO MATCH DD 023

or (1,111 (20

3 beams:
FINISHED

Truth booth 2:
Random

3 beams:
FINISHED

Match up 2:

[2,1,0]

Figure 2.1: A game tree for “Are you the one?” with 3 couples made in Miro. The tree shows that
the correct matchup is always found within 2 rounds. This means that for 3 couples the game is

solved within 3 rounds.

of possibilities of matches. This means that a
complete tree that solves the game for any possible
code would therefore also have 3 628 800 leaf nodes.
Each round should eliminate as many of those
possibilities as possible. As we have no influence
on the result of a truth booth or a matchup,
the possible results should be split as equally
as possible. This results in the best worst-case
performance. After all, if the results are not split
equally, there is a chance that the result with
the most remaining options could be hit. More
options left means that more eliminations are
needed. More necessary eliminations leads to more
remaining rounds, which is unwanted.

2.2 Entropy for decision making

Each round, whether it is a truth booth or a
matchup ceremony, a decision has to be taken
which option is most ideal. For choosing the right
code to enter the entropy of Shannon is deployed.
This criterion calculates how well each group is
divided into subgroups. In this subsection firstly
the intuition behind the method will be outlined
to explain why it can be applied to “Are you the
one?”. To round off this subsection the mathemat-
ical implementation of the entropy measure will be
elaborated.

Serano| [2017] thought up an idea that it can
be explained with the analogy of buckets and
balls. Suppose all the possible solutions left in the
game are balls. For each decision (i.e. a matchup
or a truth booth), a set of n or 2 buckets can
be filled. Each bucket is filled for each possible
outcome. For example, in a game with 10 couples,
each matchup result in the remaining balls are
distributed over 10 buckets, each representing the
number of beams that are lit for that particular
decision. For example, if contestants choose to
enter the code 701234567 89", the ball 70
12345679 8" would be placed in the bucket
corresponding to 8 beams, as 8 of the numbers in
the entered code match the code on the ball. Once
the outcome has been observed (e.g. 8 beams are
lit), only the corresponding bucket remains. The
balls in the other buckets are discarded. The best
outcome is the least amount of balls going to the
next round, since the solution has to be filtered
out. However, the worst scenario is the highest
amount of balls going to the next round, which
will lead to more rounds. Since the goal is to solve
the game for any possible code, the decision that
results in the most even distribution of balls across
buckets is the best option.

So, for each set of buckets it is calculated how
well the outcomes differ from each other. If the
outcomes are mostly similar, for example if for ten
couples they nearly all result in 2 beams being

lit up, a few in 3 beams, and one in 10 beams,
the entropy will be low. If the outcomes are more
different, the entropy will be higher. In the first
case the best case scenario would be if 10 beams
are lit, since there would be only one solution
left. However, this also means that if there are
2 beams lit, almost all solutions will be left. In
the case with a more even distribution of balls
across outcomes, there is no chance that as many
solutions as in the first case, and the worst case
scenario, will be left. For this reason the set of
buckets with the highest entropy will be chosen
and the corresponding decision will be inserted.
The beams corresponding to that decision will be
lit and the balls corresponding to that amount are
deployed for the next round as remaining possible
solutions. For each possible solution the set of
buckets will be filled again with those balls. When
there is only one ball left, the correct matchup has
been found. Since the solution is selected (in the
programs random, in the TV show by experts)
unknowingly by the contestants to be one out of
the 3628 800 possible options for 10 couples, there
is no influence on the amount of beams that are
lit. The purpose of the game is to find the solution
for n couples within n rounds, no matter what the
solution is.

The intuition described above can be described
mathematically in terms of entropy. The entropy
for the Shannon criterion is calculated with the fol-
lowing function:

H(X) = -} P(z)log, P(x)
reX

P(x) is in this function the proportion of solutions
with x beams in the case of a matchup ceremony
or the proportion of perfect match (1) versus not
a match (0) in case of a truth booth within the
set X. X is the set of possible outcomes (number
of beams in match-up and yes/no in truth booth)
at the moment. The highest entropy indicates the
best spread of results. This entropy is calculated
for each possible course of action and since the
best spread is wanted, the option with the highest
entropy is chosen as decision.

An example of this entropy is if there are only
3 couples and it is the start of the game; all
remaining options are “0 1 2”7, “02 1”7, “1 02", “1

207, 201" and “2 1 0”. The calculation for the
proportions of the choice of first truth booth “0 -1
-1” would be:

P(1)— 21,

since 2 out of 6 solutions (“0 1 2”7 and “0 2 17)
would result in a perfect match outcome for the
given truth booth.

P(0) =5 =3,

since 4 out of 6 solutions (“102”, “120”, “201”
and “2 1 0”) would have no match as consequence.

The calculation for the entropy is as follows:

H({“0127,...,“210"})
1

= Y P)lor; 5
z€{0,1} P(a:)
1 1 2 1

= glO%Q%"‘glOgQg
1 2 3

= glog23+ glog2 3

~ 0.918

In the programs the entropy is produced with the
package pyinform.blockentropyﬂ

2.3 The programs

To calculate how many rounds are needed to solve
the game for a random solution two programs are
written. One program called approach M(aximum)
is written as a game tree, working out all possible
ways a game can occur. The other program is a
game itself, denoted as approach L(ikelihood). The
game tree in approach M calculates all possibili-
ties to determine the maximum amount of rounds
needed, which is a worst case scenario. By playing
the game in approach L, samples can be taken to
determine the likelihood of this worst case scenario
happening. In both programs entropy is applied to
make decisions. Due to the large amount of calcula-
tions for the program of approach L, this program
is split into two parts. The first part is data that
can be calculated beforehand, the datamaking, and
the second part is the game itself.

tPyInform, https://elife-asu.github.io/PyInform/

https://elife-asu.github.io/PyInform/

2.3.1 Approach Maximum

As previously stated the game tree in approach
Maximum works out all possible ways a game can
occur. For each step of the game tree the best op-
tion to take is calculated with entropy. When that
best option is decided, all the codes are split into
groups where the same result due to that option
denotes the same group. This means that for the
truth booth round they are split into two groups
of no match or perfect match. For the matchup
round they are split into the groups 0,1,2,..,n-2
and n beams with n the amount of couples. Each
of those groups represents a branch. For each of
those branches the best solution is calculated again
with entropy and split into consequences again.
The depth of the game tree built is the maximum
amount of truth booths and matchup ceremonies
(for example, 3 truth booths and 2 matchup cer-
emonies would accumulate to a depth of 5). For 3
couples the resulting game tree is pictured in Figure
2.2 .

2.3.2 Approach Likelihood: Data making

The first part of the game in the approach
Likelihood is the making of two databases: the
datamaking. The rows of the database are the pos-
sible actions that can be taken, and are deployed
in the game itself to calculate which action has the
highest entropy. These databases are constructed
in numba with the usage of NumPy (imported as
np). Note that in the program of the game the -1
is not applied, but a 0 and the couples start at 1
instead of 0.

First, an array of all possible matchups,
possible_matchups which is abbreviated as
pm, is needed. The first array a = [1,2,...,n] is

the only line changed manually in the program
each time to produce the databases with the
needed amount of couples. The length is calculated
to produce other arrays with the same range.
The list is extended with multiset_permutations
from sympy.utilities.iterables ﬂ and concatenated
(np.concatenate) to the array as described in
Algorithm [2.I] The array pm must start with
a beginvalue, because numba will otherwise not
compile. Therefore the array a is first added and

thttps://docs.sympy.org/latest/modules/utilities/
iterables.html

Algorithm 2.1 Add all permutations to array pm
(possible_matchups)

a<[1,2,..,10]

n <len(a)

pm < [a]

for p in multiset_permutations(a) do
pm < pm with [p] concatenated to pm at axis
0

end for

pm < pm with the deleted entry on (0, 0)

Algorithm 2.2 Add all truth booths to array pt
(possible_truthbooths)

pt <= n x n matrix filled with zeros
pt <= pt with on the diagonal ones
for x from 2 to n+1 do
temp < n X n matrix filled with zeros
temp < temp with on the diagonal x’s
pt < pt with temp concatenated to pt at axis
0
end for

later deleted (np.delete) to avoid duplicates.

Secondly, an array of all possible truth booths,
possible_truthbooths which is abbreviated as pt,
is produced. The array pt must be filled before
the loop, therefore the array starts with an n by
n array filled with zero’s and with 1’s on diagonal
representing all the possible truth booths for
female 1. In each loop of the for loop the truth
booth of the next female is added. These actions
are executed through NumPy standard functions
np.zeros and np.fill_.diagonal as can be seen in

Algorithm

As the arrays are complete, the databases can
be produced. The first database is a matrix of all
possible matchups versus all possible matchups,
so pm versus pm. The first possible matchups
indicates the possible options. The second possible
matchups indicates all the possible solutions. The
elements of the matrix are the amount of beams
which can result in the solution indicated, which
is computed by the function sum_all_jit E with one

Scopied from the sum_all in: http://numba.pydata.org/
numba-doc/0.12/tutorial _numpy_and_numba.html
7external_link=true

https://docs.sympy.org/latest/modules/utilities/iterables.html
https://docs.sympy.org/latest/modules/utilities/iterables.html
http://numba.pydata.org/numba-doc/0.12/tutorial_numpy_and_numba.html?external_link=true
http://numba.pydata.org/numba-doc/0.12/tutorial_numpy_and_numba.html?external_link=true
http://numba.pydata.org/numba-doc/0.12/tutorial_numpy_and_numba.html?external_link=true

/ Finished

~» Impossible

~J
Calculate > Impossible

best
choice with
entropy " Finished
©
8
\ e Calculate "
— — best choice ——— "2 beams — Impossible
match ‘with entropy K

0 Sam
6.~
%,, INextround —
Y

N

" Next round |

Calculate
= PGI’QHW —» best choice ———» é e — N —
7~ match with entropy Obe,
s

/ Finished
/ A impossible
‘&" _» Impossible

S
Calculate)
(e —— best choice—— /mhe s — Impossibie
ees with entropy
(

N Finished
Calculate

m vestchoice
» Impossible
en!rODY
\ Calculate
——/Impossible
No matcpy W best choice ——— - b=
with entropy .
> Impossible
__~ Finished
A o
flect Calculate il
ch W best choice — < beams — | impessile
oo celciaie with entropy N bean,
T L
" ~ choice with 0« 7~ Impossible
entropy \
N Coropon Calculate Impossible
© matcp, i best choice —— <
with entropy \iel;}eams —
NS
\ e,
\ 05:@ N > Impossible
%,
\ ’a\
\ Calculate Impossible
\ Calculate
Truthgoots bestavs) ey 7@ s N . \
entropy | < with entropy \2 ¥ Impossible
& ¥

™/ Finished

¢

(N\
\;
No march — {a \ ¥impossible

Impossible

impossible

Figure 2.2: A game tree for 3 persons using entropy made in Miro

sentence to loop through z in pm and through y
in pm while summing how many of x are the same
as y. The sum_all is a naive sum function to utilize
the parallel fast computing of numba and will do
the exact same as np.sum(z == y).

The second database is a matrix of all possible
truth booths versus all possible matchups. All
possible truth booths are again indicating the
possible options and the matchups are all the
possible solutions. This matrix consists of 1’s and
0’s depending on whether the match in the truth
booth is present in that solution. This is also
computed by sum_all_jit, however y loops over the
truth booths instead of the matchups.

Note that for the first truth booth there are still
3628 800 possible matchups for the greatest case of
10 couples. Calculating the best action is therefore
expected to take a lot of time. However, since there
is no information whatsoever for the first truth
booth, every possible action will yield the same
information (i.e. has the same entropy). To reduce
computational complexity, the first truth booth
is standardized to test man 0 with woman 0. The
first steps are in this manner merely a notation;
the first truth booth couple can be named as man 0
and woman 0 and the first matchup can be named

“0,1,2,...,n-1” or “1,0,2,....n-1" depending on the
result of the first truth booth. By pre-calculating
the outcomes of the first round (i.e. the first truth
booth as well as the first match-up), we end up
with 21 distinct possible situations: the first batch
of options is that the first truth booth is a match
and the first matchup is 1, 2, 3, 4, 5, 6, 7, 8, 9
or 10 beams. The second batch of options is that
the first truth booth is a no match and the first
matchup is 0, 1, 2, 3,4, 5, 6, 7, 8, 9 or 10 beams.
This results in a split into 21 matrices for the two
databases instead of one matrix that compares all
the codes.

If n for the amount of couples is lower than 10,
there are still 21 splits, although there will be at
least one empty matrix. The ones for beams lit
greater than n can not have any possible matchups,
as there can not be more than n matches correct
if there are not more than n couples. One of the
other matrices will also never be filled; the matrix
for n-1 beams will be empty since n-1 beams will
never be lit for n couples. The reason for that is
if only one couple would be incorrect, a switch
between couples is not possible since all other
couples are correct.

The splits are produced by comparing each solu-

Algorithm 2.3 Split for the first truth booth

firstsplit < new Array
firstquestion < [1,0,..0] with length n
for y in pm do
if sum_all jit(firstquestion is y) is 0 then
append y to firstsplit|0]
else
append y to firstsplit[1]
end if
end for

Algorithm 2.4 Split for the first matchup

splitarray < new Array

firstquestion < [1,2,..,n]

secondquestion < [2,1,3, ..., n]

for y in firstsplit[0] do
number <sum_all_jit(secondquestion is y)
append y to splitarray[number]

end for

for y in firstsplit[1] do
number < sum_all_jit(firstquestion is y)
append y to splitarray[10 + number]

end for

tion, with sum_all_jit again, to the first question
[1,0,...0] with length n as stated in Pseudocode
and comparing each solution to [1,2,.n] or
[2,1,3,...,n] depending on the outcome of the first
truth booth as seen in Pseudocode However,
since numba does not work well with for loops for
filling arrays, the second split is not actually pro-
duced by a for loop but written out. Further, there
is technically the possibility to reach splitarray[10]
by a perfect match in the first truth booth and 0
beams in the matchup ceremony and as well by a
no match in the first truth booth and 10 beams in
the matchup ceremony. Due to the strategy of the
program the first possibility will never be reached
anyway as the perfect match will be applied to have
at least one beam and the array will only contain
the solution of the second possibility.

The databases are saved in a npy file for deploy-
ment in the algorithm in the “Are you the one?”
program.

2.3.3 Approach Likelihood: The gameplay

The greatest case of a 10 couple game has
3628800 different game plays, as there are that
many different solutions and the program always
decides the same decision with the same remaining
options. As the game selects a random solution,
those exact game plays cannot be simulated to
be played exactly once. Therefore the game is
implemented to run 1000 times for each amount
of couples, as sample of those game plays, in
Python. The game exists of 4 files; one main that
loops through the games, one game that pulls the
strings in the gameplay, one datastore that updates
the databases and one shannon that makes the
decision.

The main imports the game and keeps track
of the amount of times it has won a game and
how many rounds were needed in those games.
The input is the amount of games amt and the
amount of couples n. It loops amt times through
the initiation of a Game(n), and if the game is
won it adds the rounds of this game to the total
rounds and 1 to the amount of wins.

Each game consists of the following characteris-
tics:

e solution

e amount of couples

e part of a round

e amount of rounds

e Boolean solved

e truth booth database
e matchup database

The game consists of two functions: playing the
game and playing one round. The game playing
starts of with making a random permutation for
the solution (np.random.permutation). The game
switches between the truth booth round and the
matchup round, which it keeps track of by the
variable of the part of the round. It stops when in
the matchup round the solution is found, which is
checked by the Boolean solved, or the amount of
rounds ran is the same as the amount of couples

(amount of rounds). It adds another round if lost
to indicate that it had lost the game. The truth
booth database and the matchup database start
off with the matrix that corresponds with the
gameplay of the first round from the npy files and
is initiated after the first round.

Both rounds consists of the same steps. First the
best option is calculated through entropy, except
for the first round where the decision already is
taken as it is always the same. Then this option is
compared with the solution. From this an amount
of beams or a 1 or 0 (perfect match or no match)
emerges. The matrices are cleaned up through a
function of the datastore file and the program
switches to the other round.

The datastore file has 4 characteristics: an array
of possible matchups, an array of possible truth
booths and the two databases. In the initialization
after the first round, only one of the 21 matrices
that matched the outcome of the first round is
loaded for the databases. It has a function to
clean up the databases after the truth booth or
matchup round. The input of the function are the
part of the round (truth booth or match up), the
decision that was taken and the amount of beams
or either 1 or 0 for the truth booth. It checks
which rows and columns are still viable through
np.where and then keeps those rows and columns
through np.take. The array for possible matchups
is updated as well in this step.

The decision making file shannon imports the
blockentropy mentioned earlier and has only one
function. This function has as input which part
of the round it is and the data of datastore. It
loops through the database of matchups or truth
booths depending on which part of round it is.
It calculates for each row the entropy. If it is
greater than the last highest entropy, it retains the
entropy and which row it is. It reports the row of
the biggest entropy as decision to be taken.

When all the games are played, the percentage
of how many games are won (divided by the total
amount of games) and the average of rounds needed
(divided by the total amount of games won) are
reported in the main. A list of the amount of rounds
needed each time is printed as well.

3 Results

As the two programs, calculating the Maximum
amount of rounds and calculating the Likelihood of
amount of rounds, have two different approaches,
they each generate different results. Approach M
has ran only one time and has as a result a maxi-
mum amount of rounds. Approach L has ran 1000
times and has as a result a statistical outcome.
These results are described in the next two sub-
sections.

3.1 Rounds for approach Maximum

As the game tree in approach M develops all pos-
sible game plays, it only returns one number: the
depth of the game tree. This depth is the maximum
amount of truth booths and matchup ceremonies.
For example, the solution for 6 couples is always at
least found at the point when the contestants are
deciding for the 6th truth booth (and after 5 cere-
monies), which is a depth of 11. In spite of having
the solution at the 6th truth booth, the game can
not end by a truth booth, but only by a ceremony.
The depth can be interesting to look at for how
the game tree grows by adding another couple, but
is not essential for the outcome of the game. The
rounds, which are essential, can be found by di-
viding the depth by 2 and rounding up. Table

summarizes the results of the game tree.

Table 3.1: Rounds and depth of the game tree in
approach Maximum to solve “Are you the one”
for 1 to 8 couples. The complete game tree for
3 couples is shown in Figure

] Couples Depth Rounds \
1 1 1
2 2 1
3 4 2
4 6 3
5 8 4
6 11 6
7 14 7
8 17 9

Approach M ran into problems with execution
time for 9 and 10 couples. However, for 8 couples
it is giving a maximum of 9 rounds, so it is already
clear that for 8 couples and higher it cannot be
solved in n rounds with n the amount of couples.

3.2 Rounds for approach Likelihood

The program for the Likelihood exists of two parts.
The first part was the preparation for the game,
the datamaking, and the second part the game
itself. Due to memory problems, the datamaking
program would stop running when it would make
the first matrix for 9 couples as it had too many
data. So it could only run up to 8 couples. Because
of this, the game itself could also only run up to
8 couples. The results of the game are pictured in

Figure 3.1]

The median of the rounds needed to get to a
solution is two rounds less than the amount of cou-
ples for 6 to 8 couples. For 4 and 5 couples it is
one round less. The dispersion of those rounds gets
wider with each added couple. The rounds needed
for 4 couples is for example between 1 and 3 rounds
and the rounds needed for 8 couples is between 2
and 8 rounds. The maximum amount of rounds in
the 1000 times running of the game is 8 for 8 cou-
ples. So it is possible that the maximum amount of
rounds being limited by the amount of couples also
holds for 9 and 10 couples, but it can not be stated
with 100 % certainty.

Rounds per amount of couples

Rounds
5
1

Couples

Figure 3.1: Rounds needed to solve “Are you
the one”. Each box summarizes 1000 times of
running the game for 4, 5, 6, 7 and 8 couples

The table maxima of Table 3.1l matches with the
statistics of the game. Each maximum is the same
or higher. As the game does not explore every op-

tion, it is probably the case that it did not run into
the solution that will cause the higher number of
rounds.

4 Discussion and conclusion

To discover the amount of rounds of matchup
ceremonies and truth booths needed to uncover
the correct match-up of n couples, two different
programs tested “Are you the one?” for 3 to 8
couples. A n-digit code represented the n couples
each time and the choices in each round were
decided through highest entropy. Approach Maxi-
mum explored a game tree to find the maximum of
rounds needed and the approach Likelihood played
the game 1000 times for a random solution to
find out the statistical distribution of the needed
rounds.

The number of rounds for both approaches
were found up to 8 couples. In approach M the
maximum number of rounds for 8 couples was
9 rounds. The maximum number of rounds for
8 couples by testing random solutions for 1000
runs in approach L was 8 rounds. However,
some games for 8 couples in approach L could
be solved in 2 rounds and the median was 6 rounds.

For 9 and 10 couples applying entropy as only
method is not desirable in terms of speed and
memory. Only a predicted number of rounds could
be indicated. The prediction for approach M is
that it cannot always be solved within n rounds
for 9 and 10 couples. This is in contrast to the
expectation of approach L with 10 couples; there
is a great chance of solving it within 10 rounds,
as most of the solutions probably can be found
within the 10 rounds.

Although the maximum number of rounds are
found for 8 couples and indicated for 9 and 10
couples, only for up to 7 couples the maximum
number of rounds is at most the same number
as the number of couples as seen in approach M
(Table . However, it is most likely that if a
random solution is set, that for 8, 9 or 10 couples
the solution is found within 8, 9 or 10 steps (Figure
and derived from this figure).

10

To summarize all, it is most likely to uncover the
the correct match-up of n couples using at most
n rounds of matchup ceremonies and truth booths
without external information with n up to 10 cou-
ples. In addition to this is it always possible to un-
cover this up to 7 couples. Of course, in the game
show the players receive external information in the
form of shared experience, which should improve
their chances even more.

4.1 Future research

As “Are you the one?” itself is a variation of a game,
it brought up a few questions during researching.
Since the TV show had a few variations in the se-
ries itself, there are a few obvious other options to
look at. The most intriguing questions that came
up while discussing the game were “What can we
do with the outcome?” and “What other variations
of the game could be looked at?”.

4.1.1 Find a strategy in data

So what can one do with the outcome? As one
can see there is not a clear path to remember
the game tree and use that strategy to play “Are
you the one?”. However, each path chosen by
calculating entropy is one of multiple paths that
can be chosen. The entropy of multiple paths can
be the exact same, and sometimes the equally
highest, score. Which path is chosen depends on
the manner of programming. How the paths elapse
can be influenced in three ways. Firstly, how the
data of possible solutions and truth booths is
ordered. Secondly, how the program loops through
the data. Thirdly, which of the highest scores is
chosen, this is often the first or last option in a loop.

If all those paths are explored, there might be
an easy path and therefore strategy that can be re-
membered. As this would be another research ques-
tion, the program would have to be expanded to
be looking through all the possible paths instead of
one of the evenly good ones. Since the program was
already too slow for only determining the best out-
come, the option to research a strategy that might
work would cost even more time and memory. A
solution can be found in finding a strategy for the
lower numbers. This could be adjusted and applied
to higher numbers.

4.1.2 Other varieties in the game show

As the game show has multiple seasons, the pro-
ducers introduced some varieties to manufacture
some interesting consequences. They introduced
an eleventh girl, to have one guy with two possible
matches. If you would exclude the girl, the season
would elude the exact same strategy as usual.
The consequences, without taking in account
the psychological backslash of drama of an extra
potential love, would be none therefore.

In addition, they established in subsequent
seasons a penalty for each time the matchup
ceremony had 0 beams, excluding the beams for
already confirmed perfect matches. This has more
effect, as the strategy would differ if you have to
ensure the non-possibility of 0 beams. So this is a
variation of the game show that can be examined
in future research.

Another season featured 20 bisexual persons.
This would relinquish the games similarity to Mas-
termind. As every contestant could be coupled up
to every other contestant, the amount of possibili-
ties would be a combination instead of a permuta-
tion. The function to calculate this would be:

20!

. 654729075
This would mean that there are 2 eass00. 180

times more possible solutions than with the origi-
nal 10 pairs and probably a more complex strategy.

So, although this research already shows the pos-
sibilities in the traditional game show, strategies
and variations of this show still can be investigated
in the future.

References

L. Berghman, D. Goossens, and R. Leus. Ef-
ficient solutions for Mastermind using genetic
algorithms. Computers & Operations Re-
search, 36(6):1880-1885, 2009. ISSN 0305-0548.
doii10.1016/j.cor.2008.06.004.

D. E. Knuth. The computer as master mind. Jour-
nal of Recreational Mathematics, 9:1-6, 1977.

11

https://doi.org/{10.1016/j.cor.2008.06.004}

J. J. Merelo-Guervés, P. Castillo, A. M. M. Garcia,
and A. I. Esparcia-Alcdzar. Improving evolution-
ary solutions to the game of mastermind using an
entropy-based scoring method. In Proceedings
of the 15th Annual Conference on Genetic and
Evolutionary Computation, GECCO 13, page
829-836, New York, NY, USA, 2013. Association
for Computing Machinery. ISBN 9781450319638.
doii10.1145/2463372.2463473. URL https://
doi.org/10.1145/2463372.2463473.

E. Neuwirth. Some strategies for mastermind.
Zeitschrift fur Operations Research, 26:B257—
B278, 1982.

D. Partynski. Cluster-based particle swarm algo-
rithm for solving the mastermind problem. In
Proceedings of the International MultiConference
of Engineers and Computer Scientists, volume I,
Hong Kong, March 2014.

L. Serano. Shannon Entropy, Information
Gain, and Picking Balls from Buckets.
2017. https://medium.com/udacity/shannon
-entropy\-information-gain-and-picking
-balls-from\-buckets-5810d35d54b4, [On-
line; accessed 5-June-2023].

H. F. Ugurdag, Y. Sahin, O. Baskirt, S. Dedeoglu,
S. Goren, and Y. S. Kocak. Population-based
FPGA solution to mastermind game. First
NASA/ESA Conference on Adaptive Hardware
and Systems (AHS’06), pages 237-246, 2006.

12

https://doi.org/10.1145/2463372.2463473
https://doi.org/10.1145/2463372.2463473
https://doi.org/10.1145/2463372.2463473
https://medium.com/udacity/shannon-entropy\-information-gain-and-picking-balls-from\-buckets-5810d35d54b4
https://medium.com/udacity/shannon-entropy\-information-gain-and-picking-balls-from\-buckets-5810d35d54b4
https://medium.com/udacity/shannon-entropy\-information-gain-and-picking-balls-from\-buckets-5810d35d54b4

	Introduction
	Methods
	By hand
	Entropy for decision making
	The programs
	Approach Maximum
	Approach Likelihood: Data making
	Approach Likelihood: The gameplay

	Results
	Rounds for approach Maximum
	Rounds for approach Likelihood

	Discussion and conclusion
	Future research
	Find a strategy in data
	Other varieties in the game show

