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Abstract: Deep learning methods are well-suited for biomedical image analysis, this research
focuses specifically on progenitor liver organoid segmentation. Most popular supervised-learning
approaches, however, require large annotated data sets that are time-consuming and costly to
create. Self-supervised learning (SSL) has proven to be a viable method for increasing down-
stream performance, through pre-training models on a pretext task. However, the literature
is not conclusive on how to choose the best pretext task. This research sheds light on how
the complexity of the pretext task affects organoid segmentation performance, in addition to
understanding whether a self-prediction or innate relationship SSL strategy is best suited for
organoid segmentation. Eight novel self-prediction distortion methods were implemented, creat-
ing a number of simple and complex pretext tasks. Two well-known innate relationship pretext
tasks, Jigsaw and Predict rotation, were implemented in order to compare strategies. Results
showed that complexity of the pretext tasks do not correlate with segmentation performance.
However, complex models (average F1-score = 0.862) consistently, albeit with a small effect size,
outperform simple tasks (average F1-score = 0.848) possibly due to acquiring a wider variety
of learned features after pretext learning despite not being necessarily more complex. The small
effect size and high standard deviations of F1-score segmentation performances make the results
non-conclusive. Similarly, self-prediction models (average F1-score = 0.856) consistently outper-
formed innate relationship models (average F1-score = 0.848). However, again, having a small
effect size and high standard deviation make the observed effect non-conclusive. Lastly, results
showed that more pretext training data improves downstream performance under the condition
that there is a minimum amount of downstream training data available. Too little downstream
training data combined with more pretext training data leads to a decrease in segmentation
performance.

1 Introduction

Using deep-learning (DL) methods for biomedical
image segmentation is of great value to medicine
and biological research. From finding cancer in en-
dobronchial ultrasounds Zang et al. (2016) and
breast mammography Lotter et al. (2021), to diag-
nosing acute ischemic stroke lesions in CT perfusion
maps Shi et al. (2022). This research specifically fo-
cuses on DL for performing organoid segmentation.
Organoids are in vitro grown tissue cultures mim-

icking the structure and functionality of in vivo or-
gans. Researching organoids gives the opporunity
to understand organ function, growth and their re-
sponse to potentially useful drugs Clevers (2016).

In the domain of biomedical image analysis,
supervised learning methods have proven greatly
successful Aljuaid & Anwar (2022). Despite this
success, these methods require copious amounts
of annotated data Huang et al. (2023); Li et al.
(2022); Wallace & Hariharan (2020); Jaiswal et al.
(2020). These data sets are challenging to acquire
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for biomedical imaging, as annotation is expensive,
time-consuming and calls for expertise in this field
Lotter et al. (2021); Huang et al. (2023); Bruch
et al. (2020); Ronneberger et al. (2015). Similarly,
creating data sets for clinical use cases is also lim-
ited as labeling often focuses on creating a data set
that is suited for a single task, rather than a data
set that can be used for more use cases Huang et
al. (2023).
Self-supervised learning (SSL) tries to solve the

problem of lacking annotated data by pre-training
models on similar unlabeled data solving a pseudo-
task, thereby having the pre-trained network learn
relevant features of the data Huang et al. (2023); Li
et al. (2022); Wallace & Hariharan (2020); Jaiswal
et al. (2020); Gidaris et al. (2018); Noroozi &
Favaro (2016). Existing literature shows numer-
ous well-established pseudo-tasks, hereafter called
pretext tasks Huang et al. (2023). The process of
pre-training through solving pretext tasks is called
pretext learning. After pretext learning, the pre-
trained model is trained on solving the actual task,
called the downstream task, in a process called
downstream learning Huang et al. (2023); Li et
al. (2022); Wallace & Hariharan (2020); Jaiswal et
al. (2020); Gidaris et al. (2018); Noroozi & Favaro
(2016).
It has been well established that the seman-

tic information of the data used by the model to
solve the pretext task affects its learned features
Huang et al. (2023); Jaiswal et al. (2020); Noroozi
& Favaro (2016). The latent feature representation
encodes information that is used to solve the task
it was trained on. In the case of pretext learning
this means that non-relevant pretext tasks will po-
tentially create features that are not beneficial, or
even detrimental, for solving the downstream task
Noroozi & Favaro (2016).
For example, Figure 1.1 shows that the cars and

dogs have very similar shapes but different colors.
The model should classify this as similar, but it
might fail to do so if it was trained on colors Jaiswal
et al. (2020).
Therefore, it is important to pick the right pre-

text task for the downstream task. However, re-
search is lacking on how the complexity of the pre-
text task affects the downstream task performance.
Here, complexity refers to the difficulty of the pre-
text tasks, often linked to the quantity and quality
of features required to solve it. A more complex pre-

Figure 1.1: Shapes match, colors do not. Show-
ing importance of type of pretext task Noroozi
& Favaro (2016).

text task might negatively affect pretext task per-
formance, but perhaps will be beneficial for solving
the downstream task.

Furthermore, a lacking area of research is how
the different SSL strategies affect downstream task
performance. SSL strategies are categories of type
of pretext tasks, categorized on how they augment
or transform data as well as their expected output
type. It is well known that existing strategies have
been successful Huang et al. (2023); Li et al. (2022);
Wallace & Hariharan (2020); Jaiswal et al. (2020),
but it is unclear which strategy is the most effective.

Therefore, in order to improve the understand-
ing on how the pretext task affects downstream
task performance, a number of data transforma-
tion/augmentation techniques are proposed. These
techniques represent the self-prediction SSL strat-
egy. In addition, two well-known innate relation-
ship pretext tasks are examined, i.e. jigsaw puz-
zle Noroozi & Favaro (2016); Wallace & Hariha-
ran (2020) and predict rotation angle Jaiswal et
al. (2020); Gidaris et al. (2018); Wallace & Hariha-
ran (2020) in order to compare SSL strategies. The
pretext tasks are implemented and used for pretext
learning. This aids the model in training to perform
organoid segmentation on a data set consisting of
images of progenitor liver organoids.

This research aims to shed light on the topic of
how the complexity of the pretext task affects the
quality of the learned features after pretext learn-
ing, and thus organoid segmentation performance,
with regards to the amount of data used in train-
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ing. This research also aims to clarify which SSL
strategy is better suited for organoid segmentation
in the field of biomedical imaging, and again, with
regards to the amount of data used in training. To
summarize, the quality of segmentation of progen-
itor liver organoids is compared, where the models
use transfer learned features from a network trained
on simple or complex pretext tasks as well as net-
works trained on different SSL strategies.
In short, this research aims to answer the follow-

ing research questions:

• How does the complexity of pretext tasks affect
self-supervised learning of the segmentation of
organoids?

• How does the pretext task strategy type affect
self-supervised learning of the segmentation of
organoids?

• What effect does the amount of training data,
for both self-supervised and supervised learn-
ing, have on the quality of organoid segmenta-
tion in relation to the complexity of the pretext
task and the pretext task strategy type?

The paper is organized into 5 sections and the
structure is as follows: Section 2 represents a liter-
ature review; Section 3 contains information about
the data, the structure of the proposed model and a
description of the experiment design; Section 4 dis-
cusses the results of the experiments and Section
5 concludes this research and proposes possible fu-
ture research.

2 Literature review

Organoid segmentation, which is the downstream
task for this research, is a form of semantic im-
age segmentation. Semantic image segmentation is
the process of recognizing and localizing objects in
an image by classifying each pixel in the image to
a specific object-class from a predetermined set of
classes Minaee et al. (2020).
Minaee et al. (2020) and Caicedo et al. (2019)

list some of the more traditional methods of im-
age segmentation. For example, thresholding, wa-
tershed and active contours were used to identify
cells in an image. However, most of these tradi-
tional methods require expertise to set up and re-
quire researchers to account for imaging technique,

scale and experimental conditions Caicedo et al.
(2019). DL methods have proven to be a great al-
ternative to traditional methods for semantic seg-
mentation as they are more versatile and are more
easily adapted to different experimental conditions
Minaee et al. (2020); Caicedo et al. (2019); Bruch
et al. (2020). Often also improving segmentation
quality Minaee et al. (2020); Caicedo et al. (2019).

This research uses a U-Net type architecture,
which is a fully-convolutional encoder-decoder type
architecture, to segment the organoids from their
background. Previous research succesfully used a
U-Net for segmentation purposes Ronneberger et
al. (2015); Minaee et al. (2020); Caicedo et al.
(2019); Bruch et al. (2020).

Although there exists organoid research circum-
venting the need for segmentation Mergenthaler et
al. (2021), segmentation can prove useful to solve is-
sues with the high dimensionality of organoid data,
acquisition artifacts, low contrast, and bright-field
noise Louey et al. (2021). A decent number of exist-
ing organoid analysis techniques are based on tech-
niques other than DL Ranjbaran & Nazemi (2023)
such as thresholding Clevers (2016). However, DL
methods, including DL used for segmentation, pro-
vide more stability and robustness at the draw-
back of requiring more effort to set up Ranjbaran
& Nazemi (2023).

DL methods requiring more effort to set up refer
to, among other things, requiring a large amount of
annotated data. In order to address this issue this
research uses a SSL approach.

SSL is the process of using pseudo-labels on
unannotated data to train models to extract se-
mantic information by creating meaningful feature
representation of the input data in a process called
pretext learning. After pretext learning, the pre-
trained model is trained on annotated data to per-
form the downstream task. In this case, the re-
search focuses on progenitor liver organoids seg-
mentation. Through using SSL the model is able to
perform better, despite being trained on limited an-
notated data, as the model has already learned to
extract data specific semantic information Huang
et al. (2023); Li et al. (2022); Wallace & Hariharan
(2020); Jaiswal et al. (2020); Gidaris et al. (2018);
Noroozi & Favaro (2016).

As previously mentioned, there are a large num-
ber of clinical use cases per image data type. Having
models pretrained on specific data could prove use-
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ful as the pretrained models can then be adapted to
specific use cases. For example, models pre-trained
on EEG data can be trained for emotion recogni-
tion Li et al. (2022), recognizing lesions Salim et al.
(2021) or analyzing sleep activity Aboalayon et al.
(2016).
In the case of organoid segmentation the pro-

posed SSL approach could be adapted and used for
many other research purposes in organoid research,
and even biomedical image analysis in general.
There are a number of categories of SSL strate-

gies such as generative, contrastive, innate relation-
ship and self-prediction Huang et al. (2023). This
research focuses on innate relationship and self-
prediction type strategies.
In self-prediction strategies an input image

is augmented and/or transformed on a portion of
the image, creating a distorted image that serves
as input during pretext learning. The pretext task
consists of reconstructing the distorted image back
to the original image, or ground truth (GT), using a
reconstruction loss. The unaltered portions of the
distorted image are meant to inform and aid the
model in reconstructing back to GT.
Alternatively, innate relationship strategies

use a pretext task that has pseudo labels not re-
lated to the original data. Instead, the labels are
directly related to pretext task distortion method
and expected output structure. In this case, the
model uses the structural information of the data
to solve the pretext task, which helps the model
with learning a solid feature representation.
Numerous pretext tasks have already been pro-

posed. Popular pretext tasks for self-prediction
strategies include:

• Rotate image Jaiswal et al. (2020); Gidaris et
al. (2018);

• Crop (and zoom) image Jaiswal et al. (2020);
Wallace & Hariharan (2020);

• Remove portions of image Jaiswal et al. (2020);

• Drop pixels Haja et al. (2021);

• Change colors of image Jaiswal et al. (2020).

For innate relationship strategies, well-known
strategies include:

• Jigsaw puzzle, where portions of image are
shuffled Noroozi & Favaro (2016);

• Find neighbour of cutout portion of image
(center) Jaiswal et al. (2020);

• Degree of rotation of image Jaiswal et al.
(2020); Gidaris et al. (2018).

Although it has been clearly established that the
chosen pretext task affects learned features, and
thus downstream task performance Huang et al.
(2023); Jaiswal et al. (2020); Noroozi & Favaro
(2016), it is unclear how to choose the right pre-
text task for the data and downstream task. This
research introduces 8 novel distortion techniques
that are used in creating both simple and more
complex self-prediction pretext tasks. These novel
pretext tasks were evaluated in order to under-
stand which distortion technique, or combination
of distortion techniques, leads to the best perform-
ing pretext task as well as to understand how the
complexity of the pretext task affects downstream
task performance. This research implemented the
jigsaw puzzle and predict rotation angle innate re-
lationship pretext tasks and compares these to the
aforementioned self-prediction pretext tasks in or-
der to understand which of these two SSL strategies
performs best on the segmentation of organoids.

3 Methods

This section aims to provide a structured and prac-
tical approach to accomplishing the research aims
of understanding how complexity and strategy type
of the pretext task affect the downstream task per-
formance with regards to the amount of data used
in training.

The methods section is structured by first intro-
ducing a general outline of the research approach
in section 3.1. Followed by introducing the data set
and how this data set is created and divided in sec-
tion 3.2. In section 3.3, the model and its training
process are explained. Afterwards, relevant pretext
tasks are introduced in section 3.4. And lastly, the
theory of the used data evaluation metrics is given
in section 3.5.

3.1 General approach

This research uses separately trained U-Net mod-
els, with a transfer-learned ResNet50 encoder at
the start of pretext learning. These models were
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trained on self-prediction and innate relationship
type pretext tasks during pretext learning. Each
pretext task, for both self-prediction and innate re-
lationship, has models trained using 10%, 30% or
50% of the available pretext learning data. Each ex-
perimental condition pertaining to the pretext task
and amount of data uses 5-fold cross validation.
Self-prediction pretext tasks are divided into sim-
ple and complex tasks.
After pretext learning, the best performing

model per experimental condition is transferred to
downstream task training. The encoder portion of
the model is frozen and the model is trained on
the task of organoid segmentation using either 10%,
50% or 100% of the available downstream learning
training data. Downstream learning also uses 5-fold
cross validation.
After pretext learning and downstream learn-

ing, 38 (pretext tasks)*3 (pretext data amount)*5
(folds) = 570 pretext trained models were ob-
tained based on the pretext task, amount of data
for pretext learning and 5-fold cross validation. 38
(pretext tasks)*3 (pretext data amount)*3 (down-
stream data amount)*3 (folds) = 1,026 downstream
trained models were obtained based on pretext
task, amount of data for pretext learning, amount
of data for downstream learning and 3 rotations
of 5-fold cross validation. These models were then
tested on their performance on organoid segmenta-
tion and compared given their experimental condi-
tions.

3.2 Data set

As mentioned previously in section 1, this research
uses a data set consisting of images of progenitor
liver organoids provided by the University Medical
Centre Groningen (UMCG) in Groningen in the
Netherlands. The liver progenitor organoids were
captured using light microscopes to create CZI im-
ages.
The observed organoids were grown under 2 dif-

ferent growing conditions; organoids grown in a
complete medium for optimal growth and organoids
grown in a medium where all amino acids were re-
moved for stumped growth. For each condition 5
CZI images were taken at an interval of 24 hours for
a total of 10 CZI images. Each CZI image consists of
around 14 2D slices, which, when combined, creates
a 3D representation of the organoid structure. Of

Table 3.1: Amount of available images per CZI
image. Data is separated into a pretext learning,
downstream learning and test set.

CZI ID Pretext Main Test Total
1CA5KMCR7K7MT53OS7FG 3571 3572 1786 8929
5ZBQ5VZO6IA5VHDX3X0U 5274 5274 2638 13186
6QL9YXESHQ6UDYDYTG3U 5510 5510 2756 13776
48JUXOC36SAUYOEQSK0W 3240 3241 1621 8102
289RM7EZ02HD117WJ5IM 3532 3533 1767 8832

A5VHDX3X0UWN2VMLYD0Y 4622 4622 2311 11555
L9YXESHQ6UDYDYTG3UP2 4487 4487 2244 11218
NPCPNEZBA0U9BCP1SLTH 3521 3522 1761 8804
P2R2WP36RVDLHB15I48C 4622 4622 2311 11555
SUN6BXJ3O0O61Z9MYE5C 2252 2253 1127 5632

Total 40631 40636 20322 101589

these 14 2D slices only the middle 4 slices showed
relevant information, as the outer slices were out of
focus.

The remaining 40 slices were 3828x2870 pixels in
size. These large images were divided into smaller
images, 636x636 pixels in size, called crops, using
the sliding window method with a step increment
of 60 pixels. Furthermore, images with less than 5%
of relevant information were discarded. As an aug-
mentation technique, images were rotated by 90,
180 and 270 degrees. The total data set consists
of 101,589 crops. Table 3.1 shows the total amount
of available crops separated by CZI image as well
as the division of data over separate training and
testing sets.

In addition, for each organoid crop in the dataset,
a corresponding mask was created using a Mask-
RCNN trained on a similar dataset. These masks
were used as labels in downstream task training.

Having images with dimensions 636x636 pixels
would be too large for a DL model to effectively
handle. Therefore, before training, the images were
resized to 320x320 pixels.

3.3 Model architecture

3.3.1 Data usage and implementation de-
tails

The models used in this research are trained on
varying amounts of data. There are 40,631 images
available for pretext learning, representing 40% of
the total amount of images available. Pretext tasks
are trained on either 10%, 30% or 50% of this avail-
able pretext learning data, which is 4063, 12,189 or
20,315 images respectively. Not all available pretext
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Figure 3.1: Showing division of data into pretext
learning data set, downstream learning data set
and testing data set. Training data sets are
further divided based on experimental condi-
tion training data amount. Validation data is
swapped using 5-fold cross validation.

learning data was used due to computation time re-
straints.

Similarly, downstream learning has 40,636 im-
ages available, which is 40% of the total data set.
The downstream learning data set is distinct from
the pretext learning data set and both sets do
not overlap. Each model trained on a pretext task
and pretext learning data amount was then trained
on the downstream task using either 10%, 50% or
100% of the available downstream task data, which
was 4063, 20,318 or 40,636 images respectively.

The above mentioned training was also done us-
ing k-fold cross-validation, specifically 5-fold cross-
validation. 5-fold cross-validation is the process of
switching the validation set of the training data
5 times over the whole training data set. Using
this method ensures that the division of training-
validation data does not trap the model in a local
minimum. The downstream task training was di-
vided using 5-folds, i.e. 20% validation data, but
only swapped 3 times resulting in 3 models rather
than 5. Figure 3.1 shows the division of data for
pretext learning and downstream learning. The red
vertical lines mark the amount of data used for
training, and the curved arrows indicate the 5-fold
cross-validation.

As previously mentioned, a U-Net was used for
this research. A U-Net consists of a ’contracting
path’ (the encoder) that creates a latent feature
representation of the input capturing semantic in-
formation and an ’expanding path’ (the decoder)
using this feature representation to solve the task

at hand Ronneberger et al. (2015); Caicedo et al.
(2019); Bruch et al. (2020).

Pretext learning was performed for both the self-
prediction strategy pretext tasks and the innate re-
lationship strategy pretext tasks using a Structural
Similarity Index Measure and Spare Categorical
Cross Entropy loss function respectively. To ensure
that the encoder portion of the U-Net accurately
represents relevant features, the encoder is frozen
during downstream learning He et al. (2020); Chen
et al. (2020). Downstream learning makes use of the
Intersection over Union loss function. Both pretext
learning and downstream learning use the Adam
optimizer and have batch learning with batch-size
of 16 over 50 epochs.

3.3.2 Loss functions

The Structural Similarity Index Measure (SSIM),
used as a reconstruction loss for self-prediction pre-
text learning, is a metric for comparing a recon-
structed predicted image to the GT image Wang
et al. (2004). The metric outputs a value ranging
from [-1, +1], where +1 represents perfect similar-
ity and -1 represents extreme dissimilarity. Rather
than comparing pixels from two images, SSIM com-
pares patches of the reconstructed image to corre-
sponding patches of the GT. Using this pixel neigh-
borhood approach ensures a more human method
of comparing image quality. The SSIM formula is a
combination of calculating luminance, contrast and
structure Wang et al. (2004):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.1)

x represents an image (or patch of an image) and y
represents the corresponding GT image (again, or
patch). µx and µy are the average pixel values of x
and y, respectively. σ2

x and σ2
y are the pixel value

variances of x and y, respectively.

C1 = (K1L)
2 (3.2)

C2 = (K2L)
2 (3.3)

Where K1, K2 are constants to avoid weak denom-
inator, i.e. division by zero error, often K1 = 0.01,
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K2 = 0.03. L is the dynamic range of pixel values,
i.e. 255 in this case. σxy is the covariance of x and
y.

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (3.4)

Where N is the total number of pixels in the
image(-patch).
Generally, the SSIM is calculated for sections of

the image and in the end the global mean is cal-
culated for the complete image Wang et al. (2004).
The loss function is calculated using the formula:

LossSSIM(x, y) = 1− SSIM(x, y) (3.5)

The Sparse Categorical Cross Entropy (SCCE) is
used as a classification loss for both the jigsaw puz-
zle and prediction rotation angle innate relation-
ship pretext task. The SCCE is based on the Cat-
egorical Cross Entropy (CCE) loss function Shah
(2023):

CCE(p, q) = −
N∑

x=1

p(x) · log q(x) (3.6)

Where p is the label vector containing value 1 for
the correct class and 0 for other classes. q is the
predicted softmax class probabilities. N represents
the number of classes. SCCE, as opposed to CCE,
uses an integer value to represent the class label
(e.g. [2]) where CCE uses a hot encoded label
vector (e.g. [0,0,1,0]).

The Jaccard Distance is used as a segmentation
loss for downstream learning and is based on the
Jaccard Index, or Intersection over Union (IoU).
IoU is a metric used to compare two images on the
precision of their classification. The formula for the
IoU is:

IoU(x, y) =
|x ∩ y|

|x|+ |y| − |x ∩ y|
(3.7)

x represents an image, y represents the correspond-
ing reference image.
The Jaccard Distance uses the IoU to express it

as a loss function:

JD(x, y) = 1− |x ∩ y|
|x|+ |y| − |x ∩ y|

(3.8)

The Jaccard Distance will be referred to in this
research as IoU.

3.3.3 Optimizer

Adam, or Adaptive Moment Estimation, was used
as the optimizer for both pretext learning and
downstream learning. Adam is an optimizer used to
update learning rates over training steps Kingma
& Ba (2014). Adam can be seen as an extension
to stochastic gradient descent. Classical stochastic
gradient descent has a single learning rate for all
parameters in the model, but Adam has individ-
ual learning rates for all parameters Ruder (2016).
Adam adapts learning rates based on the average
first moment, the mean, as well as the average of the
second moments of the gradients, the uncentered
variance Ruder (2016). Overall, it is recommended
to use Adam as the optimizer for most cases Ruder
(2016).

3.4 Pretext task

3.4.1 Self-prediction

The self-prediction SSL strategy utilized in this re-
search is based on altering portions of the input
and using the unaltered portions as information on
reconstructing the altered portions. Self-prediction
uses images distorted using transformation tech-
niques as input data, with the GT as labels. A pre-
text task consists of reconstructing the transformed
image back to GT. Eight self-prediction transfor-
mation techniques are proposed:

• Blur (b): uses Gaussian blur to blur complete
image;

• Drop (d): makes 4 randomly positioned boxes
of 50x50 pixels black;

• Shuffle (s): swaps 4 randomly positioned boxes
of 50x50 pixels;

• Rotate (r): rotates 4 randomly positioned cir-
cles with radius of 25 pixels by a random de-
gree;

• Blur boxes (B): uses Gaussian blur to blur 4
randomly positioned boxes of 50x50 pixels;
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• Drop pixels (D): turns 25% of pixels in 4 ran-
domly positioned boxes of 50x50 pixels black;

• Shuffle and rotate (S): rotates and swaps 4 ran-
domly positioned circles with radius of 25 pix-
els;

• Rotate boxes (R): rotates 4 randomly posi-
tioned boxes of 50x50 pixels by either 90, 180
or 270 degrees.

In this research, a pretext task using a singu-
lar transformation technique is considered a simple
pretext task. A combination of two transformation
techniques is considered a complex pretext task.
The proposed pretext tasks, both simple and com-
plex, are shown in Figure 3.2. Four sections of 50x50
pixels were distorted with no overlap per distortion
technique. The distortion of four sections was cho-
sen as it would be likely to distort an organoid in
the image as well as leave sufficient information for
the model to reconstruct the image to GT.

3.4.2 Innate relationship

The innate relationship SSL strategy uses pseudo-
labels generated based on the pretext task, rather
than data dependent labels Huang et al. (2023).
This research implements two of the most popu-
lar innate relationship strategies: solving a jigsaw
puzzle Noroozi & Favaro (2016); Wallace & Hari-
haran (2020) and predicting image rotation angle
Gidaris et al. (2018); Wallace & Hariharan (2020).
It is important to note that these pretext tasks are
essentially (multi-class) classification tasks, rather
than reconstruction tasks. Figure 3.3 shows exam-
ples of distorted images used as pretext task input
for both innate relationship pretext tasks. As ex-
plained by Wallace & Hariharan (2020), using a
predict rotation angle pretext task on texture type
data does not lead to good results. Moreover, ro-
tation was also used as an augmentation technique
for the data set. Therefore, the rotation is done on
a section of the image. The pretext task consists of
predicting the correct rotation angle of this section.

Figure 3.3: Examples of innate relationship Jig-
saw and Predict rotation angle pretext input.
Expected output structure is list of original sec-
tion positions for Jigsaw and rotation angle for
Predict rotation angle.

3.5 Evaluation metrics

3.5.1 F1-score

One of the most popular performance metrics is the
F1-score, which is calculated using precision and
recall.

Precision =
TP

TP + FP
(3.9)

Recall =
TP

TP + FN
(3.10)

TP refers to the true positive fraction, FP to the
false positive fraction and FN to the false negative
fraction.

F1-score =
2 · Precision ·Recall

Precision+Recall
(3.11)

3.5.2 PSNR

Peak Signal-to-Noise Ratio (PSNR) is a measure
comparing peak value of an input to the noise com-
paring input to GT. Faragallah et al. (2021) PSNR
can be calculated using the formula: Faragallah et
al. (2021)

PSNR(x, y) = 10 · log( f2
max√

MSE(x, y)2
) (3.12)

Where fmax = 255, which is the maximum value
of the range of possible pixel values. x represents
an image, y represents the corresponding reference
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Figure 3.2: Top table presents proposed distortion methods of simple pretext tasks. Bottom table
presents combinations of aforementioned pretext tasks, named complex pretext tasks.
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image. The Mean Squared Error (MSE) is calcu-
lated by computing the average euclidean distance
between all predicted pixel values and their corre-
sponding GT pixel values.

MSE =
1

N ·N
·

N,N∑
i=0,j=0

∥xi,j − yi,j∥2 (3.13)

Where N is one side of the dimensions of the
input matrices, i.e. N = 320 for a 320x320 pixel
image. i,j represents positions in the input matri-
ces.

4 Results

This section provides the results for the three re-
search questions defined in Section 1. Each of the
following sub-sections provide the results for one of
the aforementioned research questions.

4.1 How does the complexity of pre-
text tasks affect self-supervised
learning of the segmentation of
organoids?

This sub-section presents the results of the effects
of simple and complex self-prediction pretext tasks
on pretext and downstream performance.
After pretext learning, models trained on sim-

ple and complex self-prediction pretext tasks were
tested on their pretext task performance. In the
case of self-prediction, pretext task performance is
the ability of a model to reconstruct a distorted
image to GT. Performance was measured using the
PSNR metric. Figure 4.1 shows box plots of pre-
text PSNR performance of simple and com-
plex self-prediction models. These box plots in-
clude models of all pretext and downstream train-
ing data amounts. The models trained on simple
tasks have overall higher pretext performance (av-
erage PSNR = 19.488 ± 3.414) compared to mod-
els trained on complex tasks (average PSNR =
18.402 ± 3.280). This shows that models trained
on reconstructing a single distortion to GT, rather
than a combination of two distortions, have recon-
structions more similar to GT. In turn, this sug-
gests that simple tasks are overall less complex for
the model to learn to solve compared to complex

Figure 4.1: Box plots showing average pretext
PSNR performance on solving the pretext task
separated by simple and complex self-prediction
models.

tasks, regardless of variability of complexity of pre-
text tasks.

Figure 4.2: Scatter plot showing average down-
stream F1-score performance (x-axis) and pre-
text PSNR performance (y-axis). Data points
represent pretext trained models. Data points
and trend lines are separated using color rep-
resenting simple (orange) and complex (green)
models.
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After downstream learning, self-prediction mod-
els were tested on their downstream task perfor-
mance. The F1-score was calculated comparing pre-
dicted test set segmentation masks to the respective
GT segmentation masks. Figure 4.2 shows models
of all training data amounts placed using pretext
PSNR performance as the x-axis and down-
stream F1-score performance as the y-axis sep-
arated by simple and complex using color. The
trend line represents downstream F1-score change
based on pretext performance, again, divided into
simple and complex models using color. The trend
line for models trained on complex tasks shows a
higher F1-score compared to the trend line for mod-
els trained on simple tasks. There appears to be a
slight rate of change in downstream performance
given pretext performance for both the simple and
complex conditions. These slopes, however, are very
minimal. Therefore, pretext performance measured
in PSNR does not seem to correlate with down-
stream performance measured in F1-score. How-
ever, models trained on complex tasks do seem to
outperform models trained on simple tasks.
Due to varying complexity of distortion meth-

ods, and therefore their combinations, the only true
measure of complexity of the pretext tasks is the
pretext PSNR performance, as lower scoring pre-
text performance suggests a more complex pretext
task. Given that there appeared to be no correla-
tion between pretext performance and downstream
performance, it suggests that complexity of the pre-
text task does not directly correlate to any differ-
ence in downstream performance.
Table 4.1 and Figure 4.3 report similar results.

Table 4.1 shows average and standard deviation of
downstream F1-score performance separated
by simple/complex and training data amounts.
Models trained on complex tasks outperformed
models trained on simple tasks on average down-
stream performance. Figure 4.3 shows box plots of
average downstream F1-score performance in-
cluding all training data amounts separated into
simple and complex. These box plots show a
higher median downstream performance of com-
plex models (median F1-score = 0.870) compared
to simple models (median F1-score = 0.862). In ad-
dition, 57.1% of complex models perform above the
simple median compared to 36.1% of simple mod-
els that perform above the complex median. Fig-
ure 4.1 showing pretext PSNR performance shows

Table 4.1: Average downstream F1-score for
simple and complex models and amount of data
used in training. Rows represent the amount
of downstream training data, columns represent
the amount of pretext training data, both are
grouped by simple and complex self-prediction
models. The overall block shows the average
downstream F1-score over all training data
amounts.

Simple tasks 10% pretext 30% pretext 50% pretext
10% downstream 0.831± 0.022 0.824± 0.030 0.770± 0.145
50% downstream 0.864± 0.011 0.865± 0.013 0.867± 0.022
100% downstream 0.868± 0.024 0.877± 0.013 0.866± 0.021
Complex tasks 10% pretext 30% pretext 50% pretext

10% downstream 0.836± 0.014 0.828± 0.022 0.830± 0.019
50% downstream 0.871± 0.013 0.880± 0.010 0.870± 0.030
100% downstream 0.876± 0.021 0.876± 0.038 0.888± 0.017

Overall
Simple tasks 0.848± 0.059 Complex tasks 0.862± 0.031

Figure 4.3: Box plots showing average down-
stream F1-score performance of self-prediction
models separated into simple and complex.

average simple model performance (average PSNR
= 19.488 ± 3.414) outperformed average complex
model performance (average PSNR = 18.402 ±
3.280). Figure 4.3 shows downstream F1-score per-
formance with opposite results compared to pre-
text performance, average complex model perfor-
mance (average F1-score = 0.862 ± 0.031) outper-
formed average simple model performance (average
F1-score = 0.848± 0.059).

The tasks using a specific pretext distortion
method, both simple and complex, proves use-
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Table 4.2: Average downstream F1-score perfor-
mance for all pretext distortion methods and
amount of data used in training. Rows show
self-prediction, simple and complex combined,
models grouped by distortion method used in
the pretext task, e.g. pretext task b d 4 is
counted as blur (b) and drop boxes (d) dis-
tortion method. Furthermore, performance was
separated over columns based on pretext train-
ing data mount and grouped based on down-
stream training data amount. The block showing
overall performance is the average downstream
performance of distortion methods over all pre-
text and downstream training data amounts.

Downstream 10%
Distortion method Pretext 10% Pretext 30% Pretext 50%

b 0.830± 0.126 0.822± 0.135 0.779± 0.137
d 0.843± 0.119 0.838± 0.118 0.837± 0.126
s 0.837± 0.125 0.825± 0.130 0.830± 0.126
r 0.839± 0.124 0.829± 0.131 0.836± 0.127
S 0.842± 0.124 0.833± 0.127 0.832± 0.127
R 0.833± 0.127 0.839± 0.121 0.832± 0.132
D 0.834± 0.125 0.819± 0.137 0.819± 0.136
B 0.825± 0.126 0.818± 0.132 0.819± 0.133

Downstream 50%
Distortion method Pretext 10% Pretext 30% Pretext 50%

b 0.831± 0.110 0.824± 0.104 0.770± 0.115
d 0.864± 0.105 0.865± 0.102 0.867± 0.110
s 0.868± 0.109 0.877± 0.106 0.866± 0.113
r 0.831± 0.104 0.824± 0.104 0.770± 0.111
S 0.864± 0.108 0.865± 0.112 0.867± 0.103
R 0.868± 0.106 0.877± 0.103 0.866± 0.117
D 0.831± 0.115 0.824± 0.109 0.770± 0.115
B 0.864± 0.108 0.865± 0.108 0.867± 0.117

Downstream 100%
Distortion method Pretext 10% Pretext 30% Pretext 50%

b 0.872± 0.094 0.881± 0.125 0.868± 0.100
d 0.877± 0.095 0.883± 0.100 0.871± 0.091
s 0.865± 0.095 0.877± 0.089 0.863± 0.095
r 0.875± 0.097 0.881± 0.093 0.879± 0.093
S 0.867± 0.095 0.870± 0.097 0.885± 0.094
R 0.875± 0.094 0.886± 0.099 0.860± 0.088
D 0.861± 0.111 0.872± 0.117 0.865± 0.095
B 0.869± 0.102 0.874± 0.095 0.867± 0.098

Overall
b 0.850± 0.035 S 0.864± 0.0222
d 0.866± 0.020 R 0.863± 0.024
s 0.862± 0.025 D 0.853± 0.023
r 0.866± 0.022 B 0.856± 0.027

ful for understanding the best pretext distortion
method for downstream performance. Table 4.2
shows average and standard deviation of down-
stream F1-score performance of collections of
tasks using a specific distortion method. Both sim-
ple and complex tasks are included in the average
downstream F1-score performance of a distortion
method. The drop boxes (d) (average F1-score =
0.866 ± 0.020) and rotate circles (r) (average F1-

score = 0.866± 0.022) distortion methods were the
two best performing distortion methods. Blur (b)
(average F1-score = 0.850± 0.035) was overall the
worst performing distortion method.

Figure 4.4: Examples of segmentation of best
and worst downstream performing pretext tasks
models trained on 50% pretext training data
and 100% downstream training data.

Figure 4.5 shows the downstream F1-score
performance of all tasks, both simple and com-
plex, and their ranking from highest to lowest F1-
score median. Notably, most of the top performing
self-prediction pretext tasks were complex pretext
tasks (ranked top 15 / 36). In addition, despite blur
(b) being the worst distortion method, there are a
number of best performing pretext tasks that use
the blur distortion method.

Figure 4.4 shows examples of organoid segmenta-
tion using the 50% pretext - 100% downstream data
amount models from the top three best performing
self-prediction pretext tasks and the three worst
performing self-prediction pretext tasks. The pre-
dicted mask of the best performing models is closer
to the true mask with higher F1-scores compared to
the predicted masks of the worst performing mod-
els. These examples show that the difference in F1-
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Figure 4.5: Box plots showing average downstream F1-score performance for all pretext tasks and
training data amounts.
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scores of predicted masks is mostly caused by seg-
menting organoids that are not present in the true
mask as well as not segmenting organoids that are
in the true mask. In addition, masks of segmented
organoids of the worst performing models are more
jagged and less polished.

To summarize, results of Figure 4.1 showed that,
although there was a high variability among the
pretext models in complexity, complex models were
indeed overall more complex for the model to learn
to solve compared to simple models.

Figure 4.2, Figure 4.3 and Table 4.1 all showed
complex models outperformed simple models on
downstream F1-score performance of the segmen-
tation of organoids. Figure 4.5 showed that com-
plex models were ranked higher in median down-
stream performance compared to simple models.
Although this effect was consistent through mul-
tiple visualizations, the effect size of the difference
in downstream performance was small. In addition,
the standard deviations of average downstream per-
formance of simple and complex models were rela-
tively high to the extent that any significant differ-
ence cannot be safely concluded.

Figure 4.2 showed no conclusive relation be-
tween pretext PSNR performance of simple and
complex models and downstream F1-score perfor-
mance. Due to varying complexity of distortion
methods, and therefore their combinations, the
only true measure of complexity of the pretext tasks
is the pretext PSNR performance. Lower scoring
pretext performance suggests a more complex pre-
text task. Given that there appeared to be no cor-
relation between pretext performance and down-
stream performance, it cannot be concluded that
complexity of the pretext task directly correlates
to any difference in downstream performance. Dif-
ferences between simple and complex downstream
performance are therefore most likely due to the
effect of (combinations of) distortion methods on
learned features, rather than the complexity of the
pretext tasks.

4.2 How does the pretext task strat-
egy type affect self-supervised
learning of the segmentation of
organoids?

This sub-section presents the results of the differ-
ence in downstream performance of the previously
discussed self-prediction strategy and the innate re-
lationship strategy.

Figure 4.6: Box plots showing average down-
stream F1-score performance separated by self-
prediction models (simple and complex self-
prediction models combined) and innate rela-
tionship models (Jigsaw (j) and Predict rotation
angle (rp) models combined).

After downstream learning innate relationship
models were tested on their downstream F1-score
performance. The downstream performance of the
self-prediction and innate relationship strategies
are compared. Figure 4.6 shows box plots of down-
stream F1-score performance separated by
SSL strategy. The difference in median appears
relatively small, however, 53.7% of self-prediction
models perform better than the innate relationship
median, where 44.4% of innate relationship models
perform better than the self-prediction median. In
addition, 46.3% of the self-prediction models per-
form worse than the innate relationship median
and 55.6% of the innate relationship models per-
form worse than the self-prediction median. The
self-prediction strategy (average F1-score = 0.859±
0.112) seems to outperform the innate relationship

14



strategy (average F1-score = 0.848± 0.118).

Figure 4.7: Box plots showing average down-
stream F1-score performance of the Jigsaw (j)
and Predict rotation angle (rp) pretext tasks
over all training data amounts.

Table 4.3: Average downstream F1-score per-
formance for the Jigsaw (j) and Predict rota-
tion angle (rp) pretext tasks. Rows represent
the respective pretext task, columns represent
the pretext training data amount and both are
grouped based on downstream training data
amount. The overall block shows average down-
stream F1-score performance over all training
data amounts for both pretext tasks.

Downstream 10%
Innate relationship Pretext 10% Pretext 30% Pretext 50%

Jigsaw 0.800± 0.153 0.809± 0.147 0.816± 0.125
Rotation prediction 0.823± 0.141 0.808± 0.142 0.740± 0.175
Downstream 50%
Innate relationship Pretext 10% Pretext 30% Pretext 50%

Jigsaw 0.863± 0.093 0.877± 0.095 0.875± 0.097
Rotation prediction 0.864± 0.095 0.869± 0.095 0.863± 0.119
Downstream 100%
Innate relationship Pretext 10% Pretext 30% Pretext 50%

Jigsaw 0.879± 0.102 0.888± 0.103 0.880± 0.098
Rotation prediction 0.881± 0.111 0.882± 0.114 0.843± 0.119

Overall
Jigsaw 0.854± 0.036 Rotation prediction 0.842± 0.047

Figure 4.7 shows the average downstream F1-
score performance for the Jigsaw puzzle and
the rotation angle prediction pretext tasks. Models
trained on the Jigsaw puzzle (j) (median F1-score
= 0.875) outperformed the models trained on Pre-
dict rotation angle (rp) (median F1-score = 0.863).

Similarly, Table 4.3 shows the average and stan-
dard deviation of downstream F1-score per-
formance for all pretext and downstream data
amounts. Again, models trained on the Jigsaw puz-
zle (j) (average F1-score = 0.854 ± 0.036) outper-
formed models trained on Predict rotation angle
(rp) (average F1-score = 0.842± 0.047) on average
downstream performance.

The box plot showing all tasks, Figure 4.5, shows
that both Jigsaw (j) and Predict rotation angle
(rp) performed decent. And again, the Jigsaw (j)
(ranked 11/38) clearly outperformed Predict rota-
tion angle (rp) (ranked 26/38) in terms of ranking.
To summarize, Figure 4.7 and Table 4.3 showed

that the Jigsaw puzzle (j) outperformed Predict
rotation angle (rp). Figure 4.6 showed that the
self-prediction strategy outperformed the innate
relationship strategy on average downstream F1-
score performance. Self-prediction had better high
performing models, where innate relationship had
worse low performing models. In addition, Figure
4.5 showed that while both Jigsaw and Predict ro-
tation angle models performed decent, they still
had seemingly worse performance compared to self-
prediction models.

4.3 What effect does the amount
of training data, for both self-
supervised and supervised learn-
ing, have on the quality of
organoid segmentation in rela-
tion to the complexity of the pre-
text task and the pretext task
strategy type?

This sub-section presents the results of the effects of
different amounts of pretext and downstream train-
ing data on downstream performance. Here, the dif-
ference between simple and complex self-prediction
performance as well as self-prediction and innate
relationship strategy performance in relation to dif-
ferent amounts of training data is discussed.

Both simple-complex self-prediction models and
innate relationship models were trained on vary-
ing amounts of pretext and downstream training
data. For each pretext task, pretext training data
amount and downstream training data amount the
downstream F1-score performance of the model was
tested. Figure 4.8 shows downstream F1-score
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Figure 4.8: Box plots showing downstream F1-
score performance for all pretext tasks on the
y-axis separated by downstream training data
amount on the x-axis and pretext training data
amount for the color. Here, red, green and blue
represent 10%, 30% and 50% pretext training
data amount respectively.

performance on the y-axis and downstream
training data amount on the x-axis, further sep-
arated by pretext training data amount using
color. These box plots show that models performed
better with more downstream training data re-
gardless of pretext training data. 10% down-
stream training data (average F1-score = 0.825 ±
0.129), 50% downstream training data (average F1-
score = 0.872±0.109) and 100% downstream train-
ing data (average F1-score = 0.878 ± 0.098) have
continuously increasing downstream F1-score per-
formance. In addition, adding more pretext train-
ing data benefited downstream performance on the
condition that there was a decent amount of down-
stream training data available. With 10% down-
stream training data, 10% pretext training data
(average F1-score = 0.834 ± 0.126), 30% pretext
training data (average F1-score = 0.826 ± 0.130)
and 50% pretext training data (average F1-score =
0.815±0.132) average downstream F1-score perfor-
mance continuously decreased. This suggests that
an increase in pretext training data, given too little
downstream training data, is detrimental to down-
stream performance.

Figure 4.9 shows self-prediction models with

Figure 4.9: Box plots showing average down-
stream F1-score performance on the y-axis sep-
arated by pretext training data amounts on the
x-axis, grouped by downstream training data
amounts and lastly, the colors blue and red rep-
resenting simple and complex models respec-
tively.

downstream F1-score performance on the y-
axis and pretext training data amount on the
x-axis, separated by downstream training data
amount into multiple plots, and lastly, separated
into simple and complex using color. This Fig-
ure shows the same effect previously discussed. A
large amount of pretext training data is detrimen-
tal given little downstream training data, see Table
4.1. For all pretext and downstream training data
combinations models trained on complex tasks out-
performed simple tasks, again, see Table 4.1. This
adds credibility to the claim that complex models
outperformed simple models, as this effect is con-
stant over all training data amounts.

Similarly, Figure 4.10 shows innate relationship
and self-prediction models with downstream F1-
score performance on the y-axis and pretext
training data amount on the x-axis, separated by
downstream training data amount into multi-
ple plots, and lastly, separated by SSL strategy
using color. Models trained using the self-prediction
strategy outperformed models trained using the in-
nate relationship for all pretext and downstream
training data combinations. Adding credibility to
the claim that self-prediction is a better suited SSL
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Figure 4.10: Box plots showing average down-
stream F1-score performance on the y-axis sep-
arated by pretext training data amounts on the
x-axis, grouped by downstream training data
amounts and lastly, colors blue and red repre-
senting self-prediction and innate relationship
models respectively.

strategy for organoid segmentation compared to
the innate relationship strategy. Notably, models
trained using the innate relationship strategy per-
formed significantly worse than models trained us-
ing the self-prediction strategy when there is lit-
tle downstream training data available. Table 4.3
shows that with 10% downstream training data
the Jigsaw puzzle (j) downstream performance in-
creased with more pretext training data (average
F1-score = 0.800 to 0.816), but the Predict rota-
tion angle (rp) downstream performance sharply
declined with more pretext training data (average
F1-score = 0.823 to 0.740).

To summarize, results showed that complex mod-
els outperformed simple models for all training data
amounts, as shown in Figure 4.9. The consistency of
complex models outperforming simple models adds
credibility to the claim that complex models are
better suited for pretext learning with the intention
of organoid segmentation compared to simple mod-
els. Results also showed that self-prediction down-
stream performance mostly outperformed innate
relationship downstream performance for all train-
ing data amounts, as shown in Figure 4.10. The
consistency of the self-prediction strategy outper-

forming the innate relationship strategy adds cred-
ibility to the claim that the self-prediction strat-
egy of pretext learning is better suited for organoid
segmentation. Lastly, results shown in Figure 4.8,
Figure 4.9 and Figure 4.10 all show that more
pretext training data is beneficial to downstream
performance given a minimum amount of down-
stream training data. For 10% downstream train-
ing data, more pretext training data negatively im-
pacted downstream performance. Especially so for
the Predict rotation angle (rp) innate relationship
pretext task.

5 Discussion

This section provides a discussion of the found re-
sults, the limitations of this research and several
proposals for possible future research.

5.1 Discussion

Given that there appeared to be no correlation be-
tween pretext performance and downstream per-
formance, it cannot be concluded that complexity
of the pretext task directly correlates to any dif-
ference in downstream performance. Results show
that there is a consistent difference in performance
of self-prediction complex models compared to sim-
ple models, despite there being no obvious correla-
tion between pretext PSNR performance and down-
stream F1-score performance. The perceived dif-
ference in downstream performance between sim-
ple and complex models could be attributed to re-
quiring a wider variety of learned features to solve
the pretext task. As complex tasks require the re-
construction of two different distortion methods, it
would require different features to solve. This in
turn perhaps creates a more robust latent feature
representation, which, in turn, benefits downstream
performance.

In addition, results suggest that despite drop
boxes (d) and rotate circles (r) being the best per-
forming distortion methods, it cannot be concluded
that a combination of the two would result in the
best pretext task. The found optimal pretext task,
drop boxes (d)+blur boxes (B), is not a combina-
tion of the two best performing distortion meth-
ods. Rather, it uses the blur boxes (B) distortion
method, which is one of the worst performing dis-
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tortion methods. Pretext task, data type and down-
stream task specific research is required to ensure
choosing the pretext task that has pretext learned
features well suited to the data type and down-
stream task.
Furthermore, results suggest that more pretext

training data is beneficial as long as there is a de-
cent amount of downstream training data available.
This could be the effect of over fitting on the pre-
text task. The model is specialized in the pretext
task to the extent that the little downstream train-
ing data available is not enough to adjust to the
downstream task.

5.2 Limitations

Due to computational limitations in combination
with time restraints there were a number of draw-
backs to this research. For pretext learning not all
levels of pretext training data were examined, in-
stead focusing on 10%, 30% and 50% of the total
available pretext training data. For similar reasons,
downstream learning did not evaluate all rotations
of the 5-fold cross validation. Opting for 3 rotations
instead of the full 5 rotations. The validation data
division was still in line with 5-fold cross validation.
Additionally, the scope of this research was purely
focused on the segmentation of organoids. All re-
sults are therefore only linked to organoid research
and cannot be safely extrapolated to other research
domains. Lastly, this research did not examine the
generative and contrastive SSL strategies. There-
fore, the findings only relate to the self-prediction
and innate relationship strategies. It is uncertain
how generate and contrastive SSL strategies would
compare.

5.3 Future research

Proposed future research would be to evaluate
other SSL strategies. As previously mentioned, this
research does not focus on generative and con-
trastive SSL strategies. Therefore, it is uncertain
how these strategies would compare to the self-
prediction and innate relationship strategies.
Despite this research providing more insight into

using a SSL approach for organoid research, it is
unclear how the performance of the examined pre-
text tasks would compare when used on different
biomedical image analyses and different data types.

Lastly, the SSL approach provides a method
for creating data type specific pre-trained models.
Given that for a specific data set there can be mul-
tiple use cases, it would prove interesting how per-
formance compares when training separate down-
stream tasks from the same pretext model.

In the same line, training from the same pre-
text model provides the opportunity to implement
a multi-downstream task set-up. Research into the
effect of combining multi-task learning and SSL
could prove worthwhile with creating models than
can perform more than one downstream task.
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