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Abstract

Architectural design decisions (ADDs) are considered to be an important part of
the software architecture, but they are often not explicitly documented, making
it challenging to understand the rationale behind a system’s structure. This lack
of documentation complicates software maintenance and evolution. Additionally,
software architects frequently rely on existing ADDs as a basis for creating new
ones. Often, they make use of their own experience from past decisions instead
of documented ADDs. Recent studies show that ADDs do tend to be discussed
implicitly in some places, such as issue trackers in open-source systems. However,
identifying these discussions is difficult. In this work, we built upon previous
efforts to leverage deep learning techniques for finding ADDs in issue tracking
systems by Dekker and Maarleveld (2022). In this work, we extended the dataset
used there from 2179 to 6225 issues. Moreover, we performed a more fine-grained
classification of issues while also improving classifier performance to 0.67 F1 score.
We also investigated the abilities of classifiers to generalise to different projects and
different domains. Our main finding is that deep learning models, and in particular
large language models such as BERT, are a promising search tool to find ADDs in
issue tracking systems since they are able to find ADDs with a precision ≥ 0.63
even when applied to different domains.
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1 Introduction
Software architecture is the foundation of a software system. In
the past, it primarily consisted of the arrangement and interac-
tions of the components within the system. However, nowadays,
the concept of software architecture has expanded to include the
overarching design decisions that shape the system as well. These
design decisions are of great variety, such as the decisions on
programming languages, technologies, guidelines, protocols, as
well as the overall organisation and structure of the system. By
incorporating high-level design decisions into the software ar-
chitecture, developers and architects can effectively capture the
overarching vision and goals of the software system [46].

Using previously made design decisions, helps developers es-
tablish a solid foundation for software systems. This foundation
should result in better maintainable systems, while also allowing
the future evolution of the system to become more manageable.
Making incorrect design decisions during the initial development
of a system, can be very costly in a later phase of the develop-
ment [46]. Software engineers therefore prefer to re-use previous
design decisions (either be created by themselves [35] or by others
[54]) that have been proven in prior projects, instead of exper-
imenting with new solutions [54]. This is especially common in
projects where time and budget are constraints [36].

However, writing documentation for the software architecture
can be a tedious task. Hence, it is quite common to come across
situations where only the high-level architecture of a system is
documented, leaving out the design decisions that led to the
architecture [9]. These design decisions often remain in the ar-
chitect’s head [46], or they are only accessible through informal
discussions among the developers involved in the project. This
is problematic, because this makes architecture re-use hard.

Design decisions often require a discussion among developers
in order to find the most suitable solution for the system that is
being discussed. For open source projects, issue tracking systems
serve as a means of communication between developers, among
other means such as email. An issue tracking system is a soft-
ware tool specifically designed for tracking and managing issues,
which can encompass bugs, tasks, and new features that need
to be implemented. Each issue is assigned a unique key, allow-
ing developers to easily reference and track issues. Studies have
found that these systems are also used to discuss design decisions
[4, 70].

Exact numbers of how many issues contain ADDs were not
available previously, but the majority of issues have been found
to be non-architectural[4, 68]. In this thesis, we have found that
only 10-15% of the issues contain ADDs. Another problem with
finding architectural issues is that currently, developers do not
explicitly tag the issues containing ADDs and also not what type
of ADD is discussed [4]. Given that only a small portion of the
issues is architectural, and developers do not specify which is-
sues are architectural, make tools for identifying architectural
issues a must. Tools for identifying architectural issues helps re-
searchers and practitioners to more efficiently find architectural
issues, aiding them in doing architectural research and poten-
tially recovering previously made ADDs.

Researchers have identified and developed various methods for
capturing architectural issues. The first method is a keyword-
based search. This approach searches using keywords that are
commonly used to express ADDs to find potentially relevant ar-
chitectural issues [28]. The second approach is a source code
analysis. This method analyses source code changes between
commits to identify architectural changes. Potential architec-
tural issues can then be found by linking such architectural com-
mits with their corresponding issues [70, 28]. The third method is
Maven POM file analysis. This method is similar to the previous
one, with the difference being that it analyses Maven POM file
changes between commits. Similarly, by linking such commits
with their corresponding issues, it can find potential architec-
tural issues [17, 25]. The fourth method makes use of machine

learning and deep learning approaches. While [4] only used tra-
ditional machine learning methods such as support vector ma-
chine (SVM), [18] used more complex deep learning methods.
Additionally, [4] only classified existence decisions (a subtype of
ADDs), while [18] classified all three subtypes identified by [45].

This thesis is a continuation of the effort from [18]. Specif-
ically, we address multiple possible improvements. First, we
found that the number of labelled issues for some of the ADD
subtypes was small. Research has not experimented with ap-
plying machine learning or deep learning tools to find architec-
tural issues before. As such, we have experimented with finding
architectural issues using deep learning classifiers to extend the
dataset, and compared them with existing methods, such as key-
word search, Maven dependencies analysis and source code anal-
ysis. Additionally, we have experimented with BERT, a more
advanced deep learning model, achieving state-of-the-art results
for text classification tasks [21]. Besides, we have used deep
learning models from [18] to be able to compare their perfor-
mances with BERT. Moreover, we have improved the evaluation
techniques, more focused towards evaluating classifier’s perfor-
mance in practical settings. Specifically, our research has lead to
the following contributions:

• Information regarding the expected proportions of architec-
tural design decision types one can expect to find in issue
tracking systems in open source projects.

• An evaluation of deep learning as a technique to find archi-
tectural design decisions in issue tracking systems.

• The development of several deep learning classifiers for iden-
tifying and classifying architectural design decisions in is-
sues in issue tracking systems. Pretrained versions of all
classifiers can be downloaded.

• A dataset of 6108 manually classified issues, 3673 contain
at least one architectural design decision, and 3552 without
architectural design decisions. 3934 of these issues were
newly added in this research.

• A coding book for manually classifying architectural design
decisions in issues.

• A dataset of 1,345,784 issues from six different domains an-
notated using a deep learning classifier.

• Maestro, a tool for finding and exploring architectural de-
sign decisions in issue tracking using deep learning, keyword
searches, and statistical analysis.

The remainder of this work is structured as follows: Section
2 introduces some notation. Next, Section 3 introduces relevant
background material, including previous work by the two authors
of this work on the subject, and other related work. Next, we
introduce our research questions and explain our study design in
Section 4. In Section 5, we discuss Maestro, a tool which was
created based on techniques developed in this research. In Sec-
tion 6, we discuss our results and answer our research questions.
Next, we discuss the implications of our findings for researchers
in practitioners and researchers in Section 7. We discuss threats
to validity in Section 8. Finally, we end with a conclusion and
outlook in future work in Section 9.
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2 Notation
In this section, we briefly explain some of the mathematical no-
tation used throughout this work.

First, we will use the convention that numbers are represented
by normal, non-styled symbols (e.g. x, α). Vectors will be de-
noted in bold case (e.g. x). 1n denotes the n-dimensional vector
containing all ones. Matrices will be denoted in upper case (e.g.
A).

When a square root operation is applied to a vector, or a divi-
sion is performed with on both sides a vector, the operations are
performed element-wise, unless stated differently. For element-
wise multiplication of vectors, we use ⊙.

With RMS(x), we denote the root mean square of the vector
x ∈ Rn with entries x1, . . . , xn, which is defined as

RMS(x) =

√√√√ 1

n

n∑
i=1

x2
i

3 Background
In this section, we will cover background information relevant for
understanding the remainder of this work. We will be discussing
background on architectural design decisions, issue trackers, deep
learning, and previous and related work.

3.1 Architectural Design Decisions
Classically, the architecture of a software system was seen as a
high level decomposition describing the major components and
how these components interact [78]. However, such a decom-
position of the system does not necessarily make clear why a
system is designed the way it is. Hence, it can be said that such
a high level decomposition does not encompass the entirety of
the Architectural Knowledge (AK) about the system. Instead,
the Architectural Design Decisions (ADDs) made while design-
ing the system are also an important part of the architectural
knowledge: they help explain why the system is the way it is.
As such, it is said that the entirety of the architectural knowl-
edge about a system is formed by the design itself, and the design
decisions [46].

In [45], Kruchten defined an ontology of different types of ar-
chitectural design decisions. He identified three major types of
design decisions: existence decisions, executive decisions, and
property decisions:

• Existence design decisions relate to the existence of com-
ponents and interactions between components in the sys-
tem; existence decisions state the presence or absence of
some component or behaviour in the system. Existence de-
cisions can also be further subdivided as follows:

– Structural design decisions lead to the creation of com-
ponents in the system.

– Behavioural design decisions are about connectors
or interactions between components; specifically how
these interactions fulfil some (non-functional) require-
ment.

– Ban design decisions assert that some component or
behaviour will not show up in the system. They can
also be thought of as “non-existence” decisions.

• Executive design decisions are design decisions driven by
the business environment of the system. Such decisions can
affect the method by which the system is developed. These
decisions can also be further subdivided into multiple cate-
gories:

– Process decisions dictate aspects of the workflow of
the development process.

– Technology decisions dictate what technologies (e.g.
programming languages) will be used to develop a sys-
tem.

– Tool decisions dictate what tools will be used to de-
velop the system (e.g. some specific IDE). These are
different from technology decisions, because they de-
scribe the actual tools that must be used to develop
a system, while technology decisions describe the lan-
guages, libraries, and framework that will be used to
develop the system.

• Property design decisions state enduring and overarching
traits of the system. Usually, these are expressed in terms
of quality attributes. Often, property decisions are stated
implicitly; in issue tracking system in particular, they are
often stated as “We will do X to improve quality attribute
Y” [45].

3.2 Issue Tracking Systems & Issues
Issue tracking systems allow software developers to coordinate
the development of some project, by tracking bugs, feature re-
quests, and other changes to a system. Each issue in an issue
tracking system is generally used to discuss a single change to
the system. Sometimes, issues also contain discussions on the
architecture of a system. This means the issues are also a source
of architectural knowledge [70]. From now on, we will refer to
such issues as architectural issues. Figure 1 gives an example
of such an architectural issue, alongside an explanation why it
would be considered architectural.

In this work, we are specifically looking at issues from Jira
issue trackers. The issues in Jira contain a variety of informa-
tion. The most basic information is that what is necessary for a
discussion between the developers: A short summary (similar to
a title), a description of the issue, and a comment section. An
example issue given in Figure 2. In that issue, we can see that
Jira also stores a number of other issue characteristics:

• Status: the current status of an issue. This generally de-
notes the next steps required for an issue. Basic statuses
include “Open” and “Closed”.

• Resolution: the resolution shows how, in the end, an issue
was handled. “Fixed” is a common resolution, but the res-
olution can also be something else. An example could be
“Cannot Reproduce” for behaviour which cannot be repro-
duced by others.

• Votes: people may vote on particular issues they find inter-
esting or important. Jira keeps track of the number of votes
(and who voted) per issue.

• Watches: people may “watch” particular issues they find in-
teresting or important. Jira keeps track of the people watch-
ing an issue, and thus also the amount of people watching
the issue.

• Priority : an attribute denoting the importance of an issue.
Some issues can wait, while others are critical and must be
fixed as soon as possible.

• Issue Type: the type of the issue. Some example issue types
are “Bug” and “New Feature”.

• Parent : some issues are linked with other issues in a
child/parent relationship; often the parent issue describes
a large problem, and the child issues solve smaller parts of
that issue. Many issues do not have a parent.

2https://issues.apache.org/jira/browse/CASSANDRA-12229
4https://issues.apache.org/jira/browse/HADOOP-7119

https://issues.apache.org/jira/browse/CASSANDRA-12229
https://issues.apache.org/jira/browse/HADOOP-7119
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Fig. 1. Example of an architectural issue in Apache Cassandra (CASSANDRA-122292). The content in the purple box explain the current design of
the system, and some of the shortcomings. Hence, it provides the basic reasoning why a change should be made. Next, the text in the green box
explains what functionality and behaviour should be present, in place of what is currently there. This can be seen as a decision regarding interaction
between components in the system. Because of this, this issue would be labelled as existence. The text in the red box explains that Netty should be
used as a technology to implement non-blocking IO. This is a technology decision, making this issue also executive. The text in the blue box explains
how making these changes allows for parallelization of communication, and alleviates CPU and garbage collection pressure. Hence, this issue improves
the performance of the system. Hence, this issue would also be labelled as property. In the end, this issue would be labelled as being existence,
executive, and property.
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Fig. 2. This is an example of an (architectural) issue from Apache Hadoop4. This issue contains most of the described issue characteristics. Note that
we removed a couple of attachments and issue links from this image to make it fit. For the complete issue, refer to the Jira issue tracker of Apache
Hadoop.
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• Sub-tasks: some issues are linked with other issues in a par-
ent/child relationship. This attribute represents the parent
side of things: it is a list of all the child issues of the parent.

• Issue-links: links to other issues. Linked issues are related
to the issue, but not in a child/parent or parent/child rela-
tionship. An example of an issue link could be a bug which
has a link to the issue which accidentally introduced the
bug.

• Attachments: a list of attachments added to the issue. Ex-
ample attachments include design documents or explana-
tory graphs.

• Components: a list of software components of the system
which are affected by the issue.

• Labels: labels added to the issue. These labels serve as tags
which mark certain properties of the issue. For instance, the
label “beginner issue” can be used to mark issues suitable
for new contributors.

• Dates: each issue has a creation date. Additionally, an issue
may have a last-updated date, and a resolved issue will have
a resolution date.

• Affected Versions: versions of the software affected by the
issue.

• Fix Versions: version of the software in which the particular
issue should be fixed or resolved.

3.3 Deep Learning Background
In this section, we will provide an overview of background mate-
rial on deep learning. Since deep learning is a very broad field,
we will mostly restrict our discussion to those things which are
also available in the software we will be using: Keras5 and Ten-
sorFlow6.

Deep learning is a sub-field of machine learning. The goal is
to take labelled example points, turn these into numerical rep-
resentations called feature vectors, train a model which learns a
rule to map feature vectors to labels, and use the trained model
to make predictions (we call this last part the working phase
or inference phase). We will start with an overview of differ-
ent types of classification problems. Next, we will cover feature
generation. After that, we will cover basic neural network archi-
tectures. Next, we will discuss the basic method of training a
neural network, and how to evaluate their performance. We will
then discuss overfitting, dataset imbalance, and model selection.

3.3.1 Types of Classification Tasks

In machine learning, there are multiple types of problems we can
solve with classifiers. Broadly speaking, there are regression and
classification. Regression is the process of learning and predict-
ing a continuous function, while classification is the process of
predicting a discrete class label.

The most basic type of classification tasks, is binary classifi-
cation. This can be seen as “yes/no” classification. The classical
example of this is disease detection: a patient is either sick or
not. In binary classification, there is usually one class called
the positive class, and one class called the negative class. The
positive class is the class of interest.

When we have more than two categories, we have a multi-class
classification problem. An example of a multi-class classification
problem, is categorising different types of fruits. In multi-class
classification problems, it no longer makes sense to talk about a
positive class and a negative class. It should also be noted that

5https://keras.io/
6https://www.tensorflow.org/

in multi-class classification, every training point should belong
to exactly one class, and the classifier will predict a single class
for every input.

If data points can have multiple labels, we have a multi-label
classification problem. A multi-label classification problem could
be assigning movies to different categories (e.g. action/comedy).
A multi-label classification problem can be modelled as a set
of binary classification problems: For every label, a data point
should either have that label or not.

3.3.2 Feature Generation

Machine learning models generally accept numerical inputs, and
often cannot deal with inputs in other forms directly. In this
research, we will be dealing with text based inputs. These in-
puts have to be converted into numerical representations. In this
section, we will explain a number of ways of obtaining numerical
feature vectors from text data.

3.3.2.1 Bag of Words & TF-IDF

Bag of words, or term frequency, is one of the most basic fea-
ture generation methods for text. When using bag of words, we
simply encode the word counts per document into a vector. We
can also express this a bit more formally. Suppose that we have
documents D1, . . . Dn, and the corpus of all words present in the
documents is w1, . . . , wk. Using a bag of words encoding, the i-
th entry in the feature vector for document j will be the amount
of occurrences of wi in Dj [41].

A related variant is one where we divide each word frequency
by the length of the document. We will refer to this as normalised
bag of words.

TF-IDF (term frequency / inverse document frequency) is a
refinement of bag of words. When using bag of words, common
terms may become artificially important just because they occur
frequently. The idea behind TF-IDF is that most likely, terms
occurring in few documents will be important for classifiers [41].
Hence, TF-IDF weighs the word count (term frequency) for a
word by the inverse document frequency, which is defined as

idf(wi) = log

(
n

|{Dj | wi ∈ Dj}|

)
([41])

3.3.2.2 Semantic Embeddings: Word2Vec &
Doc2Vec

Bag of words and related models do not preserve the document
structure, because all information is broken down into (weighted)
word counts. Additionally, the features do not contain any in-
formation about the semantic meaning of words.

Semantic embeddings instead transform words or paragraphs
into continuous vectors, such that similar words are mapped to
similar vectors. The idea is that metric distance becomes some
sort of measure of semantic distance [57].

Word2Vec is a family of algorithms for mapping words to se-
mantic vectors. The idea with Word2Vec is that words that
occur in similar contexts should be mapped to similar vectors,
thus establishing the semantic closeness we described. The map-
ping is learned by training a neural network; the word vectors
are obtained by taking the weights learnt by the network. The
two original variants of Word2Vec are continuous bag of words
and continuous skip-gram. In the continuous bag of words vari-
ant, the model aims to predict the current word w given a set of
k preceding words, and k future words. On the other hand, the
continuous skip-gram model does the inverse; it aims to predict
the context, given the current word w [57].

Intuitively, it can be observed that the prediction task for
continuous bag of words is easier than the one for continuous
skip-gram; the latter requires a more thorough understanding
of the semantic meaning of words. This is also reflected in the
results obtained by Mikolov et al. when they introduced these

https://keras.io/
https://www.tensorflow.org/
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two algorithms: continuous skip-gram took significantly longer
to train (one versus three days for 3 epochs), but also achieved
better accuracy (50% versus 15.5%) [57].

Doc2Vec is a technique which does not convert words, but en-
tire paragraphs into vectors. It is based on the same techniques
as Word2Vec, and also comes with two variants: PV-DM (Dis-
tributed Memory Model of Paragraph Vectors) and PV-DBOW
(Distributed Bag of Words Model of Paragraph Vectors). The
main change is that, besides the word input, a paragraph vector
containing the context in the paragraph is also fed into the neu-
ral network. PV-DM is conceptually similar to continuous bag of
words, in the sense that it has to predict the missing word, given
the paragraph vector and the context. PV-DBOW is conceptu-
ally similar to continuous skip-gram; the model has to predict
a small fragment of the paragraph, given the paragraph vector.
PV-DM consistenly performs better than PV-DBOW [48].

3.3.3 Network Architectures
In this section, we will be covering different possible architec-
tures for neural networks. We will be covering fully connected
networks, convolutional networks, recurrent networks, activation
functions, and the large language model “BERT”.

3.3.3.1 Fully Connected Networks
One of the simplest and most well-known neural networks is the
fully connected network. Such networks consist of layers of neu-
rons, where each neuron in a layer is connected to every neuron
in the previous layer. We call such layers dense layers. From
now on, we will refer to networks consisting exclusively of dense
layers as fully connected neural networks. An example of such a
network is given in Figure 3.

Fig. 3. Example of a fully connected neural network with an input layer
of size 5, a hidden layer of size 3, and 1 output neuron.

Every neuron in a layer outputs a weighted sum of the outputs
of the previous layer. Suppose that the neurons in the previous
layer have outputs v1, . . . , vn, and the neuron in consideration in
the current layer has trained weights w1, . . . , wn. The output of
the neuron (also called the activity) is then given by

b+

n∑
i=1

wivi

Here, b is a so-called bias term, which adds a constant factor
to the output.

It can be seen that a fully connected neural network defines
a function f : Rm → Rk. A neural network is then trained to

learn a function which maps given example data to given example
targets.

However, with the scheme described above, neural networks
would only be able to perform linear regression, since the activi-
ties of the neurons are just linear combinations of the activities of
previous neurons. The real power of neural networks is unlocked
by applying nonlinear transformations to those linear combina-
tions. Hence, the output of a neuron would become

g

(
b+

n∑
i=1

wivi

)
where g is some nonlinear activation function. In Section

3.3.3.5, we will cover a number of common activation functions.
It is also common to arrange the weights of a single layer into

a matrix W , and the bias terms in a vector b. As a shorthand
notation, the output of the complete layer is then denoted by
g(Wv + b)

3.3.3.2 Convolutional Neural Networks
Convolution neural networks are a variant of neural networks
which contain convolutions and so-called pooling layers. These
types of networks can be designed to take in arbitrarily dimen-
sional arrays as input. Hence, unlike fully connected networks,
they can also take in matrices or tensors.

Every convolution layer contains one or more kernels which
are applied to its input. In the case of a 2D input, like in Figure
4, this will result in a three-dimensional output. The trainable
component in a convolutional neural network are the convolution
kernels. A bias and activation function can also be applied to
the output of the convolution layer.

Fig. 4. Example of how an input can be transformed by a convolutional
neural network.

Pooling layers are layers which reduce or simplify the input.
Somewhat similar to convolutions, these layers also apply a slid-
ing window over their input. The inputs in the sliding window
are then simplified (e.g. by taking the maximum or average).
Through this process, the input is simplified or its dimension is
reduced. Pooling layers contain no trainable parameters.

3.3.3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are neural networks well-
suited for handling sequential data, making them particularly
effective for NLP tasks such as issue classification.

RNNs achieve this by retaining information from previous in-
puts. An RNN unit with a basic architecture, including its un-
folded variant, is depicted in Figure 5. In this diagram, each
word is processed one at a time by the RNN unit. The output
of the next word depends on the current state of the RNN and
the next word itself. The current state of the RNN, in turn,
relies on the previous state of the RNN unit and the current
word. Consequently, RNNs can propagate information along a
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sequence of words. As word meanings in our language depend
on context, RNNs have the ability to consider the context (i.e.
previous words) in order to determine word meanings.

Fig. 5. This figure shows an RNN unit with a basic architecture on the
left. On the right, the unfolded variant of this RNN unit is depicted. For
the first input x0 it cannot make use of previous inputs. The first output
h0 is therefore completely dependent on x0. For the second input x1, the
output h1 is both depending on the current input x1 and the previous
hidden state. This process goes on until the entire input is processed.
When you think of each input xt as a word, you can see that an RNN
unit is able to take into account the context of the previous words.

However, the simple version of RNN described above suffers
from difficulties during training. Either the error in the weight
updates becomes large, leading to oscillating weights, or the up-
dates become too small to retain any information from previous
inputs [38].

To address this problem, Hochreiter and Schmidhuber intro-
duced Long Short-Term Memory (LSTM) as a solution in [39]
. LSTM utilizes gates to control the retention or forgetting of
information. An LSTM unit’s input consists of two components:
the memory ct−1, which the LSTM unit maintains over time,
and the combination of the previous hidden state ht−1 and the
current input xt. It uses a forget gate to regulate the amount
of existing memory to retain, an input gate to determine how
much new memory (i.e., the previous hidden state and current
input) is added to the existing memory, and an output gate to
control the flow of existing memory to the output of the unit
(ht). Figure 6 provides a visual representation of an LSTM unit.

An initial limitation of the RNN was its ability to consider time
dependencies in only one direction, typically from left to right.
However, this is insufficient for many applications where, e.g. the
meaning of a word depends on both preceding and subsequent
words within a sentence.

To address this limitation, [66] introduced the concept of a
bidirectional RNN. Bidirectional RNNs are trained in both for-
ward and backward directions simultaneously, allowing them to
consider the context of a word in both directions. [66] also
demonstrated that bidirectional RNNs outperformed unidirec-
tional RNNs in networks with similar computational require-
ments. Given this finding, we exclusively consider bidirectional
RNNs in our research as well.

Another type of RNN unit is the gated recurrent unit (GRU)
proposed by [10]. Unlike the LSTM unit, the GRU does not pos-
sess a dedicated memory unit, but it employs gates to control
information flow. The reset gate determines the utilisation of
information from the previous state, while the update gate gov-
erns the extent to which the current state can change. Figure 7
illustrates a graphical representation of the GRU.

3.3.3.4 BERT
A more recent and advanced model that has demonstrated state-
of-the-art performance on NLP tasks is the Bidirectional En-
coder Representations from Transformers (BERT) model [21].
Training BERT consists of two main stages: pre-training and
fine-tuning. BERT undergoes pre-training on two tasks using

Fig. 6. A graphical illustration of an LSTM unit. The unit receives the
memory state ct−1 and a concatenation of the previous hidden state ht−1

and the current input xt (new memory). The forget gate applies a sigmoid
σ function on the new memory. The forget gate essentially determines
how much the memory state is updated with the new memory. The input
gate determines how much of the new memory is added to the memory,
again using a sigmoid function. Finally, the output gate determines how
much of the new memory is used for the new hidden state.

Fig. 7. A graphical illustration of a GRU. The input of the GRU consists
of the previous hidden state ht−1 and the current input xt. The unit itself
consists of two gates. The first gate is the reset gate that determines how
much the previous state ht−1 is used for computation. The update gate
controls how much the hidden state can change with the new input.

unlabelled data, and the learned network parameters are then
utilised to initialise the model for fine-tuning on a specific task
of choice.

BERT receives input in the form of token sequences, which
include special tokens to indicate the beginning of a sequence
([CLS]) and to separate sentences ([SEP]). These input sequences
are then processed through multiple transformer blocks. [21]

During pre-training, BERT is trained on two tasks. The first
task is the masked language model (MLM), where a certain per-
centage (15%) of each input sequence is randomly masked, and
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the model is tasked with predicting the masked tokens. Since
the masked tokens are not present during the fine-tuning phase,
10% of the time the masked token is substituted with a random
token, while another 10% of the time it remains unchanged. The
remaining 80% of the time, the token is replaced by the masked
token. The second task in pre-training is next sentence prediction
(NSP), which involves pairs of sentences. In half of the cases, the
second sentence follows logically from the first sentence, while in
the other half, a random sentence from the training corpus is
used as the next sentence. BERT should then predict whether
the second sentence is the follow-up sentence of the first. The
first task enables BERT to model our language, while the sec-
ond task helps the model understand the relationships between
sentences. [21]

After completing the pre-training phase, BERT can be fine-
tuned for specific tasks. In our case, this will involve issue classi-
fication. While pre-training requires substantial computational
resources, fine-tuning is relatively cheap. This approach is known
as transfer learning. During pre-training, BERT acquires a gen-
eral understanding of language, and this knowledge can be trans-
ferred to specific tasks [21].

3.3.3.5 Activation Functions

As already explained previously, activation functions are what
give neural networks their great power. In this section, we will
cover the activation functions supported by Keras78.

One popular class of activation functions, are the sigmoidal ac-
tivation functions. Keras supports three different types of such
activation functions: the sigmoid function, the hyperbolic tan-
gent, and the softsign function. These functions can be seen in
Figure 8a. The sigmoid function is the classical example of an
activation function, and is defined as

σ(x) =
1

1 + e−x
([26])

However, the sigmoid function is not zero-centred. In par-
ticular, this means that both negative and positive inputs are
mapped to positive outputs. This can lead to slow or poor con-
vergence [26, 1]. Because of this, it is generally advised to use
zero-centred sigmoidal activation functions. The hyperbolic tan-
gent is such a function, and has become the preferred alternative
for sigmoidal activation [60]. The sigmoid function is mainly still
used for cases where an output from 0 to 1 (e.g. a probability)
is required [60].

However, both the sigmoid function and the hyperbolic tan-
gent have very small derivatives for inputs with large absolute
values. This leads to the so-called vanishing gradient problem:
due to the small gradients, weights are hardly updated [26, 1,
60].

The softsign function is a sigmoidal activation function, which
somewhat alleviates the problems with vanishing gradients en-
countered by other sigmoidal activation functions. It is defined
as

softsign(x) =
x

1 + |x| ([1])

Another class of activation function, is that of the linear unit
family. Keras supports 7 different types: ReLU, LeakyReLU,
PReLU, ELU, SELU, GELU, and Swish. These are shown in
Figures 8{b,c,d}. Originally, the Rectified Linear Unit (ReLU)
activation function was designed as a means to overcome the van-
ishing gradient problem present in sigmoidal activation function,
as well as overcoming their computational complexity [26, 60].
This is done by rectifying negative inputs to 0. ReLU is defined
as follows:

7https://keras.io/api/layers/activations/
8https://www.tensorflow.org/api_docs/python/tf/keras/

activations

ReLU(x) = max{0, x} ([1])

ReLU has become a very popular activation function in the
deep learning scene [26]. ReLU allows for faster learning, while
also outperforming the sigmoid and hyperbolic tangent functions
in terms of generalisability of the resulting models [1].

However, ReLU also has a number of drawbacks. It is more
prone to overfitting, leading to a need to incorporate mechanisms
to avoid this. Additionally, there is the dying neuron problem:
neurons tend to become inactive because ReLU squishes many
activities to zero. Many variants of ReLU have been developed,
which avoid this problem by having a nonzero output for negative
inputs [60].

The most simple such variants are the Leaky Rectified Lin-
ear Unit (LeakyReLU) and Parametric Rectified Linear Unit
(PReLU). The idea behind both is that for negative x, the acti-
vation should not be 0, but should instead be scaled linearly by
some factor α. Both functions use the same basic formula

leakyrelu(x) = prelu(x) =

{
x x ≥ 0

αx x < 0
([26])

Here, 0 < α < 1 controls the scaling for negative x. The
main difference is that for LeakyRelu, α is a hyperparameter,
while it is a learnable parameter for PReLU. The latter was
introduced because, in practice, it turned out to be difficult to
find an appropriate value of α for use in LeakyReLU [26, 60].

There are also variants of ReLU that do not use linear decay
for negative outputs. In Keras, these are the Exponential Linear
Unit (ELU) and Scaled Exponential Linear Unit (SELU). ELU
is defined in the following way:

elu(x) =

{
x x ≥ 0

α(ex − 1) x < 0
([26])

Here, α is a hyperparameter. In contrast to LeakyRelu and
PReLU, the idea behind ELU is that the mean activity converges
towards zero. Additionally, for large negative x, the gradient of
ELU is vanishing. It is claimed that this is not necessarilly a bad
thing, but instead introduces robustness to noise not present in
LeakyRelu and PReLU [26, 1].

A variant of ELU is SELU. SELU is defined in the following
way:

selu(x) =

{
λx x ≥ 0

λα(ex − 1) x < 0
([60])

Here, λ ≈ 1.0507 and α ≈ 1.6733 are fixed constants. The
idea is that in a SELU network, activities convergence to have
zero mean and unit variance [60, 26].

The Gaussian Error Linear Unit (GELU) was not designed
to solve the vanishing gradient problem, but was designed with
regularisation in mind. In particular, the design of GELU is
strongly tied to dropout regularisation, in which random nodes in
the network are “disabeled” each epoch. The idea behind GELU
is that it simulates linear activation with dropout. The dropout
is modelled according to m ∼ Bernoulli(Φ(x)), where Φ(x) =
P (X ≤ x) with X ∼ N (0, 1). Hence, the starting point for
GELU is the identity function, multiplied by 0 with probability
1 − Φ(x), and by 1 with probability Φ(x) [59, 37]. In order
to obtain a deterministic activation function, the expectation is
computed, which gives the following definition for GELU:

gelu(x) = xΦ(x) =
x

2

[
1 + erf

(
x√
2

)]
([37])

The final activation, in the linear unit family we will be dis-
cussing, is the Swish activation function. The Swish function is
defined by

https://keras.io/api/layers/activations/
https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/api_docs/python/tf/keras/activations
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swish = xσ(x) ([61])

Swish is also called the Sigmoidal Linear Unit (SiLU) [37].
Swish has been shown to outperform the ReLU function in many
situations [62, 37]. However, GELU may perform even better
than Swish [37]. It should be noted that some authors define
Swish using a parameter β as follows:

swishβ = xσ(βx) ([26])

However, we will adhere to the convention used by TensorFlow
and Keras. It should be noted that for β ≈ 1.702, this Swish
function is an approximation of the GELU function [37].

The softplus function is not really a linear unit, but is still
somewhat related to them. The softplus function is designed as
follows:

softplus(x) = log(ex + 1) [60]

For large negative x, log(ex + 1) ≈ log(1) = 0. For large
positive x, log(ex + 1) ≈ log(ex) = x. Hence, this function can
be seen as a smooth approximation of the ReLU function [60].
The function is plotted in Figure 8e. Softplus has been shown to
outperform ReLU and Swish in some cases [60].

Up until this point, we discussed activation functions which
take as input the output of a single neuron, and transform this
input independent of the outputs of other neurons in the layer.
Now, we will discuss a somewhat different activation function:
the softmax function. The softmax function is used for multi-
class classification problems, and its output is a probability dis-
tribution [60]. Suppose that the current layer has neurons with
untransformed outputs y1, . . . , yn. Each output is then trans-
formed as follows:

softmax(yi) =
eyi∑n
j=1 e

yj
([60])

It can easily be seen that this defined as probability distri-
bution, where softmax(yi) defines the probability of the input
sample belonging to class i [60].

All activation functions here can be used to construct universal
approximators; networks with sufficiently many layers and neu-
rons can approximate any function to arbitrary precision. This
is even the case for a simple function such as ReLU, which is
conceptually close to a linear function [7].

3.3.4 Training a Network

In this section, we will discuss the basic concepts required to
train a network with some given architecture. We will discuss
the optimisation goals, as well as the algorithms which can be
used to train a neural network.

3.3.4.1 Loss Functions

At its core, training a neural network is optimising the difference
between the predictions made by the network and the ground
truths, where the difference is measured using a so-called loss
function. Hence, training a neural network is a minimisation
task, where we aim to minimise the loss [31].

First, suppose that we have c classes 1 . . . c. Additionally, we
have n labelled data points (xi,yi), where xi ∈ Rm is the mea-
sured data point, and yi ∈ Bc the corresponding ground truth;
specifically, yi is one-hot encoded, which means that exactly one
entry is equal to 1, which is the index of the actual class the
data point xi belongs to. Finally, we have a classifier f , which
maps feature vectors xi to confidences pij , where pij denotes the
confidences that xi belongs to class j. Note that the range of pos-
sible values for the confidences is determined by the activation
function used.

A loss is now a function L which maps yi and pi to some real
number. The loss can then be used to define the empirical risk,
which is the average loss over all samples:

Remp =
1

n

n∑
i=1

L(yi,pi)

The empirical risk is the function which is eventually optimised
after training the neural network.

Neural networks are trained using a gradient descent algo-
rithm. As such, the loss function must be differentiable [31].
Hence, we cannot use a loss function such as the counting loss
(which simply counts the number of misclassifications) as a loss
function for classification tasks, even though this might look like
an intuitive choice.

In the remainder of this section, we will cover the three main
loss functions for classification offered by Keras: Cross entropy,
Kullback-Leibler divergence, and the hinge loss 9.

The cross entropy and Kullback-Leibler divergence loss func-
tions are both so-called probabilistic loss functions; they assume
both the ground truths yi and predictions f(xi) represent proba-
bilities, and provide a measure of disagreement between the two.
In fact, for this loss to be applicable, yi does not have to be
a binary vector, but can be a vector of probabilities [13]. The
cross entropy loss function is based on the concept of entropy
from information theory, and is defined as follows ([13]):

LCE(yi, pi) = −
c∑

j=1

[yij log(pij) + (1− yij) log(1− pij)]

To contrast, the Kullback-Leibler divergence loss is defined as
([13])

LKL(yi, pi) =

c∑
j=1

[
yij log

(
yij
pij

)
+ (1− yij) log

(
1− yij
1− pij

)]

Note that, in general, we have x log(y/x) = x log(y)−x log(x).
As such, we can rewrite the Kullback-Leibler divergence loss in
terms of the cross entropy loss:

LKL(yi, pi)

= LCE(yi, pi) +

c∑
j=1

[yij log(yij) + (1− yij) log(1− yij)]

The latter term is simply a constant factor. As such, the cross
entropy loss and Kullback-Leibler divergence loss are equivalent
[13]. In this work, we will restrict our attention to the cross
entropy loss. As a final remark about cross entropy, we note that
for binary classification problems, the cross entropy is simply
given by

LCE(yi, pi) = − [yi log(pi) + (1− yi) log(1− pi)]

Hence, in this scenario, we only count the term for the positive
class.

The other major class of losses, is the class of margin losses.
The Hinge loss is such a loss, and for binary classification prob-
lems it is defined as ([13])

LH(yi, pi) = max{0, 1− (2 ∗ yi − 1)pi}
Note that the awkward 2yi − 1 term stems from the fact that

we assumed ground truths to be either 0 or 1, while the binary
hinge requires the values −1 and 1 [13].

9https://keras.io/api/losses/

https://keras.io/api/losses/
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Fig. 8. Plots of different activation functions supported by Keras.
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We will give a sketch for an intuition behind the definition of
this loss function, in order to contrast it with cross entropy. The
main idea behind margin losses, is that the classifier defines a
decision boundary between the two classes. The quantity yipi
defines a measure of how close the point xi is to this decision
boundary.

For misclassified points, the signs of 2yi − 1 and pi differ,
and LH(yi, pi) > 1. For points close to the decision boundary
but correctly classified, 0 < LH(yi, pi) < 1. If the point is far
away (i.e. the classification is correct, and the model is pretty
certain), yipi ≥ 1, and thus the loss will be 0; only for points
close to the decision boundary (the model is not certain) will
the loss be nonzero. The idea behind this is that the classifier
pays attention to the “hardest” examples in the dataset by 1)
assigning the highest loss for misclassified samples, 2) having
the loss decay linearly as the distance to the decision boundary
decreases, and 3) having the loss be 0 if the distance is sufficiently
far [7]. This is in contrast with cross-entropy, where a penalty is
always applied regardless of distance to the decision boundary;
the cross entropy loss is more aimed towards exactly matching
the ground truths [7, 13]. In particular, it may occur that a
greater penalty is applied for a correctly classified sample than
for a misclassified one.

The multi-class generalisation of the hinge loss used by Keras10

is defined as follows:

L(yi, pi) = max

{
max
1≤j≤c

(1− yij)pij −
c∑

j=1

yijpij + 1, 0

}

In order to understand this definition, it is important to note
that yi is one-hot encoded for multi-class problems. In this case,
the first term (the maximum) computes the maximum confidence
given by the classifier for any negative class. Next, the second
term (the sum) computes the confidence given by the classifier
for the positive class. This categorical hinge loss is now zero if
the confidence given for the (true) positive class is at least one
higher than the next highest confidence for any of the negative
classes; otherwise, the loss is linearly proportional to the differ-
ence between the two [16].

A variant on the Hinge loss is the squared Hinge loss. This loss
is defined as the hinge loss raised to the power of two. This loss
is more sensitive to outliers (high loss values), and less sensitive
to low loss samples; the function x → x2 maps values < 1 to
smaller values, and values > 1 to larger values [83].

3.3.4.2 Regularisation
Since deep learning models are very powerful, they have a ten-
dency to overfit. This means that the models become too specific
to the training data, and especially to the noise in the training
data. This causes them to generalise poorly to novel data. One
way to avoid this is through the use of regularisation: the addi-
tion of penalties to the loss function [31].

The idea behind regularisation is that generally, the weights
learned by the network should be small; very large weights are
generally a sign of overfitting. To avoid this, a penalty for large
weights is added to the empirical risk. The new empirical risk
then becomes

Remp = Remp +

m∑
j=1

(
αjL

1(wj) + βjL
2(wj)

)
Here, the sum is over all weight vectors/matrices in the net-

work, and Lp denotes the p-norm. αj and βj are parameters
for specifying the degree of regularisation. When αj ̸= 0, we
have L1-regularisation. Similarly, when βj ̸= 0, we have L2-
regularisation [31].

10https://www.tensorflow.org/api_docs/python/tf/keras/

losses/CategoricalHinge

Instead of penalising large weights, we can also decrease the
size of the weights each time we update them in the training
algorithm, by subtracting the weights multiplied by some number
λ from the weights themselves. This is called weight decay [31].

3.3.4.3 The Basic Algorithm

Now that we have discusses what a neural network is actually
optimising, we can explain how to optimise the loss. Neural
networks are trained using a gradient descent algorithm. Given
a loss function L and labelled dataset (xi, yi), 1 ≤ i ≤ n, we want
to train the network to learn a function f(x;w), parameterised
by the weights w of the neural network, which minimises the
empirical risk

1

n

n∑
i=1

L(yi, f(x;w))

The idea behind gradient descent, is that the gradient ∇w

of some function points in the direction of the steepest increase
of that function, while −∇w thus points in the direction of the
steepest descent. The idea is to update the weights according to
the rule

w ← w − η∇w
1

n

n∑
i=1

L(yi, f(x;w))

We thus update the weights in the direction of the steepest
descent of the empirical risk (w.r.t. w), and “move” the weights
in this direction in order to arrive at a minimum where the gra-
dient is zero as fast as possible. Here, η is a so-called learning
rate, which is used to control the speed of the descent [31, 7].

However, computing the gradient using all samples in the
training set is expensive. Hence, it is common to instead ap-
proximate this gradient by using mini-batches of size b, sampled
from the full dataset. This variant is called stochastic gradient
descent – whereas the variant using the entire dataset for every
update is called batch gradient descent [31, 7].

Because we approximate the gradient in stochastic gradient
descent (SGD), the estimates we obtain when we are at a local
minimum are not exactly zero; the values for the gradient are just
small. In order to guarantee convergence, the learning rate must
be decreased over time. We thus do not have a singular learning
rate η, but a sequence of learning rates η1, η2, . . . [31]. In order
to guarantee convergence, these learning rates must satisfy

∞∑
k=1

ηk →∞,

∞∑
k=1

η2
k <∞

3.3.4.4 Optimisers

The basic algorithm described in the previous section can be
formalised using the pseudocode in Algorithm 1. An optimiser
is an algorithm which takes as an argument the gradient estimate
g, and computes the weight update ∆w. Hence, in Algorithm 1,
line 6 contains the actual optimiser.

One typical variation on Algorithm 1, is that often the model is
trained for a set number of epochs. Every epoch, each item in the
dataset is presented once as a training sample, possible contained
in some mini-batch. This may also mean that in practice, the
mini-batches are not sampled uniformly with replacement [7].
For example, if there are 1000 training samples, the batch size is
50, and the model is trained for 20 epochs, then there will be a
total of 1000 / 50 * 20 = 400 individual weight updates.

In the remainder of this section, we will discuss a number of
different optimisers. We will present each optimiser in the same
style as Algorithm 1, but the considerations regarding epochs
and mini-batches outlined above may apply to any optimiser.

One possible improvement to stochastic gradient descent, is
stochastic gradient descent with momentum. In this scheme, the

https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalHinge
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalHinge
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update step v (also called the velocity in this case) is an expo-
nentially decaying average of the successive negative gradients;
this means that the velocity is updated to equal α times the old
velocity, and 1 − α times the current negative gradient. This
makes the training process more resilient to noisy gradients (i.e.
the gradients differ a lot per mini-batch). There is one single hy-
perparameter α (the momentum parameter) which dictates the
rate of decay [31]. The formal pseudocode for the optimiser is
given in Algorithm 2.

An alternative to SGD with momentum, is SGD with Nesterov
momentum. With Nesterov momentum, first temporary weights
w are computed with the current velocity, then the gradient is
computed with these weights, the velocity is updated, and then
the actual weights are updated again with the new velocity. This
can be interpreted as adding some sort of correction to regular
momentum [31]. The algorithm can be found in Algorithm 3.

Another algorithm is AdaGrad. The idea behind AdaGrad
is to scale the learning rate of every model parameter wi in-
versely proportional to the square root of the sum of all historical
squared values of the gradient [31]. Concretely, this means that
if for parameter wi, the historical gradients are 0.1, 0.2, and 0.15,
then the learning rate will be scaled inversely proportional to√
0.12 + 0.22 + 0.152. The effect is that the learning rate is re-

duced more quickly for parameters with large corresponding par-
tial derivatives. The effect of this process is greater in the di-
rections with less extreme slopes. The AdaGrad algorithm has
no need for a decreasing learning rate, and has no real hyper-
parameters (aside from a small constant δ used for numerical
stability) [31]. The AdaGrad algorithm in pseudocode is given
in Algorithm 4.

RMSProp is a modified version of AdaGrad, which performs
better for nonconvex optimisation problems. This makes it more
widely applicable. The mechanism behind RMSProp is similar
to momentum; the accumulated squared gradients from the past
are made less important by employing an exponentially decaying
average [31]. The implementation of RMSProp in pseudocode is
given in Algorithm 5. Experience with AdaGrad and RMSProp
has shown that the latter is effective in practice, while AdaGrad
is more likely to perform poorly.

AdaDelta is also an improved version of AdaGrad. Like RM-
SProp, it also solves the problem that in AdaGrad, gradients
will eventually vanish because of the infinitely stored history
[82, 31]. AdaDelta achieves this through the same mechanism
as RMSProp: by using an exponentially decaying average. How-
ever, Adedelta is different from RMSProp in that it also does
something else: AdaDelta uses the squared gradients in order to
estimate the diagonal of the Hessian matrix. The idea is that,
under the correct circumstances, this will also lead to second or-
der corrections in the update step. A final benefit of AdaDelta
is that it does not require the specification of an initial learning
rate [82]. The AdaDelta algorithm is shown in Algorithm 6.

Another optimiser is Adam. Adam makes use of both an expo-
nentially decaying average of the gradient (“first moment”; this
also implements the concept of momentum), and an exponen-
tially decaying average of the squares of the gradient (“second
moment”). Compared to RMSProp, Adam suffers from less bias
at the start of the training. Similar to RMSProp, Adam is a
popular choice for use in deep learning [31]. The pseudocode
for Adam is given in Algorithm 7. Note that nowadays, the
parameter δ which was initially meant for numerical stability,
is sometimes also considered a hyperparameter which should be
optimised [11].

AdaMax is a variant of Adam, based on the observation that
Adam scales the gradients of individual weights according to the
L2 norm of the current and past gradients. Another option is
to use the infinity norm (max function) instead. This leads to
the algorithm given in Algorithm 8 [44]. The performance of
AdaMax is comparable with that of Adam and RMSProp [79].

AdaFactor is a variant of Adam which was designed to reduce
memory usage. Adam stores two moving averages: the first and

second moment. For weights stored in a matrix W ∈ Rm×n, this
requires O(mn) space. The core idea behind AdaFactor is to
instead approximate the moving average V of the squared gradi-
ents with two matrices R ∈ Rm×1, S ∈ R1×n such that RS ≈ V .
This reduces the memory requirement to O(m+n). At the same
time, AdaFactor ignores the first moment. Hence, AdaFactor
is essentially Adam with β1 = 0, and using an approximation
of the moving average of squared gradients. Finally, AdaFactor
suffers from too large updates when β2 is too large. To avoid
this, it performs clipping; if the update step would be too large,
it is limited [69]. The pseudocode for AdaFactor can be found
in Algorithm 9.

AdamW is a variant of Adam which includes weight decay.
Here, weight decay means that on every update step, a quan-
tity λw is subtracted from the weight w, effectively decreasing
their magnitude [51]. The idea behind this is to prevent overfit-
ting and improve generalisation, since large weights are generally
associated with overfitting [31].

The final algorithm we will consider is Nadam. Nadam incor-
porates the observations that both Adam and stochastic gradient
descent with Nesterov momentum are powerful algorithms, and
combines the two into one [24]. This leads to the algorithm in
Algorithm 10. As an extension to this, in TensorFlow, it is also
possible to use Nadam in combination with weight decay (similar
to how AdamW is Adam with weight decay) 11.

Among all the optimiser we discussed up until this point, no
single one can be seen as the best [31]. However, testing has
shown that, given enough fine-tuning of the parameters, a more
specific algorithm will never perform worse than a more gen-
eral algorithm [11]. We have the following generality relations
between optimisers ([11]):

SGD ⊆ SGD w/ Momentum ⊆ Adam ⊆ AdamW

SGD ⊆ SGD w/ Momentum ⊆ RMSProp

SGD ⊆ SGD w/ Nesterov ⊆ Nadam

Furthermore, research has shown that Adam en Nadam will
generally outperform RMSProp [11]. In particular, this also
means that AdamW will never underperform RMSProp, because
AdamW reduces to Adam when the weight decay is set to zero
[51].

In practice, Adam is one of the most widely adopted optimisers
[31]. However, recent insights suggest that SGD combined with
(Nesterov) momentum leads to more generalisable models than
Adam [33, 51]. In order to avoid this, good regularisation is
required, which was done with the introduction of AdamW [51].

It should be noted that all optimisers above, which use a global
learning rate, can also be augmented to use a scheduled (decay-
ing) learning rate (multiplier). In fact, it has been shown that
doing so can lead to better performance in the case of Adam [51].

3.3.4.5 Training, Validation, and Test Sets

When training neural networks, we usually use three different
data sets, obtained by splitting our full dataset into three disjoint
subsets. The training set, which usually contains the majority of
the data, is used for actually updating the weights of the network
[31].

The validation set is used to “monitor” the training process;
after every update step, the performance of the network on the
validation set is recorded. This is done in order to estimate the
performance of the network on data foreign to the training set.
The validation set plays a more important role in model selection
and early stopping, which we will discuss later [31].

The testing set is used to determine the actual performance
of the network on novel data, and is used to obtain the actual
performance numbers for a network [7, 31]. The validation set

11https://www.tensorflow.org/api_docs/python/tf/keras/

optimizers/experimental/Nadam

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/experimental/Nadam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/experimental/Nadam
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Algorithm 1: The basic algorithm for stochastic gradi-
ent descent

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, learning rate schedule ηk
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 k ← 1;
3 while not converged do
4 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

5 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

6 ∆w = −ηkg;
7 w ← w +∆w;
8 k ← k + 1;
9 end

Algorithm 2: SGD with momentum

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, initial velocity v, learning

rate schedule ηk, momentum parameter α
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 k ← 1;
3 while not converged do
4 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

5 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

6 v ← αv − ηkg;
7 ∆w ← v;
8 w ← w +∆w;
9 k ← k + 1;

10 end

Algorithm 3: SGD with Nesterov momentum

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, initial velocity v, learning

rate schedule ηk, momentum parameter α
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 k ← 1;
3 while not converged do
4 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;
5 w ← w + αv;

6 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

7 v ← αv − ηkg;
8 ∆w ← v;
9 w ← w +∆w;

10 k ← k + 1;
11 end

Algorithm 4: AdaGrad

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, Small parameter δ for

numerical stability, Global learning rate η
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 r ← 0;
3 while not converged do
4 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

5 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

6 r ← r + g ⊙ g;
7 ∆w ← − η

δ+
√
r
⊙ g;

8 w ← w +∆w;
9 end

Algorithm 5: RMSProp

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, Small parameter δ for

numerical stability, Global learning rate η
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 while not converged do
3 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

4 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

5 r ← ρr + (1− ρ)g ⊙ g;
6 ∆w ← − η

δ+
√
r
⊙ g;

7 w ← w +∆w;
8 end

Algorithm 6: AdaDelta

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, Small parameter δ for

numerical stability, parameter ρ ∈ (0, 1)
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 r ← 0;
3 v ← 0;
4 while not converged do
5 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

6 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

7 r ← ρr + (1− ρ)g ⊙ g;

8 ∆w ← −
√

v+δ√
r+δ

g;

9 v ← ρv + (1− ρ)∆w ⊙∆w;
10 w ← w +∆w;
11 end
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Algorithm 7: Adam

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, step size η, parameters

β1, β2 ∈ [0, 1), parameter δ
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 s← 0;
3 r ← 0;
4 while not converged do
5 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

6 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

7 s← β1s+ (1− β1)g;
8 r ← β2r + (1− β2)g ⊙ g;
9 ŝ← s

1−βt
1
;

10 r̂ ← r
1−βt

2
;

11 ∆w ← −η ŝ√
r̂+δ

;

12 w ← w +∆w;
13 end

Algorithm 8: AdaMax

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, step size η, parameters

ρ1, ρ2 ∈ [0, 1), parameter δ
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 s← 0;
3 r ← 0;
4 k ← 1;
5 while not converged do
6 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

7 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

8 s← ρ1s+ (1− ρ1)g;
9 r ← max{ρ2r, |g|};

10 ∆w ← − ρ1
1−ρk2

s
r
;

11 w ← w +∆w;
12 k ← k + 1;
13 end

Algorithm 9: AdaFactor. Note that we only provide the
matrix variant. AdaFactor also has a vector variant [69].

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, step size schedule ηk,

regularisation parameters ϵ1, ϵ2, β2 ∈ (0, 1)
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 r ← 0;
3 while not converged do
4 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

5 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

6 α← max{ϵ2,RMS(w)}ηk;
7 r ← β2r + (1− β2)(g ⊙ g + ϵ11n1

T
m)1m;

8 c← β2c+ (1− β2)1
T
n (g ⊙ g + ϵ11n1

T
m);

9 V ← rc/(1T
nr);

10 u← g/
√
V ;

11 û← u/max{1,RMS(u)/d};
12 ∆w ← −αû;
13 w ← w +∆w;
14 k ← k + 1;
15 end

Algorithm 10: Nadam

Input: Labelled data points D = (xi, yi)
Parameters: batch size m, step size η, parameters

ρ1, ρ2 ∈ [0, 1), parameter δ
Result: Weight vector w which minimises the empirical

risk
1 w ← initialise;
2 s← 0;
3 r ← 0;
4 k ← 1;
5 while not converged do
6 b← sample m items {(x′

1, y
′
1), . . . , (x

′
m, y′

m)} from D;

7 g ← 1
m
∇w

∑m
i=1 L(y

′
i, f(x

′
i;w));

8 s← ρ1s+ (1− ρ1)g;
9 r ← ρ2r + (1− ρ2)g ⊙ g;

10 ŝ← ρ1s

1−ρk1
+ (1−ρ1)g

1−ρk−1
1

;

11 r̂ ← ρ2r

1−ρk2
;

12 ∆w ← −η ŝ√
r̂+δ

;

13 w ← w +∆w;
14 k ← k + 1;
15 end

is insufficient for this purpose, because it is already used for
model selection; it may happen that we select a model that is
too specifically tuned towards the validation set [7].

3.3.5 Evaluating Classifiers

In this section, we will describe a number of ways in which we
can evaluate the effectiveness of classifiers. Of course, we can
use the loss as such a measure. However, minimising the loss
is a regression task, and it is difficult to relate the loss to the
performance of the trained neural network in a classification task.

3.3.5.1 Confusion Matrices

The most basic way of evaluating a classifier, is a confusion ma-
trix. In an n-class classification problem, the confusion matrix
is an n× n matrix whose rows correspond to ground truths and
whose columns correspond to predicted labels. The confusion
matrix shows how the classifier labelled samples with different
ground truths [7]. An example of a confusion matrix is given in
Figure 9.

3.3.5.2 More Advanced Metrics

From the confusion matrix, we can derive various other metrics.
First, we introduce the true positive count (TP), false positive
count (FP), true negative count (TN), and false negative count
(FN).

For a given class c, the true positive count is the amount of
samples from c correctly predicted to be of class c. The false pos-
itive count is the amount of samples not from class c predicted to
be from class c. The false negative count is the amount of sam-
ples from c not predicted to be from class c. The true negative
count is the amount of samples not from class c not predicted
as class c [7]. We can also express this mathematically. Let M
be the confusion matrix and denote its entries by Mij . We then
have
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Fig. 9. Example of a 3x3 confusion matrix. Rows correspond to ground
truths, while the columns correspond to predicted labels. For example:
13 samples originally labelled as “Apple” were predicted as “Orange” by
the classifier.

TPc = Mcc

FPc =
∑
i̸=c

Mic

FNc =
∑
i̸=c

Mci

TNc =
∑
i̸=c

∑
j ̸=c

Mij

We can now define other metrics which are more commonly
used to evaluate classifiers. Once such metric is precision. The
precision for a class c is the fraction of samples predicted as class
c, that also has class c as ground truth [7]. Hence, it is defined
as

precisionc =
TPc

TPc + FPc

Another metric is recall. Recall is a measure of how many
positive samples were “missed” by the classifier; it is the fraction
of samples of class c in the dataset that were correctly predicted
as class c [7]. It is defined as

recallc =
TPc

TPc + FNc

Often, we want both high precision and high recall; this implies
that our classifier does not miss many samples, while also not
having many false positives. In order to capture this, we use the
F1 score, which is defined as the harmonic mean of precision and
recall [7]:

F c
1 =

2 ∗ precisionc ∗ recallc
precisionc + recallc

Up until this point, all metrics discussed are class-specific. We
can also combine these metrics together into so-called macro av-
erages. A macro average for some metric is the arithmetic mean
of all class specific metrics. For example, the macro precision is
the arithmetic mean of the precision for all the classes.

In literature, there are two macro F1 scores. One is computed
as the harmonic mean of the macro precision and macro recall,
while the other is computed as the arithmetic mean of all class
specific F1 scores [7]. We use the latter, i.e.

Fmacro
1 =

1

C

C∑
i=1

F i
1

3.3.6 Preventing Overfitting

The complexity of a model determines the complexity of the rules
(functions) it is able to learn. Very simple models have high
bias, and are unable to learn complex underlying rules from the
data. This is what we call underfitting: the model is insufficiently
complex to capture the patterns in the dataset. On the other
hand, we have complex models, which have high variance: they
are able to capture the details in the training data to such a
great degree of accuracy, that their performance on novel test
data is poor. This is what we call overfitting. Both under- and
overfitting lead to poorly generalisable models. As such, it is
important to find models with the right degree of complexity [7].

As already discussed in Section 3.3.4.5, the test set is used
to evaluate the performance of a model; it is used to measure
the generalisation error of the model. In the remainder of this
section, we will discuss a number of techniques which can help
in improving the generalisation error. Note that we already dis-
cussed weight decay and regularisation in Section 3.3.4.2, because
those techniques are integral part of some optimisers.

3.3.6.1 Early Stopping

One possible technique to prevent overfitting, is early stopping.
The idea is to monitor the loss on the validation set. Generally,
we should expect both the training and validation loss to de-
crease in the beginning; at this point, the model is still learning
a generalisable rule. However, as the models begins to over-fit,
the loss on the validation set will no longer decrease, or may start
to increase. At this point, training should be stopped [31].

3.3.6.2 Dropout

Dropout is a regularisation technique in which neurons in the
network are randomly turned off during training. For each layer
in the network, a probability of a neuron being turned off can
be specified. For each update step, this probability is used to
randomly turn off a number of neurons in the network [75].

The result of dropout is that the network effectively becomes
smaller. This also limits the amount of information which can
be stored in the network, reducing the “ability” of the network
to overfit [75, 31].

At the same time, dropout also provides an approximation of
ensemble functionality. The final trained network of n units can
be seen as an ensemble of the 2n subnetworks, which can be ob-
tained by disabling one or more neurons. For each connection in
the network, a weight wij is learned during training. By multi-
plying the learned weights by the dropout probability p in the
working phase, we can approximate an ensemble which would
average the predictions of all 2n subnetworks [75].

Empirical observations have shown that dropout leads to bet-
ter results (i.e. less overfitting and better overall performance)
than weight decay and regularisation [31, 75]. Dropout has been
shown to work effectively in fully connected neural networks and
recurrent neural networks [31].

3.3.6.3 Batch Normalisation

Batch normalisation is another technique to avoid overfitting.
The idea is that the activities of all layers are normalised to
have 0 mean and unit variance (before applying the activation
function). Hence, when a mini-batch B = (b1, . . . , bk) is fed
as input into the network in the training phase, the outputs
Wx+b of each layer are normalised before being passed through
the activation function of the layer [40]. Hence, the output of
the layer will become g(BN(Wx + b)) instead of g(Wx + b).
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The entries ai of the vector a = Wx + b are then transformed
according to

ai = γ
ai −mean(a)√

Var(a) + ϵ
+ β ([40])

Here, ϵ is a small constant for numerical stability, γ is a learn-
able scaling factor, and β is a learnable shift [40].

At the same time, the batch normalisation layer also attempts
to learn the true population mean x and variance σ2 for use in
the inference phase, in which the mean and variance of the mini-
batch are replaced by these estimates [8]. This is done by using
a moving average with a configurable parameter α as follows:

x← αx+ (1− α)mean(a)

σ2 ← ασ2 + (1− α)Var(a)

Empirical observations have shown that batch normalisation
has a regularisation effect, and improves generalisation perfor-
mance. This has especially been observed in deep neural net-
works. However, the mechanism why this is the case has not
been fully understood [52]. Additionally, batch normalisation
allows the use of higher learning rates [40].

Batch normalisation is more effective than dropout for convo-
lutional neural networks. For fully connected neural networks,
there is little difference. However, dropout is significantly faster
when training [30]. Batch normalisation as explained above is
not possible for recurrent neural networks due to their time-
dependent structure [47, 15].

3.3.7 Model Selection

Some parameters of a model, such as the weights, are learned
during training. However, other parameters of the model, such
as the architecture (e.g. number of layers, type of activation
function, size of the layers), the optimiser, or loss function, need
to be configured beforehand. We call such parameters hyper-
parameters. Hyperparameters of machine learning models have
great influence on their performance. Identifying good hyperpa-
rameters is therefore an essential step in the machine learning
process.

The most basic and straight forward method for selecting
the best hyperparameters is by using a grid search. With this
method, all possible combinations of hyperparameters are tested.
Given the number of hyperparameters and values we want to op-
timise (see Section 4) and given the fact that our deep learning
models take quite some time to train, this approach is infeasible.

In our previous work [18], we applied a variation of grid search,
which we will call iterative grid search. With this approach, we
optimise each hyperparameter sequentially. However, it fails to
consider the potential performance of specific combinations of
hyperparameters, and it requires substantial manual effort. This
is because after tuning a single parameter, we must analyse the
results and prepare for the next round of optimisation.

Given that we are using Keras, we will focus on hyperparam-
eter optimisation algorithms supported by Keras Tuner 12. The
first algorithm is a random search, which selects random values
for each hyperparameter in each trial. This algorithm stops once
it has exceeded its allocated resource budget.

Random search is a rather naive approach and it may re-
peatedly try unpromising values. A more advanced method is
Bayesian optimisation, which uses a surrogate function to sam-
ple values based on previous performance data. This improves
the likelihood of selecting values that have shown promising re-
sults in previous runs [29].

Another algorithm is Hyperband. Hyperband is comparable
to random search in the sense that it selects the values it wants
to try randomly. However, Hyperband combines random search

12https://keras.io/keras_tuner/

with successive halving and early stopping. This works as fol-
lows. Initially, it selects n combinations of hyperparameter val-
ues and trains each model for a minimal number of epochs, i.e.
allocating a very low resource budget to each model. Then, after
each model is trained, it selects the n/2 most promising models
for the next round. In the next round it continues training the
selected models for a couple more epochs than in the first round
(i.e. their resource budget is increased a bit) and it again se-
lects the most promising n/4 models. It continues this process
of successive halving until one model is left. This model is then
trained for any number of epochs that is required (i.e. unlim-
ited budget). According to experiments, Hyperband can achieve
speed-ups of up to 10 times compared to Bayesian optimisation
[49].

All of these methods require a way to measure the perfor-
mance of each set of hyperparameters. We use a validation set
for this. A validation set allows us to monitor the performance
of a model on unseen data, i.e. data not used for training the
model. The performance on the validation set is more important
than the performance on the training set, because it provides a
more reliable estimation of the model’s real-world performance.

While the validation set might be a good estimate of the real-
world performance of a classifier, model selection itself is a po-
tential source of overfitting. For that reason, we keep apart a test
set, which is not used at all during this model selection phase.
This test set is only used for evaluating the final optimised mod-
els.

3.4 Previous Work
We are building heavily on the work done by Dekker and Maar-
leveld in [18], Dekker et al. in [20], and Faroghi in [28]. To a
somewhat lesser extent, we are also building on the work of Soli-
man, Galster, and Avgeriou in [70], Dekker in [17] and Druyts
in [25]. As such, we will provide a thorough explanation of the
work done there in order to explain the starting point and goals
of this research. Related work by other researchers will be dis-
cussed later in Section 3.6.

In [28], [17], [70], and [18] a number of approaches for finding
architectural design decisions in issue tracking systems were de-
veloped. The work done in [70] and [28] was evaluated in [28];
the work done in [17] was evaluated in [25], and the work done in
[18] was evaluated in [18]. All this research is part of a combined
effort to develop and evaluate different ways of finding architec-
tural design decisions in issue tracking systems. All approaches
were evaluated on the following Apache projects: Hadoop, Yarn,
Tajo, HDFS, MapReduce, and Cassandra. In total, across all
work, four different approaches were evaluated:

• Keyword-based Search

One of the approaches is using a keyword search done us-
ing Apache Lucene, developed and evaluated in [28]. Four
different sets of keywords were tested, falling into the fol-
lowing categories: Components and Connectors, Decision
Factors, Rationale, and Reusable Solutions. For each group
of keywords, a separate search was performed and evalu-
ated. Every search yielded a ranked list of issues, resulting
in a total of four ranked lists of issues potentially containing
architectural design decisions.

• Static Source Code Analysis

in [70], architectural design decisions were identified by 1)
identifying architectural changes in commits, and 2) map-
ping these commits to issues in issue trackers. For every
project, all commits were analysed in order to obtain a de-
pendency graph. Graphs from successive commits were then
analysed to compute the so-called a2a metric. The a2a met-
ric was used as a measure of the amount of architectural
changes in commits. Commits were then ranked based on

https://keras.io/keras_tuner/
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the a2a values, and the corresponding issue IDs were ex-
tracted from the commit messages. This way, a ranked list
of issues potentially containing architectural design deci-
sions was obtained. This ranking was subsequently labelled
and evaluated in [28].

• Maven Dependency Analysis

Another approach is the analysis of dependencies in Maven
POM files in [17]. Successive commits in projects were
once again analysed, but this time only the amount of de-
pendency changes per commit was analysed. The issues
corresponding to these commits were once again obtained
through the commit messages. By ranking issues according
to the number of Maven dependency changes in the corre-
sponding commits, once again a ranked list of issues possi-
bly containing architectural design decisions was obtained.
In [25], this technique was used to exhaustively mine all
ADDs which could be found using this method from the
six projects of interest; the found issues were subsequently
labelled to properly evaluate this method.

• Neural Networks

The final approach we discuss is different types of neural
networks for detection and classification of issues containing
architectural design decisions. This approach was developed
and evaluated in [18] (with errata in [19]). These classifiers
were trained and evaluated using data obtained with the
other three approaches.

Since deep learning has not been tested in the same setting as
the other approaches (i.e. it was only evaluated on the dataset
created using the other approaches), we will first discuss the ef-
fectiveness of keyword searches, static source code analysis, and
Maven POM file analysis. Faroghi ([28]) found that keyword
searches are the best way to find existence and property de-
sign decisions (precision@50 equal to 0.8 and 0.4, respectively).
Maven dependency analysis was the most effective way of find-
ing executive design decisions (precision@50 equal to 0.5). Static
source code analysis performed poorly for both property and ex-
ecutive design decisions (precision@50 < 0.2), and performed
mediocre for finding existence design decisions (around 0.4 pre-
cision@k up until k = 400). Maven dependency analysis scores
poorly for finding property design decisions, and scores also worse
for existence design decisions. One interesting thing to note was
that the fraction of existence decisions found using Maven anal-
ysis actually increased further down the list. Keyword searches
only performed poorly for finding executive design decisions,
with the precision@k always lower than 0.2 [28, 25].

What remains to be discussed is the work done on neural net-
works in [18]. This is work done by the same authors as this
research. In [18], we experimented with a number of different
neural-network based classifiers for the detection and multi-class
classification of architectural design decisions in issues. By de-
tection, we mean that the classifier must discriminate between
issues containing design decisions, and those that do not; it is
thus a binary classification problem. The issues in the dataset
we used had multiple labels, naturally lending themselves to a
multi-label problem for classification. However, we opted to in-
stead perform a simplified multi-class problem. Here, we used
the “most important” label of an issue as the label to be pre-
dicted by the classifier. In order from most to least important,
we had Executive > Property > Existence. This was because ex-
ecutive decisions tend to drive property and existence decisions,
while property decisions also tend to drive existence decisions.

For feature generation, we experimented with Bag-of-words
features (both word frequencies and normalised frequencies),
TF-IDF, Doc2Vec (PV-DM), and Word2Vec (continuous bag of
words). For Word2Vec, we experimented with a variant trained
on all issues from Hadoop, Yarn, Tajo, HDFS, MapReduce, and
Cassandra, and a pretrained variant trained on posts from Stack-
Overflow (SO) [27]. We also experimented with a classifier which

uses issue characteristics. Finally, we had a list of ontology
classes (words which denote the same general concept; e.g. a
list of components). We also experimented with a BOW vari-
ant which counted the amount of words from every ontology
class. We combined all these features with fully connected neu-
ral networks, convolutional neural networks, and recurrent neural
networks. Specifically, we experimented with the combinations
listed in Table 1.

Feature Type Network Type(s)
BOW (frequency) Fully Connected
BOW (normalised) Fully Connected
TF-IDF Fully Connected
Doc2Vec Fully Connected
Word2Vec Convolutional, Recurrent
Word2Vec (SO) Convolutional, Recurrent
Issue Characteristics Fully Connected
Ontology BOW Fully Connected

Table 1. Feature/Classifiers combinations experimented with in [18].

The models were all trained with the Adam optimiser (with
default settings β1 = 0.9, β2 = 0.999, and δ = 10−7), a linearly
decaying learning rate decaying from 0.005 to 0.0005 in 470 steps,
and cross-entropy loss [19]. The detection models were trained
with class weights, while the data for the (multi-class) classifica-
tion task was balanced by limiting the amount of items from any
given class (existence, executive, property, non-architectural) to
237 items [18].

Each type of model (fully connected, convolutional, recurrent)
had a specific base architecture. The output neurons were deter-
mined by the task the models were trained for; a single unit with
sigmoidal activation for detection, and a layer with four softmax
units for multi-class classification. The fully connected models
all consisted of an input layer, an output layer, and one or more
hidden layers in between. This means that they follow the same
architecture as depicted in Figure 3.

The convolutional neural networks were based on the work of
Ren et al. in [65]. With Word2Vec, texts are represented as ma-
trices T ∈ Rm×n. Here, m is the (maximum) number of words
(where issues which are too short are further zero-padded). n is
the size of the vectors used to represent the words. The idea in
[65] is to have multiple convolutional layers in parallel, with ker-
nels of size k × n, where k is varied per convolution layer. Each
convolutional layer can then be thought of as assigning a score to
all k-grams in the text (and for convenience, we will refer to this
as a convolution of size k). Then, a global max-pooling opera-
tion is applied to the output of every convolutional layer, mean-
ing only the highest output per kernel from each convolutional
layer is passed though. Next, the outputs of these max-pooling
layers are flattened and combined into a single layer (“concate-
nated”). Finally, this layer also feeds into the output neuron.
This network architecture is also depicted in Figure 10.

Finally, the RNN models consisted of a bidirectional LSTM
layer, followed by zero or mode fully connected layers [18]. The
exact architectures we used are given in Table 2.

We also experimented with ensembles of these models. The
final results we obtained for detection are the ones listed in Table
3. The results for the (simplified) classification task are given in
Table 4.

Our work in [18] also lead to the development of a deep learn-
ing utility tool13. This is a tool which allows users to train, test,
and predict with deep learning models. The tool provides a com-
mand line interface for mixing and matching different types of
feature generation and models, as well as specifying the exact
(hyper)-parameters (e.g. the model architecture).

13https://github.com/mining-design-decisions/

mining-design-decisions/releases/tag/v1.0.0

https://github.com/mining-design-decisions/mining-design-decisions/releases/tag/v1.0.0
https://github.com/mining-design-decisions/mining-design-decisions/releases/tag/v1.0.0
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Task Model Architecture

Detection BOW (Frequency) One hidden layer of size 2
BOW (Normalised) Two hidden layers, both of size 32
TF-IDF Two hidden layers of size 64 and 2, respectively.
CNN Word2Vec vectors of size 25. One convolutional layer with 32 kernels of size

75.
CNN (SO) Word2Vec vectors of size 200. One convolutional layer with 32 kernels of size

75.
RNN Word2Vec vectors of size 25. One bidirectional layer of size 64, followed by a

fully connected layer of size 4
RNN (SO) Word2Vec vectors of size 200. One bidirectional layer of size 64, followed by a

fully connected layer of size 4
Issue Characteristics No hidden layers
Ontology BOW Two hidden layers of size 128 and 16, respectively.

Multi-class
classification

BOW (Frequency) Two hidden layers of size 64

BOW (Normalised) Two hidden layers of size 32 and 16, respectively
TF-IDF Two hidden layers of size 256 and 128, respectively
CNN Word2Vec vectors of size 10. One convolutional layer with 64 kernels of size

50.
CNN (SO) Word2Vec vectors of size 10. One convolutional layer with 64 kernels of size

50.
RNN Word2Vec vectors of size 300. One bidirectional layer of size 128.
RNN (SO) Word2Vec vectors of size 300. One bidirectional layer of size 128.
Issue Characteristics One hidden layer of size 8
Ontology BOW Two hidden layers of size 64 and 32, respectively.

Table 2. Model architectures used in [18].

Fig. 10. Simplified depiction of the CNN architecture used in [18]. Image
source: [18]

Model F1 P R
BOW (Frequency) 0.827 0.770 0.897
BOW (Normalised) 0.816 0.764 0.876
TF-IDF 0.826 0.764 0.901
CNN 0.833 0.777 0.899
CNN (SO) 0.827 0.723 0.905
RNN 0.824 0.792 0.869
RNN (SO) 0.827 0.773 0.891
Doc2Vec 0.746 0.837 0.676
Issue Characteristics 0.808 0.750 0.877
Ontology BOW 0.823 0.757 0.906
BOW (Frequency) + CNN
+ RNN (stacking)

0.833 0.766 0.916

Table 3. Results for identifying architectural issues obtained in [18].
Columns: model, F1 score, Precision, Recall. Results were obtained using
10-fold cross validation. We only listed the best ensemble model.

Model F1 P R
BOW (Frequency) 0.529 0.539 0.530
BOW (Normalised) 0.514 0.534 0.423
TF-IDF 0.500 0.526 0.518
CNN 0.482 0.484 0.485
CNN (SO) 0.493 0.515 0.508
RNN 0.566 0.568 0.569
RNN (SO) 0.574 0.580 0.575
Doc2Vec 0.489 0.493 0.492
Issue Characteristics 0.343 0.353 0.352
Ontology BOW 0.413 0.430 0.426

Table 4. Results for classifying architectural issues obtained in [18].
Columns: model, macro F1 score, macro Precision, macro Recall. Re-
sults were obtained using 10-fold cross validation. We omitted ensemble
models because those all performed worse than RNN.

A small continuation of the work done in [18] was performed in
[20] by Dekker et al. In this work, we performed the same classifi-
cation tasks, but 1) used traditional machine learning classifiers
(decision tree, random forest, and Naive Bayes), 2) only used
issue characteristics, and 3) performed more elaborate prepro-
cessing on the issue characteristics. Additionally, an assessment
of feature importance was performing by manually inspecting
the learned decision tree classifier, and by performing feature
shuffling with the random forest classifier. The best perform-
ing model for detection was random forest with an F1 score of
0.691, thus under-performing neural networks. For classifica-
tion, random forest was once again the best classifier, with an
F1 score of 0.432. This is not better than text based features
for neural networks, but outperforms the use of issue character-
istics with neural networks. However, this would come at the
cost of very elaborate preprocessing, which would require elab-
orate manual work and domain knowledge to generalise well to
different projects or domains. Finally, it was found that the only
really important feature was the type of an issue; Issues of type
bug were considered considerably less likely to be architectural
[20].
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3.5 Cohen’s Kappa
Part of this work will involve labelling issues into the categories
defined by Kruchten in [45]. In order to evaluate the quality of
the labelling, we will evaluate the agreement between reviewers.
We will do this using a metric called Cohen’s Kappa.

Suppose that we have two annotators A and B, who are anno-
tating documents. We will assume that every document is either
annotated with “Yes” or “No”. We can then use documents an-
notated by both A and B in order to check their agreement. This
is done by first computing the matrix in Table 5.

A
Yes No

B
Yes a b
No c d

Table 5. Example of a table displaying number of annotated documents
by two annotators.

A naive metric that we can obtain from Table 5, is the agree-
ment. The agreement can be defined as

po =
a+ d

a+ b+ c+ d

Hence, the agreement is the fraction of all documents on which
both annotators agree. However, this does not take into account
agreement by random chance. Annotator A assigns “Yes” with
probability (a + c)/(a + b + c + d), and “No” with probability
(b+d)/(a+b+c+d). Similarly, B assigned “Yes” with probability
(a + b)/(a + b + c + d) and “No” with probability (c + d)/(a +
b+ c+d). The probability of random agreement is now given by

pc =
a+ c

a+ b+ c+ d

a+ b

a+ b+ c+ d
+

b+ d

a+ b+ c+ d

c+ d

a+ b+ c+ d

Cohen’s Kappa is now given by

κ =
po − pc
1− pc

[14]

The above illustrates κ for a 2-class classification task. How-
ever, κ can be defined for an n-class classification task with cor-
responding matrix 

a11 a12 . . . a1n

a21

. . .
...

...
. . .

...
an1 . . . . . . ann


First, define

X =

n∑
i=1

n∑
j=1

aij

Then, we have

po =
1

X

n∑
i=1

aii

and

pc =

n∑
k=1

[(
1

X

n∑
i=

akj

)
×
(

1

X

n∑
j=1

ajk

)]
And κ remains defined as κ = po−pc

1−pc
.

κ can be seen as the ratio of the observed non-chance agree-
ment to the potential non-chance agreement. κ = 1 corresponds
to perfect agreement, while κ = 0 means fully random agreement
[14]. 0.6 ≤ κ < 0.8 would be considered moderate agreement,
although many studies advise κ ≥ 0.8 (strong agreement) [55].

3.6 Related Work
In this section, we will cover related work performed by other
researchers. We will cover some other ways to automatically
mine for design decisions, and we will also cover other sources of
architectural knowledge.

3.6.1 Machine Learning Approaches in Issue Track-
ing Systems

Bhat et al. also tried classifying design decisions in issue track-
ers using machine learning in [4]. They randomly selected issues
from the Apache projects Hadoop and Spark (excluding issues
marked as bug, issues with a minor priority, or unresolved issues).
Because Miesbauer and Weinreich found in [56] that 65% of the
design decisions are existence decisions, they decided that, in
order to save effort in finding property and executive decisions,
to only consider existence decisions. In total, they obtained a
dataset with 2139 issues. 781 issues were found to be design deci-
sions and 1358 were found to be non-architectural. Furthermore,
they considered the subtypes structural (226 issues), behavioural
(389 issues) and ban decisions (166 issues).

Bhat et al. used this dataset to train machine learning models,
specifically support vector machine (SVM), decision tree, logistic
regression, one-vs-rest and Naive Bayes. They applied a two-
step approach. In the first step, the model was trained to detect
design decisions; i.e. the model had to mark issues as either
“design” or “not design”. To make sure that the models were not
biased towards non-architectural issues, they applied a straight
forward class limiting approach. They used all the 781 issues
that contained design decisions and randomly selected 790 from
the 1358 issues that did not contain design decisions. SVM was
found to be the best performing classifier for this task, with a
F1 score of 91.29%. Their second step was to classify the design
decisions into one of the subtypes. Since the idea was to use the
detection classifier as a filter before this classifier, this classifier
only needed to be trained on data containing design decisions.
Bhat et al. randomly selected 160 issues from each of the three
subclasses. After training the classifiers on this data, SVM was
again found to be the best performing classifier with a F1 score
of 82.79%.

The classifiers of Bhat et al. were later incorporated in ADeX
([3]), a tool for exploring architectural design decisions. ADeX
allows users to automatically find design decisions, find similar
past decisions, get technology suggestions, and in general explore
the design history of a project in terms of architectural elements
and design decisions.

In [68], Shahbazian et al. identify design decisions in issue
tracking systems, using static source code analysis. Their tool,
RecovAr, compares different versions of software (in contrast to
Soliman, Galster, and Avgeriou in [70], who directly compare
successive commits). They use the ACDC (Algorithm for Com-
prehension Driven Clustering) and ARC (Architecture Recovery
using Concerns) algorithms in order to recover the architecture
of software. They then perform an analysis to detect architec-
tural changes, which are sets of changed architectural entities.
At the same time, they map commits to issues (restricting them-
selves to issues that were resolved with resolution “Fixed” or
“Closed”, or something similar), and map commits to software
versions (i.e. what commit was merged in what version). They
then perform source code analysis to determine what architec-
tural entities were affected by what issues. This results in what
they call the architectural impact list. At this point, they have
1) the architectural changes, each of which contains a set of af-
fected architectural entities, and 2) the architectural impact list,
which maps issues to architectural entities. They now combine
these two and map issues to architectural changes by looking
for non-empty intersections of architectural entities. They claim
their approach is able to achieve a precision ranging from 76%
to 78%. They also measured recall, and achieved an average
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recall of 73%. However, that did require the removal of architec-
tural changes resulting from “external factors”, such as changes
in dependencies [68].

In [67], Shahbazian, Nam, and Medvidovic continued with this
work. They developed a machine learning model in order to
predict architecturally significant issues based on the issue text.
They used their existing techniques in order to identify archi-
tecturally significant issues. They then trained a Naive Bayes
classifier on the issues, and attempted to predict whether issues
were architecturally significant or not. They obtained an average
precision of 0.81, and an average recall of 0.583 [67].

3.6.2 Other Sources of Architectural Knowledge

In [22], Dieu et al. performed a systematic mapping study on
different ways to mine architectural information from various
sources. They extracted data from 87 different studies on the
subject. They found that the extracted information can be cat-
egorised into the following categories: architectural descriptions
(models, views, rationale, concerns), architectural design deci-
sions, architectural solutions (patterns and tactics), system re-
quirements, architectural changes, design relationships, architec-
tural technical debt, and general architectural information.

From all 21 studies that focus on architectural design deci-
sions, only two focus on a more fine-grained classification of deci-
sion than architectural vs. non-architectural. These two studies
are the works of Bhat et al. (i.e. [4, 3]).

Dieu et al. also found that the most common sources mined for
architectural knowledge are version control systems (including
GitHub), online Q&A sites (e.g. StackOverflow), and Wikis.
When looking at tools specifically designed for the extraction of
design decisions, version control systems and issue trackers are
most frequently used as a source of architectural knowledge [22].

In the remainder of this section, we will explore some sources
of architectural knowledge in more detail. In particular, we will
discuss sources of discussions between developers which can be
mined for architectural knowledge. For sources on mining ar-
chitectural knowledge from source code and documentation, we
refer to the systematic mapping study of Dieu et al. ([22]).

3.6.2.1 Architectural Knowledge in StackOverflow

Several researchers have studied Q&A sites, and in particu-
lar StackOverflow, as sources of architectural knowledge. In
[72], Soliman et al. investigated architecturally relevant posts on
StackOverflow. Posts from the middleware topic were selected
based on certain criteria (at least one answer, questions with
a score > 7), and the posts were classified as either pure pro-
gramming posts (PPP), architecturally relevant posts (ARP), or
cross architecture/cross programming posts (CAPP). The first
type only asks questions about programming and has no archi-
tectural relevance, while the second type is for questions related
to performing some sort of architectural design activity. The
third type is for questions that fall in between the two categories
and may be relevant for both programmers and architects. Out
of 2561 posts, 1659 (65.8%) were classified as PPP, 769 (30.6%)
as ARP, and 89 (3.5%) as CAPP.

ARP posts were further classified along the purpose dimen-
sion and the solution type dimension. In the purpose dimension,
posts could be classified as solution synthesis or solution evalu-
ation. The former deals with searching for a suitable technology
solutions based on certain characteristics (e.g. features or quality
attributes). The latter type deals with assessing one or more pro-
posed technology solutions. Some questions could be considered
multipurpose: they fall into both categories. In the solution type
dimension, ARPs could be classified as technology feature, tech-
nology bundle, architecture configuration, or combined solution.
Technology feature refers to solutions focusing on specific tech-
nology features. Contrarily, technology bundle ARPs consider
technologies as single architectural solutions without direct con-
sideration for the individual features. Architectural configura-

tion ARPs are concerned with the design configurations of com-
ponents and connectors. Components and connectors could be
related to technology features or technology bundles, but could
also be purely conceptual (although this was found to be rare).
Finally, posts could also contain a mixture of solution types. By
combining the purpose and solution type dimensions, twelve dif-
ferent types of ARPs can be identified.

Building on this, in [74], Soliman et al. developed a tool to
help architects to search for architectural knowledge in posts on
StackOverflow. The tool uses a keyword search to find relevant
posts, with a few augmentations. They used a voting ensemble
consisting of a Bayesian network, a logistic model tree, and a
Naive Bayes classifier to classify posts into the categories pro-
gramming post, technology identification, technology evaluation,
features and configuration. The classifiers were trained on the
dataset created in [72]. The output of the ensemble was used to
re-rank the posts retrieved from the keyword search; program-
ming posts are ranked below the others; other posts are ranked
based on the step of the design process for which information
is being sought (entered by the user): identification of design
concepts, selecting design concepts, or instantiating architecture
elements.

In [6], Bi et al. experimented with machine learning to semi-
automatically mine architectural tactics and quality attribute
knowledge from StackOverflow posts. They use a two-step ap-
proach: first, a classifier is used to find potentially relevant posts.
Next, these posts are manually examined to extract architectural
knowledge regarding tactics and quality attributes.

In order to obtain posts for training, a keyword search was
used. Specifically, the researchers searched for posts contain-
ing a number of common tactics and quality attributes. These
posts were then manually annotated to create a set of training
data (labelled as “true” when the post contains information on
both tactics and quality attributes). By leveraging Word2Vec in
combination with an SVM classifier, they were able to identify
relevant posts with an F1 score of 0.865. These classifiers were
then used to mine additional posts about tactics and quality
attributes. Through manual analysis, the researchers 1) identi-
fied relationships between quality attributes and tactics not com-
monly discussed in literature, and 2) analysed the design consid-
erations discussed in posts discussing both tactics and quality
attributes.

In [76], Tian et al. investigated the automatic extraction of
discussions on architectural smells from StackOverflow. By us-
ing a keyword search, they obtained a ranked list of posts and
labelled the top 400 according to whether they contained any
sentence mentioning architectural smells or not [77]. In the end,
they used a dataset containing 208 posts containing information
on architectural smells, and 187 not containing such information.
They found Word2Vec in combination with an SVM classifier to
be most effective, yielding an F1 score of 0.731 [76].

3.6.2.2 Architectural Knowledge in Mailing Lists

Bi et al. investigated architectural information communication
in the mailing lists of two open source projects: ArgoUML and
Hibernate. They annotated 26,647 posts (i.e. individual emails)
from ArgoUML, and 22,888 from Hibernate. In the end, they
found 316 architectural posts from ArgoUML, and 256 from Hi-
bernate. They found that most emails were about discussing
solutions, somewhat closely followed by questions about clarifica-
tions about the current architecture. The remaining emails could
be classified as either suggestions or notifications on updates to
the architecture. The most frequently discussed topics were ar-
chitecture rationale and architecture models. Other topics were
concerns, stakeholders, and systems of interest. It was found that
different architecture topics (e.g. “new component”, “adaptive
design principle”, “alternative”) were discussed in both mailing
lists. Additionally, in both mailing lists and in discussions on
the different topics, different quality attributes were used. This
was attributed to the different requirements of the two projects.
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The reason for architectural changes can also be investigated
from mailing lists. This was investigated by Ding et al. in
[23]. Once again, emails from ArgoUML (26,439) and Hiber-
nate (20,413) were studied. It was found that most architectural
changes are either perfective (change system to better fit user
needs) or preventitive (improve maintainability). In Hibernate,
many changes were also adaptive (support new environments,
platforms, or standards). A very small proportion was correc-
tive (in response to defects).

Li, Liang, and Liu investigated decision-making (not restricted
to architectural decisions) in emails from the Hibernate mailing
list in [50]. They analysed 9006 emails and extracted 980 design
decisions. 42.6% of decisions were found to be about design.

3.6.2.3 Architectural Knowledge in Pull Requests

Viviani et al. investigated the automatic extraction of design
information from pull requests on GitHub in [81]. They did
this on the paragraph level. They classified a total of 10,790
paragraphs from 34 commits from 3 different projects. Each
paragraph was labelled according to whether it contained design
information or not. In the end, 2475 paragraphs were annotated
as containing design information.

They then trained a machine learning classifier on this dataset.
As features, they used information regarding the process (infor-
mation about the other), position (e.g. position of the comment
in the thread), text (e.g. a Boolean indicating whether the para-
graph contains the world “should”), and the content. The con-
tent features were generated by training different types of clas-
sifiers (naive Bayes, multinomial naive Bayes, complement naive
Bayes, and random forest) in a manner which prevents bias, and
use their outputs as features. In the end, random forest was the
best classifier, with an ORC AUC score of 0.87. The classifier
was also evaluated for generalisability on 250 paragraphs from
five different projects. This results in an AUC score of 0.81.

3.6.2.4 Architectural Knowledge in the Web

In [73], Soliman et al. explored the effectiveness of Google search
as a means for finding architectural knowledge. To do this, 53
software engineers were asked to complete three different search
tasks (identify design concepts, select design concepts, instan-
tiate architecture elements). Participants marked the degree of
relevance of search results found using Google. A total of 2623
unique web pages were examined.

The most common sources of architectural knowledge were
found to be blogs, tutorials, vendor documentation, and (to a
somewhat lesser extent) scientific sources. Source code reposito-
ries and knowledge repositories were less common. Results from
issue tracking systems were never encountered.

Solution descriptions were the most commonly encountered
design concepts. Additionally, information on benefits, draw-
backs, and alternatives was common, and usually some combi-
nations of these seem to co-occur. The least common form of
knowledge was actual design decisions.

The relevance of results was the best for the selection of de-
sign concepts. This showed that it is easier to select a solution
from alternatives than it is to find the actual alternatives, or to
instantiate a solution.

Blogs were found to be the most useful source of architectural
knowledge. Vendor technology documentation was found to be
useful mostly for identification of design concepts and instanti-
ating of architecture elements. Knowledge repositories were only
found to be useful for the selection of design concepts. Scientific
sources are once again more useful for instantiating architecture
elements. Forums and source code repositories were found to be
less useful.

Architectural knowledge in blogs was studied in more detail
in [71] by Soliman, Gericke, and Avgeriou. This study builds
upon [73], and uses 718 web pages identified as blogs posts as

a basis for the study. Using open coding, the blogs were cate-
gorised based on their type, and the topics inside the blogs were
categorised. Additionally, latent Dirichlet allocation (LDA) was
used to identify topics in blogs. It was found that most of the
architectural knowledge comes in the form of lists, evaluation,
or comparisons of architectural solutions. Many blogs also dis-
cuss architectural patterns and component design and principles.
Finally, technologies are often discussed.
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4 Study Design

4.1 Research Questions
Our main goals are to further improve upon the work we initially
did in [18]. In particular, we are interested in improving classifier
performance and generalisability. The following research ques-
tions build up to these goals, and motivate various steps we will
need to achieve these goals.

RQ1 What is the expected distribution of architectural design de-
cision types found in issue trackers in open source systems
when taking a random sample?

As far as the authors know of, there is currently no research
into what proportions of architectural design decisions in is-
sues fall into the different categories defined by Kruchten.
Knowledge about the amounts of existence, executive, prop-
erty, and non-architectural issues one could expect to find
within a system could be useful in evaluating search tools
in a practical setting with some simple rules. For instance,
if a machine learning classifier predicts an excessive amount
of issues to be architectural compared to expected base-
lines, it is likely that the classifier is not suitable for real
world applications. This can serve as an additional “san-
ity check”, to verify whether models which perform well in
the training/testing phase, also perform reasonably in the
working phase, without requiring labour-intensive labelling
of a random sample of issues labelled by the classifier.

This check is motivated by some observations we made while
attempting to apply our classifiers designed in [18] in a more
practical setting. We found that in general, the detection
classifiers predicted too many issues as architectural. At one
point, we trained a bag of words (frequency) classifier with
particularly poor generalisability, which predicted over 50%
of issues as being architectural. This did not seem plausible
to us. As such, we decided to introduce a check for such
behaviour in this research.

The work of Bhat et al. already provides a rough upper
bound on the amount of architectural issues one would ex-
pect when taking a random sample of issues; in their work,
they took an almost random sample, with some mild selec-
tions based on some issue characteristics. In their sample,
36.5% of issues contained architectural design decisions [4].

We are interested in a totally random sample, thus elim-
inating the potential bias from issue characteristics. Ad-
ditionally, we are interested in knowing the proportions of
existence, executive, and property issues. Bhat et al. only
considered existence issues. Furthermore, in [18], we found
that we do not fully agree with their labelling of issues.

RQ2 How effective are deep learning models for finding architec-
tural design decisions in issue tracking systems?

Looking back at the work we did in [18], we determined
that we were using very little data to train the models for
the classification task (only 237 samples per class, because
we limited the amount of data from certain classes so that
we had an equal amount of samples from every class); we
deemed it plausible that we were lacking sufficient data to
train good performing classification models. As such, for
this work, we intend to collect more data.

Additionally, collecting more data might help in alleviating
the problem with classifiers predicting too many issues as
architectural. Although there exists methods to deal with
imbalanced classes (such as limiting the amount of data,
or assigning weights to different classes in the loss func-
tion), the most optimal way to dealing with such biases is
by training on a balanced dataset [42]. This means that by
collecting more issues from the types we have few from, we

hope to obtain classifiers which are more useful for practical
purposes (i.e. prediction).

Besides considering some of the existing methods (i.e. static
source code analysis, Maven POM file analysis, and keyword
search) to find architectural issues, we will also be investi-
gating the effectiveness of using deep learning classifiers to
search for architectural issues in issue tracking systems. We
will be investigating whether this method is a good addition
to the other methods.

RQ3 How well do classifiers perform for a multi-label classifica-
tion of issues?

In Section 3.4, we explained that for our previous research,
we experimented with detection and a simplified multi-class
classification scheme. One severe limitation of such a classi-
fication approach is that in the working phase, a model can
only label an issue as either non-architectural, or existence,
or executive, or property: it is not possible to assign multi-
ple labels to a single issue. In practice, we want to find all
types of decisions present in an issue.

In this research, the goal was to use a non-simplified, multi-
label classification scheme in the hopes of obtaining a more
useful classifier. In order to answer this research question,
we want to evaluate the neural network architectures out-
lined in [18], and use these for the multi-label classification
task.

RQ4 How much can the performance of the classifiers be improved
using additional data?

In this research, we significantly expanded the existing
dataset of architectural issues. We wanted to determine
whether there would be any value in collecting even more is-
sues in future research. Hence, we evaluated how the classi-
fiers are performing with different amounts of training data.

RQ5 How well do multi-label classification models generalise to
different projects in the same software domain?

In [18], we investigated the generalisability of the detection
and simplified classification models to projects they were
not trained on. We did the same in this research for multi-
label models. This way, we can estimate the usefulness of
the machine learning models when applied to projects not
present in the dataset, but which belong to the same do-
main.

RQ6 How well does multi-label classification generalise to differ-
ent software domains?

Deep learning models should ideally be as generalisable
as possible. One basic type of generalisability is the one
described in RQ5. There we look at generalisability to
projects foreign to the dataset, but still belonging to the
same domain. We can also investigate generalisability in a
broader scope, where we investigate how well the trained
models generalise to projects from different domains.

4.2 High-level Study Design
We first introduce our study design on a high level. A high-level
depiction of our study design is given in Figure 11. On a high
level, our research consisted of six main steps:

1. Update & Improve Deep Learning Code

The deep learning code we initially developed while working
on [18] was difficult to work with and lacked features which
would allow the trained models to be used in practice. As
such, a number of adjustment were made to make the code
more usable. In the end, this lead to the development of a
system consisting of a refactored version of the deep learning
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code, which makes use of a database to retrieve and store
data. Additionally, a number of new features were added. A
more complete motivation for and description of the changes
will be given in Section 4.4.

2. Collect More Data & Evaluate Deep Learning as a
Search Tool

One of the things we suspected after our work on [18], was
that there was too little data to train a sufficiently perfor-
mant classifier for classifying architectural issues. As such,
part of our research was spent finding more architectural is-
sues to add to the existing dataset. Part of the issues were
collected through random sampling to answer RQ1. We
also tried to collect more issues using keyword searches, but
most issues were collected by using deep learning classifiers.
Hence, this step also serves to answer RQ2.

3. Optimise and Evaluate Multi-label Deep Learning
Models

With more data collected, we moved to the development of
new deep learning models. We mainly experimented with
the same type of models as our previous work in [18], but
with a number of changes; the most noteworthy change be-
ing that we switched from detection and multi-class classi-
fication to multi-label classification. We also experimented
with BERT because in [18], we did not experiment with
state-of-the-art transformer based large language models.
In this step, we performed hyperparameter optimisation to
find the best performing multi-label models, and evaluated
this model. The results of this evaluation were used to an-
swer RQ3.

4. Evaluate Need for Additional Data

Like mentioned before, we wanted to test whether there
would be a need to collect more issues in future research.
To test this, we trained the best performing classifiers from
step 3 with different amounts of data to observe how per-
formance improves. This allowed us to answer RQ4.

5. Evaluate Generalisability of Multi-label Classifiers
to Projects in the Same Domain

The next step in our research was to evaluate the general-
isability to projects in the same domain. In our case, that
is to projects in the data storage & processing domain. In
this step, we trained classifiers on a number of projects, and
evaluated the classifier performance on projects not present
in the training and validation sets. The tests done in this
step serve to answer RQ5.

6. Evaluate Generalisability of Multi-label Classifiers
to Projects in Different Domains

The final step in our research was to evaluate the perfor-
mance of one of the classifiers to different domains. Specif-
ically, we tested the classifier which showed the best gener-
alisability to different project, which in our case was BERT.
We evaluated both the capabilities of BERT as a classifier,
and as a search tool. The work done in this step was meant
to answer RQ6.

4.3 Initial Dataset Description
Here, we describe the initial dataset we had, which is the dataset
we used in [18], and whose acquisition is described in [18, 28, 70,
25].

The dataset consists of 2179 labelled issues, annotated based
on the architectural decisions made in the summary and descrip-
tions of those issues. 1431 of the issues are architectural, and 748
are non-architectural. The issues come from six different Apache

Fig. 11. Graphical depiction of our study design.
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projects: Hadoop, Yarn, Tajo, MapReduce, HDFS, and Cassan-
dra. The exact breakdown of issue labels per project is given in
Table 6.

4.4 Step 1: Changes to the Existing
Deep Learning Code & Addition
of a Database

In this section, we will describe some of the changes we made
to our existing deep learning tool. We will focus mainly on the
changes necessary to understand the remainder of the study de-
sign. We will have a separate chapter (Section 5) which goes into
more detail in the changes not directly related to the design of
our study.

4.4.1 Step 1.1: Augmenting The Deep Learning
Tool With Multi-label Prediction

In order to obtain a more widely applicable classifier, we imple-
mented a third classification task alongside the existing detec-
tion and multi-class classification tasks, that we will henceforth
call multi-label classification. In multi-label classification, mod-
els have 3 sigmoidal outputs; one for every type of architectural
design decisions. We apply a threshold of 0.5. Hence, if the
neuron for the existence label outputs a value > 0.5, the issue
is considered existence. Non-architectural issues should have all
three neurons output a value ≤ 0.5.

4.4.2 Step 1.2: Adding BERT to the available mod-
els

Since BERT has shown state-of-the-art results for NLP tasks
[21], we want to include BERT in our deep learning tool as well.
Pre-trained versions of BERT are readily available online due to
libraries such as Huggingface14. Huggingface in particular makes
working with BERT easy for programmers. Therefore, we opted
to use the ”bert-base-uncased” model from their library. The
BERT model can be used like any other model that our tool has
to offer.

4.5 Step 2: Collect More Data &
Evaluate Deep Learning as a
Search Tool

In this section, we will be describing how we collected more is-
sues for our dataset, and how we evaluated deep learning as a
search tool, allowing us to answer RQ1 and RQ2. The detailed
design for this step is outlined in Figure 12. We collected is-
sues through random sampling, keyword search, and by using
classifiers as search tools. We then labelled these issues, and
performed relabelling to correct systematic labelling errors.

Aside from a random sample of issues from the web devel-
opment domain, we are always searching for issues from the
six projects from which the issues of the original dataset came:
Hadoop, Tajo, Yarn, HDFS, MapReduce, and Cassandra.

4.5.1 Step 2.1: Selecting Candidate Issues for La-
belling

In this section, we will describe how we selected issues to be
annotated.

Initially, our dataset contained 1112 existence, 265 property,
295 executive and 748 non-architectural issues (including issues
with multiple labels; see Table 6 for more details). The number
of property and executive issues were low compared to existence

14https://huggingface.co/docs/transformers/model_doc/bert

and non-architectural. In [70, 18, 28, 25], several ways of find-
ings architectural issues were discussed. For property issues, the
search engine was found to be the most effective approach. For
executive issues, analysing Maven POM files was found to be
the most effective approach. However, this type of analysis was
mostly exhausted for our main target projects (Hadoop, Cassan-
dra, HDFS, Tajo, Yarn, and MapReduce). In the end, to increase
the number of samples in our dataset, we tried two approaches.
The first is the keyword search. The second is an experimental
approach. With this approach, we train a classifier on the issues
that are currently in our dataset and select the issues for which
the classifier predicted the issue to be of the desired class with a
high confidence.

We also took random samples of issues and classified these in
order to answer RQ1. This increased the size of our dataset,
although not many architectural issues were found with this ap-
proach.

In the remainder of this section, we will describe each selection
method in more detail.

4.5.1.1 Step 2.1.1: Establish Baseline for ADD Oc-
currences

One of the steps in our research was to establish a baseline esti-
mate for the proportions of different ADD types in issues in issue
tracking systems. In order to obtain this baseline, we took two
random samples of 400 issues from different Apache Projects.
This amount of 400 was chosen because a sample size of 385 is
statistically significant (in the case of a 95% confidence interval)
in case of an infinite population [80]. We rounded this number
up to 400.

The first 400 issues were taken from the following Apache
Projects: Solr, JSPWiki, CloudStack, Brooklyn, and TomEE.
The second set of 400 issues was taken from the Apache projects
Hadoop, Tajo, Yarn, HDFS, MapReduce, and Cassandra. Note
that for the latter sample, we also included issues already con-
tained in our dataset in order to avoid introducing any bias.

4.5.1.2 Step 2.1.2: Finding ADDs using a Keyword
Search Engine

One way we attempted to find more issues for the dataset, was
by using the search engine used by Faroghi15 in [28]. At this
point in our research, we mostly needed property issues, and the
search engine approach had shown somewhat promising results
– precision@k generally exceeded 0.35, while this could not be
said for the source code analysis or Maven dependency analysis.

We re-used the keywords used by Faroghi in [28]. Because
we were only interested in property issues, we only used the key-
words for decision factors and reusable solutions – these gave the
best precision for finding property issues. The exact keywords
we used are shown in Table 7.

We searched for issues from the following Apache projects:
Hadoop, Tajo, Yarn, HDFS, MapReduce, and Cassandra. We
downloaded all the issues from these projects on February 22,
2023. We applied both keywords searches individually. For the
results of both queries, we took all issues from the first 1050
search results that were not yet contained in our dataset. 241
issues were found using the decision factor keywords; 34 were
found using the reusable solution keywords.

4.5.1.3 Step 2.1.3: Finding ADDs using a Multi-
Label Classifier

4.5.1.3.1 Finding Property Issues
Since we were finding relatively few property issues using key-
word search (precision@241 = 0.22), we decided to attempt to
use deep learning techniques to find additional property issues.

15Available from https://github.com/Shadania/Jira_Arch

https://huggingface.co/docs/transformers/model_doc/bert
https://github.com/Shadania/Jira_Arch
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Label Cassandra Hadoop HDFS MapReduce Tajo Yarn Total
Existence 249 171 164 44 69 202 899
Executive 112 48 17 7 27 4 215
Property 31 19 14 6 5 8 83
Executive/Existence 22 10 6 2 9 3 52
Executive/Property 12 4 3 1 1 0 21
Existence/Property 54 32 32 11 8 17 154
Executive/Existence/Property 3 2 1 0 1 0 7
Architectural 483 286 237 71 120 234 1431
Non-Architectural 276 135 95 53 98 91 748
Total 759 421 332 124 218 325 2179

Table 6. Description of the dataset used in [18].

Fig. 12. Detailed study design of step 2: collect more data & evaluate deep learning as a search tool. The new issue dataset is the main result of this
step, and will be used in subsequent steps. Besides, this step helps us to answer our first two research questions.
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Category Keywords
Decision Factors actor* availab* budget* business case* client* concern* conform* consisten* constraint* context*

cost* coupl* customer* domain* driver* effort* enterprise* environment* experience* factor* force*
function* goal* integrity interop* issue* latenc* maintain* manage* market* modifiab* objective*
organization* performance* portab* problem* purpose* qualit* reliab* requirement* reus* safe*
scal* scenario* secur* stakeholder* testab* throughput* usab* user* variability limit* time cohe-
sion efficien* bandwidth speed* need* compat* complex* condition* criteria* resource* accura*
complet* suitab* complianc* operabl* employabl* modular* analyz* readab* chang* encapsulat*
transport* transfer* migrat* mova* replac* adapt* resilienc* irresponsib* stab* toleran* responsib*
matur* accountab* vulnerab* trustworth* verif* protect* certificat* law* flexib* configur* convent*
accessib* useful* learn understand*

Reusable Solutions action* adapt* alloc* alternativ* approach* asynch* audit* authentic* authoriz* balanc* ballot*
beat bridg* broker* cach* capabilit* certificat* chain* challeng* characteristic* checkpoint* choice*
cloud composite concrete concurren* confident* connect* credential* decorat* deliver* detect* dual*
echo encapsulat* encrypt* esb event* expos* facade factor* FIFO filter* flyweight* framework*
function* handl* heartbeat* intermedia* layer* layoff* lazy load lock* mandator* measure* mech-
anism* memento middleware minut* monitor* mvc observ* offer* opinion* option* orchestrat*
outbound* parallel passwords pattern* peer* period* piggybacking ping pipe* platform* point*
pool principle* priorit* processor* profil* protect* protocol* prototyp* provid* proxy publish* re-
cover* redundan* refactor* removal replicat* resist* restart restraint* revok* rollback* routine*
runtime sanity* schedul* sensor* separat* session* shadow* singleton soa solution* spare* spar-
row* specification* stamp* standard* state stor* strap strateg* subscrib* suppl* support* synch*
tactic* task* technique* technolog* tier* timer* timestamp* tool* trail transaction* uml unoccu-
pied* view* visit* vot* wizard* worker*

Table 7. Keywords used for the search engine

Hyperparameter Value
model bert-base-uncased
learning rate 5e-5
batch size 1
epochs 3
frozen layers first 10 encoder layers
padding true
max tokens 512
truncation true

Table 8. Hyperparameters used for all search rounds with BERT. Note
that we did not use any text preprocessing for these search rounds.

Instead of using one of the previous models we developed in [18],
we experiment with BERT in combination with multi-label clas-
sification. The BERT model was chosen as the classifier due to
its demonstrated effectiveness across various text classification
tasks [21]. For all rounds of BERT, we used the hyperparame-
ters as described in Table 8. Although these parameters were not
as suggested by Devlin et al. ([21]), these allowed us to train the
model on our own machines; using a larger batch sizes exceeded
our VRAM. We froze the first 10 layers, because otherwise the
performance was poor with such a small batch size. Normally,
we would first strip all special formatted text (e.g. code blocks)
from the text before feeding the text into the classifier (see sec-
tion 4.6.1.1). However, due to a bug in our initial code, none of
the search rounds with BERT are performed using text prepro-
cessing. The results in Section 6 show that this should not have
harmed the performance a lot, if at all.

We collected issues using an iterative approach. After train-
ing BERT on all the labelled issues in the initial dataset, BERT
classified all issues from the projects Hadoop, Cassandra, Tajo,
HDFS, MapReduce and Yarn that did not have a manual label
yet. We then selected the issues that had the highest predicted
confidence for the property class, and labelled these issues un-
til we found that the precision had become too low. We then
expanded the dataset using these new issues and began the pro-
cess all over again. This process is also depicted graphically in
Figure 13. This way, we can continuously improve the classifier
with new feedback (in the form of new issues) in order to keep
finding enough relevant issues to expand the dataset.

In the first round of finding issues with BERT, we selected

the top 121 issues with the highest confidence for the property
class for labelling. After labelling 121 issues, we decided that the
precision of 0.41 for finding property issues was decent, but we
preferred it to be higher (see Figure 28).

We also manually labelled the 50 issues that were predicted as
property issues (property confidence score > 0.5), but with the
lowest confidence scores for the property class. From these issues,
we obtained 12 new property issues. In other words, this was a
precision of 0.24. This small test confirmed the intuitive idea
that the quality of the results indeed decreases as the confidence
decreases; this confirmed that we should indeed focus on the
issues with the highest confidence.

We then started the second round of finding issues with BERT.
Similar to the first round, we used the second version of BERT
to classify all issues from the 6 Apache projects (Hadoop, Cas-
sandra, Tajo, HDFS, Mapreduce and Yarn) that did not have a
manual label yet. Then we selected the 600 issues with the high-
est property confidence. Using BERT, we more than doubled
the number of property issues in our dataset. With a precision
of 0.67 (see Figure 29), we found that BERT was effective in
finding property issues.

4.5.1.3.2 Finding Executive Issues

Due to the promising results with the property issues, we wanted
to apply a similar approach for finding executive issues, since
there were not many executive issues in the initial dataset either.
For this first round of collecting executive issues, we used the
same trained version of BERT as the one used to find the second
round of property issues.

Many executive issues that were found with the Maven depen-
dencies analysis are about version updates of technologies. The
following are a few examples:

• CASSANDRA-1203216: Update Netty to 4.0.37 (no C*
code changes in this ticket)

• CASSANDRA-712817: Upgrade NBHM to use the Bound-
ary maintained version

16https://issues.apache.org/jira/browse/CASSANDRA-12032
17https://issues.apache.org/jira/browse/CASSANDRA-7128

https://issues.apache.org/jira/browse/CASSANDRA-12032
https://issues.apache.org/jira/browse/CASSANDRA-7128
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Fig. 13. The iterative approach we used for finding more issues using BERT.

These issues are rather straight-forward to identify by the
model and even a keyword search. To find more ‘interesting’
issues (i.e. issues with more useful architectural knowledge), we
came up with the following approach. By selecting issues that
the classifier predicts as both executive and existence, we expect
to find issues more involved than a simple version bump. This
is because these simple version bumps are often solely executive
issues, not existence. In total, there were 202 issues with both
the existence confidence and executive confidence above 0.5, and
we selected all of these to be annotated.

The issues that were found with this approach seemed less triv-
ial and richer in architectural knowledge than the simple version
bumps, meaning that our approach had the desired effect. The
precision after 202 issues was 0.43 (see Figure 31), which was
similar to the Maven dependencies analysis.

Since we could not find any more issues that had an existence
confidence and an executive confidence above 0.5, we retrained
the BERT model using all the labelled issues we had up till then;
i.e. we obtained the third version of the BERT model.

To obtain comparable results to the previous round, we wanted
to label around 200 issues for this round as well. However, we
had to lower the threshold of the existence confidence in order
to find enough issues. With a confidence threshold of 0.5 for
executive and 0.34 for existence, we were able to find exactly
200 issues. Although this different threshold did not make it
entirely comparable, it did have the desired effect of finding more
involved executive issues. In the end, the precision for finding
executive issues was 0.53 with this third version of BERT.

Because we could not find much more issues that both had
a high existence and executive confidence, we tried another ap-
proach. As we wanted to find issues that are not about de-
pendency upgrades etc., we tried a basic keyword filtering to
filter out such issues from the results found by the deep learn-
ing classifier. For a start, we filtered out issues containing the
keywords “upgrade”, “update”, “bump”, “dependency”, or “li-
brary” in their summary. We also applied the keyword extrac-
tion described in [18] in order to find more possible keywords to
include in our search. Specifically, we trained a CNN classifier
(with the same hyperparameters as in [18]) for classification, and
examined high-probability keywords for executive issues. We ex-
amined the keywords for issues found using Maven analysis espe-
cially closely, because this type of analysis is specifically tailored
towards finding issues dealing with dependencies. Based on the
results, we found that version number markers were also common
keywords. Because of this, we also looked for version numbers of
the form x.y.z and x.y in the issue summary.

To assess the quality of the issues obtained after filtering, we
selected a batch of 100 issues with the highest executive confi-
dence. We found out that the list of keywords did not seem to be
complete, since we still found a lot of version bumps of technolo-
gies in these issues. We therefore decided that, due to the effort
required in completing the keyword list, this was not a good ap-
proach to find interesting executive issues, and we decided to
abandon this approach after these 100 issues were labelled.

4.5.2 Step 2.2: Labelling Issues

4.5.2.1 Basic Annotation Approach

Annotation of new issues was primarily performed by the two
authors, assisted by the primary supervisor. The basic method-
ology we used, was that all issues to be annotated were split
equally between the two authors. Issues with any degree of un-
certainty were marked for review. This meant that the other
author would also annotate these issues. If the two authors did
not agree, and could not come to an agreement after discussing
the issue, the issue was forwarded to the primary supervisor for
annotating. The label provided by the supervisor was then used
as the definitive label for the issue.

The issues were labelled based on the architectural design de-
cisions made in their summaries and descriptions. Initially, we
did this according to the definitions of existence, executive, and
property decisions as defined by Kruchten in [45], as well as by
considering labelled issues from the existing dataset as examples.
This process was further refined by incrementally creating a cod-
ing book of rules to help annotate issues. The issues labelled by
the primary supervisor were used to come up with the rules for
the coding book. The full coding book can be found in Ap-
pendix A. The overall methodology for labelling is also depicted
in Figure 14.

In order to improve labelling consistency in the beginning of
the data collection process, the first and second author labelled
a number of issues together and discussed these before continu-
ing to annotate issues independently. Issues where no agreement
could be reached were once again passed on to the primary su-
pervisor. These issues served as a means to come up with the
first entries of the coding book. Later, the coding book kept
being incrementally expanded.

4.5.2.2 Division of Annotation Work

All work in this section was performed according to Section
4.5.2.1. When we write “the first author annotated these issues”,
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Fig. 14. Graphical depiction of the annotation process we followed.

we mean that the first author annotated all those issues, the sec-
ond author annotated the issues that were marked for review by
the first author, disagreements were discussed and in case of no
agreement, the first supervisor would determine the final label.
In general, we split all issues equally between the two authors.
However, in the remainder of this section, we will discuss some
exemptions to this process.

The two sets of 400 random issues (Section 4.5.1.1) were di-
vided as follows. For the first set, the two authors classified the
first 100 issues independently and then discussed the labels. Af-
ter that, the remaining 300 issues were divided evenly between
the two authors. For the second set of 400 issues, a similar ap-
proach was taken. However, only the first 50 issues were done
by both authors in this case.

The issues found by the keyword search engine (Section
4.5.1.2), were primarily labelled by the first author.

For the issues found using the multi-label classifier (Section
4.5.1.3), all 171 issues from the first round of BERT were anno-
tated by the second author.

For the selected property issues found with the second version
of BERT, we had to label 600 issues. These issues were split up
between the authors as follows. The first 50 issues were labelled
by both authors, and the second batch of 50 issues were labelled
by the first author. The last 500 issues were split up in batches
of 100, where each author labelled 50 issues from each batch.

For all other rounds, we evenly split the issues of each round
between the two authors.

4.5.2.3 Labelling Quality Assessment

While labelling issues, we tracked the labels assigned by all indi-
vidual authors. This allowed us to compare assigned labels and
compute the agreement on the labelled issues.

A full description of the issues we collected with this first round
of labelling is given in Figure 41 in Appendix B. In this figure,
we provide a full breakdown of all issues we found per class, per
collection method (and collection iteration).

Additionally, Figure 43 in Appendix B provides a detailed
overview of the agreement between annotators for this round of
labelling; We computed the agreement between the three anno-
tators (the two authors Jesse and Arjan, and the first supervisor
Mohamed). We did this to obtain insights in the quality of the la-
belling. We considered the agreement between all three possible
pairings of annotators, and considered the agreement per class
(existence, executive, property, and non-architectural). Hence,
for every round of labelling, we computed twelve (confusion ma-
trix, agreement, kappa) triples. Each time, we computed 1) a
confusion matrix displaying how the labels between two annota-
tors compare, 2) the agreement, and 3) Cohen’s kappa. However,
In this section, we will only discuss the average agreement and
Kappa score per class, as given in Table 9.

Class Agreement Kappa Score
Existence 0.7295 0.3783
Executive 0.8439 0.5553
Property 0.7418 0.4691
Non-Architectural 0.7167 0.2978

Table 9. Average (over all pairings of annotators) agreement and Kappa
score per class for the first round of labelling issues.

The agreement scores were computed using the issues which
were labelled by multiple people. In particular, this means that
the following issues were used to compute the agreement scores
presented in this section:

• The first 100 issues from the random sample from the web
development projects, which were labelled together by the
two authors.
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• The first 50 issues from the random sample from the data
processing & storage projects, which were labelled together
by the two authors.

• All issues which have been marked for review during la-
belling, and which were thus checked by both authors.

Of all these issues, only the issues without consensus between
the two authors were sent to the first supervisor for annotation.
On average, this was about 10% of all issues labelled, while in
general 30% to 50% of issues were marked for review.

A result of this is that the agreement is calculated using the
issues which were the most difficult to annotate. In particular,
the issues also labelled by the first supervisor were deemed very
difficult to annotate by the two authors. As a result of this,
we expect the agreement results in this section to represent the
worst case lower bounds for agreement.

In particular, many issues which were sent to the first supervi-
sor were sent because they contained types of issues not present
in the coding book. This also means that in many of this dif-
ficult cases, a new entry was added to the coding book. This,
combined with the fact that we expect the results here to repre-
sent lower bounds, should hopefully alleviate some of the quality
concerns regarding the dataset.

It is important to emphasise that these difficult issues were
examined by at least two annotators. Therefore, even if the
agreement might be relatively low, the quality of these labels is
not necessarily a cause for concern, as the annotators engaged
in discussions regarding these issues; even if the initial labels of
the two authors (on which the agreement calculation was based)
differs, it is possible the two authors still came to a consensus.

In Table 9, we can see the agreement for the initial expansion
of the dataset. First, we note that the raw agreement overall
is pretty good, with the lowest agreement being 0.72 for non-
architectural issues.

We can see that agreement on executive issues was overall
pretty good; the executive class had the highest average agree-
ment (0.84) and kappa score (0.56). For the other classes, there is
more disagreement, certainly in terms of kappa score. In partic-
ular, according to Figure 43, the two authors assigned the label
“existence” too often compared to the first supervisor, and the
label “property” not often enough. Based on the poor agreement
for the non-architectural class, we also make the observation that
it was often difficult to judge whether an issue should be consid-
ered architectural.

However, we also note that in general, all Kappa scores are
pretty poor. They certainly indicate a better than chance agree-
ment, but for certain classes (especially non-architectural and
existence) the kappa score is really poor.

4.5.3 Step 2.3: Correcting Mislabelled Issues in the
Existing Dataset

When labelling issues, it is important to reduce the effect of hu-
man error. That is why during labelling, all difficult cases were
discussed by at least two people. However, it is still possible
for systematic errors to occur if both the first and second au-
thor had matching opinions differing from the first supervisor.
Additional systematic errors may be introduced due to shifts in
opinions about how issues should be annotated. There is a large
gap in time between the collection of the initial dataset and the
work done in this research, meaning that some ideas could have
changed. In this section, we will describe how we attempted to
mitigate quality concerns about the dataset due to systematic
labelling inconsistencies.

4.5.3.1 Systematic Errors in the Original Dataset

4.5.3.1.1 Incorrectly Labelled Technology Version
Upgrades

During discussions with the primary supervisor, it became ap-
parent that there had been a shift in the opinion of what a cor-
rect classification should be for issues discussing dependency up-
grades. In particular, it became apparent that such issues should
be considered executive, because they deal with external tech-
nologies. In the past, such issues were not always classified as
such; they were classified as non-architectural instead. Because
of this, we attempted to find issues discussing such changes in
the dataset, and relabel them.

We attempted to identify such issues through keyword search.
Specifically, we searched for issues which in their summary con-
tained one of the same keywords which we used to filter the result
from the BERT search earlier (i.e. we selected all issues with at
least one occurrence of “upgrade”, “update”, “bump”, “depen-
dency”, “library”, or version number of the form x.y.z or x.y
in their summary).

4.5.3.1.2 Incorrectly Labelled Existence Decisions
A large portion of the original dataset originates from the key-
word search (top-down) and the source code analysis (bottom-
up). As these issues were labelled by a Bachelor student quite a
while ago, we were interested in the quality of the labels.

We selected a random sample of 100 issues from the top-down
and bottom-up approaches. This sample was labelled by our first
supervisor. The full results of the relabelling done by the first
supervisor can be found in Figure 15. In particular, we found
that issues labelled as solely existence, were in fact often either
property or existence and property issues.

This made us decide to relabel all of these issues (i.e. all
issues labelled only as existence by this student), as to drastically
increase the quality of our dataset. Each of the authors and our
first supervisor were then assigned 200 issues originating from
the top-down and bottom-up approaches that were labelled as
solely existence.

4.5.3.2 Systematic Errors in the New Dataset
In order to check the quality of the issues annotated during this
research, we selected a batch of 50 issues that were randomly se-
lected from all the issues the authors labelled during their master
thesis. These issues were then also labelled by the first supervi-
sor. The results of this analysis can be found in Figure 16.

We found that the agreement was better compared to the top-
down and bottom-up issues. However, it was clear that we often
labelled issues that were solely executive as both executive and
existence. As the number of issues that were labelled as both ex-
istence and executive during our master thesis was rather small,
we decided to relabel these issues as well. Figure 16 also shows
that 7 out of the 16 issues that were labelled as existence only
were misclassified. Hence, we also relabelled all issues labelled
only as existence.

4.5.3.3 Labelling Quality Assessment
Similar to how we did it for the initial set of labels in Section
4.5.2.3, in this section, we will consider the agreement of the
annotators on the issues we relabelled.

A detailed overview of how relabelling issues changed the
amounts of issues per class and method we found, is presented in
Figure 42 in Appendix B. Additionally, Figure 44 in Appendix B
provides a detailed overview of the agreement for the relabelled
issues. The average agreement and Kappa scores are presented
in Table 10.

In this case, the issues used to compute the agreement were all
issues marked for review; there were no issues that were specifi-
cally selected to be labelled jointly by both authors. The agree-
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Fig. 15. Result of the initial pilot relabelling performed by the primary supervisor for the top-down and bottom-up issues.
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Class Agreement Kappa Score
Existence 0.6802 0.2771
Executive 0.9116 0.6586
Property 0.7595 0.5239
Non-Architectural 0.8164 0.3279

Table 10. Average (over all pairings of annotators) agreement and Kappa
score per class for the second round of labelling issues (i.e. the relabelling
of issues from the first round and the initial dataset).

ment with the first supervisor was computed using 1) the issues
in the initial set of 50 issues from this research labelled by the
first supervisor, and 2) the issues without consensus which were
passed along to the first supervisor for classification because of
a lack of consensus.

We can immediately observe that the agreement for Execu-
tive issues is much better, with an agreement of 0.91 and Kappa
score of 0.66. For property decisions, we actually had an over-
correction (see Figure 44); the “property” label is now assigned
too often by the two authors. However, in terms of agreement
and kappa score, the quality of the labelling has somewhat im-
proved. For non-architectural issues, we can say the same; it was
still difficult to correctly judge whether an issue is architectural
or not, but in terms of agreement and kappa, quality has slightly
gone up.

The most problematic class during the relabelling was the “ex-
istence” class. Agreement and Kappa for this class has gone
down significantly. We attribute this to the fact that while la-
belling, the consensus of what makes an issue existence, actually
became less clear. We can attribute this to multiple reasons, but
the two most important ones were:

1. It became unclear when a change is sufficiently large to
affect a component. Based on the description, it can be
unclear how big a change is. To make more educated esti-
mates, we started looking at patches and pull requests to
estimate the scale of changes. However, this results in mul-
tiple problems; 1) this was not done with earlier labelled
issues, 2) this contradicts the fact that we should only look
at the summary and description, and 3) patch size may not
be a good measure of change impact size. For instance, the
patch size can be inflated due to many tests being included.
Patch size can also make labelling more ambiguous because
large patches may be present in issues which do not discuss
changes to components, and would thus normally not be
labelled as “existence”.

2. It became unclear when exactly a discussion is providing
sufficient information on changes or additions to warrant
assigning the label “existence”. For instance, is a compo-
nent being mentioned enough to label something existence?
This had always been a problem, but it became worse due
to the fact that estimations of the amount of effort involved
in a change became more prevalent during the relabelling
process.

4.5.4 Final Dataset
In Table 11, we present the final dataset we obtained after la-
belling (and relabelling) all the issues. We present a breakdown
both by class and by project. Note that there are two new
projects among the data storage and processing domain projects
(HBase and Submarine): these are the results from issues being
moved to different projects. Originally, these were Hadoop and
Yarn issues.

Additionally, we also provide Figure 17. This figure represents
how many issues were collected during different issue collection
rounds, and how these were combined to arrive at the current
dataset. Note that the last two phases in the figure (depicted in
orange) had not been executed yet at this point; these will be
described in Section 4.9.2.

4.5.5 Step 2.4: Measure Precision for Finding ADDs

We want to measure the precision for finding ADDs for differ-
ent methods, in order to determine which method is the most
effective.

4.5.5.1 Step 2.4.1: Measure Precision of Random
Sampling

Although random sampling cannot really be considered a search
approach, it can give us an estimate of how many ADDs we can
expect to find in case we would sample at random. We will simply
compute the fraction of decisions of each type, which means we
will compute the precision for all the different types.

4.5.5.2 Step 2.4.2: Measure Precision of the Key-
word Search

The keyword search approach from [28] has shown promising
results in the past. However, almost all issues with the high-
est search scores have been annotated already. Therefore, we
could only select issues with lower scores, as described in Section
4.5.1.2. To determine whether this approach is still efficient for
finding ADDs, we calculate the precision@k for finding architec-
tural issues using this approach. Here, precision@k means that
we compute the precision of the first k issues for every k, and
plot the result as a function of k.

4.5.5.3 Step 2.4.3: Measure Precision of the ML-
based Search

Finding ADDs using a deep learning classifier is a new approach
that we introduced in this work, meaning that there is no data
available regarding the performance of this approach. Due to
the nature of deep learning classifiers, where the performance
tends to improve upon training with more data, we perform this
search approach in multiple iterations, as described in Section
4.5.1.3. As a result, we will be monitoring the precision@k of
each iteration to determine whether this approach is efficient for
finding architectural issues, as well as to determine whether the
precision increases after training with more data.

4.6 Step 3: Optimise and Evaluate
Multi-label Deep Learning Models

In this section, we will be describing how we optimised and evalu-
ated our new multi-label classification models, in order to answer
RQ3. The detailed design for this step is given in Figure 18. The
main step is 3.1, in which we design and optimise the exact mod-
els we will be using in the remainder of this research. After this
follows the evaluation steps 3.2, 3.3, and 3.4.

4.6.1 Step 3.1: Determine Best Multi-label Model
Architectures

We experimented with the same features and models as we pre-
viously did in [18], except the issue characteristics and ontology
bag of words models. This is because these models performed
significantly worse than the others. However, we did experiment
with BERT. This is because previously, we did not experiment
with large language models, while these models have been shown
to achieve state-of-the-art performance for various tasks. Hence,
in the end we experimented with all the models given in Table
12

In this section, we will explain the full deep learning methodol-
ogy we used. We will explain the text preprocessing, the feature
generation, the hyperparameters we optimised, and the process
by which we optimised the hyperparameters.
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Data Storage
& Processing

Cassandra 82 138 115 26 234 44 12 651 850 1501

Hadoop 58 136 88 36 133 43 19 513 473 986
HBase 1 0 0 0 0 0 0 1 1 2
HDFS 74 43 83 15 162 15 11 403 450 853
MapReduce 18 19 24 1 51 6 2 121 191 312
Submarine 0 0 0 1 0 0 0 1 0 1
Tajo 33 40 14 18 41 7 8 161 219 380
Yarn 127 18 43 10 102 8 7 315 364 679
Total 393 394 367 107 723 123 59 2166 2548 4714

Web Develop-
ment

Brooklyn 0 0 0 0 0 0 0 0 10 10

CloudStack 1 1 0 0 3 0 0 5 120 125
JSPWiki 0 1 1 0 0 0 0 2 8 10
Solr 10 8 2 1 6 0 1 28 181 209
TomEE 0 7 2 0 0 0 0 9 37 46
Total 11 17 5 1 9 0 1 44 356 400

All Total 404 411 372 108 732 123 60 2210 2904 5114

Table 11. Dataset composition after collecting more data.
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Fig. 17. Overview of how issues were collected in order to arrive at the current dataset.
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Fig. 18. Detailed design over step 3: Optimise and Evaluate Multi-label Deep Learning Models.

Model Type Feature Type(s)
FNN BOW (frequency), BOW (normalised),

TF-IDF, Doc2Vec
CNN Word2Vec
RNN Word2Vec
BERT Text

Table 12. List of all the models we experimented with.

4.6.1.1 Preprocessing
We will be developing classifiers which use the summary and
description of issues as inputs. The first step when evaluating
the deep learning models, is preprocessing the text inputs to
remove unnecessary data. For the FNN, CNN, and RNN models
we largely followed the same methodology as done in [18]. In
particular, we used the same preprocessing. Specifically, we first
cleaned the text in the following way:

1. We used heuristically created regular expressions to remove
logging output and tracebacks not contained in formatting
tags from the text. These regular expressions can be found
in [18]. The removed portions of text were replaced with
special marker words.

2. We removed dates from the text by removing all sequences
of three groups of numbers separated by either slashes or
dashes (e.g. 1/2/1990, 2005-12-12). We replaced these with
the word “date”.

3. We removed IP addresses (optionally followed by a port
number) from the text. We also allowed addresses where
part of the address (i.e. one group) is obscured by xx. We
replaced these with the word “IP address”.

4. We removed links to websites. Links to other issues and
source code repositories were replaced with special marker
words (“issue link” and “github link”). Other links were re-
placed with generic link (“web link”) markers. We searched
for links based on both links with proper Jira formatting18,
as well as by looking for sequences of text (containing no
spaces) which contain domain extension names (e.g. .com
or .net)

5. We removed the content of {code} and {noformat} blocks
(and the opening and closing tags themselves). We used

18https://jira.atlassian.com/secure/WikiRendererHelpAction.

jspa?section=all

the regular expressions already mentioned in point (1) in
order to determine whether these blocks contained logging
output or tracebacks; in these cases, we replaced the re-
moved text with dedicated marker words. Otherwise, we
simply replaced the removed text with generic code block
or nonformat block markers.

6. We removed version numbers (e.g. 2.7.0, 3.6.x, v2.1)
from the text and replaced these with the phrase “version-
number”.

7. We removed file sizes (e.g. 1.2GB) and Amazon instance
type names (e.g. c4.medium)

8. We removed inline source code (code inside {} brack-
ets). Most of the time, we just used a generic marker
for inline code. However, we also used regular ex-
pressions to detect potential names of methods, or
classes (e.g. org.apache.hadoop.examples.Grep,
SnapshotManager#createSnapShot). lowerCamelCase
names were replaced with a marker for method/variable
names. UpperCamelCase names were replaced with a
marker for class names. Contrary to [18], we did not
specifically test for package names and had no special
markers for package names. The reason for this is that this
would require knowledge of all packages in a project, which
will generalise poorly.

9. We searched for lowerCamelCase and UpperCamelCase
words not contained in inline code formatting. We also re-
placed these words with variable/method and class markers,
as described above.

10. We tried to search for method and class names not contained
in inline code formatting tags by searching for sequences of
words separated by dots. This approach is likely to result
in some false positives. Hence, we attempted to filter these
out by discarding results ending in a file extension and by
discarding float literals. The removal of version numbers
and Amazon instance names from the text also reduced the
number of false positives.

11. We removed formatting tags containing text (e.g. {panel},
*strong*), but we kept the textual content. We removed
all such formatting text present in the Jira formatting help.
After this step, no further Jira formatting should be present
in the text.

12. We removed filenames not enclosed in tags by searching for
sequences of words (possible containing dots, dashes, and

https://jira.atlassian.com/secure/WikiRendererHelpAction.jspa?section=all
https://jira.atlassian.com/secure/WikiRendererHelpAction.jspa?section=all
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underscores), concatenated by slashes (/). The removed
text was replaced by the phrase “filepath”.

13. All remaining numbers and punctuation were removed from
the text.

At this point, we had one optional preprocessing step, which
we will refer to as “fine-grained technology replacement”. With
this approach, we replace the names of technologies in issues
with special marker words. This approach was based on the
observation that the presence of the same technology name may
have a different meaning depending on the project. For instance,
in Hadoop, an occurrence of “Hadoop” in a title probably has
little to nothing to do with a technology decision, while it may
be more likely to be technology decision related in projects not
directly related to Hadoop.

In order to work around this potential problem, we imple-
mented a fine-grained technology name replacement system. To
achieve this, we first came up with a list of technology names.
We started with the technology ontology class used in [18]. We
further extended this list by adding all project names from
our database. We manually inspected the project names be-
fore adding them to 1) remove unnecessary suffixed (such as
“(retired)”), 2) also include any likely aliases (e.g. “Apache
Zookeeper” can also simply be called “Zookeeper”, or might be
referred to as “ZK”).

We then implemented a mechanism which replaces technology
names in the following way: If the name of project X (or any
alias X ′ for project X) is encountered in an issue of project X,
it is replaced with a marker P . If the name occurs in an issue
not belonging to project X, then X is replaced with marker Q.
Here, P and Q are configurable markers. For our research, we
used P =“our development project” and Q =“technology”.

The summary and description of every issue were cleaned up
according to the approach outlines above, with the fine-grained
technology replacements as an optional step. Next, the sum-
mary and description were concatenated and tokenised. Next,
all words were converted to lowercase, lemmatised to remove in-
flected word forms, and stop words were removed. Next, the
preprocessed issues were used to generated features.

As explained previously, due to a bug in our initial code, we
have tested the performance of BERT with and without text
preprocessing. For this model, we also experimented with the
fine-grained technology replacements, but we never applied low-
ercasing, lemmatisation, or removed stop words, because BERT
was not pre-trained with these types of preprocessing.

4.6.1.2 Feature Generation

The types of features we use fall into two categories: bag of words
related features (term frequency, normalised term frequency, TF-
IDF), and semantic embeddings (Doc2Vec and Word2Vec). We
generated features for each in the following ways:

• For BOW (frequency & normalised) and TF-IDF, we col-
lected a corpus of words from all the preprocessed labelled
issues. We then generated the feature vectors as described
in Section 3.3.2.1.

• For Doc2Vec and Word2Vec, we preprocessed all the ±1.5
million issues from six software domains (to be introduced
further in Section 4.9), and trained the embeddings on all
these issues. Note that this is different from BOW and TF-
IDF; for those, we determined how the features should be
generated solely from the labelled issues. For Word2Vec,
we used the continuous skip-gram model and trained for
five epochs. For Doc2Vec, we used the PV-DBOW model,
and also trained for five epochs. For all models, we used
vectors of length 300.

4.6.1.3 Model Architectures

In this section, we will describe the model architectures we used,
and the corresponding hyperparameter we optimised. We used
the same types of model architecture as previously in [18]. These
are the model architectures as explained in Section 3.4. However,
compared to our previous work, we extended the variety of pos-
sible options for various hyperparameters. We also included a
number of regularisation options.

In the rest of this thesis we are using abbreviations to refer to
certain model architectures:

• BOWF: Fully connected model with bag of words input,
with the default frequency encoding.

• BOWN: Fully connected model with bag of words input,
with the normalised frequency encoding.

• TF-IDF: Fully connected model with the TF-IDF input en-
coding.

• DOC2VEC: Fully connected model with a Doc2Vec encod-
ing.

• CNN: Convolutional neural network with a Word2Vec en-
coding.

• RNN: Recurrent neural network with a Word2Vec encoding.

Table 32 in Appendix C shows a full overview of the hyper-
parameters that we could optimise for the models. This table
also includes default values. Some values are rounded for clarity
(since the tuning approach we used often samples values with
more decimals than necessary). The exact values of the hyper-
parameters can be found in the database.

4.6.1.3.1 Shared Hyperparameters

• Batch Size: For the internship, we used a batch size that
fits all samples in one batch [18]. However, it is generally
recommended to use smaller batch sizes [34], such as batch
sizes of around 32 to 64 [43]. To be on the safe side, so we
do not miss out on performance, we decided to increase this
range to be from 8 to 512.

• Loss Function: we planned to experiment with three differ-
ent loss functions: cross-entropy, hinge, and squared hinge.
As explained previously, we did not experiment Kullback-
Leibler divergence because it is equivalent to cross entropy.

However, due to a coding error, we accidentally omitted the
squared hinge loss from our hyperparameter optimisation.
We will get back to the consequences of this in Section 8.

• Optimizer : in Section 3.3.4.4, we covered many optimis-
ers available in TensorFlow. We also covered the fact that,
given sufficient tuning of the parameters of the optimisers,
a more general optimiser (e.g. Adam) will never underper-
form one of their more specific cases (e.g. SGD). This means
that the most promising optimisers to experiment with are
AdamW, Nadam, and RMSProp. Finally, we reduced this
to only AdamW and Nadam, because it has been shown
that these two optimisers often outperform RMSProp [11].

• β1, β2, ϵ: these are the hyperparameters of the AdamW and
Nadam algorithms as explained in Section 3.3.4.4.

• Weight Decay (shared by all except BERT): The rate by
which weights should be decayed while training. We per-
form a search with a logarithmic sampler. Because such a
sampler cannot sample from an interval containing 0, we
will always be using weight decay. However, it is possible
for the weight decay to be set to a minimal value (10−10).
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• Learning Rate Start, Learning Rate Stop, Learning Rate
Step, and Learning Rate Power : Given an initial learning
rate ηi, end learning rate ηe, number of steps s, and a power
p, the learning rate ηt used by TensorFlow19 in epoch t is
given by

ηt =

{
(ηi − ηe)

(
1− t

s

)p
+ ηe t < s

ηe t ≥ s

The initial learning rate, end learning rate, number of steps,
and the power can all be tweaked to determine how the
learning rate is decreased in order to improve the training
results.

4.6.1.3.2 FNN Model Hyperparameters
All FNN models share the same hyperparameters, and the same
search space for hyperparameter optimisation. We have the fol-
lowing hyperparameters for FNN:

• Number of Dense Layers & Layer Size: During our intern-
ship, we mainly tested rather shallow neural networks [18].
For this work, we wanted to test with deeper networks, up
until 5 layers. We optimise the number of hidden layers (0 to
5), and the layer sizes (2, 4, 8, . . . , 1024, 2048). We adopted
the additional requirement that the layer sizes should be
descending. As a result, the first hidden layer can be bigger
than the input layer, but no subsequent hidden layer can
be larger than its preceding layer. This reduces the search
space, while still allowing a transformation to a higher di-
mensional space in the first layer (like support vector ma-
chines implicitly do, using the kernel trick [7]).

• Dense Layer Activation: We tested a wide variety of activa-
tion functions. All hidden layers share the same activation
function. We experimented with all activation functions
covered in Section 3.3.3.5, except for a few:

– We excluded the sigmoidal activation function because
it is essentially equivalent to the hyperbolic tangent
activation function (tanh(x) = 2σ(x)− 1).

– We did not include LeakyReLU in our search, because
PReLU is essentially the same, but with the added ad-
vantage that it also automatically optimises the value
of α.

– We did not use the softmax function because it is
meant for outputting probability distributions as out-
put, not for hidden layers.

• L1 Regularisation: for FNNs, we experimented with three
different types of L1-regularisation: kernel (weight) regu-
larisation, bias regularisation, and activation regularisation.
The first of these penalises large weights. The second pe-
nalises large bias (constant) terms. The last one penalises
large activations (and, as such, also large weights and large
bias terms). Similar to weight decay, we use a logarithmic
sampler to sample the coefficients determining the impor-
tance of the different penalties, and as such we will always
use some degree of L1-regularisation. However, the penal-
ties may become very small.

We decided to not use L2 regularisation. This is because
weight decay has a similar effect as L2 regularisation. In
fact, for some optimises (e.g. SGD), the two are fully equiv-
alent; for Adam in particular, weight decay has been shown
to lead to better generalisability than L2 regularisation [51].
Additionally, we already have many other measures to pre-
vent overfitting. Not including L2 regularisation reduces
the search space of possible models.

19https://www.tensorflow.org/api_docs/python/tf/keras/

optimizers/schedules/PolynomialDecay

• Dropout : we experimented with dropout, but only in the
hidden layers. Hence, neurons in the input layer could not
become disabled. We opted to use dropout and not batch
normalisation, because both have a similar effect in FNN,
while dropout is computationally significantly more efficient
[30].

4.6.1.3.3 CNN Model Hyperparameters
For the CNN model, we had the following hyperparameters:

• Number of Convolutions, Convolution Size, and Number of
Filters: We experimented with one up to five parallel con-
volutions, where the size (height) of the filters ranged from
1 to 64. Two convolutions with the same size were not al-
lowed in the search. The number of filters (i.e. the number
of convolutions applied in every convolution layer) is equal
for all convolution layers, and its set of possible values was
given by 1, 2, 4, . . . , 64.

• Convolution Activation Function: An activation can also
be applied to the output of the convolution layer. For this,
we experimented with the same activation functions as for
regular hidden layers.

• L1 Regularisation: We applied L1 regularisation to the
weights of the convolution kernel, the bias of the convo-
lutional layers, and the activity of the convolutional layer.
This was done in the same way as the L1 regularisation for
the fully connected layers. For the same reasons as with
FNN, we did not use L2 regularisation.

• Batch Normalisation: We experimented with batch normal-
isation. Specifically, we tested with models which have a
batch normalisation layer after every convolutional layer.
First, we tested models with and without batch normal-
isation; either all convolutional layers were followed by a
batch normalisation layer, or none. When using batch nor-
malisation, we also optimised the momentum value used to
estimate the population mean and variance. We did not
experiment with dropout, because batch normalisation has
been shown to be more effective for CNNs [30].

• Fully Connected Layer : We allowed the concatenation layer
in the network to optionally be followed by a single fully
connected layer before the final layer. For this layer, we
optimised the same hyperparameters as for a FNN network.

4.6.1.3.4 RNN Model Hyperparameters
For the RNN model, we had the following hyperparameters:

• Number of RNN Layers, RNN Layer Type, and RNN Layer
Size: Compared to the work in [18], we experimented with a
slightly more elaborate variety of RNN architectures. Most
notably, we experimented with networks with either 1 or
2 bidirectional layers, and we experimented with various
different sizes for the layers (16, 32, 64, 128). Research in-
dicates that gated units offer clear performance advantages
over simple traditional RNN units [12]. However, there is
no clear winner between LSTM and GRU. Therefore, in our
experiments, we will evaluate both LSTM units and GRUs,
while disregarding the simple RNN units. Note that we
allowed networks where the two RNN layers use different
types of units. For the recurrent layer activation, we used
the hyperbolic tangent as activation function, since this is
generally the best choice [63].

• Fully Connected Layer : We allowed the concatenation layer
in the network to optionally be followed by a single fully
connected layer before the final layer. For this layer, we
optimised the same hyperparameters as for a FNN network.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/PolynomialDecay
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/PolynomialDecay
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4.6.1.3.5 BERT Hyperparameters

For the BERT model, Devlin et al. ([21]) recommended hyperpa-
rameter values that should work good for fine-tuning the model.
These parameters can be found in Table 33 in Appendix C. In
particular, compared to the parameters shared by all other model
types, for BERT we often have a reduced search space with some
standard values. Specifically:

• The Adam optimiser is used. The parameters for Adam are
fixed to β1 = 0.9, β2 = 0.999, ϵ = 10−7.

• We only experimented with constant learning rates. In par-
ticular, we only experiment with 2 ∗ 10−5, 3 ∗ 10−5, and
5 ∗ 10−5.

• The loss is fixed to cross entropy.

• The weight decay is fixed to 0.01.

• For the batch size, we only experimented with 16 and 32.

• Since we are performing transfer learning, we do not need
to train the model for many epochs. We tried 2, 3, and 4
epochs.

• Contrary to when we used BERT for searching, we did not
freeze any layers.

When we used BERT for finding architectural issues, we had
limited hardware capabilities. This meant that we could not
train BERT using the recommended batch sizes of 16 and 32,
but had to use a batch size of 1. However, the performance of
BERT with such a small batch size was really poor. To im-
prove the performance, we froze the first 10 layers of the model.
However, once we obtained access to a supercomputer, we were
able to train and optimise BERT with the recommended hyper-
parameters [21]. To be clear, we used BERT with 10 frozen
layers for finding architectural issues (see Table 8). For all other
evaluations, we used an optimised set of the recommend hyper-
parameters (see Table 33), which did not require freezing any
layers.

Finally, for BERT we experimented both with and without
text preprocessing. BERT ignores words which are not part of
its vocabulary. Hence, we cannot use marker words to replace
the formatting, but we have to use proper phrases instead. Be-
cause things work differently for BERT, we had to explicitly test
whether the preprocessing improved performance or not.

4.6.1.4 Hyperparameter Optimisation

In previous work [18], we spend a lot of manual effort into hy-
perparameter tuning. To reduce this effort required, we decided
to incorporate Keras Tuner20 into our deep learning tool. Keras
Tuner is a library for automatically optimising the TensorFlow21

models we used. The tuner takes in a range of possible values
for the hyperparameters of a model, and explores a portion of
the search space of possible combination of hyperparameters in
search of the best performing model. The search algorithms were
explained in more detail in Section 3.3.7.

Except for BERT, we used the Hyperband algorithm for op-
timising the hyperparameters. The entire search spaces for the
FNN models can be found in Tables 34-37 in Appendix C. The
search space for the CNN model can be found in Table 38 in Ap-
pendix C. The search space for the RNN can be found in Table
39 in Appendix C. These tables also contain the best hyperpa-
rameters found using Hyperband.

For all models, we ran 3 iterations of the algorithm. In each
iteration, a little over 250 different random hyperparameter con-
figurations were tested. This number was reduced to a single

20https://keras.io/keras_tuner/
21https://www.tensorflow.org/

best set of hyperparameters by means of successive halving. This
allowed the algorithm to filter out poor performing sets of hyper-
parameters early in the training process, to give good performing
hyperparameter sets relatively more training time. After every
iteration we checked the results, and we did not see much im-
provement after 3 iterations. Each combination of hyperparam-
eters was tested 3 times, after which the average performance
was used to compare the different combinations. We did this
to mitigate the randomness of training a deep learning model
(e.g. the impact of random initialisation of the weights). Every
time we tested a combination of hyperparameters, the model was
allowed to train for a maximum of 200 epochs (although Hyper-
band might train for significantly less). Additionally, we used
early stopping; if the performance (in terms of loss) did not im-
prove by more than 0.01 for 5 epochs, the training of a classifier
was considered done.

We used 80% of the data for the training set, 10% for the
validation set and the last 10% for the test set. The splitting was
done in a stratified manner. The training, validation, and test
sets were fixed for all models and hyperparameter combinations.
This was to make a fair comparison between the different models
and different hyperparameter combinations. The data used for
the hyperparameter optimisation consisted of all labelled issues
from the Apache projects Hadoop, Tajo, Mapreduce, Cassandra,
HDFS and Yarn.

For BERT, we performed an exhaustive (i.e. grid) search. This
means that all 18 combinations of hyperparameters were tested
exhaustively. The search space and optimal hyperparameters are
given in Table 33. We used the same training, validation, and
test set as for the other models. Additionally, all BERT models
were also evaluated three times to mitigate the potential effects
of randomness.

For each optimised model, we performed two experiments.
One with the preprocessing as described in Section 4.6.1.1 with-
out fine-grained technology replacement, and one with the addi-
tional step of fine-grained technology name replacement. Note
that the models were first optimised without the fine-grained
technology replacement.

4.6.2 Step 3.2: Evaluate Multi-label Models
During our internship, we optimised and evaluated our models
using a 10-fold cross validation. For this thesis, we opted to eval-
uate the models on a holdout test set. This is because, 90% of the
dataset is used for optimising the hyperparameters. Evaluating
the performance using a 10-fold cross validation on this dataset
would mean that we do not actually test the model on data that
is entirely foreign to the classifier. In practice, evaluating the
performance using a k-fold cross validation also tends to be too
optimistic compared to evaluating on a holdout test set [2, 64].
We selected the holdout test set in a stratified manner, as this
was found to give a better estimation of the real performance of
a classifier [32].

4.6.3 Step 3.3: Compute Predictions on Data Stor-
age & Processing Projects

In order to evaluate whether the classifiers seem to make sensible
predictions, we will evaluate the proportions of classes in predic-
tions made by the classifiers. Based on our random sampling, we
know the expected proportions for the different types of issues in
the six projects the models were trained and evaluated on. In this
step, we computed the predictions of the multi-label classifiers
on the remaining issues from these six projects. We also included
some detection and multi-class classifiers from our earlier work in
[18] to see how multi-class classifiers perform compared to these
models.

For detection, we selected the CNN and BOWF model. CNN
was the best performing model, and we also included BOWF, as
this model showed good performance while using completely dif-
ferent input features. For multi-class classification, we used the

https://keras.io/keras_tuner/
https://www.tensorflow.org/
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RNN model and the BOWF model. The RNN model performed
the best for the multi-class classification task, and we selected
BOWF again for the use of different input features. For each
detection and multi-class classification model, we evaluated two
variants. The first variant is trained on the original dataset from
[18], while the second variant is trained on the new expanded
and relabelled dataset.

4.6.4 Step 3.4: Evaluate Models using Proportions
of Predictions

In this final step, we evaluated the best performing models based
on the performance on the test set, and based on the proportions
of the predictions made by the models. The full details of this
analysis will be given in Section 6.4. The most promising models
in terms of performance were BERT (both with and without pre-
processing) and TF-IDF* (TF-IDF with fine-grained technology
replacement). However, only BERT also made predictions with
proportions close to the expected ones.

4.7 Step 4: Evaluate Need for Addi-
tional Data

One of the hypotheses from the previous research [18], was that
more data was necessary for improved multi-class classification.
We will test this hypothesis by training models varying training
dataset sizes, so that we can answerRQ4. We experimented only
with the best multi-label model: BERT (with preprocessing)

We have a total of 4712 data storage and processing issues that
we can use for this experiment. We used 10% of the data for a
fixed test set, as to make a fair comparison between the models
possible. We used another 10% for a fixed validation set. The
rest of the data was used for a growing training set. We increased
the size of this training set by 25 issues in each iteration, until
we could not increase the training set any further:

• iteration 1: 25 issues

• iteration 2: 50 issues

• . . .

• iteration 150: 3750 issues

• iteration 151: 3768 issues

Although the individual results might suffer from the random-
ness of the deep learning training process, given the small step
sizes this should give us the ability to observe a trend line.

4.8 Step 5: Evaluate Generalisabil-
ity of Multi-label Classifiers to
Projects in the Same Domain

For RQ5, we want to evaluate the generalisability of the multi-
label classifiers. The first way in which we will examine the gen-
eralisability of the classifiers, is by examining the generalisability
to projects in the same domain, but foreign to the dataset. We
will do this using project cross validation, as proposed in [18].

In our cases, this means that we start out with the dataset
of data storage & processing issues. These issues are then split
into folds according to the projects they belong to. We then
perform cross validation. However, we compute the training,
validation, and tests sets in a particular way. Suppose that we
have projects p1, p2, . . . , pk, and corresponding subsets of issues
D1, D2, . . . , Dk. Then, on iteration i of the project cross valida-
tion, the testing set is Di and the training and validation set are
obtained by splitting

D =
⋃
j ̸=i

Dj

into a training and validation set. Hence, on every iteration
of the validation process, issues from one project are used for
the test set, and the issues from the other projects are used for
the training and validation sets. This is also depicted in Figure
19. The final performance over all folds is obtained by averaging
the performance over every fold. Note that for this analysis, we
excluded the issues from HBase and Submarine; these are only
three issues in total, and would not constitute a meaningful test
set.

The final conclusion from this test was that BERT (with pre-
processing) had the best ability to generalise to different project.

4.9 Step 6: Evaluate Generalisabil-
ity of Multi-class Classifiers to
Projects in Different Domains

In this final step, we want to answer RQ6. We will mainly
focus on evaluating the generalisability to projects of different
domains of BERT, the classifier which scored best on the test for
generalisability to different projects in the same domain. The
detailed design for this step is depicted in Figure 20.

The idea is that we use BERT (with preprocessing) to predict
on a large amount of issues from a variety of domains. We then
take random samples from these issues, and manually classify
these. We then compared these manually annotated labels with
the predictions from BERT in order to evaluate the generalisa-
tion performance to different domains.

Note that due to a bug in our code, we accidentally used BERT
without preprocessing to compute the predictions. We will cover
this in more detail in section 8.

4.9.1 Step 6.1: Predict with Multi-label Models on
Issues from Different Domains

The first step is to let BERT predict on many issues from various
domains. Among all the projects in the database of Montgomery,
Lüders, and Maalej, our first supervisor and a Bachelor student
(Sarah Druyts) identified six domains:

1. Software development tools

2. DevOps and cloud

3. Data storage and processing

4. Web development

5. Content management

6. SOA and middlewares

Furthermore, from the projects in our database, they iden-
tified which projects belonged to which domain. Projects not
belonging to any of these domains were not considered for the
samples in this step. In the end, we had 1,345,784 issues from
these six different domains.

The projects in the training dataset (Hadoop, Tajo, Yarn,
MapReduce, HDFS, and Cassandra) all belong to the data stor-
age & processing domain.
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Fig. 19. Graphical depiction of project based cross validation. For each test run, one project is used as the test set, and the remaining projects are
used to obtain the training and validation sets.

4.9.2 Step 6.2: Taking Random Samples of Issues
from Different Domains

In this section, we describe how we took the random sample from
the issues from the different domains. We took two random sam-
ples: one fully random samples, and one random sample based
on the confidences outputted by the classifier. These two ran-
dom samples also form the last two steps in arriving at the final
dataset of issues presented earlier in Figure 17.

While initially labelling issues from some of these projects, we
found that there were a couple of projects that used the Jira issue
tracker as a ticketing system for their users, and not for discus-
sions between developers. This meant that, contrary to other
projects, these projects 1) are not about programming related
problems, and 2) do not contain any architectural knowledge.
As such, we decided to exclude these projects, The projects ex-
cluded were:

• All projects from the Jira repository (not to be confused
with the JiraEcosystem repository)

• The MVNCENTRAL and OSSRH projects from the
Sonatype repository

4.9.2.1 Step 6.2.1: Fully Random Sample from the
Domains

The first random sample is used for evaluating the generalisabil-
ity of the model as a plain classifier. The idea is that we take
a completely random sample, annotate the sample, and use the
performance of the classifier on this random sample as an esti-
mate of the classifier’s performance on the entire population of
1.35 million issues we computed the predictions for.

The sample consists of 400 random issues from the different
domains. We took this sample in a stratified manner, meaning
that we selected more issues for the domains with more issues.
To be more specific, we selected the following amounts of issues:

• 50 from software development and tools

• 63 from DevOps and cloud

• 124 from data storage & processing

• 48 from web development

• 74 from content management

• 43 from SOA and middlewares

4.9.2.2 Step 6.2.2: Random Sample from the Do-
mains based on Classifier Confidence

The second sample is used to evaluate the generalisability of the
model as a search tool for ADDs. This means that we want to
check with what precision the classifier is able to identify exis-
tence, executive, and property issues. For each class, i.e. exis-
tence, executive and property, we selected the issues that were
predicted to be of that class (confidence > 0.5). Then for each
class, based on the predicted confidence of the class, we put the
issues in 10 bins according to their predicted confidence as fol-
lows:

• bin 1: 0.50 < confidence ≤ 0.55

• bin 2: 0.55 < confidence ≤ 0.60

• . . .

• bin 10: 0.95 < confidence ≤ 1.00

Then, we selected 33 issues from those bins in a stratified
manner. In other words, we selected the amount of issues from
every bin proportional to the amount of issues in that bin. Doing
this for each class, existence, executive and property, yielded
3×33 = 99 issues and doing this for all 6 domains yielded 6×99 =
594 issues. We did not do this for the non-architectural issues,
since this sample is used for evaluating the model as a search
tool for finding architectural issues.

4.9.3 Step 6.3: Classify Issues
The issues from both samples were split evenly between the two
authors, meaning that both authors did 200 issues each from the
first sample and 297 issues each from the second sample. These
issues were also annotated according to Section 4.5.2.1, meaning
that all uncertain cases were double-checked and discussed, and
conflicts were resolved by the first supervisor. The final set of
issues collected this way is displayed in Table 13.
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Random Content Management 1 3 3 0 5 1 0 13 59 72
Data Storage & Process-
ing

5 6 6 0 3 1 1 22 102 124

Devops and Cloud 1 3 4 0 0 0 1 9 54 63
SOA and Middlewares 1 1 2 0 1 0 0 5 38 43
Software Development
Tools

1 2 0 0 3 0 0 6 44 50

Web Development 1 2 1 0 0 0 0 4 44 48
Total 10 17 16 0 12 2 2 59 341 400

Confidence Content Management 11 17 9 0 30 3 3 73 26 99
Data Storage & Process-
ing

10 17 15 3 21 7 2 75 24 99

Devops and Cloud 3 14 22 1 9 7 1 57 42 99
SOA and Middlewares 3 19 11 3 8 8 3 55 44 99
Software Development
Tools

8 16 12 0 13 3 0 52 47 99

Web Development 7 20 14 1 14 3 2 61 38 99
Total 42 103 83 8 95 31 11 373 221 594

All Total 52 120 97 8 107 33 13 432 562 994

Table 13. Overview of issues collected from the random samples from the six domains
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Fig. 20. Detail study design for step 6: Evaluate Generalisability of Multi-
class Classifiers to Projects in Different Domains.

4.9.3.1 Labelling Quality Assessment

Like we did for the first two labelling rounds, we once again
evaluated the agreement for this round of labelling. The detailed
agreement statistics can be found in Figure 45 in Appendix B.
The average agreement and kappa score per class is given in
Table 14.

Class Agreement Kappa Score
Existence 0.7616 0.4911
Executive 0.8788 0.6044
Property 0.7576 0.4663
Non-Architectural 0.7108 0.3817

Table 14. Average (over all pairings of annotators) agreement and Kappa
score per class for the second round of labelling issues (i.e. the relabelling
of issues from the first round).

Like previously, the agreement and Kappa for the “executive”
class are still rather good, although slightly worse than before.
For existence, the agreement and Kappa score are actually the
best they have ever been across all rounds.

For property issues, the agreement has also become slightly
better, although the two authors still seem to assign it too often
(see Figure 45). We think that this is the case because for some
quality attributes (specifically usability, maintainability, and ef-
ficiency) it may be difficult to 1) define what constitutes an im-
provement to these quality attributes, and 2) determine if an
issue actually improves these. Since quality attributes may not
be mentioned directly, it may be necessary to infer them from the
rest of the text in the issue. We found that for the three afore-
mentioned quality attributes, it was particularly easy to make
an incorrect judgement. As an example, the two authors often
thought a change could potentially improve usability, while the
first supervisor did not agree with this.

Finally, the agreement for the non-architectural class is still
rather poor. There are still many cases where it is difficult to
determine whether the change described in an issue is related to
the architecture of the system.

When looking at all labelling quality evaluations we did, we
have some general takeaways:

Quality Evaluation Takeaways:

• Agreement is generally quite good.

• Kappa score is generally quite poor.

– Most types have a kappa score between 0.2 and 0.6

– We never had kappa scores exceeding the recommend
κ = 0.8

• Executive issues have the best agreement.

• Existence issues are particularly problematic due to an
unclear understanding of what makes an issue existence.

• Non-architectural is also a problematic class, which we
attribute to the fact that there are many “edge-case”
issues.

• The agreement for property issues is not exceptionally
bad, but also not exceptionally good.

• The agreement and kappa scores we computed should
represent a worst-case scenario.

4.9.4 Step 6.4: Evaluate DL Models

With the labelled issues, we evaluated the performance of BERT
on the different domains. For the fully random sample, we com-
puted F1, precision and recall scores; this means that we evaluate
the classifier for use as an actual classifier.
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For the random sample based on confidence, we will compute
the precision@confidence graph; this means that we will compute
the precision as a function of the classifier confidence. This will
provide an estimate how useful BERT would be as a search tool
in different domains.

4.10 Reproducing and Extending our
Results

We want researchers and practitioners to be able to reproduce
our results, and provide them the ability to extend our research.
We therefore uploaded the code for our entire tool (Maestro) to
GitHub22. Additionally, we have uploaded an archive contain-
ing all data related to our annotated issues and deep learning
models23. Appendix I provides a brief explanation on how to use
Maestro to replicate our results. Additionally, In Appendix J, we
provide details on how one can find what issues are (re)labelled
during which round, and in Appendix K we provide details on
how one can find the trained models and obtained performance
metrics we used for presenting our results.

22https://github.com/mining-design-decisions/Maestro
23https://zenodo.org/record/8225601

https://github.com/mining-design-decisions/Maestro
https://zenodo.org/record/8225601
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5 Maestro
During our previous work in [18], we developed a command line
tool for training and evaluating neural networks. Another stu-
dent, Sarah Druyts, worked on developing a graphical user in-
terface to improve the usability of the system. However, while
working on this research, we decided to further improve the sys-
tem by adding 1) a centralised database of labels and issues, 2) an
API for securely interacting with the database, 3) a client library
for interfacing with said database, and 4) a system for collabo-
ratively classifying issues from within the existing graphical user
interface. The reasons for these changes were the following:

• Data Centralisation & Consistency

Up until this point, issues were labelled using spreadsheets.
Over time, this had led to a multitude of separate spread-
sheets containing labels. These spreadsheets were located in
different source code repositories. Additionally, more issue
labels were located in other repositories. With the addition
of a database, we created a single source of truth for all
labelled issues.

Additionally, we were able to convert the dataset to a format
where we do no longer use the issue keys to relate labels
to issues. We found out that issue keys are not proper
unique identifiers in two different ways: 1) the key of an
issue may change, and 2) different Jira instances may have
projects with the same name. Especially the first point was
a problem, because it had already caused some hard-to-
detect duplicate entries in the existing dataset.

The database also serves as a centralised place to store all
model configurations, the performance evaluations of mod-
els, trained models, the predictions made by trained models,
and any other outputs generated by the deep learning sys-
tem. This means that trained models and prediction results
can be now be shared more easily.

• Usability and Flexibility of the Deep Learning System

Previously, the deep learning system was difficult to work
with. All input had to be prepared manually using scripts;
first issues had to be downloaded, then they had to be
preprocessed and put into a specific JSON structure, and
only then could they be fed to the deep learning system.
This lead to a difficult workflow, and also complicated de-
velopment of the graphical user interface. By adding the
database and moving more preprocessing code into the deep
learning system itself, we were able to make it easier to feed
new data into the deep learning system for training or pre-
diction.

• Data Availability

Up until this point, we were dependent on the Jira API to
download issue data, such as the summaries and descrip-
tions of issues. With the database, we were able to collect
data from multiple Jira instances in a single place. We are
also no longer limited by rate limits imposed on Jira APIs.
Hence, the addition of the database increased the availabil-
ity of the issue data.

• Improved Labelling Workflow

The addition of the database enabled the addition of a cen-
tralised labelling workflow without the use of external tools
and spreadsheets. It became possible to classify issues in
the graphical user interface itself, and store the discussions
between annotators centrally. Additionally, the dataset of
labels could now be updated in real time while labelling;
previously, spreadsheets had to be merged into the dataset
manually.

The database for the system was based on a database of issues
created by Montgomery, Lüders, and Maalej in [58], which was
brought to our attention by our first supervisor. Montgomery,
Lüders, and Maalej created a MongoDB archive containing the
data from the issues from multiple Jira instances. In total, data
was collected from 1822 different projects, resulting in a database
containing around 2.7 million issues. The database contains all
public issue data available from the Jira API. This includes not
only issue summary and description, but also all comments and
other issue characteristics. Henceforth, we will refer to this initial
database as the JiraRepos database.

First, we enhanced the JiraRepos database with a script for
updating the contents of the database. While the JiraRepos
dataset was relatively up-to-date (January 2022), our dataset of
manual labelled issues contained issues that were newer. Mont-
gomery, Lüders, and Maalej did not provide a script to update
the JiraRepos dataset without downloading all data again. As
such, we created a script that prevents us from having to down-
load all issues again, by only downloading issues that were cre-
ated or updated after January 2022. Another problem we had is
the fact that issues from some projects, such as Apache Cloud-
Stack 24, are not downloadable without authentication with the
API. The original dataset by Montgomery, Lüders, and Maalej
was obtained without authentication. Hence, we also updated
the script so that it can use authentication. We identified the
Apache projects (since we only had credentials for projects from
the Apache ecosystem) that had this problem and downloaded
all issues from these projects as well. In order to make this script
easy to use for our tools, we incorporated the script into an end-
point of our database API.

In order to adapt the database to our use cases, we also stored
other types of data. First, we store the manually assigned la-
bels of issues. We also store comments from annotators in order
to preserve their reasoning and discussions. Second, we store
information that is relevant for our machine learning models.
This information includes the configuration of the models, (pre-
trained) word embeddings, saved models, performance metrics of
the models and the predictions of the models. Finally, we have
a tagging system; tags are additional metadata which can be at-
tached to issues. For instance, issues can have tags to denote
how they were found, or by whom they were labelled.

Since we want to prevent unknown people modifying our
database, we created a database API that requires authentica-
tion for every endpoint that modifies the database. This means
that everyone can retrieve the data from the database, but only
trusted people can modify the data. This database API also
allowed us to create endpoints that make interaction with the
database easier for the deep learning tool and the UI, as it intro-
duces a layer of abstraction on top of the database. Furthermore,
we use HTTPS for secure communication between the client and
the server.

We create a daily backup, in case something goes wrong. This
might be due to user error, malicious parties or because we use a
server without replication, due to cost savings. This automatic
backup is stored on Google Drive.

All aforementioned changes have resulted in our tool, which we
call Maestro. Maestro is a tool for finding and exploring architec-
tural design decisions. The tool allows users to search for issues
using keywords, design and evaluate classifiers, use classifiers to
find issues, view statistics about issues, and manually label more
issues in order to expand the existing dataset while supporting
discussions between annotators. In this chapter, we briefly sum-
marised the work we did on the backend of the tool. For more
details on Maestro as a tool, including its envisioned use cases
and workflow, we refer to its accompanying paper [53] (since the
work has been accepted for publication, but has not been pub-
lished yet, the paper can be found in Appendix D). Information
about the architecture, and how to use and run Maestro, can

24https://cloudstack.apache.org/

https://cloudstack.apache.org/
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be found in our repository25. Additionally, the archives contain-
ing the data for the JiraRepos database, and the data regarding
our deep learning models and annotated issues can be accessed
here26.

25https://github.com/mining-design-decisions/Maestro
26https://zenodo.org/record/8225601

https://github.com/mining-design-decisions/Maestro
https://zenodo.org/record/8225601
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6 Results
In this section, we will present and discuss the results we ob-
tained. We start off with discussing the results of labelling is-
sues. We will cover the results research questions by research
question.

6.1 RQ1: Measure Precision for Find-
ing ADDs Using Random Sam-
pling

We classified two batches of 400 randomly samples issues (see
Section 4.5.1.1). The first batch of issues was taken from web
development projects (Apache Solr, CloudStack, TomEE, JSP-
Wiki and Brooklyn), and the second batch was taken from data
storage & processing related projects (Apache Hadoop, Cassan-
dra, Yarn, Mapreduce, HDFS and Tajo). The results for the
web projects can be found in Figure 21. The results for the data
storage & processing projects can be found in Figure 22. Ad-
ditionally, we took a random sample from six different software
domains. Although the purpose of this random sample was to
answer RQ6, it is also relevant for this research question. The
results of this random sample are shown in Figure 23.

Property

Existence Executive

Non-Architectural

1
(0.25%)

11 (2.75%) 17 (4.25%)

5 (1.25%)

1
(0.25%)

9
(2.25%)

0
(0.00%)

356 (89.00%)

Fig. 21. Distribution of issues found by taking a random sample from the
Apache projects Solr, JSPWiki, CloudStack, Brooklyn, and TomEE (total
amount of issues: 400) belonging to the web development domain.

For the web development projects, we found that 11% of the
issues were architectural. For the data storage and processing is-
sues, we found this to be 12%. Furthermore, the random sample
we took from all six identified domains, consisted of 14.5% archi-
tectural issues. This confirms the suspicion that in general, the
number of architectural issues is low compared to the number of
non-architectural issues.

This shows that finding architectural issues a hard task; ran-
domly selecting issues is inefficient for finding large amounts of
architectural knowledge. Hence, tools such as a keyword search
engine, Maven POM file analyser, static source code analysis,
and machine learning classifiers, are essential for efficiently find-
ing architectural issues. Although the fraction of issues contain-
ing ADDs is small, given that the six domains contain around
1.5 million issues in total, we suspect that one could find around
150,000-225,000 architectural issues in these six domains. In to-
tal, the database contains around 3 million issues, possibly con-
taining 300,000-450,000 architectural issues. However, we did not
take a sample from the other 1.5 million issues, so we cannot be
sure about these numbers. These numbers show that issue track-
ing systems are rich in architectural knowledge, making them a
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2
(0.50%)

15
(3.75%)

2
(0.50%)

352 (88.00%)

Fig. 22. Distribution of issues found by taking a random sample from the
Apache projects Hadoop, Tajo, Yarn, HDFS, MapReduce, and Cassandra
(total amount of issues: 400) belonging to the data storage & processing
domain.
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2
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Fig. 23. Distribution of issues found by taking a random sample from six
software domains (total amount of issues: 400).

good source for research on software architecture.
Due to the small amounts of data we have for the architec-

tural design decision subtypes (existence, executive, and prop-
erty), we cannot make strong claims regarding the proportions
of these subtypes in random samples. This is mainly because
the uncertainty induced by our 95% confidence interval is still
relatively large, with how small these percentages are. For ex-
ample’s sake, consider the property class for the web development
projects (Figure 21). There are 15 property issues. This means
that the total proportion of property issues would be estimated
as p̂ = 15/400 = 0.0375. However, for the standard error, we
have

SE(p̂) =

√
p̂(1− p̂)

400
=

√
5775

4003

This means that 1.96 ∗ SE(p̂) ≈ 0.019. Hence, the 95% con-
fidence interval for the true population mean is [0.0185, 0.0565].
Hence, we know (with 95% certainty) that the true proportion
of property issues must be between 1.85% and 5.65%. Through-
out the remainder of this discussion, we will use the maximum
likelihood estimates (e.g. 3.75% for property issues in the web
development domain). However, we should keep in mind that
there is still room for quite some uncertainty because we are
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dealing with small percentages.
Comparing Figures 22 and 21, it seems that between domains,

the proportions of the subtypes can differ a lot. For example, for
the six projects in the data storage & processing domain (Figure
22), developers have to make more component (existence) deci-
sions and decisions are often focused on the quality of the system
(many issues contain at least a property decision). Projects like
Hadoop and Cassandra are pretty stand-alone projects, mak-
ing the number of executive issues small. Furthermore, these
projects require efficient data processing and storage, showing
the need for many property and existence decisions. In contrast,
for the web development domain (Figure 21), it seems that devel-
opers have to deal more often with external factors (executive).
When looking at the random sample of issues from all six do-
mains in Figure 23, it seems that, in general, developers most
often have to make property decisions, while existence and exec-
utive decisions are made almost equally often. Also, we see that
existence decisions are often made to improve a certain quality
attribute of the system (property), because many architectural
issues contain both an existence and property decision.

RQ1 Takeaways:

• The fraction of architectural issues differs based on
projects and domains, but is in the range of 10%-15%:

– For projects in the data storage & processing domain
(specifically, Hadoop, HDFS, Yarn, Tajo, MapRe-
duce, and Cassandra), around 12% of issues is ar-
chitectural.

– For projects in the web development domain (specif-
ically, Solr, JSPWiki, CloudStack, Brooklyn, and
TomEE), around 11% of issues are architectural.

– Across all six identified domains, around 14.5% of is-
sues are architectural.

• The fractions of existence, executive, and property de-
cisions are small and seem to differ more substantially
per domain.

• The small fraction of architectural issues show that
search tools are needed for finding architectural issues
efficiently.

6.2 RQ2: Evaluate deep learning as a
search tool for architectural issues

In this section, we will be discussing the results we obtained
from acquiring issues from keywords searches and deep learning
classifiers, and then labelling those issues.

6.2.1 Re-evaluating Existing Approaches
One of the main results in this section is an evaluation of deep
learning as a search approach. For this evaluation, we will be
comparing with other known search approaches (source code
analysis, Maven POM file analysis, and keyword search). How-
ever, to make this comparison fair, we also re-evaluated the pre-
cision@k for those approaches using the relabelled dataset. The
results of doing this can be found in Figure 24. Additionally, we
also evaluated the precision@k for every type of keyword search
separately. These results can be found in Figure 25. Compared
to the original results for source code analysis ([28]), keyword
search ([28]), and Maven POM file analysis ([25]), we make the
following observations:

• The precision@k has become worse for existence issues for
all approaches. We attribute this to the fact that we
relabelled many existence issues, and some were classi-
fied to totally different types (e.g. just property, or non-
architectural).

• The precision@k for finding property issues for static source
code analysis has slightly improved. We attribute this to
the fact that many issues were relabelled from “existence”
to “existence/property”.

• The precision@k for finding property issues with the search
engine has significantly improved. We also attribute this
to the fact that many “existence” issues were relabelled to
either “property” or “existence/property”. We can also see
this for all four individual searches.

• For keyword searches and static source code analysis, the
precision@k for finding executive issues has slightly im-
proved. This is because a number of dependency upgrade
issues were relabelled from “non-architectural” to “execu-
tive”.

• When considering the average precision@k for the ap-
proaches to identify architectural issues, little has changed.
The only change is that the precision@k seems to actually
decrease faster than before for the keyword search approach.
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Fig. 24. Precision@k for other approaches for finding architectural design
decisions, where precision@k was computed based on the relabelling done
in this research. Top: source code analysis. Middle: Maven POM file
analysis. Bottom: Keyword search. Note that for the keyword search, the
precision@k is computed as the average precision@k for the four separately
performed keyword searches. The results for each separate search can be
found in Figure 25.
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Fig. 25. Precision@k for the different keyword searches performed in [28], where the precision@k was computed based on the relabelling done in this
research.
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6.2.2 New Keyword Search

First, we tried to expand our dataset using keyword searches.
We computed the precision@k for both lists of issues we labelled.
The precision@k for the reusable solutions can be found in Figure
26. The precision@k for the decision factors can be found in
Figure 27.
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Fig. 26. Precision of the k issues with the highest search scores using the
reusable solutions keywords.
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Fig. 27. Precision of the k issues with the highest search scores using the
decision factors keywords.

We started with keyword search because we were aware that
the Maven dependencies analysis method was exhausted, i.e.
it could not find more issues. However, this also seems to be
the case for the keyword searches to some extent. Previously,
keyword searches achieved a precision@400 of 45.3% for finding
property issues. This precision was obtained using the issues
with the highest search scores. Now that the issues with a high
search score were already labelled, we had to label issues with
lower search scores. This probably resulted in the low precision
for keyword searches in this research. With the reusable solu-
tions keywords, we obtained a precision@34 of 11.8% for find-
ing property issues and with the decision factors keywords, the
precision@241 was 22.4%. Although this is more than twice as
efficient as analysing issues from random samples, it is still in-
feasible for finding a lot of property issues. Given that our goal

was to obtain around 500 additional property issues, we would
have to label around 2500 issues with that precision.

6.2.3 Deep Learning for Finding Property Issues
This low precision was the direct motivation to start experiment-
ing with deep learning, and in particular BERT, for finding ar-
chitectural issues, leading to RQ2. The first round of BERT
issues was done in two batches. First, the top-121 issues were
classified. Next, the bottom 50 issues were classified. The result-
ing precision@k for the top 121 and bottom 50 issues are given
in Figure 28.
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Fig. 28. (Top) Precision of the k issues with the highest property con-
fidence. (Bottom) Precision of the k issues with the lowest property
confidence above 0.5. The legend is valid for both plots. The confidences
are from the first version of the BERT model, which was used for finding
property issues. This BERT model did not use any text preprocessing.

Looking at Figure 28 (top), we see that the precision@121 of
41.3% on the top 121 issues is already almost two times higher
than what we achieved with the new keyword searches. In other
words, with this version of BERT, we already reduced the re-
quired effort for finding property issues in half. The precision@50
for the 50 issues with the lowest confidence scores was only 24%;
this is worse than the top 121 issues, after labelling even fewer is-
sues. However, this is still higher than the new keyword searches.
Most importantly, it shows that the confidence of the classifier
is a good indication for the likelihood of an issue to contain a
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property decision. This test therefore confirms the intuitive idea
that, to achieve the highest precision in finding architectural is-
sues, one has to select the issues with the highest confidence
scores.

Despite the much higher precision of 41.3% compared to key-
word searches, we decided to retrain BERT and test whether this
showed any improvement in terms of precision. In this second
round of finding property issues using BERT, we classified the
top 600 issues with the highest confidence for the property class.
The precision@k for the list of labelled issues is given in Figure
29.
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Fig. 29. Precision of the k issues with the highest property confidence.
The confidences are from the second version of the BERT model, which
was used for finding property issues. This BERT model did not use any
text preprocessing.

From the 600 issues we labelled, 399 of them were in fact
property issues. This leads to a precision@600 of 66.5% for this
second version of BERT. This makes deep learning classifiers
almost three times as effective as keyword searches in terms of
precision, and more than 11 times as effective as using random
sampling. Using the first version of BERT, we extended the
dataset with 62 newly found property issues, and with the second
version of BERT we found 399 new property issues. Initially, the
dataset contained only 265 property issues, so BERT allowed us
to more than double this amount.

Figure 30 shows the precision for finding property issues us-
ing different methods. We included the results of the second
version of BERT, because this was the most recent version of
BERT used for finding property issues. Clearly, BERT outper-
forms any other method on this task. Keyword searches showed
decent performance as well, but static SC analysis and Maven
dependencies analysis show poor performance. Therefore, for ef-
ficiently finding property issues, it seems that BERT is the best
options.

6.2.4 Deep Learning for Finding Executive Issues

Given the high precision for finding property issues, we used this
approach for finding executive issues as well. To filter out issues
about simple dependency upgrades, we decided to label all 202 is-
sues with a confidence > 0.5 for both the executive and existence
classes. We hypothesised that issues solely about upgrading de-
pendencies are assigned a low confidence for existence, meaning
we can filter those out by setting a relatively high threshold for
the existence confidence. The precision@k for this list of labelled
issues is given in Figure 31.
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Fig. 30. Precision for finding property issues for different search methods.
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Fig. 31. Precision of the k issues with the highest executive confidence
and for which the confidence for both executive and existence were above
0.5. The confidences are from the second version of the BERT model,
which was used for finding executive issues. This BERT model did not
use any text preprocessing.

Previously, the Maven dependencies analysis was the only
method that obtained a decent precision for finding executive is-
sues. The Maven dependencies analysis had a 0.4 precision@400,
whereas keyword searches and source code analysis were below
0.2 precision for all k. However, the Maven dependencies analy-
sis was exhausted, meaning that all Maven dependency changes
were already analysed previously. At the moment, a deep learn-
ing classifier is therefore the only possibly effective method for
finding executive issues. Using the second version of BERT, we
were able to find executive issues with a precision@202 of 42.6%.
This shows that the deep learning classifier is as efficient as the
Maven dependencies analysis, while also being able to find more
issues than that method. Furthermore, the filter we invented
was found to be effective for excluding straight forward execu-
tive issues about technology version bumps. This filter works by
setting a threshold for the existence class, confirming our the-
ory that these straight forward executive issues are given a low
existence confidence score by the classifier.
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Because deep learning also seemed to be effective for finding
executive issues, we decided to retrain the BERT model using
the newly acquired data. Using this third version of BERT, we
classified all 200 issues with a confidence > 0.5 for the executive
class and a confidence> 0.34 for the existence class. As described
in our study design, we used a threshold of 0.34 in order to find
200 issues. The precision@k for this labelled list of issues is given
in Figure 32.
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Fig. 32. Precision of the k issues with the highest executive confidence
and for which the existence confidence was above 0.34 and the executive
confidence was above 0.5. The confidences are from the third version of
the BERT model, which was used for finding executive decisions. This
BERT model did not use any text preprocessing.

Despite the lowered confidence threshold for the existence
class, this search had the desired effect of filtering out simple ver-
sion bumps. Additionally, the precision@200 increased by 10%
to 52.5% for finding executive issues. This iterative approach, of
labelling issues and retraining the model, seems to be beneficial
for finding additional executive issues. For both the property and
executive issues, we also saw that this iterative process increased
the precision for finding the respective issues. This is a benefit
compared to the other methods, because the other methods can
easily get exhausted without having a solution to this problem.
For example, the keyword searches are limited to a fixed set of
keywords. First, composing this set of keywords involves domain
knowledge and effort. Second, when searching with this set of
keywords gets exhausted, one would have to spend additional ef-
fort in updating these sets of keywords to make keyword searches
effective again, although success is not guaranteed. Deep learn-
ing classifiers on the other hand can simply be retrained, after
which they should have better search performance.

To further expand the dataset with executive issues, we clas-
sified 100 issues in order of highest confidence for the executive
class, but excluding the issues containing keywords such as “up-
grade” in the summary. The corresponding precision@k is given
in Figure 33.

We found that the keyword filter we used was incomplete
and thus ineffective, leading to many issues about simple ver-
sions bumps in this sample. Nonetheless, the precision@100 was
48.5%, which was still efficient. With these three rounds of la-
belling for executive issues, we found 86 executive in the first
round, 105 in the second round, and 49 issues in the last round.
This nearly doubled the amount of executive issues in our dataset
from 295 to 535 executive issues. Given that the Maven depen-
dencies analysis method was exhausted and the precision of the
other existing methods was below 0.2, deep learning was more
than two times as effective as existing search methods and more
than 11 times as effective as finding executive issues using ran-

dom sampling.
Figure 34 shows the precision of different methods for finding

executive issues. We included the most recent version of BERT
we used for finding executive issues, which was version 3. Again,
BERT clearly outperforms any other method. Maven dependen-
cies analysis is also a good option for this task, but recall that
all issues found by this method were already annotated, mean-
ing this method is exhausted. Static SC analysis and keyword
searches show poor performance for this task. Similar as for
property issues, BERT seems to be the best choice for finding
executive issues efficiently.
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Fig. 33. Precision of the k issues with the highest executive confidence.
These issues were filtered based on a set of keywords in order to filter
out issues about simple version bumps of technologies. The confidences
are from the third version of the BERT model, which was used for finding
executive decisions. This BERT model did not use any text preprocessing.
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Fig. 34. Precision for finding executive issues for different search methods.

6.2.5 Summary of the Search Rounds

In total, BERT helped us collect 809 architectural issues, from
which 368 were existence, 291 executive, and 510 property. Be-
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cause the classifier is not entirely accurate, we also collected 464
non-architectural issues.

In general, it seems that deep learning classifiers are able to
find architectural issues with a higher precision than existing
methods, such as keyword search, Maven analysis, and source
code analysis. Besides, the Maven analysis was completely ex-
hausted, and the keyword search also seems to be exhausted to
a large extent when looking at the decreased precision. On the
other hand, deep learning classifiers were able to still find many
architectural issues with a high precision.

RQ2 Takeaways:

• Deep learning achieves better precision@k for find-
ing property and executive issues than static source
code analysis, Maven dependency analysis, and keyword
searches.

• Deep learning has better precision@k for finding archi-
tectural issues in general than Maven dependency anal-
ysis and static source code analysis. Keyword searches
seem to be as effective as deep learning, until the point
where it is almost exhausted. Deep learning also suf-
fers from exhaustion, but at a slower rate than keyword
searches.

• Deep learning is able to find architectural issues suc-
cessfully when keyword searches and Maven dependency
analysis have already been exhausted.

6.3 Evaluating Classifier Performance
In this section, we introduce some concepts which are necessary
to fully understand how we evaluated our classifiers. Specifically,
we introduce a few variations on the regular macro scores, we
introduce a concept called ‘classification as detection’, and we
compare the performances of the classifiers with a best-guessing
classifier.

6.3.1 Performance Metrics
In Section 3.3.5.2, we outlined several metrics for the evaluation
of machine learning classifiers. In particular, for multi-class prob-
lems, we outlined macro metrics: these metrics are computed as
the average of some metric over all classes.

For the regular macro precision, recall, and F1-score scores,
we decided to include the performance of the non-architectural
class. This is because in practice this is an important class to get
right, also for classification and not only for detection. In fact,
often it might be even more important to get this class right
compared to the others; depending on the use cases, it may be
more important for the classifier to distinguish architectural from
non-architectural, than it is for the classifier to correctly classify
the exact types of architectural design decisions in architectural
issues.

However, for completeness, we decided to also include a macro
score for the three architectural classes only, which we call posi-
tive macro.

Furthermore, we included weighted macro scores. Instead of
taking the average of the four class performances, we use a
weighted average. These weights are obtained from the random
samples and are used to create a performance score that should
better represent the performance of the classifier in a practical
setting, because the scores are weighted according to how often
a certain type of issue occurs in practice in an issue tracking sys-
tem. The exact weights we used depends on the dataset we use
for evaluation.

For RQ3, we evaluate the classifier on our expanded dataset
containing issues from the data storage & processing domain, and
we evaluate the classifiers on the random sample of that domain.
Therefore, for both evaluations, we will be using the weights from
the random sample of the data storage & processing domain. For

RQ6, we evaluated the classifier on two random samples. For
both random samples, we used the weights obtained from the
fully random sample from the six software domains. Table 15
contains the weights for each of the samples. Note that the table
is to give an overview of the weights, for our calculations we used
more precise weights.

Domain Class Count Weight
Data storage &
processing

Existence 35 0.082

Executive 14 0.033
Property 24 0.056
Non-Architectural 352 0.828

All six domains Existence 24 0.057
Executive 21 0.050
Property 32 0.077
Non-Architectural 341 0.816

Table 15. Weights that are used to calculate the weighted macro scores.
The weights we use depend on the domain(s) to which the test set belongs,
on which we evaluated a classifier.

Additionally, we introduced classification as detection. This
metric interprets the output of a multi-label classifier as if it was
a detection model. This means that if at least one of the confi-
dences of the existence, property or executive class is greater than
0.5, we interpret the output as architectural. If all confidences
are below 0.5, we interpret the output as non-architectural. This
makes it possible to make a comparison with the detection mod-
els from our internship [18]. Unless we specifically mention that
the results are from the internship models, we use detection to
refer to classification as detection.

6.3.2 Best-guessing Classifier Performance

In the coming sections, we will be evaluating classifiers on dif-
ferent datasets. Sometimes the performance of a classifier may
seem better than it is. For example, 66% of the issues were ar-
chitectural in our initial dataset [18]. It is possible for a classifier
to obtain a precision of 0.66 and a recall of 1.0 on that dataset,
by predicting all issues as architectural. While the performance
of the classifier on paper may seem to be decent, it is practically
useless.

To counteract this problem, we will be comparing the perfor-
mances of our classifiers with a so-called best-guessing classifier.
The performance of this classifier is the maximal performance
achievable, without looking at the issues themselves. Therefore,
for each class, this best-guessing classifier will either always out-
put false or it will always output true.

If the classifier never predicts class X, then the precision for
class X will be 0. On the contrary, if the classifier predicts all
issues to be of class X, then the precision will be the fraction of
issues in the dataset that belongs to class X27. The recall for
class X is either 0 if the classifier never outputs that class, or 1
if the classifier always outputs that class. Hence, in general, it
is beneficial for the best guessing classifier to output true for as
many classes as possible in order to maximise (macro) F1 score.

As an example, we will demonstrate how we calculated the
performance of the best-guessing classifier for the existence class
in our expanded dataset. From the 4713 labelled issues, we have
1282 existence issues. The fraction of existence issues is there-
fore 0.272. This means that if one would select a random issue
from this dataset, there is a 0.272 chance that this issue will be
existence. A best-guessing classifier therefore has a precision of
0.272, because there is a 0.272 chance of correctly guessing that
an issue is existence. Recall measures how many of the exis-
tence issues are missed by the classifier. To maximise this for

27Technically, the fraction of issues in the set belonging to class
X. However, we can assume equality due to the use of a stratified
training/validation/test split.
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the best-guessing classifier, it is obviously desired to never miss
any existence issues. Hence, when the best-guessing classifier
predicts all issues to be existence, it never ‘misses’ an existence
issue (i.e. the recall is 1.000) and 27.2% of the issues will be pre-
dicted correctly as existence (i.e. the precision is 0.272), yielding
an F1 score of 0.428. Note that this best-guessing classifier is
predicting all issues as existence, regardless of the content of
the issue. This classifier is therefore entirely biased towards the
existence class.

For the best-guessing performance for the macro score, we
should decide whether to predict all issues as non-architectural
or as existence and executive and property. In the case of the
weighted macro scores, it is beneficial to predict all issues as non-
architectural, due to the large weight for the non-architectural
class. For the positive macro score, it is better to predict all is-
sues as existence, executive and property. For the regular macro
score, it depends on the dataset. If a large portion of the dataset
is non-architectural, for example in the random samples, it is
beneficial to predict all issues as non-architectural. Otherwise, it
is better to predict all issues as existence, executive and property.

The best-guessing detection performance is similar to the class
scores, but now we consider only the architectural and non-
architectural class. In particular, since this is a binary classifica-
tion problem, the only class of interest is the architectural class.
Therefore, a best-guessing classifier should predict all issues as
architectural for this specific task. The precision for detection
will be the fraction of issues that is architectural, and the recall
will be 1.

For each metric, we have provided the best-guessing scores in
Table 16 for our expanded dataset. Similarly, for the random
samples from the data storage & processing domain and all six
domains can be found in Tables 17 and 18, respectively. Note
that in the sections where we compare the scores of the classifiers
with best-guessing, we are comparing the F1 scores.

Metric Counts F1 P R
Existence 1282 0.428 0.272 1.000
Executive 683 0.253 0.145 1.000
Property 1272 0.425 0.425 1.000
Non-Architectural 2547 0.702 0.540 1.000
Macro – 0.277 0.172 0.750
Positive macro – 0.369 0.229 1.000
Weighted macro – 0.581 0.447 0.828
Detection 2166 0.630 0.460 1.000

Table 16. Best-guessing performances for the expanded dataset, excluding
the issues outside the data storage & processing domain. F1 is the F1

score, P is the precision, and R is the recall.

Metric Counts F1 P R
Existence 35 0.161 0.087 1.000
Executive 14 0.068 0.035 1.000
Property 24 0.113 0.060 1.000
Non-Architectural 352 0.936 0.880 1.000
Macro – 0.234 0.220 0.750
Positive macro – 0.114 0.061 1.000
Weighted macro – 0.775 0.729 0.828
Detection 48 0.214 0.120 1.000

Table 17. Best-guessing performances for the random sample from the
data storage & processing domain. F1 is the F1 score, P is the precision,
and R is the recall.

Metric Counts F1 P R
Existence 24 0.109 0.058 1.000
Executive 21 0.095 0.050 1.000
Property 32 0.169 0.092 1.000
Non-Architectural 341 0.916 0.845 1.000
Macro – 0.229 0.211 0.750
Positive macro – 0.124 0.067 1.000
Weighted macro – 0.747 0.689 0.828
Detection 59 0.268 0.155 1.000

Table 18. Best-guessing performances for the random sample from all six
domains. F1 is the F1 score, P is the precision, and R is the recall.

6.4 RQ3: Evaluating Multi-Label
Classifiers

6.4.1 Comparison of Classifiers

In this section, we will be discussing the performance of
the multi-label classifiers we experimented with. We created
overviews of the performances in Tables 19, 20. These two ta-
bles give the performance of the classifier on a test set obtained
through a stratified split (since we always used the same test set,
we will refer to this as “the fixed test set”). The first table gives
the performance for multi-label classification, the second one for
detection.

Additionally, we calculated the detection performance of our
internship models [18] on the new dataset in Table 21.

We also included tables showing more detailed performance
metrics. The detailed metrics for the best model (BERT) can
be found in Table 24. The detailed metrics for the other models
can be found in Appendix E in Tables 41-53.

Model F1 P R
BERT 0.676 0.726 0.644
BERT† 0.671 0.673 0.674
BERT* 0.628 0.689 0.597
TF-IDF* 0.625 0.639 0.620
BOWN* 0.611 0.625 0.601
TF-IDF 0.609 0.603 0.620
BOWN 0.607 0.599 0.617
BOWF 0.600 0.622 0.585
RNN 0.590 0.610 0.584
DOC2VEC 0.585 0.649 0.550
BOWF* 0.581 0.631 0.548
RNN* 0.577 0.614 0.551
DOC2VEC* 0.568 0.632 0.537
CNN 0.562 0.555 0.569
CNN* 0.440 0.446 0.587

Table 19. Macro scores on the fixed test set, containing issues from
the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and
Yarn. Results with a * are obtained from models trained using fine-
grained technology replacement. Results with a † are obtained without
text preprocessing. F1 is the macro F1 score, P is the macro precision,
and R is the macro recall.

Looking at Tables 19 and 20, we see that BERT is the best
performing model. The performance is the best, both with and
without text preprocessing. The best macro F1 score of 0.676
is achieved with text preprocessing, and the best detection F1

score of 0.753 is achieved without text preprocessing. The TF-
IDF model with the fine-grained technology replacements (TF-
IDF* from now) is the next best model, with a macro F1 score of
0.625 and a detection F1 score of 0.722. Although this TF-IDF*
model is a rather simple and computationally cheap model, it
still is able to achieve good performance. However, it is almost
0.05 behind BERT in terms of macro F1 score and 0.03 behind
BERT in terms of detection F1 score. Therefore, unless BERT
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Model F1 P R
BERT† 0.753 0.713 0.799
BERT 0.751 0.756 0.745
TF-IDF* 0.722 0.694 0.752
BOWN* 0.718 0.699 0.738
TF-IDF 0.716 0.676 0.762
BOWF 0.712 0.733 0.692
BERT* 0.706 0.723 0.690
RNN 0.698 0.694 0.701
BOWF* 0.687 0.747 0.636
RNN* 0.680 0.713 0.650
BOWN 0.677 0.661 0.694
DOC2VEC* 0.667 0.768 0.589
DOC2VEC 0.652 0.788 0.556
CNN* 0.638 0.497 0.888
CNN 0.635 0.672 0.603

Table 20. Detection scores on the fixed test set, containing issues from
the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and
Yarn. Results with a * are obtained from models trained using fine-grained
technology replacement. Results with a † are obtained without text pre-
processing. F1 is the detection F1 score, P is the detection precision, and
R is the detection recall.

Model F1 P R
Voting Detection 0.736 0.716 0.758
Stacking Detection 0.728 0.688 0.773
RNN Detection 0.726 0.719 0.733
CNN Detection 0.695 0.686 0.705
BOWF Detection 0.679 0.633 0.733
DOC2VEC Detection 0.676 0.711 0.645
Combination Detection 0.673 0.682 0.664
TF-IDF Detection 0.667 0.632 0.705
BOWN Detection 0.662 0.624 0.705

Table 21. Detection scores of the models from the internship [18] on the
fixed test set from the new dataset, containing issues from the projects
Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and Yarn. F1 is the
detection F1 score, P is the detection precision, and R is the detection
recall.

is infeasible due to hardware constraints, it seems that BERT
should be preferred over TF-IDF*.

Term frequency models show good performance all over the
board. TF-IDF(*), BOWF and BOWN(*) models achieve macro
F1 scores between 0.600 and 0.625, making them all better than
CNN, RNN and DOC2VEC models. RNN is only slightly be-
hind BOWN with a macro F1 score of 0.590, and DOC2VEC is
slightly behind that with a macro F1 score of 0.585. CNN was not
performing well during this test, with a macro F1 score of 0.562.
Similarly, for detection we also see good performance of the TF-
IDF(*), BOWN* and BOWF models, with F1 scores ranging
between 0.722 and 0.712. This is again closely followed by RNN,
with a detection F1 score of 0.698. The gap to DOC2VEC* is
larger for detection, because that model only achieves a detection
F1 score of 0.667. CNN* showed poor performance with only a
0.638 detection F1 score.

We think BERT is performing this good simply because it is
a very powerful state-of-the-art model, with lots of parameters,
and which has been trained on a lot of data. Especially the latter
factor explains why it is more capable to deal with complicated
texts than other models.

We suspect that bag of words related models (BOWF(*),
BOWN(*), TF-IDF(*)) are performing good because they are
closely related to keyword searches; we think that the models
may be too attuned to keywords used with the search engine, or
other common keywords in general. For instance, “performance”
and “security” are common indicators for property issues, and
“update” and “upgrade” are common indicators for executive
issues.

We attempted to verify this hypothesis. We did this by eval-
uating the models again, but with different training and test
sets. Specifically, we used the issues we randomly sampled from
Hadoop, Yarn, Tajo, HDFS, MapReduce, and Cassandra as
the test set; the remaining issues from those six projects were
used to obtain the training and validation sets (with a stratified
90%/10% split). In this analysis, we saw that the performance
of bag of words related models dropped more substantially than
those for BERT and RNN; these results can be found in Tables 22
and 23 (with more elaborate results per model in Appendix G).
However, these results should be taken with a bit of scepticism.
We also performed the experiments for RQ4 (i.e. testing with
different amount of training data) using this set (i.e. the random
sample from the six data storage & processing projects) as test
data, and the results of those test runs (Figures 46 and 47 in
Appendix F) were so inconsistent that we believe we should not
draw any strong conclusions from Tables 22 and 23. We believe
these scores are inconsistent because there are very few architec-
tural issues in a random sample. We discuss this, alongside the
drop in performance for all models, in more detail in Section 6.7.
In particular, we did not use these results to see what models
performed the best for multi-label classification.

Now we move our attention back to Table 19. For RNN, we
expect that this model may not be performing particularly bad,
but the other models particularly good. Nevertheless, the per-
formance is rather low compared to our earlier work in [18]. We
do not have a single clear idea why this could be the case, but we
think it could be related to more unclear issues that have made
it harder for the classifiers to achieve good performance on the
new dataset.

For Doc2Vec, we expect that a similar thing as for RNN is
going on. We expect the same for CNN. However, for the CNN
model, we have the additional suspicion that the particular CNN
architecture we used may be less suited for multi-label classifi-
cation. The CNN used assigns a score to n-grams (in partic-
ular, 49-grams and 8-grams in our case), and for each n, only
8 scores (number of filters) are passed through from the max-
pooling layer. This means that only 16 outputs are fed into the
output layer. In particular, for multi-class classification, this may
simply be too little information. Intuitively, for tasks with only
a single output, such as detection and multi-class classification,
every kernel in the convolutional layers can be special-tailored
towards a particular class; this is not the case for multi-label
classification. Hence, intuitively, it would not be surprising if
this particular architecture would perform more poorly for multi-
label classification

In Table 21, we can see the performance of the detection mod-
els we experimented with previously in [18], but trained and
evaluated on our new dataset. We tested with a selection of the
best models, including a voting ensemble and stacking ensemble
model, both based on the BOWF, CNN, and RNN models from
[18]. One thing that stands out is that BERT achieves higher
performance than the internship models that were specifically
trained for the detection task. For most multi-label models, it is
the case that they obtain similar performance to the internship
models. Although we have not trained BERT specifically for the
detection task, it seems that there is no loss in detection perfor-
mance when training multi-label models compared to detection
models. This makes multi-label models particularly attractive,
due to the added benefit of being able to predict the architec-
tural subtypes, while at the same time achieving good detection
performance.

The old models show lower performance compared to the work
we did in [18]. We suspect this can mainly be attributed to
the fact that our new dataset is more balanced; it is no longer
possible for classifiers to obtain good performance by assigning
(nearly) all samples to a single class.
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Model F1 P R
RNN 0.613 0.574 0.695
BERT 0.613 0.623 0.607
BERT† 0.549 0.575 0.572
RNN* 0.547 0.511 0.620
BERT* 0.546 0.554 0.549
BOWF* 0.534 0.544 0.541
BOWF 0.532 0.589 0.497
TF-IDF 0.522 0.489 0.589
BOWN 0.492 0.438 0.685
BOWN* 0.490 0.487 0.498
DOC2VEC 0.484 0.539 0.448
TF-IDF* 0.482 0.447 0.554
DOC2VEC* 0.479 0.544 0.439
CNN 0.085 0.046 0.750
CNN* 0.085 0.046 0.750

Table 22. Macro scores on the random sample of the data storage &
processing domain. Results with a * are obtained from models trained
using fine-grained technology replacement. Results with a † are obtained
without text preprocessing. F1 is the macro F1 score, P is the macro
precision, and R is the macro recall.

Model F1 P R
RNN 0.633 0.528 0.792
BERT 0.598 0.592 0.607
BERT* 0.566 0.517 0.625
BOWF* 0.547 0.500 0.604
BOWF 0.538 0.556 0.521
DOC2VEC 0.535 0.605 0.479
BERT† 0.534 0.456 0.646
RNN* 0.533 0.414 0.750
DOC2VEC* 0.465 0.526 0.417
TF-IDF 0.463 0.360 0.646
BOWN* 0.436 0.387 0.500
BOWN 0.430 0.309 0.708
TF-IDF* 0.423 0.326 0.604
CNN 0.214 0.120 1.000
CNN* 0.214 0.120 1.000

Table 23. Detection scores on the random sample of the data storage &
processing domain. Results with a * are obtained from models trained
using fine-grained technology replacement. Results with a † are obtained
without text preprocessing. F1 is the detection F1 score, P is the detection
precision, and R is the detection recall.

6.4.2 Detailed Performance for BERT

Because BERT was the best model in most of our tests, we will
specifically focus on this model for the more detailed performance
metrics (see Table 24).

First, we consider the performance of BERT if we were to use
the classification model as a detection model. We see that BERT
has a F1 score of 0.753 for detecting architectural issues. More
specifically, BERT is able to catch 80.4% of the architectural
issues and 70.8% of the predicted architectural issues were in
fact architectural. These results seem to be worse than the 0.823
F1 score from [18]. However, as explained, it seems that the
task has also become harder. The dataset from [18] consisted of
66% architectural issues. This makes the 0.823 F1 score only a
4% improvement over a best-guessing classifier that predicts all
issues as architectural (this ‘best-guessing’ classifier has a 0.66
precision with 1.00 recall, and a F1 score of 0.795). For our
new dataset that we used in this test, only 46% of the issues
were architectural. This makes it so that the improvement over
a best-guessing classifier predicting all issues as architectural is
19% for our new classifier.

The class specific scores for BERT in Table 24 show even
larger improvements over a best-guessing classifier. In terms of
raw scores, existence and executive seems to be rather balanced,

Set Metric F1 P R Impr.
over
best-
guessing

Train Detection 0.982 0.975 0.989 +56%
Macro 0.960 0.951 0.970 +247%
Positive macro 0.952 0.939 0.966 +158%
Weighted macro 0.979 0.980 0.979 +69%
Existence 0.946 0.921 0.972 +121%
Executive 0.950 0.924 0.978 +276%
Property 0.959 0.971 0.948 +126%
Non-Architectural 0.985 0.988 0.982 +40%

Val Detection 0.804 0.763 0.850 +28%
Macro 0.709 0.713 0.709 +156%
Positive macro 0.674 0.670 0.681 +83%
Weighted macro 0.790 0.809 0.774 +36%
Existence 0.657 0.614 0.706 +53%
Executive 0.700 0.690 0.710 +177%
Property 0.664 0.707 0.626 +56%
Non-Architectural 0.816 0.840 0.793 +16%

Test Detection 0.753 0.708 0.804 +19%
Macro 0.671 0.673 0.674 +142%
Positive macro 0.638 0.625 0.655 +73%
Weighted macro 0.748 0.782 0.719 +29%
Existence 0.651 0.614 0.691 +52%
Executive 0.653 0.610 0.701 +158%
Property 0.609 0.651 0.573 +43%
Non-Architectural 0.771 0.815 0.733 +10%

Table 24. BERT† performance on the fixed test set, containing issues
from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS
and Yarn. These results were obtained without text preprocessing. F1 is
the F1 score, P is the precision, and R is the recall.

with a recall around 0.69-0.70 and a precision of around 0.61.
The performance improvement over the best-guessing classifier
is 52% for existence, whereas it is 158% for executive. This is
because we have 1282 existence issues in the dataset, compared
to only 683 executive issues. This makes the precision for a best-
guessing classifier much lower for the executive class. Comparing
the precisions and recalls with the property class scores, we see
that the precision is higher for property (0.651), but the recall
is lower (0.573). We believe the precision could be explained by
the fact that property decisions can be obvious due to keywords
such as ‘performance improvement’ or ‘security improvement’.
However, a lack of such keywords might make it too hard for the
classifier to detect the property decision.

The performance improvement of 10% over the best-guessing
classifier for the non-architectural class is much lower compared
to the other classes. This is mainly due to the fact that a best-
guessing classifier obtains a high precision of 0.54, because 54%
of the dataset is non-architectural. Nonetheless, we see good
performance by the classifier, with the classifier catching 73.3%
of the non-architectural issues with a precision of 0.815.

We also included a confusion matrix on the test set in Figure
35. In this matrix, we see that most mistakes are detection
mistakes, meaning that architectural issues are predicted as non-
architectural and vice versa. Looking at the other mistakes, we
see that many existence and/or property issues are predicted
incorrectly. It might be that existence and property decisions
are the hardest to predict correctly. Another reason for this
might be a problem with the labelling of the issues. Although
we have tried to mitigate this problem by relabelling issues, it
might be the case that there are numerous issues with a wrong
label.

6.4.3 Evaluating Proportions of Predictions

After completing the research in [18], we wanted to predict issues
with the trained classifiers. However, we found that some classi-
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Fig. 35. Confusion matrix for BERT† on the fixed test set, containing issues from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS
and Yarn. These results were obtained without text preprocessing. On the y-axis we see the true labels and on the x-axis we see the predicted labels.

fiers predicted 60-70% of the issues as architectural. This made
us decide to perform a practical sanity check to verify whether
classifiers predict ‘realistic’ amounts of architectural issues. For
brevity, we included only three multi-label models: BERT, RNN,
and TF-IDF*. This is because these were the best performing
multi-label models in their respective categories (BERT, seman-
tic embedding based, bag of words based). Although we decided
to not evaluate the performance of multi-class classifiers, we did
decide to include the performance of such classifiers here, in or-
der to demonstrate that this is a necessary sanity check, and to
show how other types of models compare to them.

With the random sample from the Apache projects Hadoop,
Cassandra, Tajo, Mapreduce, HDFS and Yarn, we found that
around 12% of the issues are architectural. When we compute
the predictions of a classifier on all issues from these projects,
we therefore also expect around 12% of issues to be predicted as
architectural.

Table 25 shows all the predicted and expected proportions.
Because we excluded the issues that were in the dataset (because
the classifiers would trivially have good performance on training
data), we have to compensate for that. Our dataset contains 2166
architectural issues from the above-mentioned Apache projects,
while the dataset only consists of 4713 labelled issues. Assum-
ing that around 12% of the 71093 issues from these projects are
architectural, we excluded a fourth of the total number of ar-
chitectural issues by excluding the labelled issues. If we then
compensate for that, 8531−2166

71093−4713
= 9.59%, we find that 9.59% of

the remaining issues should be predicted as architectural. For
the architectural subclasses, we performed similar calculations.

The results of this sanity check show that this check is indeed
necessary. Some of the models from [18] predict almost half of
the issues as architectural. Although they are not the 60-70%
we found previously, they still are unrealistically high numbers.

Furthermore, a classifier predicting half of the issues as archi-
tectural is not useful in practice, because the maximum possible
precision of such a classifier would be around 20%.

From this test, it seems that RNN and BERT are the best
models in this regard. They are off by less than 2% for architec-
tural issues, which is a little on the high side. CNN is also close
to the expected amount, but CNN is only a detection model. In
general, it seems that detection models perform better in this
test than the multi-class classification models. Multi-label clas-
sification seems to be better than multi-class as well.

When looking at the class-specific scores of BERT and RNN,
it seems that both models are not too far off; they are all within
2.5% of the expected proportions. BERT is especially close for
the existence class. BERT is also somewhat close for the execu-
tive class, although too many issues are predicted as executive.
This might be because the classifier is too focused on technol-
ogy names and version numbers, while issues containing them
might not always be executive. Many property issues are missed
by BERT (without text preprocessing), while RNN and BERT
(with text preprocessing) are marking too many issues as prop-
erty. This is also in line with earlier observations that BERT
(with text preprocessing) and RNN have high recall for prop-
erty, while BERT (without text preprocessing) has low recall for
property. We are not sure what the reason for this behaviour
can be, so conclusive answers would require additional research.

Another part of the solution seems to be our new expanded
dataset. Models trained on the new dataset consistently out-
perform the same models trained on the dataset from [18] (in
terms of predicted proportions). This is most likely a result of
the more balanced dataset: 46% of the issues are architectural
in the new dataset, whereas this was 66% in the old dataset. In
the old dataset, it was more rewarding to predict many issues as
architectural compared to the new dataset. Additionally, deep
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Architectural Existence Executive Property
Expected proportions data storage & processing 9.59% 7.44% 2.72% 4.51%
RNN Multi-Label Classification 10.6% 5.0% 1.8% 7.7%
BERT† Multi-Label Classification 11.3% 7.1% 3.4% 2.9%
BERT Multi-Label Classification 12.0% 7.0% 3.0% 7.8%
CNN Detection new dataset 12.2% – – –
BOWF Detection new dataset 19.3% – – –
TF-IDF* Multi-Label Classification 21.5% 6.4% 12.1% 7.1%
CNN Detection 25.1% – – –
RNN Multi-Class Classification new dataset 25.5% 9.4% 7.7% 8.5%
BOWF Detection 33.5% – – –
RNN Multi-Class Classification 38.6% 11.8% 6.3% 20.5%
BOWF Multi-Class Classification new dataset 48.2% 17.0% 21.0% 10.1%
BOWF Multi-Class Classification 49.3% 17.1% 22.0% 10.2%

Table 25. Predicted and expected proportions of architectural issues and their subclasses. Note that we included multi-class classifiers to demonstrate
the usefulness of this sanity check. Results with a † are obtained without text preprocessing.

learning models tend to perform better when trained with more
data, which might be part of the solution as well.

RQ3 Takeaways:

• BERT (with preprocessing) is the top-performing
model.

– BERT (all variants) have better performance than
our other semantic embedding or bag of words re-
lated models.

– Both BERT and RNN make predictions with real-
istic proportions.

– BERT, as a multi-label classifier, is better in de-
tecting architectural issues than classifiers that are
specifically trained for detecting architectural is-
sues.

• Expanding the dataset and using multi-label classifica-
tion models results in models making predictions closer
to expected real world proportions.

6.5 RQ4: Evaluating Need for Addi-
tional Data

In [18], we found that we could improve the performance of the
classifiers by training them with more data. Now that we have
expanded the dataset, we evaluated whether this is still the case.

Multi-label classification with the BERT† model seems to be
rather saturated (see Figure 36). The trend line becomes quite
flat by training the classifier with more data. This seems to indi-
cate that the performance cannot be improved much by labelling
more issues.

We also created another graph for BERT†, which interprets
the classification output as if it were a detection task (see Figure
37. Looking at the trend line in that graph, we do see a somewhat
steeper line in the end than we saw for multi-label classification.
This means that, if we would increase the dataset size, we could
gain some performance benefit. However, due to the small slope
of the trend line, we expect this would take a lot of effort.

It seems that we can gain small improvements in terms of the
detection performance of BERT†, by training the classifier with
more issues. However, this would require substantial labelling
effort, which given the performance gains, might not be worth
it. Also, when testing the classifier on a random sample, there
seems to at most a little improvement possible.
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Fig. 36. Varying training set sizes for multi-label classification with
BERT†, with a fixed test set. These results were obtained without text
preprocessing.
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Fig. 37. Varying training set sizes for classification as detection with
BERT†, with a fixed test set. These results were obtained without text
preprocessing.
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RQ4 Takeaways:

• With substantial labelling effort, it might be possible to
slightly increase the detection performance for BERT.

• Generally, the multi-label classifiers have reached their
maximum potential in terms of performance.

– Simply increasing the size of the dataset does not
seem to be effective for improving the multi-label
classifier’s performance.

– Other strategies are needed to improve the perfor-
mance.

6.6 RQ5: Cross-Project Generalisabil-
ity

In practice, it would be useful to be able to use an already trained
classifier on any other software project, without the need to train
the classifier specifically on that project. We therefore evaluated
the capacity of the models to generalise to projects foreign to
the training and validation set, but within the same domain. We
tested this using cross-project validation, for which the results
are shown in Tables 26 and 27.

Model F1 P R
BERT 0.653± 0.031 0.666± 0.034 0.658± 0.031
BERT† 0.637± 0.036 0.657± 0.040 0.643± 0.061
RNN 0.604± 0.017 0.627± 0.036 0.610± 0.016
RNN∗ 0.603± 0.027 0.618± 0.053 0.611± 0.044
TF-IDF 0.577± 0.014 0.566± 0.024 0.609± 0.032
TF-IDF∗ 0.569± 0.036 0.568± 0.042 0.584± 0.038
BERT* 0.563± 0.033 0.619± 0.054 0.547± 0.043
BOWN 0.560± 0.015 0.568± 0.019 0.568± 0.028
BOWN∗ 0.551± 0.031 0.562± 0.034 0.553± 0.045
BOWF 0.548± 0.077 0.629± 0.057 0.520± 0.069
BOWF∗ 0.543± 0.036 0.597± 0.034 0.518± 0.033
DOC2VEC∗ 0.536± 0.056 0.607± 0.057 0.515± 0.056
DOC2VEC 0.527± 0.046 0.587± 0.050 0.514± 0.050
CNN 0.408± 0.121 0.423± 0.206 0.556± 0.128
CNN∗ 0.269± 0.082 0.237± 0.122 0.571± 0.162

Table 26. Macro scores for the cross-project validation. Results with a *
are obtained from models trained using fine-grained technology replace-
ment. Results with a † are obtained without text preprocessing. F1 is the
macro F1 score, P is the macro precision, and R is the macro recall.

For this test, we see again major performance benefits by us-
ing BERT compared to the other models. In particular, BERT
achieves an average F1 score of 0.653, whereas the next best
model, RNN, only achieves an average F1 score of 0.604. The

Model F1 P R
BERT 0.747± 0.036 0.723± 0.047 0.781± 0.090
RNN 0.721± 0.035 0.713± 0.053 0.737± 0.070
BERT† 0.715± 0.053 0.729± 0.068 0.727± 0.146
RNN* 0.713± 0.038 0.716± 0.065 0.719± 0.086
TF-IDF 0.696± 0.025 0.633± 0.044 0.781± 0.068
TF-IDF* 0.685± 0.028 0.649± 0.034 0.730± 0.060
BOWN 0.680± 0.032 0.646± 0.034 0.724± 0.083
BERT* 0.675± 0.061 0.710± 0.058 0.659± 0.127
BOWN* 0.666± 0.038 0.660± 0.027 0.675± 0.071
BOWF* 0.631± 0.052 0.742± 0.036 0.555± 0.082
CNN* 0.621± 0.041 0.478± 0.085 0.930± 0.119
BOWF 0.618± 0.085 0.773± 0.045 0.523± 0.110
DOC2VEC 0.617± 0.060 0.725± 0.067 0.550± 0.106
DOC2VEC* 0.616± 0.055 0.740± 0.065 0.536± 0.088
CNN 0.614± 0.049 0.602± 0.134 0.721± 0.248

Table 27. Detection scores for the cross-project validation. Results with a
* are obtained from models trained using fine-grained technology replace-
ment. Results with a † are obtained without text preprocessing. F1 is the
detection F1 score, P is the detection precision, and R is the detection
recall.

BOW models show performances between 0.577 and 0.548, fol-
lowed by DOC2VEC with 0.536, and CNN performed very poor
with an average F1 score of 0.408.

For the detection task, we also see that RNN is being outper-
formed by BERT, with detection F1 scores of 0.721 and 0.747
respectively. The closest term frequency model is TF-IDF with
a F1 score of 0.696.

For BERT, it seems that text preprocessing allows for a no-
ticeable gain in performance. It might be the case that certain
text formatting, or a lack thereof, give an indication that an issue
is more likely to be architectural in some projects, which might
not be the case in other projects. However, we have not verified
any of this, so this could potentially be future work.

Fine-grained technology replacement seems to have a small
negative impact on most models. For BERT, this is a big nega-
tive impact. In terms of generalisability across projects, it there-
fore seems to be beneficial to not replace things like technology
names. We are not sure of the cause of this behaviour, but it
seems that replacing the technology names leads to a loss of use-
ful information for the classifiers.

Because BERT was the best performing model for both multi-
label classification and for the detection task, we will focus our
attention on this model. Comparing the cross-project perfor-
mance with the regular performance from RQ3, we only see a
performance drop of 0.02 in terms of macro F1 score, and a drop
of only 0.005 for the detection F1 score. These are performance
drops of approximately only 3.5% and 0.5%, respectively. This
means that on average, around 96.5% of the multi-label perfor-
mance is in fact transferable to projects not used for training. For
detection this is even higher, where on average, around 99.5% of
the performance is transferable.

We do have to make a note that some projects, i.e. HDFS,
Hadoop, Yarn and Mapreduce, belong to the Hadoop ecosystem,
meaning that they share the same code base, and potentially
share the same developers as well. Additionally, Apache Tajo
makes use of Hadoop, and is therefore also potentially related to
the Hadoop ecosystem, but to a much lesser extent. This might
make it easier for the classifier to achieve good performance on
such projects, because similar keywords could be used in such an
ecosystem. For that reason, we also included a graph showing
the performance on each of the projects in Figure 38. This fig-
ure shows that the performances for Apache Cassandra and Tajo
are in fact about average compared to the other projects, show-
ing that the performance is also transferable to non-related or
less-related projects. However, there is quite a gap between the
precision and recall performance for Cassandra and Tajo. This
might be the effect of the fact that a large part of the training
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set belongs to the Hadoop ecosystem. Interestingly, the preci-
sion for Tajo is relatively high compared to its recall, while the
precision for Cassandra is relatively low compared to its recall.
Unfortunately, we currently do not have a grounded explanation
for these observations.

Fig. 38. Detailed cross-project performance of BERT.

With the results of this test, we have shown that the perfor-
mance is transferable to projects not used for training the classi-
fier. In fact, we only saw a performance drop of about 3.5% for
multi-label performance and around a 0.5% drop for detection.
This shows that an already trained classifier can in fact be used
on projects foreign to the training data, but in the same domain
and ecosystem.

RQ5 Takeaways:

• BERT has the best generalisability to different projects
of all classifiers we tested.

– 96.5% of the multi-label classification performance
was transferable to other projects.

– 99.5% of the detection performance was transfer-
able to other projects.

• BERT can be an effective classifier for projects that are
not used for training the classifier, given that the project
is in the same domain.

6.7 RQ6: Cross-Domain Generalis-
ability

For RQ6, we evaluated the classifier on two random samples.
For the first random sample, we focused on the performance of
the classifier as a plain classifier on different software domains.
For the second random sample, we focused on evaluating the
classifiers as a search tool for finding architectural issues.

6.7.1 Fully Random Sample

In Table 29, we can see the performance of BERT (without text
preprocessing) on the random sample of 400 issues from the six
domains. In Table 31 we see the performance of BERT (with text
preprocessing) on the same dataset. For completeness, Appendix
G contains the performances of the other models we tested on
the random sample from six software domains. We decided to
look specifically at BERT with text preprocessing, because in
most of the tests we performed, this was the best performing

model. BERT without text preprocessing was used to obtain
the second random sample from this research question (i.e. the
random sample based on the classifier’s confidences), due to a
bug which was found too late by the authors. In hindsight, it
would probably have been slightly better to use BERT with text
preprocessing. However, because we used BERT without text
preprocessing for the second random sample, we decided to also
include its performance for the ‘fully’ random sample as well.

Additionally, we have Tables 28 and 30 which depict the per-
formance of the BERT without text preprocessing and the BERT
with text preprocessing models, respectively, on the sample of
400 issues from the data storage & processing domain. These ta-
bles serve to put the results from Tables 29 and 31 into context.

When we compare the results in Tables 28, 29, 30 and 31 with
the performance scores outlined for the same BERT models in
Sections 6.4 and 6.6, we can immediately see that the perfor-
mance scores are considerably lower. At a first glance, one could
think this is because the models generalise poorly to different
domains. However, Tables 28 and 30 contain the performances
of the BERT models specifically on a test set consisting of issues
from the projects on which the model was also trained. The per-
formance scores in this table are comparable to those in Tables
29 and 31.

We have two possible reasons which could explain the poor
performance of the BERT models, which we see in Tables 28
and 30. The first reason is that there might be some system-
atic bias in our dataset. All the issues in the dataset, even the
non-architectural ones, were found using techniques specifically
designed to find architectural issues. Hence, the classifier might
be biased towards such issues. If we then test the classifier on is-
sues from a random sample (i.e. a test set without this bias), the
classifier’s performance could be poorer. Another explanation is
that there are very few architectural issues in these random sam-
ples. Precision and recall are computed using the true positive
count, false positive count, and false negative count. With a ran-
dom sample and classifiers with close-to-realistic prediction pro-
portions, all these numbers will be fairly small (due to the large
numbers of non-architectural issues, the true negative count is
by far the highest). As a result of this, the scores can easily
be affected by particularly “poor” or “lucky” samples (see Ap-
pendix H for the exact counts and full details). However, given
the fact that on both random samples we have somewhat similar
performance scores, we think the first reason is more likely.

In an attempt to try to reduce the effect of the second reason,
we also computed the 95% confidence intervals for the detection
task and the class-specific scores for the classification task, and
displayed these in Tables 28, 29, 30 and 31.

We start with discussing the detection performance of BERT
without text preprocessing on the random sample from the six
domains (Table 29). Of course, the F1 score of 0.508 is consid-
erably worse than the one of 0.753 we had in Section 6.4 on the
fixed test set. However, when we compare with the performance
of BERT on the random sample from the data storage & pro-
cessing domain (Table 28), the performance is actually rather
comparable. The F1 score on the six domains is 0.026 lower; the
precision seems somewhat better, and the recall seems slightly
worse. The performance is still also twice as good as the best-
guessing classifier. For the other BERT model with text prepro-
cessing, we see again see a large performance gap compared to
what we achieved in Section 6.4. However, for this model, there
is also a large performance gap between the random samples.
The F1 score on the random sample from the six domains (Table
31) is 0.132 lower than on the data storage & processing domain
(Table 30). Most of the loss seems to come from a large loss
in terms of recall. The BERT model without text preprocess-
ing suffered from the same problem, although the loss for that
model was slightly smaller. We are unsure what causes this loss
of recall.

We now move our attention to the metrics for the multi-class
classification for BERT without text preprocessing. All macro
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Metric F1 Precision
(95% confidence interval)

Recall
(95% confidence interval)

Improvement over
best-guessing

Detection 0.534 0.456 ([0.338, 0.574]) 0.646 ([0.511, 0.781]) +150%
Macro 0.549 0.575 0.572 +135%
Positive macro 0.425 0.451 0.464 +273%
Weighted macro 0.839 0.868 0.821 +8%
Existence 0.533 0.500 ([0.345, 0.655]) 0.571 ([0.408, 0.735]) +231%
Executive 0.400 0.308 ([0.130, 0.485]) 0.571 ([0.312, 0.831]) +488%
Property 0.343 0.545 ([0.251, 0.840]) 0.250 ([0.077, 0.423]) +203%
Non-Architectural 0.921 0.949 ([0.925, 0.973]) 0.895 ([0.863, 0.927]) -2%

Table 28. BERT (without preprocessing) performance on the random sample from the data storage & processing domain. F1 is the F1 score. For the
class specific precision and recall, and for the detection precision and recall, we also provide the 95% confidence intervals for those values. For more
details, see Table 71 in Appendix H.

Metric F1 Precision
(95% confidence interval)

Recall
(95% confidence interval)

Improvement over
best-guessing

Detection 0.508 0.508 ([0.381, 0.636]) 0.508 ([0.381, 0.636]) +90%
Macro 0.469 0.583 0.469 +105%
Positive macro 0.321 0.473 0.320 +159%
Weighted macro 0.805 0.840 0.801 +8%
Existence 0.308 0.400 ([0.152, 0.648]) 0.250 ([0.077, 0.423]) +182%
Executive 0.355 0.268 ([0.133, 0.404]) 0.524 ([0.310, 0.737]) +274%
Property 0.300 0.750 ([0.450, 1.000]) 0.188 ([0.052, 0.323]) +78%
Non-Architectural 0.915 0.915 ([0.885, 0.945]) 0.915 ([0.885, 0.945]) +0%

Table 29. BERT (without preprocessing) performance on the random sample from the six domains. F1 is the F1 score. For the class specific precision
and recall, and for the detection precision and recall, we also provide the 95% confidence intervals for those values. For more details, see Table 72 in
Appendix H.

Metric F1 Precision
(95% confidence interval)

Recall
(95% confidence interval)

Improvement over
best-guessing

Detection 0.598 0.592 ([0.454, 0.730]) 0.604 ([0.466, 0.743]) +179%
Macro 0.613 0.623 0.607 +162%
Positive macro 0.502 0.516 0.495 +341%
Weighted macro 0.871 0.876 0.868 +12%
Existence 0.562 0.621 ([0.444, 0.797]) 0.514 ([0.349, 0.680]) +249%
Executive 0.444 0.462 ([0.191, 0.733]) 0.429 ([0.169, 0.688]) +554%
Property 0.500 0.464 ([0.280, 0.649]) 0.542 ([0.342, 0.741]) +342%
Non-Architectural 0.945 0.946 ([0.922, 0.970]) 0.943 ([0.919, 0.967]) +1%

Table 30. BERT (with preprocessing) performance on the random sample from the data storage & processing domain. F1 is the F1 score. For the
class specific precision and recall, and for the detection precision and recall, we also provide the 95% confidence intervals for those values. For more
details, see Table 74 in Appendix H.

Metric F1 Precision
(95% confidence interval)

Recall
(95% confidence interval)

Improvement over
best-guessing

Detection 0.466 0.545 ([0.398, 0.693]) 0.407 ([0.281, 0.532]) +74%
Macro 0.489 0.557 0.465 +114%
Positive macro 0.345 0.442 0.306 +178%
Weighted macro 0.815 0.820 0.823 +9%
Existence 0.278 0.417 ([0.138, 0.696]) 0.208 ([0.046, 0.371]) +155%
Executive 0.383 0.346 ([0.163, 0.529]) 0.429 ([0.217, 0.640]) +303%
Property 0.375 0.562 ([0.319, 0.806]) 0.281 ([0.126, 0.437]) +122%
Non-Architectural 0.921 0.902 ([0.871, 0.933]) 0.941 ([0.916, 0.966]) +1%

Table 31. BERT (with preprocessing) performance on the random sample from the six domains. F1 is the F1 score. For the class specific precision
and recall, and for the detection precision and recall, we also provide the 95% confidence intervals for those values. For more details, see Table 75 in
Appendix H.

F1 scores in Table 28 have become worse than those in 29; in
all cases, both precision and recall have decreased. The relative
performance gain compared to a best-guessing classifier has also
become worse, although the BERT performance on the six do-
mains is still considerably better than that of the best-guessing
classifier. We can make similar observations for the BERT model
with text preprocessing in Tables 30 and 31.

Moving our attention to the class-specific scores (Table 29)
of BERT without text preprocessing, it seems that the perfor-
mance for existence decisions is not easily transferable to differ-

ent domains. While the classifier obtains a 0.533 F1 score for
the random sample from the data storage & processing issues,
the performance is only 0.308 across the six domains. Especially
the recall has become worse. In fact, this is one of the rare cases
where there is actually a statistically significant difference be-
tween the two scores, based on the confidence intervals. This
shows that component decisions are probably very specific to a
domain or even a project, making it hard to detect existence de-
cisions in other domains or projects. This drop in performance is
even larger for the BERT model with text preprocessing. While
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it achieved an F1 score of 0.562 on the data storage & process-
ing issues, it only achieved an F1 score of 0.278 on the random
sample from the six domains.

For both BERT models, the performance for executive deci-
sions between the data storage & processing domain test and the
test on the six domains is somewhat comparable, although per-
formance has gone down on the six domains. We note that both
BERT models are scoring achieving the highest performance on
the executive class in terms of recall compared to the existence
and property classes; this is likely the result of the fact that many
executive issues about dependency upgrades are easy to catch by
the classifier.

For the property issues in the random sample from the six do-
mains, we see a much improved precision and a much worse recall
for both BERT models compared to the data storage & process-
ing domain. We think the high precision can be attributed to the
fact that many property decisions are done in terms of quality
attributes, which are easy to catch by classifiers. The lower recall
shows the classifiers have trouble identifying all property issues
across the six domains though. The classifier might be a bit too
focused on how developers from the data storage & processing
domain make property decisions. This might potentially be an
interesting topic for future research; finding out whether there
is a difference in how developers express design decisions across
different domains.

The main contributor to the macro scores is the non-
architectural class. Because many issues are non-architectural,
it is easy to get a high score for this class, as is shown by the
small performance differences (1%) with the best-guessing clas-
sifier. Nonetheless, the classifiers show major performance in-
creases over the best-guessing classifier. This is because each
type of design decision is made only in a small fraction of the
issues.

6.7.2 Random Sample Based on Confidence

Our second random sample is more focused towards evaluating
the classifier as a search tool for architectural issues. To show
this, we created a graph showing the average precision (from the
highest confidence to the lowest) versus the confidence of the
classifier for the given class (Figure 39). An interesting finding is
that a confidence value of only slightly above 0, already leads to
a relatively high precision for finding architectural issues. This
might be because of the sigmoidal output we used for the clas-
sifier. Issues for which the classifier is really certain have confi-
dences very close to 0 or 1. Only issues for which the classifier is
not certain have confidences more in the middle; this is a result
of the steep curve present in sigmoidal activation functions.

For large confidence values, a small decrease in confidence
leads to a large decrease in precision. What this means in prac-
tice is that you have to use the issues with very high confidence
values, in order to find architectural issues with a very high pre-
cision. However, also for lower confidence values, we see good
precision scores. In fact, for the default confidence threshold of
0.5, we see that 63% of the predicted architectural issues, were
in fact architectural issues. For property this was slightly higher
with 65%, executive was somewhere in between with 56%, and
the precision for existence was the worst with 43%.

Going back to the second random sample, we have created Fig-
ure 40. This figure shows the precisions for each of the classes
and for each domain. What we see in this graph is that the pre-
cision for the data storage & processing domain is generally one
of the highest for each of the classes. This is expected, because
the classifier is trained specifically on issues from this domain.
The classifier performs really well on the content management
domain. We suspect that this domain might be rather similar
compared to the data storage & processing domain in terms of
design decisions. Another hypothesis is that design decisions in
this domain might be expressed more explicitly, making it eas-
ier for the classifier to catch the design decisions. However, this
could be a topic for future work.
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Fig. 39. Precision@confidence graph for the random sample of 594 issues
from the six domains, based on the confidence scores of BERT. Note that
the confidence for “Architecetural” was computed as the maximum of all
thee confidences outputted by the classifier.

What is interesting about the existence decisions, is the fact
that the classifier performs really poor on most domains. For ex-
ample, the precision is only 0.2 for the devops and cloud domain.
We suspect that existence decisions can differ a lot between the
domains, and potentially also between projects as well. It would
be interesting to make a qualitative comparison between the de-
sign decisions made in different domains, in order to see whether
there is any truth in this hypothesis.

Property and executive decisions do not show much difference
in terms of precision between the domains. We also suspect that
these two types of decisions are in fact more similar between the
domains compared to existence decisions. For example, many ex-
ecutive decisions involve selecting or dealing with external tech-
nologies. This is unlikely to be very different between domains.
Moreover, property decisions are about improving overarching
traits of the system. Keywords involved in these decisions, such
as performance, security, and improvement, are rather obvious
for the classifier and should not differ much between domains as
well.

The graphs have shown that the classifier is rather efficient
for finding executive and property issues in basically any domain
we tested. The precision for executive is higher than 44% for
any domain, for property and architectural issues the precision
is higher than 53% for any domain. Only existence issues show
really poor generalisability across the domains. However, even
for the worst performing domain, devops and cloud, the precision
is almost four times better than finding existence issues using
random sampling.
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RQ6 Takeaways:

• The performance of BERT drops significantly when
evaluated on a random sample

– One possible cause is the small amount of architec-
tural issues in such a sample, combined with random-
ness.

– Another possible cause is that most issues in the
dataset have some sort of bias due to being selected
with specific search methods.

• When comparing the performance of BERT on a ran-
dom sample from the data storage & processing domains
with a random sample from the six domains

– BERT performs noticeable worse on the six domains.

– BERT still performs reasonably well compared to
best-guessing classifiers.

• BERT is an effective search tool in other domains as
well.

– A precision of 63% for finding architectural issues.

– A precision of 43% for finding existence issues.

– A precision of 56% for finding executive issues.

– A precision of 65% for finding property issues.

• Existence decisions seem to be the most different be-
tween domains.
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7 Discussion
In this section, we will discuss what the findings of our research
mean for researchers and practitioners, and what its broader im-
plications could be.

7.1 Implications for Researchers
In answer to RQ1, we found that architectural issues in issue
tracking systems are rare; around 10%-15%. This means that
random search approaches are an infeasible approach for re-
searchers to find large quantities of architectural knowledge in
issue tracking systems. Hence, for studies requiring a lot of ar-
chitectural issues, dedicated search tools are necessary.

The results we found for RQ2 can in turn help researchers
to make informed decisions about what search tools to use. In
this work, we compared our proposed deep learning based search
with keyword search, Maven analysis, and static source code
analysis. Deep learning and keyword analysis are both types of
top-down search: they search for architectural knowledge in issue
descriptions themselves. Static source code analysis and Maven
analysis are bottom-up search methods: they analyse source code
changes, and link these changes to issues in order to identify
architectural issues. We found that the top top-down methods
achieve better precision@k than the two bottom-up methods.
The main exception is that Maven analysis is also able to find
executive issues with high precision. However, many of these
issues fall into the category of dependency version bumps. We
believe the true strength of deep learning is its ability to search
for issues with specific labels. For instance, we were able to find
more “interesting” executive issues by selecting executive issues
with high existence scores.

Overall, we recommend that researchers use top-down ap-
proaches to find architectural issues. These approaches are able
to find more architectural issues than bottom-up approaches.
The main exception to this rule would be if researchers were
looking specifically for some type of architectural issue which is
not easily identified using top-down approaches – although this
would first require researchers to actually pinpoint the existence
of such issues. Researchers could also consider combining multi-
ple techniques to see how well they perform for specific purposes.
For instance, we expect there might be benefit to combining deep
learning with keyword searches to find more specific architectural
information.

Finally, we make the informal recommendation that re-
searchers wishing to analyse architectural knowledge in open
source systems focus their attention on the Apache and Spring
ecosystems. While annotating, we found that these projects seem
to have the most clear discussions on architecture.

The results of RQ3 show that multi-label classifiers outper-
form binary classifiers that are specifically trained for detecting
architectural issues. We therefore recommend that researchers
use multi-label models instead, because besides detecting archi-
tectural issues, they also classify architectural issues into their
subtypes (i.e. existence, executive, and property).

Researchers can also use RQ3 to decide on the best model for
classifying issues. In case researchers want to apply a classifier
on issues from projects used to train the classifier, our recom-
mendation will be to use BERT with text preprocessing. This
was overall the best performing model. Additionally, BERT pre-
dicts realistic amounts of architectural issues. While this is not
a guarantee that BERT performs well in practice, it at least sug-
gests that it could be useful for researchers wanting to apply this
classifier in practice.

Researchers could look at RQ5 if they want to apply a clas-
sifier on projects that are not necessarily used for training the
classifier. Again, we recommend BERT with preprocessing for
this application. The results showed that, compared to RQ3, on
average nearly all performance was transferable to projects not
used for training. We therefore suspect that these classifiers can

useful for researchers on basically any project in the domain the
classifier was trained on.

RQ6 shows that the performance on random samples is much
worse compared to RQ3. Because these samples are small, we
are not sure whether this performance is poor due to an ‘unlucky’
random sample, or whether the classifiers might be less perfor-
mant in practice than we expected. Additionally, there was a
noticeable performance drop when applying the classifier on six
domains, compared to the performance on the data storage &
processing domain. Nonetheless, the classifiers show major im-
provements over a best-guessing classifier, suggesting they might
still be useful for researchers. Due to the suspected randomness
in the results, we cannot make a clear recommendation. How-
ever, given the results from RQ3 and RQ5, we suspect that
BERT with text preprocessing is the safest option to get good
performance when applying the classifier on different domains.

RQ6 also showed that DL classifiers have a high precision for
finding architectural issues in six domains. DL classifiers can
therefore be helpful for researchers wanting to find architectural
issues in such domains. Although we evaluated BERT with-
out text preprocessing, given that most evaluations suggest that
BERT with text preprocessing is slightly better, we recommend
researchers to use BERT with text preprocessing for finding ar-
chitectural issues in different domains.

While we recommend to use BERT as the classifier for basi-
cally any task, we do have to note that it is a computationally
heavy model. Therefore, if computing power is a limiting factor,
RNN is also a good alternative, because it showed good general-
isability to different projects in the same domain. If RNN is not
feasible, or if the search is performed on projects also contained
in the training set, TF-IDF* (TF-IDF with fine-grained tech-
nology replacement) can also serve as a computationally cheap
alternative.

RQ4 guides researchers with data collection. The results we
obtained here show that expanding the dataset with issues from
the six projects already contained in the dataset is unlikely to
result in any real performance gains. Hence, this is not a worth-
while line of research to pursue. A more feasible approach is
likely to be working on diversifying the dataset by adding issues
from different projects, domains, and ecosystems.

7.2 Implications for Practitioners
For practitioners, RQ1 has similar implications as for re-
searchers. Since architectural knowledge in issue trackers is
sparse, it can be difficult to locate architectural knowledge. This
shows that, unless practitioners know specifically what they have
to search for, they also have to resort to dedicated search tools.

RQ2 helps guide practitioners in the search tools to use. In
general, we advise the use of deep learning for finding existence
and executive issues, and keyword searches or deep learning for
property issues. Practitioners may also benefit for specific in-
formation on technology choices and upgrades. In such cases,
Maven analysis could also be used.

Especially for practitioners, we would advise the use of hybrid
techniques. We observed that deep learning searches are able to
capture a wider variety of issues (i.e. they are exhausted less
quickly than keyword search and Maven analysis). On the other
hand, keyword searches could potentially be used to search for
more targeted information. Because of this, there might be ben-
efit to using a combination of keyword search and deep learning.
The results from RQ3, RQ5, and RQ6 can support in making
a choice regarding what classifier to use, with the same consid-
erations as we outlined for researchers.

One of the largest hurdles for practitioners is finding actu-
ally relevant architectural knowledge. While labelling issues, we
encountered a significant amount of issues that would be con-
sidered architectural according to our coding book, but which
do not necessarily contain useful information. Additionally, for
many projects, the information can be very domain specific. This
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means that the information found in issues may only be useful for
practitioners with significant experience regarding certain tech-
niques (for example, compaction and gossip in Cassandra would
require prior knowledge on those topics to fully understand and
use the knowledge in many issues). Because of this, directly
searching for issues containing architectural knowledge is not a
suitable method for architectural knowledge re-use for architects
who are unfamiliar with the techniques being used. The search
tools are best used to fine-tune the design of similar systems, or
for other purposes where the practitioner is already familiar with
the technologies used in the system being searched for architec-
tural knowledge.

We believe these search tools might be most useful for knowl-
edge re-discovery, and not necessarily knowledge re-use. We
imagine that there are scenarios where the lack of rationale for
certain design choices might make it difficult to continue develop-
ment of the system. We believe that search tools for architectural
knowledge in their current form would be most useful in cases
where details about specific design choices in the same system
are desired.
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8 Threats to Validity
In this section, we discuss factors that may affect the validity of
this research.

8.1 External Validity

8.1.1 Dataset Construction Bias of the Original
Dataset

The initial dataset was collected using Maven POM file analysis
([17]), keyword searches ([28]), and static source code analysis
([70]). It might be possible that these methods only capture
certain kinds of non-architectural and architectural issues, but
totally miss others. This would mean that certain types of issues
were not represented in the original dataset.

In this research, we mainly used deep learning classifiers to
find additional architectural issues. However, the results found
by these classifiers naturally find issues similar to those in the
training dataset. This means that any biases resulting from the
original three methods will most likely still be present in the
dataset created in this research.

We also found some issues using random sampling. These is-
sues do not have this selection bias, and thus may contain types
of architectural issues otherwise not present in the dataset. How-
ever, the amount of architectural issues in these samples was very
small; this means that these samples likely did little to noth-
ing to mitigate these biases for architectural issues in particular.
However, because the number of non-architectural issues in these
samples was large, we may expect that the dataset now also con-
tains a significant sample of non-architectural issues found using
this non-biased selection method.

We evaluated all our deep learning classifiers on two different
test sets: on a test set obtained through a stratified random
split of the full dataset, and a test set obtained by taking the
400 issues from the random sample from the data storage &
processing domain. In Section 6.4, we saw that the performance
is worse both in terms of precision and recall when using the
latter as a test set. This may be an indicator that models trained
on issues found using Maven analysis, keyword searches, source
code analysis, and deep learning indeed have some sort of bias.
Though, we should be careful with this conclusion, because the
amount of architectural issues in the random sample is also small.

8.1.2 Data Leakage

Data leakage is the phenomenon that information about the test
set is contained in the training set. If this occurs, the perfor-
mance on the test set might be too optimistic. Data leakage
can be a problem of the nature of the data, or of the way the
experiments were conducted. In this research, we identified two
potential sources of data leakage which can be attributed to the
nature of our dataset:

8.1.2.1 Relationships between Issues

An anonymous reviewer for a paper on finding ADDs, co-
authored by the two authors of this work, pointed out that tem-
poral dependencies between issues may constitute a form of data
leakage (i.e. information about the test set is contained in the
training set). After deliberating, we identified that may be re-
lated to an even bigger problem, which both influences bias of
the dataset, and affects data leakage.

Issues in issue trackers often do not come alone. Some issues
duplicate others, some issues may introduce bugs, some issues
contain follow-up work, some issues are prerequisites for others,
and some issues have child/parent relationships.

The anonymous reviewer was specifically alluding to follow-up
work and prerequisite work; in these cases, issues in the training
dataset may mention issues in the test dataset, or vice versa.

Since the key of an issue is not an input for the classifiers, this
does not necessarily constitute data leakage.

However, follow-up work, prerequisite work, and especially
child/parent issues, do tend to form clusters of very closely re-
lated issues. Consider for instance HDFS-105228. This particular
issue has 91 child issues. All these 92 issues somehow deal with
the same topic: architectural changes to improve scalability of
HDFS. Because this is such a large issue, it is also related to
7 other issues. If these issues are all similar enough, or contain
enough similar concepts, a classifier might be able to get these is-
sues right “too easily” if they are in the test set (provided enough
of the issues are contained in the dataset).

This example illustrates how related issues may constitute
data leakage, which may affect the validity of the performance
scores we obtained.

8.1.2.2 Duplicate Issues

Some issues are contained multiple times in the dataset, because
identical issues were created. Anecdotally, we found one issue
which was duplicated around 15 times (!). Additionally, some-
times a user creates multiple issues which are almost identical,
but not quite. A deep learning classifier is likely to give identical
or similar predictions for such issues. If an issue is contained
in the training dataset, and a duplicate is contained in the set
dataset, this constitutes a form of data leakage.

8.2 Construction Validity

8.2.1 Size of the Random Sample from the Six Do-
mains

In order to test the generalisability of multi-label classifiers to
different domains for RQ6, we took two random samples: one
fully random sample of 400 issues, and one random sample based
on confidence of 6 × 3 × 33 = 594 issues. In retrospect, we de-
termined that the sample of 400 issues was too small for a good
performance evaluation. The main problem is that in such a ran-
dom sample, very few issues are architectural. This means that
there is a large degree of uncertainty in the computed precision
and recall scores.

The specific problem is that precision and recall are computed
using the true positive count, false positive count, and false neg-
ative count (see Appendix H). With the small amount of archi-
tectural issues we have, these numbers are all low (the majority
of the issues are non-architectural, which contribute to the true
negative count). As a result, the precision and recall scores have
large standard errors, leading to a lot of uncertainty in the re-
sults.

In order to avoid this, either a larger sample size should be
used, or a different evaluation method should be used.

8.2.2 Evaluation of Deep Learning Models

For evaluating our DL models, we used a fixed holdout test set.
However, it seems that neither a holdout test set nor a k-fold
cross validation give good estimations for the practical perfor-
mance of the models [32]. Considering that our dataset is rather
small, analysing the results on a holdout test set as well as the
results of a k-fold cross validation, might have given us better
insights into the true performance of the DL models.

However, given that neither of the two methods give good
estimations of the true performance of a classifier [32], and the
fact that our dataset is potentially biased (Section 8.1.1), a larger
random sample as the test set might have been a better option.
This would have required a lot of manual labelling effort, but
it would at least have given a better insight into the practical
applicability of the classifiers.

28https://issues.apache.org/jira/browse/HDFS-1052

https://issues.apache.org/jira/browse/HDFS-1052
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8.2.3 Experimental Mistakes

We identified a number of mistakes in how we conducted our
experiments. When we discovered these, we no longer had time
to correct them. Hence, we present them here.

8.2.3.1 Suboptimal Settings for BERT during
Dataset Expansion

While using BERT to collect more architectural issues, we used
different hyperparameters than for the final version of BERT
we evaluated later. This is because we were still running BERT
locally, which constrained us to smaller batch sizes. As a result of
this, the conclusions we reached with regard to deep learning for
finding architectural issues (i.e. RQ2 could be slightly different
from for the BERT model we experimented with for RQ3 and
onward.

8.2.3.2 TF-IDF Trained Sub-optimally

Generating TF-IDF features is a two-step process: first, the term
weights must be computed by computing the IDF for each word.
Next, term frequencies are computed and multiplied by the IDF.
The key here is that IDF computation can be done separately
from the first step. The IDF weights can either be computed on
the training dataset itself, or on a larger corpus of issues. We
initially intended to compute the IDF weights on all issues from
Hadoop, Yarn, Tajo, HDFS, MapReduce, and Cassandra. How-
ever, we inadvertently only computed them based on the issues
from those project, which were contained in our actual dataset.
This mistake could have implicated for the generalisability of the
TF-IDF model. Due to the way we determined the IDF, the IDF
weights could be too specific, leading to poorer generalisability.

8.2.3.3 No Experiments with Squared Hinge Loss

During our hyperparameter optimisation, we were planning to
experiment with cross entropy loss, hinge loss, and squared hinge
loss. However, we accidentally excluded the squared hinge loss.
Since cross entropy was essentially always the best performing
loss function, we do not believe this has any effects on our results.

8.2.3.4 Incorrect BERT Model for RQ6
In order to answer RQ6, we planned on using the BERT model
with preprocessing. However, due to a bug in our code, we acci-
dentally used the BERT model without preprocessing.

The results for RQ5 showed that BERT with preprocessing
generalises better to different projects in the same domain with-
out preprocessing. Based on this, we hope that the same holds
across domains. This would mean the results we got for RQ6
are pessimistic lower bounds for the results we should expect for
BERT with preprocessing.

8.3 Reliability

8.3.1 Quality of Issue Labelling

We used qualitative techniques while labelling more issues.
There is inherent risk of human error with such an approach.
In this section, we discuss some of the threats introduced by our
issue labelling approach.

8.3.1.1 Low Kappa Score

In Sections 4.5.2.3, 4.5.3 and 4.9.3.1, we elaborated on the agree-
ment of our issue labelling. We observed that the Kappa score
was generally quite low. Additionally, the confusion matrices
also showed that there was generally a not insignificant amount
of disagreement between reviewers.

If different annotators label issues differently, this could lead
to worse classifier performance; The classifier may “get confused”

by contradictory labelling, or if its predictions had been correct if
the issue were labelled by a different annotator. Additionally, in-
consistent labelling also leads to reasonable doubts regarding the
accuracy of the performance evaluation of BERT across different
domains.

We attempted to mitigate this threat by 1) double-checking
with other annotators in case of uncertainty, and 2) checking
for systematic disagreements and attempting to correct these.
However, the agreement scores were still relatively poor, leading
to doubts about the quality of the labelling. One redeeming
factor here is that the agreement was computed on the most
difficult in the dataset, hopefully leading to a pessimistic lower
bound.

8.3.1.2 Ambiguous Definition of Existence Decisions
As explained in Section 4.5.3, while relabelling systematic la-
belling errors, we found that the definition of existence issues
had become inconsistent. Additionally, for determining whether
an issue was existence, we sometimes looked at other informa-
tion than only the summary and the description of an issue. The
classifier has no access to such information, and would thus not
be able to use it. Hence, an inconsistent (or at least ill-defined)
definition of existence, alongside a reliance on additional informa-
tion, may have led to the inclusion of issues labelled as existence
which cannot properly be identified by classifiers as such.
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9 Conclusion
In this thesis, we have expanded an existing dataset of labelled
issues from [18]. With random sampling, we found that only
10-15% of the issues in an issue tracking system contain archi-
tectural design decisions. To efficiently find architectural issues,
researchers and practitioners need search tools. We have ex-
perimented with using a deep learning classifier (BERT) as a
search tool, which outperformed existing tools, such as keyword
searches, Maven dependencies analysis, and source code analysis.
One of the main reason for this is that existing tools showed signs
of exhaustion, meaning that they could not find architectural is-
sues efficiently any more. Furthermore, we demonstrated that
deep learning is also an effective search tool in different software
domains, without having to train them on specific domains.

Moreover, we have improved the performance of the classi-
fiers compared to previous work in [18]. Additionally, we have
performed different evaluation techniques to evaluate the per-
formance of the classifiers in a more practical setting. We have
found that the new multi-label classifiers should perform bet-
ter in practice than existing classifiers from [18]. Also, we have
found that almost all the classifier’s performance is transferable
to projects in the same domain, that have not been used for train-
ing the classifier. When applied on projects in different domains,
around 80% of the performance is transferable. This shows that
researchers and practitioners could use the trained classifier on
a wide variety of projects, not necessarily belonging to the same
software domain.

9.1 Future Work
In this section, we will describe a number of possibilities for
future research. We categorised these possibilities into improve-
ments for this research, alternative deep learning applications for
ADDs, analysis of ADDs, and improvements to Maestro.

9.1.1 Deep Learning Improvements

In this section, we will propose various methods to improve the
current deep learning classifiers. Specifically, we will propose
various methods to improve classifier performance.

9.1.1.1 Determine Cause of Incorrect Classifications

We saw that the performance of the classifiers on random samples
and on issues from different domains is significantly worse than
the performance on a simple test set taken from our existing
dataset. This implies that there might still be room to improve
the performance of the classifiers.

We think that, before performing experiments in the hope of
improving classifier performance, it would be a good idea to in-
vestigate likely causes of poor performance. Future work could
therefore focus on performing qualitative analysis on issues which
are incorrectly classified by classifiers. This way, it would be pos-
sible to determine whether improvement should be done through
collecting more issues, relabelling the existing dataset, or some-
thing entirely different.

9.1.1.2 Improve Labelling of the Dataset

As discussed previously, the agreement we got while labelling
issues was not great. This might lead to concerns regarding the
quality of the dataset. Incorrect or inconsistent labelling might
also have a negative effect on classifier performance.

As such, future work could focus on isolating common labelling
mistakes in the current dataset, and re-labelling issues affected
by those mistakes. The fact that we tagged issues with both
their acquisition method(s) and label authors could help in such
an effort.

9.1.1.3 Extend Dataset of issues

The results of RQ4 showed that collecting more issues will not
necessarily improve the performance of the classifier. However,
this analysis did not take into account what types of issues would
be added to the dataset. Since we still had relatively poor per-
formance on the random samples and on issues from different
domains, collecting more data may still result in performance
improvements. We suggest two ways in which additional data
could be collected:

1. Collect data from a wider variety of projects, domains, and
ecosystems. The more varied the training data, the better
we can expect generalisability to be.

2. Device new ways to find architectural issues. As explained
in Section 8.1.1, our current dataset might be biased be-
cause of the methods used to find architectural issues. If
this turns out to be true (e.g. confirmed through quali-
tative analysis), then finding new ways to discover archi-
tectural issues, which are not discover-able using the other
methods, could lead to better generalisability performance
of the classifiers.

9.1.2 Deep Learning Refinements

In this section, we will discuss a number of different ways in
which deep learning can be leveraged for identifying architectural
knowledge in issue tracking systems.

9.1.2.1 Perform Sentence- or Paragraph-level Clas-
sification of ADDs

In the current dataset, issues are labelled on the issue-level. How-
ever, some parts of an issue might contain architectural knowl-
edge, while others may not. Hence, it could be useful to classify
issues with a more fine-grained classification of issue descrip-
tions. For instance, issues could be annotated on the paragraph
or sentence level. Other researchers have done similar things
before. For instance, Viviani et al. classified pull requests on
the paragraph level; entire comments in pull requests were found
to be too course-grained, while sentences were found to be too
fine-grained [81]. An additional benefit of developing classifiers,
which can more narrowly pinpoint architectural knowledge, is
that they might also be more useful in the automatic extraction
of architectural knowledge in future research.

9.1.2.2 Perform Regression on “Degree of ADD-
ness”

While labelling issues, we observed that some issues are more
obviously architectural than others. For instance, in some issues,
it is very clear that they contain an existence decisions; in other
issues, it might be very subtle or very minor. Our first supervisor
proposed the idea of regression on the degree of “ADD-ness”. For
instance, an issue could be annotated as being 0.2 existence, 0.6
property, and 0.0 executive. Implementing such a regression task
could be a next step in separating less useful from useful issues.
Here, usefulness would then be determined by how the coding
book used for that annotating procedure defines usefulness; it
could for instance be the amount and clarity of the architectural
knowledge.

9.1.3 Investigating ADDs

In this research, we created two sizeable datasets of architectural
issues: one dataset of manually labelled issues, and one dataset of
issues found using deep learning classifiers. Both these datasets
can be used for further analysis to improve our understanding of
architectural knowledge in issue tracking systems.
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9.1.3.1 Investigate How ADDs Evolve Over Time

One thing which can be investigated in future research, is how
architectural issues evolve over time as a system evolves. Some
projects use issue tracking systems for the entirety of their life-
time, and different types and amounts of ADDs may be dis-
cussed in different lifetime phases of the system. Such knowl-
edge could possibly be used to further refine search methods;
perhaps specific types of ADDs are more common in specific life-
time phases. Additionally, this might gain insight into common
pitfalls or oversights during a certain part of the design phase,
leading to architectural problems later in the system’s lifetime.
Such insight might help practitioners prevent such mistakes.

9.1.3.2 Investigate Concepts Discussed in ADDs

Our first supervisor pitched the idea to use LDA (latent Dirich-
let allocation) to determine what kind of topics are discussed in
architectural issues. Future research focusing on this could use
the classifier generated dataset of issues to investigate on a mas-
sive scale, across different domains and ecosystems, what kind of
architectural topics software engineers discuss in issue trackers.

9.1.3.3 Examine how ADDs Differ in Different
Projects, Domains, and Ecosystems

Future research could analyse whether there is a difference in
how architecture is discussed in different projects, domains, and
ecosystems. Such research can provide insights in the (possibly
different) ways software engineers discuss software architecture.

Such research could also provide insights in ways to improve
the generalisability of classifiers. If we have better knowledge
of how ADDs differ between projects, domains, and ecosystems,
we might be able to come up with techniques to deal with those
differences. If that is not feasible, it could still provide insights
what kind of issues are currently “missing” from the training
dataset.

9.1.4 Further Improvements to Maestro

Finally, we propose various ways to improve the Maestro tool.
This work is less research focus, but more programming focused.

9.1.4.1 Evaluate Usefulness for Practitioners

Currently, Maestro has only been used in research to expand our
dataset of architectural issues, and for a statistical analysis of
all architectural issues identified using BERT. The latter work
was done by fellow student Sarah Druyts for her bachelor’s the-
sis. This means that Maestro has only been used by researchers.
However, in [53], we mention how Maestro is meant for both
researchers and practitioners. Hence, future work could inves-
tigate the usefulness of Maestro for practitioners. Specifically,
future work could investigate whether Maestro is useful for re-
discovering and re-using architectural knowledge when solving
specific problems.

9.1.4.2 Refactor the Tool to Improve Re-usability,
Extendability, and Scalability

Throughout its development, Maestro has undergone various
refactoring rounds. However, there are still various problems
which need to be addressed. Here, we present a list of desired
changes. However, to fully understand these, we recommend the
reader first familiarise themselves with the architecture of Mae-
stro29.

• Refactor how testing features and features for pre-
diction are generated:

29https://github.com/mining-design-decisions/Maestro/blob/

main/docs/architecture/index.md

When generating features for the test set or predictions,
we need to generate the features with the same settings as
the training set. The feature generation code was designed
so that by default, it uses the configuration options which
would be set when training a model. When generating fea-
tures for testing or prediction, we have to pass in a different
configuration state, and everywhere in the code, we have to
check which state should be used. This is brittle, difficult
to maintain, and should be refactored.

• Make the database more scalable:

Currently, some operations in the database are particularly
slow. Especially ‘join’ operations are slow in MongoDB.
In order to speed these up, we use indexes. However, the
current database schema requires many indices, causing the
database to hit its index limit. Either the database schema
should be refactored to use fewer indices (and ideally im-
prove performance), or the API should be ported to use a
different database (e.g. an SQL database).

• Refactor model saving:

The current implementation used to store trained feature
generators and models is difficult to follow and maintain.
This should be refactored to improve maintainability and
make it easier to store very complex models (e.g. auto-
encoders).

• Refactor deep learning input encoding handling:

Currently, the deep learning code knows about four hard-
coded output encodings. Here, an output encoding is what
we have been referring to as a “deep learning task”. For in-
stance, we have output encoding for detection, multi-class,
and multi-label. The current implementation has all these
hard-coded, including the class corresponding to each out-
put. We would like to change this to make it dynamically
configurable. The work required for this change would be
relatively little, but would require significant regression test-
ing. Making this change would be the first major step to-
wards using the deep learning manager as a general deep
learning tool, instead of a tool specifically for training deep
learning models for finding ADDs.

• Implement user-defined labels:

The only labels which can be assigned to an issue are “non-
archictural”, “existence”, “executive”, and “property”. We
imagine that there are also use cases where users would
want to assign other labels; either they could want more
find-grained classification, or they could want to design clas-
sifiers for different issues (e.g. identify issues specifically
mentioning tactics). This would require support in the user
interface, deep learning manager, database, database API,
and database API client. Doing this would also be the sec-
ond (and last) change needed to convert the deep learning
manager into a general deep learning tool.

• Per-annotator labels:

Currently, an issue can have only one label. If researchers
wish to compute agreement scores, they either have to store
the labels per annotators elsewhere, or leave automatically
identifiable comments containing the labels for each anno-
tator.

Currently, Maestro provides a utility script for computing
inter-annotator agreement30. However, this script required
annotators to leave a label in the format label: X/Y/Z,
where X, Y, and Z are labels. This is not very flexible and
user-friendly. Per-annotator labels would be a more user-
friendly approach.

30https://github.com/mining-design-decisions/Maestro/tree/

main/agreement

https://github.com/mining-design-decisions/Maestro/blob/main/docs/architecture/index.md
https://github.com/mining-design-decisions/Maestro/blob/main/docs/architecture/index.md
https://github.com/mining-design-decisions/Maestro/tree/main/agreement
https://github.com/mining-design-decisions/Maestro/tree/main/agreement
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• Built-in agreement calculations:

Related to the per-annotator labels, is the improvement
that agreement calculations could be performed from within
the UI, instead of relying on an external script.

• Automatic form generation and hyperparameter op-
timisation in the UI:

Currently, the user interface of Maestro has hard-coded
pages for creating model configurations. However, the deep
learning manager has dynamic endpoints for retrieving all
possible configuration options available for models. These
endpoints could be used to dynamically generate the forms
for model creation in the user interface. This would im-
prove the maintainability of the system because changes to
the model configurations would not require changes in the
user interface.

Related to this is that the user interface has no option to
perform hyperparameter optimisation. The hyperparam-
eter optimisation is analogous to normal model creation,
except for one detail: instead of one value, a search space
of values is provided for every configuration option. This
would also be trivial to implement with dynamic form gen-
eration.

• Improve hybrid search approaches:

In its current state, Maestro is mostly focused on separate
keyword search and separate deep learning search. It also
has very primitive support for a hybrid search: the results
of the keyword search can be filtered based on a hard-coded
deep learning classifier. Future work could focus on mak-
ing this classifier configurable, and potentially investigating
the usefulness of such configurability. Additionally, future
work could focus on implementing filtering based on multi-
ple classifiers.

• Quality of life changes to the user interface:

Some elements in the user interface (e.g. the tags associated
with an issue) take up a lot of space. This should be changed
to reduce visual noise. Additionally, inputting long queries
is cumbersome with the current interface. A general set
of quality of life improvements to the user interface could
greatly improve the user experience.

• Trained model deprecation policy:

Trained models are currently stored in the database. Cer-
tain changes in the deep learning manager, such as the ad-
dition of a new parameter to a feature generator, may cause
older trained models to become unusable with the new ver-
sion of Maestro. Currently, the system does not automati-
cally handle this. This should be changed; there should be
a system to inspect and invalidate outdated trained models.
This is currently a non-trivial change, because schema-wise,
the predictions made by these outdated models would also
be deleted if these models were deleted from the database.
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1 Preface: Definitions & Terminology

1.1 Basic Definitions

The basic definitions used for Existence, Executive, and Property issues are based on the following paper by
Kruchten:

Kruchten, Philippe. ‘An Ontology of Architectural Design Decisions in Software Intensive Systems’.
2nd Groningen Workshop on Software Variability, 2004.

For all issue labelling, the basic definitions outlined in that paper should be kept in mind. The rules in this
coding book mostly define and substantiate how we interpreted these definitions and how issues should be assigned
to them.

1.2 Significant Enough Changes/Significant Effort etc

Often, if an issue is architectural or not depends on the effort involved. What we mean by this, is that something
is hard to change. For instance, the addition of a new component is architectural if making large changes later is
difficult. Hence, the key question we ask if necessary is “Would it be difficult to change the implementation?”.

The following issues were considered existence:

• An addition of a new partition strategy to Cassandra: CASSANDRA-8866

• Blacklisting of ill-performing nodes in Hadoop: HDFS-289

• Encryption of SSTables in Cassandra: CASSANDRA-9633

• Refactoring to expose an interface: HADOOP-15038

• CASSANDRA-5283

• YARN-4619

• CASSANDRA-4011

• CASSANDRA-14213

The following issues were considered architectural, but not existence:

• Changes to memory handling in HDFS:

• Moving some functionality to a separate thread: HDFS-16016

• Throttling in HDFS: HDFS-9723

• Optimisation of small repair streams (seems major, but not enough conclusive evidence to warrant existence):
CASSANDRA-13290

• Better load distribution among threats: CASSANDRA-4292

• Umbrella for OS-level optimizations: HADOOP-7714

• CASSANDRA-12104

• /CASSANDRA-13291
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2 Guidelines for Certain Issue Types

• User requests should be evaluated based on the types of decisions discussed in the request.

3 Architectural

ARCH-1 Use-cases/requirements are architectural (HADOOP-9659 )

ARCH-2 Umbrella tasks that contain many links to subtasks are architectural. Depending on the focus of the task, it
can be existence, property and/or executive (HADOOP-15977 , HADOOP-1771777 )

4 Existence

EXI-1 Large behavioural changes to commands/operations are existence (HADOOP-15845 , YARN-613 )

EXI-2 The introduction of tactics is existence if the implementation requires the addition/modification/removal of
components or behaviour between components (HADOOP-18458 )

EXI-3 The addition of major new functionality is existence, even if the implementation might be relatively straight-
forward (CASSANDRA-17059 )

EXI-4 Refactoring may be existence if done on a scale where many places/components are affected (CASSANDRA-
8609 , HDFS-6315 )

EXI-5 Property issues which motivate the addition/removal/modification of existing components or interactions are
often also existence, given that the changes are sufficiently large (CASSANDRA-8609 , YARN-8673 )

EXI-6 New features with significant implementation challenges/non-trivial implementation/large implementation
effort are often existence (CASSANDRA-1339 )

EXI-7 Major restructuring/sub-project creation is existence (CASSANDRA-1228 )

EXI-8 The implementation of large utility tools is existence (HDFS-8968 )

EXI-9 Parallelism is often existence, unless the implementation is trivial (CASSANDRA-2901 )

EXI-10 Changes to the interaction between components is existence (HDFS-7607 , CASSANDRA-8345 , CASSANDRA-
6752 , CASSANDRA-4761 )

EXI-11 Changes spanning multiple components are existence (CASSANDRA-9633 )

EXI-12 Vague or small change descriptions are still existence, if components and/or protocols are mentioned (MAPREDUCE-
5189 , HDFS-2181 , YARN-3409 )

EXI-13 Large non-trivial code changes (in patch) are existence (YARN-6620 , YARN-3998 )

EXI-14 Issues without patch if changes to components and/or protocols are described (HDFS-6658 )

NON-EXI-1 Trivial code movement is not architectural (YARN-2107 ), unless a proper architectural reason is specified
(HADOOP-9649 ), or the code being moved is large enough (HDFS-12259 ).

NON-EXI-2 Small changes to internal interfaces are not existence (CASSANDRA-6248 )

NON-EXI-3 Very small interface additions (e.g. “hookds”) are not existence (CASSANDRA-5545 )

NON-EXI-4 Very vague change descriptions not mentioning components and/or protocls are not existence (HADOOP-1986
)
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5 Executive

NB: Protocols, tools, hardware and interfaces can be considered a technology

EXEC-1 Issue deals with external technologies (e.g. support for technology Y, CASSANDRA-1193 ) are executive,
unless the changes are minor (CASSANDRA-11519 ). However, in case much effort is needed to analyse the
effects of such changes is large, the issue can also be considered executive (CASSANDRA-3031)

EXEC-2 Dependency additions/upgrades/removals are executive (HADOOP-17947 , CASSANDRA-13291 )

EXEC-3 Creation of utility tools for development (e.g. benchmarking) is executive (HDFS-8968 , HADOOP-12725 )

EXEC-4 External code contributions (e.g. merging existing projects) is executive (HADOOP-2878 , YARN-2670 )

EXEC-5 Requests or proposals from companies or other users to support technologies is executive (CASSANDRA-11703
, HADOOP-9484 )

NON-EXEC-1 Code to work around some flaw in a dependency, external tool etc. is not executive (HADOOP-17597 )

NON-EXEC-2 User requests are not executive (HADOOP-17268 )

6 Property

PROP-1 Quality attribute enhancements are often property, if applied on a high-enough level (e.g. parallelism, HTTPS
connection re-use), and provided that the improvement is one of the main goals of the issue (not mentioned
off-handedly) (TAJO-1970 ). Note that improving quality attributes is sometimes implicitly described by
words such as refactoring.

PROP-2 Discussions (as in, discussion without implementation) on quality attributes (e.g. security) are property if
the change being is major enough (e.g. implementation would be considered existence), even if in the end
no implementation is done or proposed. Investigations also fall under this category. (CASSANDRA-7129 ,
CASSANDRA-7045 )

PROP-3 Refactoring might be property if done on a system-level (i.e. implication in many places), and/or expressed
in terms of quality attributes (CASSANDRA-8609 , HDFS-2353 )

PROP-4 The implementation of tools/utilities meant to measure (and later improve) quality attributes is property
(HDFS-8968 )

PROP-5 Parallelism is in general property if done for performance, even if the implementation is simple (CASSANDRA-
2901 )

PROP-6 Umbrella issues focusing on the improvement of quality attributes are property, even if no clear decisions are
made in the issue itself. (MAPREDUCE-563 , YARN-2745 )

PROP-7 Mitigation of security vulnerabilities is property (CASSANDRA-15121 , TAJO-1214 ), as well as changing
security settings (HADOOP-16779 )

PROP-8 Reporting a problem w.r.t. a quality attribute is property (HADOOP-55 )

PROP-9 Usability issues are generally property (HDFS-2849 )

NON-PROP-1 A single interface or API being X (where X is a quality attribute) is not immediately property (CASSANDRA-
754 )

NON-PROP-2 Backwards-compatibility related issues are generally not property (CASSANDRA-10990 )

NON-PROP-3 Quality attribute improvement or discussion is not property if the change is trivial (e.g. configuration change)
(CASSANDRA-14678 )

NON-PROP-4 Indirect improvements (“this change would enable the development of faster algorithms”) are not property
(TAJO-196 )

3



7 Non-Architectural

NON-ARCH-1 Not any of the above

NON-ARCH-2 Small changes are non-architectural

NON-ARCH-3 Configuration changes are not architectural, even if this may lead to the ability to use more/different tech-
nologies (HADOOP-14417 )

NON-ARCH-4 The addition of small utility tools which do not provide or require novel functionality, is not architectural
(SOLR-11179 )

NON-ARCH-5 License/legal use clarification of source code is not architectural (CLOUDSTACK-161 )

NON-ARCH-6 Small changes in/additions of error handling are not architectural, even though it may lead to new behaviour
in case the error is encountered (SOLR-3505 , CASSANDRA-18042 )

NON-ARCH-7 Small utility additions/new features need not be architectural, even though they introduce new parts of a
public interface (SOLR-10485 , SOLR-11338 )

NON-ARCH-8 Tests/QA are non architectural CLOUDSTACK-1000 )

NON-ARCH-9 Formalities/release guidelines are not architectural (JSPWIKI-559 )

NON-ARCH-10 (Detailed) implementation issues without design discussion are not architectural (HDFS-5616 )

NON-ARCH-11 Coding standard issues (e.g. “not compliant with SQL syntax”) are not architectural (TAJO-1970 )

NON-ARCH-12 Minor behavioural clarifications are not architectural (CASSANDRA-9131 )

NON-ARCH-13 Umbrella issues without their own decisions or implementation details are non-architectural, even if the large
effort being coordinated requires substantial architectural changes.

NON-ARCH-14 Small code refactorings are non-architectural.

NON-ARCH-15 Small bugs/bug reports are non-architectural, given that the solution is a relatively straightforward code
change.

NON-ARCH-16 “TODO Lists” are non-architectural (HADOOP-5064 )

4
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B Detailed Result of Issue Labelling
In this appendix, we have various figures describing the result of labelling issues in more detail. Figures 41 and 42 display the
amounts of issues we found per label in the initial expansion of our dataset. The first figure gives the amounts before relabelling;
the second figure the amount after relabelling. The second figures thus shows how the relabelling has changed the results of our
data collections efforts.

Next, Figures 43, 44, and 45 provide detailed statistics regarding the agreement while labelling. Figure 43 gives the agreement
on the initial set of issues we collected to expand the dataset, before performing relabelling. Figure 44 presents the agreement on
the issues we relabelled during the relabelling process. Finally, Figure 45 presents the agreement on the random samples from the
six domains.

Fig. 41. Issues found per labelling round before relabelling.
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Fig. 42. Issues found per labelling round, after relabelling. This is thus a version of Figure 41 adjusted for the relabelling we performed. This figure
gives an overview of how relabelling changed the amounts of issues found per class.
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Fig. 43. Agreement after issue collection (before relabelling)
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Fig. 44. Agreement on the relabelled issues.
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Fig. 45. Agreement on the issues sampled from the six domains.
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C Hyperparameter Tables
This section start with an overview of the hyperparameters that we could optimise. This table is followed by the tables for the
hyperparameters we optimised for each individual model, including the best hyperparameter values we found for each model during
the optimisation process.
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Hyperparameter(s) Model
Type(s)

Default value Description

batch size ALL 32 How many input samples are used for each training step.
number of dense layers CNN, RNN,

FNN
– The number of dense layers in the model.

dense layer activation CNN, RNN,
FNN

linear The activation function to use for all dense layers in the model.
Note that the activation function is the same for each dense
layer.

dense layer activation alpha CNN, RNN,
FNN

0 Alpha value for the ELU and LeakyReLU activations.

kernel l1 CNN, RNN,
FNN

0 L1 regularisation for the kernel weights.

bias l1 CNN, RNN,
FNN

0 L1 regularisation for the bias weights.

activity l1 CNN, RNN,
FNN

0 L1 regularisation for the activity.

dense layer i size CNN, RNN,
FNN

– Number of units in the i-th dense layer.

dense layer i dropout CNN, RNN,
FNN

0 Dropout for the i-th dense layer.

number of convolutions CNN – Number of convolution kernels.
convolution i size CNN – Size of the i-th convolution kernel.
filters CNN – Number of filters for each convolution.
convolution activation CNN – Activation of the kernel layers.
convolution activation alpha CNN – Alpha value for the ELU and LeakyReLU activations.
convolution kernel l1 CNN 0 L1 regularisation for the kernel weights.
convolution bias l1 CNN 0 L1 regularisation for the bias weights.
convolution activity l1 CNN 0 L1 regularisation for the activity.
convolution batch normali-
sation

CNN false Batch normalisation for the convolution layers.

convolution i batch normali-
sation momentum

CNN 0.99 Momentum for the batch normalisation.

number of rnn layers RNN – Number of RNN layers
rnn layer i type RNN – The type of layer (i.e. LSTM or GRU) for the i-th rnn layer.

Note that this can be different for each RNN layer.
rnn layer i size RNN – Size of the i-th RNN layer. Note that this can be different for

each RNN layer.
optimiser ALL adam Optimisation algorithm used for training.
weight decay CNN, RNN,

FNN
0.0 A parameter of the optimiser that determines by how much large

weights in the network are being penalised.
beta-1 ALL 0.9 Initial decay rate for the first moment of the gradient.
beta-2 ALL 0.999 Initial decay rate for the second moment of the gradient.
epsilon ALL 1e-7 Epsilon value for the adam/nadam/adamw optimisers.
learning rate start ALL 5e-3 Determines by how much the weights can change during a train-

ing step at the start of training.
learning rate stop ALL 5e-4 Determines by how much the weights can change during a train-

ing step after a specified number of training steps have been
completed (see next hyperparameter).

learning rate steps ALL 470 How many training steps it takes to go from learning rate start
to learning rate stop. A higher value means that more steps are
required for the learning rate to decay.

learning rate power ALL 1 Determines the shape of the learning rate decay. A power of
2 means a polynomial decay with power 2. The result is that
initially the learning rate decreases rapidly, and after that it
keeps decreasing more slowly.

epochs ALL – Number of epochs to train the model.
early stopping min delta ALL – Minimum performance improvement required to not trigger

early stopping.
early stopping patience ALL – Number of epochs without improvement to stop training.
loss ALL crossentropy Loss function that is being minimized during training.
max tokens BERT 512 The amount of tokens each input sample has. This only works

for BERT.
padding BERT true Issues that are shorter than 512 tokens are padded using special

tokens. This only works for BERT.
truncation BERT true Issues that cannot be encoded into 512 tokens are being trun-

cated. This is only works for BERT.
number of frozen layers BERT 0 How many of the BERT encoder layers are being frozen.

Table 32. This table contains an overview of the hyperparameters that we could optimise. Besides the default value, it also contains a short description
for each hyperparameter.



92 C HYPERPARAMETER TABLES

Hyperparameter Search space Best Value
batch size 16, 32 16
number of frozen layers – 0
optimiser – adam
beta 1 – 0.9
beta 2 – 0.999
epsilon – 1e-7
weight decay – 0.01
learning rate start 2e-5, 3e-5, 5e-5 3e-5
learning rate stop – equal to learning rate start
learning rate steps – value does not matter
learning rate power – 0
epochs 2, 3, 4 4
loss – crossentropy
max tokens – 512
padding – true
truncation – true

Table 33. Hyperparameters that we tuned for BERT, including the best values we found after tuning.

Hyperparameter Search space Best Value
batch size 8, 16, 32, . . . , 512 256
number of dense layers 1 - 5 2
dense layer activation linear, relu, elu, tanh, soft-

sign, prelu, selu, gelu, swish,
softplus

swish

dense layer activation alpha 0.01 - 1.0* –
kernel l1 1e-10 - 0.1* 3.5203e-6
bias l1 1e-10 - 0.1* 8.0251e-7
activation l1 1e-10 - 0.1* 5.6641e-4
dense layer 1 size 2, 4, 8, ..., 2048 8
dense layer 1 dropout 0.0, 0.05, ..., 0.5 0.05
dense layer 2 size 2, 4, 8, ..., 2048 1024
dense layer 2 dropout 0.0, 0.05, ..., 0.5 0
optimiser adamw, nadam nadam
weight decay 1e-10 - 0.5* 1.0112e-5
beta-1 1e-10 - 0.999* 6.2501e-10
beta-2 1e-10 - 0.999* 2.0632e-4
epsilon 1e-10 - 0.01* 1.5045e-9
learning rate start 0.01 - 1.0* 2.3883e-2
learning rate stop 1e-5 - 0.1* 3.1211e-2
learning rate steps 1 - 10000* 33
learning rate power 1 - 2 1.8592
epochs – 200
early stopping min delta – 0.01
early stopping patience – 5
loss crossentropy, hinge crossentropy

Table 34. Hyperparameters that we tuned for BOWF, including the best values we found after tuning. Search spaces with a * are sampled using a
logarithmic function.
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Hyperparameter Search space Best Value
batch size 8, 16, 32, . . . , 512 16
number of dense layers 1 - 5 1
dense layer activation linear, relu, elu, tanh, soft-

sign, prelu, selu, gelu, swish,
softplus

relu

dense layer activation alpha 0.01 - 1.0* –
kernel l1 1e-10 - 0.1* 3.6096e-8
bias l1 1e-10 - 0.1* 4.1990e-9
activation l1 1e-10 - 0.1* 8.9417e-5
dense layer 1 size 2, 4, 8, ..., 2048 512
dense layer 1 dropout 0.0, 0.05, ..., 0.5 0.05
optimiser adamw, nadam nadam
weight decay 1e-10 - 0.5* 9.3321e-5
beta-1 1e-10 - 0.999* 9.0221e-2
beta-2 1e-10 - 0.999* 7.0132e-9
epsilon 1e-10 - 0.01* 1.3311e-4
learning rate start 0.01 - 1.0* 4.4118e-2
learning rate stop 1e-5 - 0.1* 2.2659e-3
learning rate steps 1 - 10000* 631
learning rate power 1 - 2 1.7064
epochs – 200
early stopping min delta – 0.01
early stopping patience – 5
loss crossentropy, hinge crossentropy

Table 35. Hyperparameters that we tuned for BOWN, including the best values we found after tuning. Search spaces with a * are sampled using a
logarithmic function.

Hyperparameter Search space Best Value
batch size 8, 16, 32, . . . , 512 16
number of dense layers 1 - 5 1
dense layer activation linear, relu, elu, tanh, soft-

sign, prelu, selu, gelu, swish,
softplus

relu

dense layer activation alpha 0.01 - 1.0* –
kernel l1 1e-10 - 0.1* 3.6096e-8
bias l1 1e-10 - 0.1* 4.1990e-9
activation l1 1e-10 - 0.1* 8.9417e-5
dense layer 1 size 2, 4, 8, ..., 2048 512
dense layer 1 dropout 0.0, 0.05, ..., 0.5 0.05
optimiser adamw, nadam nadam
weight decay 1e-10 - 0.5* 9.3321e-5
beta-1 1e-10 - 0.999* 9.0221e-2
beta-2 1e-10 - 0.999* 7.0132e-9
epsilon 1e-10 - 0.01* 1.3311e-4
learning rate start 0.01 - 1.0* 4.4118e-2
learning rate stop 1e-5 - 0.1* 2.2659e-3
learning rate steps 1 - 10000* 631
learning rate power 1 - 2 1.7064
epochs – 200
early stopping min delta – 0.01
early stopping patience – 5
loss crossentropy, hinge crossentropy

Table 36. Hyperparameters that we tuned for TF-IDF, including the best values we found after tuning. Search spaces with a * are sampled using a
logarithmic function.
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Hyperparameter Search space Best Value
batch size 8, 16, 32, . . . , 512 32
number of dense layers 1 - 5 4
dense layer activation linear, relu, elu, tanh, soft-

sign, prelu, selu, gelu, swish,
softplus

tanh

dense layer activation alpha 0.01 - 1.0* –
kernel l1 1e-10 - 0.1* 3.3919e-9
bias l1 1e-10 - 0.1* 1.3285e-7
activation l1 1e-10 - 0.1* 2.5887e-10
dense layer 1 size 2, 4, 8, ..., 2048 512
dense layer 1 dropout 0.0, 0.05, ..., 0.5 0.25
dense layer 2 size 2, 4, 8, ..., 2048 2048
dense layer 2 dropout 0.0, 0.05, ..., 0.5 0.05
dense layer 3 size 2, 4, 8, ..., 2048 32
dense layer 3 dropout 0.0, 0.05, ..., 0.5 0.4
dense layer 4 size 2, 4, 8, ..., 2048 2048
dense layer 4 dropout 0.0, 0.05, ..., 0.5 0
optimiser adamw, nadam nadam
weight decay 1e-10 - 0.5* 4.9950e-5
beta-1 1e-10 - 0.999* 9.6102e-2
beta-2 1e-10 - 0.999* 7.3496e-9
epsilon 1e-10 - 0.01* 6.4399e-4
learning rate start 0.01 - 1.0* 1.0251e-2
learning rate stop 1e-5 - 0.1* 5.0890e-4
learning rate steps 1 - 10000* 5
learning rate power 1 - 2 1.3785
epochs – 200
early stopping min delta – 0.01
early stopping patience – 5
loss crossentropy, hinge crossentropy

Table 37. Hyperparameters that we tuned for DOC2VEC, including the best values we found after tuning. Search spaces with a * are sampled using
a logarithmic function.
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Hyperparameter Search space Best Value
batch size 32, 64, 128, . . . , 512 256
number of dense layers 0, 1 1
dense layer activation linear, relu, elu, tanh, soft-

sign, prelu, selu, gelu, swish,
softplus

selu

dense layer activation alpha 0.01 - 1.0* –
dense layer i size 2, 4, 8, ..., 2048 64
number of convolutions 1 - 5 2
convolution 1 size 1 - 64 49
convolution 2 size 1 - 64 8
filters 1, 2, 4, ..., 64 8
convolution activation linear, relu, elu, tanh, soft-

sign, prelu, selu, gelu, swish,
softplus

swish

convolution activation alpha 0.01 - 1.0* –
convolution kernel l1 1e-10 - 0.1* 1.6615e-8
convolution bias l1 1e-10 - 0.1* 1.8959e-8
convolution activity l1 1e-10 - 0.1* 6.1055e-8
convolution batch normalisa-
tion

false, true false

convolution 1 batch normali-
sation momentum

0.01 - 0.99* –

convolution 2 batch normali-
sation momentum

0.01 - 0.99* –

optimiser adamw, nadam nadam
weight decay 1e-10 - 0.5* 3.6116e-4
beta-1 1e-10 - 0.999* 8.4755e-4
beta-2 1e-10 - 0.999* 1.2244e-6
epsilon 1e-10 - 0.01* 6.7890e-10
learning rate start 0.01 - 1.0* 1.6069e-1
learning rate stop 1e-5 - 0.1* 2.8635e-3
learning rate steps 1 - 10000* 36
learning rate power 1 - 2 1
epochs – 200
early stopping min delta – 0.01
early stopping patience – 5
loss crossentropy, hinge crossentropy

Table 38. Hyperparameters that we tuned for CNN, including the best values we found after tuning. Search spaces with a * are sampled using a
logarithmic function.
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Hyperparameter Search space Best Value
batch size 8, 16, 32, . . . , 512 32
number of dense layers 0 - 1 0
dense layer activation linear, relu, elu, tanh, soft-

sign, prelu, selu, gelu, swish,
softplus

–

dense layer activation alpha 0.01 - 1.0* –
kernel l1 1e-10 - 0.1* –
bias l1 1e-10 - 0.1* –
activation l1 1e-10 - 0.1* –
dense layer 1 size 2, 4, 8, ..., 2048 –
dense layer 1 dropout 0.0, 0.05, ..., 0.5 –
number of rnn layers 1 - 2 2
rnn layer 1 type GRU, LSTM LSTM
rnn layer 1 size 16, 32, 64, 128 128
rnn layer 2 type GRU, LSTM GRU
rnn layer 2 size 16, 32, 64, 128 16
optimiser adamw, nadam adamw
weight decay 1e-10 - 0.5* 1.0996e-8
beta-1 1e-10 - 0.999* 2.9464e-4
beta-2 1e-10 - 0.999* 4.4085e-3
epsilon 1e-10 - 0.01* 8.0932e-3
learning rate start 0.01 - 1.0* 1.5716e-2
learning rate stop 1e-5 - 0.1* 3.5921e-3
learning rate steps 1 - 10000* 4
learning rate power 1 - 2 1.7859
epochs – 200
early stopping min delta – 0.01
early stopping patience – 5
loss crossentropy, hinge crossentropy

Table 39. Hyperparameters that we tuned for RNN, including the best values we found after tuning. Search spaces with a * are sampled using a
logarithmic function.
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Abstract. Software engineers commonly re-use architectural design de-
cisions (ADDs) from their previous experience. However, in practice, soft-
ware engineers still depend on adhoc mechanisms to re-use ADDs. Recent
studies show that software engineers discuss ADDs in issue tracking sys-
tem, which could be useful for software engineers to make new ADDs.
Nevertheless, it is rather challenging to find ADDs among the big amount
of issues in issue trackers. Therefore, we introduce Maestro, an open
source tool for finding, annotating, and exploring ADDs in issue track-
ing systems. The tool allows researchers and practitioners to find and
analyze issues containing ADDs in issue trackers. Maestro provides an-
notation mechanisms, deep learning components, keywords-based search
engine and a user-interface that can be easily used by researchers and
practitioners to find and analyze ADDs in issue trackers.

Keywords: Architectural design decisions · issue tracking system.

1 Introduction

Software engineers tend to reuse the knowledge from previously made Architec-
tural Design Decisions (ADDs) [14], such as ADDs on components design (e.g.
through patterns ([5])), technology ADDs [20], and ADDs on tactics to address
quality requirements (e.g. authentication mechanisms as security tactics) [2].
For instance, software engineers can learn from the drawbacks (e.g. performance
issues) of solutions decided in previous ADDs. The re-use of knowledge from
previous ADDs could help software engineers to effectively design new systems
and mitigate risks.

While re-using ADDs could be useful in practice, empirical studies show
that software engineers do not commonly document ADDs [14]. For instance,
researchers proposed a wide variety of tools to manage and document ADDs
[6, 23, 24]. However, software engineers still tend to maintain their knowledge
on ADDs in their head (i.e. tacit) without explicit documentation [6]. On the
other hand, software engineers communicate and discuss ADDs informally to
resolve issues (e.g. new features1 or improvements2) in issue tracking systems

1 https://issues.apache.org/jira/browse/HADOOP-13944
2 https://issues.apache.org/jira/browse/CASSANDRA-12245
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(e.g. Jira) [19, 3]. We call issues containing such discussions architectural issues.
The discussions on ADDs in architectural issues contain useful knowledge, which
software engineers could potentially re-use to make new ADDs.

While architectural issues could potentially be useful for software engineers,
they are not tagged by software engineers [19], which make them hard to find
and explore in between the vast majority of issues on programming and bugs.
Therefore, researchers utilised different approaches (e.g. machine learning [3],
source code analysis [19], and qualitative analysis [19]) to find and explore ar-
chitectural issues, each with different pros and cons. However, the diversity of
the different approaches require researchers and practitioners to execute each
approach separately, and possibly manually combine their results to effectively
find and explore architectural issues. To execute each approach separately is a
complex, error prone and time-consuming process, which require expertise in
different fields like machine learning and qualitative analysis.

In this paper, we propose Maestro: An open source tool3 to find and explore
ADDs in issue tracking systems. Maestro combines four different approaches to
find and explore ADDs in a single process: keyword-based searches, deep learn-
ing, qualitative analysis, and statistical analysis. In addition, Maestro allows
importing results from other approaches such as source code analysis. In Mae-
stro, we distinguish between different types of ADDs according to Kruchten et al.
[13]: existence (component related), executive (process and technology related),
and property (quality related). Maestro is designed to be extensible and easy
to use for both researchers and practitioners. For instance, software engineering
researchers can train and run deep learning models without expertise on pro-
gramming deep learning models. Maestro can be deployed remotely or locally,
which provides flexibility for researchers and practitioners to run the tool.

The rest of the paper is organised as follows: In Section 2, we discuss the
use cases of Maestro. In Section 3, we discuss the architecture of Maestro. We
explain our experiences and evaluation of Maestro in Section 4, and compare it
with related work in Section 5. Finally, we conclude the paper in Section 6.

2 Use Cases

Maestro serves both researchers and practitioners to find and explore ADDs
in issue tracking systems. Researchers can use Maestro for empirical analysis;
practitioners can use Maestro to re-discover and re-use architecetural knowl-
edge. Fig 1 shows an overview of the use cases supported by Maestro and their
relationships. We explain each use-case below:

UC1 Select candidate issues for qualitative analysis: Researchers can select
certain issues to be manually analysed (in UC2). The nomination of the
selected issues can come from different sources: 1) predictions made by deep
learning classifiers (in UC4). 2) issues resulting from keywords-searching (in

3 Available from: https://github.com/mining-design-decisions/Maestro
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Fig. 1. Use cases supported by Maestro, annotated with relevant actors per use case.
Arrows show how results from one use case (or activity) are used by other use cases.

UC5). 3) issues identified from other tools (e.g. source code analysis [19, 18]),
and 4) issues selected randomly similar to Bhat et al. [3].

UC2 Annotate issues with types of ADDs: Researchers can analyse selected
issues (from UC1) using qualitative methods (e.g. grounded theory [21]),
and annotate them based on the types of ADDs within issues. Using the
tool, multiple remotely located researchers can discuss types of ADDs using
an online conversation associated with each issue. The UI provides the re-
searchers with the summaries and descriptions of issues, the assigned types
of ADDs, and a discussion thread per issue. The conversations between re-
searchers can be used incrementally to create a coding book for annotating
architectural issues. Furthermore, the tool supports researchers to calculate
agreement measures such as Kappa [9] to ensure high quality of the qualita-
tive analysis. The annotated issues can be directly used to develop new deep
learning models (in UC3).

UC3 Develop deep learning models to identify types of ADDs in issues:
First, researchers can design classifiers by choosing from different types of
feature generation (e.g. Word embedding [15] and Word Frequency), deep
learning architectures (e.g. RNN [12, 8, 7], CNN [17], and BERT [11]), which
can be automatically tuned using the flexible user interface of the tool. Sec-
ond, researchers can train designed classifiers using the annotated issues
(from UC2), and compute their accuracy (e.g. in terms of F1 score) to au-
tomatically identify types of ADDs in issues.

UC4 Predict types of ADDs in issues: Both practitioners or researchers can
use the trained classifiers (from UC3) to predict types of ADDs in new, pre-
viously un-annotated, issues. Specifically, practitioners can find past ADDs
in issues of existing projects, understand their rationale, and re-use their
knowledge to make new ADDs. Researchers could further analyse these is-
sues using qualitative analysis (in UC2) or statistical analysis (in UC6).

UC5 Search for ADDs using keywords: Both practitioners or researchers can
search for architectural issues using classical keywords-based search (i.e. in-
formation retrieval). Moreover, the tool facilitates filtering search results
based on the predictions of classifiers (from UC4). In this way, practitioners
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could effectively find issues that discuss certain types of ADDs. At the same
time, researchers can focus their qualitative and statistical analysis (in UC2
and UC6) on issues that discuss certain types of ADDs.

UC6 Perform statistical analysis on ADDs: Researchers and practitioners
could perform statistical analysis on architectural issues. For example, prac-
titioners could determine the duration of issues that involve certain types of
ADDs. This can help practitioners to estimate the duration of future ADDs
based on their type. As another example, researchers might be interested
to determine the amount of knowledge on certain types of ADDs in the
descriptions and comments of architectural issues.

3 Architecture of Maestro

Maestro consists of four layers, each contains multiple components. The logical
architecture is depicted in Figure 2, and the physical architecture in Figure 3.
We explain below each layer in more details:

– ThePersistence Layer contains four different databases: 1) a database that
contains data on issues (e.g. summary and description), which we based on
the dataset from Montgomery et al. [16]. 2) a database that contains data
related to the manual annotation of issues (e.g. manual labels and discussions
between researchers), and all deep learning related data (e.g. trained models,
their configurations, performance scores), 3) a database that contains cached
statistics data, and 4) a database for usernames and passwords.

– The Data Access Layer provides secure access to the databases using au-
thentication tactics. Furthermore, it contains components that can update
the issues database with new issues from issue trackers (current only Jira is
supported) to support the extensibility of the system. We re-used the com-
ponent created by Montgomery et al. [16], and enhanced it to be extensible.

– The Processing Layer contains two major components: 1) The Keywords
Search Engine provides a centralised API for performing keyword searches
(UC5) using Apache Lucene, which allows re-use of pre-computed indices. 2)
The Deep Learning Manager acts as the backend for all deep learning related
functionality outlined in UC2 and UC3. The deep learning was designed to be
extensible. In Fig 2, every pipeline makes use of one or more entities. New
entities, such as new feature generators or neural networks, can be easily
added by adding new entity classes which are instantiated through factories.

– TheUser Interface provides an interface for the user to fulfil all use-cases in
Section 2. For instance, to achieve UC3, the UI presents different options for
each deep learning model and provides a user-friendly interface to provide
parameter values. Through the UI, researchers could initiate the training
of machine learning models, and view accuracy scores in a concise overview.
Moreover, researchers could manually view and classify issues (UC2). Further
details on the UI can be viewed in our video4. The UI is designed according to

4 https://www.youtube.com/watch?v=sztY5it5Lb4
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the Model-View-Controller (MVC) pattern, and depends on the processing
layer and the data access layer (see Figure 2).

Components can be deployed locally or remotely (Fig 3), allowing data cen-
tralisation and offloading of computationally intensive tasks to other devices.
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Fig. 2. The logical architecture of Maestro. The “high level components” are larger
components with smaller sub-components.

4 Research Process to Develop Maestro

Maestro is a result of a research project spanning more than 2 years of efforts
[10] that aims to explore ADDs in issue tracking systems. The four authors of
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Fig. 3. The physical architecture of Maestro.

this paper, as well as two other independent researchers, participated in this
project. Our research follows an action research method [1], where researchers
investigated the problem of finding and exploring architectural issues in issue
trackers, and simultaneously developed approaches to find and analyse architec-
tural issues. In detail, we followed four phases, each consists of an action and
an evaluation steps. We explain below each phase and step, and associate them
to the use-cases (UC) in Section 2. We explain how these phases lead to the
development of Maestro, and illustrate how it can be used in research.

– Phase 1 - Random sampling to find architectural issues:
Action: We selected a random sample of 400 issues from six different open-
source projects, and analysed them using qualitative analysis [21].
Evaluation: The percentage of architectural issues range between 10-15% of
the random sample, which shows that random sampling is not an effective
approach to find ADDs in issue trackers.

– Phase 2 - Keywords-search and source code analysis:
Action: Because random sampling was ineffective to find architectural issues,
we experimented with two further approaches: searching using keywords from
literature (UC5), and source code analysis [19]. Using both approaches, we
selected 2179 candidate issues (UC1) from six open source projects from
the Big Data domain (e.g. Apache Hadoop) to be manually analysed using
qualitative analysis. For each issue, we downloaded its title and description
in an excel sheet, and annotated the types of ADDs in their descriptions
according to Kruchten et al. [13]: Existence, property and executive. Dis-
agreements between researchers were discussed in separate meetings.
Evaluation: Keywords searching and source code analysis were effective to
find existence ADDs (precision > 50%), but suffered from low precision to
find property and executive ADDs. Moreover, during the qualitative analy-
sis, we realised that it is challenging to annotate large number of issues using
Excel sheets, because some issues are long and contain formatting symbols,
which cannot be correctly visualised. It was also challenging to track our
discussions on issues during our meetings. These discussions were important
to write and improve our coding book to annotate ADDs in issue trackers.

– Phase 3 - Machine learning to find architectural issues:
Action: Because keywords-search and source code analysis were not effec-
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tive to find property and executive architectural issues, we trained different
deep learning models to automatically classify architectural issues (UC3).
We then used the model with the best accuracy (i.e. “BERT” model) to
predict the types of issues (UC4), which have not been previously manually
analysed. Accordingly, We sorted the issues identified from “BERT” model
depending on the confidences obtained from the model to analyse manually
(UC1). We developed the user interface of the tool to display and sort list
of issues based on the confidences generated by deep learning models. Fur-
thermore, we developed a dedicated user interface to annotate and tag issues
based on the types of ADDs in their description (UC2).
Evaluation: The tool showed significant usefulness to annotate issues, be-
cause researchers (allocated remotely) could directly view, discuss and clas-
sify issues in one process. According to our experience, using the tool was
better than relying on excel sheets, especially in visualising long and com-
plex issues. Moreover, the tool allows to discuss issues, and instantly add
issues to the training set without any need to run other scripts or upload
data, which prevent faults such as forgetting to include issues or inserting
duplicate issues (i.e. the tool provides a consistent overview of all labelled
issues for all users). Additionally, during annotations, the tool allows adding
tags to issues, which helped us to mark issues that require a second opinion
on their classification, and enabled us to track information about who an-
notated which issues, and how these issues were found (e.g. using keywords
searching – UC5). This tagging functionality helped us to more easily iden-
tify groups of potentially miss-annotated issues. Furthermore, the UI brings
notable enhancements to train deep learning models. Previously, we had to
manually create configurations for each model, which was error-prone and
tedious. However, the UI now clearly presents all available options for each
model to facilitate creation, training and evaluation. Using this new func-
tionality of the tool, we performed UC2-UC4 in 3 iterations to expand our
dataset to reach 2210 architectural issues and 2903 non-architectural issues.

– Phase 4 - Find architectural issues from different domains:
Action: In the previous phases, we explored ADDs in six open-source projects
from the Big Data domain. In this phase, we explore ADDs in projects from
different domains other than Big Data. Thus, we re-used a recent dataset
from Montgomery et al. [16], which contains more than 2.7 million Jira issues
from 1352 projects that belong to six different domains including Big Data,
Cloud Computing, SOA, and DevOps. We trained and executed the best
performing model (i.e. “BERT”) to identify architectural issues and predict
the types of ADDs in all issues in the dataset (UC4). We also developed a
statistical analysis functionality in the tool (UC6) to visualise the types of
ADDs in the different domains, as well as the characteristics of architectural
issues such as time to resolve and the amount of discussion in comments.
Evaluation: Using the tool, we identified 250,708 architectural issues from
the six domains. Moreover, we determined the most common types of ADDs
per domain, and compared characteristics of architectural issues per domain.
For example, issues that discuss property ADDs were most involved and took
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longer time to resolve. The statistical functionality in the tool (UC6) shows
its usefulness to explore ADDs in a massive number of architectural issues.

5 Related Work

Several traditional architectural knowledge management tools have been pre-
viously proposed [22]. These tools store and document ADDs in repositories
and templates, which need to be manually populated. On the other hand, our
proposed tool Maestro focus on ADDs discussed in issue tracking systems.

The closest tool to Maestro is ADeX [4], which can classify architectural issues
using machine learning. Moreover, ADeX can recommend developers for making
certain ADDs based on personal expertise. While both tools ADeX and Maestro
aim to find and explore ADDs in issue trackers, our proposed tool Maestro is
different than ADeX in the following points:

– Maestro allows researchers to apply qualitative analysis (in UC2), and add
manually classified issues to the training dataset. Moreover, Maestro sup-
ports keywords-based searches (in UC5), which allows researchers to easily
expand their dataset of architectural issues through a snowballing process.
This process is not supported by ADeX.

– Maestro provides a user-friendly UI to train and evaluate new deep learning
models (in UC3 and UC4), which can help researchers to evolve models for
classifying architectural issues. This flexibility is not provided by ADeX,
which provides pre-trained machine learning models for classification. The
accuracy of the pre-trained model is fixed based on Bhat et al. [3].

– Maestro has been evaluated on a large dataset of issues with 2.7 million
issues from different domains, which show its scalability and usefulness to
run on projects from different domains. In contrast, ADeX has been applied
on two open source projects.

– Maestro is open source5 and is designed to be extended by other researchers
or practitioners. In contrast, the source code of ADeX is not referenced by
the authors of ADeX.

6 Conclusion

We developed Maestro, an open source tool for finding, and exploring architec-
tural issues that discuss design decisions. Our experience with Maestro showed
its usefulness to find and annotate 5113 issues, and develop deep learning models
that automatically classified 250,708 architectural issues. Contrary to existing
tools, Maestro supports researchers to find and annotate architectural issues
through keywords searching, deep learning models and snowballing. Our future
work focuses on evaluating Maestro with practitioners to evaluate its usefulness
to re-use ADDs from issue trackers. Furthermore, we aim to use Maestro to fur-
ther expand our dataset with new issues from different projects, and different
issue trackers. This can improve the accuracy and generalizability of Maestro.
5 https://github.com/mining-design-decisions/Maestro



Maestro: A Tool for Working with ADDs in Issue Trackers 9

References

1. Baskerville, R.L., Wood-Harper, A.T.: A Critical Perspective on Action Research
as a Method for Information Systems Research. In: Willcocks, L.P., Sauer, C., Lac-
ity, M.C. (eds.) Enacting Research Methods in Information Systems: Volume 2, pp.
169–190. Springer International Publishing, Cham (2016). https://doi.org/10.
1007/978-3-319-29269-4_7, https://doi.org/10.1007/978-3-319-29269-4_7

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional (2003), google-Books-ID: mdiIu8Kk1WMC

3. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.: Automatic ex-
traction of design decisions from issue management systems: A machine learning
based approach. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10475 LNCS,
138–154 (2017). https://doi.org/10.1007/978-3-319-65831-5_10, publisher:
Springer Verlag ISBN: 9783319658308

4. Bhat, M., Tinnes, C., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes,
F.: ADeX: A Tool for Automatic Curation of Design Decision Knowledge for
Architectural Decision Recommendations. In: 2019 IEEE International Confer-
ence on Software Architecture Companion (ICSA-C). pp. 158–161 (Mar 2019).
https://doi.org/10.1109/ICSA-C.2019.00035

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Chich-
ester, UK (1996)

6. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software
architecture knowledge management: Practice and future. Journal of Systems and
Software 116, 191–205 (Sep 2015). https://doi.org/10.1016/j.jss.2015.08.

054
7. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the Properties of

Neural Machine Translation: Encoder-Decoder Approaches (Oct 2014). https://
doi.org/10.48550/arXiv.1409.1259, arXiv:1409.1259 [cs, stat]

8. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling (Dec 2014). https://doi.org/10.
48550/arXiv.1412.3555, arXiv:1412.3555 [cs]

9. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psy-
chological Measurement 20(1), 37–46 (Apr 1960). https://doi.org/10.1177/

001316446002000104, publisher: SAGE Publications Inc
10. Dekker, A., Maarleveld, J.: Mining for Architectural Design Decisions in Issue

Tracking Systems using Deep Learning Approaches. MSc Internship Report, Uni-
versity of Groningen, Groningen (2022), https://fse.studenttheses.ub.rug.nl/
28689/

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding (May
2019). https://doi.org/10.48550/arXiv.1810.04805, http://arxiv.org/abs/

1810.04805, arXiv:1810.04805 [cs]
12. Hochreiter, S., Schmidhuber, J.: Long Short-term Memory. Neural computation 9,

1735–80 (Dec 1997). https://doi.org/10.1162/neco.1997.9.8.1735
13. Kruchten, P.: An ontology of architectural design decisions in software intensive

systems. 2nd Groningen workshop on software variability (2004)
14. Manteuffel, C., Avgeriou, P., Hamberg, R.: An exploratory case study on reusing

architecture decisions in software-intensive system projects. Journal of Systems and
Software 144, 60–83 (Oct 2018). https://doi.org/10.1016/j.jss.2018.05.064



10 J. Maarleveld et al.

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Repre-
sentations in Vector Space (Sep 2013). https://doi.org/10.48550/arXiv.1301.
3781, http://arxiv.org/abs/1301.3781, arXiv:1301.3781 [cs]
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E Extra Tables for RQ3
This section contains the extra tables for RQ3. Specifically, it contains the detailed performance metrics on the fixed test set for
each of the models we have tested.

Set Metric F1 P R Impr. over best guessing
Train Detection 0.966 0.980 0.952 +53%

Macro 0.949 0.961 0.939 +243%
Positive macro 0.941 0.962 0.923 +155%
Weighted macro 0.966 0.958 0.975 +66%
Existence 0.927 0.969 0.889 +117%
Executive 0.947 0.982 0.914 +274%
Property 0.949 0.933 0.966 +123%
Non-Architectural 0.972 0.958 0.986 +38%

Val Detection 0.746 0.784 0.712 +18%
Macro 0.640 0.703 0.603 +131%
Positive macro 0.585 0.682 0.523 +59%
Weighted macro 0.764 0.752 0.785 +31%
Existence 0.502 0.658 0.406 +17%
Executive 0.569 0.702 0.478 +125%
Property 0.685 0.685 0.685 +61%
Non-Architectural 0.803 0.768 0.841 +14%

Test Detection 0.751 0.756 0.745 +19%
Macro 0.676 0.726 0.644 +144%
Positive macro 0.636 0.709 0.587 +72%
Weighted macro 0.766 0.765 0.772 +32%
Existence 0.581 0.694 0.500 +36%
Executive 0.667 0.796 0.574 +164%
Property 0.662 0.637 0.688 +56%
Non-Architectural 0.795 0.779 0.812 +13%

Table 40. BERT performance on the fixed test set, containing issues from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and
Yarn. F1 is the F1 score, P is the precision, and R is the recall.
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Set Metric F1 P R Impr. over best guessing
Train Detection 0.935 0.956 0.915 +48%

Macro 0.896 0.907 0.889 +223%
Positive macro 0.881 0.905 0.861 +139%
Weighted macro 0.930 0.908 0.954 +60%
Existence 0.866 0.844 0.890 +102%
Executive 0.904 0.973 0.844 +257%
Property 0.873 0.899 0.849 +105%
Non-Architectural 0.941 0.913 0.972 +34%

Val Detection 0.729 0.761 0.699 +16%
Macro 0.611 0.656 0.584 +120%
Positive macro 0.554 0.630 0.500 +50%
Weighted macro 0.745 0.717 0.781 +28%
Existence 0.608 0.623 0.594 +42%
Executive 0.464 0.605 0.377 +84%
Property 0.590 0.663 0.531 +39%
Non-Architectural 0.781 0.734 0.833 +11%

Test Detection 0.706 0.723 0.690 +12%
Macro 0.628 0.689 0.597 +127%
Positive macro 0.581 0.680 0.517 +57%
Weighted macro 0.742 0.708 0.786 +28%
Existence 0.638 0.678 0.603 +49%
Executive 0.514 0.730 0.397 +103%
Property 0.590 0.633 0.552 +39%
Non-Architectural 0.771 0.716 0.836 +10%

Table 41. BERT with fine-grained technology replacement performance on the fixed test set, containing issues from the projects Apache Hadoop,
Cassandra, Tajo, Mapreduce, HDFS and Yarn. F1 is the F1 score, P is the precision, and R is the recall.

Set Metric F1 P R Impr. over best guessing
Train Detection 0.904 0.879 0.931 +44%

Macro 0.864 0.864 0.865 +212%
Positive macro 0.848 0.840 0.857 +130%
Weighted macro 0.902 0.920 0.885 +55%
Existence 0.830 0.821 0.839 +94%
Executive 0.862 0.880 0.845 +241%
Property 0.851 0.819 0.886 +100%
Non-Architectural 0.914 0.938 0.892 +30%

Val Detection 0.726 0.696 0.759 +15%
Macro 0.646 0.633 0.663 +133%
Positive macro 0.616 0.587 0.648 +67%
Weighted macro 0.717 0.738 0.698 +23%
Existence 0.595 0.559 0.635 +39%
Executive 0.634 0.616 0.652 +151%
Property 0.619 0.585 0.656 +46%
Non-Architectural 0.739 0.771 0.709 +5%

Test Detection 0.716 0.676 0.762 +14%
Macro 0.609 0.603 0.620 +120%
Positive macro 0.567 0.545 0.594 +54%
Weighted macro 0.706 0.738 0.680 +22%
Existence 0.534 0.525 0.544 +25%
Executive 0.556 0.561 0.552 +120%
Property 0.609 0.548 0.685 +43%
Non-Architectural 0.736 0.779 0.698 +5%

Table 42. TF-IDF performance on the fixed test set, containing issues from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and
Yarn. F1 is the F1 score, P is the precision, and R is the recall.
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Set Metric F1 P R Impr. over best guessing
Train Detection 0.909 0.899 0.919 +44%

Macro 0.867 0.876 0.858 +213%
Positive macro 0.849 0.858 0.841 +130%
Weighted macro 0.908 0.916 0.899 +56%
Existence 0.826 0.836 0.817 +93%
Executive 0.861 0.892 0.832 +240%
Property 0.859 0.846 0.873 +102%
Non-Architectural 0.921 0.929 0.912 +31%

Val Detection 0.688 0.685 0.691 +9%
Macro 0.602 0.603 0.604 +117%
Positive macro 0.562 0.561 0.564 +52%
Weighted macro 0.695 0.696 0.694 +20%
Existence 0.534 0.515 0.556 +25%
Executive 0.595 0.629 0.565 +135%
Property 0.556 0.540 0.573 +31%
Non-Architectural 0.724 0.727 0.721 +3%

Test Detection 0.722 0.694 0.752 +15%
Macro 0.625 0.639 0.620 +126%
Positive macro 0.583 0.592 0.585 +58%
Weighted macro 0.720 0.742 0.701 +24%
Existence 0.541 0.524 0.559 +26%
Executive 0.627 0.725 0.552 +148%
Property 0.580 0.526 0.645 +36%
Non-Architectural 0.751 0.779 0.725 +7%

Table 43. TF-IDF with fine-grained technology replacement performance on the fixed test set, containing issues from the projects Apache Hadoop,
Cassandra, Tajo, Mapreduce, HDFS and Yarn. F1 is the F1 score, P is the precision, and R is the recall.

Set Metric F1 P R Impr. over best guessing
Train Detection 0.994 0.994 0.993 +58%

Macro 0.988 0.986 0.989 +257%
Positive macro 0.985 0.984 0.987 +167%
Weighted macro 0.993 0.992 0.994 +71%
Existence 0.985 0.981 0.989 +130%
Executive 0.984 0.984 0.984 +289%
Property 0.987 0.986 0.988 +132%
Non-Architectural 0.995 0.994 0.995 +42%

Val Detection 0.689 0.685 0.694 +9%
Macro 0.592 0.583 0.605 +114%
Positive macro 0.548 0.534 0.565 +48%
Weighted macro 0.695 0.698 0.693 +20%
Existence 0.534 0.540 0.528 +25%
Executive 0.573 0.518 0.642 +127%
Property 0.535 0.544 0.527 +26%
Non-Architectural 0.727 0.731 0.722 +3%

Test Detection 0.677 0.661 0.694 +7%
Macro 0.607 0.599 0.617 +119%
Positive macro 0.571 0.555 0.589 +55%
Weighted macro 0.690 0.701 0.680 +19%
Existence 0.568 0.556 0.581 +33%
Executive 0.569 0.547 0.594 +125%
Property 0.576 0.561 0.592 +36%
Non-Architectural 0.715 0.731 0.699 +2%

Table 44. BOWN performance on the fixed test set, containing issues from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and
Yarn. F1 is the F1 score, P is the precision, and R is the recall.
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Set Metric F1 P R Impr. over best guessing
Train Detection 0.833 0.826 0.841 +32%

Macro 0.773 0.786 0.762 +179%
Positive macro 0.746 0.760 0.733 +102%
Weighted macro 0.837 0.843 0.831 +44%
Existence 0.743 0.725 0.762 +74%
Executive 0.739 0.784 0.698 +192%
Property 0.755 0.770 0.739 +78%
Non-Architectural 0.856 0.862 0.849 +22%

Val Detection 0.704 0.700 0.709 +12%
Macro 0.613 0.616 0.613 +121%
Positive macro 0.571 0.575 0.572 +55%
Weighted macro 0.708 0.710 0.706 +22%
Existence 0.553 0.510 0.603 +29%
Executive 0.606 0.635 0.580 +140%
Property 0.556 0.579 0.534 +31%
Non-Architectural 0.737 0.742 0.733 +5%

Test Detection 0.718 0.699 0.738 +14%
Macro 0.611 0.625 0.601 +121%
Positive macro 0.563 0.576 0.556 +53%
Weighted macro 0.721 0.736 0.707 +24%
Existence 0.564 0.549 0.581 +32%
Executive 0.579 0.648 0.522 +129%
Property 0.547 0.530 0.565 +29%
Non-Architectural 0.754 0.772 0.736 +7%

Table 45. BOWN with fine-grained technology replacement performance on the fixed test set, containing issues from the projects Apache Hadoop,
Cassandra, Tajo, Mapreduce, HDFS and Yarn. F1 is the F1 score, P is the precision, and R is the recall.

Set Metric F1 P R Impr. over best guessing
Train Detection 0.877 0.922 0.836 +39%

Macro 0.853 0.886 0.827 +208%
Positive macro 0.836 0.891 0.789 +127%
Weighted macro 0.891 0.874 0.912 +53%
Existence 0.794 0.882 0.722 +86%
Executive 0.842 0.888 0.801 +233%
Property 0.872 0.901 0.845 +105%
Non-Architectural 0.904 0.871 0.940 +29%

Val Detection 0.667 0.730 0.614 +6%
Macro 0.603 0.632 0.584 +118%
Positive macro 0.555 0.608 0.512 +50%
Weighted macro 0.713 0.685 0.748 +23%
Existence 0.514 0.594 0.452 +20%
Executive 0.606 0.635 0.580 +140%
Property 0.545 0.595 0.504 +28%
Non-Architectural 0.749 0.703 0.801 +7%

Test Detection 0.712 0.733 0.692 +13%
Macro 0.600 0.622 0.585 +117%
Positive macro 0.543 0.577 0.516 +47%
Weighted macro 0.732 0.726 0.740 +26%
Existence 0.496 0.578 0.434 +16%
Executive 0.559 0.551 0.567 +121%
Property 0.574 0.602 0.548 +35%
Non-Architectural 0.773 0.756 0.791 +10%

Table 46. BOWF performance on the fixed test set, containing issues from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and
Yarn. F1 is the F1 score, P is the precision, and R is the recall.



112 E EXTRA TABLES FOR RQ3

Set Metric F1 P R Impr. over best guessing
Train Detection 0.838 0.911 0.776 +33%

Macro 0.802 0.863 0.760 +189%
Positive macro 0.775 0.874 0.701 +110%
Weighted macro 0.863 0.836 0.898 +48%
Existence 0.749 0.810 0.697 +75%
Executive 0.725 0.904 0.605 +187%
Property 0.852 0.909 0.801 +100%
Non-Architectural 0.880 0.831 0.936 +25%

Val Detection 0.670 0.766 0.595 +6%
Macro 0.583 0.635 0.552 +111%
Positive macro 0.522 0.612 0.456 +42%
Weighted macro 0.723 0.687 0.774 +25%
Existence 0.516 0.600 0.452 +21%
Executive 0.538 0.640 0.464 +113%
Property 0.513 0.596 0.450 +21%
Non-Architectural 0.766 0.703 0.841 +9%

Test Detection 0.687 0.747 0.636 +9%
Macro 0.581 0.631 0.548 +110%
Positive macro 0.517 0.598 0.457 +40%
Weighted macro 0.730 0.707 0.760 +26%
Existence 0.520 0.582 0.471 +22%
Executive 0.518 0.644 0.433 +105%
Property 0.513 0.569 0.468 +21%
Non-Architectural 0.774 0.731 0.822 +10%

Table 47. BOWF with fine-grained technology replacement performance on the fixed test set, containing issues from the projects Apache Hadoop,
Cassandra, Tajo, Mapreduce, HDFS and Yarn. F1 is the F1 score, P is the precision, and R is the recall.

Set Metric F1 P R Impr. over best guessing
Train Detection 0.750 0.746 0.753 +19%

Macro 0.668 0.680 0.671 +141%
Positive macro 0.629 0.644 0.634 +71%
Weighted macro 0.759 0.762 0.759 +31%
Existence 0.624 0.633 0.615 +46%
Executive 0.587 0.701 0.505 +132%
Property 0.678 0.598 0.782 +59%
Non-Architectural 0.785 0.789 0.782 +12%

Val Detection 0.738 0.754 0.723 +17%
Macro 0.653 0.672 0.644 +136%
Positive macro 0.611 0.641 0.595 +66%
Weighted macro 0.749 0.742 0.758 +29%
Existence 0.587 0.633 0.548 +37%
Executive 0.639 0.736 0.565 +153%
Property 0.607 0.553 0.672 +43%
Non-Architectural 0.779 0.765 0.793 +11%

Test Detection 0.698 0.694 0.701 +11%
Macro 0.590 0.610 0.584 +113%
Positive macro 0.537 0.564 0.531 +46%
Weighted macro 0.714 0.719 0.712 +23%
Existence 0.589 0.623 0.559 +38%
Executive 0.464 0.578 0.388 +84%
Property 0.557 0.491 0.645 +31%
Non-Architectural 0.747 0.750 0.744 +6%

Table 48. RNN performance on the fixed test set, containing issues from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and Yarn.
F1 is the F1 score, P is the precision, and R is the recall.



113

Set Metric F1 P R Impr. over best guessing
Train Detection 0.731 0.749 0.714 +16%

Macro 0.657 0.682 0.638 +137%
Positive macro 0.615 0.653 0.586 +67%
Weighted macro 0.753 0.747 0.761 +30%
Existence 0.595 0.662 0.540 +39%
Executive 0.582 0.648 0.528 +130%
Property 0.669 0.650 0.688 +57%
Non-Architectural 0.781 0.766 0.797 +11%

Val Detection 0.686 0.732 0.645 +9%
Macro 0.632 0.667 0.606 +128%
Positive macro 0.591 0.649 0.544 +60%
Weighted macro 0.725 0.705 0.749 +25%
Existence 0.576 0.641 0.524 +35%
Executive 0.618 0.704 0.551 +144%
Property 0.579 0.603 0.557 +36%
Non-Architectural 0.754 0.718 0.793 +7%

Test Detection 0.680 0.713 0.650 +8%
Macro 0.577 0.614 0.551 +108%
Positive macro 0.518 0.575 0.473 +40%
Weighted macro 0.715 0.704 0.730 +23%
Existence 0.527 0.612 0.463 +23%
Executive 0.487 0.558 0.433 +93%
Property 0.539 0.556 0.524 +27%
Non-Architectural 0.755 0.729 0.783 +8%

Table 49. RNN with fine-grained technology replacement performance on the fixed test set, containing issues from the projects Apache Hadoop,
Cassandra, Tajo, Mapreduce, HDFS and Yarn. F1 is the F1 score, P is the precision, and R is the recall.

Set Metric F1 P R Impr. over best guessing
Train Detection 0.693 0.832 0.594 +10%

Macro 0.642 0.728 0.598 +132%
Positive macro 0.589 0.730 0.498 +60%
Weighted macro 0.766 0.722 0.833 +32%
Existence 0.604 0.704 0.528 +41%
Executive 0.536 0.768 0.411 +112%
Property 0.627 0.720 0.556 +48%
Non-Architectural 0.801 0.722 0.898 +14%

Val Detection 0.641 0.797 0.536 +2%
Macro 0.567 0.657 0.526 +105%
Positive macro 0.499 0.648 0.408 +35%
Weighted macro 0.724 0.676 0.801 +25%
Existence 0.533 0.648 0.452 +24%
Executive 0.523 0.737 0.406 +107%
Property 0.442 0.558 0.366 +4%
Non-Architectural 0.770 0.684 0.880 +10%

Test Detection 0.652 0.788 0.556 +4%
Macro 0.585 0.649 0.550 +111%
Positive macro 0.519 0.631 0.442 +41%
Weighted macro 0.737 0.693 0.802 +27%
Existence 0.544 0.674 0.456 +27%
Executive 0.500 0.622 0.418 +98%
Property 0.514 0.596 0.452 +21%
Non-Architectural 0.781 0.704 0.876 +11%

Table 50. DOC2VEC performance on the fixed test set, containing issues from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and
Yarn. F1 is the F1 score, P is the precision, and R is the recall.
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Set Metric F1 P R Impr. over best guessing
Train Detection 0.686 0.809 0.595 +9%

Macro 0.646 0.727 0.603 +133%
Positive macro 0.598 0.730 0.510 +62%
Weighted macro 0.759 0.721 0.818 +31%
Existence 0.585 0.748 0.480 +37%
Executive 0.561 0.732 0.455 +122%
Property 0.647 0.708 0.595 +52%
Non-Architectural 0.792 0.719 0.881 +13%

Val Detection 0.637 0.756 0.550 +1%
Macro 0.574 0.647 0.536 +107%
Positive macro 0.513 0.635 0.433 +39%
Weighted macro 0.712 0.671 0.773 +23%
Existence 0.495 0.619 0.413 +16%
Executive 0.541 0.714 0.435 +114%
Property 0.504 0.573 0.450 +19%
Non-Architectural 0.754 0.682 0.845 +7%

Test Detection 0.667 0.768 0.589 +6%
Macro 0.568 0.632 0.537 +105%
Positive macro 0.498 0.605 0.431 +35%
Weighted macro 0.731 0.697 0.782 +26%
Existence 0.513 0.644 0.426 +20%
Executive 0.438 0.605 0.343 +73%
Property 0.544 0.565 0.524 +28%
Non-Architectural 0.777 0.714 0.853 +11%

Table 51. DOC2VEC with fine-grained technology replacement performance on the fixed test set, containing issues from the projects Apache Hadoop,
Cassandra, Tajo, Mapreduce, HDFS and Yarn. F1 is the F1 score, P is the precision, and R is the recall.

Set Metric F1 P R Impr. over best guessing
Train Detection 0.714 0.739 0.692 +13%

Macro 0.669 0.662 0.676 +141%
Positive macro 0.635 0.632 0.638 +72%
Weighted macro 0.747 0.730 0.765 +29%
Existence 0.615 0.608 0.622 +44%
Executive 0.657 0.662 0.653 +160%
Property 0.632 0.625 0.639 +49%
Non-Architectural 0.771 0.751 0.792 +10%

Val Detection 0.641 0.682 0.605 +2%
Macro 0.563 0.564 0.565 +103%
Positive macro 0.512 0.524 0.502 +39%
Weighted macro 0.683 0.658 0.711 +18%
Existence 0.535 0.531 0.540 +25%
Executive 0.493 0.493 0.493 +95%
Property 0.508 0.549 0.473 +20%
Non-Architectural 0.717 0.685 0.753 +2%

Test Detection 0.635 0.672 0.603 +1%
Macro 0.562 0.555 0.569 +103%
Positive macro 0.507 0.508 0.507 +37%
Weighted macro 0.689 0.666 0.714 +19%
Existence 0.543 0.549 0.537 +27%
Executive 0.475 0.458 0.493 +88%
Property 0.504 0.517 0.492 +19%
Non-Architectural 0.725 0.696 0.756 +3%

Table 52. CNN performance on the fixed test set, containing issues from the projects Apache Hadoop, Cassandra, Tajo, Mapreduce, HDFS and Yarn.
F1 is the F1 score, P is the precision, and R is the recall.
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Set Metric F1 P R Impr. over best guessing
Train Detection 0.670 0.521 0.938 +6%

Macro 0.502 0.509 0.692 +81%
Positive macro 0.535 0.401 0.834 +45%
Weighted macro 0.429 0.763 0.361 -26%
Existence 0.558 0.445 0.749 +30%
Executive 0.452 0.304 0.879 +79%
Property 0.596 0.452 0.872 +40%
Non-Architectural 0.404 0.834 0.266 -42%

Val Detection 0.667 0.512 0.955 +6%
Macro 0.445 0.479 0.634 +61%
Positive macro 0.485 0.361 0.778 +31%
Weighted macro 0.358 0.758 0.299 -38%
Existence 0.532 0.421 0.722 +24%
Executive 0.389 0.253 0.841 +54%
Property 0.533 0.407 0.771 +25%
Non-Architectural 0.327 0.836 0.203 -53%

Test Detection 0.638 0.497 0.888 +1%
Macro 0.440 0.446 0.587 +59%
Positive macro 0.460 0.351 0.697 +25%
Weighted macro 0.397 0.672 0.330 -32%
Existence 0.515 0.427 0.647 +20%
Executive 0.364 0.246 0.701 +44%
Property 0.501 0.379 0.742 +18%
Non-Architectural 0.379 0.733 0.256 -46%

Table 53. CNN with fine-grained technology replacement performance on the fixed test set, containing issues from the projects Apache Hadoop,
Cassandra, Tajo, Mapreduce, HDFS and Yarn. F1 is the F1 score, P is the precision, and R is the recall.
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F Extra Plots for RQ4
This section contains the plots for BERT trained on varying dataset sizes, with the random sample from the data storage &
processing domain as the test set. These plots are an addition of the results for RQ4.
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Fig. 46. Varying training set sizes for multi-label classification with BERT†, with the random sample of the data storage & processing domain as the
test set. These results were obtained without text preprocessing.
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Fig. 47. Varying training set sizes for Detection with BERT†, with the random sample of the data storage & processing domain as the test set. These
results were obtained without text preprocessing.
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G Extra Tables for RQ6
This section contains the additional plots for RQ6. The first part consists of performance overviews of the models on the random
sample from the six domains for both the multi-label classification performance and detection performance. The second part consists
of detailed performance metrics on all three random samples (data storage & processing domain, web development domain, and the
six domains) for each model we tested.

Model F1 P R
BERT 0.489 0.557 0.465
BERT† 0.469 0.583 0.469
RNN 0.462 0.475 0.452
DOC2VEC* 0.442 0.490 0.428
BOWN 0.435 0.396 0.537
TF-IDF 0.427 0.395 0.531
BERT* 0.417 0.505 0.406
TF-IDF* 0.414 0.395 0.465
RNN* 0.404 0.492 0.403
BOWN* 0.403 0.418 0.407
BOWF* 0.386 0.416 0.373
BOWF 0.314 0.373 0.300
DOC2VEC 0.307 0.354 0.296
CNN 0.090 0.048 0.750
CNN* 0.090 0.048 0.750

Table 54. Macro scores on the random sample of all domains. Results with a * are obtained from models trained using fine-grained technology
replacement. Results with a † are obtained without text preprocessing. F1 is the macro F1 score, P is the macro precision, and R is the macro recall.

Model F1 P R
BERT† 0.508 0.508 0.508
BERT 0.466 0.545 0.407
RNN 0.455 0.490 0.424
BOWN 0.410 0.324 0.559
RNN* 0.407 0.407 0.407
DOC2VEC* 0.400 0.411 0.390
TF-IDF 0.393 0.298 0.576
TF-IDF* 0.376 0.311 0.475
BERT* 0.348 0.357 0.339
BOWN* 0.342 0.345 0.339
BOWF* 0.314 0.372 0.271
BOWF 0.220 0.391 0.153
DOC2VEC 0.206 0.263 0.169
CNN 0.257 0.147 1.000
CNN* 0.257 0.147 1.000

Table 55. Detection scores on the random sample of all domains. Results with a * are obtained from models trained using fine-grained technology
replacement. Results with a † are obtained without text preprocessing. F1 is the detection F1 score, P is the detection precision, and R is the detection
recall.
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Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.534 0.456 0.646 +150%

Macro 0.549 0.575 0.572 +135%
Positive macro 0.425 0.451 0.464 +273%
Weighted macro 0.839 0.868 0.821 +8%
Existence 0.533 0.500 0.571 +231%
Executive 0.400 0.308 0.571 +488%
Property 0.343 0.545 0.250 +203%
Non-Architectural 0.921 0.949 0.895 -2%

Web development Detection 0.478 0.391 0.614 +141%
Macro 0.531 0.681 0.589 +126%
Positive macro 0.403 0.592 0.492 +353%
Weighted macro 0.846 0.895 0.833 +4%
Existence 0.423 0.367 0.500 +307%
Executive 0.552 0.410 0.842 +506%
Property 0.235 1.000 0.133 +227%
Non-Architectural 0.914 0.949 0.882 -3%

All six domains Detection 0.508 0.508 0.508 +90%
Macro 0.469 0.583 0.469 +105%
Positive macro 0.321 0.473 0.320 +159%
Weighted macro 0.805 0.840 0.801 +8%
Existence 0.308 0.400 0.250 +182%
Executive 0.355 0.268 0.524 +274%
Property 0.300 0.750 0.188 +78%
Non-Architectural 0.915 0.915 0.915 +0%

Table 56. BERT† performance on the random samples. These results were obtained without text preprocessing.

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.598 0.592 0.604 +179%

Macro 0.613 0.623 0.607 +162%
Positive macro 0.502 0.516 0.495 +341%
Weighted macro 0.871 0.876 0.868 +12%
Existence 0.562 0.621 0.514 +249%
Executive 0.444 0.462 0.429 +554%
Property 0.500 0.464 0.542 +342%
Non-Architectural 0.945 0.946 0.943 +1%

Web development Detection 0.469 0.514 0.432 +137%
Macro 0.546 0.592 0.515 +132%
Positive macro 0.414 0.479 0.370 +365%
Weighted macro 0.869 0.870 0.871 +7%
Existence 0.368 0.438 0.318 +254%
Executive 0.541 0.556 0.526 +494%
Property 0.333 0.444 0.267 +363%
Non-Architectural 0.940 0.931 0.949 +0%

All six domains Detection 0.466 0.545 0.407 +74%
Macro 0.489 0.557 0.465 +114%
Positive macro 0.345 0.442 0.306 +178%
Weighted macro 0.815 0.820 0.823 +9%
Existence 0.278 0.417 0.208 +155%
Executive 0.383 0.346 0.429 +303%
Property 0.375 0.562 0.281 +122%
Non-Architectural 0.921 0.902 0.941 +1%

Table 57. BERT performance on the random samples.



119

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.463 0.360 0.646 +116%

Macro 0.522 0.489 0.589 +123%
Positive macro 0.399 0.336 0.504 +250%
Weighted macro 0.811 0.846 0.786 +5%
Existence 0.427 0.400 0.457 +165%
Executive 0.286 0.214 0.429 +320%
Property 0.484 0.395 0.625 +328%
Non-Architectural 0.892 0.946 0.844 -5%

Web development Detection 0.387 0.274 0.659 +95%
Macro 0.424 0.384 0.573 +80%
Positive macro 0.279 0.196 0.502 +213%
Weighted macro 0.780 0.847 0.745 -4%
Existence 0.277 0.209 0.409 +166%
Executive 0.348 0.240 0.632 +282%
Property 0.212 0.137 0.467 +195%
Non-Architectural 0.858 0.949 0.784 -9%

All six domains Detection 0.393 0.298 0.576 +47%
Macro 0.427 0.395 0.531 +87%
Positive macro 0.292 0.223 0.453 +136%
Weighted macro 0.734 0.787 0.706 -2%
Existence 0.246 0.195 0.333 +126%
Executive 0.306 0.203 0.619 +222%
Property 0.325 0.271 0.406 +92%
Non-Architectural 0.833 0.913 0.765 -9%

Table 58. TF-IDF performance on the random samples.

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.423 0.326 0.604 +98%

Macro 0.482 0.447 0.554 +106%
Positive macro 0.349 0.283 0.462 +206%
Weighted macro 0.792 0.829 0.767 +2%
Existence 0.386 0.333 0.457 +139%
Executive 0.279 0.207 0.429 +310%
Property 0.381 0.308 0.500 +237%
Non-Architectural 0.881 0.939 0.830 -6%

Web development Detection 0.375 0.270 0.614 +89%
Macro 0.430 0.390 0.554 +83%
Positive macro 0.286 0.206 0.473 +222%
Weighted macro 0.785 0.844 0.752 -4%
Existence 0.267 0.189 0.455 +156%
Executive 0.407 0.300 0.632 +347%
Property 0.185 0.128 0.333 +157%
Non-Architectural 0.863 0.943 0.795 -8%

All six domains Detection 0.376 0.311 0.475 +40%
Macro 0.414 0.395 0.465 +81%
Positive macro 0.266 0.226 0.347 +115%
Weighted macro 0.747 0.776 0.727 -0%
Existence 0.194 0.158 0.250 +78%
Executive 0.375 0.279 0.571 +295%
Property 0.230 0.241 0.219 +36%
Non-Architectural 0.857 0.900 0.818 -6%

Table 59. TF-IDF* performance on the random samples.



120 G EXTRA TABLES FOR RQ6

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.430 0.309 0.708 +101%

Macro 0.492 0.438 0.685 +110%
Positive macro 0.369 0.267 0.652 +224%
Weighted macro 0.781 0.839 0.760 +1%
Existence 0.489 0.390 0.657 +204%
Executive 0.286 0.179 0.714 +320%
Property 0.333 0.233 0.583 +195%
Non-Architectural 0.860 0.952 0.784 -8%

Web development Detection 0.346 0.241 0.614 +75%
Macro 0.407 0.377 0.564 +73%
Positive macro 0.263 0.189 0.498 +195%
Weighted macro 0.764 0.840 0.726 -6%
Existence 0.327 0.273 0.409 +215%
Executive 0.299 0.191 0.684 +228%
Property 0.162 0.102 0.400 +125%
Non-Architectural 0.842 0.941 0.761 -11%

All six domains Detection 0.410 0.324 0.559 +53%
Macro 0.435 0.396 0.537 +90%
Positive macro 0.296 0.223 0.450 +138%
Weighted macro 0.750 0.787 0.734 +0%
Existence 0.286 0.231 0.375 +162%
Executive 0.253 0.172 0.476 +166%
Property 0.348 0.267 0.500 +106%
Non-Architectural 0.851 0.913 0.798 -7%

Table 60. BOWN performance on the random samples.

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.436 0.387 0.500 +104%

Macro 0.490 0.487 0.498 +109%
Positive macro 0.350 0.339 0.367 +207%
Weighted macro 0.820 0.835 0.807 +6%
Existence 0.455 0.484 0.429 +182%
Executive 0.188 0.167 0.214 +176%
Property 0.407 0.367 0.458 +261%
Non-Architectural 0.910 0.929 0.892 -3%

Web development Detection 0.403 0.312 0.568 +104%
Macro 0.435 0.400 0.523 +85%
Positive macro 0.283 0.220 0.415 +218%
Weighted macro 0.808 0.843 0.786 -1%
Existence 0.208 0.192 0.227 +100%
Executive 0.433 0.317 0.684 +376%
Property 0.208 0.152 0.333 +189%
Non-Architectural 0.891 0.941 0.846 -5%

All six domains Detection 0.342 0.345 0.339 +28%
Macro 0.403 0.418 0.407 +76%
Positive macro 0.242 0.262 0.247 +95%
Weighted macro 0.768 0.772 0.768 +3%
Existence 0.150 0.188 0.125 +38%
Executive 0.340 0.281 0.429 +257%
Property 0.235 0.316 0.188 +39%
Non-Architectural 0.887 0.886 0.889 -3%

Table 61. BOWN* performance on the random samples.
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Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.538 0.556 0.521 +151%

Macro 0.532 0.589 0.497 +127%
Positive macro 0.396 0.473 0.348 +247%
Weighted macro 0.850 0.863 0.842 +10%
Existence 0.421 0.545 0.343 +162%
Executive 0.267 0.250 0.286 +292%
Property 0.500 0.625 0.417 +342%
Non-Architectural 0.939 0.935 0.943 +0%

Web development Detection 0.324 0.458 0.250 +63%
Macro 0.467 0.602 0.419 +99%
Positive macro 0.311 0.499 0.237 +249%
Weighted macro 0.852 0.858 0.864 +5%
Existence 0.286 0.667 0.182 +175%
Executive 0.312 0.385 0.263 +243%
Property 0.333 0.444 0.267 +363%
Non-Architectural 0.937 0.912 0.963 -1%

All six domains Detection 0.220 0.391 0.153 -18%
Macro 0.314 0.373 0.300 +37%
Positive macro 0.115 0.209 0.080 -8%
Weighted macro 0.764 0.747 0.797 +2%
Existence 0.121 0.222 0.083 +11%
Executive 0.125 0.182 0.095 +32%
Property 0.098 0.222 0.062 -42%
Non-Architectural 0.911 0.867 0.959 -1%

Table 62. BOWF performance on the random samples.

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.547 0.500 0.604 +156%

Macro 0.534 0.544 0.541 +128%
Positive macro 0.402 0.411 0.415 +252%
Weighted macro 0.841 0.858 0.828 +9%
Existence 0.426 0.500 0.371 +165%
Executive 0.378 0.304 0.500 +456%
Property 0.400 0.429 0.375 +254%
Non-Architectural 0.931 0.944 0.918 -1%

Web development Detection 0.330 0.319 0.341 +67%
Macro 0.422 0.414 0.432 +80%
Positive macro 0.258 0.246 0.272 +190%
Weighted macro 0.824 0.826 0.823 +1%
Existence 0.182 0.182 0.182 +75%
Executive 0.350 0.333 0.368 +285%
Property 0.242 0.222 0.267 +237%
Non-Architectural 0.914 0.918 0.910 -3%

All six domains Detection 0.314 0.372 0.271 +17%
Macro 0.386 0.416 0.373 +69%
Positive macro 0.215 0.262 0.190 +73%
Weighted macro 0.773 0.766 0.785 +3%
Existence 0.227 0.250 0.208 +109%
Executive 0.244 0.250 0.238 +157%
Property 0.174 0.286 0.125 +3%
Non-Architectural 0.900 0.880 0.921 -2%

Table 63. BOWF* performance on the random samples.
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Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.633 0.528 0.792 +196%

Macro 0.613 0.574 0.695 +162%
Positive macro 0.506 0.442 0.625 +344%
Weighted macro 0.867 0.885 0.859 +12%
Existence 0.571 0.571 0.571 +255%
Executive 0.364 0.316 0.429 +435%
Property 0.583 0.438 0.875 +416%
Non-Architectural 0.935 0.970 0.903 -0%

Web development Detection 0.396 0.339 0.477 +100%
Macro 0.513 0.487 0.566 +118%
Positive macro 0.382 0.339 0.460 +329%
Weighted macro 0.837 0.853 0.828 +3%
Existence 0.364 0.303 0.455 +250%
Executive 0.526 0.526 0.526 +478%
Property 0.255 0.188 0.400 +255%
Non-Architectural 0.908 0.932 0.885 -4%

All six domains Detection 0.455 0.490 0.424 +70%
Macro 0.462 0.475 0.452 +102%
Positive macro 0.312 0.333 0.295 +151%
Weighted macro 0.803 0.799 0.809 +8%
Existence 0.333 0.333 0.333 +206%
Executive 0.263 0.294 0.238 +177%
Property 0.339 0.370 0.312 +101%
Non-Architectural 0.913 0.903 0.924 -0%

Table 64. RNN performance on the random samples.

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.533 0.414 0.750 +149%

Macro 0.547 0.511 0.620 +134%
Positive macro 0.428 0.360 0.542 +276%
Weighted macro 0.829 0.861 0.812 +7%
Existence 0.481 0.362 0.714 +199%
Executive 0.258 0.235 0.286 +280%
Property 0.545 0.484 0.625 +383%
Non-Architectural 0.905 0.962 0.855 -3%

Web development Detection 0.389 0.319 0.500 +97%
Macro 0.471 0.459 0.510 +100%
Positive macro 0.328 0.300 0.391 +268%
Weighted macro 0.823 0.848 0.806 +1%
Existence 0.310 0.224 0.500 +198%
Executive 0.486 0.500 0.474 +435%
Property 0.188 0.176 0.200 +160%
Non-Architectural 0.900 0.934 0.868 -5%

All six domains Detection 0.407 0.407 0.407 +52%
Macro 0.404 0.492 0.403 +77%
Positive macro 0.240 0.357 0.239 +94%
Weighted macro 0.777 0.804 0.775 +4%
Existence 0.299 0.233 0.417 +174%
Executive 0.171 0.214 0.143 +80%
Property 0.250 0.625 0.156 +48%
Non-Architectural 0.897 0.897 0.897 -2%

Table 65. RNN* performance on the random samples.
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Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.535 0.605 0.479 +150%

Macro 0.484 0.539 0.448 +107%
Positive macro 0.331 0.409 0.278 +190%
Weighted macro 0.846 0.850 0.847 +9%
Existence 0.467 0.560 0.400 +190%
Executive 0.167 0.200 0.143 +145%
Property 0.359 0.467 0.292 +218%
Non-Architectural 0.944 0.931 0.957 +1%

Web development Detection 0.238 0.250 0.227 +20%
Macro 0.327 0.330 0.325 +39%
Positive macro 0.133 0.138 0.128 +49%
Weighted macro 0.807 0.803 0.811 -1%
Existence 0.227 0.227 0.227 +119%
Executive 0.171 0.188 0.158 +88%
Property 0.000 0.000 0.000 -100%
Non-Architectural 0.911 0.906 0.916 -3%

All six domains Detection 0.206 0.263 0.169 -23%
Macro 0.307 0.354 0.296 +34%
Positive macro 0.113 0.183 0.089 -9%
Weighted macro 0.748 0.743 0.766 +0%
Existence 0.143 0.167 0.125 +31%
Executive 0.049 0.050 0.048 -49%
Property 0.146 0.333 0.094 -13%
Non-Architectural 0.890 0.865 0.918 -3%

Table 66. DOC2VEC performance on the random samples.

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.465 0.526 0.417 +117%

Macro 0.479 0.544 0.439 +105%
Positive macro 0.327 0.418 0.269 +187%
Weighted macro 0.835 0.841 0.835 +8%
Existence 0.414 0.522 0.343 +157%
Executive 0.261 0.333 0.214 +284%
Property 0.308 0.400 0.250 +172%
Non-Architectural 0.936 0.923 0.949 -0%

Web development Detection 0.226 0.194 0.273 +14%
Macro 0.325 0.316 0.341 +38%
Positive macro 0.139 0.119 0.168 +56%
Weighted macro 0.782 0.799 0.767 -4%
Existence 0.189 0.161 0.227 +81%
Executive 0.163 0.133 0.211 +79%
Property 0.065 0.062 0.067 -10%
Non-Architectural 0.882 0.905 0.860 -6%

All six domains Detection 0.400 0.411 0.390 +49%
Macro 0.442 0.490 0.428 +93%
Positive macro 0.290 0.355 0.270 +134%
Weighted macro 0.789 0.802 0.787 +6%
Existence 0.408 0.400 0.417 +274%
Executive 0.113 0.094 0.143 +19%
Property 0.348 0.571 0.250 +106%
Non-Architectural 0.899 0.895 0.903 -2%

Table 67. DOC2VEC* performance on the random samples.
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Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.214 0.120 1.000 +0%

Macro 0.085 0.046 0.750 -63%
Positive macro 0.114 0.061 1.000 -0%
Weighted macro 0.022 0.012 0.172 -97%
Existence 0.161 0.087 1.000 -0%
Executive 0.068 0.035 1.000 -1%
Property 0.113 0.060 1.000 +0%
Non-Architectural 0.000 0.000 0.000 -100%

Web developmen Detection 0.198 0.110 1.000 +0%
Macro 0.067 0.035 0.750 -72%
Positive macro 0.089 0.047 1.000 +0%
Weighted macro 0.012 0.006 0.136 -98%
Existence 0.104 0.055 1.000 +0%
Executive 0.091 0.048 1.000 -0%
Property 0.072 0.037 1.000 +0%
Non-Architectural 0.000 0.000 0.000 -100%

All six domains Detection 0.257 0.147 1.000 -4%
Macro 0.090 0.048 0.750 -61%
Positive macro 0.120 0.064 1.000 -3%
Weighted macro 0.023 0.012 0.184 -97%
Existence 0.113 0.060 1.000 +4%
Executive 0.100 0.052 1.000 +5%
Property 0.148 0.080 1.000 -12%
Non-Architectural 0.000 0.000 0.000 -100%

Table 68. CNN performance on the random samples.

Domain Metric F1 P R Impr. over best guessing
Data storage & processing Detection 0.214 0.120 1.000 +0%

Macro 0.085 0.046 0.750 -63%
Positive macro 0.114 0.061 1.000 -0%
Weighted macro 0.022 0.012 0.172 -97%
Existence 0.161 0.087 1.000 -0%
Executive 0.068 0.035 1.000 -1%
Property 0.113 0.060 1.000 +0%
Non-Architectural 0.000 0.000 0.000 -100%

Web development Detection 0.198 0.110 1.000 +0%
Macro 0.067 0.035 0.750 -72%
Positive macro 0.089 0.047 1.000 +0%
Weighted macro 0.012 0.006 0.136 -98%
Existence 0.104 0.055 1.000 +0%
Executive 0.091 0.048 1.000 -0%
Property 0.072 0.037 1.000 +0%
Non-Architectural 0.000 0.000 0.000 -100%

All six domains Detection 0.257 0.147 1.000 -4%
Macro 0.090 0.048 0.750 -61%
Positive macro 0.120 0.064 1.000 -3%
Weighted macro 0.023 0.012 0.184 -97%
Existence 0.113 0.060 1.000 +4%
Executive 0.100 0.052 1.000 +5%
Property 0.148 0.080 1.000 -12%
Non-Architectural 0.000 0.000 0.000 -100%

Table 69. CNN* performance on the random samples.
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H Confidence Intervals for Random Samples
In this appendix, we present the performance of the BERT model (both with and without preprocessing) on the three random
samples of issues we collected and labelled during this work. Table 70 contains the results for the sample from the web development
domain for the BERT model without preprocessing. Table 71 contains the results from the sample from the data storage & processing
domain for the BERT model without preprocessing. Finally, Table 72 contains the result from the random sample taken from all six
domains for the BERT model without preprocessing. Tables 73, 74, 75 contain the results for the BERT model with preprocessing,
in the same order.

In each table, we present the precision and recall, alongside their corresponding 95% confidence intervals for every class. For each
class, we give the metric (precision or recall), the numbers of issues involved in computing the metric, the standard error, and the
resulting confidence interval. Recall that

precision =
TP

TP + FP
, recall =

TP

TP + FN

Hence, the amount of issues involved in computing the precision is the true positive count plus the false positive count. For recall,
this is the true positive count plus the false negative count.

Next, given a fraction p̂ and amount of issues n, the standard error was computed as

SE(p̂) =

√
p̂(1− p̂)

n

Finally, the 95% confidence interval was computed as

I = [max{0, p̂− 1.96 ∗ SE(p̂)},min{1, p̂+ 1.96 ∗ SE(p̂)}]
Note that for every table, the “Architectural” class gives the precision and recall (and related statistics) for the detection task;

i.e. for the performance when the multi-class model’s output is interpreted as a binary output for the detection of architectural
issues.

Existence Executive Property Non-Architectural Architectural

P
re
ci
si
o
n Precision 0.367 0.410 1.000 0.949 0.391

TP + FP 30 39 2 331 69
Standard Error 0.088 0.079 0 0.012 0.059
Confidence Interval [0.1942, 0.5391] [0.2559, 0.5646] [1.0000, 1.0000] [0.9249, 0.9724] [0.2761, 0.5065]

R
ec
a
ll

Recall 0.500 0.842 0.133 0.882 0.614
TP + FN 22 19 15 356 44
Standard Error 0.107 0.084 0.088 0.017 0.073
Confidence Interval [0.2911, 0.7089] [0.6781, 1.0000] [0.0000, 0.3054] [0.8485, 0.9155] [0.4698, 0.7575]

Table 70. Confidence Intervals of the precision and recall per class for the performance of BERT (without preprocessing) on the random sample of
issues from the web development domain.

Existence Executive Property Non-Architectural Architectural

P
re
ci
si
o
n Precision 0.500 0.308 0.545 0.949 0.456

TP + FP 40 26 11 332 68
Standard Error 0.079 0.090 0.150 0.012 0.060
Confidence Interval [0.3450, 0.6550] [0.1303, 0.4851] [0.2512, 0.8397] [0.9251, 0.9725] [0.3375, 0.5743]

R
ec
a
ll

Recall 0.571 0.571 0.250 0.895 0.646
TP + FN 35 14 24 352 48
Standard Error 0.084 0.132 0.088 0.016 0.069
Confidence Interval [0.4075, 0.7354] [0.3122, 0.8307] [0.0768, 0.4232] [0.8628, 0.9269] [0.5105, 0.7811]

Table 71. Confidence Intervals of the precision and recall per class for the performance of BERT (without preprocessing) on the random sample of
issues from the data storage & processing domain.
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Existence Executive Property Non-Architectural Architectural
P
re
ci
si
o
n Precision 0.400 0.268 0.750 0.915 0.508

TP + FN 15 41 8 341 59
Standard Error 0.127 0.069 0.153 0.015 0.065
Confidence Interval [0.1521, 0.6479] [0.1327, 0.4039] [0.4499, 1.0000] [0.8853, 0.9446] [0.3809, 0.6360]

R
ec
a
ll

Recall 0.250 0.524 0.188 0.915 0.508
TP + FN 24 21 32 341 59
Standard Error 0.088 0.109 0.069 0.015 0.065
Confidence Interval [0.0768, 0.4232] [0.3102, 0.7374] [0.0523, 0.3227] [0.8853, 0.9446] [0.3809, 0.6360]

Table 72. Confidence Intervals of the precision and recall per class for the performance of BERT (without preprocessing) on the random sample of
issues taken from all six domains.

Existence Executive Property Non-Architectural Architectural

P
re
ci
si
o
n Precision 0.438 0.556 0.444 0.931 0.513

TP + FN 16 18 9 363 37
Standard Error 0.124 0.117 0.166 0.013 0.082
Confidence Interval [0.1944, 0.6806] [0.3260, 0.7851] [0.1198, 0.7691] [0.9051, 0.9572] [0.3525, 0.6746]

R
ec
a
ll

Recall 0.318 0.526 0.267 0.949 0.432
TP + FN 22 19 15 356 44
Standard Error 0.099 0.115 0.114 0.012 0.075
Confidence Interval [0.1235, 0.5128] [0.3018, 0.7508] [0.0429, 0.4905] [0.9267, 0.9722] [0.2855, 0.5782]

Table 73. Confidence Intervals of the precision and recall per class for the performance of BERT (with preprocessing) on the random sample of issues
taken from the web development domain.

Existence Executive Property Non-Architectural Architectural

P
re
ci
si
o
n Precision 0.621 0.462 0.464 0.946 0.592

TP + FN 29 13 28 351 49
Standard Error 0.090 0.138 0.094 0.012 0.070
Confidence Interval [0.4441, 0.7973] [0.1905, 0.7325] [0.2796, 0.6490] [0.9222, 0.9695] [0.4542, 0.7295]

R
ec
a
ll

Recall 0.514 0.429 0.542 0.943 0.604
TP + FN 35 14 24 352 48
Standard Error 0.085 0.132 0.102 0.012 0.071
Confidence Interval [0.3487, 0.6799] [0.1693, 0.6878] [0.3423, 0.7410] [0.9190, 0.9674] [0.4658, 0.7425]

Table 74. Confidence Intervals of the precision and recall per class for the performance of BERT (with preprocessing) on the random sample of issues
taken from the data storage & processing domain.

Existence Executive Property Non-Architectural Architectural

P
re
ci
si
o
n Precision 0.417 0.346 0.562 0.902 0.545

TP + FN 12 26 16 356 44
Standard Error 0.142 0.093 0.124 0.016 0.075
Confidence Interval [0.1377, 0.6956] [0.1633, 0.5290] [0.3194, 0.8056] [0.8708, 0.9326] [0.3983, 0.6926]

R
ec
a
ll

Recall 0.208 0.429 0.281 0.941 0.407
TP + FN 24 21 32 341 59
Standard Error 0.083 0.108 0.080 0.013 0.064
Confidence Interval [0.0459, 0.3708] [0.2169, 0.6402] [0.1255, 0.4370] [0.9164, 0.9663] [0.2814, 0.5321]

Table 75. Confidence Intervals of the precision and recall per class for the performance of BERT (with preprocessing) on the random sample of issues
taken from all six domains.
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I Replication
In this section, we provide a brief guide on how to reproduce our results using Maestro.

First, Maestro must be installed. Installation guides can be found in the main Maestro GitHub repository31. Additionally,
detailed installation instructions for the deep learning component are also available32. These instructions also explain how to deploy
the deep learning manager on high performance computing clusters.

I.1 Viewing Issues

In order to get a list of the issues we collected, Go to the the “Classify Issues” tab and press “Create Query”. Next, un-check the
“Simplified query?” box. Next, enter a query in the box. Queries are written using Mongo query syntax. The following is a good
starting query:

{
"$and": [

{"tags": {"$eq": "has-label"}},
{
"$or": [

...
]

}
]

}

Here, the contents of the inner “$or” should be a list of tags (in the {"tags": {"$eq": <tag>}} format). A list of available tags
per round of issue collecting we performed can be found in Appendix J.

When creating a query for one of the “bert-round-X” tags, it is also possible to select the corresponding BERT model in the
“Select ML Models” section. There are three available models: “bert-round-1”, “bert-round-2”, and “bert-round-3”. We advise
only using a single tag (e.g. only “bert-round-2-property”) when selecting one of these models. Selecting a model will make Maestro
display the classifier predictions alongside the issues.

When not using an ML model, press the “Remove this ML Model Option” button.

Finally, give the query a name and save it. Pressing the name of the query in the “Classify Issues” tab will now bring up the list
of selected issues.

I.2 Reviewing Model Performance Metrics & Checking Model Settings

In order to double check model performance metrics or check model settings, go the “ML models” tab, and then the “ML Models”
sub-tab. This will bring up a list of available model configurations stored in the database. A list of all configurations created during
our research is given in Appendix K. When clicking on the name of the model, Maestro will bring up a screen containing two types
of data: the performance of the model the last time it was trained, and the settings (hyperparameters) with which the model was
trained. Although Appendix K does provide the name of all the models, we advise double checking the model ID in the address
bar.

Note: everything from this point onward will require you to be logged in to the UI. Instructions for creating an account can be
found in the user documentation33.

The “(Re)train Model” button can be used to train the model again, in order to validate that its performance is reproducible.

A new model can be created by going to the “ML Models“ sub-tab again, and pressing the “Create New Model” button. The
hyperparameters for the tabs “Classifier” and “Training” can be found in Appendix C. For the hyperparameters in the “Pre-
Processing” tab, most settings can be kept as defaults. The only difference is that the “Input Mode” must be set to determine the
feature generation, and a corresponding Word Embedding must be selected (the name “word embedding” here is mostly a historical
artefact. For instance, for bag of words models, the word embedding is simply a dictionary of known words). The identifiers of the
embeddings we used can be found in the configurations of the different models (in the Maestro configuration view).

In case one wants to re-generate the word embeddings too, this can be done by going to the “ML Models” tab and then the
“Word Embeddings” sub-tab. The hyperparameters for the different embeddings are given in Table 76.

31https://github.com/mining-design-decisions/Maestro
32https://github.com/mining-design-decisions/Maestro/blob/main/docs/usage/dl_manager/index.md
33https://github.com/mining-design-decisions/Maestro/blob/main/docs/usage/issues_db_api/README.md#users

https://github.com/mining-design-decisions/Maestro
https://github.com/mining-design-decisions/Maestro/blob/main/docs/usage/dl_manager/index.md
https://github.com/mining-design-decisions/Maestro/blob/main/docs/usage/issues_db_api/README.md#users
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Embedding Used by Hyperparameters
Word2Vec CNN, RNN Trained on all issues from the six domains. Use stemming: No. Use lemmatization:

Yes. Use part-of-speech (pos) tagging: No. Formatting handling: Markers. Use
ontologies: No. Vector length: 300. Min count: 5. Algorithm: skip-gram.

Doc2Vec Doc2Vec Trained on all issues from the six domains. Use stemming: No. Use lemmatization:
Yes. Use part-of-speech (pos) tagging: No. Formatting handling: Markers. Use
ontologies: No. Vector length: 300. Min count: 5. Algorithm: skip-gram.

IDFGenerator TF-IDF Trained on all labelled issues from the data storage & processing domain. Use stem-
ming: No. Use lemmatization: Yes. Use part-of-speech (pos) tagging: No. Format-
ting handling: Markers. Use ontologies: No. Min doc count: 0

DictionaryGenerator BOW (Fre-
quency &
Normalised)

Trained on all labelled issues from the data storage & processing domain. Use stem-
ming: No. Use lemmatization: Yes. Use part-of-speech (pos) tagging: No. Format-
ting handling: Markers. Use ontologies: No. Min doc count: 0

Table 76. Hyperparameters for the different embeddings we used.

For training on all issues from the six domains, the following query can be used:

{
"$or": [

{"tags": {"$eq": "project-merged_domain=software development tools"}},
{"tags": {"$eq": "project-merged_domain=devops and cloud"}},
{"tags": {"$eq": "project-merged_domain=data storage & processing"}},
{"tags": {"$eq": "project-merged_domain=web development"}},
{"tags": {"$eq": "project-merged_domain=content management"}},
{"tags": {"$eq": "project-merged_domain=soa and middlewares"}}

]
}

For training on all labelled issues from the data processing & storage domain, the following query can be used:

{
"$and": [

{"tags": {"$eq": "has-label"}},
{"tags": {"$eq": "project-merged_domain=data storage & processing"}}

]
}

Enabling fine-grained technology replacement is currently not directly supported by the Maestro UI, and requires manipulation
of the saved embedding and model configurations through the database API. The Python script below can be used to enable
fine-grained technology replacements. Note that the script requires the database client library34 to be installed.

1 import issue_db_api
2

3 database_url = 'https://url.to.database'
4 database_username = 'your-username'
5 database_password = 'your-password'
6

7 target = 'embedding' # 'embedding' or 'model'
8 target_id = 'some-id' # Obtained from the UI
9

10 repo = issue_db_api.IssueRepository(database_url,
11 credentials=(database_username, database_password))
12

13 if target == 'embedding':
14 obj = repo.get_embedding_by_id(target_id)
15 else:
16 assert target == 'model'
17 obj = repo.get_model_by_id(target_id)
18

19 new_config = obj.config | {
20 'replace-this-technology-mapping': '6491b09727a779d274330603',
21 'this-technology-replacement': 'development project',
22 'replace-other-technologies-list': '6491b0be27a779d274330605',
23 'other-technology-replacement': 'technology'
24 }
25

26 obj.config = new_config # Uploads new config to the database

34https://github.com/mining-design-decisions/maestro-issue-db-api-client

https://github.com/mining-design-decisions/maestro-issue-db-api-client
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J Database Tags
In Table 77 we provide the tags we used in the database to specify what issues were labelled during which round of labelling.

Tag Description
maven Issues found using Maven POM dependencies analysis.
top-down Issues found using keyword searches.
bottom-up Issues found using static source code analysis.
bottom-up-
discovered

Issues found using static source code analysis, but these were discovered after our
internship [18].

random-sample-
data-projects

Issues found with a random sample of 400 issues from the Apache projects Hadoop,
Cassandra, Tajo, HDFS, MapReduce, and Yarn.

random-sample-web-
projects

Issues found with a random sample of 400 issues from the Apache projects Solr,
CloudStack, JSPWiki, Brooklyn, and TomEE.

search-engine-
reusable-solutions-
2023-02-22

Issues that were found with keyword searches on 2023-02-22, using the reusable solu-
tions keywords.

search-engine-
decision-factors-
2023-02-22

Issues that were found with keyword searches on 2023-02-22, using the decision factors
keywords.

bert-round-1 Issues that were found with BERT version 1, for the first round of finding property
issues with BERT. The 121 labelled issues with the highest confidence have the refined
tag bert-round-1-top-121. The 50 labelled issues with the lowest confidence are tagged
with the refined tag bert-round-1-bottom-50.

bert-round-2-
property

Issues that were found with BERT version 2, for the second round of finding property
issues with BERT.

bert-round-2-
executive

Issues that were found with BERT version 2, for the first round of finding executive
issues with BERT.

bert-round-3-
executive

Issues that were found with BERT version 3, for the second round of finding executive
issues with BERT.

bert-round-3-
executive-keyword-
filtered

Issues that were found with BERT version 3, for the third round of finding executive
issues with BERT.

random-sample-
domains

Issues found using a random sample of 400 issues from six software domains.

random-confidence-
sample-domains

Issues found using a random sample, based on the confidence of a deep learning
classifier. These issues are also selected from six software domains.

relabeling-non-arch-
version-bumps

Issues we relabelled, because we changed our opinion on how we should label issues
about technology version bumps.

relabeling-internship Issues we labelled during our internship [18], but we decided to relabel certain prob-
lematic issues.

relabeling-top-down-
bottom-up-*

Issues found with the keyword searches and static source code analysis, which were
found to be of low quality and hence relabeled. Each of the labellers labelled a subset
of these issues. These subsets can be found by replacing * with the name of the
labeller (jesse, arjan, or mohamed).

relabeling-master-
thesis

Issues labelled during this thesis, which were found to be of low quality and are
therefore relabelled. Each of the labellers labelled a subset of these issues. These
subsets can be found by replacing * with the name of the labeller (jesse, arjan, or
mohamed).

relabelling-msc-
thesis-existence

Issues labelled as solely existence during this thesis, which were relabelled due to
having low quality labels.

Table 77. This table contains the tags we used in the database to specify what issues were (re)labelled during which round of labelling.
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K Trained Models
This section contains the IDs of the models, versions, and performances we used. These IDs can be used to find the corresponding
models, versions, and performances in our database. Table 78 contains the multi-label models we trained on the issues from the
data storage & processing domain. Tables 79 and 80 contain the detection and multi-class models from our internship [18] that are
trained on that same dataset. We also trained multi-label models on that dataset, but excluding the issues from the random sample,
because we used the random sample as the test set for that evaluation. These models are shown in Table 81. Table 82 contains the
models we evaluated using varying training set sizes. Finally, Table 83 contains the models we used for cross-project validation.

Model Model ID Version ID Model Name
BERT without text pre-
processing

648ee4526b3fde4b1b33e099 648f1f6f6b3fde4b1b3429cf BERT best settings seed=4

BERT with text prepro-
cessing

64c8abf36f7bb6a08a6e4041 64c8ca5e6f7bb6a08a6e4c7b BERT best settings (with formatting
removal)

BOWF 648f21ba6b3fde4b1b342fe9 648f21f86b3fde4b1b342fea BOWF best params
BOWN 648f2a9c6b3fde4b1b343003 64c40b8276ddee87785b4afd BOWN best params
TFIDF 648f430a6b3fde4b1b343075 648f43456b3fde4b1b343076 TFIDF best params
DOC2VEC 648f75de6b3fde4b1b3430e9 648f77276b3fde4b1b3430ea DOC2VEC best params
CNN 648f79876b3fde4b1b34313e 64901b5a6b3fde4b1b343140 CNN best params
RNN 648f7ecf6b3fde4b1b34313f 64908d6027a779d2743303e2 RNN best params
BERT* without text
preprocessing

649215cb27a779d27433882a 6492366827a779d274338850 BERT best settings seed=4 with re-
placement

BERT* with text pre-
processing

64c8abfa6f7bb6a08a6e4042 64c8cc056f7bb6a08a6e5295 BERT best settings with replacement

BOWF* 6491b91227a779d27433060a 6491beb627a779d274335287 BOWF best params with replacement
BOWN* 6492020027a779d274336cc2 649203e027a779d274336d25 BOWN best params with replacement
TFIDF* 6491b64f27a779d274330608 6491bcb027a779d2743338b3 TFIDF best params with replacement
DOC2VEC* 64921e0927a779d274338830 6492a11f27a779d27433a9de DOC2VEC best params with replace-

ment
CNN* 64921f2827a779d274338834 6492a45b27a779d27433c473 CNN best params with replacement
RNN* 64921f9127a779d274338837 6492aaf527a779d27433c7a4 RNN best params with replacement

Table 78. This table contains the models we trained on the issues from the data storage & processing domain. Models with a * have fine-grained
technology replacement.

Model Model ID Version ID Model Name
BOWF Detection 64728704d364b0625efa6fb8 64c3c0fc76ddee87785b451b Internship BOWFrequency Detection -

New Dataset
BOWN Detection 64728704d364b0625efa6fb9 64c3c31776ddee87785b452a Internship BOWNormalized Detection

- New Dataset
TFIDF Detection 64728705d364b0625efa6fbb 64c3c3c476ddee87785b4548 Internship TFIDF Detection - New

Dataset
DOC2VEC Detection 64728705d364b0625efa6fbd 64c3c41876ddee87785b4573 Internship Doc2Vec Detection - New

Dataset
CNN Detection 64728706d364b0625efa6fc6 64c3ca7276ddee87785b48cf Internship CNN Detection - New

Dataset
RNN Detection 64728706d364b0625efa6fc9 64c3d44876ddee87785b4a18 Internship RNN Detection - New

Dataset
Combination ensemble
(BOWFreq/CNN/RNN)

64728706d364b0625efa6fca 64c3e25576ddee87785b4a45 Internship Detection Ensemble
(BOWFreq/CNN/RNN) - Combi-
nation - New Dataset

Voting ensemble
(BOWFreq/CNN/RNN)

64728706d364b0625efa6fcb 64c3e3f076ddee87785b4a76 Internship Detection Ensemble
(BOWFreq/CNN/RNN) - Voting
- New Dataset

Stacking ensemble
(BOWFreq/CNN/RNN)

64728706d364b0625efa6fcc 647338d6d364b0625efa7574 Internship Detection Ensemble
(BOWFreq/CNN/RNN) - Stack-
ing - New Dataset

Table 79. This table contains the detection models from our internship [18] that we trained on the issues from the data storage & processing domain.
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Model Model ID Version ID Model Name
BOWF 64728705d364b0625efa6fbe 64c3c67976ddee87785b45db Internship BOWFrequency Classifica-

tion - New Dataset
BOWN 64728705d364b0625efa6fbf 64c3c7cc76ddee87785b4654 Internship BOWNormalized Classifica-

tion - New Dataset
TFIDF 64728705d364b0625efa6fc2 64c3c9b876ddee87785b47f9 Internship TFIDF Classification - New

Dataset
DOC2VEC 64728705d364b0625efa6fc1 64c3c94976ddee87785b4746 Internship Doc2Vec Classification -

New Dataset
CNN 64728705d364b0625efa6fc4 64c3ca4776ddee87785b4878 Internship CNN Classification - New

Dataset
RNN 64728706d364b0625efa6fc8 64c3d11476ddee87785b4903 Internship RNN Classification - New

Dataset

Table 80. This table contains the multi-class models from our internship [18] that we trained on the issues from the data storage & processing domain.

Model Model ID Version ID Model Name
BERT without text pre-
processing

64bbf5bb5d41aef11824f350 64c227365d41aef1182505cf BERT best settings seed=4 (without
random sample)

BERT with text prepro-
cessing

64c8c70f6f7bb6a08a6e4c79 64c8e6536f7bb6a08a6e5f17 BERT best settings (without random
sample)

BOWF 64c50fcd76ddee87785b6a2a 64c50ffe76ddee87785b6a2b BOWF best params (without random
sample)

BOWN 64c50d9f76ddee87785b4f60 64c50f4f76ddee87785b6937 BOWN best params (without random
sample)

TFIDF 64c50ca976ddee87785b4eec 64c50d3876ddee87785b4eed TFIDF best params (without random
sample)

DOC2VEC 64c512d476ddee87785b6c6e 64c5165076ddee87785b6ec3 DOC2VEC best params (without ran-
dom sample)

CNN 64c516b476ddee87785b8866 64c5187276ddee87785ba1e4 CNN best params (without random
sample)

RNN 64c5106f76ddee87785b6a4f 64c512a976ddee87785b6a51 RNN best params (without random
sample)

BERT* without text
preprocessing

649215cb27a779d27433882a 6492366827a779d274338850 BERT best settings seed=4 with re-
placement

BERT* with text pre-
processing

64c8c7436f7bb6a08a6e4c7a 64c8e8076f7bb6a08a6e5f1d BERT best settings with replacement
(without random sample)

BOWF* 64c5100a76ddee87785b6a3b 64c5102c76ddee87785b6a3c BOWF best params with replacement
(without random sample)

BOWN* 64c50f0976ddee87785b4f61 64c50fb476ddee87785b69a0 BOWN best params with replacement
(without random sample)

TFIDF* 64c50d6276ddee87785b4f5f 64c50f1a76ddee87785b4f62 TFIDF best params with replacement
(without random sample)

DOC2VEC* 64c514f376ddee87785b6ec2 64c5180f76ddee87785b8867 DOC2VEC best params with replace-
ment (without random sample)

CNN* 64c5185a76ddee87785ba1e3 64c518ac76ddee87785ba3ea CNN best params with replacement
(without random sample)

RNN* 64c5109a76ddee87785b6a50 64c5143476ddee87785b6c6f RNN best params with replacement
(without random sample)

Table 81. This table contains the models we trained on the issues from the data storage & processing domain, but excluding the issues from the
random sample. Models with a * have fine-grained technology replacement.
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Model Model ID Performance ID Model Name
BERT without text pre-
processing

6496cca0286e80e8e244b4ec 649796316794484c00b4cd65 BERT best settings (varying dataset
size)

TFIDF 6496c93c286e80e8e244b4eb 6496d3ae286e80e8e244b4ed TFIDF best params (varying dataset
size)

RNN 64c6522e6f7bb6a08a6e4040 64cc20676f7bb6a08a6eedaa RNN best settings (varying dataset
size)

Internship BOWF De-
tection

64970037286e80e8e244cdd6 649726a6286e80e8e244dad4 Internship BOWF Detection (varying
dataset size)

Internship CNN Detec-
tion

6496fef0286e80e8e244cdd5 64973235286e80e8e244e052 Internship CNN Detection (varying
dataset size)

Internship BOWF Clas-
sification

6496ed4e286e80e8e244b990 64970c60286e80e8e244cdd7 Internship BOWF Classifica-
tion3Simplified (varying dataset
size)

Internship RNN SO
Classification

6496f72e286e80e8e244b996 649ac79c277b34078bc74c4d Internship RNN SO Classifica-
tion3Simplified (varying dataset size)

BERT without text pre-
processing (random sam-
ple as the test set)

64c243f85d41aef118250be8 64c4e99a76ddee87785b4b70 BERT best settings (varying dataset
size, random sample as test set)

Table 82. This table contains the models we evaluated using different training dataset sizes. It also includes a model that we evaluated using the
random sample as the test set.

Model Model ID Performance ID Model Name
BERT without text pre-
processing

6492161f27a779d27433882c 649241f527a779d274338fe8 BERT best settings seed=4 (cross-
project)

BERT with text prepro-
cessing

64c8c63d6f7bb6a08a6e4c77 64c8d7fa6f7bb6a08a6e58af BERT best settings (cross-project)

BOWF 6492026727a779d274336cc3 6492030527a779d274336cc5 BOWF best params (cross-project)
BOWN 6492038027a779d274336d23 649204ac27a779d2743386f9 BOWN best params (cross-project)
TFIDF 6491c38d27a779d274336bee 6491cb3227a779d274336c57 TFIDF best params (cross-project)
DOC2VEC 64921d6827a779d27433882f 64929f9627a779d27433a975 DOC2VEC best params (cross-project)
CNN 64921edf27a779d274338832 6492a3cd27a779d27433c3c1 CNN best params (cross-project)
RNN 64921f5227a779d274338835 6492a78927a779d27433c6c2 RNN best params (cross-project)
BERT* without text
preprocessing

649215ee27a779d27433882b 64924d6827a779d27433a94b BERT best settings seed=4 with re-
placement (cross-project)

BERT* with text pre-
processing

64c8c6866f7bb6a08a6e4c78 64c8e3d06f7bb6a08a6e58da BERT best settings with replacement
(cross-project)

BOWF* 649202b927a779d274336cc4 649205cd27a779d27433875d BOWF best params with replacement
(cross-project)

BOWN* 649203b327a779d274336d24 649208da27a779d2743387c4 BOWN best params with replacement
(cross-project)

TFIDF* 6491c45727a779d274336bef 6491c69127a779d274336bf0 TFIDF best params with replacement
(cross-project)

DOC2VEC* 64921e8327a779d274338831 6492a36327a779d27433c361 DOC2VEC best params with replace-
ment (cross-project)

CNN* 64921f0b27a779d274338833 6492a42827a779d27433c425 CNN best params with replacement
(cross-project)

RNN* 64921f7a27a779d274338836 6492aa6827a779d27433c738 RNN best params with replacement
(cross-project)

Table 83. This table contains the models we used for the cross-project validation. Models with a * have fine-grained technology replacement.
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