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Abstract

To prevent future problems when developing or maintaining software, it is crucial to have architectural
knowledge (AK) documented. A problem that can occur is that the documentation is scattered between
multiple places. Two notable places where AK is currently stored are mailing lists and issue-tracking
systems. There currently is no defined relationship between emails and issues, making it hard to find
related issue-mail pairs where AK is stored.
In this study we attempt to find and define these relationships, as well as provide a way to find them using
cosine similarity. For this we used 43815 emails and 70759 issues from Apache projects. From this we
identified six occurring patterns and their characteristics. We also used different types of cosine similarity
and determined their precision for finding emails and issues that talk about the same architectural design
decision.
Keywords: Architectural design decisions, Architectural knowledge, Cosine similarity, Issue tracking sys-
tems, Mailing lists

1 Introduction

Managing architectural knowledge has been an important topic in software development [2, 17] and the need
to explicitly document architectural knowledge has been emphasized both in research and in industry [1, 3].
Architectural knowledge, as defined by Kruchten et al[9], states that architectural knowledge consists of
(architectural) design decisions and design. Losing these architectural design decisions (ADDs) can lead to
several problems such as violating rules and constrains, or obsolete decisions not being removed[8]. This
reaffirms the need for proper documentation of ADDs.

Part of good documentation is that you can find it later with relative ease. If important information is
scattered, it can be difficult to locate, and there is a chance that some crucial information may go unno-
ticed. Two notable ways to document and share these design decisions are mailing lists[2, 12] and issue
trackers[1, 16], with Mannan et al showing that 89.51% of all design discussions occur in project mailing
list[11]. There exists previous work that searches in either mailing lists or issue-tracking systems for ar-
chitectural knowledge, but there is little research done on the relationship between both. We know from
exploratory studies that there are related pairs[13], but we don’t have a good definition of their relations.

In open source software, a lack of documentation can hinder the use and future development of the open
source software [6]. Despite its importance, Ding et al [6] found that 94.6% of OSS projects have no proper
software architecture documentation. This could explain why developers often encounter difficulties in get-
ting relevant architectural information for addressing quality concerns and making design decisions[4]. We
attempt to solve this problem of finding relevant architectural information in open source systems. The
goal of this paper is to Explore the architectural relations between email threads and issue tracker issues that
are about the same architectural design decision and provide architectural knowledge and how to find them
using cosine similarity. We are looking for cases where both an email thread and an issue are related to
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the same ADD and both provide architectural knowledge. We will define such an email thread issue pair as
Architectural Design Decision Issue Email Pair (ADDIE-pair).

A pair of an issue and email thread that talk about the same ADD = ADDIE-pair

The rest of this paper has the following structure: Section 2 provides background on the theory, section 3
presents the research questions, used data and study design. Section 4 shows the results per research question
and section 5 discusses these together with the implications for researchers practitioners and researchers.
Section 6 talks about threats to validity and section 7 ends with the conclusion.

2 Background

2.1 Architectural Design Decisions

Architectural knowledge has been defined as the set of Architectural Design Decisions (ADDs). When we talk
about ADDs we are using the ontology of Kruchten et al[9]. The three types of ADDs we use are ‘Executive’,
‘Existence’ and ‘Property’. The following definitions are from the same paper:

2.1.1 Existence

Existence decisions (“Ontocrises”) are about if something will exist or be present in the system. In the
ontology of Kruchten et al there is also Non-existence decisions (“Anticrises”) which talks about the absence
or ban of something. They can bee seen as constraints in software development. We merge non-existence
into existence since they both talk about whetere something needs to exist or not. It can be subdivided in
structural and behavioral decisions, with structural talking about what exists and behavioral is about how
elements interact.

2.1.2 Executive

Executive decisions (“Pereicrises”) are decisions that are less about the software design or qualities but more
about the business process around it, affecting how the development process takes place. They are often
constrain existence and or property decisions. An example would be: “The code must we written in Java
because our team only known Java.” or “All public APIs must be approved by the board”.

2.1.3 Property

Property decisions (“Diacrises”) are about what properties the software must have. An example would be
the requirement to use a specific version of software.

2.2 Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of an inner product space that measures
the cosine of the angle between them[7]. In order to calculate the cosine similarity between two vectors
we can calculate their dot product. We can use cosine similarity to compare 2 texts, but we first need
to vectorize our texts in order to calculate the dot product. We want to try two different vectorization
approaches. One context based and one semantic based. For the context based approach we use Term
Frequency Inverse Document Frequency (TF-IDF). For the semantic approach we use Sentence Bidirectional
Encoder Representations from Transformers (SBERT).

Cosine Similarity bwetween vector A and B = cos(θ) = A·B
∥A∥·∥B∥

2.2.1 TF-IDF Transformation

Term Frequency Inverse Document Frequency (TF-IDF) transform is a method to increase the significance
of the ‘uniqueness’ of a word in its corpus[13]. It also reduces the impact of common words and increases the
impact of distinctive words. TF-IDF is calculated by multiplying term frequency (TF) by inverse document
frequency (IDF). Their formulas are:

2



TF(t,D) = Number of occurrences of token t in document D
Total number of tokens in document D

IDF(t,D) = log
(

N
|{d∈D:t∈d}|

)
With t being a token, N being the number of documents in the corpus and D being the number of documents
in the corpus in which the token t appears[13] .In this paper we used the TF-IDF transformation created by
Pijnacker et al[13]. This is because the code was created for the data set we use, which is created by the
same authors. This way we know the code is compatible with the data, and saves us time. An additional
benefit is that they use stemming. This is a process of normalizing all variants of a word into one form (e.g.
‘creation’ and ‘create’ turn into ‘creat’).

2.2.2 SBERT

While TF-IDF is a context based variant for text vectorization, we also looked at a more semantic variant.
An option could be using BERT, which is a natural language processing family based on the transformer
architecture[5]. It can generate word embedding vectors from text, allowing us to calculate the dot product
(cosine similarity) between two words. BERT has been pre-trained to know the meaning of words and their
semantic relations. It achieved state of the art performance for the NLP tasks GLUE, SQuAD v1.1, SQuAD
v2.0 and SWAG[5]. A downside with this method is that finding the most similar pair can take a long time,
with a collection of 10,000 sentences requiring about 50 million inference computations ( 65 hours)[15]. A way
to make this faster is to use Sentence-BERT (SBERT), a modification that use siamese and triplet network
structures to derive semantically meaningful sentence embeddings. These sentence embeddings can be used
as vectors for cosine similarity. This reduces the amount of time from 65 hours to about 5 seconds while
maintaining the accuracy from BERT[15].

3 Study Design

3.1 Research Questions

To achieve our goal, we ask the following research questions:

– (RQ1) How do software engineers discuss ADDs between issue tracker issues and email threads? Find-
ing how software engineers discuss the same architectural design decision in email threads and issues
can help in capturing AK. We are looking for patterns that issue - email thread pairs follow and why.

– (RQ2) What are the most effective similarity methods for finding issue - email thread pairs that discuss
the same ADD? Having an effective way to find these pairs is useful in capturing AK. We will look for
issue - email thread pairs that are about the same ADD when at least 1 element of the pair (so either
the issue or the email thread) is marked as containing a certain ADD type, whilst for the other element
we do not have that requirement. This way we only need to mark one element of the pair to find its
related pairs.

– (RQ3) What are the characteristics of related issue - email thread pairs that discuss the same ADD? If
we could find different characteristics in the different patterns or type of pairs, then these characteristics
could help in finding certain pairs more precise. It could also show us that certain pairs are better suited
for different applications.

In order to answer those questions we need to first find the ADDIE-pairs. We will do a total of 5 iterations
experimenting with different similarity methods to find ADDIE-pairs.
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Iteration Summary
0 Context based similarity (TF-IDF)
1 Context based similarity (TF-IDF) + Filter
2 Semantic based similarity (SBERT) + Filter
3 Model averaging of iteration 1 and 2
4 Increasing data in iteration 3

Table 1: Different iterations used to find ADDIE-pairs

At the end we will have created a new dataset containing email-issue pairs with a similarity value assigned
to them. Of this dataset, a subset (at minimum 100 pairs in each table) with the highest similarity value
will be manually judged if it is an ADDIE-pair or not. The data that we start with is explained in section
3.2. Based on these ADDIE-pairs we will apply further analysis in order to answer our research questions,
which we will explore in section 4

3.2 Dataset

To answer these research questions we used the following data in a PostgreSQL database which was created
by Pijnacker et al.[13] This database contained 70759 Jira issues and 43815 emails from the following six
Apache projects: Cassandra, Hadoop, HDFS, MapReduce, Tajo and Yarn. Of these issues, 1426 were labeled
as at least 1 type of ADD (according to the ontology of Kruchten et al.[9]). From the emails, 620 were labeled
with at least 1 type of ADD (using the same ontology as with the issues).

During iteration 0 (see 3.3.2) we expanded the datasets in order to apply filtering. We also merged the
ADD types into the email tables for better ease of use.
The email table schema was expanded with the following columns

1. thread id: The ID of the first email in the email thread (which can be its own ID).

2. word count: The word count of the email body.

3. is existence: Boolean that checks if the email is marked as an existence ADD

4. is executive: Boolean that checks if the email is marked as an executive ADD

5. is property: Boolean that checks if the email is marked as an property ADD

The ADD categories were taken from another table and are null-able since not every email has been labeled.

The Jira issues was expanded with the following two columns:

1. description word count: The word count of the description.

2. parent key: The key of the parent Jira issue (which can be its own ID).

This results in the final schemas as shown in figure 1.
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Figure 1: Schemas of email table (left) and issue table (right)

3.3 Iteration 0: Context Similarity

3.3.1 Exploratory round

In iteration 0 we first did an exploratory round of open coding (according to grounded theory [18]). In
order to find ADDIE-pairs we used cosine similarity to first find related email-issue pairs. The similarity
values were calculated using the TF-IDF cosine similarity that we explained it section 2.2.1. Using this
method we created 2 tables. The first table, named result arch emails all issues, was created by matching all
architectural emails against all issues. The second table, named ”result arch issues all emails”, was created
by matching all architectural issues against all emails. For both tables we only took the pairs that had a
similarity score greater than 0.1 to save space. Both tables consist of the 3 columns: an ID to find the email
(email id, integer), an ID to find the issue (issue key, string) and the similarity score (similarity, float between
0 and 1). We then used these tables a guide to find ADDIE-pairs. We took the first 25 pairs with highest
similarity score from each table. Here we noticed in the result arch emails all issues table that 2 variables
could help judge if a pair is a ADDIE-pair or not.

The first is the creation time difference, which is the amount of days between the creation of the email
and the creation of the issue. Of the 8 non-ADDIE-pairs in the result arch emails all issues table, the cre-
ation time difference (in days, ascending order) were: 2, 119, 687, 999, 1486, 1664, 1859 and 2191. With the
exception of 2 and 119, all creation time differences of ADDIE-pairs were smaller. An explanation for this
could be that when an ADD is created or formulated in any form, be it email of issue, that discussion about
it will be around the same time and not years into the future. It could be that an ADD of the past influences
the creation of a future ADD, but those are not the same.

The second variable is the smallest word count. This is the smallest value of the email body word count and
issue description word count. Out of the 8 non-ADDIE-pairs of the same table, the smallest word counts are
(in ascending order): 0, 0, 3, 15, 24, 46, 61 and 76. 14 out of 17 ADDIE-pairs had a higher smallest word
count. A reason for this could be that most architectural changes are big enough to require more than a few
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sentences to explain. According to van Tussenbroek, “TF-IDF’s accuracy increases linearly as the minimum
word count set [...] changes”[19]. This could also explain why having a higher minimum word count increases
the effectiveness of finding related pairs.

We also noticed in the result arch emails all issues table that there were pairs that link the same email
thread to the same (parent) issue. If we have an email discussion it could be the case that multiple emails
in that thread will get a high cosine similarity score with the same Jira issue. For example, if we look at
the pair with issue key HADOOP-3246 1 and the email with ID 22532 and compare it with the pair with
issue key HADOOP-32463 and email with ID 22464 we see that both pairs are talking about the same ADD
which gets implemented in the shared issue. Since we care about the entire path the ADD takes and the role
emails and issues have in that path we will always look at the scope of the entire email thread and the issue
with its children or parent. Since we are looking for unique relations of an ADD instead of unique pairs these
duplicates clutters up our results.

After the exploratory round, we decided to enrich our data by adding the smallest word count, creation
time difference, email thread id and issue parent key. We do this because we hypothesize that influencing
those 4 variables could improve the precision of finding unique ADDIE-pairs.

3.3.2 Open Coding Round

After enriching our data we did an open coding round where we took the first 100 pairs with the highest
similarity score for both tables. For each pair we would label it either ’not related’ ’architectural irrelevant’
or a specific pattern that the conversation seemed to follow.
After the round was completed we got 8 patterns, but with the intent to refine them later once we got more
data from future rounds and iterations. We also decided to make a histograms for creation time difference and
smallest word count, to help us answer our hypothesis that smallest word count and creation time difference.
The histograms can be seen in figures 2 and 3 The results from this round can be seen in table 2. We used
this data to continue in iteration 1.

Iteration 0
ArchEmailsAllIssues ArchIssuesAllEmails

Number of ADDIE-pairs 38 41
Number of unrelated pairs 62 59

Table 2: Results from Iteration 0: TF-IDF Cosine similarity

1Issue url = https://issues.apache.org/jira/browse/HADOOP-3246
2Email url = https://www.mail-archive.com/core-dev@hadoop.apache.org/msg07315.html
3Issue url = https://issues.apache.org/jira/browse/HADOOP-3246
4Email url = https://www.mail-archive.com/core-dev@hadoop.apache.org/msg07475.html
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(a) Creation time difference histogram of
ADDIE-pairs in ArchEmailsAllIssues

(b) Creation time difference histogram of unre-
lated pairs in ArchEmailsAllIssues

(c) Creation time difference histogram of
ADDIE-pairs in ArchIssuesAllEmails

(d) Creation time difference histogram of unre-
lated ArchIssuesAllEmails pairs

Figure 2: Creation time difference histograms

(a) Smallest word count histogram of ADDIE-
pairs in ArchEmailsAllIssues

(b) Smallest word count histogram of unrelated
pairs in ArchEmailsAllIssues

(c) Smallest word count histogram of ADDIE-
pairs in ArchIssuesAllEmails

(d) Smallest word count histogram of unrelated
pairs in ArchIssuesAllEmails

Figure 3: Smallest word count histograms
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3.4 Iteration 1: Filtering

In iteration 1 we look at the results of iteration 0, to determine how we want to do our next open coding
round. We looked at our hypothesis of iteration 0 that smallest word count, creation time difference, email
thread id and issue parent key can influence the precision of finding ADDIE-pairs. We will first look at
creation time difference.

3.4.1 Creation Time Difference

For determining the creation time difference we took the creation time of the email which is used in the
comparison and not the creation time of the email thread. This is because somebody can respond to an
email thread and create a new discussion which sparks a new ADD. By taking the creation time of each
email instead of the email thread we can keep these new emails on old email threads. From this we got the
histograms of figure 2, from which we can see that nearly all ADDIE-pairs fall in the bin of a creation time
difference of 100 or less. Meanwhile in unrelated pairs the most common bin is a creation time of more than
1000, with the bin of 100 or less being second place. It could be the case that an ADD is created and that
in the far future a new ADD is creation about the same subject or even build on top of the old ADD. If we
want to find all email-issue pairs about a subject it could be better to get a wider creation time difference,
but if we want to get only pairs about one ADD it is better to have a narrow creation time difference.
The question then arises: at what creation time difference do we stop? From the histograms of figure 2
we see two possible cut off values. One keeps all pairs with a creation time difference of 500 or less, and
the other keeps all pairs with a creation time difference of 100 or less. If we take the first then we keep
98.73% of all ADDIE-pairs while keeping only 47.93% of unrelated pairs. If we take the latter then we keep
86.08% of all ADDIE-pairs whilst keeping only 19.83% of unrelated pairs. From this the cutoff at 100 seems
to have a better accuracy, we but chose the cutoff at 500 in order to preserve more ADDIE-pairs. If we
combine both tables we can see with a cutoff at 500, 98.44% above the cutoff are unrelated pairs. From pairs
below the cutoff we see that 57.35% of pairs are ADDIE-pairs, giving us a nice increase in percentage of
ADDIE-pairs compared to 39.5% without the filter. Since this is not the only filtering we will apply, having
a higher percentage of ADDIE-pairs will be better since we are going to remove more unrelated pairs with
other filters.

3.4.2 Smallest Word Count

Now we will take a look at the smallest word count. Here we see that a smallest word count greater than
100 is by far the most common in ADDIE-pairs, whilst in unrelated pairs the most common smallest word
count is smaller or equal than 14. That the most common smallest word count is smaller or equal than 14
in architectural unrelated pairs could be explained by 2 reasons. The first is that the TF-IDF’s accuracy
increases when the minimum word count increases[19]. The other reason is that a very small text (less than
15 words) has less room to explain or formulate an ADD and probably is more about the same subject
instead of an exact ADD. Since we are looking for pairs that are about the same ADD, pairs about the same
subject is not enough. If we were interested in the same subject than it could work. We can confirm our
hypothesis that smallest word count influences the precision of finding ADDIE-pairs, but what would be a
suitable cutoff number to remove unrelated pairs but still finding most ADDIE-pairs? One option to remove
many unrelated pairs is to set the cutoff at 100, resulting in only 8.26% of unrelated ones remaining. This
has the downside of only keeping 59.49% of ADDIE-pairs. The cost of the increase in precision is too high for
us because removing around 40% of ADDIE-pairs can influence our definition of the patterns. We therefore
chose a cutoff at 50, resulting in us keeping 88.61% of ADDIE-pairs and 22.31% of unrelated pairs. If we
combine both tables we can see that of pairs with a smallest word count above 50, 91.26% are unrelated,
whilst of the pairs with a smallest word count of 50 or lower, 72.1% are ADDIE-pairs. These percentages in
combination with us applying multiple filters gives us the confidence that a cutoff at 50 is suitable for better
precision in finding ADDIE-pairs.

3.4.3 Duplicates

Finally we have the two variables email thread id and issue parent key. Since we want to find ADDIE-pairs
that are about different ADDs, we hypothesized that those two variables could increase the precision of
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finding unique ADDIE-pairs. Since we will look at the entire email thread and the entire family of the Jira
issue (so an issue and all its children or if it is a child we look at the child and its parent). We will call
a pair a duplicate if and only if there already exists another pair in the same table with: the same email
thread id, the same issue parent key and a higher similarity score. This means that the same pair can exists
in both tables and not be deemed a duplicate. We see in table 3 that the majority of duplicates is in the
ADDIE-pairs. Reason for this could be that an unrelated discussion the same subject as the ADD could be
mentioned, whilst in a related discussion the chance is higher that the subject is mentioned more. This is
however due to the very small sample size hard to say. Nevertheless we did notice that out of all 200 pairs
we can remove 25 of them, which comes down to 12.5%. So by using email thread id and issue parent key
to select only the pair with highest similarity we can increase the accuracy of finding unique ADDIE-pairs.
An important note is that we need to do this as a last step since this filter is not commutative. We also
did notice that there were other pairs that talked about the same ADD but we could not find a clear filter
for them. They were either emails send twice, resulting that they are not part of the same email thread, or
issues not marked as child but as related whilst functioning as a child issue.

Iteration 0
ArchEmailsAllIssues ArchIssuesAllEmails

Number of ADDIE-pairs 38 41
Number of unrelated pairs 62 59

Number of duplicates in ADDIE-pairs 13 7
Number of duplicates in unrelated pairs 3 2

Table 3: Duplicate data of iteration 0

3.4.4 Filter

This all together affirms our hypothesis that smallest word count, creation time difference, email thread id
and issue parent key influence the precision of finding unique ADDIE-pairs. In order to increase precision we
apply all 3 filters together in order to get more results. The final filter looks like this:

1. Remove all pairs where the smallest word count is less than 50.

2. Remove all pairs with a creation time difference greater than 500 days

3. For all pairs with the same email thread id and issue parent key take the pair with the highest similarity
and drop the rest.

with step 1 and 2 being interchangeable but step 3 needs to be executed as last. Steps 1 and 2 could also be
applied by excluding those pairs before calculating the cosine similarity. Although this would speed up the
overall calculation time by reducing the amount of calculations, we only though of this after already doing
the calculations with filtering, resulting in us not using nor testing it.
We also tracked how much pairs we discarded by filtering. We can see from table 4 that after filtering we are
only keeping 4.18% and 1.58% of all pairs. We did however notice that the similarity values were dropping
very fast in the first 20 to 40, and afterwards stabilizing with a slower decline. This can be seen in appendix
B. This could explain the very low percentage, as the similarity values seem to indicate that there are just
not that many ADDIE-pairs. In order to check for theoretical saturation for the pattern assignment we did
analyze 150 pairs of each table. We noticed that these extra 50 pairs each did not deliver any new results
and most of them were unrelated.

Now we have a different way of collecting ADDIE-pairs we start our analysis of iteration 1, using the
filter mentioned above. We did 1 round of open coding, analysing 100 pairs of each table with the highest
cosine similarity score. The results can be seen in table 5. Here we see that we managed to find 20.25% more
ADDIE-pairs and if we count duplicates in the previous iteration as unrelated pairs, it jumps to 61,02% more
unique ADDIE-pairs in the same sample size compared to the previous iteration.
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Iteration 1: Amount of pairs
Filter ArchEmailsAllIssues ArchIssuesAllEmails
None 18059 133554

Word filter 6488 81898
Smallest word count- and creation time difference 2569 26613

Smallest word count-, creation time difference- and duplicate 754 2110

Table 4: Iteration 1 tables with pair count.

Iteration 1
ArchEmailsAllIssues ArchIssuesAllEmails

Number of ADDIE-pairs 45 50
Number of unrelated pairs 55 50

Table 5: Results from Iteration 1: Filtering

3.5 Iteration 2: Semantic Similarity

In iteration 2 we did another round of open coding, this time we looked if a semantic based SBERT cosine
similarity would provide different results. For an SBERT model, we looked at 2 options, ‘all-mpnet-base-v2’
and ‘all-MiniLM-L6-v2’. According to the Sentence Transformers documentation ”The all-mpnet-base-v2
model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality.”[14].
We deemed the quality good enough for our purpose and we thus chose the ‘all-MiniLM-L6-v2’ model for its
better speed, enabling us to use large data sets without requiring super computers.
For generating the similarity values we took the following approach:

1. Make a dictionary containing email id and email body.

2. Make a dictionary containing issue key and the concatenation of issue description and issue summary.
We did this because there are cases where the summary contained more or different information than
the description. Another reason was that the TF-IDF similarity also did this, so we will keep it for
consistency.

3. For each body we calculate the sentence embedding using the ’all-MiniLM-L6-v2’ SBERT model.

4. We create a new dictionary of id as key and the embedding as value.

5. We performed cosine similarity on the embeddings of architectural email and all issue pairs and on the
embeddings of architectural issue and all email pairs. We only kept pairs with a similarity value greater
than 0.35 in order to save space.

6. We filtered the results using the same filter we created in iteration 1.

We once again tracked the amount of pairs we got before and during filtering, which can be seen in table
6. We see that we only keep 0.14% and 0.14% of all pairs, which is a lot lower than in iteration 1. This is
however compensated by the far greater number of total pairs.

Iteration 2: Amount of pairs
Filter ArchEmailsAllIssues ArchIssuesAllEmails
None 39179435 56137779

Word filter 1455709 2282536
Smallest word count- and creation time difference 279998 459888

Smallest word count-, creation time difference- and duplicate 55261 79239

Table 6: Iteration 2 tables with pair count.
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We then began analysing the first 100 pairs with highest similarity again, with the results shown in table
7. These results seem comparable to iteration 0 and worse than iteration 1. This was not expected, since
we thought that it would be an improvement of iteration 1. We did however notice that we found different
ADDIE-pairs. 38.46% of ADDIE-pairs and 90,16% of unrelated pairs we found were new and did not appear
in iteration 1. This means that, although not providing a greater precision, it can give us pairs that the
TF-IDF cosine similarity was not able to give us.

Iteration 2
ArchEmailsAllIssues ArchIssuesAllEmails

Number of ADDIE-pairs 36 42
Number of new ADDIE-pairs 13 17
Number of unrelated pairs 64 58

Number of new unrelated pairs 59 51

Table 7: Results from Iteration 2: SBERT

We did question why it was not as effective as iteration 1 but during the research we did not find a clear
reason for the ineffectiveness. We did find out later that the SBERT all-MiniLM-L6-v2 model is not a good
fit for large texts, as it truncate all texts after a maximum word limit of 256. There exist other models with
a larger word limit, but those are often not higher than 512 if we want the same quality. We then checked
iteration 1 and 2 for pairs where the highest word count is higher than 256 in order to see if this influences the
results. We put the results in table 8, from which we saw that there is a similar proportion of architectural
related pairs in both iteration 1 and iteration 2 with word counts greater than 256. This makes us conclude
that the performance for both methods is similar for texts with a word count above 256 words.

Iteration 1 Iteration 2
ArchEmailsAllIssues ArchIssuesAllEmails ArchEmailsAllIssues ArchIssuesAllEmails

Total ADDIE-pairs 45 50 36 42
Word count > 256 38 25 27 27

Total unrelated pairs 55 50 64 58
Word count > 256 36 16 23 19

Table 8: Number of pairs where at least one element has a word count greater than 256 in iteration 1 and 2

3.6 Iteration 3: Model averaging

In iteration 1 and 2 were able to find different ADDIE-pairs. To increase precision we explored the option
of model averaging of the two models. Averaging the similarity of the two methods would provide us both
the semantic similarity of TF-IDF cosine similarity and the contextual similarity of SBERT. We applied this
model averaging to both ArchEmailsAllIssues and ArchIssuesAllEmails tables, and the results are presented
in table 9.

Iteration 3
ArchEmailsAllIssues ArchIssuesAllEmails

Number of ADDIE-pairs 46 44
Number of unrelated pairs 54 56

Table 9: Results from Iteration 3: Model averaging

This approach resulting in slightly lower amount of ADDIE-pairs. However we did notice that the precision
of iteration 1 and 3 were very close. While the top 20 pairs with the highest similarity had better precision
in iteration 3, this advantage diminished later compared to iteration 1.
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3.7 Iteration 4: Expanding data

We noticed that the architectural issues all emails pairs consistently outperformed the architectural emails
all issues pairs. We hypothesized that this difference was because we have a architectural email dataset of
only 620 emails from 128 different email threads. Meanwhile we have 1426 architectural issues. We wanted
to test if increasing the architectural data set would increase precision. In order to do this we were able to
find a bigger data set of the same issues but with more labeled, with a total of 2166 laballed as architectural
compared to our previous 1426. We were however not able to find a better data set for architectural labelled
emails. This meant that we could only test this hypothesis in the ArchIssuesAllEmails pairs. We then needed
to decide which method we use to calculate our similarity values. We decided to use the model averaging
of iteration 3 because we noticed that it is more precise in finding ADDIE-pairs in the first 20 pairs, but
dropping afterwards. We expect that when we increase the data that better precision will continue for longer.
The results are shown in table 10. We see a 34.78% increase in ADDIE-pairs when comparing iteration 4

Iteration 3 Iteration 4
Number of ADDIE-pairs 46 62
Number of unrelated pairs 54 38

Table 10: Results from the first 100 pairs in Iteration 4 (Increasing architectural issue data) compared with
iteration 3

with iteration 3, supporting our hypothesis that increasing the architectural data increases precision. We
decided to analyze a total of 200 pairs, where we concluded that theoretical saturation was reached. This
conclusion was reached based on the fact that we began to find very little ADDIE-pairs in the last 50 pairs.
In total we found 82 ADDIE-pairs in the top 200 pairs, only finding 20 new ADDIE-pairs in the last 100.
During this iteration we also refined our ADDIE-pair patterns, which we discuss in 4.1.

3.8 Resulting Dataset

After these 5 iterations we have a total of 26 tables, which can be found in appendix D. Of these tables 9
contain the data used to analyze each iteration, 2 contain the all analyzed pairs (with the difference being
how the ADD types are determined), 6 contain the all similarity pairs with a cosine similarity greater than 0
(3 for SBERT and 3 for TF-IDF), 3 containing the email and jira data and 6 containing extended data which
is used to prepare for later iterations. For future work the table unique pairs could be the most beneficial
since it contains 681 unique pairs judged if they are both about the same ADD and what ADD types the
issue is.

4 Results

4.1 RQ1: Issue - email thread patterns about the same ADD

During each iteration we created patterns which ADDIE-pairs seem to follow and assigned them to each
ADDIE-pair. We analyzed a total of 681 unique pairs, 163 of them were ADDIE-pairs, 432 were unrelated
and 86 architecturally irrelevant. We assigned each ADDIE-pair a pattern during each iteration, refining the
patterns after each iteration. We reached theoretical saturation in iteration 4. We got in total 6 patterns
based on the total of 163 unique ADDIE-pairs. Table 11 shows how many times each pattern did occur.

4.1.1 Pattern 1: Initiate ADD in Email Thread and Discuss in Issue.

In this pattern there is a begin of the ADD in the email (thread), which is almost directly moved to an
issue. The email (thread) contains either an ADD or a plan for an ADD. There is the option for a short
architectural relevant discussion to take place in the email thread, but this is the exception rather than the
rule. The initial email asks for feedback about its ADD proposal (e.g. ”What do you think?” or ”Is this
something we need?”). Often there are simple reply emails that voice their approval of the proposal. An
issue will be created shortly (in less than a week) afterwards, and often but not always a reply with an url
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Pattern Occurrences
1 19
2 33
3 26
4 25
5 49
6 11

Table 11: ADDIE-pair patterns and their occurrences

(or JIRA key) to an issue will be send. In this issue there exists architectural relevant information or an
architectural discussion in the issue comments.

Example email id = 34469 5 issue key = CASSANDRA-14448 6

Source Rational of discussion quote
email Initializing ADD “I’m working on some performance improvements of the lightweight

transitions...” “...current CAS requires 4 round trips to finish ...”
“I’m proposing the following improvements to reduce it to 2 round
trips.”

Email Requesting action /
feedback

“What do you think? Did I miss anything?”

Jira Creating Jira and
adding ADD in de-
scription

The Jira contains (nearly) the same text as the initial email.

email Notifying about move
to Jira

“Cool, create a jira for it, https://issues.apache.org/jira/browse/CASSANDRA-
14448.”

email Discussing about (ar-
chitectural) informa-
tion in email thread

“... if we combine the prepare and quorum read to- gether... We
can improve it by avoid executing the read, if the replica already
promised a ballot great than the prepared one.

Jira Discussing about (ar-
chitectural) informa-
tion in comments

Person responding to ‘Combine prepare and quorum read together’
with “It’s a tradeoff though, not a clear
cut optimization: it will certainly speed up the non- contended case,
but every time the prepare fails, you
will have wasted time/resources on some reads...”

Table 12: Example of pattern 1, with source being in chronological order

4.1.2 Pattern 2: ADD in issue with Email as Feedback Request

This pattern is almost entirely based in the issue. Only at one point in time there is an email sent out to get
the recipients to take action, often in the request of feedback. It can be that an issue has been created but
no activity has been shown. An email will be sent out with architectural relevant information (sometimes
the description is copy pasted) in order to gain attention.

5email url = https://www.mail-archive.com/dev@cassandra.apache.org/msg12600.html
6issue url = https://issues.apache.org/jira/browse/CASSANDRA-14448
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Example email id = 14279 7 issue key = HADOOP-8803 8

Source Rational of discussion quote
Jira Reason for creating

ADD
“I am modifying the Hadoop’s code ... to achieve better security.”

Jira Requesting action /
feedback

“I want to know that whether community is interesting about my
work? Is that a value work to contribute to production Hadoop?”

email Notifying about exis-
tence of Jira

The same text as the Jira issue description, to-
gether with “I created JIRA for the discussion.
https://issues.apache.org/jira/browse/HADOOP-8803#comment-
13455025 ”

Jira (Optional) Discussing
about (architectural)
information in Jira is-
sue comments

“Makes sense, but I think it’s going to be difficult to plumb through
the various abstractions here in a clean way that doesn’t introduce
specific dependencies on FileInputFormat, etc.”

Table 13: Example of pattern 2, with source being in chronological order

4.1.3 Pattern 3: Create ADD in Email Thread and Implement in Issue

This pattern has the architectural design and discussion in the email thread and the implementation in the
Jira issue. It often starts as a proposal or request for an ADD. Questions about the ADD are asked or
answered and the ADD will be refined. Eventually a Jira issue will be created in order to begin working on
the implementation of the ADD. There are also cases were an a person wants to submit an ADD to a project
and sends an email about it. We include those emails also in this pattern because the issue is mostly about
implementation and not about changing the ADD.

Example email id = 8561 9 issue key = CASSANDRA-2017 10

Source Rational of discussion quote
Email Initiating creation of

ADD and requesting
discussion

[Replacing ivy with maven-ant-tasks] “Is this something that people
are OK with? It will result in the version details being specified from
the build.xml and not a separate ivy.xml”

Email Discussing about
ADD

“Why? What are the advantages?” “1. It will make deploying to
central easier ... 2. You seemed to think it would be better keeping
all the version information in build.xml rather than in a separate
file 3. ...”

Email Requesting move to
Jira / requesting start
of implementation

“If everyone is OK I’ll create a JIRA against Core with fixVersion
0.7 and add my patch there.” NOTE: this was the first email but
only after the last email in the thread was sent, was the JIRA issue
created

Jira Creating Jira contain-
ing ADD

“Replace ivy with maven-ant-tasks. Three main reasons: 1. In
order to deploy cassandra to maven central, we will need to use
maven-ant-tasks anyway 2. ... 3. ...

Jira (Optional) Discussing
about implementation
of ADD in Jira issue
comments

“Tested that ant release still works after realclean. On a standard
build, dependency checking is dramatically faster than ivy’s.”

Table 14: Example of pattern 3, with source being in chronological order

7email url = https://www.mail-archive.com/common-dev@hadoop.apache.org/msg07358.html
8issue = https://issues.apache.org/jira/browse/HADOOP-8803
9email url = https://www.mail-archive.com/dev@cassandra.apache.org/msg01591.html

10issue = https://issues.apache.org/jira/browse/CASSANDRA-2017
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4.1.4 Pattern 4: Release group

For pattern 4 we take a similar definition as W. Meijer’s Release Group[12]. Here the email thread talks
about the decision about releasing one or multiple issues (for example “symlink support in Hadoop 2 GA”11).
Sometimes the reply emails can contain insightful discussion, sometimes a reply email consist of simply a
vote (e.g. “+1”). Overall most if not all of the release discussion takes place inside the email thread, whereas
the issue contains mostly information about an ADD. A difference between pattern 4 and the other patterns
is that pattern 4 is less about the design of the ADD and is more focused on its release.

Example email id = 28314 12 issue key = YARN-4356 13

Source Rational of discussion quote
Issue Issue to be released “ensure the timeline service v.2 is disabled cleanly and has no impact

when it’s turned off ”
Email Creating release dis-

cussion
“I’d like to open a discussion on merging the Timeline Service v.2
feature to trunk (YARN-2928 and MAPREDUCE-6331) [1][2].”

Email Discussing about re-
lease

“Big +1 on merging ATS-v2 to trunk. However, my concern to
release it in 3.0.0-alpha (even as an alpha feature) is we haven’t
provide any security support in ATS v2 yet. Enabling this feature
without understanding the risk here could be a disaster to end-user
(even in a test cluster).”

Email Discussion reply “You’re right. Can we document and clarify that it’s still ”alpha 1”,
and it doesn’t have security features. I also think ATS 1.5 supports
security features, so it’s good for production - we should document
it officially.”

Email “Conclusion” “Thanks everyone for chiming in on the discussion. Since no block-
ers were raised, I’ll go ahead and start a vote thread.”

Table 15: Example of pattern 4, with source being in chronological order

4.1.5 Pattern 5: Feature group

For pattern 5 we found that these pairs are very similar to the Feature Group defined by W. Meijer[12]. The
ADDIE-pairs are less following a strict pattern and are more defined by other characteristics. Pattern 5 is
assigned to ADDIE-pairs where the email thread discusses an ADD that contains other smaller ADDS. An
example of such an email thread is the email titled “[DISCUSS] Hadoop SSO/Token Server Components”14,
where they list 8 required sub-components for their main component (that being the Hadoop SSO/Token
Server Components). These sub-components can be seen as their own ADDS, resulting in this email being
related to multiple ADDS. This could be seen as a collection of pattern 4s. This makes these email threads
very big collections of architectural knowledge, but it is harder to link them to a specific issue, with the
exception of umbrella issues. We assign this pattern to ADDIE-pairs if: 1) The email thread contains
discussions about multiple ADDS; Or 2) The issue is a subtask of an issue which is related to an email thread
like situation 1; Or 3) The issue is a collection of subtasks that are smaller ADDs; Or 4) The issue is an
implementation of the ADD discussed in an email thread that discusses multiple ADD issues.
The issue of the pair from this pattern often contain little architectural discussion since the discussion already
took place in the big email thread. Unlike other patterns which follow a pattern with their emails and issues,
with pattern 5 we don’t know anything about the chronological appearances of either the email thread or
issue. Therefore the example in table 16 could differ from other cases. In our issue data set, we saw that
(HADOOP) ’Project Rhino‘ and ‘Cassandra Enhance Proposal (CEP)’[20] are most common in this pattern.

11email url = https://www.mail-archive.com/common-dev@hadoop.apache.org/msg10597.html
12email url = https://www.mail-archive.com/yarn-dev@hadoop.apache.org/msg23808.html
13issue url = https://issues.apache.org/jira/browse/YARN-4356
14email url = https://www.mail-archive.com/common-dev@hadoop.apache.org/msg09911.html
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Example email id = 17585 15 issue key = HADOOP-9392 16

Source Rational of discussion quote
Issue Umbrella issue created “This is an umbrella entry for one of project Rhino’s topic, for

details of project Rhino, please refer to https://github.com/intel-
hadoop/project-rhino/.”

Email Discussion email
thread created

“As a follow up to the discussions that were had during Hadoop
Summit, I would like to introduce the discussion topic around the
moving parts of a Hadoop SSO/Token Service. There are a couple of
related Jira’s that can be referenced and may or may not be updated
as a result of this discuss thread.”

Email Listing of ADDS “Considering the above set of goals and high level interaction flow
description, we can start to discuss the component inventory re-
quired to accomplish this vision: 1. SSO Server Instance:” In total
8 componments are listen, which can be counted as ADDS

Email Developing ADD “I have also updated our TokenAuth design in HADOOP-9392. The
new revision incorporates feedback and suggestions in related dis-
cussion with the community, particularly from Microsoft and others
attending the Security design lounge session at the Hadoop summit.
Summary of the changes: 1. Revised the approach to now use two
tokens, Identity Token plus Access Token, particularly considering
our authorization framework and compatibility with HSSO;” With
more changes in the email.

Email Discussion / conflict Person is replying to a quote: ““Personally, I think that continu-
ing the separation of 9533 and 9392 will do this effort a disservice.
There doesn’t seem to be enough differences between the two to jus-
tify separate jiras anymore.” Actually I see many key differences
between 9392 and 9533. Andrew and Kai has also pointed out there
are key differences when comparing 9392 and 9533. Please review
the design doc we have uploaded to understand the differences.”

Email Discussion about sub-
tasks

“The following JIRA was filed to provide a token
and basic authority implementation for this effort:
https://issues.apache.org/jira/browse/HADOOP-9781”

Table 16: Example of pattern 5, with source being in chronological order

4.1.6 Pattern 6: Initiate ADD in Issue and Discuss in Email Thread

This pattern is a mirrored version of pattern 1. Here an issue is created containing an initial ADD or idea,
which is followed up by a discussion email thread. Often such a discussion would take place in the issue
comments, but in order to get more attention an email is sent out. It therefore has a similar email intention
to pattern 2, but where pattern 2 has the architectural relevant discussions in the issue comments, pattern 6
has them in the email thread. Optionally this pattern has an architectural discussion in the issue comments,
but this is not always the case.

15email url = https://www.mail-archive.com/common-dev@hadoop.apache.org/msg09911.html
16issue url = https://issues.apache.org/jira/browse/HADOOP-9392
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Example email id = 18812 17 issue key = HDFS-533318

Source Rational of discussion quote
Issue Issue created contain-

ing ADD
“Issue description = This is an umbrella jira for improving the cur-
rent JSP-based HDFS Web UI.” and comment posted half an hour
later by issue creator = “One task of this jira is to modernize the
UIs, however, the most important task I want to achieve in this jira
is to move from server-side JSP pages towards client-based, AJAX-
styled HTML 5 web pages.”

Email Creation of email con-
taining information
about ADD

“Jing Zhao and I recently have reimplemented the JSP-based web
UIs in HTML 5 applications” ... “The abstractions between the UI
and the core server are well-defined, decoupling the UI and the core
hadoop servers.”

Email Requesting action /
feedback

“Your feedbacks are highly appreciated.”

Email Discussing about
ADD

“I have a few concerns about removing the old web UI, however: *
If we’re going to remove the old web UI, I think the new web UI has
to have the same level of unit testing. We shouldn’t go backwards in
terms of unit testing. ”

Issue (Optional) Discussion
about ADD in issue
comments

“I have concerns with this client-side js only approach, which is
less secure than a progressively enhanced hybrid approach used by
YARN. The recent gmail XSS fiasco highlights the issue.”

Table 17: Example of pattern 6, with source being in chronological order

4.2 RQ2: Effective similarity methods of finding issue - email thread pairs
that discuss the same ADD

Iteration Summary
0 Context based similarity (TF-IDF)
1 Context based similarity (TF-IDF) + Filter
2 Semantic based similarity (SBERT) + Filter
3 Model averaging of iteration 1 and 2
4 Increasing data in iteration 3 (only ArchIssuesAllEmails)

Table 18: Definitions of the different iterations used

Iteration ArchEmailAllIssue ArchIssueAllEmail
unrelated architecturally irrelevant ADDIE unrelated architecturally irrelevant ADDIE

0 45 17 38 43 16 41
1 39 16 45 34 16 50
2 61 3 56 50 8 42
3 46 8 46 43 12 45
4 – – – 23 15 62

Table 19: Results of the different iterations from the top 100 pairs in each table.

In order to answer the question of what similarity method would be best, we used 5 different ways of
finding ADDIE-pairs with each method having a sample pool of 100 pairs. Figure 6 and 7 show the preci-
sion of each iteration, with figure 6 not having a graph for iteration 4 since we did not change anything for

17email url = https://www.mail-archive.com/hdfs-dev@hadoop.apache.org/msg11691.html
18issue = https://issues.apache.org/jira/browse/HDFS-5333
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ArchEmailsAllIssues table during that iteration. We also put the numbers in table 19 where we split unrelated
pairs into two categories. One category ‘unrelated’ contains the pairs that were not ADDIE-pairs but do
contain architectural knowledge. The other category ‘architecturally irrelevant’ contains pairs where at least
one element of the pair does not contain architectural knowledge. We see that the ArchIssuesAllEmails pairs
outperforms the ArchEmailsAllIssues pairs. An explaination for this could be that we have more than twice
as much architectural issues compared to emails. From these graphs we see that iteration 4 is clearly the
most effective way of finding ADDIE-pairs. While we only apllied that method on the ArchIssuesAllEmails
pairs we are confident that similar results could be obtainable when applied to ArchEmailsAllIssues.

We also saw in iteration 0 that with unfiltered TF-IDF cosine similarity, 91.26% of not related had an
email or issue word count of less than 50. However if both email and issue have at least a word count of
50, then there is a 72.16% chance of the pair being an ADDIE-pair. Figure 4 shows us the frequency of the
smallest word count on unrelated pairs and ADDIE-pairs, from which we can see that with a minimum word
count of 50 (for both emails and issues) we can eliminate most unrelated pairs.

Figure 4: Boxplot of smallest word count in iteration 0 pairs, with ArchEmailsAllIssues and ArchIssuesAllE-
mails merged.

We also noticed that creation time difference played a big role for the effectiveness of similarity methods
in finding issue - email thread pairs about the same ADD, with the ADDIE-pairs never having more than
700 days between the creation of the email and the issue. Here we take the creation time of each email and
not just the creation time of the email thread. We determined that selecting pairs with a time difference of
500 or less between the creation of the email and the creation of the issue, that 57.35% of the pairs were
ADDIE-pairs. Whilst we saw that if we took all pairs with a creation time difference greater than 500 that
98.44% of those pairs were unrelated. From this we conclude that with a maximum of 500 days between the
creation of an email and issue we can eliminate most unrelated pairs.

For finding unique issue - email thread pairs that talk about the same ADD we a filter to reduce duplicates.
For each email thread - parent issue combination, only taking the issue - email pair with the highest similar-
ity score allowed us in iteration 0 to preemptively remove 12.5% of the pairs because they were duplicates.
Although there are still duplicates, this filter will still increase the precision for finding unique issue - email
thread pairs that talk about the same ADD.

When it came to comparing TF-IDF cosine similarity versus SBERT cosine we saw the following. When
taking the top 100 pairs in both ArchEmailsAllIssues and ArchIssuesAllEmails tables and combining them,
we saw that TF-IDF performed 21.79% better compared to SBERT. Despite having less precision, SBERT
was able to find different ADDIE-pairs.
Taking the average of the two methods resulted in similar to precision as only using TF-IDF.
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Figure 5: Boxplot of creation time difference in iteration 0 pairs, with ArchEmailsAllIssues and ArchIssue-
sAllEmails merged.

The amount of architectural labelled data also has influence on the similarity precision. We saw that the
ArchEmailsAllIssues, with 620 architectural labelled emails, was outperformed by ArchIssuesAllEmails, with
1426 architectural labelled issues. This precision difference became even larger when we increase the archi-
tectural labelled issues to 2166 in iteration 4.

One notable occurrence that we found was that when the amount of ADDIE-pairs began to slow down,
we did manage to find a lot of pair that were related on the same subject but not the same ADD. An exam-
ple would be the issue HADOOP-113419 which says: “See recent improvement HADOOP-928 ( that can add
checksums to a given filesystem ) regd more about it. Though this served us well there a few disadvantages”
and ends by proposing a new ADD (“We propose to have CRCs maintained for all HDFS data in much the
same way as in GFS.”). If we look at the email with id 79520 we see that they created the issue ‘HADOOP-
928’. The relation here is that the email with id 795 and issue ‘HADOOP-928’ are both about creating an
ADD, whilst issue ‘HADOOP-1134’ then proposes a new ADD because of the other ADD. They are related
on subject, but they are two different ADDs. We did not count this as an ADDIE-pair, but for future work
this might be interresting to look into.

To summarize, our method that got us the best precision for ADDIE-pairs is to:

• Increase the architectural data set as much as possible.

• Remove all emails and issues with a word count smaller than 50.

• Calculate only similarity values for email issue pairs with a maximum creation time difference of 500.

• Calculate similarity values by taking the average of TF-IDF cosine similarity and SBERT embedding
cosine similarity.

19issue url = https://issues.apache.org/jira/browse/HADOOP-1134
20email url = https://www.mail-archive.com/hadoop-dev@lucene.apache.org/msg07062.html
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Figure 6: Precision graph of iterations 1 to 3 in Architectural Email All Issue pairs

Figure 7: Precision graph of iterations 1 to 4 in Architectural Issue All Email pairs

4.3 RQ3: Characteristics of related issue - email thread pairs that discuss
the same ADD

Now we have our 6 pattern, we can look if there are characteristics that set them apart from each other.

First we look at the amount of email per email thread. We know what patterns the ADDIE-pairs follow
but we don’t have a good estimate for how long certain discussion go on for. Looking at 8 we can see that
pattern 5 has the most amount of emails per thread based on the IQR, but pattern 4 has the highest average.
We can also see clearly that pattern 2 has a very small amount of emails per thread, which fits its pattern
definition nicely. For pattern 4 we can justify the large amount of emails because it is about releasing and for
every issue being released a discussion occur. Also there are a lot of replies which are simply about casting
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their vote (using for example “+1”, as can be seen in email with id 3285321). As for pattern 5, since it is
talking about very big and overarching ADDS or multiple ADDS, it expected that they have a lot of emails
because there is a lot of things to discuss about.

Figure 8: Boxplot of the amount of emails in a thread per pattern

The other place we can look is issue comments. From figure 9 we can see that patterns 2 and 5 have the
opposite behavior as with emails in a thread. Pattern 2 has a lot of comments but few emails, and pattern
5 has many emails but few comments. For pattern 2 we can see that the main discussion takes place in the
issue comments. Pattern 5 is also compliant with its pattern definition, since the discussion already took
place in the big email threads there is little to discuss in the issue comments. It shows us two very different
ways of developing an ADD.
The big range of pattern 4 can also be explained because the releasing process can be about any ADD, be it
one that is created following pattern 2 or 5.

Looking at figures 8 and 9 we see that patterns 1 and 3 have around the same amount of emails in a
thread and comments per issue. One difference of the two pairs is where the architectural discussion resides,
but we can not see that from these boxplots.

Figure 9: Boxplot of the amount of comments of an issue per pattern

21email url = https://www.mail-archive.com/mapreduce-dev@hadoop.apache.org/msg19032.html
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We also looked if there was any relation between the pattern used to create the ADD and the ADD type.
To test this we used the following Chi-square test hypotheses:

1. Is there a relation between the assigned patterns and the type of ADD?

2. Is there a relation between where the architectural discussion of an ADD takes place (issue or email
thread) and the type of ADD?

To determine the type of ADD we have a few options. We can take the ADD type of either the email or the
issue; We can take the union of the email and issue; We can take the intersection of the email and issue; Since
we have at least one element of the pair labelled, there are cases where not both are labelled. This makes
the intersection option fall off. Taking the ADD type from the email also has the downside that it could
talk about multiple ADDs, resulting in the label being less accurate. With the union being less accurate but
allowing us to use more pairs, we decided to use the following two ways:

A Take the ADD type from the issue (figure 10)

B Take the ADD type from the union (figure 11)

Figure 10: Histogram of the amount of each different ADD type per pattern, with ADD type taken from
issue

Figure 11: Histogram of the amount of each different ADD type per pattern, with ADD type taken from
Union

For test number 2 we assigned all ADDIE-pairs of patterns 1 and 2 to the group where the architectural
discussion takes place in the issue (comments), and assigned the ADDIE-pairs of patterns 3, 5 and 6 to the
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ADD type from issue (A) ADD type from union (B)

pattern Existence Executive Property Existence Executive Property
1 10 7 10 11 7 10
2 19 15 18 20 15 18
3 7 9 11 14 10 11
4 14 6 8 21 7 11
5 21 11 20 44 24 31
6 3 4 6 9 7 7

1 & 2 29 22 28 31 22 28
3 & 5 & 6 31 24 37 67 41 49

Table 20: ADD type per pattern

group where the architectural discussion takes place in the email thread. We excluded pattern 4 from the
test since we can not know where the discussion takes place. The data we use can be seen in table 20.

Applying the Chi-squared test on these numbers gives us the results seen in table 21, with more detailled
results found in appendix C. From this we can see that we have no p-value smaller than 0.05 meaning that
the variables are independent and can reject our hypotheses.

Test hypothesis Chi-square degrees of freedom p
1A 5.569702 10 0.850028
1B 3.551124 10 0.965334
2A 0.413865 2 0.8130746
2B 0.459911 2 0.7945690

Table 21: Chi-square test results

5 Discussion

5.1 RQ1: Issue - email thread patterns about the same ADD

Implications for practitioners The different patterns can help practitioners get insight in their developing
process. It could guide practitioners in finding the related pair if they have only an email or issue, since the
patterns show which options there exist.
Implications for researchers The patterns could function as a basis for future research on this topic. It
could also be beneficial for researchers who want to get more insight how issues and email threads behave in
relation to each other. We did for example notice at the end of iteration 4 that we were not finding a lot of
pairs that discuss the same ADD, but we were able to find pairs that were talking about the same subject.
Often we had two ADDs with one of them being an improvement or build upon the other.

5.2 RQ2: Effective similarity methods of finding issue - email thread pairs
that discuss the same ADD

Implications for practitioners With the similarity method we tested in iteration 4 we showed how to find
related pairs. This allows practitioners to run this on their corpus, which later then can be referred in order
to find related pairs. This process needs to be redone in the future to include the newest pairs, but old pairs
do not have to be recalculated. This allows practitioners to find related pairs more easily, allowing them to
find architectural knowledge better.
Implications for researchers The similarity methods proposed in this study can provide as a way to find
related pairs in different data sets. It also can function as a starting point for future research on more precise
ways of finding related pairs. Certain variables such as author have not been taken into account, which could
increase precision.
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5.3 RQ3: Characteristics of related issue - email thread pairs that discuss
the same ADD

Implications for practitioners The results produced from the chi-squared test do not add a lot of value
of practitioners. The amount of comments on an issue can be an indicator for finding a related pair. If a
practitioner finds an issue that contains an ADD but has very little comments then the practitioner can make
a more narrow search.
Implications for researchers The characteristics allows researchers to get a better picture of the patterns.
It could help in future research when looking for patterns. The chi-squared test shows that if we want to find
certain ADD types such as property, that finding based on pattern is not effective.

6 Threats to Validity

6.0.1 External Validity

This work depends on data provided and used by other projects[13, 16, 12, 10]. The issues consist of open
source project from Apache, which use Jira. This could threaten validity when the results are used for
another issue tracking system or project. The same applies for the emails in the mailing lists, which are all
from Apache projects.
Also the amount of labelled emails could be a threat with only a very small amount of the total being labelled.
However we did see in section 3.7 that an increase in the amount of labelled issues increases performance,
which explains could explain the difference.

6.1 Construct Validity

The low amount of occurrences of pattern 8 could be a threat. We did analyze 900 pairs, with 681 of them
being unique issue-email pairs. Here we did reach theoretical saturation and thus covered most type of pairs
between email theads and issues that talk about the same ADD.

We did also notice that our data contained a broken email thread sometimes and here the email thread with
the title ‘[DISCUSS] Security Efforts and Branching’22 was broken and caused a thread which should contain
3 emails to appear as a thread containing only 1 email. So instead of getting 1 thread containing 3 emails
we get 3 entries containing 1 email. This influences the amount of pairs and the amount of emails in a thread.

6.2 Reliability

In order to make sure the pattern assignment went well, I checked every week with my supervisor on assigned
patterns that were difficult to judge and we went over all patterns to refine them. This helps the reliability
since the patterns and assignments have been validated and evaluated. There still is a risk since my supervisor
and me have the same western cultural background and are from the same university which might not be
optimal since we now have no cross cultural validation.

7 Conclusion and Future Work

In this paper we explored issues and email threads that talk about the same ADD. Using grounded theory
we analyized 681 unique pairs, of which 163 were deemed related. We got these pairs using TF-IDF cosine
similarity and SBERT to vectorize the texts and then applied cosine similarity. We also tested the effect
model averaging, increase the data and applying a filter had to finding related pairs. We found that these
pairs can follow 6 different patterns, 4 of which are based on chronological order of the discussion and 2 based
on the purpose and context. We also looked at some characteristics of these pairs, showing us how they differ
from each other. The results and data produced by this study allows industry to better find architectural

22email url = https://www.mail-archive.com/common-dev@hadoop.apache.org/msg10524.html
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knowledge, and provides a starting point for future research.

In terms of future work we think that the following could be useful: Further research in the effects of
increasing the size of architectural labelled data and research in finding pairs that are successor or predeces-
sor ADDs. About the former we noticed that increasing the amount of architectural labelled data increased
precision but that increase disappeared sooner than we hoped. An indicator could be the trend or rate of
decline of the similarity values. We noticed that once the trend stabilized that the amount of related pairs
that talk about the same architectural design decision tended to drop. We did however not look further into
this. Another thing we noticed was that in the unrelated pairs we found that there are pairs where the ADD
of one element is a successors or predecessor of the other element of the pair. We only recognized this trend
in a later stadium so we did not keep exact track of them, but we noticed from out notes that at least 70
out of 432 unrelated pairs are these successor or predecessor pairs. Further research into this could help find
related ADDs.
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A Code

The code for calculating the cosine similarities can be found here:
https://github.com/MKruijer/PythonSimilarityCode
The code for analyzing those results and applying the filter can be found here:
https://github.com/MKruijer/databaseEditor
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B Similarity values per iteration

Figure 12: Graph of similarity values from iteration 0

Figure 13: Graph of similarity values from iteration 1
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Figure 14: Graph of similarity values from iteration 2

Figure 15: Graph of similarity values from iteration 3
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Figure 16: Graph of similarity values from iteration 4

C Chi-Square Data

ADD type from issue (A) ADD type from union (B)

pattern Existence Executive Property Existence Executive Property
1 10.04 7.06 9.90 12.03 7.08 8.90
2 19.33 13.59 19.08 22.77 13.39 16.84
3 10.04 7.06 9.90 15.04 8.84 11.12
4 10.41 7.32 10.27 16.75 9.86 12.39
5 19.33 13.59 19.07 42.53 25.02 31.45
6 4.83 3.40 4.77 9.88 5.81 7.31

1 & 2 27.72 21.25 30.03 33.35 21.44 26.21
3 & 5 & 6 32.28 24.75 34.97 64.65 41.56 50.79

Table 22: Chi-squared expected ADD type per pattern

ADD type from issue (A) ADD type from union (B)

pattern Existence Executive Property Existence Executive Property
1 0.00 0.00 0.00 0.09 0.00 0.14
2 0.01 0.15 0.06 0.34 0.19 0.08
3 0.92 0.54 0.12 0.07 0.15 0.00
4 1.24 0.24 0.50 1.08 0.83 0.16
5 0.14 0.49 0.04 0.05 0.04 0.01
6 0.70 0.11 0.32 0.08 0.24 0.01

1 & 2 0.06 0.03 0.14 0.17 0.01 0.12
3 & 5 & 6 0.05 0.02 0.12 0.09 0.01 0.06

Table 23: chi squared values for ADD type per pattern
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D Database tables

• data email email: Contains the data of all emails.

• data jira jira issue: Contains the data of all issues, with the exception of the comments.

• data jira jira issue comment: Every comment from each issue.

• iter0 expanded arch emails all issues: The ArchEmailsAllIssue TF-IDF pairs with expanded data.
Takes all pairs from result arch emails all issues with a similarity greater than 0.1. This table is used
in iteration 0.

• iter0 expanded arch issues all emails: The ArchIssuesAllEmail TF-IDF pairs with expanded data.
Takes all pairs from result arch issues all emails with a similarity greater than 0.1. This table is used
in iteration 0.

• iter1 filtered arch emails all issues: The ArchEmails results from iteration 0 with the filter ap-
plied. This table is used in iteration 1.

• iter1 filtered arch issues all emails: The ArchIssues results from iteration 0 with the filter applied.
This table is used in iteration 1.

• iter2 expanded arch emails all issues: The ArchEmailsAllIssue SBERT pairs with expanded data.
Takes all pairs from sim result arch emails all issues with a similarity greater than 0.35. This table is
used to prepare iteration 2.

• iter2 expanded arch issues all emails: The ArchIssuesAllEmail SBERT pairs with expanded data.
Takes all pairs from sim result arch issues all emails with a similarity greater than 0.35. This table is
used to prepare iteration 2.

• iter2 filtered arch emails all issues: Applying the filter to the iter2 expanded arch emails all issues
table and using it for iteration 2.

• iter2 filtered arch issues all emails: Applying the filter to the iter2 expanded arch issues all emails
table and using it for iteration 2.

• iter3 average similarity arch emails all issues: Contains the results from taking the average sim-
ilarity of ArchEmailsAllIssues from iteration 1 and 2 and using it in iteration 3 (Model averaging).

• iter3 average similarity arch issues all emails: Contains the results from taking the average sim-
ilarity of ArchIssuesAllEmails from iteration 1 and 2 and using it in iteration 3 (Model averaging).

• iter4 average similarity arch issues all emails: The average similarity of the updated SBERT and
TF-IDF similarity values for ArchIssues. It takes them from iter4 cos sim filtered arch issues all emails
(TF-IDF) and iter4 sen sim filtered arch issues all emails (SBERT) and is used in iteration 4.

• iter4 cos sim expanded arch issues all emails: Takes the pairs from iter4 cos sim result arch issues all emails
with a similarity greater than 0.1 and expands the data. It is used to prepare iteration 4.

• iter4 cos sim filtered arch issues all emails: Applies the filter to iter4 cos sim expanded arch issues all emails.
This table is used to prepare iteration 4.

• iter4 cos sim result arch issues all emails: The updated TF-IDF cosine similarity values of all
ArchIssuesAllEmails pairs with a score greater than 0. These values are calculated using the updated
/ increased architectural labelled data. It is used to prepare iteration 4.

• iter4 sen sim expanded arch issues all emails: Takes the pairs from iter4 sen sim result arch issues all emails
with a similarity greater than 0.1 and expands the data. It is used to prepare iteration 4.

• iter4 sen sim filtered arch issues all emails: Applies the filter to iter4 sen sim expanded arch issues all emails.
This table is used to prepare iteration 4.
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• iter4 sen sim result arch issues all emails: The updated SBERT cosine similarity values of all
ArchIssuesAllEmails pairs with a score greater than 0. These values are calculated using the updated
/ increased architectural labelled data. It is used to prepare iteration 4.

• result arch emails all issues: The original TF-IDF cosine similarity values of all ArchEmailsAllIs-
sues pairs with a score greater than 0. It is used to prepare iteration 0.

• result arch issues all emails: The original TF-IDF cosine similarity values of all ArchIssuesAllE-
mails pairs with a score greater than 0. It is used to prepare iteration 0.

• sim result arch emails all issues: The original SBERT cosine similarity values of all ArchEmail-
sAllIssues pairs with a score greater than 0. It is used to prepare iteration 0.

• sim result arch issues all emails: The original SBERT cosine similarity values of all ArchIssue-
sAllEmails pairs with a score greater than 0. It is used to prepare iteration 0.

• unique pairs: All the unique email thread - issue pairs that have been judged as either ADDIE-pair,
unrelated or architecturally irrelevant. The ADD type is taken from only the issue.

• unique pairs union add: The same as unique pairs but with the ADD type being from the union of
the issue and email instead of just the issue.
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