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Abstract
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SDR aided Star, Galaxy and QSO Classification

by Marten A. A. LOURENS

This thesis explores the use of broadband colors to classify stars, galaxies and QSOs.
Specifically, the focus is on the application of sharpened dimensionality reduction
(SDR)-aided classification, which aims to enhance cluster separation in the projec-
tions of high-dimensional data clusters to allow for better classification performance.
Based on a qualitative and quantitative analysis of the embeddings produced by
SDR, I find that SDR consistently produces projections with a high degree of clus-
ter separation. A number of projection performance metrics are used to evaluate
the performance of SDR. These are the trustworthiness, continuity, Jaccard similar-
ity coefficient, Shepard goodness, distance consistency, distribution consistency and
neighborhood hit metrics. I also study the oversegmentation feature of SDR pro-
jections. These reveal physical information, which allows one to understand the
structure of the high-dimensional broadband color data in greater detail. Further-
more, I employ a scalable and out-of-sample (OOS) capable approach, called SDR-
NNP, which uses a neural network to reproduce SDR projections. Various classi-
fiers are used to label stars, galaxies and QSOs based on the embeddings yielded by
SDR-NNP. A comparison with HDBSCAN-based classification shows similar per-
formance, but SDR-aided classification offers advantages in terms of scalability and
interpretability. However, HDBSCAN does not require labeled data for classifica-
tion. Overall, this thesis demonstrates the potential of SDR-aided classification to
provide an accurate and insightful classification of astronomical objects based on
their broadband colors.
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Chapter 1

Introduction

Source detection and taxonomy of celestial objects are key steps in any astronomical
analysis. Examples of this include the classification of stars based on their spec-
tral characteristics in the O to M Harvard spectral classes (Cannon and Pickering,
1912), the categorization of galaxy morphologies by following the Hubble sequence
(Hubble, 1926) and the identification of quasi-stellar objects (QSOs), also known as
quasars. The first QSOs were discovered in the 1950’s as point-like radio sources
with no optical counterpart. In 1963, Schmidt (1963) found a faint optical coun-
terpart for the radio source 3C 273 and obtained an optical spectrum with strange
emission lines which he identified as hydrogen spectral lines with a redshift of 0.158.
This suggested that the source thus far assumed to be a star was receding with an
enormous velocity of 47400 km/s. Today these objects are known to be extremely lu-
minous objects inhabiting the nuclei of distant active galaxies with velocities largely
driven by cosmological expansion and believed to be powered by the accretion onto
a supermassive black hole.

With the advent of multi-wavelength surveys, many sophisticated color selec-
tion criteria have been developed to isolate stars, galaxies and active galactic nuclei
(AGN) of which QSOs are a subclass. However, the ever-increasing volume of these
surveys requires new automated methods to classify such objects, as illustrated by
e.g., Dubath et al. (2016). Employing machine-learning methods in the data process-
ing pipelines of these surveys offers a viable solution to a range of problems, which
include photometric redshift estimation and the classification of celestial objects.

Broadly there are two different classes of machine-learning methods that can be
distinguished by the strategy employed during the training phase. The first class is
supervised learning, which uses a training set including input features, e.g., multi-
wavelength colors, and output labels, e.g., the class of the astronomical object, to
learn the underlying correlations between the input features and output labels. A
well-known application of this is the stellarity parameter in Source Extractor, which
uses a neural network trained to determine whether a source is a star based on the
extend of sources in astronomical images (Bertin and Arnouts, 1996). Other appli-
cations of supervised learning methods include the use of decision trees (see e.g.,
Vasconcellos et al. 2011; Clarke et al. 2020). The second class is unsupervised learn-
ing, which searches for data clusters in the feature space and assigns labels based
on the clusters points belong to. There exist many different algorithms for unsu-
pervised learning, with varying numbers of hyperparameters, making some harder
to tune than others. One of those algorithms is HDBSCAN, Hierarchical Density-
Based Spatial Clustering of Applications with Noise. This algorithm has been ap-
plied by Logan and Fotopoulou (2020) (LF20) to the CPz dataset (Fotopoulou and
Paltani, 2018) (FP18) consisting of “a representative population of spectroscopically
observed, stars, galaxies and QSO selected on the basis of their complete photomet-
ric coverage in the optical, near infrared, and mid-infrared wavelengths” (Logan and



2 Chapter 1. Introduction

Fotopoulou, 2020) to perform star, galaxy, QSO classification.
Since I will be comparing the results presented in this work with the classifica-

tion results obtained by LF20 through the use of HDBSCAN, I now give a brief de-
scription of the HDBSCAN algorithm. HDBSCAN (Campello, Moulavi, and Sander,
2013) is an extension of the previous DBSCAN algorithm (Ester et al., 1996), which
assigned clusters based on the distance between points and a minimum number of
objects in each cluster. Both algorithms define distances between two points as the
mutual reachability distance. The mutual reachability distance between points a and b
is defined as follows:

dmreach,k(a, b) = max {corek(a), corek(b), d(a, b)} (1.1)

where corek(·) is the core distance defined as the distance to the kth nearest neigh-
bor of a point. This distance metric ensures that sparser points (which are generally
noise) are viewed as being spaced further from higher density regions which are
the clusters one is interested in. This increases the separation between the data and
the noise. Next, both algorithms consider the mutual reachability distance between
each set of points to define a weighted graph where each edge is weighted by the
mutual reachability distance. By removing edges in this graph when their weights
are above a predefined threshold one can start disconnecting the graph into smaller
connected components. However, determining the connected components for such
a graph is expensive since for n data points there are n(n − 1) edges. Therefore,
HDBSCAN and DBSCAN employ a more efficient approach by constructing a graph
using Prim’s algorithm (Prim, 1957). The graph is built one edge at a time, always
adding the edge with the lowest weight connecting two vertices that are not yet part
of the same graph. The result is a minimum spanning tree. Given this minimum span-
ning tree, the next step converts this tree into a hierarchy of connected components
by sorting the edges of the tree in increasing order of mutual reachability distance
and iterating through this list of edges, defining a new combined cluster for each
edge. The DBSCAN algorithm ends here and requires the user to define a distance
scale in this hierarchy at which the set of clusters will be determined. On the other
hand, HDBSCAN condenses the minimum spanning tree using a parameter specify-
ing the minimum cluster size. This ensures the tree will only contain branches that
have a predefined minimum number of samples. The final step HDBSCAN takes
is choosing which clusters to label. This is done by looking at the stability of each
cluster in the tree. The cluster stability is defined to be ∑p∈cluster(λp − λbirth), where
λ = 1/distance, λbirth corresponds to the λ value when the cluster split off from the
original cluster and λp corresponds to the λ value when the point p fell out of the
cluster. Only clusters with the highest stability that are not children of one another
are labeled.1

The aim of this thesis is to demonstrate that broadband colors can be used to
classify stars, galaxies and QSOs. To perform this classification one can use two-
dimensional projections of the high-dimensional set of broadband colors. However,
it is often challenging to distinguish high-dimensional data clusters in the 2D projec-
tion. To mittigate this issue Kim et al. (2022b) has proposed a method called sharp-
ened dimensionality reduction (SDR), which sharpens the data clusters present in
the high-dimensional dataset before projecting it using conventional dimensionality
reduction (DR) methods. In this work I show whether SDR can be used to aid the
classification of stars, galaxies and QSOs based on the two-dimensional projections

1This explanation was adapted from https://hdbscan.readthedocs.io/en/0.8.18/how_

hdbscan_works.html.

https://hdbscan.readthedocs.io/en/0.8.18/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/0.8.18/how_hdbscan_works.html
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of high-dimensional sets of broadband colors. In Chapter 2 I present the datasets
that I use for this classification process. Chapter 3 introduces various quality met-
rics that I use to evaluate the performance of various projection methods and clas-
sifiers used in this thesis. In Chapter 4 I discuss the process of SDR, explain the
various dimensionality reduction (DR) methods which I use in conjunction with the
sharpening step and discuss various optimization metrics that I used to optimize the
hyperparameters of SDR. SDR-NNP (SDR through Neural Network Projections) is
introduced in Chapter 5 as a way to make SDR more scalable and to give it out-of-
sample (OOS) capability. Chapter 6 presents various classifiers that I use to perform
star, galaxy and QSO classification based on the projections yielded by SDR-NNP
and various consolidation methods that can be used to consolidate the results of
various classifiers. Each of these chapters contains a results section in which I dis-
cuss the results of the methods employed in the respective chapter. In Chapter 7 I
zoom in on the results of a sharpened LMDS projection. Specifically, I look at the
various subclusters present in the projection and determine whether these convey
anything meaningful. Finally, in Chapters 8 and 9 I give a brief summary of what I
have discussed and look at some important conclusions. In addition, I compare the
results obtained through SDR aided classification with the results obtained through
HDBSCAN by LF20.
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Chapter 2

The Dataset

The dataset used in this work for SDR aided classification is the CPz catalog, first
introduced by FP18 and revised by LF20 to include unsupervised star, galaxy and
QSO classification results from HDBSCAN.1 The original purpose of the CPz cat-
alog was to perform classification-aided photometric redshift (z) estimation, hence
the name. The catalog consists of a set of spectroscopically observed sources from
different surveys spanning a combined redshift range of z ∈ [0− 4] (see Figure 2a of
Fotopoulou and Paltani (2018)). The spectroscopic surveys included in CPz are

• SDSS DR12 (Alam et al., 2015);

• GAMA DR2 (Liske et al., 2015);

• VIPERS DR1 (Garilli et al., 2014);

• VVDS DR2 (Le Fèvre et al., 2013);

• PRIMUS DR1 (Coil et al., 2011; Cool et al., 2013); and

• 6dF DR3 (Jones et al., 2004; Jones et al., 2009).

The combined sample was filtered by FP18 such that it only included sources of
highest spectroscopic redshift quality. This was done by only keeping sources with
zflag ≥ 3 for the GAMA and 6dF surveys, ZWARNING = 0 for SDSS and zflag =
XX3 or XX4 (with X ∈ {0, 1, 2}) for VIPERS and VVDS. Figure 2a in Fotopoulou
and Paltani (2018) shows the distributions of spectroscopic redshifts for the various
surveys. From this plot one can see that SDSS samples dominate the dataset, espe-
cially at higher redshifts.
Subsequently, FP18 matched the remaining spectroscopic sources to photometric de-
tections by various surveys within an angular radius of 1′′. The photometric filters
used by each of the photometric surveys cover different parts of the electromagnetic
spectrum resulting in a combined wavelength coverage ranging all the way from the
mid-IR to the UV. The photometric surveys included in CPz are

• the WISE ALLWISE data release (Wright et al., 2010; Mainzer et al., 2011; Cutri
et al., 2013) using the mid-IR W1 and W2 filters (W1lim,AB = 20.3 (Fotopoulou
and Paltani, 2018)2);

• the first cycle of ESO near-IR Public VISTA surveys (Arnaboldi et al., 2007)
using the near-IR Z, Y, J, H and Ks filters:

1The revised catalog is available at the CDS through https://cdsarc.u-strasbg.fr/viz-bin/

cat/J/A+A/633/A154.
2The Explanatory Supplement to the AllWISE Data Release Products (Cutri et al., 2013) states that

the W1 band has an average flux limit away from the Galactic plane of 54 µJy at an SNR of 5, which
corresponds to an AB magnitude limit of 19.6.

https://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A154
https://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A154
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– VIKING (Jlim,AB = 22.1 at 5σ, PI W. Sutherland) and

– VIDEO (Jlim,AB = 24.5 at 5σ, PI M. Jarvis).

• SDSS DR12 (Alam et al., 2015) using the optical u, g, r, i and z filters (ilim,AB =
21.3 (95% completeness limit for point sources)3);

• CFHTLS-T0007 Wide using the optical u∗, g′, r′, i′ and z′ filters (i′lim,AB = 24.8
(80% completeness limit)) (Hudelot et al., 2013). These filters are similar to
those used by SDSS;

• KiDS DR2 (de Jong et al., 2015) using the u, g, r and i filters (ilim,AB = 24.2
(Fotopoulou and Paltani, 2018)4) similar to the ones used by SDSS; and

• the GALEX AIS GR6/7 data release (Bianchi, Conti, and Shiao, 2014) using the
NUV and FUV filters (NUVlim,AB = 20.5 (Fotopoulou and Paltani, 2018)5).

All optical photometric measurements were corrected for Galactic extinction using
Schlegel maps of Galactic absorption (Schlegel, Finkbeiner, and Davis, 1998) and the
Cardelli law for the Milky Way (Cardelli, Clayton, and Mathis, 1989). The GALEX
filters were omitted from the catalog used by LF20. Therefore, for a good comparison
between classification using HDBSCAN and SDR aided classification, they are also
not used in this work.

In this work, I apply supervised-learning techniques to train classifiers to label
sources based on their location in the projection space provided by the SDR method.
Therefore, I require ground-truth class labels to train and validate the performance
of these classifiers. The class labels are provided by the CPz dataset used by LF20.
The class labels were assigned either automatically, in the case of SDSS spectra, or
manually, in the case of VIPERS and VVDS. A breakdown of the different labels is
shown in Table 1 of LF20. In 52 percent of cases the spectrum had the class label
UNKNOWN. Therefore LF20 chose to label these samples as STAR whenever z <
0.0015 and the remaining samples as GAL (i.e., galaxy). Sources labeled as AGN
(active galactic nucleus) were omitted from the final dataset. After these changes
and removals, LF20 ended up with a dataset comprised of in total 48686 sources of
which 7731 were labeled as STAR, 36763 were labeled as GAL and 4192 were labeled
as QSO.

The CPz dataset consists of both total and 3′′ aperture magnitudes in the u, g, r,
i, z, Y, H, J, K bands and total magnitudes in the W1 and W2 bands. Each of these
magnitudes can be combined into colors by subtracting one from the other result-
ing in a total number of (2×9+2)(2×9+2−1)

2 = 190 unique colours. This is bound to
introduce correlations apart from any correlations inherent to the photometric data
itself. Generally, machine learning algorithms are very sensitive to the presence of
correlations in the input data. Therefore, it is important to remove these correlations
as much as possible and end up with a set of most informative colors. This process
is called feature selection. LF20 attempted to achieve this by constructing multiple
random forest (RF) classifiers for each binary classification problem (i.e. STAR/non-
STAR, GAL/non-GAL and QSO/non-QSO). The resulting RFs were used to obtain
a ranked list of colors in order of importance to the classification problem. Ad-
ditionally, LF20 constructed RF classifiers for the multiple labeling setup in which

3See https://www.sdss4.org/dr12/scope/.
4The publication for the first and second data releases of KiDS (de Jong et al., 2015) reports a mag-

nitude limit of ilim,AB = 23.8 at 5σ in a 2′′ aperture.
5Bianchi, Conti, and Shiao (2014) report a survey depth of 20.8 for the NUV filter.

https://www.sdss4.org/dr12/scope/
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TABLE 2.1: Lists of attributes used for SDR aided star, galaxy and
QSO classification.

Attribute list Colors

CPz STAR

K − Y3 K − J3 K − z3 K − H3 J3 − K3
Y3 − K3 J3 − W1 Y3 − W1 J − K H3 − K3

H3 − W1 Y − K H − Y3 Y3 − W2 J3 − W2
i − g3 z3 − W1 z3 − K3 z − u3 H − J3

CPz GAL

g − J Y − W1 J3 − W1 Y3 − W1 J3 − W2
H3 − W2 Y3 − W2 z3 − W2 K − J3 H3 − W1
z3 − W1 K − H3 H − W2 K − W2 W1 − W2
i − W2 g − K g − H i − W1 r − H
g3 − i3 r − z3 r − i r3 − i3 K3 − W2
r − z r − Y3 H − J3 i − u3

CPz QSO

J3 − W1 Y3 − W1 J3 − W2 H3 − W2 Y3 − W2
z3 − W2 K − J3 H3 − W1 z3 − W1 K − H3
H − W2 K − W2 W1 − W2 g − J i − W2

g − K g − H i − W1 r − H g3 − i3
r − z3 r − i r3 − i3 K3 − W2 r − z
r − Y3 H − J3 i − u3

CPz ALL
K − Y3 K − J3 K − H3 J3 − W1 J3 − K3

Y3 − W1 H3 − W1 H3 − K3 J − K Y3 − K3

CPz SDSS
All unique combinations of SDSS ugriz

3′′ aperture and total magnitudes.

all STAR, GAL and QSO labels were assigned at the same time to obtain a similar
ranked list of colors. The top ten of this list will be referred to as “CPz ALL” in this
work (see Table 2.1). The top ten of the different color lists are given in Table 2 of
LF20.

These feature sets still possess significant correlation between different attributes
(see Figure 2 of LF20). This correlation arises because RFs only look at individual
attributes at each point in the decision tree, making these classifiers insensitive to
correlations between different attributes. Therefore, LF20 decided to combine these
lists of important colors with those obtained from the A, B and C RF classifiers in
FP18, which were significantly less correlated, to generate numerous attribute sets.
A grid search was performed over these sets to find an optimal set for each binary
classification problem.

I use the same sets of attributes in my work. These attribute sets are referred to as
best_star_colours, best_gal_colours and best_qso_colours in Table 3 of LF20. For clarity, I
have also listed them here in Table 2.1 and from here onward I refer to them as “CPz
STAR”, “CPz GAL” and “CPz QSO”, respectively. In addition to the CPz STAR, CPz
GAL, CPz QSO and CPz ALL color sets, I also test SDR on a set of (2×5)(2×5−1)

2 = 45
unique combinations of SDSS ugriz 3′′ aperture and total magnitudes to evaluate the
effect of feature selection on the performance of this method. Hereafter this set will
be referred to as “CPz SDSS”.
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Chapter 3

Performance Metrics

In this chapter I discuss several metrics that can be used to evaluate the performance
of the projection techniques and classifiers used to perform star, galaxy and QSO
classification. The different projection techniques and classifiers I use are discussed
further in Chapters 4, 5 and 6. This chapter is comprised of two sections. In the first
section I discuss various projection performance metrics and explain what metric I
use to decide on the optimum set of parameters for each projection technique. In the
second section I present several classification performance metrics which are used
to evaluate the performance of different classifiers.

3.1 Projection Performance Metrics

In this thesis I distinguish between three different classes of scalar metrics. The first
class of scalar metrics are local neighborhood metrics. These metrics compare the neigh-
borhoods of samples in both the feature space and the projection space and quantify
whether various local neighborhood relations are preserved in the projection. In this
section I discuss the following three local neighborhood metrics:

• trustworthiness;

• continuity; and

• Jaccard similarity coefficient.

The second class of scalar metrics are distance preservation metrics. These metrics
quantify the preservation of pointwise distances in the projection space with respect
to the feature space. In this section I discuss the following distance preservation
metrics:

• normalized stress; and

• Shepard goodness.

The last class of scalar metrics are cluster separation metrics or class separation met-
rics. These metrics are used to quantify the degree of separation between clusters
of different overall class label in the projection space. I discuss the following cluster
separation metrics:

• distance consistency;

• distribution consistency; and

• neighborhood hit.
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The latter two metrics can also be categorized as purity metrics since they both mea-
sure the average purity of a class label in the neighborhood sets in the projection
space.

Each of these cluster separation metrics arises from the concept of class consis-
tency. According to Sips et al. (2009) a projection is consistent with the class struc-
ture (i.e., a set of class labels assigned to each sample in a dataset) of a dataset (D)
when points in the neighborhood of a point xi ∈ D have the same class label. Sips
et al. (2009) used this concept to develop metrics to measure the class consistency of
different visualizations of high dimensional datasets: the distance consistency and
distribution consistency metrics.

3.1.1 Local Neighborhood Metrics

Trustworthiness

The trustworthiness metric was first introduced by Venna and Kaski (2001) and is
defined as follows:

Mt(k) = 1 − 2
Nk(2N − 3k − 1)

N

∑
i=1

∑
j∈U k

i

(r(i, j)− k) (3.1)

In this definition, N is the number of samples in the dataset D and k is the number
of nearest neighbors to consider.1 The set U k

i consists of the k nearest neighbors
of sample i in the projection that are not among the k nearest neighbors of i in the
feature space. The quantity r(i, j) specifies the rank of the point j when data vectors
are ordered based on their Euclidean distance to point i in the feature space. All of
this implies that the second term in equation (3.1) quantifies the proportion of false
neighbors and punishes based on how far they are out of the set of nearest neighbors
in the feature space (in terms of rank). When the trustworthiness is close to one, the
second term in equation (3.1) is close to zero and there are very few false neighbors
in the projection. Conversely, when the trustworthiness is close to zero, the second
term is close to one and there are many false neighbors in the projection.

Continuity

The continuity metric is closely related to the trustworthiness metric and was also
introduced by Venna and Kaski (2001). In fact one could compute the continuity
metric by swapping D and P(D) in the trustworthiness metric, i.e., the data samples
embedded in the feature space and projection space, respectively. The continuity
metric is defined as follows:

Mc(k) = 1 − 2
Nk(2N − 3k − 1)

N

∑
i=1

∑
j∈V k

i

(r̂(i, j)− k) (3.2)

where N and k are defined as before. The set V k
i consists of the k nearest neighbors

of sample i in the feature space that are not among the k nearest neighbors after the
projection. The quantity r̂(i, j) specifies the rank of the point j when data vectors are
ordered based on their Euclidean distance to point i in the projection space. Thus,
the second term in equation (3.2) quantifies the proportion of missing neighbors

1k should always be smaller than N/2 for the metric to be properly normalized.
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after the projection and penalizes based on how far they are out of the set of near-
est neighbors after the projection. When the continuity is close to one the second
term in equation (3.2) is close to zero meaning there are few missing neighbors in
the projection. Conversely, when the continuity is close to zero the second term in
equation (3.2) is close to one indicating that there are many missing neighbors in the
projection.

Jaccard similarity coefficient

The Jaccard similarity coefficient metric is based on the coefficient de communauté
florale (translation: coefficient of the floral community) developed by Paul Jaccard
(Jaccard, 1902). It quantifies the average fraction of overlap between the k nearest
neighbor sets in the feature space and the projection space by averaging over all
samples. The functional definition reads as follows:

MJ(k) =
1
N

N

∑
i=1

∣∣N k
i ∩Mk

i

∣∣∣∣N k
i ∪Mk

i

∣∣ (3.3)

In this definition, N is the number of samples in the dataset and k is the number
of nearest neighbors to consider. The set N k

i consists of the k nearest neighbors of
sample i in the feature space. The set Mk

i consists of the k nearest neighbors of sam-
ple i in the projection space. The Jaccard similarity coefficient metric is normalized
between zero and one. This follows from the following reasoning. When there is
complete overlap between the different nearest neighbor sets for each sample i, the
cardinality of the intersection and union of the two sets will be equal and the sum-
mation will equate N. This makes the Jaccard similarity coefficient metric equal to
one. Conversely, when the two nearest neighbor sets are disjoint for each sample i,
the cardinality of the intersection of the two sets will be zero and hence the Jaccard
similarity coefficient metric will evaluate to zero as well.

3.1.2 Distance Preservation Metrics

Normalized Stress

The normalized stress metric quantifies the mismatch between pointwise distances
in the feature space and the projection space (Espadoto et al., 2021). The functional
definition reads as follows (Espadoto et al., 2021):

Mσ =
∑N

i=1 ∑N
j=1
(
∆n(xi, xj)− ∆m(P (xi) , P

(
xj)
))2

∑N
i=1 ∑N

j=1 ∆n(xi, xj)2
(3.4)

In this definition, P(·) is a function that projects a n-dimensional feature vector xi
onto an m-dimensional space and N is the total number of samples in the dataset.
The function ∆k(yi, yj) returns the distance between points i and j in a k-dimensional
space. The choice of distance metrics can be arbitrary; typically Euclidean distances
are used for both the feature space and the projection space.

It is important to note that this metric, whilst being called “normalized”, is not
strictly limited to the range [0, 1]. For dimensionality reduction methods that do
not preserve pointwise distances this metric can attain any value between zero and
infinity.
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Shepard Goodness

The Shepard goodness is defined to be the Spearman rank correlation of the Shepard
diagram. Generally, a Shepard diagram is a scatter plot showing two measurements
of distances between objects, where one distance is the true distance and the other
is the distance in some other representation of the objects (A Dictionary of Statistics
2008). In our case that other representation would be the embedding of the high
dimensional data in the low dimensional space through a projection technique. Thus
our Shepard diagram reads

(∥∥xi − xj
∥∥ ,
∥∥P(xi)− P(xj)

∥∥). The Shepard goodness is
then

MS =
Cov

(
R
(∥∥xi − xj

∥∥) , R
(∥∥P(xi)− P(xj)

∥∥))
σR(∥xi−xj∥)σR(∥P(xi)−P(xj)∥)

(3.5)

with R(X) denoting the ranking of the variables X. The Shepard goodness metric
can attain values from −1 to 1.

To better understand the behavior of this metric we identify three unique cases.
First we consider the case in which the metric yields a value of −1. This indicates a
negative correlation between pointwise distances in the feature and projection space.
That is, points that were close together in the feature space were placed far apart in
the projection space and, conversely, points that were far apart in the feature space
were placed close together in the projection space. In practice, however, the Shepard
goodness metric never attains negative values since the objective function of many
projection techniques simply does not favor it. Next we consider the case in which
the metric is zero. In this case there is no correlation between the distances in the
feature space and the projection space. We can imagine this as a Shepard diagram
where all points are scattered around randomly without any clear structure. In this
case we can say that the projection technique did a bad job at capturing the point-
wise distances in the feature space. This makes the projection useless for probing
relationships between different samples in the feature space. Finally we consider
the case in which the Shepard goodness is 1. This indicates a positive correlation
between pointwise distances in the feature and projection space. This is the desir-
able case. There is an increasing monotonic relation between distances in the feature
space and those in the projection space. In other words, the structure of the data in
the feature space is well preserved by the projection technique.

3.1.3 Cluster Separation Metrics

Distance Consistency

The formulation of the distance consistency metric was motivated by Sips et al.
(2009) through the observation that clustering algorithms, e.g., k-means, partition
the space in k convex clusters such that the square distance of all cluster members
belonging to the centroid of that cluster is minimal.

The distance consistency metric attempts to measure class consistency by mea-
suring the centroid distance for each data point. The centroid distance was defined
by Sips et al. (2009) as follows:

Definition 3.1.1. Let centr(cj) be the centroid of all data points in the dataset D with
class label cj out of a set of m class labels and let x ∈ D be a sample with class label
ci. The distance from x to centr(ci) is given by d(x, centr(ci)). The centroid distance
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of x is defined as follows:

CD(x, centr(ci)) =

{
1 d(x, centr(ci)) < d(x, centr(cj))∀j ∈ {0, 1, . . . , m} ∧ j ̸= i
0 otherwise

(3.6)

Thus the centroid distance is 1 when a data point x with class label ci is closest to its
own class centroid and 0 otherwise. The distance consistency metric leverages this
property and is defined using the classification error of class members when using
the centroid distance. It was defined by Sips et al. (2009) as follows:

Definition 3.1.2. Let centr(cj) be the centroid of all data points in the dataset D with
class label cj and let clabel(x) be the class label of a datapoint x ∈ D. Then the
distance consistency can be computed as follows:

MDC = 1 − |{x ∈ D : CD(x, centr(clabel(x))) ̸= 1}|
N

(3.7)

where | · | indicates cardinality.

Note that the distance consistency metric is 1 when all data points are correctly clas-
sified and 0 when all are misclassified.

Distribution Consistency

An alternative way of measuring class consistency is by using entropy as a measure
of class purity. For each data point x ∈ D one can compute the entropy in the
distribution of m class labels among its k nearest neighbors. We define pci(x) to be
the number of data points of class ci in the nearest neighbor set of point x. The
Shannon entropy for each data point then reads as follows:

H(x, k) = −
m

∑
i=0

pci

∑m
i=0 pci

log2

(
pci

∑m
i=0 pci

)
(3.8)

The entropy is zero when all its neighbors have the same class label and will be
log2(m), when all m classes are mixed equally in its neighborhood. The distribution
consistency is then defined by summing over all data points and normalizing such
that all values will be between zero and one:

MDC(k) = 1 − 1
N log2(m) ∑

x∈D
H(x, k)

= 1 +
1

N log2(m) ∑
x∈D

m

∑
i=0

pci

∑m
i=0 pci

log2

(
pci

∑m
i=0 pci

)
(3.9)

Note that the distribution consistency is zero when all m classes are mixed equally
in the neighborhood of each point and that it will be one when all m classes are well
separated in the projection.

This definition of distribution consistency is different from that introduced by
Sips et al. (2009) in that it computes the entropy using the distribution of class labels
in the k-nearest-neighbor set of each sample. Instead the definition of distribution
consistency introduced by Sips et al. (2009) uses a kernel of width σ used to integrate
over the projection space by selecting different regions over which to compute the
entropy. The reason I choose to deviate from this approach is that this method is
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TABLE 3.1: Confusion matrix illustration.

Predicted

Positive Negative
True Positive TP (True Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)

highly sensitive to the choice of kernel width, which determines the typical size of
regions over which the different classes should not be mixed. In contrast, the k-
nearest-neighbor approach puts a constraint on the minimum number of samples
that are part of a region with uniform class label and is much more adaptive, as it
works well in both sparse and dense regions.

Neighborhood Hit

The neighborhood hit metric is defined as the average over all fractions of k nearest
neighbors for each point i that have the same class label as i. Formally it is defined
as follows:

MNH(k) =
1

kN

N

∑
i=1

∣∣∣{j ∈ N k
i : cj = ci

}∣∣∣ (3.10)

In this equation | · | denotes the cardinality of a set, N k
i is the set of nearest neighbors

of point i in the projection space and ci denotes the class label of a point i. A met-
ric value of one implies that data with different labels are well separated whereas a
value of zero means that labels are not properly separated in the projection.

It is important to note that all of these cluster separation metrics are only relevant
when data is labeled and labels are assigned accurately in line with data clusters
present in the high-dimensional space.

3.2 Classification Performance Metrics

In order to define classification performance metrics we need to make a distinction
between binary classifiers and multi-label classifiers. Binary classifiers are those that
only distinguish between two populations. For example, star and non-star or pos-
itive and negative. In contrast, multi-label classifiers can distinguish between mul-
tiple populations. For example, {class1, class2, . . . , class m} or in our case, {star,
galaxy, QSO}. For either of these two classes of classifiers one can construct a confu-
sion matrix from which our performance metrics can be derived in a straightforward
manner. A confusion matrix is a matrix representing the counts of predicted versus
actual values (see Table 3.1 for an example of a confusion matrix for a binary classi-
fication problem).

In the next subsections I give the formal definitions of the classification perfor-
mance metrics that are used in this work. Naturally, there are many more classifi-
cation performance metrics that can be derived directly from the confusion matrix.
However, I believe that the metrics presented here are the most relevant.
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3.2.1 Accuracy

The accuracy of a classifier can be derived by dividing the number of correct predic-
tions by the total number of predictions. For a binary classifier we have the following
formula:

Maccuracy =
TP + TN

TP + TN + FP + FN
(3.11)

where TP, TN, FP and FN indicate the number of true positives, true negatives, false
positives and false negatives, respectively. For a multi-class classifier, the accuracy
can be used to give an idea of the average performance over all classes.

3.2.2 Precision

The precision is the fraction of correct positive predictions. This metric is also known
as the positive predictive power or, in astronomy, as the purity. For a binary classifier
its formal definition reads:

Mprecision =
TP

TP + FP
(3.12)

For a multi-class classifier we can have multiple values for the precision depending
on which class is referred to as the “positive” class and which classes are referred
to as the “negative” classes. The precision gives one an idea of the power of the
classifier to provide correct predictions for a single class.

3.2.3 Recall

The recall, also known as sensitivity, hit rate and true positive rate, is defined as the
fraction of truly positive predictions. It is defined as follows:

Mrecall =
TP

TP + FN
(3.13)

Similarly to the precision a multi-class classifier can have multiple values for recall
depending on which class is referred to as the “positive” class. The term most often
used for recall in astronomy is completeness which is perhaps more informative on its
definition. The recall represents the fraction of samples of a specific true class that
are not wrongly classified, i.e. how “complete” the set of correctly classified samples
is.

3.2.4 F1 score

Usually, one may be more interested in an equal trade-off between precision and
recall. A high precision is important to be confident about the reliability of the clas-
sifier, however, this should not come at the cost of losing many of the samples to
other classes due to misclassification. In order to evaluate the trade-off between pre-
cision and recall one can use the F1 score, which is the harmonic mean of precision
and recall:

MF1 = 2 · Mprecision · Mrecall

Mprecision + Mrecall
(3.14)

Note that, since multi-class classifiers can have multiple values for precision and
recall we can also have multiple values for the F1 score depending on which class is
referred to as the “positive” class in the definition of the precision and recall.
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Chapter 4

Sharpened Dimensionality
Reduction

In this chapter I discuss the process of sharpened dimensionality reduction (SDR),
which was proposed by Kim et al. (2022b) to tackle the problem of distinguishing
high-dimensional data clusters in a 2D projection.1 The method was shown to yield
better cluster separation in the projection than DR methods with no sharpening and
scales computationally well with large high-dimensional datasets (Kim et al., 2022b).

In the first section I explain the local gradient clustering (LGC) step proposed by
Kim et al. (2022b) to sharpen the data in the high dimensional feature space. The
second section gives an overview of the dimensionality reduction (DR) algorithms
that I have combined with the LGC step to perform sharpened dimensionality re-
duction. In the final section of this chapter I analyze the results of applying different
SDR algorithms on the different CPz datasets presented in Chapter 2 and discuss
how I tuned the hyperparameters of the various algorithms.

4.1 Local Gradient Clustering

The method proposed by Kim et al. (2022b) consists of two separate steps: local gra-
dient clustering (LGC) and dimensionality reduction (DR) using any dimensionality
reduction technique of choice. The goal of the LGC step is to precondition the high-
dimensional dataset allowing the DR method to provide better cluster separation.
Mean shift-based methods are ideal for this LGC step, since they allow to enhance
overdensities in the high dimensional data space. In other work, mean shift-based
methods have been used, usually in combination with DR methods, to cluster data
by determining the cluster modes present in the data.

A recent application of mean-shift methods is gravitational clustering (GC), which
was proposed by Binder, Muma, and Zoubir (2018) to adaptively estimate a time-
varying number of clusters based on a set of feature vectors by modeling each vec-
tor to exert a gravitational force on so-called “mobile mass units” that are injected
at each time interval. Over time this force will cause these mobile mass units to
gravitate towards regions of high density providing estimates of the cluster modes
present in the data.

Other methods do not model the dataset as a gravitational system. Instead, these
methods focus on estimating the sample density by constructing a kernel density
estimate and computing its gradient. The stationary points of this gradient where
the curvature is negative then constitute to a cluster mode (Cheng, 1995).

1In Kim et al. (2022b) the method is called “High-Dimensional Sharpened Dimensionality Reduc-
tion” (HD-SDR).
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The local gradient clustering technique proposed by Kim et al. (2022b) is inspired
by the latter approach.2 The sample density is estimated by constructing a kernel
density estimate (KDE):

ρ̂(xi) = ∑
xj∈N k

i

K
(∥∥xi − xj

∥∥
hi

)
. (4.1)

The kernel (K(·)) used is a parabolic kernel called the Epanechnikov kernel, which
according to Epanechnikov (1969) is the best choice of kernel in a mean-squared
error (MSE) sense. The parameter hi specifies the bandwidth of the kernel at position
xi and is defined to be the distance to the kth nearest neighbor of point xi. This
ensures the KDE is insensitive to the cluster scale. The set N k

i is the set of k nearest
neighbors around the point xi. The advantage of using only the k nearest neighbors
to estimate the KDE is that it accelerates the density estimation from a computational
point of view.3 After estimating the local density ρ̂ for xi, the sample can be shifted
along the density gradient in the direction of higher density using the update rule

x′i = xi + α
∇ρ̂(xi)

max (∥∇ρ̂(xi)∥ , ϵ)
, (4.2)

where α ≥ 0 is the learning rate and ϵ = 10−5 is a regularization parameter for
regions with low density gradient such that points don’t shoot off to infinity. This
update rule is applied to all samples separately for a total of T iterations. After each
iteration the KDE of equation (4.1) is recomputed.

As can be seen, the sharpening step has three free parameters that can be altered
to improve the performance of the SDR algorithm. These are the learning rate (α),
the number of nearest neighbors (k) used to make a local density estimate and the
maximum number of iterations (T) for which we integrate. Following a qualitative
analysis by Kim et al. (2022b), each of these parameters has a different effect on the
cluster separation in the projection yielded by the DR step of the SDR algorithm:

• the learning rate controls the size of the shifts taken by the LGC technique.
This can affect the degree of segmentation. Setting α to a value that is too small
can result in oversegmentation. Conversely, when α is too large samples can
overshoot the cluster mode resulting in them to become more scattered. In
the most extreme cases this can result in a lesser degree of cluster separation
instead of more (Kim et al., 2022b);

• the number of nearest neighbors controls the locality of the shifts taken by the
LGC algorithm. Similarly to α, making k too small can lead to oversegmen-
tation. On the other hand, making k too large can significantly increase the
amount of time it takes for the algorithm to come up with a density estimate.
Everything considered, Kim et al. (2022b) determined that the parameter k is
of lesser importance than α since k may not significantly affect segmentation
without an appropriate value of α (Kim et al., 2022b); and

• the maximum number of iterations (T), controls the degree of cluster separation.
When T is too small, samples will only shift by a few steps resulting in only

2The code written by Kim et al. (2022b) in C++ is available on GitHub by following this link: https:
//youngjookim.github.io/sdr/about/.

3The k-nearest-neighbor sets are computed using the C++ header-only library nanoflann (see
https://jlblancoc.github.io/nanoflann/index.html) which implements a O(Nn log(n)) algo-
rithm based on KD-trees.

https://youngjookim.github.io/sdr/about/
https://youngjookim.github.io/sdr/about/
https://jlblancoc.github.io/nanoflann/index.html
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FIGURE 4.1: Figure showing the effects of varying the values of the
different parameters used by LGC. The data consists of three clus-
ters, color coded based on their ground-truth class label, with samples
drawn from a two-dimensional Gaussian distribution.(Image credit:

Kim et al. 2022b)

a small difference from the original data. Kim et al. (2022b) found that setting
T = 10 is enough to achieve decent cluster separation for both Gaussian as
well as non-Gaussian synthetic data whilst being computationally viable (in-
creasing T adds to the computation time). Kim et al. (2022b) also found that
varying T by a factor of two does not significantly change the outcome.

These results are summarized in Figure 4.1, taken from Kim et al. (2022b).

4.2 Dimensionality Reduction Methods

In this work I combine the sharpening step introduced in the previous section with
various dimensionality reduction techniques. The majority of the DR techniques
I have tested are part of Tapkee (Lisitsyn, Widmer, and Garcia, 2013), which sup-
ports many common dimensionality-reduction techniques. The DR techniques from
this library that I have tested are Landmark Multidimensional Scaling (LMDS) (De
Silva and Tenenbaum, 2004; Cox and Cox, 2008), Neighborhood Preserving Em-
bedding (NPE) (He et al., 2005), t-Distributed Stochastic Neighbor Embedding (t-
SNE) (Maaten and Hinton, 2008), Locally Linear Embedding (LLE) (Roweis and
Saul, 2000), Laplacian Eigenmaps (Belkin and Niyogi, 2001), Linear Local Tangent
Space Alignment (Linear LTSA) (Zhang et al., 2007), Hessian Locally Linear Embed-
ding (HLLE) (Donoho and Grimes, 2003), Manifold Sculpting (Gashler, Ventura, and
Martinez, 2007) and Landmark Isomap (Silva and Tenenbaum, 2002). Additionally, I
have tested LLE, HLLE and Local Tangent Space Alignment (LTSA) (Zhang and Zha,
2004) of scikit-learn (Pedregosa et al., 2011) and Uniform Manifold Approximation
and Projection (UMAP) (McInnes, Healy, and Melville, 2020).

These projection techniques can be categorized according to eight traits that non-
specialist users can consider when selecting a particular technique. These are listed
in Espadoto et al. (2021). Five of these traits are relevant to consider in this work.
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• Linearity: A projection can be either linear or nonlinear. Linear projection tech-
niques are easier to understand but do not perform well for data distributions
that follow a high-dimensional, nonlinear manifold. In such cases nonlinear
projections perform better.

• Neighborhood: Projection techniques either preserve either local or global neigh-
borhoods. Local neighborhood methods only preserve inter-point distances of
points that are in each other’s local neighborhood, which can result in better
cluster separation. Contrarily, global neighborhood methods try to preserve
all inter-point distances which leads to a more accurate representation of the
higher-dimensional data. However, this can lead to a lower degree of cluster
separation.

• Computational complexity: This is the algorithmic complexity of a projection
technique in big-O notation, as function of the number of samples (N) and the
number of dimensions (n). Algorithms with lower computational complexity
take less time and are therefore better suited for e.g., grid searches or interac-
tive visual exploration.

• Out-of-sample (OOS) capability: The ability of a projection technique to ex-
trapolate to new data based on previous training. This is particularly useful
when one wants to use a projection technique as part of a classification pipeline
but does not want to go through the costly training step every time new sam-
ples need to be classified.

• Determinism: Espadoto et al. (2021) defined this trait as the ability of a pro-
jection technique “to reproduce its results regardless of random seed initial-
ization”. This implies that many projection techniques will be regarded as
non-deterministic even though many of those do provide the ability to set a
random seed. Whenever a random seed can be set I have used 42 to make my
results reproducible.

I have summarized the five traits of each of the dimensionality reduction techniques
I tested in Table 4.1. Whilst I have tried both Tapkee as well as scikit-learn imple-
mentations of LLE and HLLE their time complexities are roughly the same with the
exception of the formulation of C(n) since Tapkee uses a cover tree and scikit-learn
uses a ball tree to do k-nearest-neighbor searches. It is also worth noting that no
valid time complexity is known for manifold sculpting since it is an iterative algo-
rithm (Gashler, Ventura, and Martinez, 2007). We can already tell from the time
complexities that for datasets with a large number of samples DR methods like, e.g.,
LMDS, t-SNE and UMAP should scale particularly well.

4.3 Results

In the previous section I presented several DR methods. We have also seen from
Table 4.1 that each of these projection techniques have different traits. Espadoto et
al. (2021) has shown in his quantitative survey of dimension reduction techniques
that depending on these traits and the traits of a given dataset some DR techniques
may work better than others. Therefore, mirroring the work of Espadoto et al. (2021),
I choose to rank the projection techniques presented in the previous section based
on a metric that captures the quality of each projection. The quality metric I use is
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TABLE 4.1: Relevant traits for the various projection methods tested
in this work. In the table N is the total number of samples in the
dataset, n is the input dimensionality, m is the output dimensional-
ity, λ is the number of landmark points, k is the number of nearest
neighbors and C is a cost value which is sometimes associated with

n.

DR method Linearity Neighborhood Computational Complexity OOS capability Determinism

LMDS linear global O(CλN + mλN + λ3) no no
Landmark Isomap nonlinear global O(C(n)λ log(λ) + λ2(k + log(λ)) + CλN + mλN + λ3) no no
NPE linear local O(C(n)N log(N) + nNk3 + mN2) no yes
LLE nonlinear local O(C(n)N log(N) + nNk3 + mN2) no yes
Hessian LLE nonlinear local O(C(n)N log(N) + nNk3 + m6 N + mN2) no yes
Laplacian Eigenmaps nonlinear local O(C(n)N log(N) + nNk3 + mN2) no yes
Linear LTSA linear local O(C(n)N log(N) + nNk3 + mk2 + mN2) no yes
LTSA nonlinear local O(C(n)N log(N) + nNk3 + mk2 + mN2) no yes
Manifold Sculpting nonlinear local - no no
t-SNE nonlinear local O(mN log(N)) no no
UMAP nonlinear local O(N1.14 + kN) yes no

an aggregate of the projection performance metrics discussed in Chapter 2:

Mtotal(k) =
1
4
(Mt(k) + Mc(k) + MNH(k) + MS) (4.3)

This metric captures both the ability of the projection technique to provide an accu-
rate representation of the high dimensional data and the degree of cluster separation
in the projection. Whilst Espadoto et al. (2021) also used the normalized stress met-
ric in his quantitative DR technique survey, I omit it. This is because the normalized
stress is unbounded from above for DR techniques that globally scale pointwise dis-
tances (see Section 3.1.2). Examples of such methods are UMAP and t-SNE.

The results of optimizing the hyperparameters of each DR method applied to the
CPz STAR dataset with respect to this metric and their respective parameter grids are
summarized in Tables 4.2 and 4.3, respectively. I note that these results are obtained
by selecting a subset of 10000 samples from the 48686 data points in the CPz STAR
dataset. Firstly, using Table 4.2 we rule out the use of Linear LTSA, HLLE and LTSA.
Secondly, the Manifold Sculpting and Landmark Isomap methods did not finish in
a reasonable amount of time. Hence we do not have any results for those. Finally, of
the remaining methods LMDS, UMAP, NPE and t-SNE run fastest. Therefore, I only
focus on those for the remainder of this thesis.

From the results in Table 4.2 one can derive a number of additional conclusions.
Firstly, t-SNE performs best in terms of trustworthiness followed by UMAP and
LMDS. This means that t-SNE has the lowest fraction of “false neighbors” in the
projection. Comparing with Table 4.1 we can say that nonlinear projection tech-
niques (i.e., t-SNE and UMAP) perform better than linear projection techniques (i.e.,
LMDS and NPE) in terms of trustworthiness. Secondly, in terms of continuity UMAP
scores best closely followed by LMDS and t-SNE. From the continuity values one can
tell that the projections yielded by each of these methods exhibit a small fraction of
“missing neighbors”. It is no surprise that LMDS, UMAP and t-SNE perform well in
terms of trustworthiness and continuity since these methods should preserve neigh-
borhood relations. Thirdly, the Shepard goodness shows us how well pointwise
distances are preserved while allowing these distances to be monotonically scaled.
From Table 4.2 one can tell that LMDS best preserves pointwise distances followed
by NPE and UMAP. This suggests that NPE and UMAP, even though they are lo-
cal neighborhood methods (i.e., they tend to only preserve local distances), preserve
pointwise distances globally for the CPz STAR dataset.
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We now examine the neighborhood hit metric. This metric measures the class
consistency of the projection, i.e., the degree of separation of data clusters that are
uniform in class label. In terms of neighborhood hit t-SNE performs best followed
by UMAP, LMDS and NPE. LMDS and NPE have similar values. From Table 4.2
one can see that the LMDS, UMAP, NPE and t-SNE projections all have rather high
values for neighborhood hit. This suggests that given the projection one should be
able to label the dataset with high accuracy. This begs the question whether we can
improve class consistency even further by instead optimizing LMDS, t-SNE, NPE
and UMAP with respect to one of the Cluster Separation Metrics. To achieve this
I use the distribution consistency metric (Eq. (3.9)). By experimenting with the dif-
ferent class consistency metrics on different synthetic datasets, it becomes evident
that some metrics behave better than others. When different data clusters, uniform
in class label, are completely separated, all metrics converge to 1 (see Figures 4.2a
and 4.2b). However, when clusters completely overlap, the degree of cluster separa-
tion should be zero. Examining Figure 4.2c we see that this is far from true for the
neighborhood hit metric. In fact, the neighborhood hit metric converges to a value
of 0.5 and grossly overestimates the degree of cluster separation. In contrast, the dis-
tance consistency and distribution consistency metrics seem to do a much better job
at measuring the degree of cluster separation. Now we examine the case where one
of the clusters is located in the concave region of another non-convex cluster (Fig-
ure 4.2d). In this case, the centroids of the different clusters, marked by red crosses,
start to overlap. However, the clusters themselves do not overlap. This results in the
distance consistency metric underestimating the degree of cluster separation. We also
see that the neighborhood hit and distribution consistency metrics are much more
robust in this case. Overall, we conclude from this small experiment that the distri-
bution consistency metric seems to work best in terms of versatility and is therefore
my metric of choice to evaluate the degree of cluster separation.

The projection performance metric results of the CPz STAR dataset obtained
when optimizing the hyperparameters of LMDS, UMAP, t-SNE and NPE with re-
spect to the distribution consistency metric are presented in Table 4.4. The parame-
ter grids used for the optimization are listed in Table 4.5. The same parameter grids
have also been used to optimize the DR methods for the other datasets. I plot the
2D projections yielded by each of these DR methods in Figures 4.3, 4.4, 4.5 and 4.6,
respectively. Note that these results were computed using a subset of 10000 samples
randomly selected from the full projected dataset consisting of 48686 data points. The
reason behind this is that computing a distance matrix for the full dataset would re-
quire too much memory resources.

Tables 4.6 and 4.7 show the same results for the CPz GAL and CPz QSO datasets,
respectively. The results for the CPz GAL and CPz QSO datasets are presented in
Appendix A. Visual inspection of results for the CPz ALL and CPz SDSS datasets
reveal that their projections show very little cluster separation (see Figures A.9 and
A.10 in Appendix A). Especially for the linear projection techniques (i.e., LMDS and
NPE), I observe significant mixing between the different classes. Therefore, I omit
these datasets from this work as their projections are clearly not suitable for classifi-
cation.

Comparing the metric results in Tables 4.2 and 4.4, one can make the following
observations. Firstly, we observe only marginal differences between the trustwor-
thiness, continuity and neighborhood hit metrics. This suggests that the average
fractions of false, missing and same class neighbors has not changed much. Further-
more, these differences could mostly be due to the way the metrics were computed.
To obtain the results in Table 4.2 I project a random subset of 10000 samples from the
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(A) (B)

(C) (D)

FIGURE 4.2: Demonstration of the ability of the different class con-
sistency metrics presented in Section 3.1.3 to estimate the degree of
cluster separation in a synthetic dataset. Figures (4.2a–4.2c) show
data drawn from three two-dimensional Gaussian distributions. In
the case of Figure 4.2d, both class samples were drawn from a Gaus-
sian distribution, but one had its y coordinates transformed according
to the quadratic formula y′ = x2 + y to generate a non-convex cluster.

original dataset (random seed 42) and compute the metrics for the obtained results.
Contrarily, the results in Table 4.4 are obtained by first projecting the full dataset of
48686 and subsequently selecting a random subset of 10000 samples (random seed
42) to compute the various projection performance metrics. Secondly, we observe
the Shepard Goodness to be significantly lower. This implies that pointwise dis-
tances up to a monotonic scaling relation are less well preserved by the projection
technique. Overall, LMDS and NPE still seem to perform reasonably well. Further-
more, it is surprising to see that for the NPE and t-SNE methods an increase in the
number of nearest neighbors or perplexity, which should improve the preservation
of global structure of the dataset, degraded the Shepard goodness of the projection.
Table 4.4 also contains some additional projection performance metrics. These are
the Jaccard similarity coefficient, distance consistency and distribution consistency.
Each of these metrics were introduced in Section 3.1. It is remarkable to see that even
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though the average fraction of false neighbors and missing neighbors in the projec-
tion is low the Jaccard similarity coefficient still tells us that the average proportion
of overlap between k the nearest neighbor sets in the high dimensional space and
the projection is low. The distance consistency and distribution consistency metrics
demonstrate that the projections exhibit good class separation. This is also apparent
from Figures 4.3, 4.4, 4.5 and 4.6. It is good to note the large discrepancy between
the two values of distance consistency and distribution consistency for the t-SNE
projection. Visually inspecting the t-SNE projection (Figure 4.5), one notices that
the different classes are well-separated in the projection. However, the centroid of
the QSO class is located within a concave region of the GAL cluster. Furthermore,
the STAR cluster is segmented into two separate clusters, with one part located in
another concave region of the GAL cluster. This may have caused the distance con-
sistency metric to underestimate the degree of cluster separation, which explains the
discrepancy. In conclusion, comparing the results for the neighborhood hit metric in
Table 4.4 with those presented in Table 4.2, we notice that optimizing DR techniques
with respect to the distribution consistency metric instead of the total metric (equa-
tion (4.3)) does not significantly improve cluster separation. Despite this, since our
objective is a high degree of cluster separation, I use the parameter sets obtained
through distribution consistency optimization for the remainder of this work.

I proceeded in a similar fashion as DR optimization to find the optimal parameter
sets for the sharpening step of SDR. I use the following parameter grid for optimiz-
ing LGC:

• α = [0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06]

• k = [25, 75, 125, 175, 225, 275, 325]

• T = [10, 15, 20]

The same parameter grid is used for the CPz STAR, CPz GAL and CPz QSO datasets.
The best configuration is found by finding the parameter set that yields a projec-
tion with the highest distribution consistency. This ensures a high degree of cluster
separation in the projection. The resulting parameter sets, distribution consistency
values and projections for the CPz STAR dataset are shown in Figures 4.7, 4.8, 4.9
and 4.10. The results for the remaining datasets are given in Appendix A. Tables 4.8,
4.9 and 4.10 report the values of the projection performance metrics when applying
each optimized SDR technique to the different datasets. Looking at the projections,
we observe a higher degree of segmentation in the SDR projections when compared
with their DR counterparts. In fact, SDR seems to have adversely enhanced the
oversegmentation features usually present in t-SNE projections. I investigate these
oversegmentation features further in Chapter 7. Furthermore, one can definitely
observe a higher degree of cluster separation which is also reflected quantitatively
when comparing the values of the distribution consistency metric with the results
obtained for DR. Lastly, we can deduce from the plots that LMDS and NPE show the
greatest improvement in terms of cluster separation when compared to UMAP and
t-SNE.
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FIGURE 4.3: Plots showing the maximum distribution consistency
LMDS projection (MDC = 0.8986 with a landmark ratio of 0.08) of
the CPz STAR dataset. Samples are colored according to the labeling

provided by the CPz dataset.
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FIGURE 4.4: Plots showing the maximum distribution consistency
UMAP projection (MDC = 0.9245 with ("metric": "euclidean",
"min_dist": 0.1, "num_neighbors": 20, "umap_init": "spectral")) of the
CPz STAR dataset. Samples are colored according to the labeling pro-

vided by the CPz dataset.
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FIGURE 4.5: Plots showing the maximum distribution consistency
t-SNE projection (MDC = 0.8556 with ("sne_perplexity": 200,
"sne_theta": 0.5)) of the CPz STAR dataset. Samples are colored ac-

cording to the labeling provided by the CPz dataset.
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FIGURE 4.6: Plots showing the maximum distribution consistency
NPE projection (MDC = 0.8614 with 140 nearest neighbors) of the
CPz STAR dataset. Samples are colored according to the labeling pro-

vided by the CPz dataset.



4.3. Results 31

FIGURE 4.7: Plots showing the maximum distribution consistency
sharpened LMDS projection (MDC = 0.9366 with (α = 0.03, k =
325, T = 10) and a landmark ratio of 0.08) of the CPz STAR dataset.
Samples are colored according to the labeling provided by the CPz

dataset.
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FIGURE 4.8: Plots showing the maximum distribution consis-
tency sharpened UMAP projection (MDC = 0.9250 with (α =
0.005, k = 275, T = 10) and ("metric": "euclidean", "min_dist": 0.1,
"num_neighbors": 20, "umap_init": "spectral")) of the CPz STAR
dataset. Samples are colored according to the labeling provided by

the CPz dataset.
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FIGURE 4.9: Plots showing the maximum distribution consistency
sharpened t-SNE projection (MDC = 0.9255 with (α = 0.01, k =
25, T = 15) and ("sne_perplexity": 200, "sne_theta": 0.5)) of the CPz
STAR dataset. Samples are colored according to the labeling provided

by the CPz dataset.
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FIGURE 4.10: Plots showing the maximum distribution consistency
sharpened NPE projection (MDC = 0.9279 with (α = 0.02, k =
325, T = 20) and 140 nearest neighbors) of the CPz STAR dataset.
Samples are colored according to the labeling provided by the CPz

dataset.
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Chapter 5

Neural Network Projection

In the previous chapter I present the sharpened dimensionality reduction (SDR)
method based on work by Kim et al. (2022b) and some results using 3 different
datasets and the LMDS, UMAP, tSNE and NPE dimensionality reduction (DR) meth-
ods. As illustrated both qualitatively by various plots of the projections and quanti-
tatively by the distribution consistency metric, the SDR technique is able to achieve
good cluster separation for the CPz STAR, CPz GAL and CPz QSO datasets. DR
methods such as LMDS and NPE especially show significant improvements.

Despite this success SDR has some drawbacks. One is the fact that SDR doesn’t
have out-of-sample (OOS) ability. This trait was introduced in Section 4.2 as “the
ability of a projection technique to extrapolate to new data based on previous train-
ing”. The lack of OOS capability makes SDR particularly computationally unscal-
able when new data arrives, since SDR would have to generate an new projection for
an ever increasing dataset. To mitigate this issue Kim et al. (2022a) introduced SDR-
NNP, “Sharpened Dimensionality Reduction with Neural Network Projection”. This
method leverages the scalability, ease of use and OOS capability of neural networks
by training a deep neural network to reproduce a projection maintaining the high
degree of cluster separation provided by SDR. They showed that SDR-NNP is able
to consistently produce projections with a high degree of cluster separation.

In this chapter I describe the architecture of the neural network I have trained to
obtain SDR-NNP projections akin to the ones produced by SDR. I then describe the
procedure used to optimize the network’s parameters. Finally, I present the training
and testing results for the CPz STAR dataset to demonstrate the capability of SDR-
NNP to maintain a high degree of cluster separation.

5.1 Architecture & Optimization

The architecture of the deep neural network used for SDR-NNP is shown in Fig-
ure 5.1. The network architecture is fairly straightforward and was implemented
using TensorFlow (Abadi et al., 2015). The network consists of an input and output
layer with a number of hidden fully connected blocks in between. I refer to these
blocks as “dense blocks”. The idea behind the dense blocks is that they gradually
step down the number of data dimensions. To achieve this the dimensionality of
each block (called “units” by TensorFlow) halves every two layers. Furthermore,
the second dense block has a dimensionality that is 3/4 that of the first dense block,
truncated to the nearest integer. Additionally, I give the first dense block a dimen-
sionality that is equal to the dimensionality of the input layer. The idea behind this
is that this allows the first dense block to transform the input data non-linearly in
the high dimensional space before projecting.
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Input
Dense Block 1

Dense Block 2

Dense Block 3
Dense Block 4

Dense Block 5

Output

= Input Layer

= Dense Layer

= Batch Normalization Layer

= LeakyReLU Activation Layer

= Dropout Layer

= Sigmoid Activation Layer

FIGURE 5.1: Architecture of the deep neural network used for SDR-
NNP.

Each dense block consists of a number of layers. The first layer is the dense layer,
which is a regular fully connected layer, applied with bias and linear activation. This
layer applies a matrix-vector product between a weights matrix and the input vector
and adds a bias to each output dimension:

yi = Wxi + b. (5.1)

Essentially, each entry of the weights matrix resembles the weight corresponding to
an edge in the fully connected graph connecting each node in the preceding layer to
each node in the current layer. The entries of the weights matrix and bias vector are
parameters that can be tuned by the optimization procedure.

The next layer in the architecture is a batch normalization layer. This layer en-
sures that the mean output of the dense block stays close to 0 and that the standard
deviation stays close to 1 for each batch of data. This makes training of neural net-
works more stable allowing for higher learning rates making optimization faster
(Ioffe and Szegedy, 2015). The reason behind this is still not fully understood. The
behavior of the batch normalization layer during training and inference is different.
During training the batch normalization layer returns the following:

yij =
γ
(
xij − µj

)√
σ2

j + ϵ
+ β, (5.2)

where γ and β are trainable scaling and offset parameters and ϵ = 0.0001 is a regu-
larization parameter. Furthermore µj and σ2

j are the mean and variance of the batch
corresponding to each node j. To be able to apply batch normalization during infer-
ence, the batch normalization layer also computes a moving mean and variance for
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FIGURE 5.2: A plot of the LeakyReLU function used as an activation
function in the dense blocks in Figure 5.1.

each node j during training. This is done through the following set of update rules:

µ̂j = µ̂j · momentum + µj · (1 − momentum) and

σ̂j = σ̂j · momentum + σj · (1 − momentum).

where the momentum is a hyperparameter set to be 0.6 in all of the models. The ob-
tained moving means (µ̂j) and variances (σ̂2

j ) are used to apply batch normalization
during inference:

yij =
γ
(
xij − µ̂j

)√
σ̂2

j + ϵ
+ β. (5.3)

The output of each batch normalization layer subsequently passes through an
activation layer with a LeakyReLU (Leaky Rectified Linear Unit) activation function:

f (x) =

{
α · x if x < 0
x if x ≥ 0,

(5.4)

where x is the output of a single node in the preceding batch normalization layer
and α is a hyperparameter. I use the default specified by TensorFlow, 0.3. An illus-
tration of the LeakyReLU activation function is shown in Figure 5.2. This activation
function introduces non-linearity while still allowing for a small gradient whenever
the output of a neuron becomes negative. The latter is important to prevent neurons
to become inactive once the output becomes negative at some point during the train-
ing procedure. This effect is known as the “dying ReLU problem” and occurs when
using the ReLU activation function, which has zero gradient for negative values.

The final layer of the dense block is the dropout layer, which is only active during
training. This layer randomly sets input units to zero at a specified “dropout rate”.
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FIGURE 5.3: A plot of the sigmoid function used as an activation func-
tion in the output layer in Figure 5.1.

The remaining non-zero units are then scaled by a factor 1
1−rate to ensure that the sum

over all units remains the same. The effect that this layer has on the training proce-
dure is that it prevents overfitting on the training data. However, this comes at a
disadvantage, namely that the higher the dropout rate, the slower the optimization.
In addition, the randomness of the output can make it impossible for the network to
properly tune the parameters and find a good model. In practice I find that turning
off the dropout layer (i.e., setting the dropout rate to zero) improves the performance
of the SDR-NNP model while still showing no sign of overfitting. Therefore, I omit
this dropout layer from the models presented in this work.

Examining Figure 5.1 one may notice that the output layer uses a different ac-
tivation than the activations used in the dense blocks. This is because I want the
output of the neural network to be scaled between 0 and 1 for easy comparison with
the target projection, that is, the projections produced by SDR, which I also scale to
be between 0 and 1. This so-called sigmoid activation function is given in Figure 5.3.

I now explain the optimization procedure. This procedure starts by splitting
the full dataset projected by SDR into a training and test set (20% of the data was
included in the test set). The training set is used to train the neural network, i.e., to
optimize the network’s model parameters (weights, biases, etc.) while the test set
is used to validate the neural network performance and to ensure that it generalizes
properly to unseen data. There are far more galaxies in the dataset compared to stars
and QSOs. Therefore, I split the training and test sets such that the relative fractions
of stars, galaxies and QSOs is preserved.

One needs to define an “objective function” to optimize any neural network. In
machine learning this function is also referred to as a “cost function” or “loss func-
tion”. In this case we need to formulate a loss function which punishes based on the
offset between the true locations and the neural network generated positions in the
projection. To this end one can envisage computing the average or median offset in a
neural network generated projection. The offsets can be either computed as squared
or absolute distances. After experimenting with different loss functions it turned out
that the mean absolute error (MAE) loss function provided by TensorFlow yielded
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the best optimization results:

loss =
1
N

N−1

∑
i=0

1
n

d−1

∑
j=0

∣∣ytrue − ypredicted
∣∣
ij , (5.5)

with N being the total number of samples in the batch used for optimization, n being
the number of dimensions of the output layer (i.e., two in our case), ytrue being the
2D vector marking the true location of the training sample as given by the SDR
technique and ypredicted being the predicted position vector generated by the neural
network.

To find the set of model parameters with the lowest value for the loss function
neural networks use gradient descent techniques which are iterative methods to find
local minima. One of the most popular gradient descent methods in deep learning
is the Adam optimization algorithm (Kingma and Ba, 2014). Attractive features of
Adam include its computational scalability and stability. That is, Adam performs
well for large datasets with a high number of dimensions in the presence of noise
and requires little hyperparameter tuning. In addition, it often performs better than
other optimization algorithms such as AdaGrad and RMSProp; see Kingma and Ba
(2014) for more detailed information on the Adam optimization algorithm. After
some experimenting with the various hyperparameters I have chosen to keep the
defaults provided by TensorFlow, as they yielded the best results (i.e., a learning
rate of α = 0.001, β1 = 0.9 and β2 = 0.999).

5.2 Results

In the previous section I have discussed the different hyperparameters of the neural
network and how I split datasets into training and test sets. In this section I present
the results of training the neural network architecture presented in the previous sec-
tion to reproduce the SDR projections obtained through sharpened LMDS, UMAP,
tSNE and NPE. See Figures 5.4, 5.5, 5.6 and 5.7 respectively. As in the previous chap-
ter, the results for the CPz GAL and CPz QSO datasets are provided in the Appendix
(see Appendix B).

I let the optimization procedure go through 20000 training epochs to tune the
model parameters of the neural network. To prevent overfitting on the training set,
I use cross validation at each epoch, where 25% of the training set was set aside to
form a validation set. Aside from ensuring that the training set is different at each
epoch, making it harder for the neural network to overfit on the training set, this
also allows computing a validation loss at each epoch. This validation loss can be
plotted together with the training loss to validate whether or not the neural net-
work overfits on the training set. When this happens, the validation loss will start
to increase relative to the training loss. Examining, for example, Figure 5.4 one can
observe that this is not the case. Note that I make a distinction between the train-
ing loss and the inferential training loss. This distinction is made because the batch
normalization layers in the neural network behave differently during training and
during inference. In addition to looking at the validation loss, one can also compare
the final training loss to the test loss (also given in the Figures). The test losses are
always close to the values for the training loss which implies that the trained neural
networks generalize well to unseen data.

Comparing the SDR embedding to the SDR-NNP embeddings in the various fig-
ures, one may notice a number of points. Firstly, the SDR-NNP embeddings only
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FIGURE 5.4: NNP testing and training results for sharpened LMDS
optimized for the CPz STAR dataset.

seem to be able to reproduce the large-scale structure of the SDR embedding. That
is, small clusters and filaments are not properly reproduced. This is not necessar-
ily a problem for us, since the star, galaxy and QSO cluster still appear to be well-
separated in the projection, which is what is required for classification. Secondly,
SDR-NNP seems to remove a lot of the oversegmentation present in the SDR em-
beddings, making the projection appear more continuous. In Chapter 7 I investigate
whether this oversegmentation is a result of the structure of the high-dimensional
data or whether it is a feature introduced by the sharpening step of SDR.
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FIGURE 5.5: NNP testing and training results for sharpened UMAP
optimized for the CPz STAR dataset.
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FIGURE 5.6: NNP testing and training results for sharpened tSNE
optimized for the CPz STAR dataset.
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FIGURE 5.7: NNP testing and training results for sharpened NPE op-
timized for the CPz STAR dataset.
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Chapter 6

Classification

In this chapter I present and test various classifiers to perform star, galaxy and QSO
classification using the projection results yielded by the various SDR-NNP models
presented in Chapter 5. In addition, I present methods to consolidate the classifica-
tion results from the different datasets, i.e., CPz STAR, CPz GAL and CPz QSO, in
the hope of improving the classification results. The feature sets of these datasets are
defined by LF20 to maximize the performance of each binary classification task, i.e.,
star/non-star, galaxy/non-galaxy and QSO/non-QSO.

This chapter starts with a section introducing the various classification algo-
rithms that I use, followed by a section outlining the methods I employ to consoli-
date the CPz STAR, CPz GAL and CPz QSO results. The last section of this chapter
presents the classification results.

6.1 Classifiers

In this work I use four different types of classifiers. These are

• the k-nearest neighbors vote based classifier (KNNC);

• the Support Vector Machine Classifier (SVMC), based on LIBSVM (Chang and
Lin, 2011);

• the Multi-layer Perceptron Classifier (MLPC), a deep-neural-network classi-
fier; and

• the XGBoost Classifier (XGBC) (Chen and Guestrin, 2016), a tree-based classi-
fier.

I have used the scikit-learn implementations by Pedregosa et al. (2011) for each of
these classifiers except for XGBoost.

KNNC classifies new samples based on the majority class of the k-nearest neigh-
bor set of the new sample. In addition to predicting the class label, KNNC is also
able to yield estimates of class probabilities by computing the fractions of samples
in the k-nearest neighbor set corresponding to each class.

SVMC as implemented by Pedregosa et al. (2011) is based on the C-Support Vec-
tor Classification formulation of LIBSVM (Chang and Lin, 2011). Support Vector Ma-
chines (SVMs) are supervised-learning models that try to find a model that assigns
samples to one of two classes. The model is designed in such a way that it attempts
to maximize the “margin” between training samples of two classes in some mapping
whilst subject to the constraint of classifying everything (mostly) correctly. A more
formal definition of this optimization problem is given in Chang and Lin (2011). In
the following I give a more elaborate explanation of C-Support Vector Classification,
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as presented in Chang and Lin (2011). Suppose we are given a set of l training vec-
tors xi ∈ Rn (in some n dimensional space). Each of these vectors is associated to
one of two classes. Let us indicate these classes by the “indicator” vector y ∈ Rl

such that yi ∈ {−1,+1} (note that this means that each class is represented by either
a − or a +). Now let us suppose that we want to define a hyperplane that separates
these two classes. This hyperplane can be parametrized as follows:

y = wTx + b, (6.1)

where wT represents the transpose of the parameter vector w representing the slope
of the plane in each of the coordinate directions and b being the bias vector which
moves the plane away from the origin. As mentioned earlier SVMs try to position
this plane such that the “margin” is maximized, which ensures that the surface de-
fined by wTx + b = 0 has the largest separation from either of the two classes. This
situation is indicated pictorially in Figure 6.1a. To obtain the ideal margin (m) we
need to maximize the distance from q1 to q2, i.e., we need to find the parameters w
and b for which m = ∥q1 − q2∥ is maximal. This is achieved when{

y1 = wTq1 + b = +1
y2 = wTq2 + b = −1.

(6.2)

Subtracting the above equations and reshuffling one obtains wT(q1 − q2) = 2. One
can now divide both sides by ∥w∥, and noting that wT

∥w∥ is a unit vector that is always
parallel to q1 − q2, one obtains the following condition:

m ≡ ∥q1 − q2∥ =
2

∥w∥ . (6.3)

This is the equation the SVM tries to maximize. Identically one can try to minimize
wTw

2 , yielding the following optimization problem:

min
w

wTw
2

, (6.4)

subject to yi

(
wTxi + b

)
≥ 1, i = 1, . . . , l.

The constraint in the above definition ensures that everything is classified correctly
since a mismatch between the sign of the true label (yi) and the predicted label
(wTxi + b) of the ith sample will lead to the left side of the inequality becoming
negative. Due to the potentially high dimensionality of the vector variable w, as it is
intrinsically linked to the dimensionality of xi, it is usually more convenient to solve
the following dual problem:

argmin
α

W(α) = min
α

(
1
2 ∑

ij
αiαjyiyjxT

i xj − ∑
i

αi

)
. (6.5)

Subject to αi ≥ 0, ∑
i

αiyi = 0, i, j = 1, . . . , l,

where w is given by
w ≡ ∑

i
yiαixi. (6.6)

Once having obtained the values for w, one can obtain b by plugging in known
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FIGURE 6.1

values for x and y in equation (6.1) and solving for b. The optimization problem
formulated in terms of α by equations (6.5) and w allows one to observe some inter-
esting properties. Firstly, only samples for which the value of αi is large contribute
to w. In practice it turns out that the samples which contribute most to w are the
samples that lie closest to the margin. The coordinate vectors of these samples are
therefore called “support vectors” (whence the name “Support Vector Machine”).
Secondly, the optimization problem expressed by equation (6.5) incorporates a sense
of similarity in the first term. Coordinate vectors xi and xj that lie in the same direc-
tion contribute more to W(α) than coordinate vectors that do not point in the same
direction unless they are of opposite label (i.e., sgn(yi) ̸= sgn(yj)). This ensures that
αi should be larger when a point is close to samples of opposite label, as this will
most effectively reduce the value of W(α).

Obviously the SVM introduced above can only separate classes that are linearly
married (see, e.g., Figure 6.1a), where “married” means that one can draw a hyper-
plane between the two classes that separates them from each other. To make the
SVM more generally applicable, e.g., to the case portrayed in Figure 6.1b, one may
introduce a nonlinear mapping ϕ(xi) that maps each sample xi to a higher dimen-
sional space. To accommodate this change of coordinates one can simply replace the
values of x in equations (6.5) and (6.6) by ϕ(x). Since the mapping ϕ(x) can yield
coordinate vectors of an arbitrary high dimension it is usually infeasible to compute
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ϕ(x). Therefore, SVMs adopt something called the “kernel trick”. This allows one to
compute the kernel defined as K(xi, xj) ≡ ϕ(xi)

Tϕ(xj), which is a scalar function, in-
stead of ϕ(xi) and ϕ(xj) separately. Substituting for x in equations (6.5) and (6.6) and
using the definition for the kernel function, one obtains the following optimization
problem (for brevity I have decided to use vector notation instead):

argmin
α

W(α) = min
α

(
1
2

αTQα − eTα

)
(6.7)

with eT = (1, . . . , 1), Qij = yiyjK(xi, xj),

K(xi, xj) = ϕ(xi)
Tϕ(xj),

subject to αi ≥ 0, yTα = 0,

and w is given by
w ≡ ∑

i
yiαiϕ(xi). (6.8)

One actually does not need to know the explicit form of ϕ(x) since w does not need
to be computed directly. To obtain b one can simply rewrite y = wTϕ(x) + b =⇒
b = y − wTϕ(x) (where x and y are assumed to be known) in a way that uses the
kernel instead by using equation (6.8):

b = y − ∑
i

yiαiϕ(xi)
Tϕ(x) ≡ y − ∑

i
yiαiK(xi, x) (6.9)

and use:

sgn(wTϕ(x) + b) ≡ sgn

(
∑

i
yiαiK(xi, x) + b

)
(6.10)

to classify any new data point x.
To illustrate what a kernel function could look like, let us consider the following

example. We transform the coordinates qT = (q1, q2) according to the mapping
ϕ(q)T =

(
q2

1, q2
2,
√

2q1q2

)
. To construct the kernel function corresponding to this

particular mapping, we need to compute K(x, y) = ϕ(x)Tϕ(y). Plugging in our
expression for ϕ(q) yields the following:

K(x, y) = ϕ(x)Tϕ(y) = x2
1y2

1 + x2
2y2

2 + 2x1x2y1y2

= (x1y1 + x2y2)
2 = (xTy)2.

Note that this kernel function looks very similar to what we used in the linear case,
with the exception of the square. This kernel is a special case of the family of kernels
which are known as the polynomial kernels, i.e., K(x, y) = (xTy + c0)d, where d is
the degree of the polynomial and c0 is an arbitrary coefficient. There exist many
more such kernels; those I use for SVM classification are

• a linear kernel, i.e., K(x, y) = xTy;

• a polynomial kernel of degree 3, i.e., K(x, y) = (xTy)3; and

• the radial basis function, i.e., K(x, y) = exp
(
−γ ∥x − y∥2

)
, with γ being equal

to the inverse of the variance in the training set multiplied by the total number
of dimensions.
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Until this point we have only looked at the case where there is a way to find a hy-
perplane that separates both classes completely. In real world datasets this is not al-
ways possible, as there can be outliers; as an example see Figure 6.1c. In this case one
wants to separate the two classes with the minimum amount of error. To achieve this
one needs to add a penalty term to the optimization problem. scikit-learn (Pedregosa
et al., 2011) uses a squared L2 penalty for this with a regularization parameter C > 0
(I used its default value of C = 1).

The Multi-layer Perceptron Classifier (MLPC) of scikit-learn (Pedregosa et al.,
2011) is a deep-neural-network classifier. As I use this classifier for multi-class clas-
sification, the output activation of this neural network is “softmax”:

f (x)i =
exi

∑
j

xj
(6.11)

The sum in the denominator ensures that the output is normalized over all class
labels such that the outputs of the neural network can be used as probabilities. Fur-
thermore, I have chosen to use three dense hidden layers with sizes [20, 10, 5] and
ReLU activation (i.e., f (x) = max(0, x)). For the optimization I use the Adam op-
timizer with a maximum number of 1000 iterations, early_stopping=True and a
validation fraction of 25%.

The XGBoost (“Extreme Gradient Boosting”) Classifier (Chen and Guestrin, 2016)
is a random forest (RF) classifier. The main difference that sets apart XGBoost from
other RF classifiers is that it does not generate multiple decision trees independently
using a subset of the training data which are then combined together using e.g., a
majority vote or by averaging to yield a prediction. Instead XGBoost uses a pro-
cess called boosting. This boosting process generates several models sequentially
with each subsequent model trying to correct the errors of the preceding model.
The boosting algorithm used by XGBoost is called gradient boosting which uses the
residual errors of the preceding model as labels for the subsequent model. The re-
sult of this process is an ensemble classifier that classifies with a higher accuracy
than individual models. The version of XGBoost used in this work is version 1.5.2,
as this version still supports automatic label-encoding similar to the label encoder
used by scikit-learn (i.e., sklearn.preprocessing.LabelEncoder). Using this classi-
fier I keep all the hyperparameters of the XGBoost classifier to their default, since I
did not have the time nor expertise to set these myself.

6.2 Consolidation

In this section I discuss the different consolidation schemes I employ to consolidate
the results from the classification results obtained using the CPz STAR, CPz GAL and
CPz QSO datasets. These consolidation methods are the lowest-entropy method,
the average-probability method, the alternative method and majority vote. The first
two methods use class probabilities yielded by the classifiers, whereas the latter two
methods use the class labels yielded by the classifiers to consolidate the results. The
first two methods are far more versatile, as they allow the user to set thresholds,
which can be used to reject classification results that have a low level of certainty.
This approach can artificially boost the precision of the classifier at the cost of a
lower completeness.
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6.2.1 Lowest-Entropy Method

Entropy can be used to quantify the degree of uncertainty in a probability distribu-
tion. To illustrate, let us say we have an object that we want to assign to one of the
three classes A, B and C. The classifier is able to assign a probability of the object
belonging to either of these three classes, i.e., pA, pB and pC, respectively. These
probabilities are normalized such that pA + pB + pC = 1. Let us consider the first
case where we have a uniform distribution of probabilities, i.e., pA = pB = pC = 1

3 .
This distribution is the least informative, i.e., given no extra information there is no
way of assigning the object to any of the three classes without being biased. We
could say that this classifier is unfit to classify this particular object. Now let us
consider another classifier which gives us the following distribution of probabilities:
pA = 1 and pB = pC = 0. This classifier is confident that the object belongs to class
A. Comparing the results of the first classifier to those of the second classifier, we
are more inclined to believe the latter one, provided that the second classifier is not
inherently biased. We can quantify this degree of belief in either of the two classifiers
by using the Shannon entropy, which is formulated as follows:

H(X) = −
K

∑
i=1

pi ln(pi), (6.12)

where X is a random variable, pi is the probability of an object belonging to the ith

class and i = 1, . . . , K. This formula expresses the average uncertainty in the distri-
bution of possible outcomes. In the cases we considered, the entropy would amount
to either H1(X) = ln(3) or H2(X) = 0. Thus the classifier with the lowest entropy is
the classifier that is most confident about its classification result. One can leverage
these results to consolidate a multitude of classification results by only selecting the
one which has the lowest entropy in the distribution of class probabilities. In addi-
tion one can set an upper limit for the entropy that can be used to filter out samples
for which no good classification result exists, at least not within the bounds of the
specified threshold.

6.2.2 Average-Probability Method

This consolidation method simply averages the class probability distributions yielded
by various classifiers to obtain a single probability distribution. This distribution can
be used to make a prediction of the most likely class label corresponding to any given
object. In addition one can set a probability threshold. If the maximum probability
in the class probability distribution of a given sample drops below this threshold one
can assign it to the post-consolidation outlier class. One can show that the consoli-
dated distribution is still normalized. Let us suppose we have two distributions, i.e.,
(pA, pB, pC) and (qA, qB, qC) such that pA + pB + pC = 1 and qA + qB + qC = 1. Aver-
aging the probabilities over the classes in either of the two distributions one obtains
the following consolidated distribution: (r1, r2, r3) =

(
pA+qA

2 , pB+qB
2 , pC+qC

2

)
, which

is still normalized to 1, i.e., r1 + r2 + r3 = 1
2 (pA + pB + pC + qA + qB + qC) = 1.

6.2.3 Alternative Method and Majority Vote

Both of these methods use class labels instead of probabilities. Suppose we have
multiple classifiers each yielding various labels then there are two ways we can con-
solidate these results, i.e., the alternative method and majority vote. In both cases
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we need to count the occurrence of different class labels. The alternative method
basically assigns any sample for which there is a disagreement between the different
classifiers to the post-consolidation outlier class. The majority vote method is less
strict and only assigns samples to the post-consolidation outlier class when the vote
is indecisive, i.e., there exists an equal split. In all the other cases the sample will be
assigned to the class with the largest number of occurrences.

6.3 Results

Before consolidating the classification results yielded by the different datasets, let
us have a look at how the different classifiers, i.e., KNN, Support Vector classifier
(SVC), Neural Network Classifier (NNC) and the XGBoost Classifier (XGBC), per-
form. Figure 6.5 shows plots demonstrating the classification performance of each
of these classifiers on the different projections obtained through the different sharp-
ened LMDS-NNP (SLMDS-NNP), sharpened UMAP-NNP (SUMAP-NNP), sharp-
ened t-SNE-NNP (StSNE-NNP), sharpened NPE-NNP (SNPE-NNP) models we train-
ed previously. In addition to the aforementioned classifiers I also use a dummy
classifier that assigns class labels randomly to obtain a baseline above which use-
ful classifiers should lie. The results for the CPz GAL and CPz QSO datasets are
provided as supplemental material in Appendix C. From the plot showing the re-
call in Figure 6.5 it is clear that the SVC linear classifier applied to the StSNE-NNP
performs worse than the dummy classifier in terms of classifying stars. Further-
more, we can tell from these plots that the StSNE-NNP projection is generally unfit
for any of the aforementioned classifiers to do classification when compared to per-
formance of classifiers utilizing the other projection methods. The classifiers using
either SLMDS-NNP, SUMAP-NNP or SNPE-NNP are generally on a par with each
other in terms of precision, recall and F1 score, with the exception of the QSO classi-
fication task. In this case SNPE-NNP is the best in terms of precision and F1 score,
and SLMDS-NNP is the best in terms of recall. Overall, SLMDS-NNP, SNPE-NNP
and SUMAP-NNP in combination with either KNN, SVC_RBF, NNC or XGBC seem
to yield the best results. In terms of runtime, KNN is the most scalable of these
methods.

Taking into account the different neural network projection models and the dif-
ferent classifiers we can build a total of 24 unique classifiers for each dataset (discard-
ing the dummy classifier). Presenting the decision boundaries and confusion matri-
ces for each of these classifiers would take up too much space. Therefore I decided
to only present the most important ones. The decision boundaries and confusion
matrix of the sharpened LMDS-NNP based KNN classifier are given in Figure 6.2.
Similar plots are provided in Appendix C for the CPz GAL and CPz QSO datasets.
The results of these classifiers will be used in consolidation. Additionally, Figures 6.3
and 6.4 show the decision boundaries for the sharpened tSNE-NNP based SVC LIN-
EAR and SVC POLY classifiers, respectively. These plots demonstrate that support
vector classifiers using either linear or polynomial (degree 3) kernels do not per-
form well when classes are scattered or embedded into concave regions of another
class. Other classifiers like KNN are much more robust against these kind of fea-
tures. This is also evident from the performance metrics presented in Figure 6.5
where the support vector classifiers are usually outperformed by KNN, XGBC and
NNC (especially for the sharpened tSNE-NNP embedding).

The results of consolidating the classifications yielded by the sharpened LMDS-
NNP-based KNN classifiers applied to the CPz STAR, GAL and QSO datasets using
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FIGURE 6.2: Figure showing the decision boundaries of the sharp-
ened LMDS-NNP based KNN classifier of the CPz STAR dataset and

its confusion matrix.

FIGURE 6.3: Figure showing the decision boundaries of the sharp-
ened tSNE-NNP based linear SVM classifier of the CPz STAR dataset

and its confusion matrix.
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FIGURE 6.4: Figure showing the decision boundaries of the sharp-
ened tSNE-NNP based polynomial SVM classifier (degree 3) of the

CPz STAR dataset and its confusion matrix.

the various methods presented in Section 6.2 are shown in Figures 6.6, 6.7, 6.8 and
6.9. From these results we can make the following observations:

• First, the lowest-entropy consolidation method assigned most of the samples
to the post-consolidation outlier class. This is mainly due to the chosen post-
consolidation entropy threshold of 0.1, indicated by the red dashed line in Fig-
ure 6.6b. This threshold can easily be shifted to allow more samples to be
classified instead of being assigned to the post-consolidation outlier class. Fig-
ure 6.6c clearly shows that most of these outliers lie along the edges where
different clusters meet, which is as expected. From Figure 6.6a one can see that
the post-consolidation outlier class is mostly dominated by galaxies. This is
probably due to the fact that galaxies constitute roughly 76% of the full dataset.
The large number of QSOs assigned to the outlier class is perhaps more inter-
esting, since those only constitute roughly 9% of the full dataset; there will be
more discussion of this issue in Chapter 8. From the entropy distributions in
Figure 6.6b, one can see that the lowest-entropy method achieved the desired
effect of finding the set of predicted probabilities with the lowest entropy. This
is evident from the post-consolidation entropy distribution being more sharply
peaked toward zero. The gray dashed lines in Figure 6.6b indicate the entropy
corresponding to the case in which a sample can be assigned to two of the
three classes with an equal probability of 1/2, i.e., H(X) = log(2). The entropy
threshold should preferably be lower than this value. Furthermore, the gray
dotted lines in the figure indicate the case in which a sample can be assigned to
either of the three classes with equal probability, i.e., H(X) = log(3). The clas-
sification performance metrics listed in Table 6.1 clearly show that while the
lowest entropy method has lower values for accuracy and recall, it achieves a
higher precision for the QSO class. This higher precision is due to the thresh-
old, which ensures fewer sources are misclassified by assigning them to the
outlier class. This feature artificially boosts the precision for the QSO class at
the cost of a lower recall.
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FIGURE 6.5: Various plots demonstrating the classification perfor-
mance using the CPz STAR dataset in terms of precision, recall and F1
score for various combinations of DR technique and classifier. Note,
the “DUMMY” classifier assigns classes randomly and gives a base-

line above which any useful classifier should lie.
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TABLE 6.1: Post-consolidation performance.

Consolidation Method Accuracy Class Precision Recall F1 Score

Lowest Entropy 0.9191
STAR 0.9973 0.9696 0.9833
GAL 0.9890 0.9404 0.9641
QSO 0.9853 0.6389 0.7751

Average Probability 0.9793
STAR 0.9974 0.9761 0.9866
GAL 0.9800 0.9932 0.9866
QSO 0.9378 0.8629 0.8988

Alternative 0.9720
STAR 0.9973 0.9664 0.9816
GAL 0.9843 0.9893 0.9868
QSO 0.9561 0.8308 0.8890

Majority Vote 0.9795
STAR 0.9974 0.9754 0.9863
GAL 0.9804 0.9931 0.9867
QSO 0.9357 0.8677 0.9004

• Second, the average-probability method (with a maximum probability thresh-
old of 0.5) assigns only one sample to the outlier class (see Figure 6.7). Similarly
to the lowest-entropy method, this threshold can be adjusted to boost the pre-
cision of the classifier. Looking at Table 6.1, this method performs similarly
to the majority-vote method in terms of classification performance, given the
specified threshold.

• Finally, the alternative method seems to assign many samples to the post-
consolidation outlier class, as evident from Figure 6.8. Identically to the lowest-
entropy method, most of these outliers seem to be located on the interface be-
tween the different clusters. In this case the outliers seem to be spread more
evenly over the different true classes when compared to the lowest entropy
method results.

In conclusion, the alternative and majority vote consolidation methods leave no
control in terms of which samples get assigned to the post-consolidation outlier
class. This is unfavorable in cases where one wants a high precision at the cost
of losing some samples. Furthermore, none of the consolidation methods seem to
be able to reproduce the true labels in regions where the data clusters are mixed. I
further discuss this in the Discussion.
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(A) Confusion Matrix (B) Entropy Distributions

(C) Label Comparison Plots

FIGURE 6.6: Lowest entropy consolidation results.
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(A) Confusion Matrix

(B) Label Comparison Plots

FIGURE 6.7: Average probability consolidation results.



60 Chapter 6. Classification

(A) Confusion Matrix

(B) Label Comparison Plots

FIGURE 6.8: Alternative method consolidation results.
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(A) Confusion Matrix

(B) Label Comparison Plots

FIGURE 6.9: Majority vote consolidation results.
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Chapter 7

Applications

In the previous chapters I have shown the steps involved in building an SDR-NNP
aided classifier for star, galaxy and QSO classification. In this chapter I investigate
whether the SDR projections convey any extra information besides samples belong-
ing to one of the star, galaxy and QSO classes. In Chapter 4 we have seen that many
of the SDR projections manifest some degree of oversegmentation with respect to the
star, galaxy and QSO classes. Many of the labeled data points are divided into small
subclusters, which gives rise to the question whether those subclusters convey rele-
vant information or whether these are just a feature caused by the sharpening step.
In this chapter I try to answer this question by focusing on the sharpened LMDS
projection shown in Figure 4.7.

Each of the different sections in this chapter focus on different subsets of the
dataset. In Section 7.1 I investigate the oversegmentation of the stellar data by look-
ing at its relation to color, magnitude, effective temperature (Teff) and surface gravity
(log(g)). In Section 7.2 I investigate the oversegmentation of the galaxy data by look-
ing at its relation to morphological type, star formation rate (SFR) and redshift. And
finally in Section 7.3 I investigate the oversegmentation of the QSO data by looking
at its relation to redshift.

7.1 Stellar data

I begin by plotting color–magnitude diagrams (CMDs) to understand whether the
stellar subclusters in the projection are physical clumps or an unphysical overseg-
mentation. The CMDs for the sample are shown in Figure 7.1 for (g − r, g) and
(g3 − r3, g3). The eight different stellar subclusters are color-coded. The CMDs ap-
pear very smeared out in the y – luminosity – direction. This is because the CPz
dataset only contains apparent magnitudes, which are distance dependent. How-
ever, from the (g3 − r3, g3) diagram, which uses 3′′ aperture magnitudes, we can al-
ready see that the stars in each of the different subclusters seems to have a different
range of colors and hence different effective temperatures, since there is a (nearly)
one-to-one relation between color and effective temperature.

By cross-matching with the astrophysical parameters dataset of Gaia DR3 (Gaia
Collaboration et al., 2016; Gaia Collaboration et al., 2022), generated from Gaia data
using the GSP-Phot module in the Apsis (Astrophysical parameters inference sys-
tem) pipeline (Creevey et al., 2022), we can visualize whether the stellar subclusters
present in Figure 4.7 convey any astrophysical information. From the Hertzsprung–
Russell (HR) diagram and effective temperature versus surface gravity plots in Fig-
ure 7.2, we can see that the subclusters not only convey temperature information
but also the spectral type of the stars by noticing the shift in temperature of stars



64 Chapter 7. Applications

FIGURE 7.1: Color–magnitude diagrams (CMDs) of the various sub-
clusters within the stellar class, color-coded by subclump. The left-
most plot shows how the clusters were color coded. The middle plot
shows the CMD using total magnitudes. The right-most plot uses 3′′-

aperture magnitudes.

FIGURE 7.2: Hertzsprung-Russell (middle) and effective temperature
versus surface gravity (right) diagrams. The color coding for the dif-

ferent stellar subclusters is provided by the left-most plot.

within the same subcluster as we move up in magnitude and down in surface grav-
ity. The vertical branch starting around 6000 K in both of these plots is the giant
branch. Since LMDS is a distance-preserving dimensionality-reduction technique,
we may also note from Figure 4.7 that stars with spectral type M have colors that
most closely match those of galaxies. I discuss this further in Section 7.2.

The CM diagrams, HR diagram and the effective temperature versus surface
gravity diagram all seem to show that the sharpening step in SDR has overseg-
mented the stellar data, since the distribution of broadband colors and effective tem-
peratures shown in Figure 7.2 form a continuum. However, this exercise shows that
the projection still retains important physical information, even if it is (perhaps un-
necessarily) oversegmented.

7.2 Galaxy data

Next I try to understand the distribution of galaxies in the SDR projection. To get
information on morphological types of the galaxies in the sample, I cross-matched
the galaxies in the CPz dataset using their angular positions with the Galaxy Zoo 1
(GZ1) data release (Lintott et al., 2008; Lintott et al., 2010). The GZ1 data contains
morphological classifications of nearly 900000 galaxies from SDSS data release 6 and
7 (Adelman-McCarthy et al., 2008; Abazajian et al., 2009) classified by hundreds of
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thousands of volunteers. The task of each volunteer was to classify each of object
into one of six categories. The categories are

1. elliptical (likely also includes lenticular (S0) galaxies);

2. clockwise spiral galaxies;

3. anti-clockwise spiral galaxies;

4. some other kind of spiral galaxy (e.g. edge-on);

5. star or Unknown; and

6. merger.

The votes for each object were subsequently combined into fractions which can be
used for further study.

Furthermore, Lintott et al. (2010) used the techniques described by Bamford et al.
(2009) to remove the bias introduced by the survey limits of SDSS. The survey limits
can cause small, faint or distant galaxies to be misclassified as elliptical galaxies due
to spiral arms not being visible in SDSS images. To alleviate this effect, Bamford et al.
(2009) devised a technique to estimate this and correct for it by assuming the mor-
phological fraction within bins of fixed galaxy size and luminosity to be constant in
redshift. Since redshift is a required parameter for this technique objects needed to
be spectroscopically observed by SDSS. Lintott et al. (2010) supplemented the red-
shifts provided by SDSS DR6 with those provided by DR7 which meant that 92%
of the objects in the main galaxy sample of GZ1 had spectroscopic redshifts. For
the sake of completeness I now briefly outline the debiasing technique described
in Appendix A of Bamford et al. (2009). The debiasing procedure starts with the
assumptions that the fraction of early-type to spiral galaxies in the size versus lu-
minosity space is constant in redshift, and that low-redshift samples should be least
biased by the survey limits of SDSS. Therefore, Bamford et al. (2009) divided the full
sample in bins of similar luminosity, size and redshift. Subsequently for each bin in
the luminosity versus size space, one can find the lowest redshift bin containing at
least 30 galaxies and assume that using this bin one can compute the “true” early-
type to spiral galaxy ratio. Using this result, one can fit an empirical function to the
early-type to spiral ratio as a function of luminosity and size. The function proposed
by Bamford et al. (2009) is given by equation (7.1):

nel

nsp
=

p1

1 + exp
(

s1(R50)−Mr
s2(R50)

) + p2, (7.1)

with s1 (R50) = q
−(q2+q3Rq4

50)
1 + q5

and s2 (R50) = r1 + r2 (s1 (R50)− q5) .

Here Mr is the absolute r-band magnitude of the galaxy, R50 is the radius contain-
ing 50% of the Petrosian flux of the galaxy and {p1, p2, q1, q2, q3, q4, q5, r1, r2} are free
parameters. Using the baseline estimates for the early-type to spiral ratios, one can
define the following correction factor:

C(Mr, R50, z) = log10

(〈
nel/nsp

〉
base〈

nel/nsp
〉

raw

)
, (7.2)
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where the angular brackets indicate taking the average over the bins in the (Mr, R50, z)
space. With this correction factor one can compute the bias-adjusted early-type to
spiral ratio from the raw vote shares for each galaxy expressed as fractions (p):(

pel

psp

)
adj

=

(
pel

psp

)
raw

10−C(Mr ,R50,z). (7.3)

The individual bias adjusted fractions, i.e., pel,adj and psp,adj can be computed using
the following formulae:

pel,adj =
pel,adj

pel,adj + psp,adj + px,adj
=

1

1 + 1
/(

pel
psp

)
adj

+
(

px
pel

)
adj

=
1

1 + 1
/(

pel
psp

)
adj

+
(

px
pel

)
raw

(7.4)

psp, adj =
psp,adj

pel,adj + psp,adj + px,adj
=

1(
pel
psp

)
adj

+ 1 +
(

px
psp

)
adj

=
1(

pel
psp

)
adj

+ 1 +
(

px
psp

)
raw

(7.5)

where px = 1 − pel − psp and is the fraction of objects assigned to categories 5 and
6 listed above. This debiasing procedure has a number of caveats, as mentioned by
Lintott et al. (2010). It requires a homogeneous distribution of a substantial amount
of galaxies, i.e., at least 30, to be present in each bin in the (Mr, R50) space at low
redshifts. This limits the debiasing procedure to objects with reliable r-band magni-
tudes, redshifts between 0.001 and 0.25 and absolute magnitudes and sizes that are
not outliers from the normal galaxy distribution.

The cross-matched debiased Galaxy Zoo classifications are given in Figure 7.3.
The classifications are color-coded as fractions of objects assigned to any of the spi-
ral (psp), elliptical (pel) or otherwise (i.e. star, merger or unknown) px categories.
For convenience I also include a plot showing the redshifts of the various objects.
These redshifts can be used to verify the validity of the classifications. From Fig-
ure 7.3 there is no indication that many of the subclusters within the galaxy class
produced by SDR convey anything meaningful about morphological type of the
galaxies. However, there seems to be a subcluster that contains predominantly spi-
ral galaxies, as indicated in Figure 7.3. We can also note that there appears to be a
redshift gradient, with many of the low-redshift galaxies situated on the left side of
the main galaxy cluster.

In addition to inspecting the morphologies of the galaxies in the various galaxy
subclusters produced by SDR, I examine the star-formation rate (SFR), stellar mass
and dust luminosity of the various galaxies in the CPz dataset. I obtain these param-
eters by cross matching galaxies in the CPz dataset with a catalog of stellar masses
and star formation rates by Chang et al. (2015). The specific SFRs (i.e., the SFR per
unit stellar mass of the galaxy), stellar masses and dust luminosities in this dataset
were obtained by fitting SEDs to the optical and mid IR spectra obtained by SDSS
and WISE, respectively, and are displayed in Figure 7.4. The stellar masses (top-right
panel) vary slightly from subcluster to subcluster. The dust luminosity plot (bottom-
left) shows a slight gradient. Galaxies with a low dust luminosity are closer to stars
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FIGURE 7.3: Plots of the the CPz STAR dataset projected using sharp-
ened LMDS cross-matched with the Galaxy Zoo 1 (GZ1) classifica-
tions. The classifications are color-coded and given as debiased vote
fractions following the debiasing technique of Bamford et al. (2009).
The top-left plot indicates the redshift of the galaxies in GZ1. For
reliable debiasing of the classifications, the redshift should be in the

range of 0.001 − 0.25 (Lintott et al., 2010).
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FIGURE 7.4: Plots of the CPz STAR dataset projected using sharpened
LMDS cross-matched with a catalog of star formation rates, stellar
masses and dust luminosity of various galaxies composed by Chang

et al. (2015).

in the SDR projection. There is no coherent structure in the distribution of specific
SFRs (top-left) in the projection.

A striking observation that arises when comparing Figure 7.3 with Figure 7.2 is
that M stars most closely resemble elliptical galaxies. A potential explanation for
this will be given in the Discussion. This observation is motivated by the fact that
LMDS is a distance-preserving dimensionality-reduction method. This implies that
the 2D projection should preserve the distances between the color coordinates in the
high dimensional space. Coupled with the sharpening step discussed in Section 4.1
I have shown that sharpened LMDS still preserves distances reasonably well. This
is evident from the value for the Shepard Goodness given in Table 4.8. In addition
we can visually inspect the Shepard diagram given in Figure 7.5 to confirm that,
while scaled, the point-wise distances are relatively well-conserved. The properties
of these ellipticals are summarized in Figure 7.6. In this figure I show histograms of
the morphological classes, redshifts, specific SFR, stellar mass and dust luminosity
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FIGURE 7.5: Shepard diagram of the CPz STAR dataset when pro-
jected using sharpened LMDS.
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for the galaxy subcluster that is closest to the M star subcluster. From these his-
tograms it is evident that most of these galaxies are ellipticals with a redshift of
around 0.08. Furthermore, they have a specific SFR lower than 10−11 yr−1, i.e., they
are quiescent. Additionally, they have stellar masses between 1010M⊙ and 1011M⊙,
which is typical for elliptical galaxies, and a relatively low dust luminosity of around
109L⊙.

7.3 QSO data

For the QSO sample I only inspect the redshifts, as shown in Figure 7.7. In the
top-left plot in this figure, there is a redshift gradient with most of the low-redshift
QSO’s (z ≲ 1) overlapping with the galaxy cluster. Additionally, the shift in redshift
between the various QSO subclusters can be further visualized in the bottom-left
histogram using the color-coding presented in the top-right plot. In other words
the subclusters in the projection clearly separate various QSO samples in terms of
redshift.
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FIGURE 7.6: Histograms summarizing the properties of the galax-
ies which show most resemblance to M stars in terms of color. The
histograms are comprised only of galaxy samples part of the galaxy
subcluster that is closest to the subcluster containing M stars in Fig-

ure 7.2.
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FIGURE 7.7: The top-left plot shows a scatter plot of the CPz STAR
dataset projected using sharpened LMDS with the redshifts of the
various QSO’s color coded. In the top-right plot I show the color cod-
ing of the various QSO subclusters which is used in the bottom-left

histogram.
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Chapter 8

Discussion

In this thesis I try to answer the question whether broadband colors can be used
to classify stars, galaxies and QSOs. Specifically, I look at the merit of sharpened
dimensionality reduction (SDR) aided classification to achieve this. The idea be-
hind this approach was to precondition the high-dimensional data, consisting of
broadband colors, to sharpen high-dimensional data clusters to enhance cluster sep-
aration in the projection. The enhanced cluster separation should aid classifiers to
label stars, galaxies and QSOs with higher precision. To answer this question I have
mainly looked at three datasets. These datasets I name CPz STAR, CPz GAL and
CPz QSO. The suffixes, i.e., STAR, GAL and QSO, reflect the fact that each of these
datasets were designed by LF20 for three separate binary classification problems, i.e.,
star/non-star, galaxy/non-galaxy and QSO/non-QSO; for more details see Chap-
ter 3.

In Chapter 4 I show that SDR can be used to consistently produce projections
with high cluster separation. To quantitatively evaluate the degree of cluster sepa-
ration, I have made use of the distribution consistency metric defined in Chapter 3.
Particularly, linear DR methods such as LMDS and NPE showed the greatest im-
provement in terms of cluster separation when compared to UMAP and t-SNE. This
is in line with what was found by Kim et al. (2022b) for other datasets. In addition
to looking at cluster separation metrics, I have also looked at local neighborhood
metrics and distance preservation metrics to further evaluate the performance of the
projections. The results for the trustworthiness and continuity metrics (see, e.g., Ta-
ble 4.8), which quantify the average proportion of false and missing neighbors in the
projection, show that, while the sharpening step disturbs the structure of the high
dimensional data, neighborhood relations are still well-preserved. This is in stark
contrast with the results of the Jaccard similarity coefficient, which quantifies the
average fraction of overlap between the sets of nearest neighbors in the feature and
projection space. The Jaccard similarity coefficient values seem to indicate a very
poor agreement between the neighborhood relations in the high-dimension feature
space and the low-dimension projection space. The Venn diagrams of the different
sets involved in the computation of the trustworthiness, continuity and Jaccard sim-
ilarity coefficient metrics are given in Figure 8.2. From this Figure it is already clear
that the Jaccard similarity coefficient and the trustworthiness and continuity metrics
reflect different things about the neighborhoods of samples in the feature and pro-
jection spaces. However, one would expect that with very few samples in the sets
V k

i and U k
i , the sets N k

i and Mk
i should almost entirely overlap. This is not reflected

by the metrics, however. That is, I obtained high values for the continuity and trust-
worthiness metrics and a low value for the Jaccard similarity coefficient. The only
difference between these metrics is that the continuity and the trustworthiness met-
rics are based on rankings instead of counting the number of samples in either V k

i or
U k

i . That is, the Jaccard similarity coefficient only checks whether both sets N k
i and
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Mk
i are similar regardless of how distant or close the false neighbors (V k

i ) or missing
neighbors (U k

i ) are on average with respect to any sample. This could mean that the
Jaccard similarity coefficient is more sensitive to k, especially for low values, when
compared to the trustworthiness and continuity metrics. To explore this effect, I have
plotted the Jaccard similarity coefficient, trustworthiness and continuity metrics as a
function of k for the LMDS and sharpened LMDS projections of CPz STAR dataset in
Figure 8.1. I have used values of k ranging from 1 to 1001 in steps of 10. The Figure
demonstrates that whereas the values for the trustworthiness and continuity metrics
seem to be consistent for any value of k, the Jaccard metric is not. For both LMDS
and SLMDS, the Jaccard metric turns out to be an increasing monotonic function
starting from roughly 0 and slowly increasing towards 1. In the case of LMDS, the
function even seems to follow a power law with a slope of roughly 0.4. Compared to
the trustworthiness and continuity metrics, which both have consistently high val-
ues close to 1, the Jaccard similarity coefficient does not seem to be a particularly
good metric to evaluate neighborhood preservation for the datasets and projection
techniques considered in this work. Further research is needed to show why this is.
As a start one may want to look at the effect of the normalization term, i.e., the car-
dinality of the union N k

i ∪Mk
i , in the definition for the Jaccard similarity coefficient.

This denominator namely includes not only the true neighbors in the feature space
but also the false neighbors present in the projection whilst the numerator contains
only the number of true neighbors present in both. This can drag down the value of
the Jaccard similarity coefficient.

The SDR projections derived from the CPz STAR dataset presented in Chapter 4
all show similar features. Usually the star and galaxy classes are well-separated,
whereas some subclusters of the QSO and galaxy tend to mix. This feature is not
just present in the projections derived from the CPz STAR dataset but also in those
derived from the CPz GAL and CPz QSO datasets presented in Appendix A. This
mixing could in part be explained by the following argument. In their paper about
unsupervised star, galaxy and QSO classification using HDBSCAN, LF20 explain
that in 52% of the case the spectra of the objects in the CPz sample had class label
“UNKNOWN”. Therefore, they decided to assign labels to these samples accord-
ing to the spectroscopic redshift of each object. Samples with a redshift less than
0.0015 were assigned to the star class, while samples with a higher redshift were
assigned to the galaxy class. This implies that stars moving away from us with a
velocity higher than 450 km s−1 would be labeled as a galaxy. Furthermore, galaxies
moving towards us or away from us with a velocity less than 450 km s−1 would be
labeled as stars. This mislabeling can appear as a mixing between stars and galax-
ies in the projections presented in this work. Additionally, the mixing of the galaxy
and QSO classes in the projections might be explained by some QSOs having been
inaccurately labeled as galaxies. This may also explain the relatively high number
of post-consolidation outliers when compared to the galaxies after applying lowest-
entropy consolidation (see Figure 6.6). This indicates that classifiers are uncertain
about which class label to assign in regions where galaxies are mixed with QSOs.

In Chapter 5 I discuss a way to make SDR more scalable and to allow for out-of-
sample (OOS) capability. This allows SDR-aided classification to be applied quickly
and makes it suitable for large catalogs and on-the-fly classification. My approach is
to train a neural network to reproduce the projections produced by SDR. Adhering
to the naming introduced by Kim et al. (2022a), this projection technique is called
SDR-NNP. Some of the SDR-NNP projections I produce using a test set comprising
20% of the full dataset and various DR methods are shown in Figures 5.4, 5.5, 5.6 and
5.7. None of these projections reproduce the exact structure of the SDR embedding,
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(A)

(B)

FIGURE 8.1: The Jaccard similarity coefficient, trustworthiness and
continuity metrics plotted as a function of k. The values were derived
by computing either of these metrics for the projections obtained from
the CPz STAR dataset through LMDS (Figure 8.1a) and sharpened

LMDS (Figure 8.1b).
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FIGURE 8.2: Venn diagrams of the sets involved in the computation
of the trustworthiness, continuity and Jaccard similarity coefficient
metrics presented in Chapter 3. The sets N k

i and Mk
i are the k near-

est neighbor sets of sample i in the feature and the projection space,
respectively. Both of these sets are used for computing the Jaccard
similarity coefficient. The set V k

i contain the k nearest neighbors of
sample i in the feature space that are not in its k-nearest-neighbor set
in the projection used for computing the continuity. The set U k

i con-
sists of the k nearest neighbors of sample i in the projection space that
are not in its k nearest neighbor set in the feature space used for com-

puting the trustworthiness.
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i.e., its subclusters. However, the star, galaxy and QSO clusters still appear well-
separated, as needed for precise classification. When needed this can be improved
upon in later work by allowing for larger more complex neural networks than that
presented in this work, because, inspecting the training history in these figures, one
may conclude that there is little more to gain from training for more epochs.

In Chapter 6 I show the results of various classifiers (see Figure 6.5). These
classifiers included the k-nearest-neighbors classifier, various support-vector clas-
sifiers (i.e., using linear, third-degree polynomial and radial basis function kernels),
a neural-network classifier and the XGBoost classifier. In addition, I show the re-
sults of using various consolidation methods to consolidate the classification results
derived from the CPz STAR, CPz GAL and CPz QSO datasets. These consolida-
tion methods include the lowest-entropy method, average-probability method, al-
ternative method and majority vote. Among these methods the lowest-entropy and
the average-probability methods yield the most control over the final classification.
Respectively, these methods allow the user to define post-consolidation entropy
and probability thresholds which determine the samples that are assigned to the
post-consolidation “OUTLIER” class. By adjusting this threshold, one can improve
the precision of the classification at the cost of a lower completeness (i.e., recall).
The lowest-entropy and the average-probability methods have both strengths and
weaknesses. The lowest-entropy method does not account for identical probabil-
ity distributions that lead to different classifications, e.g. {pi} = {0.5, 0.3, 0.2} and
{pi} = {0.3, 0.5, 0.2}. On the other hand, the average-probability method is sensitive
to outliers, i.e., classifiers that yield a significantly different prediction compared to
the others.

In Chapter 7 I look in more detail at the sharpened-LMDS projection derived
from the CPz STAR dataset. In many instances I conclude that the subclusters present
in the projection are an oversegmentation feature caused by the LGC step of SDR.
However, these subclusters do give us additional physical insights. First, using as-
trophysical parameter data from Gaia DR3 (Creevey et al., 2022), I demonstrated in
Chapter 7 that many of the stellar subclusters present in the projection produced by
sharpened LMDS convey relevant physical information by plotting HR and effec-
tive temperature versus surface gravity diagrams. These diagrams show that each
of the stellar subclusters is comprised of stars with a different effective temperature
and spectral class. Second, using these subclusters and given the fact that LMDS
is a distance-preserving method I determine that M stars and quiescent elliptical
galaxies closely resemble each other in terms of color (see the end of Section 7.2).
This raises the question as to why this is the case. Looking at Table 2.1 we observe
that many of the colors in the CPz STAR dataset are comprised of near-infrared
(NIR) broadband magnitudes. Therefore, the projection likely reflects mostly NIR
color relations. Additionally, the elliptical galaxies we are comparing to M stars are
mostly quiescent. Therefore, it might be suitable to assume that these galaxies con-
sist mostly of old stellar populations. From Figure 14 in Verro et al. (2022), which
provides the contribution of RGB stars and TP-AGB stars to the K-band luminos-
ity in various single stellar population (SSP) models using the X-shooter Spectral
Library, we see that for old stellar populations (≳ 2 Gyr) the K-band luminosity is
mostly dominated by red giant branch (RGB) stars. RGB stars are mainly comprised
of K stars and M stars which might explain why these elliptical galaxies closely re-
semble M stars in terms of their NIR colors and why they are placed closely together
in the sharpened LMDS projection. Third, we observe that different galaxy and QSO
subclusters have different average redshifts (see Figures 7.3 and 7.7). This suggests
that the projections may allow astronomers to obtain rough redshift estimates for
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objects based on their location in the projection. Furthermore, we observe gradients
in both stellar mass and dust luminosity for the galaxies in Figure 7.4. Based on this
observation one could try to find estimates for the stellar mass and dust luminosity
of galaxies based on their location in the projection space. Any of these issues could
be topics of future research. All of these observations demonstrate that the unnec-
essary oversegmentation present in the projections retain physical information and
allow us to study the structure of projections and hence also the higher dimensional
color data in greater detail.

In the Introduction I discuss the work of LF20, in which they used an unsuper-
vised clustering algorithm called HDBSCAN to perform star, galaxy and QSO clas-
sification. The classifications they obtained using various consolidation methods
were included in the CPz catalog.1 To compare their results with those I obtained in
Chapter 6, I select the same subset as the one I use for testing in Chapter 6. The classi-
fication performance metrics computed using the labels obtained by LF20 using the
alternative, optimal and highest probability consolidation methods are presented in
Table 8.1. The exact description of each of these consolidation methods can be found
in LF20. It is however important to note that the alternative consolidation method
used by LF20 is different from that used in this work. This is because LF20 tried
to consolidate three binary classifiers, whereas I consolidate three multi-class classi-
fiers. Comparing Tables 8.1 and 6.1, I find that the performance of both HDBSCAN
and SDR-aided classification is similar across all the different performance metrics.
It is best to compare the alternative and optimal-method results in Table 8.1 with the
alternative and majority-vote method results in Table 6.1 as the other methods are
sensitive to changes in threshold. In the case of the highest-probability method used
by LF20, the results might differ by changing the number of catalog realizations, the
choice of distribution and the threshold for sigma. Now that we have seen that both
classification methods behave similarly, what are the advantages and disadvantages
of SDR-aided classification when compared to using HDBSCAN? First, SDR-aided
classification has out-of-sample (OOS) capability through the use of SDR-NNP mod-
els, which makes it more scalable than HDBSCAN. HDBSCAN needs to be rerun on
the full dataset every time new data becomes available. Additionally, one can ap-
ply SDR on a small representative subset of the full dataset and train an SDR-NNP
model to project the rest of the data. Second, we have seen that SDR-aided classifi-
cation is less of a “black-box”, as it is a supervised-learning method. This allows the
user to inspect the decision boundaries in the projections and determine whether
everything works correctly. In addition, as I show in Chapter 4, one can validate
whether the SDR projections are accurate by computing various projection perfor-
mance metrics. Lastly, HDBSCAN does not require the data to be labeled to perform
classification, as it is an unsupervised-clustering algorithm. This is an advantage, as
one does not need a labeled dataset to train the classifier.

1The revised catalog is available at the CDS through https://cdsarc.u-strasbg.fr/viz-bin/

cat/J/A+A/633/A154.

https://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A154
https://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A154
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TABLE 8.1: Post-consolidation performance of HDBSCAN.

Consolidation Method Accuracy Class Precision Recall F1 Score

Alternative 0.9758
STAR 0.9980 0.9702 0.9839
GAL 0.9825 0.9902 0.9863
QSO 0.9487 0.8594 0.9018

Optimal 0.9771
STAR 0.9974 0.9748 0.9859
GAL 0.9825 0.9902 0.9863
QSO 0.9429 0.8665 0.9031

Highest-probability 0.9778
STAR 0.9974 0.9748 0.9859
GAL 0.9823 0.9909 0.9866
QSO 0.9419 0.8689 0.9039
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Chapter 9

Conclusion

This research aims to show whether stars, galaxies and QSOs can be classified us-
ing broadband colors with the help of sharpened dimensionality reduction (SDR).
Based on a quantitative and qualitative analysis of the embeddings produced by
SDR, I demonstrate that SDR consistently produces projections with a high degree
of cluster separation. Additionally, I show that using these projections stars, galaxies
and QSOs can be classified with high accuracy, precision and recall. Furthermore,
I show that these results are on a par with those of an unsupervised-clustering al-
gorithm called HDBSCAN (hierarchical density-based spatial clustering of appli-
cations with noise) which has been used previously by LF20 for this classification
task. Furthermore, when comparing SDR-NNP (sharpened dimensionality reduc-
tion through neural-network projections) aided classification to HDBSCAN. I con-
clude that SDR-NNP is the desired method for on-the-fly classification and classifi-
cation of large datasets, as SDR-NNP has out-of-sample (OOS) capability. In addi-
tion, SDR aided classification is less of a “black-box” method as it allows the user
to inspect the projection along with its decision boundaries. A limitation of SDR-
aided classification as it is presented in this work is that it requires a training set
with known class labels.

Inspecting the projections yielded by sharpened LMDS (landmark multi-dimen-
sional scaling) in more detail I find that many of the small subclusters present in the
projection are likely oversegmentation features caused by LGC (local gradient clus-
tering), the sharpening algorithm employed by SDR. These subclusters do, however,
give more insight on the structure of the projection, which also demonstrates that
one of the strengths of SDR-aided classification is that it allows for data exploration.

In this work I have mainly focused on three datasets mostly comprised of differ-
ent NIR broadband colors which were all derived from the CPz dataset composed by
FP18 and revised by LF20. Therefore, future work may want to see how SDR-NNP
performs on different datasets containing for example a set of optical broadband
colors. In addition, one may want to investigate how SDR-NNP-aided classification
can be applied to individual large astronomical surveys which usually only have a
specific set of filters.

In conclusion, this work shows that SDR-aided classification can be used to clas-
sify stars, galaxies and QSOs based on their broadband colors with high accuracy,
precision and recall. Furthermore, I show that this method can be applied in a
scalable way by training a neural network to reproduce the projections yielded by
SDR in linear time, making it suitable for classifying objects in large astronomical
datasets. The Python wrapper of the SDR code written in C++ by Kim et al. (2022b)
named pySDR1, as well as a Python module containing a pipeline for applying all
the steps presented in this thesis, i.e., finding the best SDR parameters, training an

1pySDR: https://gitlab.astro.rug.nl/lourens/pySDR.

https://gitlab.astro.rug.nl/lourens/pySDR
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SDR-NNP model and classifying objects based on the SDR-NNP projections using
different classifiers, called SHARC2, are available on GitLab.

2SHARC: https://gitlab.astro.rug.nl/lourens/SHARC.

https://gitlab.astro.rug.nl/lourens/SHARC
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Appendix A

Supplemental SDR Results

A.1 DR Optimization Results

This section presents several figures of the LMDS, UMAP, tSNE and NPE projection
results obtained for the CPz GAL and CPz QSO datasets when optimizing the hy-
perparameters of these methods with respect to the distribution consistency metric
(3.9).
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A.1.1 CPz GAL Results

FIGURE A.1: The maximum distribution consistency LMDS projec-
tion (MDC = 0.9096 with a landmark ratio of 0.08) of the CPz GAL
dataset. Samples are colored according to the labeling provided by

the CPz dataset.
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FIGURE A.2: The maximum distribution consistency UMAP projec-
tion (MDC = 0.9450 with ("metric": "euclidean", "min_dist": 0.1,
"num_neighbors": 80, "umap_init": "spectral")) of the CPz GAL
dataset. Samples are colored according to the labeling provided by

the CPz dataset.
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FIGURE A.3: The maximum distribution consistency tSNE projection
(MDC = 0.8920 with ("sne_perplexity": 180, "sne_theta": 0.5)) of the
CPz GAL dataset. Samples are colored according to the labeling pro-

vided by the CPz dataset.
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FIGURE A.4: The maximum distribution consistency NPE projection
(MDC = 0.8655 with 180 nearest neighbors) of the CPz GAL dataset.
Samples are colored according to the labeling provided by the CPz

dataset.



88 Appendix A. Supplemental SDR Results

A.1.2 CPz QSO Results

FIGURE A.5: The maximum distribution consistency LMDS projec-
tion (MDC = 0.9111 with a landmark ratio of 0.04) of the CPz QSO
dataset. Samples are colored according to the labeling provided by

the CPz dataset.
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FIGURE A.6: The maximum distribution consistency UMAP projec-
tion (MDC = 0.9465 with ("metric": "euclidean", "min_dist": 0.1,
"num_neighbors": 40, "umap_init": "spectral")) of the CPz QSO
dataset. Samples are colored according to the labeling provided by

the CPz dataset.
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FIGURE A.7: The maximum distribution consistency tSNE projection
(MDC = 0.8860 with ("sne_perplexity": 180, "sne_theta": 0.5)) of the
CPz QSO dataset. Samples are colored according to the labeling pro-

vided by the CPz dataset.
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FIGURE A.8: The maximum distribution consistency NPE projection
(MDC = 0.8404 with 80 nearest neighbors) of the CPz QSO dataset.
Samples are colored according to the labeling provided by the CPz

dataset.
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A.1.3 CPz ALL Results

(A) LMDS (B) UMAP

(C) tSNE (D) NPE

FIGURE A.9: CPz ALL results of optimizing LMDS, UMAP, tSNE and
NPE with respect to the composite metric given by equation (4.3).
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A.1.4 CPz SDSS Results

(A) LMDS (B) UMAP

(C) tSNE (D) NPE

FIGURE A.10: CPz SDSS results of optimizing LMDS, UMAP, tSNE
and NPE with respect to the composite metric given by equation (4.3).

A.2 LGC Optimization Results

This section presents several figures of the sharpened LMDS, UMAP, tSNE and NPE
projection results obtained for the CPz GAL and CPz QSO datasets when optimizing
the LGC hyperparameters respect to the distribution consistency metric ((3.9)) and
using the best parameter sets found when doing DR optimization.
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A.2.1 CPz GAL Results

FIGURE A.11: The maximum distribution consistency sharpened
LMDS projection (MDC = 0.9501 with (α = 0.02, k = 325, T = 15)
and a landmark ratio of 0.08) of the CPz GAL dataset. Samples are

colored according to the labeling provided by the CPz dataset.
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FIGURE A.12: The maximum distribution consistency sharpened
UMAP projection (MDC = 0.9378 with (α = 0.005, k = 125, T = 10)
and ("metric": "euclidean", "min_dist": 0.1, "num_neighbors": 80,
"umap_init": "spectral")) of the CPz GAL dataset. Samples are col-

ored according to the labeling provided by the CPz dataset.
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FIGURE A.13: The maximum distribution consistency sharpened
tSNE projection (MDC = 0.9382 with (α = 0.005, k = 25, T = 10)
and ("sne_perplexity": 180, "sne_theta": 0.5)) of the CPz GAL dataset.
Samples are colored according to the labeling provided by the CPz

dataset.
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FIGURE A.14: The maximum distribution consistency sharpened
NPE projection (MDC = 0.9416 with (α = 0.02, k = 325, T = 15)
and 180 nearest neighbors) of the CPz GAL dataset. Samples are col-

ored according to the labeling provided by the CPz dataset.
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A.2.2 CPz QSO Results

FIGURE A.15: The maximum distribution consistency sharpened
LMDS projection (MDC = 0.9480 with (α = 0.015, k = 275, T = 20)
and a landmark ratio of 0.04) of the CPz QSO dataset. Samples are

colored according to the labeling provided by the CPz dataset.
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FIGURE A.16: The maximum distribution consistency sharpened
UMAP projection (MDC = 0.9390 with (α = 0.005, k = 225, T = 10)
and ("metric": "euclidean", "min_dist": 0.1, "num_neighbors": 40,
"umap_init": "spectral")) of the CPz QSO dataset. Samples are col-

ored according to the labeling provided by the CPz dataset.
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FIGURE A.17: The maximum distribution consistency sharpened
tSNE projection (MDC = 0.9378 with (α = 0.01, k = 25, T = 10)
and ("sne_perplexity": 180, "sne_theta": 0.5)) of the CPz QSO dataset.
Samples are colored according to the labeling provided by the CPz

dataset.
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FIGURE A.18: The maximum distribution consistency sharpened
NPE projection (MDC = 0.9389 with (α = 0.03, k = 325, T = 10)
and 80 nearest neighbors) of the CPz QSO dataset. Samples are col-

ored according to the labeling provided by the CPz dataset.
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Supplemental SDR-NNP Results

B.1 CPz GAL results

FIGURE B.1: NNP testing and training results for sharpened LMDS
optimized for the CPz GAL dataset.
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FIGURE B.2: NNP testing and training results for sharpened UMAP
optimized for the CPz GAL dataset.



B.1. CPz GAL results 105

FIGURE B.3: NNP testing and training results for sharpened tSNE
optimized for the CPz GAL dataset.
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FIGURE B.4: NNP testing and training results for sharpened NPE op-
timized for the CPz GAL dataset.
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B.2 CPz QSO results

FIGURE B.5: NNP testing and training results for sharpened LMDS
optimized for the CPz QSO dataset.
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FIGURE B.6: NNP testing and training results for sharpened UMAP
optimized for the CPz QSO dataset.
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FIGURE B.7: NNP testing and training results for sharpened tSNE
optimized for the CPz QSO dataset.
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FIGURE B.8: NNP testing and training results for sharpened NPE op-
timized for the CPz QSO dataset.
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Appendix C

Supplemental Classification
Performance Results

C.1 CPz GAL results

FIGURE C.1: The decision boundaries of the sharpened LMDS-NNP
based KNN classifier of the CPz GAL dataset and its confusion ma-

trix.
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FIGURE C.2: The classification performance using the CPz GAL
dataset in terms of precision, recall and F1 score for various combina-
tions of DR technique and classifier. Note, the “DUMMY” classifier
assigns classes randomly and gives a baseline above which any use-

ful classifier should lie.
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C.2 CPz QSO results

FIGURE C.3: The decision boundaries of the sharpened LMDS-NNP
based KNN classifier of the CPz QSO dataset and its confusion ma-

trix.
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FIGURE C.4: The classification performance using the CPz QSO
dataset in terms of precision, recall and F1 score for various combina-
tions of DR technique and classifier. Note, the “DUMMY” classifier
assigns classes randomly and gives a baseline above which any use-

ful classifier should lie.
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