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Abstract

Blockchain technology has attracted a lot of attention as an innovative breakthrough that has the potential to

revolutionize several industries, including finance, healthcare, logistics, and more. The usage of smart contracts,

which are self-executing programs that automate transactions when a set of predetermined conditions are met,

is one of the main characteristics of blockchain technology. Smart contracts have the potential to lower

transaction costs, get rid of intermediaries, and improve accountability and transparency. Another crucial

area of focus where smart contracts can bring benefits is business process management (BPM), specifically

workflow automation.

Workflow automation is a method of automating repetitive and manual tasks involved in business processes.

By using smart contracts, it is possible to create a secure and transparent system that can streamline these

processes and eliminate the need for a third-party entity. This can ensure traceability, correctness of process

execution, and its immutability. Therefore, this thesis aims to explore the potential of blockchain-based

workflow automation and its impact on business process management, by means of implementing and testing

middleware with functionality to interact with smart contracts.

The questions that this research is aiming to answer are the following: “Are blockchains’ smart con-

tracts a beneficial solution for workflow automation in business process management systems?”; “How flexible

and scalable can the integration of middleware between blockchains’ smart contracts and business process

management be?”. The main objective of the project is to build a middleware in answer to these questions.
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1 Introduction

Business Process Management (BPM) is the discipline that focuses on optimizing and improving organizational

processes to enhance efficiency and align with strategic goals. To gain a competitive advantage, it needs

methodical planning, implementation, monitoring, and continual improvement. BPM and workflow automation

are closely related because workflow automation uses digital tools and technology to streamline and carry out

business operations effectively while BPM provides the structure and strategy for doing so. Organizations may

achieve higher levels of productivity, cost effectiveness, and agility in today’s changing business environment

thanks to the integration of BPM and workflow automation.

Workflow automation is a technological approach that substitutes automated digital tools and systems

for human, repetitive, and paper-based tasks inside a business process. The goal is to improve efficiency,

consistency, and productivity in carrying out complex processes by streamlining the flow of tasks, information,

and data while minimizing human intervention and potential errors.

There are many different tools and applications that can be used for workflow automation. This research

focuses on Camunda Platform 8. For the purpose of running process instances, Camunda Platform 8 makes

use of the Zeebe process engine. Using Camunda Platform 8, users may model their workflows in BPMN,

distribute them, and carry them out on the Zeebe engine.

In the realm of computer science, blockchain stands as a decentralized and tamper-proof digital ledger,

utilizing cryptographic techniques and consensus algorithms to securely record transactions and enable a

myriad of decentralized applications. The decentralized applications deployed on blockchain networks make

use of smart contracts, which are programs that execute themselves when certain predetermined conditions

are met. The significance of smart contracts and blockchain lies in providing transparency, immutability, and

trustworthiness, offering numerous benefits such as enhanced data security, reduced reliance on intermediaries,

and the potential for innovative and efficient solutions across various industries.

In this paper we provide a brief introduction on blockchain and smart contract, as well as workflow

automation. Then, we go over the related literature and existing research in Section 3. In Section 4 we discuss

the technologies used in this project, and Section 5 will show the implementation of the middleware for smart

contracts and our workflow automation engine, and show example workflows.

2 Background Information

This section serves the purpose of briefly introducing the reader to the technological concepts used in this

project and their properties, with a specific focus on preparing the reader for the following sections on ’Tech-

nologies Used ’ and ’Implementation’.

2.1 Workflow automation

Workflow automation is a methodology through which businesses structure their processes to optimize customer

service and achieve mission-critical objectives. This approach drives the design of business process workflows,

aiming to enhance efficiency and streamline operations [1]. At the core of workflow automation lies the

concept of a process engine. A process engine acts as a software application that efficiently manages the

processing, storage, and distribution of data and information related to business processes. Notably, one of

the key functions of process engines is tracking the progress and completion of process instances, enabling

users to gain insights into the status of running and finished processes [2].
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2.1.1 Process engine

A process engine is an instrumental software application responsible for overseeing the processing, storage,

and dissemination of data pertinent to business processes. This vital component plays a crucial role in

workflow automation by facilitating the tracking of process instances [2]. Through this tracking mechanism,

users gain visibility into active and completed processes, enabling them to monitor progress and identify

bottlenecks. In conjunction with the BPM methodology, the use of process engines ensures that business

processes are structured to maximize efficiency and align with organizational objectives. By leveraging process

engines, organizations can achieve heightened agility, productivity, and customer-centricity in their operations,

ultimately contributing to the attainment of critical business goals [1].

2.2 Blockchain

A blockchain is a database of transactions that is updated and shared across many computers in a network.

Every time a new set of transactions is added, its called a “block” - hence the name blockchain. Public

blockchains like Ethereum allow anyone to add, but not remove, data [3].

2.2.1 Ethereum and Ethereum Virtual Machine

A choice of the blockchain for the project played significant role in development of the software. Using the

Ethereum example, rather than Bitcoin, offers a broader perspective due to Ethereum’s focus on decentralized

applications through smart contracts executed by means of its virtual machine. Additionally, Ethereum’s

transition from proof-of-work (PoW) to proof-of-stake (PoS) consensus presents valuable insights into the

evolution of blockchain technology, particularly in terms of energy efficiency, scalability, and security.

The term consensus mechanism refers to the entire stack of protocols, incentives and ideas that allow a

network of nodes to agree on the state of a blockchain [4]. Proof-of-Work (PoW) is a consensus mechanism

where miners compete to solve complex puzzles, requiring significant computational power. The first miner

to find the solution gets to add a block and is rewarded with coins. Proof-of-Stake (PoS) is an alternative

mechanism where validators are chosen based on the number of coins they hold and stake as collateral.

Validators create blocks and are rewarded based on their stakes.

The Ethereum Virtual Machine (EVM) is a Turing-complete virtual machine at the core of the Ethereum

blockchain. It executes smart contracts and decentralized applications by processing bytecode instructions.

Operating on a distributed network, the EVM ensures secure and deterministic execution of contracts across

the Ethereum ecosystem, enabling the creation of diverse and innovative applications. It is not only sandboxed

but actually completely isolated, which means that code running inside the EVM has no access to network,

filesystem or other processes. Smart contracts even have limited access to other smart contracts [5].

Ethereum’s state is a large data structure which holds not only all accounts and balances, but a machine

state, which can change from block to block according to a pre-defined set of rules, and which can execute

arbitrary machine code. The specific rules of changing state from block to block are defined by the EVM [6].

2



Figure 1: Ethereum EVM illustrated [6]

2.2.2 Scalability issue (Layer 2 and sidechain solutions)

The escalating demand for blockchain technology has highlighted a critical challenge: the inherent trade-off

between decentralization and scalability. As blockchain networks strive to maintain their decentralized nature,

the performance limitations of their consensus mechanisms become increasingly apparent, hindering their

ability to handle a high volume of transactions efficiently. In response to this challenge, Layer 2 solutions have

emerged as a promising avenue to address the scalability issue while preserving the core principles of blockchain

technology. These solutions offer innovative approaches that enable off-chain transaction processing, while

still leveraging the security and finality of the underlying blockchain. In this section, we delve into the realm of

Layer 2 solutions, exploring their mechanisms, benefits, and implications for enhancing blockchain scalability

without compromising decentralization and security.

Layer 2 blockchain solutions involve building supplementary protocols or networks on top of an existing

blockchain to enable off-chain transaction processing and data computation. It is easy to understand that the

main concept of all Layer 2 solutions is that of lightening the blockchain, in order to help in scaling up. The

consequence of this idea is not only higher transaction speed, but also (in general) lower fees (which is a direct

consequence of increased TPS): this means that L2 solutions are appropriate places for micropayments to be

performed [7].

The following are the different types of high-level Layer 2 solutions [8]:

• Rollups: Rollups perform transaction execution outside layer 1 and then the data is posted to layer 1

where consensus is reached. As transaction data is included in layer 1 blocks, this allows rollups to be

secured by native Ethereum security.

• State channels: State channels utilize multisig contracts to enable participants to transact quickly and

freely off-chain, then settle finality with Mainnet. This minimizes network congestion, fees, and delays.

The two types of channels are currently state channels and payment channels.

Additionally, there are scalability solutions that depend on their own security and consensus mechanism from

the main blockchain. Those solutions are called sidechains. A sidechain is an independent EVM-compatible

blockchain which runs in parallel to Mainnet. These are compatible with Ethereum via two-way bridges, and

run under their own chosen rules of consensus, and block parameters [8]. Unlike layer 2 scaling solutions,

sidechains do not post state changes and transaction data back to Ethereum Mainnet [9].
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2.3 Smart contracts

The code in Ethereum contracts is written in a low-level, stack-based bytecode language, referred to as

”Ethereum virtual machine code” or ”EVM code”. The code consists of a series of bytes, where each byte

represents an operation. The operations have access to three types of space in which to store data [3]:

• The stack, a last-in-first-out container to which 32-byte values can be pushed and popped

• Memory, an infinitely expandable byte array

• The contract’s long-term storage, a key/value store where keys and values are both 32 bytes. Unlike

stack and memory, which reset after computation ends, storage persists for the long term.

Figure 2: EVM simple stack-based architecture [6]

There are several widely used programming languages for smart contracts. In this paper we are going to

consider 2 of them, namely Solidity and Vyper. Both languages are compiled into bytecode (EVM code) that

is stored in the blockchain.

2.3.1 Solidity

Solidity is an object-oriented, high-level language for implementing smart contracts. Solidity is a curly-bracket

language that has been influenced and inspired by several well-known programming languages. Solidity is

most profoundly influenced by C++, but also borrowed concepts from languages like Python, JavaScript, and

others. Solidity is statically typed, supports inheritance, libraries, and complex user-defined types, among other

features [5].

2.3.2 Vyper

Vyper is a contract-oriented, pythonic programming language that targets the Ethereum Virtual Machine

(EVM). The main three principles and goals of this language are the following [10]:

• Security: It should be possible and natural to build secure smart-contracts in Vyper.

• Language and compiler simplicity: The language and the compiler implementation should strive to be

simple.
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• Auditability: Vyper code should be maximally human-readable. Furthermore, it should be maximally

difficult to write misleading code. Simplicity for the reader is more important than simplicity for the

writer, and simplicity for readers with low prior experience with Vyper (and low prior experience with

programming in general) is particularly important.

. For these reasons it could be considered as a more intuitive and secure solution, however, it brings following

limitations [10]:

• No modifiers

• No class ingeritance

• No recursive calling or infinite loops

• No function or operator overloading

2.3.3 Oracle Problem

In the context of blockchain implementations, the oracle problem refers to the challenge of obtaining exter-

nal, real-world data and securely integrating it into the blockchain ecosystem. Blockchains are inherently

self-contained and deterministic, meaning that their consensus mechanisms rely on information within the

blockchain itself to validate transactions and execute smart contracts.

Nick Szabo, who popularized the term “smart contract”, gave as an example a smart contract that

enforces car loan payments. If the owner of the car fails to make a timely payment, a smart contract could

programmatically revoke physical access and return control of the car to the bank. As Szabo’s example shows,

however, the most compelling applications of smart contracts such as financial instruments—additionally

require access to data about real-world state and events [11].

This is where the oracle problem arises. Oracles are entities or services that fetch external data and provide

it to smart contracts within the blockchain. The issue lies in ensuring the accuracy, security, and reliability of

the data being fed into the blockchain, as it directly affects the integrity of smart contracts and the outcomes

of decentralized applications. If the data provided by oracles is inaccurate or manipulated, it can lead to

incorrect smart contract execution and undesirable outcomes.

The lack of trustworthy oracles is often referred to as critical obstacle to the evolution of Ethereum and

decentralized smart contracts in general [11].

The following is an example structure of an oracle framework. The framework in figure 3 is to be read

from left to right, following the natural flow of data from external sources to the blockchain [12].
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Figure 3: A graphical representation of blockchain oracle framework [12]

3 Related Work

We conducted an extensive review of existing literature and practical implementations that intersect the

realms of workflow automation and blockchain smart contracts. The primary objective was to comprehensively

understand the contemporary landscape of research pertinent to our subject matter. This section provides a

consolidated overview of the literature and applications deemed significant within this context.

Security is one of the less developed and stable parts of the blockchain smart contracts, since there

are many vulnerabilities found even in the compilers of the languages. An example of such vulnerability

is Vyper compiler, that made smart contracts vulnerable to reentrancy attacks [13]. Most smart contracts

need audits to be used safely by users of decentralized applications (Dapps). To address this issue and help

inexperienced developers deploy contracts and use them for business process management and specifically

inter-organizational process collaboration, Xiong et al. [14], have proposed a solution that generates smart

contracts using Business Process Model and Notation (BPMN) models, commonly used for defining process

models. The mentioned proposal mainly focuses on message communication, since the BPMN models are

translated first into Communicating Sequential Programs (CSP#) and only then into smart contracts. This is

done so that unverified BPMN models are not used for smart contract generation, hence creating deadlocks

or other vulnerable implementations of smart contracts [14].

Another tool that tackles previously mentioned issue by automating the generation of Solidity smart con-

tract code is called Lorikeet [15]. Lorikeet consists of the following components:

• BPMN translator, that translates BPMN diagrams into Solidity code.

• Registry generator, that generates registry data schema in Solidity code.

• Blockchain trigger, that handles deployment and interaction with blockchain smart contracts.

These components of Lorikeet are designed as micro-services and deployed in individual Docker containers.

Lorikeet, basically, generates a set of smart contracts from a business process and uses them to manage

the business process. This makes Lorikeet a good tool for managing business processes on-chain [15]. The

following figure (Figure: 4) is a visual representation of Lorikeet’s architecture.
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Figure 4: Lorikeet Architecture

A tool with similar functionality that has also been mentioned in [15], is called Caterpillar. Caterpillar

is BPMN execution engine on Ethereum. The objective of Caterpillar is to offer users a platform to create

blockchain applications to ensure that collaborative business processes that are created using the BPMN no-

tation are carried out appropriately. To accomplish this, Caterpillar also converts BPMN models into smart

contracts. In contrast to other applications and literature, Caterpillar does not rely on message exchanges

between participants to provide coordination. It is assumed that they solely rely on the blockchain for coor-

dination. Additionally, Caterpillar keeps track of each process instance’s and its subprocesses’ status on the

blockchain [16]. The following figure (Figure 5) is a visual representation of Caterpillar’s architecture.

Figure 5: Caterpillar Architecture [16]

Moreover, alternative architecture proposal to tackle the connection between the paradigms of business

process management and blockchain smart contracts, has been suggested by Emre Ozaras [17], where the

architecture involved message passing between different components using different interface such as:

• Zeebe gRPC for communication with workers

• JSON-RPC for communication with blockchain smart contracts

A visual representation of the suggested architecture can be found in the following Figure 6.
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Figure 6: Architecture of a solution proposed by Emre Ozaras [17]

In the suggested architecture, all of the business logic is written in Java, and for the creation of a new

instance of a new type of workflow it is required to write a smart contract for it, possibly using one of the

previously mentioned tools.

Additionally, Emre Ozaras [18], has suggested a use of Service Oriented Architecture (SOA) for a more

modular and generic solution. This architecture involves a set of services and an Enterprise Service Bus (ESB).

The visual representation of the architecture can be seen in the Figure 7.

Figure 7: Proposal for a more modular and generic solution [18]

Finally, in both studies of Emre Ozaras [17] [18], it has been acknowledged that there are other possible

solutions where there exists a logical separation between type level data and instance level data with a link

between them [18].

8



4 Technologies Used

4.1 Camunda Platform 8

Camunda Platform 8 is an open-source process automation and workflow management software that provides

tools for designing, modeling, executing, and monitoring business processes. It allows organizations to define

their processes using BPMN (Business Process Model and Notation) diagrams and deploy them for automated

execution. Camunda Platform 8 offers features like process execution orchestration, task management, inte-

gration with external systems, and real-time monitoring, making it a comprehensive solution for optimizing

and automating business workflows.

The following Figure 8 is a visual representation of Zeebe architecture provided by Camunda Platform 8

documentation [19]

Figure 8: Zeebe’s Architecture [19]

4.1.1 Camunda Zeebe Broker

Camunda Broker is a component of the Camunda Platform that serves as the central messaging system for

communication between workflow instances and external service tasks. It enables decoupling the execution

of process instances from the execution of service tasks, making the architecture more scalable and resilient.

Camunda Broker ensures reliable message delivery and supports features like task retries, timeouts, and dead-

letter queues, enhancing the overall robustness of workflow executions.

4.1.2 Camunda Zeebe Operate

Camunda Operate is a monitoring and operational management tool for Camunda Platform workflows. It

provides a user-friendly interface for tracking the execution status of workflow instances, visualizing process

instances, and identifying bottlenecks or issues in real-time.

4.1.3 PyZeebe

PyZeebe is a Python gRPC client library that provides an interface for interacting with the Zeebe process

engine. PyZeebe allows developers to connect to Zeebe instances through a Zeebe Gateway, deploy BPMN

workflows, start and manage process instances, and handle task interactions within workflows using Python

code. It simplifies the integration of Zeebe-based workflow automation into Python applications.

4.2 Web3.py

Web3.py is a Python library that provides a convenient interface for interacting with the Ethereum blockchain.

It allows developers to interact with Ethereum nodes, send transactions, query blockchain data, and interact

with smart contracts using Python code.
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4.3 Truffle

Truffle is a blockchain development environment that is used for testing, deploying, and debugging of smart

contracts. This framework works exclusively for smart contract for EVM based blockchains and can be

configured to deploy smart contracts on all EVM-based blockchains.

Ganache is a part of the Truffle framework that allows a user to run a local blockchain for testing of

deployment and behaviour of deployed smart contracts.

4.4 IPFS

InterPlanetary File System or shortly IPFS is a decentralized distributed file system that uses peer-to-peer

technology to store and uniquely identify content that allows hosts of each node to store and share information.

The following Figure 9 shows comparison of client-server model and peer-to-peer model of networks.

Figure 9: Comparison of Client-Server Model using HTTP and Peer-to-peer model using IPFS [20]

4.4.1 How it works?

• When you add a file to IPFS, your file is split into smaller chunks, cryptographically hashed, and given

a unique fingerprint called a content identifier (CID). This CID acts as a permanent record of your file

as it exists at that point in time.

• When other nodes look up your file, they ask their peer nodes who’s storing the content referenced by

the file’s CID. When they view or download your file, they cache a copy — and become another provider

of your content until their cache is cleared.

• A node can pin content in order to keep (and provide) it forever, or discard content it hasn’t used in a

while to save space. This means each node in the network stores only content it is interested in, plus

some indexing information that helps figure out which node is storing what.

• If you add a new version of your file to IPFS, its cryptographic hash is different, and so it gets a new

CID. This means files stored on IPFS are resistant to tampering and censorship — any changes to a file

don’t overwrite the original, and common chunks across files can be reused in order to minimize storage

costs.
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5 Implementation

In this section we will describe and show proposed solution architecture of a middleware divided into several

components. Due to high complexity of the model we decided to take modularized approach in order to ensure

scalability, maintainability, and flexibility. The proposed solution architecture consists of several interconnected

components that collectively enable the integration of blockchain-based smart contracts with the Camunda

Platform 8 for workflow automation. The code snippets presented for each module in the following sections

may not always encompass the full functional logic, as including such comprehensive details would result in

excessive length.

5.1 Smart contracts

The smart contracts provided in this section are deployed from a specific configured address on blockchain

that holds authority over functions that change the state variables of the contracts, meaning that other wallet

addresses will not be able to corrupt the data of workflow types and their instances. Moreover, the data stored

in the smart contracts are available to any address in the blockchain.

5.1.1 Workflow registry contract

Workflow registry contract manages and maintains a registry of different workflow types and their corresponding

smart contracts. It provides functions for registering, updating, and deleting workflow types, as well as

retrieving the address of a specific workflow’s smart contract.

The following Listing 1 provides the smart contract implementation for Workflow Registry
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1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract WorkflowRegistry {

5 struct WorkflowType {

6 string name;

7 address smartContract;

8 }

9

10 mapping(string => WorkflowType) private workflowTypes;

11

12 event WorkflowTypeRegistered(string name , address smartContract);

13 event WorkflowTypeUpdated(string name , address oldSmartContract , address

newSmartContract);

14 event WorkflowTypeDeleted(string name , address smartContract);

15

16 modifier onlyOwner () {

17 require(msg.sender == owner , "Only␣the␣contract␣owner␣can␣call␣this␣

function");

18 _;

19 }

20

21 address private owner;

22

23 constructor () {

24 owner = msg.sender;

25 }

26

27 function registerWorkflowType(string calldata name , address

smartContract) external onlyOwner {

28 require(smartContract != address (0), "Invalid␣smart␣contract␣address

");

29 require(bytes(name).length > 0, "Invalid␣workflow␣name");

30 require(workflowTypes[name]. smartContract == address (0), "Workflow␣

type␣already␣registered");

31

32 workflowTypes[name] = WorkflowType(name , smartContract);

33 emit WorkflowTypeRegistered(name , smartContract);

34 }

35

36 function updateWorkflowType(string calldata name , address

newSmartContract) external onlyOwner {

37 require(bytes(name).length > 0, "Invalid␣workflow␣name");

38 require(newSmartContract != address (0), "Invalid␣smart␣contract␣

address");

39 require(workflowTypes[name]. smartContract != address (0), "Workflow␣

type␣not␣registered");

40

41 address oldSmartContract = workflowTypes[name]. smartContract;

42 workflowTypes[name]. smartContract = newSmartContract;

43 emit WorkflowTypeUpdated(name , oldSmartContract , newSmartContract);

44 }

45

46 function deleteWorkflowType(string calldata name) external onlyOwner {

47 require(bytes(name).length > 0, "Invalid␣workflow␣name");

48 require(workflowTypes[name]. smartContract != address (0), "Workflow␣

type␣not␣registered");

49

50 address smartContract = workflowTypes[name]. smartContract;

51 delete workflowTypes[name];

52 emit WorkflowTypeDeleted(name , smartContract);

53 }

54

55 function getSmartContractAddress(string calldata name) external view

returns (address) {

56 return workflowTypes[name]. smartContract;

57 }

58 }

Listing 1: Workflow registry contract
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5.1.2 Workflow instance contract

Workflow instance contract manages and tracks the data about instances of a specific workflow type. It stores

data about the BPMN model used and the task implementation by means of storing IPFS hash of the directory

with the files. Additionally, this contract maps the event log and process status to process instance identifier.

The following Listing 2 provides the smart contract implementation for Workflow Instance

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 contract WorkflowInstance {

5 address public owner;

6 string public ipfsHash;

7 mapping(uint256 => string) public eventLog;

8 mapping(uint256 => string) private processStatus;

9

10 modifier onlyOwner () {

11 require(msg.sender == owner , "Only␣the␣owner␣can␣call␣this␣function"

);

12 _;

13 }

14

15 constructor () {

16 owner = msg.sender;

17 }

18

19 function setIpfsHash(string memory _hash) public onlyOwner {

20 ipfsHash = _hash;

21 }

22

23 function addEventLog(uint256 _processId , string memory _eventLogHash)

public onlyOwner {

24 eventLog[_processId] = _eventLogHash;

25 }

26

27 function setProcessStatus(uint256 _processId , string memory _status)

public onlyOwner {

28 processStatus[_processId] = _status;

29 }

30

31 function getProcessStatus(uint256 _processId) public view returns (

string memory) {

32 return processStatus[_processId ];

33 }

34 }

Listing 2: Workflow instance contract

5.2 Middleware

Here include general explanation of middleware (with diagrams).

5.2.1 Core Client

This class combines Zeebe client and IPFS client into one class and carries functionality of data uploading and

data downloading from IPFS using provided content identifiers (hash) and, additionally, it has functionality of

process deployment and instantiation as well as creation of dynamic workers that inherit task handlers from

specified files.
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In the following Listing 3 we can see Core Client class definition with constructor and all methods excluding

logic withing each method.
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1 from pyzeebe import ZeebeClient as PyZeebeClient

2 from zeebe_channel import Channel

3 from init_worker import init_worker

4 import ipfshttpclient

5 import asyncio

6 import os

7 import importlib.util

8 import types

9 from registry_oracle import RegistryOracle

10 from instance_oracle import InstanceOracle

11 import contract_data_config

12

13

14 class CoreClient:

15 def __init__(self , process_dir_name , hostname=None , port=None):

16 self.process_dir_name = os.path.abspath(

17 f"src/processes /{ process_dir_name}"

18 )

19 self.channel = Channel(hostname=hostname , port=port).channel

20 self.zeebe_client = PyZeebeClient(self.channel)

21

22 try:

23 self.ipfs_client = ipfshttpclient.connect ()

24 except Exception as e:

25 self.ipfs_client = None

26 print(f"Error:␣Couldn ’t␣connect␣to␣the␣IPFS␣HTTP␣client :\n{e}\n\

n")

27

28 self.instance_oracle = InstanceOracle () # Oracle config data

29 self.registry_oracle = RegistryOracle () # Oracle config data

30

31 async def deploy_bpmn(self , bpmn_file_path):

32 """

33 Deploys a process from a BPMN model (.bpmn file)

34 """

35

36 async def create_task_instance(self , bpmn_process_id , variables=None):

37 """

38 Runs a process instance

39 """

40

41 async def create_and_run_worker(self , task_handler_file_name):

42 """

43 Creates a worker for the process instance and runs it until it

completes all tasks

44 """

45

46 def add_task_handlers_to_worker(class_instance , file_path):

47 """

48 Adds all task handlers to the worker instance from a specified path

49 """

50

51 def persist_to_ipfs(self):

52 """

53 Adds a directory "src/processes /{ Client.process_dir_name }" to IPFS

and returns a hash

54 """

55

56 def download_from_ipfs(self , ipfs_hash):

57 """

58 Downloads directory with files from IPFS and store it in the

directory of the "src/processes /{ Client.process_dir_name }"

folder

59 """

Listing 3: Core Client class
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5.2.2 Web3 utility

Web3 utility is a set of classes that provide us with an interface of connecting to blockchain of a choice using

an HTTP provider, and interaction with smart contract providing its address and ABI (Application Binary

Interface)

In the following Listing 4 5 we can see definition of two interface classes

1 from web3.middleware import geth_poa_middleware

2 from web3 import Web3

3

4

5 class Web3Connector:

6 def __init__(self , provider_url: str):

7 self.provider_url = provider_url

8 self.connect_to_client ()

9

10 def connect_to_client(self):

11 try:

12 self.client = Web3(Web3.HTTPProvider(self.provider_url))

13 self.client.middleware_onion.inject(geth_poa_middleware , layer

=0)

14 except Exception:

15 raise Exception("Couldn ’t␣connect␣to:␣" + self.provider_url)

16

17 def is_connected(self):

18 return self.client.isConnected ()

19

20 def get_client(self):

21 return self.client

Listing 4: Web3Connector class
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1 import json

2 from web3 import Web3

3

4

5 class Web3Contract:

6 def __init__(self , client: Web3 , contract_address: str , abi: json):

7 self.client = client

8 self.contract_address = Web3.toChecksumAddress(contract_address)

9 self.abi = abi

10 self.contract = self.client.eth.contract(

11 address=self.contract_address , abi=self.abi

12 )

13

14 def get_contract(self , pool_address=None , abi=None):

15 if pool_address == None and abi == None:

16 return self.contract

17 else:

18 return self.client.eth.contract(address=pool_address , abi=abi)

19

20 def has_function(self , function_name):

21 if self.contract.find_functions_by_name(function_name) == []:

22 return False

23 else:

24 return True

25

26 def read_call(self , function_name , params =[], contract_address=None):

27 ’’’

28 Performs read contract method call and returns the output

29 ’’’

30

31 def write_call(self , function_name , params =[], private_key=None ,

caller_address=None , contract_address=None):

32 ’’’

33 Performs write contract method call and returns the output

34 ’’’

Listing 5: Web3Contract class

5.2.3 Oracle

Oracle class serves as a connector to interact with smart contracts deployed on a blockchain network. Upon

initialization, it establishes a connection to the specified smart contract using the Web3 utility of the project.

In the following Listing 6 we can see Oracle class definition with constructor and all methods excluding

logic withing each method.

17



1 from web3_utils.web3_connector import Web3Connector

2 from web3_utils.web3_contract import Web3Contract

3

4

5 class Oracle:

6 def __init__(self , address , abi , provider_url):

7 self.address = address

8 self.abi = abi

9 self.provider_url = provider_url

10 self.contract = self.connect_to_oracle_contract ()

11

12 def connect_to_oracle_contract(self):

13 client = Web3Connector(provider_url=self.provider_url).get_client ()

14 contract = Web3Contract(client , self.address , self.abi)

15

16 return contract

Listing 6: Oracle class

5.2.4 Instance Oracle

Instance Oracle class is a class that inherits Oracle class and is responsible of interacting with Workflow

Instance smart contract and provides us with functionality to call any methods from the contract

1 from web3_utils.web3_connector import Web3Connector

2 from web3_utils.web3_contract import Web3Contract

3 from oracle import Oracle

4

5 class InstanceOracle(Oracle):

6 def __init__(self , address , abi , provider_url):

7 super ().__init__(address , abi , provider_url)

8

9 def get_ipfs_hash(self):

10 # Function logic

11

12 def get_process_event_log_hash(self , process_id):

13 # Function logic

14

15 def set_process_event_log_hash(self , process_id , event_log_hash ,

private_key , caller_address):

16 # Function logic

17

18 def set_ipfs_hash(self , ipfs_hash , private_key , caller_address):

19 # Function logic

20

21 def set_process_status(self , process_id , status , private_key ,

caller_address):

22 # Function logic

Listing 7: Instance Oracle class

5.2.5 Registry Oracle

Registry Oracle class is a class that inherits Oracle class and is responsible of interacting with Workflow

Registry smart contract and provides us with functionality to call any methods from the contract
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1 from web3_utils.web3_connector import Web3Connector

2 from web3_utils.web3_contract import Web3Contract

3 from oracle import Oracle

4

5 class RegistryOracle(Oracle):

6 def __init__(self , address , abi , provider_url):

7 super ().__init__(address , abi , provider_url)

8

9 def workflow_type_exists(self , workflow_type):

10 # Function logic

11

12 def register_workflow_type(self , name , smart_contract_address ,

private_key , caller_address):

13 # Function logic

14

15 def update_workflow_type(self , name , new_smart_contract_address ,

private_key , caller_address):

16 # Function logic

17

18 def delete_workflow_type(self , name , private_key , caller_address):

19 # Function logic

20

21 def get_address_of_instance(self , name):

22 # Function logic

Listing 8: Registry Oracle class

5.2.6 Dynamic Zeebe Worker

Dynamic Zeebe worker is a class that dynamically imports task handling modules and wraps them with the

Zeebe worker decorator from PyZeebe that lets it log the events of the task execution.

1 import asyncio

2 import importlib.util

3 from init_worker import worker

4

5 def get_dynamic_worker(worker_path , worker_name):

6 # Load the module using the path

7 module_name = worker_name

8 spec = importlib.util.spec_from_file_location(module_name , worker_path +

f"/{ module_name}")

9 my_module = importlib.util.module_from_spec(spec)

10 spec.loader.exec_module(my_module)

11

12 MyWorker = my_module.Worker

13 class DynamicWorker(MyWorker):

14 async def run(self):

15 await worker.work()

16

17 return DynamicWorker

Listing 9: Dynamic Zeebe worker
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1 from pyzeebe import ZeebeWorker

2

3 worker = None

4

5 def init_worker(channel):

6 global worker

7 worker = ZeebeWorker(channel)

Listing 10: Zeebe worker from PyZeebe

5.2.7 Task Handler

Task handler is a module that consists of task implementation for specified task types of certain workflow

instances. An example of a task handler can be seen in the following Listing 11

1 from init_worker import worker

2 from pyzeebe import Job

3

4

5 class Worker:

6 def decorator(job: Job):

7 with open("event_log.txt", "a") as log_file:

8 log_file.write(str(job) + "\n")

9 return job

10

11 @worker.task(task_type="example_task_type", after=[ decorator ])

12 async def task_handler(taskData):

13 return {"output": f"Example␣output␣using:␣{taskData}"}

Listing 11: Example task handler implementation

5.3 Solution Architecture

In this section we will provide a diagram of the proposed solution architecture implemented in this project with

the use cases of the core component communicating with its components.

Figure 10: Solution Architecture

20



5.3.1 Use Case: Core module interaction with IPFS client

In the following sequence diagrams we present the process of uploading and downloading data in and from

the IPFS network.

Figure 11: Core uploading into IPFS

Figure 12: Core downloading from IPFS

5.3.2 Use Case: Process instance deployment

In the following sequence diagrams we present the process of process deployment, where the core module of

the middleware first fetches all the necessary data from the blockchain module and then deploys the process

using Zeebe module
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Figure 13: Fetch process instance sequence

Figure 14: Deploy process instance sequence

5.3.3 Use Case: Process instance execution

In the following sequence diagram we present the process of process instance execution, where the core module

uses the deployed process instance and process instance data for task handling and then creates and runs the

worker for the instance. Additionally, during the execution of each task the core component logs each step of

the process and persists everything to the blokchain module through IPFS module.

22



Figure 15: Process instance execution

5.3.4 Use Case: Registration of workflow type

In the following sequence diagram we present the process of registration of a new workflow type.

Figure 16: Workflow type registraion

5.4 Evaluation

In this section we will go through an example workflow in order to provide a proof of concept for our proposed

solution.

5.4.1 Example: Employee Onboarding Workflow

Employee Onboarding is a crucial process for successfully integrating new employees into an organization.

Automating this process brings numerous benefits, including efficiency, consistency, compliance, engagement,

and cost savings. Given its impact on retention, productivity, and company culture, onboarding is an essential

practice for all companies aiming to attract, retain, and develop their workforce.

The process flow can be explained in the following steps:

• Start Event: Gather essential data about the new employee, including their name, surname, date of

birth, years of experience, profession, position, and level of education.

• Register a company Email:
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– Using the provided name and surname, generate a company email address in the format

Example: name surname@company.com.

• Assign Authorization Level:

– Depending on the employee’s position (Junior, Mid-level, Senior), assign an appropriate authoriza-

tion level (3, 2, 1) for access to company resources.

• Provide Courses to Follow:

– Based on the employee’s profession (Accountant or Software Developer), recommend relevant

courses for them to follow.

• Provide Software License:

– Depending on both profession and position, grant appropriate software licenses:

∗ Accountants: Receive licenses for tools like Microsoft Excel, PowerBI, or NetSuite.

∗ Software Developers: Receive licenses for tools like Visual Studio, JetBrains, or Jenkins.

• Compute Salary:

– Considering the employee’s profession, position, level of education, and years of experience, calcu-

late a salary using a specific formula. The outcome reflects the unique attributes of the employee’s

profile.

The following Figure 17 is a BPMN diagram used for the above-mentioned workflow.

Figure 17: BPMN Model of Employee Onboarding process

With the following task implementation logic (Listing 12):
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1 from init_worker import worker

2 from pyzeebe import Job

3

4

5 class Worker:

6 def decorator(job: Job):

7 with open("event_log.txt", "a") as log_file:

8 log_file.write(str(job) + "\n")

9 return job

10

11 @worker.task(task_type="create_email", after=[ decorator ])

12 async def create_email(first_name , last_name):

13 return {"email": f"{first_name.lower ()}_{last_name.lower ()}@organization

.org"}

14

15 @worker.task(task_type="assign_auth_level", after=[ decorator ])

16 async def assign_auth_level(position_level):

17 position_auth_level_map = {

18 "Junior": 1,

19 "Mid -Level": 2,

20 "Senior": 3,

21 }

22 if position_level not in position_auth_level_map:

23 return {"auth_level": 0}

24 return {"auth_level": position_auth_level_map[position_level ]}

25

26 @worker.task(task_type="course_provision", after=[ decorator ])

27 async def course_provision(profession):

28 profession_course_map = {

29 "Software␣Engineer": "Introduction␣to␣C++",

30 "Accountant": "Finance␣micro -Masters␣from␣MIT"

31 }

32 if profession not in profession_course_map:

33 return {"course": "No␣course␣found"}

34 return {"course": f"{profession_course_map[profession ]}"}

35

36 @worker.task(task_type="soft_license_provision", after =[ decorator ])

37 async def soft_license_provision(profession , position):

38 soft_license_map = {

39 "Software␣Engineer": {

40 "Junior": "Visual␣Studio",

41 "Mid -Level": "JetBrains",

42 "Senior": "Jenkins"

43 },

44 "Accountant": {

45 "Junior": "Microsoft␣Excel",

46 "Mid -level": "Microsoft␣PowerBI",

47 "Senior": "NetSuite",

48 },

49 }

50 if profession not in soft_license_map or position not in

soft_license_map[profession ]:

51 return {"soft_license": "No␣course␣found"}

52 return {"soft_license": f"{soft_license_map[profession ][ position ]}"}

53

54 @worker.task(task_type="calculate_salary", after=[ decorator ])

55 async def calculate_salary(level_of_education , position_level ,

year_of_experience , profession):

56 # Example calculation using provided data

57 result = 0

58 return {"salary": f"{result}"}

Listing 12: Task implementation
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5.4.2 Smart contracts deployment

For deploying smart contracts we use Truffle into the Ganache local blockchain network with the configuration

from Listing 13.

1 require(’dotenv ’).config ();

2 const { MNEMONIC , PROJECT_ID } = process.env;

3

4 const HDWalletProvider = require(’@truffle/hdwallet -provider ’);

5

6 module.exports = {

7 development: {

8 host: "127.0.0.1", // Localhost (default: none)

9 port: 7545, // Standard Ethereum port (default: none)

10 network_id: 5777, // Any network (default: none)

11 },

12 },

13

14 compilers: {

15 solc: {

16 version: "0.8.0",

17 }

18 },

Listing 13: Truffle configuration

After which we deploy smart contracts using the following command (in PowerShell):

$ truffle migrate --network development

Figure 18: Workflow Instance contract successful migration
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Figure 19: Workflow Registry contract successful migration

Figure 20: Ganache deployed contracts confirmation

5.4.3 Zeebe set-up

For local testing we run Zeebe with Elasticsearch Exporter that is needed for Camunda Operate.

The following command runs the Elasticsearch from it’s installed directory:

$ ./bin/elasticsearch

After which we can run Zeebe with the following command from the Zeebe’s installed directory:

$ ZEEBE_BROKER_EXPORTERS_ELASTICSEARCH_CLASSNAME=io.camunda.zeebe.exporter.ElasticsearchExporter

./bin/broker

Once Zeebe broker is running, we can check it by running the following command:

$ ./bin/zbctl --insecure status
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Which should return the response from the Figure 21 (depending on network configuration)

Figure 21: Zeebe broker status

In order to run the Camunda Operate we run the following command in the directory where it is installed:

$ ./bin/operate

Depending on the network configuration we can use the host and the port to access the interface and

the login page as shown in the Figure 22. After using default credentials (”demo” as both username and

password) we can access the dashboard where we can monitor all process instances. The dashboard is shown

in the Figure 23.

Figure 22: Camunda Operate interface login page
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Figure 23: Camunda Operate Dashboard

5.4.4 IPFS Upload

For launching IPFS node we need to run the following command after installation:

$ ipfs init

The Figure 24 shows the expected response after initializing an IPFS node.

Figure 24: Initializing IPFS node

After initialization of IPFS node we can run the IPFS daemon that will allow us to connect to the IPFS

network using the following command:

$ ipfs daemon

The Figure 25 shows the expected response after initializing an IPFS daemon.
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Figure 25: Initializing IPFS daemon

After setting up IPFS node and the daemon, we can run our core client function persist to ipfs(). The

testing code is provided in the Listing 14 and its response with content identifiers in the Figure 26

1 async def test_ipfs_deployment ():

2 # Try to run the IPFS Daemon and use an example BPMN model to persist it

3 my_client = CoreClient(

4 process_dir_name="process1", hostname="localhost", port =26500

5 )

6

7 ipfs_hash = my_client.persist_to_ipfs ()

8 return ipfs_hash

Listing 14: IPFS upload testing code

Figure 26: Response of the IPFS upload test

In order to check that the files were uploaded we can use the content identifier of the directory in the IPFS

webUI that was provided when we initialized the daemon and search for the content of the directory uploaded.

The Figure 27 shows the result of the content identifier search using webUI of the IPFS daemon.
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Figure 27: IPFS webUI search for uploaded directory

5.4.5 Zeebe process deployment and instantiation

After preparing a BPMN model for the process and setting up zeebe client we need to deploy the process

using our core client. For process deployment testing we use the code from the Listing 15, and for checking

the deployment we can use Camunda Operate interface from the Figure 28.

1 async def test_zeebe_deployment ():

2 # Try to run the zeebe process and use an example BPMN model

3 my_client = CoreClient(

4 process_dir_name="process1", hostname="localhost", port =26500

5 )

6

7 bpmn_path = os.path.abspath(my_client.process_dir_name + "/model.bpmn")

8 await my_client.deploy_bpmn(bpmn_file_path=bpmn_path)

Listing 15: Process deployment testing code
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Figure 28: Camunda Operate deployed process result

After deploying the process we can create an instance using the code from the Listing 16 and to see the

result of instantiation we can use Camunda Operate in the Figure 29.

1 async def test_creating_process_instance ():

2 my_client = CoreClient(

3 process_dir_name="process1", hostname="localhost", port =26500

4 )

5

6 input_variables = {

7 "first_name": "Gasan",

8 "last_name": "Rzaev",

9 "position_level": "Junior",

10 "profession": "Software␣Engineer",

11 "level_of_education": "Bachelor",

12 "years_of_experience": 1,

13 }

14

15 instance = await my_client.create_task_instance(

16 bpmn_process_id="process_employee_onboarding", variables=input_variables

17 )

18

19 print(instance)

Listing 16: Process instantiation testing code
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Figure 29: Camunda Operate process instantiation result

5.4.6 Process execution

Using the following code snippet we can run the Dynamic Task worker which will use the task handlers provided

previously to run and complete the tasks, and log everything in the event log.

async def test_running_workers():

# Try to run a Zeebe worker to Handle the Task of the Process Instances

my_client = CoreClient(

process_dir_name="process1", hostname="localhost", port=26500

)

await my_client.create_and_run_worker("worker.py")

After running the execution we have appended an event log contents of which can be seen in the Listing

??
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1 {’jobKey ’: 2251799813686349 , ’taskType ’: ’create_email ’, ’processInstanceKey ’:

2251799813686336 , ’bpmnProcessId ’: ’process_employee_onboarding ’, ’

processDefinitionVersion ’: 3, ’processDefinitionKey ’: 2251799813686022 , ’

elementId ’: ’Activity_01r6nmf ’, ’elementInstanceKey ’: 2251799813686346 , ’

customHeaders ’: {}, ’worker ’: ’Gasan’, ’retries ’: 3, ’deadline ’:

1693514441594 , ’variables ’: {’last_name ’: ’Rzaev’, ’first_name ’: ’Gasan ’, ’

email’: ’gasan_rzaev@organization.org’}}

2 {’jobKey ’: 2251799813686362 , ’taskType ’: ’assign_auth_level ’, ’

processInstanceKey ’: 2251799813686336 , ’bpmnProcessId ’: ’

process_employee_onboarding ’, ’processDefinitionVersion ’: 3, ’

processDefinitionKey ’: 2251799813686022 , ’elementId ’: ’Activity_1ovseyd ’, ’

elementInstanceKey ’: 2251799813686360 , ’customHeaders ’: {}, ’worker ’: ’Gasan

’, ’retries ’: 3, ’deadline ’: 1693514441644 , ’variables ’: {’position_level ’:

’Junior ’, ’auth_level ’: 1}}

3 {’jobKey ’: 2251799813686373 , ’taskType ’: ’course_provision ’, ’processInstanceKey

’: 2251799813686336 , ’bpmnProcessId ’: ’process_employee_onboarding ’, ’

processDefinitionVersion ’: 3, ’processDefinitionKey ’: 2251799813686022 , ’

elementId ’: ’Activity_06gnke6 ’, ’elementInstanceKey ’: 2251799813686371 , ’

customHeaders ’: {}, ’worker ’: ’Gasan’, ’retries ’: 3, ’deadline ’:

1693514441685 , ’variables ’: {’profession ’: ’Software␣Engineer ’, ’course ’: ’

Introduction␣to␣C++’}}

4 {’jobKey ’: 2251799813686385 , ’taskType ’: ’soft_license_provision ’, ’

processInstanceKey ’: 2251799813686336 , ’bpmnProcessId ’: ’

process_employee_onboarding ’, ’processDefinitionVersion ’: 3, ’

processDefinitionKey ’: 2251799813686022 , ’elementId ’: ’Activity_0kckiv0 ’, ’

elementInstanceKey ’: 2251799813686382 , ’customHeaders ’: {}, ’worker ’: ’Gasan

’, ’retries ’: 3, ’deadline ’: 1693514441712 , ’variables ’: {’profession ’: ’

Software␣Engineer ’, ’position_level ’: ’Junior ’, ’soft_license ’: ’Visual␣

Studio ’}}

5 {’jobKey ’: 2251799813686397 , ’taskType ’: ’calculate_salary ’, ’processInstanceKey

’: 2251799813686336 , ’bpmnProcessId ’: ’process_employee_onboarding ’, ’

processDefinitionVersion ’: 3, ’processDefinitionKey ’: 2251799813686022 , ’

elementId ’: ’Activity_0bgu5gm ’, ’elementInstanceKey ’: 2251799813686392 , ’

customHeaders ’: {}, ’worker ’: ’Gasan’, ’retries ’: 3, ’deadline ’:

1693514441736 , ’variables ’: {’profession ’: ’Software␣Engineer ’, ’

position_level ’: ’Junior ’, ’level_of_education ’: ’Bachelor ’, ’

years_of_experience ’: 1, ’salary ’: ’0’}}

Listing 17: Resulting event log after execution

After that we can upload the event log into the IPFS using the same method shown previously, and finally

push the new content identifier into the smart contract in order to update the state of the process in blockchain

using the following code:

def test_update_process_state():

my_client = CoreClient(

process_dir_name="process1", hostname="localhost", port=26500

)

event_log_hash = "QmapJbBtMjJA85CfhqHC3yQPnowHVC9oSusvu4UGCgB2He"

process_id = "process1"

private_key = "0xcbd80d93112fe4671dc7a8e2d41fc1e456a37e60c1c1f02f4836b12e6b4c13e1"

caller_address = "0x5efE526378B2Ccb19ACD447a8ACd5302278f8122"

my_client.instance_oracle.set_process_event_log_hash(

process_id=process_id,

event_log_hash=event_log_hash,
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Figure 30: Completed process on Camunda Operate

private_key=private_key,

caller_address=caller_address,

)

Finally, to finalize the evaluation we can see that the transaction has arrived using the instance oracle in

the Figure 31.
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Figure 31: Ganache showing updated contract state

6 Conclusions

In conclusion, this study embarked on a comprehensive exploration of the integration of blockchain smart

contracts with the Zeebe process engine to establish a middleware solution. Through the thorough examination

and implementation of this middleware, significant insights and implications have emerged, illuminating the

potential and challenges inherent in such an innovative amalgamation.

The project’s trajectory has been marked by meticulous analysis and execution. A pivotal aspect of this

endeavor was the seamless interaction between blockchain smart contracts and the Zeebe process engine,

thereby fostering a novel approach to task implementation and workflow automation. The middleware suc-

cessfully orchestrated the execution of smart contracts as integral components of Zeebe workflows, illustrating

the fusion of trustless execution and orchestrated processes.

Throughout the exploration, it became evident that the amalgamation of these technologies not only

introduces numerous benefits but also unveils certain considerations and opportunities for future enhancements.

The introduced middleware showcases the immutability of workflow data, bolstered by blockchain’s inherent

characteristics. It further empowers the concept of trustless task execution, imbuing workflows with heightened

transparency and accountability.

However, the journey has also unveiled areas that warrant further investigation and refinement. Notably,

concerns regarding data security emerged, accentuated by the storage of sensitive information in the IPFS and

the subsequent persistence of hash identifiers within smart contracts. This vulnerability calls for the exploration

of encryption methods or the introduction of authorization layers to safeguard data integrity.

Looking ahead, the project’s future trajectory presents intriguing avenues for expansion. Implementing on-

chain approval and escalation mechanisms offers the promise of enhanced security and a more decentralized

workflow framework. The integration of tokenization standards, such as ERC-721, emerges as a compelling

option to fortify access control, immutability, and task validation, potentially introducing an incentivized
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ecosystem.

In evaluating the middleware’s merits and limitations, a dichotomy emerges. While it champions data

immutability and trustless task execution, potential scalability issues loom, particularly when applied to intricate

workflows in resource-intensive industrial contexts. The study has also highlighted the importance of real-world

input verifiability, an aspect that necessitates ongoing consideration.

As the exploration draws to a close, it becomes evident that the synthesis of blockchain smart contracts

and Zeebe process engines holds substantial promise, while continually beckoning us to delve deeper into the

uncharted realms of decentralized automation.
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