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Abstract: The detection of cracks in different masonry surfaces, which represents the highest
stock of buildings worldwide, is quite important since mostly this labour is done manually and it
is quite expensive and subjective. The purpose of this research is to improve an existing crack
detection model by using multiclass prediction with U-Net that has a MobileNetV2 encoder, which
has been trained for a period of 50 epochs. U-Net is an architecture for semantic segmentation
and MobileNetV2 is a computer vision model open-sourced by Google and designed for training
classifiers. In this paper you shall get a detailed view of the whole process and how well it

performed.

1 Introduction

The integrity of our cities and buildings is one
of the most important concepts for our society
and more and more buildings require manual in-
spection which can prove to be rather costly and
ineffective[6, 9]. A lot of old masonry buildings
still exist proving that when preserved well, the
life cycle of such structures may be significantly
extended. Different methods are required in order
to make this preservation process more efficient and
cost effective. Those inspections could be provided
way cheaper with the use of software and image
analysis.

A lot of people have taken this into considera-
tion and have started to implement image segmen-
tation models with different architectures such as
U-net, MobileNet, FPN-InceptionV3 etc. in order
to achieve an automated method that can detect
possible issues in those masonry surfaces[1, 5]. The
problem with those methods is that they work
mainly for isolated brick wall images, while pic-
tures that contain other types of objects such as
vegetation, water etc. can influence the output of
those models.

In this paper, we are going to discuss an im-
plementation that could fix this issue by using
multiclass image segmentation. Due to time con-
straints and available related work we have decided
to go with one technique, more precisely, a U-net
model since since this method has been previously
used with satisfactory results[1]. Initially, U-net
was developed for the segmentation of biomedical
images [7, 11] but it performs just as well in other
cases. More details will be presented in the Data
and Methodology chapter of this thesis. The objec-

tive of this thesis is to improve the current state of
detection by isolating the brick surface cracks such
that other objects encompassed in the image do not
influence the result of crack appraisal. After those
objects have been isolated from the image, we shall
focus mainly on estimating whether this technique
has improved the already existing software.

This thesis consists of 5 sections: the Introduc-
tion (1), Related work (2), Data and Methodology
(3), Results (4) and the Conclusion (5).

2 Related work

As image processing and computer vision is an
open field, previous research has been made that is
relevant to the research and implementation that
we are about to make. In this chapter we are
going to discuss the earlier research projects, their
results and how they are relevant to our current
implementation.

2.1 Provided detection software

The provided software itself, is the research done
by Dimitris Dais, IThsan Engin Bal, Eleni Smyrou
and Vasilis Sarhosis. This software (according to
the authors) is the first software of such sort which
implements deep learning for pixel-level crack de-
tection on masonry surfaces. State of the art CNNs
pretrained on ImageNet are examined for their effi-
cacy to classify images from masonry surfaces on
patch level with MobileNet obtaining the highest
accuracy, that is 95.3%. U-net, a deep FCN(fully
Convolutional Network), and FPN, a generic pyra-
mid representation, are combined with different



pretrained convolutional neural networks as the
backbone of the encoder part of the network to
perform the pixel level crack segmentation. U-
net-MobileNet and FPN-InceptionV3 attain the
highest F1 score, that is 79.6% [1], and outperform
the other networks for crack segmentation used in
this study..

In this thesis, their results are going to be com-
pared to what we have obtained after improving
their software.

2.2 Review and Comparison of Ma-
chine Learning Models for Ma-
sonry Wall Crack Detection

In their work “Automatic image-based brick seg-
mentation and crack detection of masonry walls us-
ing machine learning”, Dimitrios Loverdos, Vasilis
Sarhosis have managed to implement several mod-
els with different techniques (U-Net, U-Net-SM,
LinkNet-SM, FPN-SM, DeepLabV3+) for this sole
purpose, the majority of the results having around
95% accuracy [5].

2.3 U-Net

U-Net, a Fully Convolutional Network[4] intro-
duced by Ronneberger et al. in 2015, has since
emerged as a gold standard for biomedical image
segmentation tasks. Unlike conventional convo-
lutional neural networks that focus primarily on
image classification, U-Net is tailored to produce
pixel-wise segmentations, effectively mapping re-
gions in an image to corresponding class labels
[7].

U-Net’s architecture can be visualized as a sym-
metric expanding path, resembling the shape of a
”U”. This symmetric design comprises a contract-
ing path (downsampling) followed by an expansive
path (upsampling). Crucially, the model also in-
troduces skip connections between mirrored layers
in the contracting and expanding paths. These
skip connections ensure that the network can use
features at multiple scales, allowing for precise lo-
calization [10].

Contracting Pathway: The initial segment
of the U-Net, often termed the contracting or en-
coding path, is tasked with extracting contextual
information from images. A series of convolutional
layers, punctuated by max-pooling layers, model
form this path. As the architecture dives deeper
into the contracting phase, reduction in the spatial
dimensions of the feature maps is observed. Con-
trarily, the depth, denoted by the number of fea-
ture channels, experiences an augmentation. This
divided behavior facilitates the architecture’s com-
prehension of the overarching context within the
image.

Expansive Pathway: The latter phase, also
known as the expansive or decoding path, focuses
on reinstating the spatial dimensions to their origi-
nal magnitude. Achieved through the utilization
of transposed convolutions, this phase strives for
precise localizations. A noteworthy characteristic
of the U-Net’s expansive phase is the incorporation
of skip connections. These connections seamlessly
bridge feature maps from the contracting phase,
merging them with those in the expansive phase.
Such an approach ensures the preservation and
integration of high-resolution details that could po-
tentially be obfuscated during the downsampling
process.

The introduction of these skip connections stands
as an innovation in the U-Net’s design, fundamen-
tally reinforcing its exemplary performance in tasks
necessitating pixel-precise predictions. By incorpo-
rating features across varied resolutions, the U-Net
unites both the semantic essence and the spatial
intricacies of the image.

Post its inception, U-Net has not only been the
archetype for numerous derivatives but its foun-
dational principles have also found applicability
beyond the confines of biomedical imaging. Its
efficiency, both in terms of computational resource
utilization and the number of parameters, coupled
with its unparalleled segmentation accuracy for in-
tricate structures, has certainly established U-Net’s
stature as a benchmark when it comes to image
segmentation methods.

Bellow, in picture 2.1 you can see better how the
U-Net architecture looks like.
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Figure 2.1: U-Net architecture [7]

2.4 MobileNetV2

MobileNetV2, as the name suggests, is the second
iteration of the MobileNet architecture, designed
with the primary goal of creating a lightweight
yet powerful neural network suitable for mobile
devices and other edge devices with constrained
computational resources [2, 8].

One of the primary innovations introduced in
MobileNetV2 is the concept of ”inverted residuals.”
Traditional residual blocks expand the channel di-
mension, apply convolution, and then project back



to the original channel count. In contrast, Mo-
bileNetV2 reverses this process: it first projects
to a higher dimension, applies lightweight depth-
wise separable convolutions, and then projects back
using a linear bottleneck. This unique approach
helps in reducing computational complexity while
retaining representational power. The architec-
ture employs linear bottlenecks to ensure that no
non-linearities are introduced in the narrow layers,
which could destroy information. These bottlenecks
play a crucial role in maintaining the efficiency of
the model.

MobileNetV2, like its predecessor, heavily relies
on depthwise separable convolutions, a factorized
convolution operation that drastically reduces com-
putational cost compared to standard convolutions.
By splitting the convolution process into depthwise
and pointwise operations, the model achieves effi-
ciency without significant compromises in accuracy.
This architecture offers a range of models with
different width multipliers, allowing developers to
choose a model variant that best fits their specific
computational budget and accuracy requirements.
In our case, the model captures activations from
specific layers of MobileNetV2, similar to the U-Net
model.

In figure 2.2, you can find a small schema with
more details about MobileNet and MobileNetV2.
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Figure 2.2: MobileNet & MobileNetV2

2.5 Pix2Pix: Image-to-Image Trans-
lation with Conditional Adver-
sarial Networks

The “pix2pix” model, proposed by Isola et al. in
2017 [3], is a framework for image-to-image trans-
lation using conditional adversarial networks. In
essence, it converts types of images into other types,
such as turning sketches into colored photos or
black and white images into colored ones.

The model utilizes a conditional Generative Ad-
versarial Network (¢cGAN) approach. The genera-
tor follows a modified U-Net structure and attempts
to produce outputs that look similar to real images,
given an input. The discriminator, in contrast,
tries to distinguish between real and fake pairs of
input-output images.

Unlike traditional GANs which generate im-
ages from random noise, pix2pix requires a paired
dataset. That means for every input image, there
is a corresponding target output. During training,
the generator receives an input image and tries to
produce a corresponding output. The discrimina-
tor then receives pairs of input-output images and
tries to predict if the output is real or generated
by the model.

3 Data and Methodology

In this section, we are going to discuss in
more detail the whole work process starting
from preprocessing the data until the final re-
sult. The implementation of the thesis can
be accessed at: https://github.com/HoreaPHP/
Crack_detection_2023.

3.1 Data preprocessing

In order for us to be able to implement this
we require a dataset which contains images with
masonry surfaces and other types of objects in the
background or around the brick surface. We were
provided with a dataset consisting of 52 pictures
from Amsterdam alongside another dataset that
was used for training the model created by Thsan
Engin Bal and his team [1].

After having a look through the data that we
have received, we have taken the decision to merge
the masks into one since not all of the images
had the same number of masks. A part that com-
plicated the process was the fact that the masks
were saved in a JPG format. JPG uses a com-
pression algorithm which affects the colors of the
pixels, resulting in values that were not consis-
tent in their classes. Considering that the values
were not uniform we processed the images into a
grayscale format that had constant values and for
the best quality we have used a PNG format.

Due to time constraints, we have chosen to stick
just with the masks that were related to the cracks
themselves since the dataset was rather small and
having multiple classes on a dataset like this could
prove to be a bit more complicated to optimise,
especially when it comes to the weights of the
classes. The codebase was built in such a way that
it can be easily expanded with more classes.

In figures 3.2 and 3.3, you can find an example
of an image and its related mask while in image 3.1
the flow of preprocessing step can be visualized.
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Figure 3.1: Code flow
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Figure 3.3: Related image

3.2 Neural network

For the neural network, as previously mentioned,
we have decided to use a U-Net neural network
with MobileNetV2 architecture since MobileNetV2
provides a model that is more lightweight. The
main reason why we have chosen to stick to the
U-net model was the fact that the previous imple-
mentations have also used this model architecture
and we wanted to build on that.

As previously stated, due to time constraints,
implementing a large variety of techniques would
not have been feasible. For the contracting path
that we have implemented, we have used a con-
tracting path consisting of 12 layers of 64, 128, 256,
512 respectively 1024 filters. In order to implement
the upsampling path in a more convenient way we
have used the already implemented usampling path
from the pix2pix “tensorflow-example” library. A
good way to visualise this architecture would be
the previously mentioned figure 2.1.

3.3 Classes and model fitting

Before being fed to the model, the masks were
resized from their initial resolution down to a reso-
lution of 1024x1024 alongside their related images.
Since the dataset was rather small, the images have

also been augmented so that we improve the train-
ing process and reduce overfitting by increasing the
size of the dataset. By doing this we have managed
to increase our number up to 6000 images split in a
proportion of 80-20 for training and for validation.
After that, 2 classes have been used. Each pixel
has been assigned a class based on the color value
of it.

The loss function that has been wused is
categorical-crossentropy alongside the Adam op-
timiser. Categorical-crossentropy was used since it
performs and produces better results in comparison
to binary-crossentropy when it comes to multiclass
predictions. After combining those, the model has
been trained for a period of 50 epochs.

4 Results

In this section, we are going to discuss the results
obtained in the methodology section mentioned in
the chapters above. It is important to mention
that all of the metrics listed below in this section
have been tested on the dataset that has been used
for training our current model with respect to the
model that we were supposed to improve.

4.1 Predictions

In figure 4.1, you can see a couple of predictions
resulted from our created model. As you might see
the shape of the predicted cracks are the same as
the ones from the true mask, just slightly thicker.
This thickness might affect the precision metric of
the model since some pixel with value 0 are marked
as 1.

When you take the two figures 4.1 and 4.2 you
can see a clear difference between the two predic-
tions and how we have managed to improve their
respective prediction on our dataset.

Original Image True mask Detected crack

Figure 4.1: 1024x1024 Predictions
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Figure 4.2: 224x224 Predictions

4.2 F1 score

The F1 score represents harmonic mean of precision
and recall, often used to account for the balance
between the two in binary classification tasks. It
ranges from 0 to 1, where 1 indicates perfect pre-
cision and recall, and 0 indicates neither precision
nor recall.

In our implementation, for the 0 class we have
obtained an almost perfect F1 score of 1.00. This
suggests that the balance between precision and
recall for class 0 is excellent. While for the 1 class
due to the low precision, we have obtained a score
of 0.49. This is a balanced score, but indicates
room for improvement.

From the images listed above (4.2) we can see
that their F1 score is 0, most probably being re-
sulted from the fact that their precision is equal to
0.

4.3 Accuracy

In the figures 4.3 and 4.4 you can see how the
accuracy has increased during the first 5 epochs of
the model. The initial improvements in accuracy
suggest that the model is learning effectively from
the training data. With each passing epoch, the
model seems to be refining its predictions, leading
to better performance.
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Figure 4.3: Plot of the accuracy
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Figure 4.4: Plot of the accuracy for the
validation set

4.4 Precision

Precision is the ratio of correctly predicted positive
observations to the total predicted positives. It’s
a measure of how many of the items identified
as positive are actually positive. In our case the
precision for the 0 class is excellent, having a value
of 1.0 while for the 1 class it is about 0.33, proving
that the model is still not perfect and there is
room for improvement. The precision the we have
got is a lot better than the one from the previous
implementation.

4.5 Recall

Recall represents the ratio of correctly predicted
positive observations to all the actual positives. It’s
a measure of the classifier’s ability to identify all
positive instances. In our case we have obtained
really good results with 99% for the 0 class and 93%
for the 1 class. In comparison to the other software
this recall is far greater that it’s predecessor.
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Figure 4.5: Performance matrix

4.6 Confusion matrix

The confusion matrix is a table used to describe
the performance of a classification model on a set
of data for which the true values are known. The
matrix typically contains four values: True Positive
(TP), False Positive (FP), True Negative (TN), and
False Negative (FN). In our case you can see that
our model had a very good prediction in terms
of the true-positive values which consist of the
correctly predicted pixels.
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Predicted

Figure 4.6: Confusion matrix

4.7 Loss function

The loss function is a mathematical function that
quantifies the difference between the predicted val-
ues and the actual values. It is used during the
training of machine learning models to optimize
the parameters.

Based on figure 4.7 and 4.8 which plot the loss
function over the course of 5 epochs, both the train-
ing and validation loss displayed a consistent down-
ward trend, indicative of a model that is effectively
learning from its data. Particularly promising is the
parallel decline observed in both graphs, suggesting

the model’s consistent performance on training and
validation sets.
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Figure 4.7: Plot of the loss function
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Figure 4.8: Plot of the loss function for
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4.8 Conclusion of the results

The metrics shown in this section mark how well
how our model performed in terms of spotting
cracks on masonry structural surfaces. The model’s
ability to identify cracks with few false positives and
negatives is demonstrated by its quite high accuracy
along with notable precision and recall values. The
confusion matrix, alongside the accuracy and loss
function plots show more information related to the
model’s capability to distinguish between objects,
demonstrating the dependability of the model.

5 Conclusion

The advancements proposed in this study, particu-
larly the introduction of multiclass prediction, have
shown great potential in improving crack detection.
The seen results, marked by high accuracy and
other performance metrics, attest to the model’s
potential in automating and improving what has
normally been a manual and often subjective task.
Furthermore, the model’s performance suggests a
promising path toward reducing inspection costs
and increasing the reliability of structural assess-
ments.



Despite the fact that our model performed well,
there is still room for improvement. A couple of
things could be done: increasing the variety and
size of the native training dataset since the used
dataset was rather small and by enlarging it the
performance of the prediction can be improved,
creating a GUI(Graphics User Interface) in order
to improve the quality of the user experience and
testing more classes and looking more into the
fact that the model still takes some objects into
account. The journey toward perfecting Al-driven
crack detection is ongoing, but this research marks
a significant step forward.
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