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Abstract
In light of the ongoing climate crisis, we present a framework that investigates the interplay
between homophily, opinion polarization, individual sustainable behavior, and their collective
influence on the climate crisis. Our approach involves a continuous time model to capture the
dynamics between individual sustainable actions and their impact on the climate. In this model,
the decision-making process is governed by a game-theoretic mechanism, influenced by various
factors such as homophily, social influence, costs of sustainable behavior, and climate impact. We
transform the continuous model into a mean-field representation to facilitate direct analysis and
computational simulations. Additionally, we extend the model by incorporating opinion dynamics,
including peer pressure and confirmation bias. Furthermore, we expand the game theoretic
mechanism to incorporate additional elements like governmental subsidies, economies of scale,
and opinion influence. With this enriched model, we investigate the effects of polarization on
climate impact. The results demonstrate that high levels of homophily and polarization lead to an
increase in both the mean and maximum climate impact caused by the lower responsiveness of the
system. Additionally, high costs associated with sustainable behavior and limited technological
efforts to combat climate change further heighten the climate impact. Hence, we emphasize the
importance of reducing homophily and polarization, while simultaneously investing in climate
technologies to lower the costs associated with sustainable behavior and enhance technological
capabilities. These measures are crucial in effectively mitigating the impact of the climate crisis.

Keywords - Climate Modeling, Opinion Dynamics, Behavioral Dynamics, Peer Pressure,
Confirmation Bias, Polarization, Homophily, Game Theory
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Preface
The 21st century is marked by one of the most significant challenges humanity has ever faced -
the climate crisis. Over the past 6 months, I had the opportunity to delve deeper into this topic
by investigating the aspect of individual behavior in the light of homophily and polarization. It
was an interesting, and sometimes challenging, journey to gain a deeper understanding of the
complex interplay between opinion, behavior, and climate impact. All in all, I enjoyed working
on the topic, and in front of you is the result of my work for the last half year.

Without the help of others, this report would not be completed in this form. Therefore, I thank
my supervisors for the opportunity they gave me to carry out this research. A special mention
goes to Kathinka Frieswijk, my daily supervisor, for her support, constructive feedback, and the
freedom she afforded me during this project. Her expertise in fields like mathematical analysis
and notation, which I was less familiar with, was really valuable. Last but not least, I would like
to thank my family, roommates and friends for their support during the project.

I hope you enjoy reading the report!

Rik Keppel
Groningen, July 2023
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Chapter 1. Introduction

1 Introduction

1.1 Research Motivation
Climate change and global warming are significant environmental concerns of our time, posing
significant threats to the well-being of our planet and its inhabitants. The scientific community has
concluded that human activities, mainly burning fossil fuels and deforestation, have significantly
contributed to the increase in greenhouse gas concentrations in the atmosphere, leading to global
warming and climate change [1].

The impact of climate change is already being felt worldwide, manifesting in rising sea levels,
melting ice caps, more frequent and extreme weather events, and biodiversity loss [2]. The effects
of climate change are not only environmental but also social and economic, affecting human
health, food security, and access to water, among other critical aspects of human life [3, 4].

Governments have taken various actions to counter the threat of global warming and climate
change, including transitioning to renewable energy, increasing energy efficiency, and promoting
sustainable transportation. These actions are intended to reduce greenhouse gas emissions and
mitigate the impact of climate change; much must be done to combat the effects of climate
change and prevent further damage [5]. The collective effort of individuals, governments, and
organizations is essential to achieving sustainable development and mitigating the impact
of climate change on our planet. However, the current actions are insufficient to limit the
temperature increase to the goal, a maximum increase of 2 ◦C above the pre-industrial average
[6]. According to [7], there is even an increase in carbon emissions of 4.8% in 2022, while the
carbon emissions must be significantly decreased to counter global warming.

Individual behavior plays a crucial role in the reduction of carbon emissions; sustainable lifestyle
changes, such as reducing energy consumption, using renewable energy sources, and preferring
public transportation over individual transportation, can significantly reduce the carbon emissions
[8]. Moreover, sustainable behavior of individuals can also indirectly reduce carbon emissions
because companies are encouraged to act sustainably to meet the client demands and boost the
company reputation [9]. A primary driver for individual behavior is individuals’ opinion about
the severity of climate change, i.e., people tend to act more sustainably if they perceive climate
change as severe [10].

Individual opinions are formed by interacting with others [11]. In this regard, it is interesting to
study the trajectory of the climate debate because the opinions about climate change impact
the sustainable behavior of individuals [12, 13]. In [14, 15], it is noted that the climate debate
has been polarized in the last few years. For example, there is an increasing group that denotes
the impact of humans on climate change. At the same time, one-third of the population denies
the link between climate change and human activity in the United States. The presence of
polarization creates obstacles to climate interventions due to opposition from climate skeptics
[16].

Page 1 of 31



1.2. Problem and Research Goal Chapter 1. Introduction

1.2 Problem and Research Goal
The challenge at hand is the increasing climate impact, which has placed pressure on life on
Earth. Humans need to step in and steer this positive trend toward a more favorable direction
by acting more sustainably. In this collective effort, individual perspectives hold a crucial role.
However, the current climate debate has become highly polarized, posing a barrier to effective
climate change mitigation. Some individuals dismiss the impact of climate change, while others
are deeply concerned, leading to a lack of dialogue and understanding in society.

Therefore, gaining a deeper understanding of the relationship between climate change and
individual behavior and the underlying opinion is crucial. Exploring the underlying mechanisms
in the climate debate can contribute to strategies to reduce polarization and its interconnected
climate impact. This thesis will investigate the interplay between climate opinion, individual
climate action, and the resulting climate impact with a conceptual mathematical framework. The
modeling of climate change is not novel. In the 3rd century BC, Greek astronomers–geographers
made conceptual climate models to understand climate evolution better. Over time, climate
change models have become increasingly comprehensive to improve the accuracy of climate
change predictions [17].

Opinion dynamics is also a field with a longstanding history. For example, opinion dynamics
models are frequently employed in other disciplines such as epidemiology and social media studies
(e.g., [18, 19] and [20, 21]). Various mathematical models have been developed to capture opinion
dynamics in complex networks. One of the initial models is the Voter model, introduced in [22]
and derives its name from its application to simulate competing opinions in elections. In this
model, multiple agents are interconnected through edges, and each agent holds one of the two
discrete opinions. At each discrete-time step, a random agent selects another agent and adopts
its opinion. For instance, if an agent holds opinion 1 and selects another agent with opinion
0 at the current time, the agent will have opinion 0 at the next time step. Another famous
model is the discrete-time DeGroot model, where opinions are updated based on the weighted
average opinion of their neighbors for each time step [23]. Each neighbor has another weight,
which reflects the influence of each neighbor. The Deffaunt-Weisbuch, presented in [24], proposes
a continous opinion value for each individual, xi ∈ [−1, 1], instead of binary values. Within
this model, individuals interact exclusively when their opinions are sufficiently close, where a
maximum allowable opinion distance defines the critical closeness. If there is an interaction, and
the opinion distance is small enough, the agents move their opinions toward each other.

Numerous models exist, some focusing on climate impact while others on opinion dynamics.
However, many mathematical models relevant to climate change, such as feedback models (e.g.,
[25, 26]), lack essential social aspects like peer pressure, confirmation bias, and homophily, which
are integral to this research. This study presents a mathematical framework combining opinion
dynamics, behavioral dynamics, and climate impact. Building on the conceptual model proposed
by [27], which established a link between sustainable behavior and actual climate impact changes,
this thesis aims to extend the work of [28] by incorporating a homophily factor to investigate
its impact. Subsequently, we further extend the model by integrating opinion dynamics to
explore the polarization’s societal impact. By doing so, we seek to provide a more comprehensive
understanding of the interplay between behavioral patterns, opinion formation, and climate
impact.
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1.3 Research Report Outline
In Chapter 2, a simplified game-theoretic network model in continuous time is presented. This
model contains individual behavior, responsible or irresponsible, and the corresponding impact
on global warming. The game-theoretic mechanism is similar to [27, 29, 28], and it comprises a
behavior revision process wherein individuals tend to adopt a behavior yielding higher payoff
while also conforming to the behavior of their neighbors. Additionally, homophily is added to
the model, i.e., individuals tend to be influenced by individuals that act similar [30, 31]; the
implementation of homophily via the parameter θ ∈ [0, 1) is based on [32]. We analyze the model
by making it mean-field by which the equilibria of the mean-field system are calculated [27].
Besides, the impact of homophily on climate change is analyzed via computational simulations.

In Chapter 3, the previously described model is extended by adding an opinion state because
sustainable behavior depends on the severity perception of climate change [10]. Again, the game-
theoretic mechanism is applied to the revision process of the behavioral state. The payoff for
each agent’s sustainable behavior depends on that agent’s opinion state. The opinion dynamics
include peer pressure and confirmation bias. Peer pressure means that individuals are inclined to
adopt their opinion to the opinion of their neighbors, and confirmation bias refers to the concept
that individuals favor opinions that align with their own opinion and are tended to ignore
opposite opinions [33, 34, 35]. The implementation of peer pressure is based on [35], where the
opinion of an individual is updated according to the opinion of the neighbors. The confirmation
bias implementation is based on [33, 24], where the influence is limited to a maximum opinion
distance, i.e., if two individuals interact and the distance is too big, they cannot influence each
other.

This thesis concludes with a general conclusion and discussion in Chapter 4, where the results
are summarized and discussed with respect to the existing literature. Also, options for future
research are presented.
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2 Homophily in the Climate Context

2.1 Introduction
This chapter will propose, investigate, and discuss a continuous-time model that describes the
interrelation between sustainable behavior and climate impact. Especially the effect of homophily
of the network on the climate impact and behavioral dynamics is investigated. The model
formulation and analysis are highly based on the model presented in [27]. However, homophily
is added to the model via the homophily factor, which is inspired by the use of this factor in
[28]. Homophily refers to the tendency of individuals to interact with others who exhibit similar
behavior [36].

The following chapter is organized as follows. In Section 2.2, we present the formulation of
the mathematical model, incorporating factors such as environmental impact and behavioral
dynamics, which are regulated by a game-theoretic mechanism. Additionally, this section provides
insights into the mean-field interpretation. Next, Section 2.3.1 examines the equilibrium points
and their conditions through direct analysis. However, due to the complexity involved, direct
analysis has its limitations. Therefore, in Section 2.3.2, we conduct simulations to explore the
system’s response to varying levels of homophily and the other parameters. The chapter ends
with a short conclusion to present the main findings and highlight the limitations of the proposed
model.

2.2 Model
The system comprises a population denoted by V := {1, ..., n}, where n ∈ Z>0 is the number
of agents and t ∈ R≥0 is the continuous time. The undirected network representing the system
is denoted by G(t) := (V, E), where (i, j) ∈ E implies that agent j influences agent i. The
set of neighbors of agent i is denoted by Ni := {j ∈ V : (i, j) ∈ E} and has cardinality
di = |Ni|. Individual sustainable behavior time t is given by the binary parameter xi(t) ∈ {0, 1},
where xi(t) = 0 and xi(t) = 1 respectively indicates environmentally irresponsible behavior
and environmentally responsible behavior; X(t) := [x1(t), x2(t), ..., xn(t)] ∈ {0, 1}n gathers the
behavioral state for all the agents.

2.2.1 Environmental Impact
The formula for the environmental impact is derived from [27] and is as follows:

ε̇(t) = (γx̄0(t)− τ) ε(t), (2.1)

where ε ∈ R≥0 is the environmental impact, and τ ∈ R>0 represents the technological efforts
that are made to combat climate impact. The term γx̄0(t) is the effect of sustainable behavior
on the actual climate impact, where x̄0(t) ∈ [0, 1] is the fraction of the population that act
environmentally irresponsible at time t and γ ∈ R>0 is a scaling factor. The fraction of the
population that acts irresponsible at time t is given by

x̄0(t) :=
1

n
|{i ∈ V : xi(t) = 0}|. (2.2)

Page 4 of 31
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Equation (2.1) assumes a causal relationship between human actions and actual climate impact.
This assumption is confirmed by several papers that find a relation between individual behavior
and climate impact, i.e., environmentally responsible behavior leads to a reduction of climate
impact while irresponsible behavior is associated with an increase of climate impact [8, 37, 38].

2.2.2 Environmental Behavior

The behavioral dynamics are based on a game-theoretic based mechanism, similar to [27]. Each
agent’s choice i ∈ V for acting responsible or irresponsible is based on the incentives for each
behavioral state. The incentive for agent i to act irresponsibly is given by the expression

π
(i)
0 (X(t)) :=

1

di

∑
j∈Ni

(1− xj(t)) + κ, (2.3a)

on the other hand, acting responsible, is incentivized by

π
(i)
1 (X(t), ε(t)) :=

1

di

∑
j∈Ni

xj(t) + µε(t). (2.3b)

Equation (2.3) includes different elements that contribute to the incentives and represent the
following real-life phenomena:

1. Peer pressure. A well-known concept in psychology is peer pressure, i.e., individuals
are inclined to adjust their behavior to align with those of their peers [33]. Therefore, the
incentive is higher for a certain behavior if more neighbors act similarly, represented by
the first terms in Equations (2.3a) and (2.3b).

2. Climate impact: It is assumed that an increase in the severity of climate change leads
to increased public awareness of the issue. For example, [39] suggest that the perceived
risk of climate change rises if climate-related disasters occur, such as floods. The term µε
represents this effect, where µ ∈ R>0 denotes the speed at which the population responds
to climate impact and ε represents the climate impact.

3. Sustainability costs: The costs associated with sustainable behavior can be a barrier to
adopting these behaviors [40]. As a result, individuals may be more incentivized to act
environmentally irresponsibly and fail to take action if the costs of sustainable behavior
are high. The climate costs are denoted by κ ∈ R≥0.

The incentives determine the transition rates between the binary behavioral states. If we define
this transition as an event E and the transition rate as ρE , we have

lim
∆t↘0

Event P[E occurs during (t, t+∆t)]

∆t
= ρE(t),

where we state that the event E is triggered with a Poisson clock with rate ρE(t). The imple-
mentation of the Poisson clock is based on [27].

Following the same logic as in [27], individual i who is acting irresponsibly at time t will change
to acting responsible if triggered by a Poisson clock with the following rate
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2.2. Model Chapter 2. Homophily in the Climate Context

ρ
(i)
01 (X(t), ε(t)) =

1

di

∑
j∈Ni

(1− θ)xj(t)π
(j)
1 (X(t), ε(t)), (2.4a)

while the rate at which agents switch their behavior from acting responsible to acting irresponsible
is given by a Poisson clock with rate

ρ
(i)
10 (X(t)) =

1

di

∑
j∈Ni

(1− θ)(1− xj(t))π
(j)
0 (X(t)). (2.4b)

The parameter θ ∈ [0, 1) represents homophily, which is a well-known concept in psychology, i.e.
people tend to interact with like-minded persons [30, 31]. A high value of θ means that people
are more inclined to interact with like-minded; in that case, the effect of imitation dynamics is
weaker because people with different behaviors are more easily ignored, leading to less imitation.
This holds for both transition rates since they are multiplied with 1− θ.

The transition rates in Equation (2.4) depend on a combination of imitation dynamics and
homophily. A higher incentive for a particular state leads to a higher transition rate to that state.
Research by [41] suggests that individuals tend to conform to their environment and imitate
their peers. Therefore, individuals look at their peers’ incentives for the corresponding behavior.
Imitation dynamics is implemented similarly in [27], except for the implementation of homophily.

The rates of the Poisson clocks are different and independent for each individual i ∈ V. As a
result, the dynamics of the individual behavior are described via a continuous-time Markov
process [42], where the transition rate matrix for individual i is given by

Qi(X(t), ε(t)) =

[
−ρ(i)01 (X(t), ε(t)) ρ

(i)
01 (X(t), ε)

ρ
(i)
10 (X(t)) −ρ(i)10 (X(t))

]
. (2.5)

The following section will focus on the mean-field description of the system.

2.2.3 Mean-Field Description

The system with the transition rates in Equation (2.5) is hard to analyze because an individual’s
behavioral dynamics depend on the population’s behavior states. In order to analyze the system
for large populations, it is assumed that n→ ∞, which is similar to the approach of [27]. In this
case, the behavioral state of each individual is not traced. Instead, the probability that any agent

i ∈ V is in a particular state is used, i.e. p
(i)
0 (t) = P[xi(t) = 0] and p

(i)
1 (t) = P[xi(t) = 1]. The

evolution of p
(i)
0 (t) and p

(i)
1 (t) is given by [ṗ

(i)
0 ṗ

(i)
1 ] = [p

(i)
0 p

(i)
1 ]Qi(p

(i)
1 (t), ε(t)). These dynamics are

derived by using the forward Chapman-Kolmogorov equation and replacing the vector X(t) with

the vector [p
(1)
1 (t), ..., p

(n)
1 (t)] in the transition matrix. The dynamics of the state probabilities

are given by

ṗ
(i)
0 = −ρ(i)01 (p1(t), ε(t))p

(i)
0 + ρ

(i)
10 (p1(t))p

(i)
1 ,

ṗ
(i)
1 = ρ

(i)
01 (p1(t), ε(t))p

(i)
0 − ρ

(i)
10 (p1(t))p

(i)
1 .

(2.6)
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The probability that an individual i ∈ V acts environmentally responsible is used to define the
average probability that a random individual acts responsible:

x(t) :=
1

n

∑
i∈V

p
(i)
1 (t). (2.7)

The variable x(t) serves as an estimate for the proportion of the population engaging in sustainable
behavior, providing valuable insights into the overall state of the population; the accuracy of this
estimation improves as the population size increases. Similar to Equation (2.7), the evolution of
the change that a random agent acts responsible is given by

ẋ(t) :=
1

n

∑
i∈V

ṗ
(i)
1 (t). (2.8)

Since x(t) denotes the probability that an agent acts responsibly, it also represents the fraction
of individuals who act responsibly, assuming an infinite number of agents. Conversely, the
proportion of agents acting irresponsibly can be described by 1 − x(t). Building upon this
information and using equations Equations (2.6) and (2.7), we can express the following system:

ṗ
(i)
1 = ρ

(i)
01 (p1(t), ε(t))

(
1− p

(i)
1

)
− ρ

(i)
10 (p1(t)) p

(i)
1 ,∀i ∈ V,

ε̇ =

(
γ

[
1− 1

n

∑
i∈V

p
(i)
1 (t)

]
− τ

)
ε.

(2.9)

Besides the assumption of an infinite number of agents, the assumption of a fully connected
network is made. Hence, for the rest of the chapter, we will work under the following assumption:

Assumption 1. (i) There is an infinite number of agents, i.e., n→ ∞ and (ii) any agent i ∈ V
is connected to the entire population, i.e., Ni = V for all i ∈ V.

Under Assumption 1, the incentives become agent-independent and are given by

π0(x(t)) := (1− x(t)) + κ, (2.10a)

and

π1(x(t), ε(t)) := x(t) + µε(t). (2.10b)

The transition rates in Equation (2.4) reduce to ρ01 = x(1− θ)(x+ µε) and ρ10 = (1− x)(1−
θ)(1−x+κ) in a mean-field situation (see also Equation (2.10)). If we substitute these transition
rates and Equations (2.7) and (2.9) in Equation (2.8), the following system is obtained:

ẋ = x(1− x)(1− θ)(2x+ µε− κ− 1)),

ε̇ = (γ − γx− τ)ε.
(2.11)
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For ease of analysis, realistic assumptions are made. Firstly it is assumed that the incentive for
acting irresponsibly is higher than acting responsibly if there is no environmental impact at time
t. Another assumption made is that the current technologies are not sufficient to alter climate
change [43]. Both assumptions are summarized by the following:

Assumption 2. (i) π0(x(t)) > π1(x(t), ε(t)) if ε(t) = 0 ∀ x(t) ∈ [0, 1] and (ii) γ−γx(t)− τ > 0
if x(t) = 0.

The above assumption leads to the following proposition on the parameters:

Proposition 1. (i) τ < γ and (ii) κ− 1 > 0.

Proof. Following Assumption 2 (i), i.e., γ − γx(t)− τ > 0 if x(t) = 0, leads to τ < γ.

Secondly, π0(x(t)) > π1(x(t), ε(t)) if ε(t) = 0 ∀ x(t) ∈ [0, 1] according to Assumption 2 (ii).
π1(x(t)) is the highest if x(t) = 1, which leads to

π0(1) > π1(1, 0),

which gives

κ > 1 ⇔ κ− 1 > 0.

2.2.4 Validation

A crucial aspect of the model’s design validation involves highlighting relevant literature that
influenced specific design choices, as done in the previous sections. In this section, we will provide
further details on validating the implementation of the model. Matlab is utilized as the tool for
constructing the model. Our model closely aligns with the approach presented in [27], as it is
the foundational basis for our work. So, we will compare the output of our Matlab model with
the output of [27] to check if the model is correctly implemented; the model in the former paper
is given by

ẋ = x(1− x)(2x+ µε+ α+ σ − κ− 1),

ε̇ = (γ − γx− τ)ε.
(2.12)

Assuming we assign α = 0 and σ = 0 in Equation 2.12 and θ = 0 in Equation 2.11, the systems
become identical. So, when executed in Matlab, both systems should yield the same output for
a given input. The correct implementation of the system in Matlab is evident from the matching
trajectories depicted in Figure 1.
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Figure 1: Simulated trajectories of the system, run with the Matlab code from [27] and the system in
Equation (2.11) with the Matlab code that is used for this paper. The used parameters are α = 0, σ =
0, κ = 3, γ = 10, τ = 0.1, µ = 0.6 and θ = 0.

2.3 Results
The results of this study are presented in the following sections. In Section 2.3.1, we provide the
outcomes of the direct analysis. The simulation results are presented in Section 2.3.2.

2.3.1 Direct Analysis

This section analytically evaluates the equilibria of the given mean-field system

ẋ = x(1− x)(1− θ)(2x+ µε− κ− 1),

ε̇ = (γ − γx− τ)ε,
(2.13)

by finding the equilibria of the system and checking their stability properties. The equilibria are
summarized in Proposition 2:

Proposition 2. The system in Equation (2.13) has the following equilibria:

i) (x∗, ε∗) = (0, 0);

ii) (x∗, ε∗) = (1, 0);

iii) (x∗, ε∗) = (1− τ
γ ,

1
µ [2

τ
γ + κ− 1]).

Proof. Equilibria exist if ẋ(t) = 0 and ε̇(t) = 0. Equilibria (i) and (ii) meet these conditions. The
term x(t)(1− x(t)) is zero at both equilibria, implying ẋ(t) = 0, and ε(t) = 0 leads to ε̇(t) = 0.
To find the third equilibrium, we solve γ − γx− τ = 0, which yields x∗ = 1− τ

γ . Substituting

this value of x∗ into µε+ 2x− 1 + κ = 0 gives ε∗ = 1
µ [2

τ
γ − 1 + κ]:
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(x∗, ε∗) = (1− τ

γ
,
1

µ
[2
τ

γ
− 1 + κ]).

For the stability of the equilibria, we present the following proposition.

Proposition 3. Under Proposition 1, the system has the following stability properties:

i) equilibrium (i) is a saddle point;

ii) equilibrium (ii) is a saddle point;

iii) equilibrium (iii) is:

(a) an unstable node if −(2γ − (1 − θ))γ < 0 and τ ∈ [τ−, τ+] where τ± =
1

2(1−θ)

(
−γ(2γ − (1− θ))±

√
γ2(2γ − (1− θ))2 − 4γ3(1− θ)[κ− 1]

)
;

(b) an unstable spiral otherwise.

Proof. The first step for determining the stability of (x∗, ε∗) = (0, 0) is linearizing around the
origin, which gives

[
ẋ
ε̇

]
=

[
−(θ − 1)(κ+ 1) 0

0 γ − τ

] [
x
ε

]
,

with the eigenvalues λ1 = −(θ − 1)(κ + 1) and λ2 = γ − τ . According to Proposition 1, the
eigenvalues λ1 = −(θ − 1)(κ+ 1) < 0 and λ2 = γ − τ > 0. So (x∗, ε∗) = (0, 0) is a saddle point
because there is one positive and one negative eigenvalue. The same procedure is followed for
the equilibrium (x∗, ε∗) = (1, 0), where the system is linearized around the origin of system
x̂ := x− 1 and ε̂ := ε:

[
˙̂x
˙̂ε

]
=

[
(1− θ)(κ− 1) 0

0 −τ

] [
x̂
ε̂

]
,

with the eigenvalues λ1 = (1 − θ)(κ − 1) and λ2 = −τ . If Proposition 1 is applied again, the
eigenvalues λ1 = (1− θ)(κ− 1) > 0 and λ2 = −τ < 0 which points out that (x∗, ε∗) = (1, 0) is a
saddle point as well.

The stability calculations for equilibrium (iii) are more complex because the equilibrium involves
more parameters. Again, the adjusted system

x̃ := x− 1 +
τ

γ
,

ε̃ := ε− 1

µ
[2
τ

γ
+ κ− 1],

is linearized around the origin. This linearization yields
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[
˙̃x
˙̃ε

]
=

[
2 τ
γ

(
1− τ

γ

)
(1− θ) µ τ

γ

(
1− τ

γ

)
(1− θ)

− 1
µ(2τ + γ[κ− 1]) 0

] [
x̃
ε̃

]
.

The eigenvalues are calculated via the determinant:

∣∣∣∣∣ 2 τ
γ

(
1− τ

γ

)
(1− θ)− λ µ τ

γ

(
1− τ

γ

)
(1− θ)

− 1
µ(2τ + γ[κ− 1]) −λ

∣∣∣∣∣ = 0,

which gives

λ2 − 2
τ

γ

(
1− τ

γ

)
(1− θ)λ+ (2τ + γ[κ− 1])

τ

γ

(
1− τ

γ

)
(1− θ) = 0.

This equation is solved by using the discriminant and this gives

λ± =
τ

γ
(1− τ

γ
)(1− θ)±

√
τ2

γ2
(1− τ

γ
)2(1− θ)2 − (2τ + γ[κ− 1])

τ

γ

(
1− τ

γ

)
(1− θ). (2.14)

Due to Proposition 1, τ
γ (1−

τ
γ )(1− θ) > 0 and the square root of the radicand in Equation (2.14)

is smaller than τ
γ (1−

τ
γ )(1− θ), which means that λ± > 0 if the radicand is non-negative. The

radicand is negative if

τ2

γ2
(1− τ

γ
)2(1− θ)2 − (2τ + γ[κ− 1])

τ

γ

(
1− τ

γ

)
(1− θ) < 0,

which implies that the radicand is also negative if

(1− θ)τ2 + γ(2γ − (1− θ))τ + γ3[κ− 1] > 0. (2.15)

To determine if the radicand is negative, two cases are considered: (i) 2γ − (1− θ) ≥ 0, and (ii)
2γ−(1−θ) < 0. In case (i), all terms in Equation (2.15) are positive, making the equation always
positive for all τ > 0. This causes the radicand in Equation (2.14) to be negative, resulting in
a complex part of λ± and Re(λ−)=Re(λ+)=

τ
γ (1−

τ
γ )(1− θ) > 0. Therefore, equilibrium (iii)

becomes an unstable spiral if 2γ − (1− θ) ≥ 0.

For case (ii), the determinant is used to calculate the intersection of Equation (2.15) with 0 and
this gives

τ± =
1

2(1− θ)

(
−γ(2γ − (1− θ))±

√
γ2(2γ − (1− θ))2 − 4γ3(1− θ)[κ− 1]

)
. (2.16)
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Based on Proposition 1 and case (ii), where −(2γ − (1− θ))γ > 0 and the square root of the
radicand in Equation (2.16) is smaller than |(2γ − (1 − θ))γ|, the following conclusions can
be drawn. If the radicand is greater than or equal to zero, then τ+ > τ− > 0. This means
that for τ ∈ [τ−, τ+], the radicand is positive, resulting in equilibrium (iii) being an unstable
node due to the positive eigenvalues λ± > 0. When τ+ < τ < τ−, the radicand is negative,
making equilibrium (iii) an unstable spiral. In cases where the radicand of Equation (2.16) is less
than zero, τ takes complex values, which also corresponds to an unstable spiral for equilibrium
(iii).

2.3.2 Simulations

This section will discuss numerical results. The system in Equation (2.13) is used for the
simulations with a specific focus on the impact of the homophily factor θ on the climate impact.
For this purpose, the model is simulated with different values for θ and varying values for the
remaining parameters. To ensure the robustness of the results, we perform multiple simulations
with varying initial values of ε and x. Then, the outcomes of the runs with different initial values
are averaged to identify the overall patterns in the results.

Climate Impact

Figure 3 shows the impact of the homogeneity factor θ on the mean climate impact. The plots
of the parameter variations suggest that an increase in homogeneity leads to a corresponding rise
in the mean climate impact. In this study, homogeneity is considered an indicator of polarization,
as groups with opposing behaviors tend to interact less due to high levels of homophily, which
is associated with polarized groups. So, a society with a higher tendency for polarization, i.e.,
high value for θ, is less capable of effectively combatting climate change and limiting its impact.
This is also visible in Figure 2, where the simulations with a higher value of θ have a higher
maximum climate impact. Additionally, it is worth mentioning that the final limit cycle in
Figure 2, associated with high θ, exhibits a trajectory leading to a more significant mean climate
impact than trajectories with a lower value of θ.

Figure 2: Simulated trajectories of the system for different values of θ and T = 100. The unstable
equilibrium is marked with the black star. The used parameters are α = 0, σ = 0, κ = 3, γ = 10, τ = 0.1
and µ = 0.6.
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The impact of the parameters on mean climate impact is also illustrated in Figure 3. The results
indicate that a higher technological effort to reduce environmental impact τ leads to a decrease
in mean climate impact. This finding is intuitive as the climate impact is reduced faster if more
technological efforts are made to combat climate change. A higher effect of individuals acting
irresponsibly γ results in a higher mean climate impact (Figure 3b). This phenomenon can be
attributed to the fact that the climate impact is increasing faster if people act irresponsibly,
which leads to a higher mean climate impact. Additionally, Figure 3c suggests that higher
costs for sustainable behavior κ lead to a higher mean climate impact, which is intuitive as
people tend to act environmentally irresponsible as the cost of sustainable behavior increases
(see Equation (2.3)).
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Figure 3: Color-coded mean climate impact for different values of θ and τ (3a), γ (3b), and κ (3c). The
simulation time is T = 100 and the used parameters are τ = 0.1, κ = 5, γ = 10, and µ = 0.6, unless the
parameter is varied in the simulation. Each data point consists of the average of 92 = 81 runs (9 different
initial values for ε and y).

Considering the maximum climate impact is crucial due to the potentially irreversible damage
inflicted upon the planet when carbon dioxide levels, and the resulting climate impact, reach
certain thresholds [44]. In Figure 4, we explore the influence of different parameters on the peak
of the climate impact. Once again, an increase in homophily θ leads to a higher peak in the
climate impact. Conversely, a higher value of τ corresponds to a lower peak because greater
technological efforts are made to combat climate change. On the other hand, higher values of
γ and κ result in a higher peak. A higher γ leads to a more rapid increase in climate impact,
while a higher κ encourages irresponsible behavior, indirectly contributing to a higher escalation
of the climate impact.
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(b) Impact sustainable behavior γ
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Figure 4: Color-coded maximum climate impact for different values of θ and τ (4a), γ (4b), and κ (4c).
The simulation time is T = 100 and the used parameters are τ = 0.1, κ = 5, γ = 10, and µ = 0.6, unless
the parameter is varied in the simulation. Each data point consists of the average of 92 = 81 runs (9
different initial values for ε and y).

Responsiveness of the System

Due to the feedback mechanism, the dynamics of the behavior and the climate impact follow an
oscillatory trajectory, which is also visible in Figure 5. The number of peaks can say something
about the system’s responsiveness, i.e., if there is a high number of local peaks, the system
changes frequently, indicating high responsiveness to the increase or decrease of climate impact.
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Figure 5: Dynamics for the behavior and climate impact for the mean-field model with the following
parameters: τ = 0.1, κ = 5, γ = 10, µ = 0.6, x(0) = 0.5, ε(0) = 0.5, and θ = 0.5.

Figure 6 shows the trend that higher homophily leads to a reduction in the number of peaks.
So, the system’s responsiveness reduces when the homogeneity in the system is higher. This
is intuitive because individuals are prone to be influenced by like-minded individuals, while
individuals with other behavioral states are ignored. Therefore, individuals shift slower to different
behavior.
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Figure 6: Color-coded number of local peaks for different values of θ and τ (6a), γ (6b), and κ (6c). The
simulation time is T = 100 and the used parameters are τ = 0.1, κ = 5, γ = 10, and µ = 0.6 unless the
parameter is varied in the simulation. Each data point consists of the average of 92 = 81 runs (9 different
initial values for ε and x).

2.4 Conclusion
Through direct analysis, it is found that there exist three equilibria and none of them are
stable. Two equilibria are saddle points, while the third equilibrium is, based on the input
parameters, an unstable node or unstable spiral. The numerical results in Section 2.3.2 found
that increasing homogeneity in a network leads to higher mean and maximum climate impact,
indicating reduced effectiveness in combating climate change due to homogeneous groups. Higher
efforts to minimize environmental impact resulted in decreased climate impact. Conversely, a
higher effect of irresponsible behavior and higher climate costs are correlated with higher climate
impact. The higher climate impact is caused by lower system responsiveness because of higher
homophily.

The model offers insights into the impact of homophily on the course of environmental impact.
However, it is important to acknowledge several limitations in the model design, which are
crucial considerations when applying the results to real-life scenarios.

• The model includes different parameters that are hard to quantify and validate in reality.
For example, the behavioral state x is a binary number, meaning only two behaviors are
possible. In reality, there is a wide variety of behaviors that range from completely acting
irresponsibly to acting fully responsibly and everything in between.

• The environmental impact ε is now solely dependent on human actions and does not
include other factors that can possibly influence climate impact. The scientific consensus
is that humans are the main cause of global warming [45]. However, this does not exclude
other factors, such as the influence of natural cycles, contributing to the course of the
climate impact [46, 47].

• Following Assumption 1, there is an infinite number of agents and everyone is connected.
This assumption does not represent reality because real-life societies have limited individuals
and it is also not likely that everyone is connected.

• The parameters γ, τ, κ, and θ are assumed to be constant over time, whereas it is also
possible that these parameters will vary over time. For example, it is likely that the efforts
to combat climate change τ increase if the climate impact also increases.
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3 Opinion Polarization in the Climate Con-
text

3.1 Introduction
The preceding Chapter 2 provided an overview of a continuous-time model used to examine the
influence of homophily. This chapter will introduce a new discrete-time model, where individual
opinions are incorporated into the model to make the model more accurate. While the new
model will also consider homophily, the primary focus of this chapter will be on the interplay
between polarization and climate change. To achieve this, the main paper [27] will be combined
with other papers that mathematically describe the sociological phenomena associated with
opinion formation. The mathematical implementation of peer pressure will be based on [35],
while the implementation of confirmation bias will draw from [48].

The chapter is structured as follows. Firstly, the model is be presented in Section 3.2, including
environmental impact, opinion dynamics, behavioral state dynamics, and the definition of
polarization. Subsequently, Section 3.3 will present the outcomes of the discrete-time model,
examining the influence of various input parameters on the trajectory of climate impact, opinions
on climate change, and polarization. Finally, the chapter will conclude with a brief summary of
the findings. The model’s limitations will also be addressed toward the end of this section.

3.2 Model
The system comprises a population denoted by V := {1, ..., n}, where n ∈ Z>0 is the number
of agents and t ∈ Z≥0 is the discrete-time. The undirected network representing the system
is denoted by G(t) := (V, E), where (i, j) ∈ E implies that agent j has a connection with
agent i. The set of neighbors of agent i is denoted by Ni := {j ∈ V : (i, j) ∈ E} and has
cardinality di = |N i|. As in [27], the environmental behavior of agent i at time t is binary and
given by xi(t) ∈ {0, 1}, where xi(t) = 1 and xi(t) = 0 respectively represent environmentally
responsible and irresponsible behavior. An individual’s opinion about the severity of climate
change at time t is given by the non-binary parameter yi(t) ∈ [0, 1], where yi(t) = 0 indicates
total disbelief in the severity of climate change and yi(t) = 1 indicates serious concern about it.
X(t) := [x1(t), x2(t), ..., xn(t)] ∈ {0, 1}n and Y (t) := [y1(t), y2(t), ..., yn(t)] ∈ {0, 1}n respectively
gather the behavioral states and opinions for all the agents.

3.2.1 Environmental Impact

The formula for the environmental impact is quite similar to Equation (2.1) but is in discrete-time
and given by

ε(t+ 1) = ε(t) + (γx̄0(t)− τ) ε(t), (3.1)

where all the parameters in the equation represent the same aspects as in Chapter 2, specifically:
ε ∈ R≥0 represents the environmental impact, γ ∈ R>0 serves as a scaling factor, and τ ∈ R>0
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denotes the technological efforts that are made to combat climate change. The parameter
x̄0 ∈ [0, 1] is the fraction of the population that acts irresponsible, which is denoted by:

x̄0(t) :=
1

n
|{i ∈ V : xi(t) = 0}|. (3.2)

3.2.2 Environmental Opinion

The formula for the opinion dynamics is an addition to the model in Chapter 2. The opinion
dynamics depend on their neighbors’ opinions and behavioral states. Individual beliefs about the
severity of climate change are related to the willingness to perform sustainable behavior [12, 13].
The opinion dynamics of an agent depend on all other agents in the network. Moreover, agent i
randomly selects another agent j from the entire population for contact at each time step. The
opinion updating formula for agent i is given by:

yi(t+ 1) = (1− bij(t)ρ1 − ρ2)yi(t) + bij(t)ρ1

(
yj(t) + yi(t)

2

)
+ ρ2

 1∑
k∈Ni

b̂ik(t)

∑
k∈Ni

b̂ik(t)xk(t)

 , (3.3)

where

bij(t) =

{
1, |yj(t)− yi(t)| < ϵ,

0, otherwise,
(3.4)

and

b̂ij(t) =

{
1, |xj(t)− yi(t)| < ϵ,

0, otherwise.
(3.5)

The parameters ρ1, ρ2 ∈ [0, 1] are scaling factors for the magnitude of opinion change. The
parameters ρ1 and ρ2 can, for example, represent the degree of conservatism of the agents as
in [48]; relatively high values of ρ1 and ρ2 indicate a low degree of conservatism because the
opinion of agent i at time t has less impact on its opinion at time t+ 1, i.e., the agent’s opinion
can change fast.

The second term corresponds with the psychological effect of confirmation bias, i.e., individuals
tend to accept and assimilate opinions that are close enough to their own opinion while they
ignore deviating opinions [30, 31]. In this regard, ϵ ∈ [0, 1] is the maximum distance at which
agents can influence each other’s opinions. If the distance between the agents’ opinions is smaller
than the critical distance, ϵ, agent i is influenced by agent j at time t (bij(t) = 1). However,
the influence factor will be zero if the distance is too big (bij(t) = 0). The implementation of
confirmation bias mirrors that of [48], wherein the distance between agents’ opinions is also
utilized to determine whether they influence one another.
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The third term stands for another concept in psychology: peer pressure. Individuals are prone to
adapt their opinions to the opinions of their peers [34]. The agent can only interact with one
other agent at once; therefore, they cannot know the opinions of all the other agents in their
network. Instead, it is assumed that the agents can see the behavior of their peers and these
behavioral states are interpreted as the opinions of the agent. So, if an agent shows responsible
behavior (xi(t) = 1), it is interpreted as an agent who takes climate change very seriously
(yi(t) = 1). The implementation of peer pressure in Equation (3.3) follows the approach proposed
by [35]. Similarly, confirmation bias is incorporated into the peer pressure mechanism using the
ϵ in Equation (3.5), which implies that an individual is only influenced by others if the difference
between the individual’s opinion and the behavior of others is sufficiently small.

The subsequent lemma demonstrates that Equation (3.3) is well-defined for all t ∈ Z≥0.

Lemma 1. For i ∈ V and t ∈ Z≥0, yi(t) ∈ [0, 1] for all yi(0) ∈ [0, 1], xk(0) = {0, 1} and the
set {(ρ1 ρ2) : ρ1, ρ2 ≥ 0, ρ1 + ρ2 ≤ 1}.

Proof. We begin by rewriting Equation (3.3) as follows: yi(t + 1) = (1 − bij(t)ρ1 −
ρ2)a1(t) + bij(t)ρ1a2(t) + ρ2a3(t), where a1(t) = yi(t), a2(t) =

yj(t)+yi(t)
2 , and a3(t) =

1∑
k∈Ni

bik(t)

∑
k∈Ni

bik(t)xk(t).

We observe that a1(t), a2(t), and a3(t) are all within the interval [0, 1] for any yi(t), yj(t) ∈ [0, 1]
and xk(t) ∈ {0, 1}.

Given the expression yi(t+ 1), the following statement holds:

yi(t+ 1) = (1− bij(t)ρ1 − ρ2)a1(t) + bij(t)ρ1a2(t) + ρ2a3(t)

≤ (1− bij(t)ρ1 − ρ2) + bij(t)ρ1 + ρ2 (since a1(t), a2(t), a3(t) ∈ [0, 1])

= 1.

We have shown that yi(t+ 1) ≤ 1, and since all the terms in equation (3.3) are non-negative, it
follows that yi(t+ 1) ≥ 0. Therefore, we conclude that yi(t+ 1) ∈ [0, 1].

Hence, for all i ∈ V and t ∈ Z≥0, we have yi(t) ∈ [0, 1] in Equation (3.3) for all yi(0) ∈ [0, 1],
xk(0) ∈ {0, 1}, and the set {(ρ1, ρ2) : ρ1, ρ2 ≥ 0, ρ1 + ρ2 ≤ 1}.

3.2.3 Environmental Behavior

Again, the paper of [27] is used to model environmental behavior. A game theoretic-based
mechanism is designed to choose whether an individual acts environmentally responsibly. The
incentive for acting environmentally responsible is given by

ι
(i)
1 (X(t), yi(t), ε(t)) := ψ

(i)
0 (X(t)) + µε(t) + α+ yi(t), (3.6a)

and the incentive for environmentally irresponsible behavior by

ι
(i)
0 (X(t), yi(t), ε(t)) := ψ

(i)
1 (X(t)) + (1− yi(t)) , (3.6b)
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where the cost functions are given by

ψ
(i)
0 (X(t)) :=

1

di

∑
j∈Ni

xj(t)

and

ψ
(i)
1 (X(t)) :=

1

di

∑
j∈Ni

(1− xj(t)) + κ− δ.

Except for incorporating opinion influence, Equations (3.6a) and (3.6b) closely resembles the
equations presented in [27]. However, we exclude the impact of social influence in these equations
since it is already accounted for in Equation (3.3). Equations (3.6a) and (3.6b) include several
terms, which are described in more detail below:

• Opinion influence. The addition of yi(t) represents the impact of opinion about climate
change on environmental behavior. According to [10], the willingness to behave sustainably

increases if an individual takes climate change more seriously. Therefore ι
(i)
1 (t) increases

with increasing values of yi(t) and the reverse holds true for ι
(i)
0 (t).

• Total cost function The functions ψ
(i)
0 (X(t)) and ψ

(i)
1 (X(t)) respectively denote the

cost function for environmentally irresponsible and responsible behavior. Costs for acting
sustainable lead to a barrier to behaving responsibly [40]. The functions are composed of
the following components:

– Basic costs. The basic costs for environmental behavior are given by κ ∈ R≥0.

– Economies of scale. The term involving xj(t) in this context does not pertain to peer
pressure as discussed in Chapter 2 since that aspect is already addressed in Equation
3.3. Instead, this factor represents the concept of economies of scale, which implies
that the costs associated with products or services decrease as their supply increases
[49]. In our scenario, this factor represents an increased incentive for responsible
behavior when more individuals exhibit such behavior or, conversely, an increased
incentive for irresponsible behavior when more individuals behave irresponsibly. An
example illustrating the effects of economies of scale can be observed in the solar
panel market, where the costs significantly decrease with increased demand for solar
panels [50].

– Environmental subsidies. Governments can support sustainable behavior by subsi-
dies that promote this behavior, e.g., subsidies for solar panels [51]. The parameter
δ ∈ [0, κ] represents governmental subsidies and it is assumed that these subsidies
are not more than the basic costs for acting responsible, i.e., δ < κ.

• Environmental response. According to [52], climate change can lead to, e.g., increased
food and fossil fuel prices. Therefore, it is assumed that the incentive for responsible
behavior increases with increased climate impact via the term µε(t). The parameter
µ ∈ R>0 reflects the public’s response to increasing climate impact.

Page 19 of 31



3.2. Model Chapter 3. Opinion Polarization in the Climate Context

• Awareness campaigns. According to [52], the general public encounters challenges in
adopting sustainable actions because of a lack of knowledge about how to proceed with
such actions. Awareness campaigns, modeled by α ∈ R≥0, help inform people how to act
sustainably, increasing the incentive for sustainable behavior.

The incentives determine the probabilities of environmentally responsible or irresponsible behavior
for agent i ∈ V. The original paper by [27] uses rates instead of discrete-time steps. To account
for the discrete characteristics, the probability of environmentally responsible behavior for each
discrete-time step is calculated using a similar approach described in [29], where the same
game-theoretic mechanism is used for a discrete-time model. In [29], the incentives are used to
calculate the probability for both behavioral states. The following equation gives the probability
of acting responsibly:

P[xi(t+ 1) = 1] =
ι
(i)
1 (t)

ι
(i)
1 (t) + ι

(i)
0 (t)

, (3.7)

where the change for acting responsible increases if the incentive for this behavior, ι
(i)
1 , is higher.

Conversely, the opposite is also true. Figure 7 summarizes the relationship between the three
variables x, y and ε.

y x ε

Figure 7: Relations between the parameters x, y and ε. The arrows indicate that these parameters
influence each other.

3.2.4 Network Formation and Polarization

The network is randomly generated using the Erdős-Rényi model, where connections between
nodes are made randomly [53]. Specifically, all nodes are initially isolated, and undirected edges
between node pairs are formed with a probability p ∈ [0, 1]. The resulting graph includes all
the edges formed during the Erdős-Rényi procedure. The Erdős-Rényi method initializes the
network structure, but the network changes over time. As described in Chapter 2, individuals
tend to interact with like-minded individuals. Therefore, if agent i has contact with a random
agent j ∈ V \Ni and their opinions are close enough (i.e., |yj(y)− yi(t)| < ϵ), an undirected link
between i and j is formed with probability β1 ∈ [0, 1]. On the other hand, if agent i has contact
with a random agent j ∈ V ∪ Ni and their opinions differ too much (i.e., |yj(y) − yi(t)| ≥ ϵ),
the undirected link between agent i and j is removed with probability β2 ∈ [0, 1]. The dynamic
network represents homophily because individuals can connect with like-minded individuals
while losing connections if their opinions differ too much.

We explore the influence of network connectivity on the eventual polarization by generating
networks with varying probabilities p for establishing edges between nodes. A higher value
of p corresponds with increased network connectivity because more edges are likely formed.
The polarization in the network is calculated with a polarization index. In [54], polarization is
measured as the deviation of the opinions from the average opinion. This is done by calculating

Page 20 of 31



Chapter 3. Opinion Polarization in the Climate Context 3.3. Results

the variance of the opinions and this method is also used in this paper to quantify polarization.
The variance of opinions is calculated by

σ(t) :=
1

n

∑
i∈V

(yi(t)− ȳ(t))2, (3.8)

where σ(t) ∈ [0, 1] is the polarization index: σ = 0 represents no polarization and a higher value
of σ corresponds with a higher degree of polarization. The mean opinion ȳ(t) ∈ [0, 1] is defined
by

ȳ(t) :=
1

n

∑
i∈V

yi(t). (3.9)

In the next section, we will present the results of the simulation.

3.3 Results
This chapter investigates the causes and effects of polarization in the climate debate on the
actual climate impact. For this purpose, different parameters are varied to study polarization.
Unless stated otherwise, the parameters in Table 1 are used for the simulations in this section.

Table 1: Simulation parameter values for Section 3.3

Parameter n µ κ δ γ τ α ρ1 ρ2 ϵ β1 β2 ε(0) y(0)

Value 500 10 3 0.6 1 0.1 0.3 0.25 0.25 0.1 0.5 0.5 0.5 0.5

3.3.1 General Behavior

Before we elaborate on the effect of different parameters on the model, the general behavior is
displayed in Figure 8. Initially, the climate impact is increasing, but the mean opinion rises as
well, finally reducing the climate impact. The climate impact follows a less constant trajectory
than the continuous-time model in Chapter 2 (see also Figure 5). This difference is explained by
the stochastic nature of the discrete model, which leads to a less constant trajectory; instead of
a periodic oscillation of the system in Chapter 2, the trajectory shows an aperiodic oscillation.
However, the climate impact stabilizes at a certain level, after which it only varies within a
specific range. The polarization also decreases if climate impact decreases and mean opinion
increases.
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Figure 8: Trajectory of polarization, climate impact and mean opinion about climate change for the
given input parameters in Table 1, except for τ = 1.5 and γ = 2.

3.3.2 Opinion Tolerance

The degree of opinion tolerance impacts the trajectory of both opinion polarization and climate
impact. Figure 9a shows that a higher opinion tolerance, represented by ϵ, leads to less polarization.
The initial opinion polarization starts at the same level for all the simulations, but the opinion
polarization decreases faster when the opinion tolerance is higher. At a certain value of ϵ, a higher
value does hardly lead to less polarization, e.g., the difference between the final polarization and
the trajectory of the polarization is almost the same for ϵ = 0.4 and ϵ = 0.5. Figure 9b shows a
similar trend: a higher value of ϵ leads to a smaller mean and maximum climate impact. These
results suggest that polarization and climate impact are interconnected. This is confirmed by
Figure 10, where a higher polarization is related to a higher mean and maximum environmental
impact.
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Figure 9: Polarization, climate impact and mean opinion about climate change for various values of ϵ
(averaged over 10 independent runs).

Intuitively, a smaller opinion tolerance increases polarization, as individuals are more inclined
to disregard differing opinions and even sever connections with those individuals. The network
formation for 20 nodes, depicted in Figure 11, provides an overview of how the network evolves
for various values of ϵ. We observe that higher values of ϵ correspond to higher mean connectivity
of the nodes d ∈ [0, n− 1]. Like-minded individuals tend to form connections with one another
while repelling those with opposing opinions. In Figure 11b, agents with similar opinions form
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echo chambers, characterized by “a situation in which people only hear opinions of one type or
opinions that are similar to their own” [55]. This polarization, resulting in lower connectivity
and the formation of like-minded networks, contributes to an amplified environmental impact.
The connectivity between nodes decreases, leading to a higher peak as the network becomes
less capable of collectively shaping opinions to address climate impact. For instance, Figure 9c
demonstrates that it takes more time for the network to adapt its opinion to the desired state
when opinion tolerance is lower (i.e., ϵ = 0.1).
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Figure 10: Mean and maximum climate impact for different values of ϵ, indicated by the colorbar, and a
simulation time of T = 1000. For each value of ϵ, 10 runs are performed. Each colored circle corresponds
with a simulation where the color indicates the input value of ϵ and the orange line is the trend line of all
the simulations.
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(b) Final network for ϵ = 0.1.
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(c) Final network for ϵ = 0.2.
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(d) Final network for ϵ = 0.5.

Figure 11: Network of 20 nodes, where the opinion of each agent is represented by the color bar. The
simulations are performed with different values of ϵ and the mean connectivity of the nodes is given by d.

Figure 12 displays the distribution of opinions for different values of ε. Notably, lower values
of ε have been found to contribute to increased polarization and climate impact. Interestingly,
when ϵ = 0.1, there is a higher peak for high opinion values, indicating more individuals are
taking climate change seriously. This finding may seem counterintuitive, considering the higher
climate impact associated with this scenario. One plausible explanation is that there is also
a larger population with lower opinion values for ϵ = 0.1. Conversely, for ϵ = 0.5, there is a
reduced presence of individuals at both high and low opinion values, implying a more balanced
distribution of opinions and less polarization. This ultimately leads to lower climate impact.
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Figure 12: Histogram of the opinion distribution for ϵ = 0.1 (12a), ϵ = 0.2 (12b) and ϵ = 0.5 (12c). The
trendlines of the histograms in 12a-12c are displayed in 12d for different values of ϵ and a simulation
time of T = 1000.

3.3.3 Homophily

Homophily in the system is denoted by the parameters β1 and β2, representing the formation
of dynamic networks based on opinion differences. The effect of homophily is simulated by
independently varying β1 and β2 for different values. Figure 13 illustrates the outcomes when β1
is varied while β2 = 0.1. A higher value of β1 results in less polarization since new connections
are more likely to be formed (see Figure 13a). Moreover, the mean opinion exhibits a more
favorable trajectory with a higher β1, implying a faster convergence toward the desired state
of reducing environmental impact. When β1 = 0, the mean opinion is significantly lower than
the other values, which is also reflected in the environmental impact. Figure 13b demonstrates
that, for β1 = 0, the network fails to mitigate the peak of environmental impact. Conversely, for
other values of β1, the peak height is higher, and the rate of environmental impact reduction is
lower for smaller β1 values. These findings align with the observations in Section 3.3.2, where
increased polarization is associated with higher environmental impact.
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Figure 13: Polarization, climate impact and mean opinion for various values of β1 and β2 = 0.1 (averaged
over 10 independent runs).

The parameter β2 represents the counterpart of β1 as it signifies the probability of connection
disruption when the opinion distance exceeds a certain threshold. A higher value of β2 does not
lead to increased polarization within the network, but it does result in a reduced rate of climate
impact. When β2 is higher, agents in the network have fewer peers, leading to a less responsive
system since agents only heed a small portion of the population. Consequently, the network
becomes less capable of reacting to minor increases in climate impact, ultimately resulting in a
slower reduction in climate change.
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Figure 14: Polarization, climate impact and mean opinion about climate change for various values of β2
and β1 = 0.1 (averaged over 10 independent runs).

3.3.4 Connectivity

The impact of initial network density, represented by the probability of connection p, on
polarization, climate impact, and mean opinion is depicted in Figure 15. Higher polarization
is observed when the network density is lower. With higher connectivity, there is a greater
risk of echo chambers forming as agents are influenced by fewer individuals. However, if the
connectivity is sufficiently high, there is minimal distinction between the trajectories of p = 0.1
and p = 1. The variation in network density also affects climate impact, as demonstrated in
Figure 15b, where lower p values result in a higher peak and slower climate impact reduction.
Notably, there is a minimal difference between the climate impact trajectories of p = 0.1 and
p = 1, which was not evident in Figure 15a. This suggests that polarization alone cannot be
directly linked to climate impact. For instance, all agents in a network may share the same
opinion (indicating lower polarization), yet their opinion may not suffice to reduce climate
impact. Analyzing Figure 15c, we observe a slightly faster increase in mean opinion for p = 1
compared to p = 0.1. Comparing the trajectories of climate impact and mean opinion reveals
that even a relatively small difference in opinion trajectory leads to a significantly higher peak
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in climate impact. For example, the opinion trajectories for p = 0 and p = 1 appear similar, yet
the peak of climate impact is much higher for p = 0.
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Figure 15: Polarization, climate impact and mean opinion about climate change for various values of p
(averaged over 10 independent runs).

3.3.5 Awareness Campaigns

In the main model, we assume that the awareness campaigns α remain constant and independent
of the trajectory of the climate impact. However, it is reasonable to posit that awareness
campaigns intensify as climate impact increases, as it has a greater influence on daily life. To
test this assumption, we examine the dependency of awareness campaigns on climate impact.
Following the approach in [27], we explore two cases: one where awareness campaigns are linearly
proportional to climate impact (i.e., α(t) = ε(t)), and another where they are super-linearly
proportional (i.e., α(t) = ε(t)2).

Figure 16 depicts the simulation results, including the standard situation with fixed awareness
campaigns. The impact of dynamic awareness campaigns is clearly evident in Figure 16b,
where the peak of climate impact is lower when α depends on ε. Moreover, the peak is further
reduced when awareness campaigns exhibit increased sensitivity to rising climate impact (i.e.,
α(t) = ε(t)2). The effect of the awareness campaigns on polarization and mean opinion is less
evident. Although opinions show similar trends, climate-dependent awareness campaigns have a
more rapid reduction in climate impact. This is due to the increased incentive for responsible
behavior when α is dependent on ε, which leads to increased responsiveness of the system (see
Equation (3.6a)).
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Figure 16: Polarization, climate impact and mean opinion about climate change for various values of α
(averaged over 10 independent runs).
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3.3.6 Climate disasters

Climate impact does not exhibit a constant or linear increase; instead, it can undergo rapid
changes. For instance, if specific tipping points are reached, such as irreversible deforestation
of the Amazon rainforest or shifts in monsoons [56, 57], the climate impact can experience a
significant and sudden increase. Additionally, the effect of climate change can be increasingly
felt when natural disasters occur, such as tropical cyclones or extreme droughts [58]. To simulate
a tipping point or a climate disaster, the climate impact ε is increased at t = 750.

The environmental impact increase is visible in Figure 17b, where there is a sudden increase in
the climate impact. For low values of ϵ, the system is less responsive to the sudden increase. For
example, the climate impact is decreased at a low rate for ϵ = 0.1 and ϵ = 0.2. Eventually, the
climate impact is reduced to the former level, which is higher if the opinion tolerance ϵ is lower.
The network’s response to the climate impact is shown in Figure 17c, where the mean opinion
about the severity of climate change y is increasing. In this context, it is evident that networks
with lower opinion tolerance exhibit reduced responsiveness. Consequently, they experience a
slower increase in the mean opinion, resulting in a lower magnitude of change. This indirectly
leads to a greater environmental impact. The polarization, depicted in Figure 17a, explains the
decreased responsiveness of the system because the system is more polarized for smaller opinion
tolerances; the polarization decreases if the climate impact is increased, but this decrease is
smaller for lower values of ϵ. More polarized societies are found to be less capable of effectively
dealing with the heightened climate impact. So, climate shocks lead to less polarization, but
more polarized networks are less capable of dealing with these shocks.
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Figure 17: Polarization, climate impact and mean opinion about climate change for various values of ϵ
with an increase of ε to 20 at t = 750 (averaged over 10 independent runs).

3.4 Conclusion
The discrete-time model incorporates an opinion state, y, without assuming mean-field conditions.
This model allows for studying the relationship between polarization and climate impact. Several
factors influence this relationship: higher opinion tolerance reduces polarization and smaller
climate impact. Homophily, characterized by parameters β1 and β2, affects dynamic network
formation based on opinion differences. Higher β1 values result in less polarization and a
favorable trajectory towards reducing environmental impact. Conversely, higher β2 values
disrupt connections based on opinion differences, leading to a slower increase in climate impact.
Initial network density plays a role in polarization and climate impact. Lower density increases
polarization and slows the reduction of climate impact. However, the relationship between
polarization and climate impact is not straightforward, as polarization is not only a factor that
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causes high climate impact. Network connectivity and opinions within the network also shape the
trajectory of the climate impact. The intensity of awareness campaigns also influences climate
impact. Dynamic campaigns that respond to rising climate impact yield lower peak climate
impact and a slightly faster convergence towards the desired opinion range. Tipping points or
climate disasters cause sudden and significant increases in climate impact. The system’s response
depends on the level of polarization in the model, where more polarized societies are less capable
of dealing with the heightened climate impact.

Several limitations identified in this chapter have been addressed in Chapter 2. One improvement
is the introduction of continuous opinions, allowing also to study the opinions that are one of
the foundations for behavioral states. Moreover, this model does not assume a fully connected
network, which makes it possible to design networks that represent real-life networks and
dynamics more accurately. Nevertheless, it is important to note that the model described in this
chapter still exhibits certain limitations:

• Once again, the validation of the used parameters remains challenging due to their
representation of general concepts that are difficult to specify precisely, as they consist
of numerous components. For instance, the costs associated with environmental behavior
are composed of multiple cost items. Another example is the opinion state, which is now
continuous, enabling the inclusion of more than two opinion states; determining the precise
opinion value for a particular opinion remains challenging.

• The environmental ε solely depends on human actions and does not account for other
factors (see also Section 2.4).

• The parameters γ, τ, α, κ, β1, β2, ϵ, and δ are assumed to be constant, although it is
plausible that they may vary over time (see also Section 2.4).

• The discrete-time model is not mean-field, implying that each agent is updated individually
at each time step. This individual updating process is computationally expensive, restricting
the number of agents that can be simulated in the network. For example, simulating a large
population, such as an entire country, is unlikely to be feasible due to the time-intensive
nature of the process.
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4 Conclusion
The report is divided into two main sections: the continuous-time model, which explores
homophily, and the extended discrete-time model, which investigates polarization. This chapter
describes the methodology used, a discussion of the results, and suggestions for future research.

4.1 Methodology
To ensure the model’s design choices are valid, relevant academic literature is cited, with [27]
serving as the foundational paper for implementing the game-theoretic mechanism and climate
impact dynamics. In Chapter 2, we introduce the homophily factor θ to analyze its influence on
climate impact through direct analysis and simulations. The equilibria with their corresponding
characteristics are obtained through direct analysis. Subsequently, simulations are conducted to
evaluate the impact of the homophily factor and other parameters on the trajectory of climate
impact. Chapter 3 expands the model to include opinions, incorporating peer pressure and
confirmation bias to investigate polarization. Multiple simulations are performed to study the
effects of opinion tolerance, homophily, network connectivity, awareness campaigns, and climate
disasters on polarization and the resulting climate impact.

4.2 Results
The outcomes of the models enable us to evaluate the impact of homophily and polarization on
behavior and opinion trajectories, as well as their associated climate consequences. In Chapter
2, it is observed that homophily plays a critical role in the progression of climate change. A
higher level of homophily in the network corresponds to increased mean and maximum climate
impact due to reduced responsiveness to changes. In literature, homophily in the climate debate
is also mentioned as a threat to combatting climate change. The paper [59] conducted a network
analysis on social media and found a significant degree of homophily in the climate debate,
indicating that individuals with similar views are more interconnected than the average. This
is confirmed by [60], where homophily is also detected in the climate debate. Moreover, it also
suggested that increased homophily makes a society more vulnerable to misinformation. Given
the negative effects of strong group homophily and its presence in the climate debate, addressing
homophily is essential for society. Moreover, the findings in Chapter 2 suggest that society can
mitigate rising climate impact by intensifying technological efforts to combat climate change
and reducing the costs associated with sustainable action. Both factors require investments that
can accelerate the adoption of sustainable technologies and subsequently lower the associated
costs [61, 62].

The impact of polarization on climate change is examined in Chapter 3. Low opinion tolerance,
which leads to low network density, is identified as a primary driver of polarization, resulting in
increased mean and maximum climate impact. Reduced opinion tolerance leads to the formation
of echo chambers, making it challenging to address escalating climate impact collectively. This
aligns with the findings of [63] regarding the polarization of the climate debate on social media.
Their study reveals the formation of echo chambers in the climate debate, hindering effective
responses to the climate crisis [16]. However, it is also noted that social media can positively
reduce polarization if the algorithms are designed to expose individuals to different opinions.
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Chapter 3 also explores the effect of climate disasters, indicating that sudden increases in climate
impact lead to heightened risk perception and reduced polarization. This finding is consistent
with the research by [14], where climate disasters increase the risk perception of climate change
[39]. However, our results indicate that more polarized societies are slower in reducing the impact
of climate change when faced with a climate disaster. Hence, reducing societal polarization is
crucial to mitigate the upward trajectory of climate change and enhance our responsiveness to
climate disasters.

4.3 Limitations and Future Research
The conclusions regarding homophily and polarization are drawn from the models presented in
Chapter 2 and Chapter 3. However, it is crucial to acknowledge the limitations of these models,
mentioned in Section 2.4 and Section 3.4, when interpreting the results. Certain assumptions are
made, such as considering constant parameters and binary states for environmental behavior,
which may not accurately reflect reality. These limitations provide valuable insights for future
research. For instance, exploring the possibility of dynamic parameters would be interesting
because dynamic parameters can also be utilized for control purposes. This thesis has already
demonstrated that the intensity of awareness campaigns has a significant impact on the trajectory
of climate impact. Future research could investigate the implementation of dynamic parameters
for technological efforts, government subsidies, and awareness campaigns for control purposes
to mitigate climate impact. Similar approaches have been employed by [64] in the field of
epidemiology, where a dynamic optimal intervention strategy was developed to minimize the
effects of the COVID-19 pandemic. Furthermore, we believe that improving the model’s accuracy
can be achieved through parameter validation in future research. Currently, the model is designed
at an aggregate level with general parameters such as technological efforts and climate costs,
making it challenging to validate with data. Therefore, future research should focus on specific
cases with more specific input parameters better suited for validation. On the other hand, an
advantage of using a more aggregate model is its ability to describe general trends rather than
micro-level dynamics. So, the model simplifies reality and should, therefore, not be used as a basis
for decision-making. Nevertheless, the model can be a valuable tool to enhance our comprehension
of aggregate processes in the climate debate. Together with other relevant literature on the
subject, it can provide valuable insights for policymakers.

In addition to addressing the limitations, there are compelling future research opportunities.
Although the current model primarily concentrates on general social networks, investigating
its applicability in the context of social media would provide valuable insights. Social media
platforms play a significant role in shaping the climate debate [59, 65], and there are noteworthy
aspects of social media that are not accounted for in the current model. For example, studying
the impact of influential individuals on social media could be insightful. This could involve
assigning influence weights to each person, similar to the standard DeGroot model described in
[23]. The structure of social media algorithms is also an interesting topic for future research; as
mentioned earlier, current social media algorithms often reinforce echo chambers and polarization,
subsequently contributing to an increased climate impact [63]. Exploring how opinions can be
directed towards desired outcomes and how this can be applied to social media algorithms
is an important area of investigation. A control framework proposed in [66] offers inspiration
for studying the control of opinion dynamics and developing suitable designs for social media
algorithms. In conclusion, this study and its results lead to numerous future research directions.
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Appendix A - Matlab Code Continuous Time
A.1 Continuous Model

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2

3 %% Parameters
4 theta = 0 . 5 ;
5 mu = 0 . 6 ;
6 kappa = 5 ;
7 gamma = 10 ;
8 tau = 0 . 1 ;
9 i n i t y = 0 . 5 ;

10 i n i t e p s i l o n =0.5 ;
11 T = 200 ;
12 ep s i l o n = 1/mu∗(2∗ tau/gamma∗(2− theta )−2+theta+kappa ) ;
13

14 %% Continous Simulat ion
15 tspan = [ 0 : 0 . 0 0 1 :T ] ;
16 x0 = [ i n i t y i n i t e p s i l o n ] ;
17

18 [ t , x]=ode89 (@( t , x ) ODE( t , x , theta ,mu, kappa , gamma, tau ) , tspan , x0 ) ;

A.2 ODE
1 f unc t i on dxdt = ODE( t , x , theta ,mu, kappa , gamma, tau )
2 dxdt = ze ro s (2 , 1 ) ;
3

4 i f x (1 )>=1
5 dxdt (1 ) = −0.001;
6 x (1 ) = 1 ;
7 e l s e i f x (1 )<=0
8 dxdt (1 )= 0 . 0 0 1 ;
9 x (1 ) = 0 ;

10 e l s e
11 dxdt (1 ) = x (1) ∗(1−x (1 ) )∗(1− theta ) ∗(2∗x (1 )+mu∗x (2 )−kappa−1) ;
12 end
13

14 i f x (2 )<=0
15 dxdt (2 ) = 0 . 0 0 1 ;
16 e l s e
17 dxdt (2 ) = (gamma−gamma∗x (1 )−tau ) ∗x (2 ) ;
18 end
19

20 end
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Appendix B - Matlab Code Discrete Time
B.1 Discrete Model

1 c l o s e a l l ; c l e a r a l l ; c l c ;
2

3 n = 500 ; % number o f agents
4 p = 0 . 0 1 ; % p r obab i l i t y f o r connect ion
5 T = 1000 ; % s imu la t i on time
6

7 va r ep s i l on = 0 . 5 ; % i n i t i a l environmental impact
8

9 mu = 10 ;
10 omega = 1 ;
11 kappa = 3 ;
12 sigma = 0 . 6 ;
13 gamma = 1 ;
14 tau = 0 . 1 ;
15 alpha = 0 . 3 ;
16 rho 1 = 0 . 2 5 ;
17 rho 2 = 0 . 2 5 ;
18 ep s i l o n = 0 . 1 ;
19 beta 1 = 0 . 1 ;
20 beta 2 = 0 . 1 ;
21 theta = 0 ;
22

23

24 E = network s t ruc ture (n , p) ;
25 X( 1 , : ) = randi ( [ 0 1 ] , n , 1 ) ; % i n i t i a l behav io ra l s t a t e
26 Y( 1 , : ) = 0 : 1/ ( n−1) : 1 ; % i n i t i a l d i v i s i o n o f op in i ons
27 b = ze ro s (n , n) ;
28 n i = sum(E, 2 ) ; % number o f ne ighbours f o r the agents
29

30 f o r t = 1 :T
31

32 n i = sum(E, 2 ) ;
33 f o r i = 1 : n
34 f o r j = 1 : n
35 i f abs (Y(1 , i )−Y(1 , j ) )<ep s i l o n
36 b( i , j ) = 1 ;
37 e l s e
38 b( i , j ) = 0 ;
39 end
40

41 i f abs (Y(1 , i )−Y(1 , j ) )<ep s i l o n
42 bx ( i , j ) = 1 ;
43 e l s e
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44 bx ( i , j ) = 0 ;
45 end
46 end
47

48 i f sum(E( i , : ) ) > 0
49 i o t a 1 ( t , i ) = 1/ n i ( i ) ∗sum(E( i , : ) .∗X( t , : ) ) + mu∗

va r ep s i l on ( t ) + alpha + omega∗Y( t , i ) ;
50 i o t a 0 ( t , i ) = 1/ n i ( i ) ∗sum(1−E( i , : ) .∗X( t , : ) ) + kappa −

sigma + omega∗(1−Y( t , i ) ) ;
51

52 e l s e
53 i o t a 1 ( t , i ) = mu∗ va r ep s i l on ( t ) + alpha + omega∗Y( t , i ) ;
54 i o t a 0 ( t , i ) = kappa − sigma + omega∗(1−Y( t , i ) ) ;
55 end
56

57 P resp ( t , i ) = i o t a 1 ( t , i ) /( i o t a 1 ( t , i )+i o t a 0 ( t , i ) ) ;
58

59 i f rand < P resp ( t , i )
60 X( t+1, i ) = 1 ;
61 e l s e
62 X( t+1, i ) = 0 ;
63 end
64

65 i f rand<theta && n i ( i )>0
66 a r ray con tac t = f i nd (E( i , : ) ==1) ;
67 j = ar ray con tac t ( randi ( numel ( a r ray con tac t ) ) ) ;
68 e l s e
69 j=i ;
70 whi le j == i
71 j = randi (n) ;
72 end
73 end
74

75 i f abs (Y( t , j )−Y( t , i ) ) < ep s i l o n
76 i f sum(E( i , : ) .∗ bx ( i , : ) ) == 0
77 Y( t+1, i ) = (1− rho 1 ) ∗Y( t , i ) + rho 1 ∗(Y( t , j )+Y( t , i ) )

/2 ;
78 e l s e
79 Y( t+1, i ) = (1− rho 1−rho 2 ) ∗Y( t , i ) + rho 1 ∗(Y( t , j )+Y(

t , i ) )/2+rho 2 /sum(E( i , : ) .∗ bx ( i , : ) ) ∗sum(E( i , : ) .∗ bx
( i , : ) .∗X( t , i ) ) ;

80 end
81

82 i f rand < beta 1
83 E( i , j ) = 1 ;
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84 end
85 e l s e
86 i f sum(E( i , : ) .∗ bx ( i , : ) ) == 0
87 Y( t+1, i ) = Y( t , i ) ;
88 e l s e
89 Y( t+1, i ) = (1− rho 2 ) ∗Y( t , i ) + rho 2 /sum(E( i , : ) .∗ bx ( i

, : ) ) ∗sum(E( i , : ) .∗ bx ( i , : ) .∗X( t , i ) ) ;
90 end
91

92 i f rand < beta 2
93 E( i , j ) = 0 ;
94 end
95 end
96 end
97

98 x 0 ( t ) = 1−(1/n) ∗sum(X( t , : ) ) ;
99 va r ep s i l on ( t+1) = va r ep s i l on ( t )+(gamma∗x 0 ( t )−tau ) ∗ va r ep s i l on ( t )

;
100

101 y ( t ) = 1/n∗sum(Y( t , : ) ) ;
102 x ( t ) = 1−x 0 ( t ) ;
103 i n d e x po l a r i z a t i o n ( t ) = 1/n∗sum( (Y( t , : )−y ( t ) ) . ˆ 2 ) ;
104 end

B.2 Network Formation
1 f unc t i on [E] = network s t ruc ture (n , p)
2

3 E = ze ro s (n , n) ;
4

5 f o r i = 1 : n
6 f o r j = 1 : n
7 i f i ˜=j
8 i f rand < p
9 E( i , j ) = 1 ;

10 end
11 end
12 end
13 end
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