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Awareness of time passing between events informs our perception of our environ-
ment. While much research exists on how it guides daily decisions, it is not as clear
how humans learn temporal relations in the first place. As such, this thesis focuses on
integrating theories on temporal relations with existing models of implicit learning.
The aim is to implement a formal cognitive model that includes temporal cues and
allows for discriminate learning and transference. A first attempt at such a model is
made, and an experiment is conducted to collect additional required data. The ex-
periment involved participants playing an anticipation-based video game to capture
under which conditions awareness of temporal relations leads to increased perfor-
mance over time. The insight gained from the experiment is limited, but potential
problems and future steps are discussed.
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1 Introduction

Most people use knowledge of temporal relations daily, even if they do not realise it.
For instance, when powering up a personal computer, a user knows that the desired
result will occur not immediately, but only after a certain time. Similar knowledge
is used when waiting for a response after ringing a doorbell or filling a bucket with
water; In each case, a person has an expectation of how long the process should
last. We primarily notice these expectations when they are not met, such as if the
computer screen is still black a minute after the user presses the power button, no
one opens the door for us, or the bucket never fills up because it has a hole.

While this ability to make use of time estimation has been studied (e.g. Ramscar
et al., 2010; Van Rijn & Taatgen, 2008), it is less clear how we learn such connections
in the first place. They are generally not explicitly taught to us, nor can we actively
recall the knowledge they represent at will in most cases (e.g. knowing how many
milliseconds one would wait for someone to answer the door.). This thesis aims to
investigate how humans might form expectations of temporal relations using im-
plicit learning. To this end, the following section will outline how learning without
awareness occurs, how we may apply this process to time passing between events,
and how to create a formalised theory that explains our implicit knowledge of time.

1.1 Implicit Learning

1.1.1 Existing Theoretical Frameworks of Implicit Learning

In general, implicit learning describes the process of learning complex information
about the environment without the learner being aware of the process or being able
to stop it. For instance, when learning to ride a bike, the learner has to remember a
sequence of bodily movements to keep the bike moving and upright. However, from
the learner’s point of view, the only observable change may be that their general
ability to ride a bike increases with each attempt.

A special case of implicit learning is classical conditioning as proposed by Pavlov
(1927), which involves learning of cause and effect relations. According to this the-
ory, a learner may form an association between two stimuli after repeated exposure
to co-occurrences, such that responses previously triggered by only one stimulus
will eventually also be elicited by the other. For example, in the experiments con-
ducted by Pavlov, a dog was repeatedly exposed to co-occurrences of a ringing bell
and the arrival of food. Pavlov inferred that an implicit association had been formed
in the dog’s mind after training, because the dog showed signs of anticipating food
even if only the bell was presented (Pavlov, 1927).

In the terminology used by Pavlov, the smell of food is called the unconditioned
stimulus (US), which triggers an unconditioned response (UR) of salivation. The same
response is called a conditioned response (CR) if it is triggered by a conditioned stimu-
lus (CS) created through training, such as the bell. An important assumption here
is that the response is originally a reflex, meaning that the dog can not make itself
salivate through any explicit reasoning it might have. As such, it is assumed that
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the observed anticipation is part of the automatic process of implicit learning, rather
than the dog applying conscious reasoning to infer that it is about to receive food.

One approach to explaining how implicit learning works is associative learning,
which assumes that the strength of an association between two stimuli is defined by
the cumulative number of previous co-occurrences (Barto et al., 1981; Tesauro, 1995).
Ideas similar to this approach to learning were theorised as early as 1898 in what
would later be known as Thorndike’s Law of Effect (Thorndike, 1898; Thorndike,
1927), laying part of the groundwork for modern reinforcement learning as well as
machine learning.

However, while the associative approach captures the basic aspects of implicit
learning, it has limitations when explaining certain learning phenomena found in
animals and humans. For example, learners are usually able to ignore constantly
occurring background stimuli, unlearn associations when presented with conflict-
ing data or learn from currently absent stimuli (Nixon, 2020; Ramscar et al., 2013;
Rescorla, 1988). As discussed by Rescorla (1988), learning theories based on sim-
ple co-occurrence do not provide mechanics to explain these more complex learn-
ing phenomena and an alternate, interference-based approach such as discrimina-
tive learning is needed. The approaches proposed by Rescorla and Wagner (1972) or
Widrow and Hoff (1960), for instance, are able to explain the mentioned learning
phenomena more efficiently, because they assume that the strength of associations
between stimuli is dependent not just on a high number of co-occurrences, but also
on if the information provided will be useful for minimising prediction errors in the
future. Essentially — while with associative learning, the count usually increases the
same amount for each learning event — under a discriminative approach, associa-
tions will change more drastically if there is a large difference between the expected
and observed outcomes.

Since it’s conception, discriminative learning has been successfully used to study
several different forms of human learning such as category learning, interference
reasoning and social psychology (reviewed in Siegel & Allan, 1996). Even neuro-
scientific evidence for the role of recognising error in predictions has been found (re-
viewed in Schultz, 1998), further giving credit to the theory within the context of
cognitive modelling.

To give a practical example of how the discriminative approach differs from an
associative one: If a conditioned stimulus A occurs with an unconditioned stimulus
B, then under both approaches, the connection AB will become stronger — meaning
that both cues start to produce the response. However, the approaches will predict
different behaviours if A is then also shown to occur together with a new stimulus
C. Under an associative approach, the new association AC will form incrementally,
with no change to the already established association AB (though, depending on im-
plementation, AB may decrease over time if there are no further co-occurrences of
A and B). In other words, there is now an expectation that A should occur with B or
C. In the discriminative approach, on the other hand, once C is introduced, the con-
nection AB will be immediately unlearned because of the large difference between
what was expected (A always occurring with B) and what was encountered (A now
also occurring without B). By the end of the learning process, the learner should
only expect A to occur with C (for clarity, see Figure 1.1 for a visual representation
of this difference in outcomes).

To sum up, the ability of the discriminative approach to quickly respond to per-
ceived mistakes in expectations is the key difference which sets it apart from the
associative approach, when explaining implicit learning phenomena beyond classi-
cal conditioning.
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A → B

Knowledge:
A predicts B

A → C

Knowledge:
A predicts B and C

associative learning

A → B

Knowledge:
A predicts B

A → C

Knowledge:
A predicts only C

discriminative learning

Figure 1.1: Simplified comparison of differences in learning outcomes for the
two approaches. In the associative approach, both outcomes are learned, while
in the discriminative approach the original connection is unlearned.

1.1.2 Modelling of Implicit Learning

Both approaches to implicit learning can be mathematically formalised to create cog-
nitive models using a simple two-layer neural network (Baayen et al., 2011; Hoppe
et al., 2022; Klopf, 1988). In such implementations, the first layer represents all possi-
ble cues and the second layer represents all possible outcomes. As a first modelling
step of our aim to model the learning of temporal relations, a network implementa-
tion is preferred over a more holistic symbolic representations such as ACT-R. This
is because we are interested in modelling the sub-symbolic aspects of the learning
process namely the dynamic created by the presence of certain cues and expecta-
tions. A model of how the learned information fits into the larger cognitive process
would be unnecessarily complex for this purpose.

As previously described, the difference between associative and discriminative
models is in the way the associations (i.e. network weights) change after each learn-
ing event. For all models, we assume that after each learning event, the weight Vt

ij
between cue i and outcome j is updated by a change ∆Vt

ij, as defined by some learn-
ing rule:

Vt+1
ij = Vt

ij + ∆Vt
ij (1.1)

In a basic associative model, if a learning event includes cue i leading to out-
come j, then the network’s connection weight Vij will increase by some set value,
which we will call the learning rate η (sometimes also called α). Such a model would
capture the counting of co-occurrences for every possible combination of two items,
but nothing more; No information is gathered (or rather, no change in knowledge
occurs) regarding any items that are not explicitly shown to relate to another.

A more advanced version of this approach would be to also include a negative
reward whenever a prediction is wrong, i.e. is when two items do not co-occur. Such
an implementation offers a simple version of reinforcement learning (Farley & Clark,
1954; Thorndike, 1911), with a simple positive and negative reward. In these models,
a learning event involving both i and j would increase Vij by the learning rate η,
while in a learning event including only i without j, the change to Vi j would be
negative η. Figure 1.2 shows a visualisation of this difference in weight changes.
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i

j

+η

basic co-occurrence

i

j

−η

+η

−η

reinforcement learning

Figure 1.2: Visual representation of differences in the two learning algorithms
for a learning event, including i and j; Each arrow represents the association
between two nodes. Blue and red arrows represent strengthened and weakened
connections, respectively. Grey arrows represent unchanged connections.

A further adjustment to this learning rule, is to adjust the weight not by a fixed
amount, but by different values depending on each specific learning event. For
instance, the learning rule used within the cognitive architecture ACT-R uses the
elapsed time since the last occurrence of an item to adjust the magnitude of change
on the learning weights (Anderson et al., 1997). In this thesis, we will be using Error-
Driven Learning which implements a form of discriminative learning by changing
the connection weights based on positive or negative evidence, and with the mag-
nitude of this change being determined by the size of error. Within these models, a
learning event involving both i and j will increase Vij by a large amount if the co-
occurrence of i and j was not already expected by the model, with the same being
true for decreases to Vij.

This dynamic is usually formalised based on the delta-rule as discussed by Widrow
and Hoff (1960). An example implementation of this rule for a network with discrete
cues and outcomes and activation between zero and one looks as follows:

∆Vt
ij =


0 , cue i absent
η(1 − actt

j) , cue i and outcome j present
η(0 − actt

j) , cue i present but outcome j absent
(1.2)

Here ∆Vt
ij is the change in weights between cue i and outcome j, which is calcu-

lated differently depending on which of either items is present in the learning event.
The part of the equation actt

j is the overall activation of outcome j at point in time t
which is given as the sum of all weights leading from any of the present cues to j:

actt
j = nett

j = ∑
x∈cues(t)

vt
xj (1.3)

Further parameters may be added to these equations for more complex models.
However, the basic dynamic of considering the existing activation, that is, the previ-
ous expectation, during learning remains the same in all discriminative models.

1.1.3 Limitations regarding Time

Having outlined these different approaches to network-based models, it may seem
that one or even a number of them offer a sufficiently accurate way of modelling
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implicit learning. However, by their nature, network models do not consider the di-
mension of time during learning. Instead, learning instances are encoded as abstract
events consisting only of a singular moment, allowing for no distinction between
cases of an outcome following a cue immediately and those where it occurs after
some time has passed; The changes in connection weights are the same in either
scenario.

Naturally, this is an abstraction from real life, where learning does not happen as
instantaneous events, but rather as an ongoing process. However, our goal is more
complex than just zooming in to a deeper level of detail. Returning, for example,
to Pavlov’s experiments, if we imagine a scenario where the experimenter plays not
one but two auditory cues before presenting the food, it must be decided whether
it is more accurate to treat this as a single learning event or two which overlap.
An ideal model would be able to correctly handle either case, without the need for
special hard-coding on the part of it’s creator or the user.

Time-decay-based models such as the already mentioned ACT-R are less dis-
creet than a network representation and offer ways of handling such overlapping
events. However, these systems primarily use time to inform learning rather than
something that is in itself learned. Temporal modules can and have been added to
ACT-R (Taatgen & van Rijn, 2011), but, as outlined in Section 1.1.2, these models do
not allow us to study the specific changes to individual weights in the same way
that network models do. In short, there is value in incorporating time into a net-
work representation itself. Indeed, associative network models that attempt to do so
already exist. Single recurrent networks, for example, capture learning phenomena
involving sequencing and memory (Elman, 1990) and comparable implementations
using a discriminative model are possible (Thiel & Spenader, 2022). However, mod-
els such as these merely capture that something has occurred at some point in the
past but not the exact distance in time between events; They still function on a level
of abstraction that cannot capture specific nuances involved when learning specific
rhythms or time intervals. In spoken conversation, for example, two people can usu-
ally estimate when it is their turn to speak based not just on what the other person
is saying but also partly on the length of pauses between words. Responding to a
question immediately or with hesitation can convey different meanings. It is easy to
imagine further examples with similar dynamics, such as when two people simul-
taneously reach for the same object or sing a melody together. All these examples
involve knowing not just if something has already happened but also when and how
long ago it occurred. Therefore, we must only further consider models which can
use these relational forms of temporal knowledge as well.

Out of all of these, the most promising approach, perhaps, would be the cognitive
architecture PRIMs (Taatgen, 2013), which simulates learning as an ongoing process
rather than a sequence of self-contained events and can simulate both implicit and
discriminative learning, when using a modified learning rule. Section 5 will return
to the topic of PRIMs and how we may turn it into a discriminative model, but for
now, we will stay on the smaller scale of network representations. To start with this,
the next section will discuss how exactly to describe temporal relations.
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1.2 Existing Theoretical Frameworks of Temporal Relations

1.2.1 Contiguity Principle

When Pavlov initially proposed his theory of classical conditioning, he already at-
tempted to explain how learned associations might be affected by different tempo-
ral relations. He proposed the contiguity principle, which assumes that the closer
two stimuli are in time, the stronger their (non-temporal) association will be. This
framing of temporal proximity as a multiplier of the regular conditioning enables
distinction between cases where a CS is followed by a US after just one second and
those where the elapsed time before the US appears is ten seconds.

However, if only the contiguity principle were relevant, it would make no differ-
ence if the CS occurs followed two seconds later by the US or if the US goes first and
then the CS, as long as the temporal proximity between the items is kept the same
in both cases. Similarly, we would expect that if the CS and US appear simultane-
ously (i.e. have the highest possible temporal proximity), this association would be
learned faster than all others. However, for both of these assumptions, Pavlov him-
self reported contradictory findings, discrediting his theory (Molet & Miller, 2014;
Pavlov, 1927).

1.2.2 Temporal Coding Hypothesis

A better-suited theoretical framework of how temporal relations influence implicit
learning is the Temporal Coding Hypothesis (TCH; see Matzel et al., 1988; Molet &
Miller, 2014; Savastano & Miller, 1998). Instead of using the temporal relation be-
tween two stimuli as an amplifier of their association, under the TCH, this relation
is part of the association itself. Essentially, the time interval between cue and out-
come becomes another cue during learning, with the ability to hold useful or redun-
dant information when distinguishing between different learning events. Under this
principle, two learning events which involve the same stimuli, but differ in the in-
terval between them, can easily be distinguished. For example, Pavlov’s dog would
be able to distinguish a scenario where the bell rings and food is presented after ten
seconds and already expecting food just three seconds after the sound of the bell.
The TCH would even capture compound effects, where two cues hold information
that neither holds separately. An example of this could be Pavlov’s dog only reacting
to the sound of a bell after ten seconds, but not the sound of his owner unlocking
the door with the same temporal interval. Beyond these dynamics, the TCH also
correctly models both cases that Pavlov’s contiguity principle fell short on, as the
dynamics of changed order and simultaneous occurrence are correctly captured.

It is worth noting at this point that surrounding the idea of encoding time, fur-
ther alternatives and variations of the TCH exist, such as for example the concept
of temporal maps (e.g. Honig, 1981). Indeed if we widen our scope to general cogni-
tive models of temporal relations, a multitude of alternative views opens up (for an
extensive review see Block, 2014). However, these other approaches are often less
developed, with the TCH appearing both as the most researched and as the most
compatible with existing cognitive modelling ideas, based on its assumptions. The
TCH assumes that associations between two events form based on contiguity (i.e.
co-occurence), that the temporal relation between the same two events is somehow
stored with or as part of the association, and that this information about tempo-
ral relations will influence the magnitude or timing of responses at any future pre-
sentations of either event. Beyond this, it is also assumed that people are able to
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combine or transfer knowledge about different temporal relationships regardless of
if the knowledge was acquired separately. So for example, if two items both pre-
dict the same event at the same time, then this will lead to a stronger prediction
overall. Similarly, if two otherwise identical learning events have different tempo-
ral relations, this difference will be reflected in the type and strength of response.
What is also meant by this assumption, is that learners may make inferences about
temporal relations they were never presented with. We will return to these more
advanced ideas later, but for now, we can summarise that assumptions such as tem-
poral relations acting as cues with predictive power, make the TCH a natural fit for
discriminative models, which already distinguish between different learning events
in a similar way (Molet & Miller, 2014). Crucially however, the TCH is just that —
a set of assumptions, and not a formalised cognitive model. As we shall see in the
following section, there is insufficient data to combine the two ideas seamlessly.

1.3 Formalising the Temporal Coding Hypothesis

Suppose we follow the assumption laid out by the TCH, that temporal relations are
part of the cue-set of a learning event and can therefore act as a marker to distinguish
one learning event from another. If this is the case, changes in temporal relations
should affect other learning phenomena that rely on the presence of specific cues.
As outlined in Section 1.1.1, the discriminative approach can explain many of the
more complex learning phenomena involving implicit learning. What a number of
these phenomena have in common is that they involve learners seeming to ignore
frequently occurring pairings because they do not provide useful information to the
model or do not contradict anything previously learned. Examining the exact me-
chanics behind one such learning phenomenon will show where implementing the
Temporal Coding Hypothesis becomes more difficult.

1.3.1 Cue-Blocking

One learning phenomenon shown to occur during implicit learning for humans and
animals is cue-blocking. This phenomenon involves an already strong established
cue-to-outcome relation (between a CS and a US) blocking any new cues from be-
coming seen as reliable predictors (Kamin, 1967a, 1967b; Nixon, 2020).

For instance, we return once again to Pavlov’s dog who has already gone through
the so-called elemental phase of being trained with the sound of a bell as a reliable
predictor for the arrival of food. Now the dog enters a second learning phase, called
the compound phase, where a new cue, such as a blinking lamp, is shown simulta-
neously with the initial cue of the bell. If cue-blocking occurs, the dog should not
form an association between the lamp and the food, meaning that, by the end of the
learning process, the dog would not show signs of anticipating food when presented
with the lamp alone. If the bell sound is present (either by itself or with the lamp)
the dog will still react as before, making clear that it is not the case that the dog has
become incapable of anticipation.

In reality, of course, it is also possible that partial blocking occurs so that by the
end of the training, both cues elicit some level of the expected conditioned response.
A discriminative approach explains this partial blocking by proposing that at the
end of each learning step, there is some amount of uncertainty left which can be
filled by further information. If more uncertainty is left, new information can lead
to a more drastic reshaping of expectations. Figure 1.3 shows a visualisation of the
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level of certainty when predicting two different cues over time. The main point
shown here is that the maximum certainty reached by the new cue introduced in the
compound phase, is the same as the amount of uncertainty still left by the first cue
in the previous phase.

certainty

time

established cue

new cue

elemental phase compound phase

Figure 1.3: Example of the cue-blocking phenomenon. In the elemental phase,
only one cue is presented, allowing a strong connection to form. During the
compound phase, two cues are presented together, but only a small connection
is formed for the new cue. The horizontal dashed line represents the maximum
available certainty for all cues, showcasing how the certainty available to the
new cue is equal to the remaining uncertainty of the previously established
cue.

What is really meant by uncertainty here is the expected error based on the cur-
rent network weights. If the weight between two items is already very high, it will
only change if it is unambiguously at odds with newly encountered information. It
should be noted that all this naturally emerges from the learning rules as previously
described in Section 1.1.2; After each learning event, the weights in the model are in-
creased depending on the amount of expected activation. Any learning event which
includes an established cue to outcome relation will lead to a high activation and a
small error, regardless of the presence of other cues. Because the error of the learn-
ing event is small, the changes to the learning weights for any of the present cues
is small as well. Therefore, the weight of the new cue will only ever increase to the
point till the maximum activation is reached, at which point the error will become
zero and no more improvement of weights is possible.

1.3.2 Cue-Blocking involving different Temporal Relations

As outlined in Section 1.1.3, assuming that two stimuli always occur completely si-
multaneously is a limiting view. If we assume the TCH is correct, we would expect
different levels of blocking for different combinations of temporal relations, depend-
ing on the placement of the new cue in relation to the already established one.

This prediction is confirmed in experiments by Amundson and Miller (2008),
which show that differences in the temporal relations between stimuli lessen the
impact of cue blocking. Using rats conditioned to auditory stimuli, Amundson and
Miller showed that an established association of a cue A to the outcome US will
only block a new cue X from also becoming a predictor of the US, if the time passing
between A and the US is kept consistent throughout all learning phases (see Table 1.1
for cases tested). These findings provide evidence for the assumption of the TCH
that temporal relations are cues that carry either useful or distracting information
and that learners use this information to distinguish otherwise identical learning
events and produce different learning outcomes (Amundson & Miller, 2008).

Unexpectedly, Amundson and Miller also found that if they place the new cue X
before the already established sequence of A and the US, it will not be (fully) blocked
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Table 1.1: Examples of different cases tested by Amundson and Miller (2008), in
regards to consistency of temporal relations. The letters cr, Cr and CR indicate
the expected magnitude of the conditioned response. Note how, when temporal
relations are inconsistent, the response is stronger, i.e. blocking is attenuated.
Table adapted from Amundson and Miller (2008).

and will produce similar CR as previously only elicited through the presentation of
A or the US (see Table 1.2 for cases tested).

Table 1.2: Examples of different cases tested by Amundson and Miller (2008),
in regards to variation of placement of a new cue X in relation to an established
sequence. The letters cr, Cr and CR indicate the expected magnitude of the
conditioned response. Note that the marked case "3-15 Block" did not result in
blocking as expected.

At first glance this may seem intuitive, as it seems correct that if stimulus A
occurs after X, it should have no influence over whether a connection between X
and the US is formed. However, these findings are surprising under our current
understanding of blocking as modelled by a discriminative model. From a network-
modelling standpoint, we would expect that it makes no difference in which order
two events occur, just that they share features and as such interfere with each other.
However, this mismatch of model and data is precisely because of the discrete repre-
sentation of learning events. The network-based approach allows only for a limited
representation of sequence learning: Things are either cues or outcomes — before
or after. Anything that is seen as a cue is grouped together by the model, making
the two cases of placement of a new cue identical to each other. This means that in
either case — regardless of where the new cue is placed — the new cue should not
provide information that contradicts the association formed in the previous learning
stage. But, as the data collected by Amundson and Miller show, this is not that case
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if the cue is placed before the established sequence, and some amount of sequential
information is, in fact, available during recall.

1.3.3 Transference

A possible explanation for how sequential information could make it into the learner’s
mind is the aforementioned concept of transference. The basic idea is that given
knowledge of A predicting B and B predicting a third stimulus C, the temporal rela-
tionship between A and C can be (implicitly) inferred by the learner (Molet & Miller,
2014). Such transference of learned associations would solve the problem outlined
in the previous section in that a learner who already knows that A predicts the US
and who then learns that the newly introduced cue X predicts A could then infer us-
ing transference that X predicts the US as well. Noteworthy is that while we would
expect transference to occur in all cases, it would only have a large effect if there
is information to transfer. In the example of the new cue X being introduced after
A, we don’t expect much if any information to be transferred, because X is being
blocked from becoming associated with the US.

Of course, there may be alternate explanations. For instance, it may be the case
that the new cue X is not seen as linked to the co-occurrence of A and the US. We
recall that blocking essentially functions on the principle of new information being
redundant. In the situation where X is placed after A, the new cue can only provide
redundant information, as the learner already knows that the US is about to occur.
Alternatively, when X occurs first, it could be argued that at the moment when X is
encountered, it is not yet certain if A will occur, so X holds some predictive power,
allowing it to avoid being blocked. This is the explanation discussed in Amundson
and Miller (2008).

For clarity, it should be highlighted perhaps in what way this information theory
viewpoint is different from the concept of transference: The former assumes that in
the described scenario X is not blocked at all, while the latter assumes that while
blocking occurs, the gaps are filled in afterwards, with the end result appearing the
same. The crucial difference is that transference does not create "real" learning of
sequences, but only offers an alternative path to infer missing information. In a re-
view of transference, Molet and Miller (2014) outline that research on transference as
a cognitive process (rather than just a theoretical concept) shows that it only occurs
during the explicit recall of information. This is measurable, for example, in that
transference captures only the general order of cues rather than the exact temporal
relations. So, in the cue-blocking example, it would be possible only to infer that
the US will occur at some point after X but not exactly when, which may be a useful
marker for examining if transference is used or not.

To sum up, this thesis is interested in the question of how temporal relations
interact with blocking effects with the larger goal of investigating how to include
temporal relations inside of a discriminative model. For this we examine the differ-
ences in responses related to the placement of a new cue in an established sequence,
with the initial theory being that learners can use transference to restore blocked
information. For this purpose the next section will outline a simulation study, to
further identify questions regarding formalisation of this process.
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2 Simulation Study

The aim of this simulation study is to model cues holding information about tempo-
ral relations as part of a network model using a discriminative learning rule, to com-
pare different ways of encoding, and to simulate the effect of transference. We will
first explore a direct implementation of temporal relations as cues and then highlight
the benefits of adding simulated transference on top.

2.1 Base-EDL

The edl package developed by van Rij and Hoppe (2021), which runs in R (R Core
Team, 2021), provides a good base to calculate changes to a weight matrix based on
specified learning events. Within this implementation, strings define discrete cues
and outcomes of each learning event. An example of a string representing the cue-
set of two cues A and X would be A_X. This structure can be expanded to include
cues representing the temporal relation between each cue and the outcome of each
learning event (not to be confused with the temporal relation between each of the
cues in the cue-set). For instance. it may be encoded that cue A occurs 10 seconds
before an outcome or that cue X occurs 3 seconds before a different outcome.

Ahead of discussing the exact nature of encoding, it should be mentioned our
model will work on the assumptions that temporal relations are encoded in seconds
and that each time interval represents a unique cue with no relevance to how similar
or dissimilar two different time intervals are to each other. In practice, the similarity
between 10 and 11 seconds is of course larger than between 10 and 100 seconds.
In addition, human time perception is logarithmic and people treat small and large
intervals differently, to the point of showing different levels of accuracy when having
to make estimates (Taatgen & van Rijn, 2011). However, it is not straightforward to
include such a continuous notion of time into the EDL framework, which assumes
discrete cues. Therefore, we will ignore this knowledge for now and assume that
the time intervals used are possible to distinguish and are estimated to the nearest
second. Let us now turn to how to encode this information in our model, starting
with the most straight forward cases discussed in Amundson and Miller (2008).

2.1.1 Simultaneous cues

The simplest way of encoding temporal information into a cue-set is to define each
cue as representing both the sensory aspect of the stimulus as well as the temporal
relation. For example, the cue-set of A and X may be written as A-3s_X-3s, repre-
senting a learning event where both A and X occur three seconds before the same
outcome (this is the first case tested in Amundson and Miller (2008), which was
found to result in blocking). Figure 2.1 shows that for this compound-cue setup,
there is no increase in learning weight for the new cue X once it is introduced and
that the only activation visible is carried by the general background cue (BG), which
represents information that is always present. From this we can conclude that the
cue X is blocked, as it was in the real experiment.
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Figure 2.1: Learning trajectory for a 3-3 blocking paradigm, as given by a model
using compound-cues. Initially only cue A is presented, with additional cue X
introduced after the dotted line. Both cues occur three seconds before the US.
No change to learning weights of X occurs after it is introduced, though the
background cue (BG) provides some activation.

An alternative implementation to the compound-cue method would be to treat
the sensory content and temporal relation as two separate cues. For the same learn-
ing event as described above, this would give us the cue-set A_3s_B_3s. Figure 2.2
shows the learning trajectory of the same scenario, using this different implemen-
tation. Notably, while blocking of the new cue occurs, there is some unlearning for
both learned cues. This is because in this implementation, the cue 3s looses predic-
tive power. Amundson and Miller do not report anything that would suggest this
occurring, though they don’t explicitly check for it either. In general, it can be said
that this implementation is unlikely to be accurate, as previous research already in-
dicates that temporal relations are not stored without the event they are anchored
with (Molet & Miller, 2014).
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Figure 2.2: Learning trajectory for a 3-3 blocking paradigm, as given by a model
using individual cues. Both cues occur three seconds before the US. While
blocking occurs, both A and X are less strongly predicted once the second cue
X is introduced.

An advantage of the implementation using two cues, would have been that it
would be possible for learners to ignore the information about temporal relations
when it is not useful, while still gaining knowledge about the sensory aspect. To
maintain this feature, we try a third approach, a combination of the previous two (cf.
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Ramscar et al., 2011): A cue of just sensory aspect combined with the compound
cue. In practice for our example this would be a string of four cues: A_A-3s_B_B-3s.
Figure 2.3 shows that in this implementation there is no unlearning taking place, and
the blocking of X is equally as strong as before.
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Figure 2.3: Learning trajectory for a 3-3 blocking paradigm, as given by a model
using compound-cues and additional sensory cues. No change to learning
weights of X occurs after it is introduced.

We recall that one of the main findings of Amundson and Miller is that blocking
is attenuated if temporal relations are inconsistent through out the learning process.
For example, if the interval length changes from 15 seconds in the compound phase
to 3 seconds in the elemental phase, the amount of blocking is equal to control con-
ditions with no blocking at all. Figure 2.4 shows the corresponding simulations of
this experiment for the two ways of cue-based encoding. In the pure compound
cue implementation, there is no blocking whatsoever, while the implementation us-
ing separate sensory cues has some blocking occurring. This makes sense, as with
the split cues, the sensory cue A is a good predictor even if the temporal interval
changes. This is exactly the dynamic described in the previous paragraph, of unreli-
able temporal relations being simply ignored. Which of the two implementations is
more accurate for this case is hard to say, since this is something that would lead to
changes for cue A, which Amundson and Miller, did not measure or report.

Why not Outcome-based encoding?

At this point it is good to briefly explain why the temporal relation is not encoded as
part of the output. To clarify what is meant by this, in the so far outlined approach
the learned information is that a stimulus and a pause of a certain length predict an
outcome rather than a stimulus being seen as a predictor of an outcome after a pause
has passed.

While the alternative implementation is possible, if the temporal relation is stored
with the outcome (e.g. US-15s), there is nothing with in the cue-set itself that distin-
guishes the different learning phases from another. Instead, the semantic cue comes
to be linked and unlinked with different information. Figure 2.5 shows such a sim-
ulation for the same case as before. The main difference is that information from
the elemental phase is now more drastically unlearned. This means that if we now
present again the cue A with the old interval of 15 seconds, people should show
no signs of having previously learned this information. For this thesis, the possible
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(b) Sensory cues and Compound cues

Figure 2.4: Learning trajectories for an unreliable blocking paradigm, as given
by a model using compound-cues only and one with additional sensory cues.
The former shows no difference between the two cues, while the latter shows
that the new cue X is still partially blocked.

validity of this theory is acknowledged, but a targeted exploration is left to future
research.
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Figure 2.5: Learning trajectory for an unreliable blocking paradigm, as given
by a model where temporal relation is encoded in the outcome. Full lines show
activation for US after 15 seconds, dashed lines show activation for US after 3
seconds. Information of first learning phase is partially unlearned.
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2.1.2 Non simultaneous cues

Let us now focus on the experiments of Amundson and Miller involving cues with
different temporal relations to the outcome US.

One experiment described (experiment 1 in Amundson & Miller, 2008) involves
an already established cue A occurring 15 seconds before the US, and the new cue X
occurring just three seconds before the US. Amundson and Miller found that in such
cases blocking does occur, as was in line with their predictions. Going back to our
compound-cue-based implementation, we can implement this learning event as the
cue-set A-15s_X-3s and the outcome US. However, we must now also include a sec-
ond learning event which happens right before this one, which is that A is followed
by X after 12 seconds. For this secondary learning event — secondary in the sense
that it is the less interesting one, though it occurs first, before the main one — we have
the compound-cue A-12s and outcome X. Figure 2.6 shows the model results for ex-
periment for either of the usual implementations. There is some slight unlearning in
both simulations, but the results are still mainly in line with the animal data, in that
X gets blocked.1
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Figure 2.6: Learning trajectories
for a 15-3 blocking paradigm,
as given by a model using
compound-cues only and one
with additional sensory cues.
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Figure 2.7: Learning trajectories
for a 3-15 blocking paradigm,
as given by a model using
compound-cues only and one
with additional sensory cues.

The more interesting case from Amundson and Miller (2008) is of course when
the new cue X is placed before A. In this case Amundson and Miller unexpectedly
found that no blocking occurs. However, as Figure 2.7 shows, the results are more or
less the same as in the previous set of simulations, where X occurred after A. This is
because — from a modelling standpoint — there is little distinguishing these cases.
This again illustrates the current limit of the discreet network model. Therefore, we
now turn to including transference in our model.

1The implementation completely splitting sensory cue and temporal relation is not shown here as
it was already shown to not be useful. It produces similar results to those shown in Figure 2.6b.
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2.2 Adding Transference

2.2.1 Method

As outlined in Section 1.3.3, transference is a process which occurs during the recall
of information rather than the actual learning process. However, the EDL model, can
only model the effect of learning events on a weight matrix. It is possible, though, to
add a simulation of transference after the fact.

For this, we adapt the equation for calculating the activation of an outcome: Let
us assume we have a learning event at time t. We recall, that, if we want to know
the activation of outcome j given a specific cue i at moment t, we must retrieve the
weight vt

ij. As there may be more than just one cue in our cue-set, we take the sum
of all weights leading from cue a to outcome j, where a is any cue present during
moment t.

actt
j = nett

j = ∑
a∈cues(t)

vt
aj (2.1)

This is what the base-EDL system discussed in the previous section already does.
Now let us consider the situation that there are three cues occurring in a row, A
followed by B, which itself is followed by C. We are interested in finding a formula
that given just the cue A gives us the activation of C by using another cue (in this
case B) as a ‘pit stop’.

To do this we will combine the weights vt
AB and vt

BC in a way that we get a
positive activation. However, for our method to be realistic, it should only produce
a positive activation if the learner indeed posses the two pieces of knowledge to
create this alternate route, namely that A predicts B and B predicts C. Therefore,
a good way to combine the two weights is to multiply them together. This way,
we only get a positive activation at the end, if both the weight leading to and from
the ‘pit stop’ are positive. Further, if the learner has only partially learned one of
the linking connections, they will also only be able to produce a small amount of
transferred information.

For our simulation, we will also use a Rectified Linear Unit (ReLu) function on
the ‘pit stop’ weights, so that we will not get a negative activation. This is done
to prevent transference being used to infer the absence of a cue, which none of the
literature suggests is the case.

Returning to formalisation, we add to our activation function the product of all
possible combinations of two (above-zero) weights. First, we take the weight Vt

ab,
which leads from cue a (which may be any cue present at moment t) to outcome b
(which can be any outcome part of Vi(t), meaning any outcome already in the weight
matrix at moment t). We multiply this with the weight between any matched cue b
and our goal outcome j, simulating a chain from a to b to j:

actt
j = nett

j = ∑
a∈cues(t)

vt
aj + ∑

b∈Vi(t)
ReLu(vt

ab) ∗ ReLu(vt
bj) (2.2)

To show a practical example, let us assume we have a weight matrix at mo-
ment t = 6, representing a situation where the learner has partially formed associa-
tions between A and B as well as B and C, but nothing else. We let V6

AB = 0.8 and
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V6
BC = 0.9 and all other weights be zero.2. To calculate the activation of outcome C

given just the cue A we get:

act6
C = net6

C = ∑
a∈{A}

v6
aC + ∑

b∈{A,B}
ReLu(v6

ab) ∗ ReLu(v6
bC)

= v6
AC + ∑

b∈{A,B}
ReLu(v6

Ab) ∗ ReLu(v6
bC)

= 0 + ReLu(v6
AA) ∗ ReLu(v6

AC) + ReLu(v6
AB) ∗ ReLu(v6

BC)

= 0 + (0 ∗ 0) + (0.8 ∗ 0.9)

= 0.72

(2.3)

Importantly, t here refers always to the time of recall of information, rather than
when information was learned; Even if, for instance, the learner encounters first
an occurrence of A predicting B and then later is exposed to B predicting C, the
only thing that matters regarding transference, is what the weights are at the time
of recall. For this reason, we use the same value for t throughout the equation.
It is noted also that, for the process of changing the weights during learning, the
unaltered equation should be used. Further, before moving on to the next section, it
must be stressed that this study does not claim that this mathematical approach to
what ultimately appears to be a reasoning process is in any way based on cognitive
research. It is simply an approximation of the result of transference, rather than the
actual process itself. Still, this simple example shows that with this new method,
even though a direct connection between A and C was not present in the weight
matrix, it is possible to simulate a positive activation reached through transference.

2.2.2 Results for replicating Amundson and Miller (2008)

We can use our new equation to examine how adding transference affects the out-
come of the simulations discussed in Section 2.1. We can first say, that in cases where
cues occur simultaneous, there is absolutely no transference at all. This is because
there is simply nothing to transfer, as the weight matrix only ever has one possi-
ble outcome — the unconditioned stimulus. No associations between A and X are
formed, and as such there is nothing to transfer.

More interesting then are the cases where cues are non simultaneous. Returning
for example to the scenario where the new cue X is placed inside the established
sequence A to the US, we can see in Figure 2.8 that in both of our implementation
methods, transference eventually counters the initial unlearning that occurred after
the introduction of X. Overall though, transference does not change the situation
that X is blocked from becoming associated, staying in line with the experiment
data collected by Amundson and Miller.

As we turn now to the case of X being placed outside the established sequence,
we recall that we were not able to correctly simulate this experiment when using
just the base EDL-system. Figure 2.9 shows now that in both of the simulations,
transference pulls up the learning trajectory for the X cue significantly. Interesting
to note is that even though the weight for X is initially much lower in the model

2The simulations replicating Amundson and Miller (2008) will use a background cue, but for now,
to keep the mathematics simpler, it is omitted.
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Figure 2.8: Learning trajectories for 15-3 blocking paradigm, as given by
a model using compound-cues only and one with additional sensory cues.
Coloured lines show the new trajectories with added transference, with old
trajectories in grey for comparison.

using a separate sensory cue, by the end of the learning process, it is on the same
level as in the implementation using just a single compound cue.

2.3 Discussion

The aim of this simulation study was to test different approaches to encoding tem-
poral relations and the results of combining them with transference to identify the
most accurate approach and identify remaining ambiguity. From the obtained re-
sults, it seems that encoding temporal relations and sensory aspects as a compound
cue is effective, and that results are even better if an additional cue of just the sensory
aspects is added.

We could also see that the chosen method of simulating transference can have
a significant affect on getting the network model in line with the results found by
Amundson and Miller (2008). Importantly, the method only causes big shifts in
learning trajectories when it would reasonably make sense for transference to be
used by a learner. As shown, it does not magically fix situations where the reason
that blocking was attenuated is inconsistent temporal relations, but only changes the
outcome in the specific case of a cue being placed outside of an established sequence.
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Figure 2.9: Learning trajectories for 3-15 blocking paradigm, as given by
a model using compound-cues only and one with additional sensory cues.
Coloured lines show the new trajectories with added transference, with old
trajectories in grey for comparison.

However, we can identify some issues. First of all, it remains to be tested whether
the findings of Amundson and Miller are consistent when repeated using human
participants. Secondly, we should investigate if the original sequence is unaffected
in cases where blocking occurs. As we have seen, for example, in the issue of encod-
ing the temporal relation as it’s own cue, once two learning events share the same
temporal relation, there would be some ambiguity introduced which may result in
the initial connection becoming weaker. Lastly, when comparing cases that we sus-
pect to rely on transference with those that do not, it should be examined if there are
differences in the accuracy of predictions. This would give us indication if transfer-
ence is really the right idea, or if we might rather use a different explanation.

To summarise, the remaining questions are:

• Can we replicate the findings on the attenuation of blocking in relation to cue
placement with human participants?

• Is the knowledge, which is learned in the elemental phase, unlearned, when a
new cue is introduced?

• Is the accuracy of temporal estimations higher, if the new cue is placed inside
the sequence rather than outside?
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Answering these questions should help us determine the accuracy of our cog-
nitive model and provide more insight into the validity of the model’s assumption.
The following sections will outline an experiment to collect the required human data
to answer them.
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3 Human Study - Methods

3.1 Experiment Design

Human participants are tested to gather reaction time data across different condi-
tions. The recorded data should capture accuracy, speed and precision, i.e. if people
can respond quickly and during a specific time interval. For this purpose, partici-
pants look at stimuli on a computer screen and give a response as soon as a specified
stimulus appears.

The experiment is in the form of a video game to discourage participants from
analysing the underlying rules and instead focus on reacting as quickly as possible.
The game’s story is that aliens are attacking a city using a laser. The participant has
to block these attacks with a shield which they activate by pressing the space bar.
The participant can see a sequence of symbols displayed one at a time on the screen,
which they are told represents the aliens’ communication with each other. Before
the start of the game, participants are shown one of these symbols and are told that
when the aliens use this symbol, an attack is imminent. The participants are told
nothing about any of the other symbols. The game’s goal is to deflect all attacks by
reacting quickly to the trigger symbol. Participants are informed that each blocked
attack earns them 50 points, failure to block will result in a loss of 50 points, and
unnecessary uses of the shield will result in a loss of 10 points. The game explicitly
instructs participants to get as high a score as possible.

The game consists of continuous trials involving multiple presentations of the
trigger symbol, each reliably followed by an attack serving as feedback to the par-
ticipant. A failure to block an attack is visualised as the alien laser hitting the city
and the screen turning red for 300 ms. A successfully blocked attack is visualised
as the alien laser reaching the shield and bouncing off from it as sparks, shown for
the same time interval. This visual feedback functions to keep participants engaged
in the game and to encourage them to avoid the negative affect of the sudden red
screen and loss of points. However, the game is designed in a cartoon style to keep
the caused distress from exceeding the required amount. Figure 3.1 and 3.2 show
examples of the visual content of the game, which were also shown to and approved
by the research ethics committee Commissie Ethische Toetsing Onderzoek (CETO).

Figure 3.1: Example screenshot of the invading aliens game, showcasing the
display of a stimulus.
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Figure 3.2: Example screenshots of the invading aliens game showcasing the
two feedback screens for a successfully blocked attack (top) and failure to block
(bottom).

Within the game, the visual feedback of the attacks acts as the unconditioned
stimulus (US), with the resulting negative affect of failing to block an attack being
the unconditioned response (UR). Once the participant starts performing well at the
game, they will experience a positive affect in the form of relief as the negative affect
subsides. Through backward conditioning, participants will connect this positive
affect to the conditioned response of pressing the response key at the right time. The
reward system of points within the game serves to further this connection.

Unbeknown to the participants, the stimulus immediately preceding the trigger
stimulus is consistent across trials. These stimuli serve as a hidden target sequence,
with the idea being that participants may form a secondary implicit association be-
tween the presentation of the hidden stimuli and the positive affect of avoiding pun-
ishment. To keep consistency with the descriptions used in Amundson and Miller
(2008), we will refer to the hidden stimulus as the A stimulus. An association is
considered formed if participants react faster to attacks when presented with the A
stimulus than in other cases.

3.1.1 Phases and Conditions

As described in Section 1.3.1, for tests of blocking, the learner usually goes through
an elemental learning phase, a compound learning phase and a test phase. Similarly,
in this experiment, participants pass through three phases of continuous trials, with
breaks in between each one. Each phase of the game is presented as a day in the
fight against the aliens.

In the first phase, the target sequence consists of the A stimulus followed by the
trigger stimulus, with the rest of the trials as a random sequence of filler stimuli
so that only the target sequence provides consistent information to establish it as
reliable in the participant’s mind. The filler cues also serve to obscure the presence
of the hidden sequence. One constraint on the trials is that the target sequence is
never the first or last thing participants see to ensure that measurements are not
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affected by participants getting used to the game and to prevent special attention
being drawn to the sequence by ending a trial with it.

The second phase introduces a new cue X to the sequence. This phase could
show participants unlearning the previously learned sequence in favour of a new
sequence or ignoring the new cue completely. The placement of the new cue is either
just before A or between A and the trigger symbol, depending on the condition.
These conditions are comparable to the non-simultaneous experiments discussed in
Section 2.1.2 and will be similarly referred to as "Inside" and "Outside" conditions
respectively.

The experiment also includes two control conditions to allow making inferences
about whether blocking took place, which will be referred to as "Inside (control)" and
"Outside (control)". These conditions differ from the previously described phases
primarily in the elemental phase; Participants are not shown a sequence of A pre-
ceding the US but an alternate sequence with an unrelated masking cue B instead
of A. This new cue B is only used in this condition and not part of the set of filler
cues. In keeping with Amundson and Miller (2008), the control condition serves as a
comparison showing that any differences in responses in the non-control conditions
must be due to the fact that participants’ previous knowledge affected the forming
of new associations i.e. due to the presence of blocking effects.

Lastly, a test phase closes out a run of the experiment. In this phase, the target
sequence consists of only one symbol, A or X, presented before the trigger symbol.
This phase should test which stimulus, if any, a participant relies on to anticipate an
attack once they have undergone both training phases. Individual participants are
only tested on one stimulus, as only the association based on the training phases is
wanted, and the testing phase itself may provide new information. For this purpose,
half of the participants are assigned to be tested on A, with the other half tested on
X. However, it is stressed that the procedure in phases before the test phase is the
same, with differences in response only being expected within the test phase itself.

Combining the four training conditions with the two possible test conditions
gives eight possible condition combinations, as shown in Table 3.1. Important also
is that across one condition, the time interval between two stimuli never changes,
e.g. the time passing between the onset of A and the onset of the trigger symbol
US is the same during the elemental, compound and testing phase, regardless of
the presence of X in between or before. This fixed length ensures that the temporal
relation can be used as a predictor and that if blocking effects are weaker across two
conditions, it is not caused by inconsistent temporal relations introducing noise.

3.1.2 Timing and Intervals

Each trial of the experiment begins with the onset of the respective stimulus. A
stimulus always appears for 400 ms. After this, the stimulus disappears until the
trial ends and the next stimulus appears. There is a distinction between short and
long inter-stimulus intervals (ISI) for the target trials. A short ISI is always 300 ms,
while a long ISI is always 1000 ms. The length of these intervals was selected so that
two cues with a short ISI take up the same time as one presentation of a cue with a
long ISI. The length of the short ISI is similar to the reaction window used in Space
Fortress, a game used to study reaction times involving variation in time intervals
between cue (Mané & Donchin, 1989; Moon & Anderson, 2012).

Regarding the trials which are filler trials, the ISI is randomly sampled from a
uniform distribution with the range of 200 ms up to 1100 ms (an exception to this
are filler stimuli which preceded the target sequence, which are sampled from a
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Conditions Phase number of
Training Test elemental compound test participants

Inside
A

A - - - US A - X - US
A - - - US 6

X X - US 6

Outside
A

A - US X - A - US
A - US 6

X X - - - US 6

Inside (control)
A

B - - - US A - X - US
A - - - US 6

X X - US 6

Outside (control)
A

B - US X - A - US
A - US 6

X X - - - US 6

Table 3.1: Table of the eighth possible condition combinations, showing target
sequences across experiment phases. The length of the dashed lines indicates
the relative length of time between stimuli onsets (long or short). Two short
intervals equal one long interval.

range with a minimum ISI of 300 ms). The shortest time between the onset of two
concurrent stimuli is 600 ms, while the longest is 1500 ms.

Trials in which an attack occurs (i.e. those involving the trigger symbol) have a
total length of 1000 ms, with the attack appearing 700 ms after the initial stimulus
onset. The visual feedback of the attack always lasts 300 ms and is counted as part
of that trial. The resulting distribution of trial lengths across the whole experiment
run is shown in Figure 3.3.
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Figure 3.3: Histogram showing the distribution of trial lengths in trial se-
quences across all participants

After a key press, the shield stays switched on for 1000 ms, making it possible for
participants to press up to 300 ms before the onset of the trigger stimulus and still
be rewarded. This allows participants to use any knowledge they have about the
temporal relations of the target sequence to time their key presses. However, partic-
ipants received the same reward regardless of how accurately they could estimate
how soon to press, as long as the shield was up during the start of the attack.

3.1.3 Alien Language

For this experiment, the stimuli are only visual, instead of auditory as they were
in Amundson and Miller (2008). This is because not all auditory stimuli produce
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equally strong blocking effects (Nixon, 2020) and that working with auditory stimuli
is less practical regarding creation and presentation during the experiment.

The experiment uses three different stimuli sets to ensure that the difficulty of
stimuli does not influence results. The symbols are taken from the Brussels Arti-
ficial Character Sets (BACS) developed by Vidal et al. (2016). These symbols were
specifically developed for use in studies and are based on existing alphabets such
as Chinese, Asomtavruli, Cyrillic, Oriya, and Latin. The ten most unique characters
were selected from each of the three available character sets using a similarity matrix
provided by Vidal et al. The symbols were randomly grouped into six filler stimuli
and four target stimuli per set. The stimuli are shown in Figure 3.4.

Figure 3.4: The three stimuli sets used in the experiment. Marked in red is the
respective trigger symbol. Marked in blue are symbols used as part of the target
sequence of hidden symbols. The remaining symbols are used as fillers.

3.1.4 Structure of Sequence

To ensure that the occurrences of attacks were evenly spread out throughout the at-
tacks, the sequence of symbols in each phase of the experiment was semi-randomised:
A phase was divided into a certain number of blocks (four for the learning phases,
one for the test phase) each containing six bins, with one bin containing one of each
filler stimuli and the target sequence. The placement of the target sequence inside
a bin and the order of the surrounding filler stimuli is random. Overall, partici-
pants encountered the trigger symbol 24 times in one experiment run, plus three
additional times in a preceding practice round. The practice round includes nine
presentations of filler stimuli and three presentations of the trigger stimulus, with
none of the ‘hidden’ stimuli present.

3.1.5 Second Level

A second level of the game is included as well, which participants play once they
have finished a complete run of the experiment. This level is another experiment
run, but in this version the aliens use a shield and the trigger symbol signals when
they are about to turn it off temporarily. At those times, participants can press the
space bar to shoot a laser at the aliens and receive points. The alien gun was removed
from the spaceship to make clear to participants that they did not have to worry
about being attacked (see Figure 3.5).

The changes in the second level are primarily visual, with the underlying task
still consisting of participants having to react with a key press after the trigger sym-
bol appears. The point reward system is unchanged in that pressing at the right
time results in gaining 50 points, failing to press results in losing 50 points, and un-
necessary presses result in losing 10 points. However, the second level is slightly
more difficult as the window when participants should press to score points is much
smaller, with the laser only staying activated for 200 ms, compared to the 1000 ms of
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Figure 3.5: Example screenshots of the second level of the invading aliens game
showcasing the display of a stimulus (top) and a successful attack from the
player on the aliens (bottom).

the shield. As before, participants are rewarded as long as the laser was active when
the aliens lowered their shield, meaning that the earliest possible time a participant
could press was 500 ms after the onset of the trigger symbol. Stimuli sets and con-
ditions are counterbalanced across participants and levels to prevent order effects
from affecting the results.

3.2 Procedure

The experiment is coded in Python and run using the experiment builder software
PsychoPy (Peirce et al., 2019). The experiment is conducted under controlled con-
ditions at the University of Groningen. The present instructor notes any visual or
auditory disturbances occurring during the experiment to allow referencing in cases
of outlier data during analysis. The experiment is conducted over multiple days
between 11 a.m. and 5 p.m., with participants able to choose their timeslot. Par-
ticipants knowingly provide some personal information for storage in a separate
payment system, but no personal data is recorded with the experiment data.

Before the start of the experiment, participants are given a printed information
letter and asked to sign an informed consent form. The information letter described
the study’s aim as investigating “how humans can learn over time to give faster
responses to a specific signal", which is an intentionally ambiguous description, to
avoid participants knowing the full extent of the experiment. Participants are in-
formed that they may withdraw their consent to participate in the study at any point
during the experiment and up to 24 hours afterwards. The information letter, con-
sent form, and the necessary level of deception were evaluated as acceptable with
no objections by the ethics committee CETO.

Once participants have signed the consent form, the experiment starts with in-
structions about the game appearing on the screen. Participants are shown the trig-
ger symbol before and after the practice round, after which they enter the first “day"
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of the game. After completing this first section (i.e., the first learning phase), the
participants can take a short break of their chosen length. During this break, they
are asked to respond to a thought probe with the following options:

1. I was focused on responding in time

2. I was thinking about my score

3. I was thinking about aspects of the game (e.g. the alien language or the level of diffi-
culty)

4. I was distracted by my environment

5. I was daydreaming about task-unrelated things

6. I was not paying attention, but I did not think about anything specific

If they feel multiple answers apply, participants are instructed to answer with what
most applies to the part of the game they just played right before the break. There
are a total of two thought probes per level of the game.

Once participants complete the testing phase of the first level, the game instructs
them to take a longer break, with the exact length up to the participant. Participants
are instructed to stand up or look away from the computer. Once participants indi-
cate they are ready to continue, the screen shows instructions explaining the changes
in the second level. Participants are again shown the new target symbol and given a
practice round.

After participants finish the second level, they are asked to complete a memory
test. In this test, participants see two stimuli on screen, one of which they have
previously seen and one which is novel. Participants must select which symbol they
have seen before, though there is no time limit and no points to be earned.

Once participants have completed the memory test, they are debriefed using a
pre-written text. The present instructor then conducts a short semi-structured inter-
view asking if participants noticed the sequence, if they applied any strategies, and
if they found the game engaging. Responses are recorded paraphrased, as are any
further comments that the instructor may deem relevant. Participants are also given
the option to ask any questions they might have. Participants are paid between eight
and ten euros, a few days after the experiment, based on their final score.

3.3 Planned Analysis

Any participant data may be excluded if the participant withdraws their consent or
if their data is deemed unusable. Data is considered suspicious if the experiment
log, the thought probes, or the memory test indicate that the participant did not
complete the experiment correctly. If multiple factors point to data being suspicious,
it is considered unusable and excluded. Further, a whole stimulus set may be ex-
cluded if data from the main game or the memory test indicate it as significantly
more difficult to parse than the others.

The data analysis will be conducted in R version 4.1.2 (R Core Team, 2021). A
General Additive Mixed Model (Hastie & Tibshirani, 1990; Wood, 2017) will be fit to
the data to determine the presence of any fixed effects and data patterns.
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3.3.1 Expected Results

Random effects for stimuli set and participant differences are expected. Fixed effects
for condition and encounter of the trigger stimulus are expected, with a possible in-
teraction. Based on the previous research, no differences in reaction time (RT) across
conditions are expected in the elemental phase. However, data may show some
speed-up taking place, due to learning, regardless of condition. In the compound
phase, participants in the control condition should slow down at the start of the
phase as they have to adjust to the new sequence. Participants in other conditions
may also show a slight readjustment.

The main findings are expected in the test phase. It is predicted that participants
in the “Inside" condition will react fast if tested on A and slow if tested on X. No
significant difference is expected for all other conditions, though there may be some
slight differences. Figure 3.6 approximates the expected reaction speeds in the test
phase. It is noted that these predictions are formed based on the original findings of
Amundson and Miller (2008), not the simulation study described in Section 2.
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Figure 3.6: Predicted reaction time values for test phase of the experiment.

Lastly, people are expected to adjust their behaviour slightly when moving to
the second level, resulting in a slightly more delayed reaction overall to match the
smaller target window.
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4 Human Study - Results

In total, 48 participants were tested (26 males / 22 females, aged 18-26). One par-
ticipant’s data had to be excluded due to technical difficulties. The highest score
possible to achieve in the game was 5800, which one participant achieved. The low-
est score achieved by a participant was 5410 points. The median score across all
participants was 5765.

Data was taken from the log files of each experiment run as they were less af-
fected by noise than the other timer values stored by PsychoPy. Some noise is still
retained in these timers, as visible, for instance, in Figure 4.1, which shows that most
target trials deviated from the supposed trial length of 1000 ms and that this devi-
ation was not consistent from trial to trial. Noteworthy also, is that the magnitude
of these effects differs between the two levels. The relevance of this noise is further
discussed in Section 5.
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Figure 4.1: Delay of recorded trial length when compared to supposed length of
1000 ms. Plot shows only one experiment run. The X axis shows stimID value
which can be taken the progression in the experiment. Clearly visible is a shift
from first level to second level.

4.1 Non-game data

4.1.1 Thought probes

Figure 4.2 shows the distribution of thought probe responses across the two levels.
It can be summarised that as participants move to the second level, they slightly lose
their focus, but overall there are no big changes.

4.1.2 Memory Test

Regarding accuracy in the memory test, almost all symbols scored a mean accuracy
above 90 per cent, with the exception of one of the filler symbols in the first stimuli
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Figure 4.2: Responses to the thought probes across levels

set, which had a mean accuracy of just 63 per cent. This lower value is most likely
caused by the fact that, when participants had to choose between this symbol and
a foil symbol as part of the memory test, the foil symbol looked very similar to a
different target symbol. This oversight in the design of the memory test should not
affect the experiment’s results. The affected stimulus was also the only one for which
participants took significantly longer to decide on an answer (4 seconds on average),
than other symbols (between 1 and 3 seconds on average). No further relevant dif-
ferences were found, neither regarding accuracy nor reaction speed. There were no
visible differences between filler and target stimuli.

4.1.3 Interviews

In the post-experiment interview, 25 participants indicated being aware of the se-
quence before the start of the second level, with an additional seven claiming they
became aware during the second level.

All participants indicated that they found it easy to complete the memory test.
However, some did admit that they found certain symbols easier than others, which
aligns with the recorded data. Regarding the main section of the experiment, most
participants responded that they did not use any strategies beyond simply trying to
press quickly after the trigger symbol appeared. Some noteworthy exceptions were
individual instances of participants saying they were trying to count the number of
symbols between appearances of the trigger symbol. However, those participants
also mentioned that they quickly abandoned this strategy once they noticed that it
was not effective. One participant noted that they were focusing only on parts of the
trigger symbol (e.g. a curve or wiggle), rather than the entire symbol. Similarly, an-
other participant noted that they were focused only on the area of the screen where
the stimuli appeared, to the point that they did not recall things such as seeing the
aliens react to being hit by a laser or the score changing.

Two participants noted that they experienced an urge to press right before the
trigger symbol appeared but restrained themselves from pressing until they felt it
was safe. It is possible that more participants experienced this but did not bring it
up in the interview, as they were not explicitly asked about it.

Overall, participants indicated they enjoyed the game and found it easy to stay
focused. Some participants went so far as to say they would gladly play the game in
their free time.
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4.2 Game data

For analysis of reaction time during the game parts of the experiment, only the tar-
get stimuli were looked at, with stimuli of one sequence grouped together as one
data point. Reaction times were calculated as key presses relative to the onset of
the trigger symbol, meaning any key press before the trigger symbol would give a
negative reaction time. Only the first key press was considered for further analysis
for each group. Out of all data points, only 34 were below zero, meaning that in the
majority of encounters, participants pressed only after the known target symbol had
appeared.

The initially planned analysis regarding participants’ ability to press in the ex-
pected time window was not possible from the data obtained due to issues with
the experiment implementation (further discussed in Section 5). All analysis will
therefore focus only on relative speed-ups in reaction time inside one phase of the
experiment rather than the specific times obtained.

For the sake of completeness, it can still be mentioned that the average reaction
time in the first level was 416.3 ms (with a minimum of 0.3 ms and a maximum of
1485.0 ms), and the average reaction time in the second level was 452.5 ms (with a
minimum of 0.3 ms and a maximum of 1501.3 ms). Figure 4.3 shows the average
time of key presses in each of the four conditions for both levels. Notable is that it
appears that participants responded faster in later blocks of the experiment but over-
all slower in the second level (represented by the blue lines in Figure 4.3). However,
it is not yet clear if these differences are significant and if there are any differences
between the elemental learning phase (taking place in blocks one through four) and
the compound learning phase (taking place in blocks five through eight).
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Figure 4.3: Averaged reaction time over experiment blocks divided by experi-
ment conditions and levels. Error bars indicate standard error. Blocks 1-4 cor-
respond to the elemental learning phase and blocks 5-8 correspond to the com-
pound learning phase.

To gain more insight into the obtained data, a statistical analysis involving Gen-
eral Additive Mixed Models was performed in R. Data from each experiment phase
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was fit to a separate model for better comparison across phases. Models were fit
using the Maximum Likelihood (ML) method and logRTs with values below zero ex-
cluded.

Random effects were assumed for all models to be a random intercept for partic-
ipants and stimuli set. When the change in RT over the course of the learning phases
was modelled, a random factor smooth for the number of times each participant
had already encountered the target sequence was included. This aimed to improve
model fit and reduce possible auto-correlation in the model’s residuals. The fixed
effects for each model were fitted using forward fitting, the process and results of
which will be outlined in the following sections.

For the first level, a separate model was fit using only participants who reported
being unaware of the sequence. This secondary analysis was not possible for the
second level, as the number of remaining unaware participants was not high enough
across all conditions. The output for all models listed is given in Appendix A.

4.2.1 Elemental Phase

For the RTs collected during the first day (i.e. the first learning phase) of the first
level, a base model with no fixed effects beyond encounters explained 35.0 per cent
of the maximum deviance to explain. A model with an added fixed effect for the
condition explained the same deviance and did not significantly improve the model
fit (χ2(3.00) = 0.958, p > .1). Similarly, adding an interaction between condition
and encounter decreases explained deviance to 34.6 per cent and did not signifi-
cantly improve upon the previous model (χ2(8.00) = 4.081, p > .1). Removing
participants who reported being aware of the sequence did not improve the model’s
fit, leading to an explained deviance of just 28.3 per cent, much lower than any of
the models using all data.

Importantly, no significant difference across conditions was found in any of the
models. Figure 4.4 shows the overall trend of reaction times over encounters, high-
lighting that there appears to be no underlying speed-up found in this learning
phase.
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Figure 4.4: Fitted values of GAM model for elemental phase in the first level.
All random effects are removed. Dotted lines indicate 95 per cent confident
intervals.

Repeating the same analysis for the second level, a base model explains 37.1 per
cent of the maximum deviance. This model is not significantly improved by neither a
fixed effect for condition (χ2(3.00) = 1.469, p > .1) nor a further interaction between
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condition and encounters (χ2(8.00) = 6.602, p > .1). As in the first level, no general
slope remains once random effects are removed, suggesting there was no general
speed-up in this learning phase.

4.2.2 Compound Phase

For the second learning phase of the first level, a base model with no fixed effects
beyond encounters explained 31.5 per cent of the maximum deviance to explain. As
before, a model with an added fixed effect for condition explained the same deviance
and did not significantly improve the model fit (χ2(3.00) = 1.197, p > .1). Adding an
interaction between condition and encounter decreases explained deviance slightly
to 31.1 per cent and does not significantly improve the model (χ2(8.00) = 2.051, p >
.1). Removing participants who reported being aware of the sequence does not im-
prove the model’s fit, leading to an explained deviance of just 21.3 per cent.
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Figure 4.5: Fitted values of GAM model for compound phase in the first level.
All random effects are removed. Colours indicate different conditions: Inside in
green, Inside (control) in red, Outside in purple and Outside (control) in cyan.

Although the interaction model was not preferred, it is still interesting to look at
the different slopes across conditions. As Figure 4.5 shows, the fitted value for the
Inside (control) condition is high at the start of the compound phase. However, this
is not occurring when looking at data of only unaware participants (see Figure 4.6).
This suggests that this increase was caused by participants who were already aware
of the hidden cues and were caught off guard by the change to what they had con-
sciously picked to use as a strategy.

Repeating the same analysis for Level 2, a base model explains 32.5 per cent of the
maximum deviance. This model is again not significantly improved by a fixed effect
for condition (χ2(3.00) = 0.289, p > .1). A model including a further interaction
between condition and encounters puts the explained deviance to just 31.8 per cent
and does not improve the model fit (χ2(8.00) = 4.237, p > .1). As in the first level, a
general slope and difference is visible between some conditions, (see Figure 4.7), but
it is not statistically significant.

4.2.3 Test Phase

For the test phase, the analysis mainly focuses on changes in the average response
time during the whole period, as the length of just six measurements is insufficient
to find any slopes. However, all models are still fit with a factor smooth for the
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Figure 4.6: Fitted values of GAM model for compound phase in the first level,
but using only data from unaware participants. All random effects are re-
moved. Colours indicate different conditions: Inside in green, Inside (control)
in red, Outside in purple and Outside (control) in cyan.
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Figure 4.7: Fitted values of GAM model for compound phase in the second
level. All random effects are removed. Colours indicate different conditions:
Inside in green, Inside (control) in red, Outside in purple and Outside (control) in
cyan.

encounter variable as there may still be individual differences caused by participants
being distracted or otherwise delayed during a trial.

For the test phase in the first level, the base model includes a fixed effect between
test conditions (i.e. which cue people were tested on). This model explains 65 per
cent of the deviance to be explained. However, the intercept adjustment between
the two test conditions is insignificant (p > .1). Adding a distinction by condition
does not improve the model fit (χ2(3.00) = 0.320, p > .1), and neither does adding
an interaction between test and condition (χ2(3.00) = 1.613, p > .1). Removing
participants who reported being unaware did not change the model fit, with the
intercept adjustment for test conditions still being insignificant. Figure 4.8 shows the
fitted results across conditions, highlighting how neither learning nor test condition
significantly affected the reaction speed in the test phase.

Repeating the same procedure for the second level, the base model using just
the test variable explains 63.3 per cent of deviance. However, as before, the in-
tercept adjustment for test conditions is non-significant. The model with a fur-
ther fixed effect for learning conditions is also not significantly better than the base
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Figure 4.8: Fitted values of GAM model for test phase in the first level. All
random effects are removed. Error bars indicate 95 per cent confident intervals.

model (χ2(3.00) = 0.431, p > .1). The model with an added interaction is not signif-
icantly better than the one without (χ2(3.00) = 1.210, p > .1).

Lastly, some data on the general fit of the discussed models: Figure 4.9 shows
the distribution of residuals for the model used in the analysis of the test phase in
the first level, which explained 65 per cent of deviance. We can see that the resid-
uals have heavy tails on both ends, suggesting that the residuals are not normally
distributed. This finding extend to all other models.
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5 Discussion

The research question of this thesis was to investigate differences in reaction times
when comparing blocking paradigms involving different temporal relations. The
simulation study aimed to identify open issues regarding the cognitive modelling of
such differences. The human experiment aimed to collect more data on the identified
issues, namely the change in blocking depending on the order placement of a novel
cue in or before an established sequence. Further, we were interested in whether the
original sequence would be unlearned and if prediction accuracy varied in different
conditions.

The results of the experiment indicate no significant differences in behaviour
regardless of where a new cue is placed. There was no change in performance within
the learning phases and no differences in performance during the test phase. This
suggests that in our experiment, participants did not use the provided hidden cues
and instead focused only on the explicit signal of the trigger cue for their responses.
Data regarding the accuracy of estimates made by participants was not able to be
obtained.

Before interpreting these findings in the context of cognitive theory, the following
section will first discuss the possible limitations of the experiment in both implemen-
tation and design, which will inform whether any conclusions may be drawn.

5.1 Limitations of Software

As mentioned in Section 4, the data used for analysis included large amount of noise.
This noise was found most clearly in the recorded length of each trial, which devi-
ated considerably from the supposed length. This suggests that in this implemen-
tation, the experiment was either unable to record accurate values or unable to pro-
duce them in the first place. It is likely that this also extended to the onset of cues,
the onset of the feedback and the length of timers for the shield and laser in the
respective levels.

This issue is likely caused by the fact that PsychoPy uses a timer-based imple-
mentation where each event is given a start condition checked at every frame. It is
possible that, because each learning phase was coded as one long continuous trial
and because the game involved loading a lot of large images, PsychoPy could not
accurately perform these checks. This hypothesis is also supported by the fact that
the deviation from the supposed trial length as shown in Figure 4.1 is different in the
two levels, suggesting that the amount of code to run through resulted in different
deviations from the supposed time intervals.

An implication of this inconsistency is that, if the inter stimuli intervals were not
as intended, it may be that the temporal relations of the target stimuli were incon-
sistent during the experiment. As outlined in Section 1.3.2 and confirmed by the
simulations in Section 2.2.2, if temporal relations are inconsistent, they do not act as
an informative cue, and no blocking can take place. This could partially explain the
lack of effect the presence of these cues had on participants’ responses.
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Further, the failure to produce accurate timings also leads to unreliable informa-
tion about reaction times. For instance, the average key press time in the second
level was 452.5 ms, which is 50 ms before a press would be correct. This would sug-
gest that, on average, all first presses in the second level were incorrect. While this
is possible in theory, it seems unlikely as participants would most likely adjust their
behaviour if they kept pressing too early for their response to be rewarded. Indeed,
the high scores obtained by participants indicate that few mistakes were made. Even
more so, as one participant received the perfect score even though all their presses
were in the 450 ms range, we can rule out bad performance and must instead con-
clude fault in the obtained data.

For the sake of having any data for analysis, it was assumed that the relative
speed-up of values to each other is still accurate (i.e., it could be observed if partic-
ipants sped up over time). However, it should be stressed that there is no certain
way of knowing even this. The reason it was nonetheless assumed that the data on
speed-ups were accurate is because there are visible changes in the data at moments
when people reported becoming aware of the sequence. Therefore, any changes in
behaviour caused by implicit learning of the sequence would also have been visible,
had they occurred.

5.2 Limitations of Experiment Design

As mentioned in the analysis, the experiment is limited by the possibility of people
becoming aware of the hidden sequence at some point during the task. This seems
inevitable as the game is simple and played for around 30 minutes. However, as
we saw in Section 4, the result does not improve when looking at only unaware
participants, at least not to the point of results becoming significant. This suggests
that people rarely picked up on the sequence implicitly.

Alternatively, some participants reported suppressing the urge to respond before
the trigger symbol appeared. This suggests that though they had formed a reflex-
like response through implicit learning, their executive control intervened. Similarly,
some participants noted that they were trying to ‘experiment’ with the timing of
their responses, but noticed that this often led to a loss of points, when straying too
far from the right time. At the same time, due to the binary nature of the feedback
there is no incentive for participants to optimise their responses, as a response which
is just good enough earns as many points as one which is perfect. Because of this,
many participants took a conservative approach with their presses and only pressed
when they were sure it was safe to do so, i.e. once the trigger symbol had appeared.
This again suggests that explicit reasoning about the game’s rules intervened with
any implicit knowledge that may have been picked up. Another indicator for this
is also the high number of responses to the thought probes regarding participants
thinking about meta aspects of the game. A further explanation for the lack of im-
plicit learning could be the number of participants who reported that they were not
paying much attention to anything except the trigger cue itself or even just parts
of the shapes that made up the trigger cue, which may have limited the amount of
implicit information they were able to pick up.

In summary, while some participants were suppressing what they had implicitly
learned, others were not approaching the game implicitly at all. The answer to both
these problems might be to make the game less strict. Participants seemed scared to
press at the wrong time, resulting in either conservative behaviour or extreme con-
centration. Therefore, it would be better to make the feedback given to participants
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less binary. For instance, giving feedback on a scale would allow more room for re-
sponses that are too late but close to being rewarded, while also communicating to
participants that there is an optimal time to react, where the reward will be highest.

Similar to the issue of binary feedback, the present game may have also involved
some ambiguity as to when exactly the ideal time to press was. Particularly in the
second level, it often occurred that the participants would shoot their laser slightly
too early, causing it to hit the alien shield at first, but then appearing to ‘break-
through’ as the aliens dropped their shield. Participants may have needed clarifi-
cation on if it was them who caused the aliens to drop their shield at that time or if
it would have happened regardless. Again, introducing different levels of feedback
might convey better that participants had pressed slightly too early.

It may also be considered to change the design of the experiment altogether,
namely regarding when feedback is presented. In Amundson and Miller (2008),
the feedback was given more directly regarding when the rat made a prediction. If
the mouse rat too early, it would have to wait longer for its reward than if it was on
time. A similar idea could be implemented in the alien game, for instance, by having
participants have to hold the button down for the shield to go up and loosing points
with each second. This would mean that there would be an incentive to learn the
timing of the attacks, and to be efficient with the use of the shield. This might place
more attention on the temporal relation between cues than in the current implemen-
tation.

This brings us to the last limitation of the design, the predictive power of the
cues used. As outlined in Section 3, the experiment used filler cues to obscure the
presence of the hidden cues. Additionally, the time intervals between cue onsets
were kept much shorter than in the experiments by Amundson and Miller, where the
time between cues could be up to 15 seconds. It can therefore be summarised that in
the present experiment, there is an increased pool of possible stimuli and a decreased
range of time intervals. If we recall the principles of discriminative learning and the
temporal coding hypothesis, namely the importance of predictive power, we may
suspect that in our experiment, each cue held significantly less predictive power, so
there were few associations for participants to learn.

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Inside

Input

A
c
ti
va

ti
o
n

BG_A_A−1400

BG_X_X−700

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Outside

Input

A
c
ti
va

ti
o
n

BG_A_A−700

BG_X_X−1400

Figure 5.1: Simulated learning trajectories for placement of a new cue Inside or
Outside an established sequence, when each cue is less powerful due to presence
of filer cues. Coloured lines show trajectories with transference, compare to
trajectories without in grey. Dotted line marks the switch from first learning
phase to second.
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Figure 5.1 shows the results of a simulation similar to the one discussed in Sec-
tion 2.2.2, with the difference being the inclusion of filler stimuli and time inter-
vals being equivalent to those used in the present experiment. Note that the num-
ber of exposures within one learning phase is also just 24 times per stimulus, as it
was for the human participants. In this setup, activation values are generally much
lower and do not increase as quickly. This is because, as the simulation is using an
interference-based model, if there is more information, there is also more interfer-
ence and, therefore, each cue’s impact is much smaller. From this simulation, we
may conclude that the inclusion of filler cues in the conducted experiment lessens
the impact of the target cues, partially explaining the lack of findings in the human
experiment.

5.3 Interpreting Results

Putting these limitations aside, let us now interpret what the experiment showed
with respect to what it tells us about learning temporal relations.

First of all, we do see some adjustment when switching from the first level to the
second; this suggests that participants are aware of the temporal relations overall,
as they can use them to make a broad prediction of having to wait a few moments
before responding, similar to the various examples outlined at the very beginning
of this thesis. However, it appears that the only temporal relation people learned
is between the trigger cue and the feedback (i.e. the aliens attacking or the aliens
lowering their shield). Focusing on the temporal relation after the trigger symbol
is a reasonable strategy, as it helps participants automate their response and only
leaves them waiting to anticipate the trigger symbol, which could be accomplished
via the cue symbols. However, it appears that participants did not use whatever
information was provided by the hidden cues for one reason or another. It could
be that the cues were not perceived as reliable by participants, and that once the
sequence changed, people abandoned the idea of using the hidden cue to guide
them. On the other hand, it is more likely that participants never made use of the
cues at all, as even in the very first learning phase, the data shows no significant
changes in reaction speed, showing that people did not or were not able to improve
their ability to anticipate the trigger symbol any further.

This lack of learning in the elemental and compound phase is also relevant for
reflecting on the results of the testing phase, where no significant differences were
found regardless of which cue was used as a hidden cue. The data might be taken
to suggest that participants need both cues to be present to make use of learned
information, but considering the apparent lack of performance changes in previous
phases, it is more plausible that this is not the case, and instead, participants did not
learn anything about the hidden sequence at all.

5.4 Future Research

As participants did not learn any associations of the hidden cues temporal rela-
tions in our experiment, it is worth first determining when and how participants
implicitly learn such relations. For this, it might be worth taking a step back and
re-examining some of the other experiments done by Amundson and Miller. For
example, it may be worth-wile to replicate the experiments using simultaneous cues
regarding reliable and unreliable temporal relations in blocking paradigms, in order
to verify that temporal relations inform learning in any way at all.
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Similarly, if we want to show transference being used, we should first determine
what happens to transferred information if a cue disappears unexpectedly. For ex-
ample, one might create an experiment using a simple cue sequence A − B − C and
investigate if A on its own will lead to anticipation of C, and if this changes if we
introduce information that should prompt unlearning of the B − C connection. This
would show how much of the A−C connection is created by transference. Knowing
this would allow to more accurately test for transference in scenarios such as the one
in the performed experiment.

Zooming out further, we return to the question of network representations being
a good approach to modelling temporal relations. So far, we have only examined
the distance between two cues as relevant. However, we could just as well look at
other time-related variables, such as frequency rate, duration or order. All of these
have equal claim to being encoded as a cue in our network. However, doing so
would lead to an explosion in model complexity and it is worth asking if there is a
better way to go about modelling time, that requires less hard-wiring of cues and
attributes.

5.4.1 PRIMs

The previously mentioned cognitive architecture PRIMs (Taatgen, 2013) can model
the whole cognitive process from the act of perceiving stimuli to the response being
given, with each step, like retrieval of information from memory, being performed
and recorded. PRIMs can also model implicit learning using so-called context operator
learning. Within PRIMs, an operator is an action that the model can take, such as,
for example, taking whatever information was retrieved from memory and saying
it out loud. Normally these operators are executed when specific conditions are
met, but, in context-operator learning, certain operators are more likely to activate
depending on if the model is in a specific state. This method has been used to model
learning biases, where the model is more likely to respond a certain way if exposed
to a certain type of word (Toth et al., 2022). Using the context at the moment in
time to adapt the behaviour could simulate a learner anticipating the appearance of
a trigger symbol if certain stimuli are still in working memory. The learning rule
used to establish the connections between model context and operators could be
changed to create discriminative learning, which should allow for (at the very least)
the modelling of blocking effects in situations where both cues are simultaneous.

Regarding encoding temporal relations, PRIMs can explicitly store and retrieve
information about time intervals. A model could be used to form estimates of the
interval between the last seen cue and the current cue and then use this interval
as another cue that is part of the background context involved in context-operator
learning. The exact details of encoding would of course be specific to PRIMs as the
cognitive architecture used, in the same way as the encoding used in the simulation
discussed in Section 2 was specific to the edl package developed by van Rij and
Hoppe. As such, there may be new issues that arise when using PRIMs, but the
exploration of these is left to future research.

The advantage of using PRIMS would be, that by going beyond a network-based
model, it would allow behaviours to emerge naturally. For instance, we recall the
alternative information-theoretical explanation for the findings of Amundson and
Miller (2008), that the cue X is not blocked when it occurs outside of an established
sequence, because it still holds some predictive power. It may be that a less discrete
model like PRIMs can replicate the findings of Amundson and Miller without ever
needing to rely on explicit strategies like transference.
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5.5 A waste of time?

It is hopefully clear by now that time is an important factor when considering the
learning of information. As the work by Amundson and Miller as well as the experi-
ments of this thesis show, introducing changes in time to otherwise well-established
learning phenomena can create unexpected results. Adding the dimension of time to
an otherwise simple experiment can shift what participants pay attention to, which
information is useful to them and how they use it. The fact that just changing the
temporal placement of a single item can completely break an established theory
means that a reliable way of predicting the effect of temporal relations on learning is
needed. In real life, information is rarely presented simultaneously or occurs in the
same order each time. Increasing our understanding of time and creating a model
that can predict its effect on other learning processes would be useful for having the
means to rule out time as a factor causing unexpected results.

Another reason why time is worth investigating becomes clear when we return
to the differences between discriminative models and other ways to model aspects
of implicit learning. Features like blocking or unlearning require adjustments and
special treatments in other models, while in discriminative models, they emerge
naturally. Discriminative models can explain more with less and models which treat
events occurring in sequential time, rather than in discrete moments, may offer a
similar advantage. Things which currently seem like exceptions to rules might be
perfectly in line with what we would expect to happen under the right theory. As
discussed in previous sections, even the need for a concept like transference might
evaporate once we start to expand our theories of what it means for a cue to hold
predictive power.

5.6 Conclusion

This study was concerned with studying how changes in temporal relations between
items affect the learning phenomena of blocking, using a discriminative approach to
learning. A simulation study was conducted to identify what is and is not possible
using network-based models of such learning to show how the concept of transfer-
ence could play a role in filling these gaps. An experiment using human participants
was conducted to confirm these findings. However, it was found that in the used set-
up, participants did not adjust their behaviour in a way that suggested the learning
of information. These findings were interpreted as the result of limitations specific
to the experiment’s method and design. It is recommended that the study is repli-
cated with more attention paid to what might affect how participants engage with
the stimuli and how more attention could be drawn to the predictive power of the
time intervals between cues.
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A Model Output

A.1 Elemental Phase

A.1.1 Level 1

Formula
logRT ∼ s(encounter, pID, bs = ” f s”, m = 1)

+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.00154 0.03545 169.3 <2e-16 ***

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 105.06 422 1.088 <2e-16 ***
s(stimSet) 1.01 2 1.517 <2e-16 ***

Table A.1: Model output for a model of the elemental phase in the first level
with fixed effects for encounter and random effects for participant and item
differences

Formula
logRT ∼ condition

+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.01910 0.05466 110.114 <2e-16 ***
condition: Inside -0.02227 0.06987 -0.319 0.750
condition: Outside (cont) -0.06968 0.06830 -1.020 0.308
condition: Outside 0.02142 0.06829 0.314 0.754

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 102.215 419 1.054 <2e-16 ***
s(stimSet) 1.048 2 1.633 <2e-16 ***

Table A.2: Model output for a model of the elemental phase in the first level
with fixed effects for encounter and condition and random effects for partici-
pant and item differences



44 Model Output

Formula
logRT ∼ condition

+ s(encounter, by = condition)
+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.01909 0.05471 110.019 <2e-16 ***
condition: Inside -0.02222 0.06995 -0.318 0.751
condition: Outside (cont) -0.06964 0.06837 -1.019 0.309
condition: Outside 0.02137 0.06836 0.313 0.755

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter):Inside (cont) 1.000 1 0.022 0.88093
s(encounter):Inside 1.000 1 0.150 0.69878
s(encounter):Outside (cont) 1.000 1 8.379 0.00388 **
s(encounter):Outside 1.000 1 0.019 0.89135
s(encounter,pID) 94.047 419 0.991 8.57e-07 ***
s(stimSet) 1.047 2 1.628 <2e-16 ***

Table A.3: Model output for a model of the elemental phase in the first level
with fixed effects for encounter, condition and their interaction and random
effects for participant and item differences

Formula
logRT ∼ condition

+ s(encounter, by = condition)
+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.073597 0.021904 277.277 <2e-16 ***
condition: Inside -0.087186 0.029879 -2.918 0.00368 **
condition: Outside (cont) 0.003213 0.037997 0.085 0.93264
condition: Outside 0.083810 0.030977 2.706 0.00705 **

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter):Inside (cont) 1.000 1 1.655 0.199
s(encounter):Inside 1.000 1 0.397 0.529
s(encounter):Outside (cont) 1.000 1 0.828 0.363 **
s(encounter):Outside 1.000 1 2.373 0.124
s(encounter,pID) 2.123e+01 194 0.307 <2e-16 ***
s(stimSet) 3.330e-05 2 0.000 0.259

Table A.4: Model output for a model of the elemental phase in the first level
with fixed effects for encounter, condition and their interaction and random
effects for participant and item differences with only unaware participants
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A.1.2 Level 2

Formula
logRT ∼ s(encounter, pID, bs = ” f s”, m = 1)

+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.08191 0.02882 211 <2e-16 ***

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 1.084e+02 422 1.151 <2e-16 ***
s(stimSet) 1.625e-04 2 0.000 0.109

Table A.5: Model output for a model of the elemental phase in the second level
with fixed effects for encounter and random effects for participant and item
differences

Formula
logRT ∼ condition

+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.036447 0.055246 109.265 <2e-16 ***
condition: Inside -0.003434 0.078186 -0.044 0.965
condition: Outside (cont) 0.085093 0.079930 1.065 0.287
condition: Outside 0.103473 0.078147 1.324 0.186

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 1.053e+02 419 1.101 <2e-16 ***
s(stimSet) 1.701e-04 2 0.000 0.132

Table A.6: Model output for a model of the elemental phase in the second level
with fixed effects for encounter and condition and random effects for partici-
pant and item differences
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Formula
logRT ∼ condition

+ s(encounter, by = condition)
+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.036468 0.055264 109.230 <2e-16 ***
condition: Inside -0.003597 0.078212 -0.046 0.963
condition: Outside (cont) 0.085028 0.079956 1.063 0.288
condition: Outside 0.103448 0.078173 1.323 0.186

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter):Inside (cont) 1.000 1 2.956 0.08586 .
s(encounter):Inside 1.000 1 8.969 0.00281 **
s(encounter):Outside (cont) 1.000 1 0.002 0.96041
s(encounter):Outside 1.000 1 3.164 0.07559 .
s(encounter,pID) 8.781e+01 419 0.973 <2e-16 ***
s(stimSet) 4.326e-05 2 0.000 0.13516

Table A.7: Model output for a model of the elemental phase in the second level
with fixed effects for encounter, condition and their interaction and random
effects for participant and item differences
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A.2 Compound Phase

A.2.1 Level 1

Formula
logRT ∼ s(encounter, pID, bs = ” f s”, m = 1)

+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.91664 0.04088 144.7 <2e-16 ***

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 1.036e+02 422 0.861 <2e-16 ***
s(stimSet) 2.156e-03 2 0.002 0.000193 ***

Table A.8: Model output for a model of the compound phase in the first level
with fixed effects for encounter and random effects for participant and item
differences

Formula
logRT ∼ condition

+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.89327 0.07944 74.188 <2e-16 ***
condition: Inside 0.11830 0.11373 1.040 0.299
condition: Outside (cont) -0.05583 0.11123 -0.502 0.616
condition: Outside 0.03950 0.11120 0.355 0.722

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 100.5516 419 0.839 <2e-16 ***
s(stimSet) 0.1518 2 0.123 9.55e-05 ***

Table A.9: Model output for a model of the compound phase in the first level
with fixed effects for encounter and condition and random effects for partici-
pant and item differences
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Formula
logRT ∼ condition

+ s(encounter, by = condition)
+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.89329 0.07944 74.185 <2e-16 ***
condition: Inside 0.11825 0.11383 1.039 0.299
condition: Outside (cont) -0.05587 0.11133 -0.502 0.616
condition: Outside 0.03946 0.11129 0.355 0.723

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter):Inside (cont) 1.0001 1 3.621 0.0573 .
s(encounter):Inside 1.0001 1 0.116 0.7330
s(encounter):Outside (cont) 1.0001 1 0.226 0.6345
s(encounter):Outside 1.0001 1 0.223 0.6366
s(encounter,pID) 94.3232 419 0.808 <2e-16 ***
s(stimSet) 0.1402 2 0.113 0.0001 ***

Table A.10: Model output for a model of the compound phase in the first level
with fixed effects for encounter, condition and their interaction and random
effects for participant and item differences

Formula
logRT ∼ condition

+ s(encounter, by = condition)
+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.08908 0.03631 167.720 <2e-16 ***
condition: Inside -0.02219 0.03940 -0.563 0.573
condition: Outside (cont) -0.02535 0.05105 -0.497 0.620
condition: Outside 0.03655 0.04175 0.875 0.382

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter):Inside (cont) 1.000 1 3.422 0.0649 .
s(encounter):Inside 1.000 1 0.467 0.4945
s(encounter):Outside (cont) 1.000 1 0.851 0.3567
s(encounter):Outside 1.000 1 0.300 0.5842
s(encounter,pID) 12.750 194 0.367 0.0015 **
s(stimSet) 1.287 2 2.393 1.04e-06 ***

Table A.11: Model output for a model of the compound phase in the first level
with fixed effects for encounter, condition and their interaction and random
effects for participant and item differences with only unaware participants
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A.2.2 Level 2

Formula
logRT ∼ s(encounter, pID, bs = ” f s”, m = 1)

+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.94017 0.05133 115.7 <2e-16 ***

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 5.722e+01 422 1.063 <2e-16 ***
s(stimSet) 4.838e-04 2 0.000 0.349

Table A.12: Model output for a model of the compound phase in the second
level with fixed effects for encounter and random effects for participant and
item differences

Formula
logRT ∼ condition

+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.907820 0.101007 58.489 <2e-16 ***
condition: Inside 0.008805 0.142788 0.062 0.951
condition: Outside (cont) 0.100587 0.145982 0.689 0.491
condition: Outside 0.025600 0.142885 0.179 0.858

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 5.446e+01 419 1.057 <2e-16 ***
s(stimSet) 4.728e-04 2 0.000 0.297

Table A.13: Model output for a model of the compound phase in the second
level with fixed effects for encounter and condition and random effects for par-
ticipant and item differences
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Formula
logRT ∼ condition

+ s(encounter, by = condition)
+ s(encounter, pID, bs = ” f s”, m = 1)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.908080 0.101175 58.395 <2e-16 ***
condition: Inside 0.008374 0.143030 0.059 0.953
condition: Outside (cont) 0.100385 0.146230 0.686 0.493
condition: Outside 0.025185 0.143127 0.176 0.860

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter):Inside (cont) 1.0001 1 6.178 0.0131 *
s(encounter):Inside 1.0001 1 1.119 0.2904
s(encounter):Outside (cont) 1.0001 1 0.779 0.3775
s(encounter):Outside 1.0001 1 0.868 0.3518
s(encounter,pID) 4.503e+01 419 1.024 <2e-16 ***
s(stimSet) 7.633e-05 2 0.000 0.2985

Table A.14: Model output for a model of the compound phase in the second
level with fixed effects for encounter, condition and their interaction and ran-
dom effects for participant and item differences
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A.3 Test Phase

A.3.1 Level 1

Formula
logRT ∼ testCondition

+ s(encounter, pID, bs = ” f s”, m = 1, k = 5)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.03180 0.05322 113.341 <2e-16 ***
testCondition: New Cue -0.04509 0.06567 -0.687 0.493

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 92.1489 232 1.049 <2e-16 ***
s(stimSet) 0.7952 2 0.981 0.000226 ***

Table A.15: Model output for a model of the test phase in the first level with
fixed effects for the test condition and encounter and random effects for partic-
ipant and item differences

Formula
logRT ∼ testCondition + condition

+ s(encounter, pID, bs = ” f s”, m = 1, k = 5)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.06221 0.07731 78.414 <2e-16 ***
testCondition: New Cue -0.04417 0.06536 -0.676 0.500
condition: Inside -0.01611 0.09325 -0.173 0.863
condition: Outside (cont) -0.06938 0.09127 -0.760 0.448
condition: Outside -0.03689 0.09141 -0.404 0.687

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 89.8502 229 1.047 <2e-16 ***
s(stimSet) 0.8304 2 1.051 0.00021 ***

Table A.16: Model output for a model of the test phase in the first level with
fixed effects for the test condition, experiment condition and encounter and
random effects for participant and item differences
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Formula
logRT ∼ testCondition ∗ condition

+ s(encounter, pID, bs = ” f s”, m = 1, k = 5)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.037414 0.092959 64.947 <2e-16 ***
testCondition: New Cue 0.005415 0.124547 0.043 0.965
condition: Inside -0.011655 0.124547 -0.094 0.926
condition: Outside (cont) 0.052038 0.125014 0.416 0.678
condition: Outside -0.063858 0.125419 -0.509 0.611
New:Inside -0.003619 0.180590 -0.020 0.984
New:Outside (cont) -0.241703 0.176467 -1.370 0.172
New:Outside 0.052529 0.176753 0.297 0.767

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 86.6330 226 0.998 <2e-16 ***
s(stimSet) 0.9391 2 1.302 0.000182 ***

Table A.17: Model output for a model of the test phase in the first level with
fixed effects for the test condition, experiment condition, their interaction and
encounter and random effects for participant and item differences

Formula
logRT ∼ testCondition ∗ condition

+ s(encounter, pID, bs = ” f s”, m = 1, k = 5)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.06060 0.05729 105.793 <2e-16 ***
testCondition: New Cue 0.04118 0.05883 0.700 0.485
condition: Inside -0.05694 0.06092 -0.935 0.352
condition: Outside (cont) 0.01897 0.08303 0.228 0.820
condition: Outside 0.01156 0.06248 0.185 0.854
New:Inside 0.06405 0.07744 0.827 0.410
New:Outside (cont) -0.10076 0.09935 -1.014 0.313
New:Outside 0.05156 0.07891 0.653 0.515

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 9.543 102 0.162 0.0163 *
s(stimSet) 1.578 2 5.081 9.02e-05 ***

Table A.18: Model output for a model of the test phase in the first level with
fixed effects for the test condition, experiment condition, their interaction and
encounter and random effects for participant and item differences with only
unaware participants



A.3. Test Phase 53

A.3.2 Level 2

Formula
logRT ∼ testCondition

+ s(encounter, pID, bs = ” f s”, m = 1, k = 5)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.01387 0.06145 97.86 <2e-16 ***
testCondition: New Cue 0.07389 0.08796 0.84 0.402

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 6.744e+01 231 1.217 <2e-16 ***
s(stimSet) 6.994e-05 2 0.000 0.0862 .

Table A.19: Model output for a model of the test phase in the second level
with fixed effects for the test condition and encounter and random effects for
participant and item differences

Formula
logRT ∼ testCondition + condition

+ s(encounter, pID, bs = ” f s”, m = 1, k = 5)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.95260 0.09666 61.586 <2e-16 ***
testCondition: New Cue 0.07358 0.08734 0.842 0.401
condition: Inside 0.07415 0.12238 0.606 0.545
condition: Outside (cont) 0.05972 0.12484 0.478 0.633
condition: Outside 0.11147 0.12195 0.914 0.362

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 6.481e+01 228 1.208 <2e-16 ***
s(stimSet) 6.773e-05 2 0.000 0.0862 .

Table A.20: Model output for a model of the test phase in the second level with
fixed effects for the test condition, experiment condition and encounter and
random effects for participant and item differences
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Formula
logRT ∼ testCondition ∗ condition

+ s(encounter, pID, bs = ” f s”, m = 1, k = 5)
+ s(stimSet, bs = ”re”)

Parametric coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.87802 0.11863 49.549 <2e-16 ***
testCondition: New Cue 0.22404 0.16842 1.330 0.185
condition: Inside 0.25012 0.16843 1.485 0.139
condition: Outside (cont) 0.14787 0.16777 0.881 0.379
condition: Outside 0.14741 0.16777 0.879 0.381
New:Inside -0.35284 0.23861 -1.479 0.141
New:Outside (cont) -0.18045 0.24383 -0.740 0.460
New:Outside -0.07319 0.23773 -0.308 0.758

Approximate significance of smooth terms
edf Ref.df F p-value

s(encounter,pID) 6.183e+01 225 1.146 <2e-16 ***
s(stimSet) 7.111e-05 2 0.000 0.0963 .

Table A.21: Model output for a model of the test phase in the first level with
fixed effects for the test condition, experiment condition, their interaction and
encounter and random effects for participant and item differences
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