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Abstract

The hysteretic deformable mirror, abbreviated as HDM, is a deformable
mirror with hysteresis behaviour. The HDM can be used in a telescope
which can be used to study the properties of exoplanets. To identify
the behaviour of the HDM, phenomenological models will be studied.
To obtain such models from data, a suitable identification method
has to be chosen. As the classical system identification approaches
have many disadvantages such as overfitting, another approach will be
taken. This research introduces regularized kernel methods in which
the number of basis functions and data pairs is not fixed a priori.
These methods are applied to obtain models of deformable mirrors
that avoid overfitting, while also complying with the physics of the
system.
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1 Introduction

”Are we alone in this universe?” This is a question that has been one of
the main topics in astronomy over the past years. The first exoplanets were
already discovered in the 1990s. Nowadays, more than 4000 exoplanets have
been detected. The techniques used to identify the exoplanets do not collect
light from the planet itself but observe the effect it has on its accompanying
star. The exoplanet is thus detected indirectly. It is a great challenge to find
the exoplanet directly since the light of the planet is so much less bright than
the light of its accompanying star.

After discovering a new exoplanet, one would like to know all information
about the chemical composition of a possible atmosphere surrounding the
planet. This information is necessary to say something about the possibility
of life on the planet. However, with the used indirect method, it is not pos-
sible to observe the chemical composition of the possible atmosphere of the
discovered planet. Therefore a direct method to observe exoplanets is needed.

To directly detect the planet, the contrast in brightness of the light of the
exoplanet and the accompanying star has to be resolved. This is needed to
avoid the star from completely drowning out the light from the planet. This
requires the application of a coronagraph, starshade, or even a space inter-
ferometer. Future large space telescopes that will directly image exoplanets
will rely on deformable mirrors [7].

The mirrors should be able to deform in order to detect the planet directly.
This requires specific types of materials. One example is a piezoelectric ma-
terial. Piezoelectric material has a lot of desired properties. Piezoelectric-
based actuators can exhibit hysteresis. Such a mirror is called a hysteretic
deformable mirror, abbreviated as HDM. The goal of the HDM is to achieve
and hold a desired surface deflection for a long period of time where an
individual constant control for every actuator is not needed [2].
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Exploring the topic of deformable mirrors is interdisciplinary research. The
disciplines of astronomy, advanced materials, engineering, physics, chemistry,
and mathematics work together. In this research, the focus is on applying
mathematics to the deformable mirror. Before being able to describe the be-
haviour of the deformable mirror, a mathematical model has to be identified.

A classical approach to identify a mathematical model is the prediction error
method. By minimizing the errors of the predicted values [3], this method
tries to find an optimal solution. Another approach is the machine learning
approach. Within the machine learning approach, kernel methods will be
used. The optimal solution within kernel methods can be achieved by trans-
forming the given input into a higher-dimensional space by making use of
kernel functions. This allows linear algorithms to identify a system [4].

The organization of this research is as follows. In Chapter 2, an overview
of hysteresis behaviour is given. General notions, different operators, and
some examples will be explored. In Chapter 3, the identification is studied.
This consists of both the classical method and the kernel method. Chap-
ter 5 includes an experiment that has been performed. After performing
the experiment, the hysteresis behaviour of the HDM was studied and the
identification of this HDM is included.
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2 Hysteresis behaviour

In 1885 the term hysteresis was formulated by Ewing to describe a physical
phenomenon that occurred in the magnetization process of soft iron. This
magnetization process was caused by recurring changes in the input magnetic
field. The term hysteresis is derived from the Ancient Greek word υστερησις
meaning ”delay” [19]. Nowadays, hysteresis is a phenomenon that is present
in systems such as the piezo-actuator, ferromagnetic material and mechanical
systems [13]. Hysteresis is a nonlinear function with memory which cannot
be described by a single-valued function. To be able to describe hysteretic
phenomena, different hysteresis models have been developed [14]. Two dis-
tinctive hysteresis models are defined. First of all, the physics-based models
describe the hysteresis phenomenon from particular physical relations and
second, the phenomenological model focuses on the empirical description of
input-output behaviour. Due to simplicity and completeness, phenomenolog-
ical models have been widely studied. The phenomenological models that are
used in general are the Preisach model and the Duhem hysteresis operator.

2.1 Operators

In pursuance of understanding the models, first, some properties of operators
have to be defined. Let Φ : CapR`,RqˆR Ñ CapR`,Rq be an operator, where
CapR`,Rq is the space of absolutely continuous functions. Let one consider
the following definition for rate-independency [3].

Definition 1. An operator is rate-independent if for every ϕ P C pR`,R`),
where C pR`,R`q is the space of continuous functions, such that ϕp0q “ 0,
increasing and radially unbounded, meaning that limtÑ8 ϕptq “ 8, we have

rΦpu ϕqsptq “ rΦpuqs ϕptq

holds for all u P CapR`,Rq and for all admissible time transformation ϕ.

Next, causality will be defined [3].

Definition 2. An operator Φ is causal if @ τ ą 0 and @ u1, u2 P CapR`,Rq,
it holds that

u1ptq “ u2ptq @ t P r0, τ s ùñ rΦpu1qsptq “ rΦpu2qsptq @ t P r0, τ s.
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When both casualty and rate-independency are considered, a specific type of
operator is obtained [3]

Definition 3. An operator Φ is called a hysteresis operator if it is both
causal and rate-independent.

The hysteresis loop is defined as the periodic closed orbit in the input-output
phase plot that occurs when a periodic input with a single minimum and
a single maximum is applied to a hysteresis operator. The mathematical
definition is the following. Let us consider a hysteresis operator Φ and an
input–output pair pu, yq P CapR`,Rq ˆ CapR`,Rq with y “ Φpuq. Suppose
u is periodic with period T̄ ą 0. Define the maximum by umax P R and the
minimum in the periodic interval by umin P R. Assume that y is periodic in
the interval rc,8q.

Definition 4. The periodic orbit denoted by Hu,y “ tpuptq, yptq|t P rc,8qu

is called a hysteresis loop if there exists ν P R such that the cardinality of
the set tpν, γq P Hu,y | γ P Ru is equal to 2.

This implies that the curve Hu,y can have for any admissible point v at most
two elements (v, γ1) and (v, γ2).

To define the input-output behaviour of hysteresis operators, the type of
hysteresis loops reproduced by the operators have to be studied. When one
considers a simple hysteresis loop, meaning that it consists of only one hys-
teresis loop, it can either have a clockwise or counterclockwise orientation. A
hysteresis operator exhibits clockwise input-output behaviour if there exists
at least one hysteresis loop Hu,y which corresponds to an input-output pair
(u, y) with y “ Φpuq which is clockwise. The signed area enclosed by an
input-output pair (u, y) that forms a closed curve in a given interval from t1
to t2 is, by Green’s Theorem, defined as

A “
1

2

ż t2

t1

rupτq 9ypτq ´ ypτq 9upτqsdτ.

If t1 ą tp, t2 “ t1 ` T and the signed-area by an input-output pair (u, y)
that forms a closed curve in an interval rt1, t2s given by A satisfies A ă 0,
then the loop is clockwise. Similar reasoning can be followed to specify the
counterclockwise orientation.
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As its name already suggests, butterfly loops consist of two subloops con-
nected by a self-intersection point that has the shape of a butterfly. One
loop is oriented clockwise and the other is counterclockwise oriented. The
total signed area depends on the difference between the signed area of the
clockwise-oriented subloop and the counterclockwise-oriented subloop.

Definition 5. An operator Φ is called a butterfly hysteresis operator if there
exists a hysteresis loop for which the signed area of the clockwise oriented
loop equals the signed area of the counterclockwise oriented loop.

The butterfly hysteresis operator only requires a single input-output pair for
which A “ 0, there are no restrictions on the other input-output pairs. An
example of a hysteresis operator is the relay operator.

Example 1. There is both a clockwise and counterclockwise relay operator.
First of all the counterclockwise relay operator given by Rö

α,β : CapR`,Rq ˆ

t´1, 1u Ñ CppR`,Rq where α and β are the so-called switching values, those
parameters can be varied. The space CppR`,Rq is the space of piecewise
continuous functions. The initial condition at t “ 0 is given by r0. The
counterclockwise relay operator is defined as

rRö
α,βpu, r0qsptq “

$

’

&

’

%

1, if uptq ą α

´1, if uptq ă β

rRö
α,βpu, r0qspt´q, if α ě uptq ě β and t ą 0

.

Similarly, the clockwise relay operator is defined as Rœ
α,β : CapR`,Rq ˆ

t´1, 1u Ñ CppR`,Rq by

rRœ
α,βpu, r0qsptq “

$

’

&

’

%

´1, if uptq ą α

1, if uptq ă β

rRœ
α,βpu, r0qspt´q, if α ě uptq ě β and t ą 0

.

For a specified initial condition r0 P t´1, 1u both relay operators are hystere-
sis operators of the form

Φpuq “ Rœ
α,βpu, r0q Φpuq “ Rö

α,βpu, r0q.

Note that Rœ
α,β “ ´Rö

α,β. The input-output phase plots of the hysteresis
operators are shown in Figure 1 [19].
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(a) Clockwise relay operator. (b) Counterclockwise relay operator.

Figure 1: Input-output phase plot of the clockwise and counterclockwise
operator.

Dependent on what type of hysteresis loops are produced by the hysteresis
operators, the input-output behaviour of hysteresis operators can be classified
[2]. Two phenomenological models that are used to describe the hysteresis
behaviour are the Duhem hysteresis operator and the Preisach operator.

2.2 Preisach Operator

The Preisach operator is the weighted integral of all infinitesimal weighted
relay operators for which the switching values satisfy α ą β. This operator
P : CapR`,Rq ˆ I Ñ CapR`,Rq can be expressed as

rPpu, L0qsptq :“

ĳ

pα,βqPP

µpα, βqrRö
α,βpu, rα,βpL0qqsptqdαdβ.

In this expression, P is the Preisach plane and is the admissible plane of
switching values defined by P :“ tpα, βq P R2|α ą βu. The set of inter-
faces given by I consists of interfaces L which is a monotonically decreasing
staircase curve, which is parameterized by a function σpγq P C pR`, P q which
satisfies limγÑ8 ||σpγq|| “ 8 and σp0q “ pα, αq for some α P R in the form
L “ tσpγq P P |γ P R`u [3]. The staircase curve is given by

Spx,A, T q “ A

ˆ

´
1

2
`
x

T
`

1

π

´

cot
πx

T

¯

˙

,
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where A is the distance of the consecutive steps and T is the horizontal dis-
tance between two consecutive risers [5]. Furthermore, µ P CppP,Rq is a
weighting function, L0 P I is the initial interface and finally rα,βpL0q deter-
mines the initial condition of every relay Rö

α,β. When the point pα, βq P P

is above the initial interface L0, Rö
α,β “ 1. When this point is below the

initial interface, Rö
α,β “ ´1. For well-posedness in the sense that a solution

exists and only varies a bit if the initial conditions are changed, it is as-
sumed that the initial interface given by L0 in the Preisach operator satisfies
rup0q, up0qs P L0. Just as the example in Figure 1, also the Preisach operator
is a hysteresis operator and defined by Φpuq “ Ppu, L0q with specified initial
conditions L0 P I. In general, it can be said that the output of the Preisach
operator is determined instantly with the variations of the given input since
all the relays react simultaneously and at the same time to the applied input.

2.3 Preisach Butterfly Operator

Now both the Preisach operator and the hysteresis butterfly operator is stud-
ied, the Preisach butterfly operator can be defined. In the Preisach operator,
only a positive weighting function together with counterclockwise loops is
considered. When the weighting function is negative and the relays are still
counterclockwise, the hysteresis loops become clockwise which is because
Rö

α,β “ ´Rœ
α,β. By considering a weighting function that can be both posi-

tive and negative, an operator exhibits both a clockwise and counterclockwise
input-output behaviour. This is the general idea of a butterfly hysteresis op-
erator. To define a Preisach butterfly operator, the following lemma first
needs to be considered.

Lemma 1. Consider the counterclockwise relay operator Rö
α,β where α ą

β. For every signal u which is periodic with time T and umin, umax P R
the minimum and maximal signal in the periodic interval, the signed-area A
belonging to the input-output pair pu, yq with y “ Rœ

α,βpu, r0q with r0 P t´1, 1u

is given by

A “

#

2pα ´ βq, if umin ă β and α ă umax

0, otherwise
.

Note that when umin ă β and α ă umax, the signed-area enclosed by the
hysteresis loop of a clockwise relay operator Rœ

α,β is given by ´2pα ´ βq.
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With this lemma, the formal theorem of a Preisach butterfly operator can
be stated.

Theorem 1. Consider the Preisach operator denoted by P where µ is a
weighting function that has to take both positive and negative values. Suppose
that the first order lower and upper partial moments of µ satisfy

ż 8

r

µpα, βqβdβ “ 8

ż r

´8

µpα, βqαdα “ 8,

@pα, βq P P and the boundary curve is monotonically decreasing, then P is a
butterfly hysteresis operator.

The proof of this theorem can be found in [13]. To illustrate the butterfly-
shaped behaviour, an example will be considered.

Example 2. Consider the input-behaviour when a periodic input u with
umax “ 1 and umin “ ´1 is applied to the butterfly hysteresis operator.
There are five-time instances considered.

t1 “ 1

t2 “ 2

...

t5 “ 5.

The input satisfies the following conditions

upt1q “ ´1 upt4q “ 0

upt2q “ 0 upt5q “ ´1

upt3q “ 1

and is defined in the following way

uptq “ t2 ´ 2t, t1 ď t ď t2,

uptq “ t2 ´ 4t ` 4, t2 ď t ď t3,

uptq “ ´t2 ` 6t ´ 8, t3 ď t ď t4,

uptq “ ´t ` 4, t4 ď t ď t5.
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The graph of the input signal is given in Figure 2.

Figure 2: The defined input signal.

To define the output signal, the Preisach domain can be divided into four
disjoint regions by

P1 :“ tpα, βq|α ď 0, β ď 0u

P2 :“ tpα, βq|α ą 0, β ď 0, α ď ´βu

P3 :“ tpα, βq|β ď 0, α ą ´βu

P4 :“ tpα, βq|α ą 0, β ą 0u

The output can be computed by the behaviour of each region by adding and
subtracting the integrals

Ppu, L0qptq “ ´

ĳ

pα,βqPP1

“

Rö
α,βpu, rα,βpL0qqsptqdαdβ

‰

´

ĳ

pα,βqPP2

“

Rö
α,βpu, rα,βpL0qqsptqdαdβ

‰

`

ĳ

pα,βqPP3

“

Rö
α,βpu, rα,βpL0qqsptqdαdβ

‰

`

ĳ

pα,βqPP4

“

Rö
α,βpu, rα,βpL0qqsptqdαdβ

‰
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For the defined input, the output signal that belongs to the hysteresis oper-
ator is given by

rPpu, L0qsptq “

$

’

’

’

&

’

’

’

%

´rumax ` uptqs2, t1 ď t ď t2,

´rumax ´ uptqsrumax ` 3uptqs, t2 ď t ď t3,

´rumax ´ uptqs2, t3 ď t ď t4,

´rumax ` uptqsrumax ´ 3uptqs, t4 ď t ď t5.

“

$

’

’

’

&

’

’

’

%

´r1 ` uptqs2, t1 ď t ď t2,

´r1 ´ uptqsr1 ` 3uptqs, t2 ď t ď t3,

´r1 ´ uptqs2, t3 ď t ď t4,

´r1 ` uptqsr1 ´ 3uptqs, t4 ď t ď t5.

Then the input-output phase plot of the defined input and output signal can
be created and can be found in Figure 3 [19].

Figure 3: Input-output phase plot.
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2.4 Duhem Operator

Next to the Preisach operator, another operator phenomenological model
that is used to describe the hysteresis behaviour is the Duhem model. This
model focuses on the fact that the output can only change its character
when the direction of the input changes. The input signals are mapped to
output signals via switched nonlinear differential equations [11]. The Duhem
operator hysteresis operator is a mapping Ψ : CapR`,Rq ˆ R Ñ CapR`,Rq

such that y “ Ψpu, y0q satisfies

9yptq “

#

f1puptq, yptqq 9uptq, if 9uptq ě 0,

f2puptq, yptqq 9uptq, if 9uptq ă 0,
(1)

with yp0q “ y0, and functions f1, f2 P C1pR2,Rq. There exists solutions to
(1) if the following two conditions hold for every ν P R

pγ1 ´ γ2qrf1pν, γ1q ´ f1pν, γ2qs ď λ1pνqpγ1 ´ γ2q
2,

pγ1 ´ γ2qrf2pν, γ1q ´ f2pν, γ2qs ě ´λ2pνqpγ1 ´ γ2q
2,

with λ1, λ2 ě 0 and γ1, γ2 P R [14]. For the Duhem hysteresis operator, it
is assumed that an implicit function ν ÞÑ tγ P R|f1pν, γq ´ f2pν, γq “ 0u

takes an explicit solution given by γ “ ρpνq, with the anhysteresis function
ρ P C 0pR,Rq. The curve generated by ρ is called the anhysteresis curve and
is denoted by

P “ tpν, γq P R2
|γ “ ρpνqu.

The anhysteresis curve divides the input-output plane into two regions since
the system’s response to increasing input is different from its response to
decreasing input. The two regions are given by:

#

f1pν, γ1q ´ f2pν, γ1q ě 0, if γ1 ě γ,

f1pν, γ1q ´ f2pν, γ1q ď 0, if γ1 ď γ,
.

The most important property of the Duhem operator Ψ is the accommodation
property. Before starting the accommodation property, first, the Duhem
operator for the periodic input must be defined. Let up P CapR`,Rq be a
periodic input with a certain period given by T ą 0. This input has one
minimum upp0q “ νmin and one maximum uppt1q “ νmax for some t1 P p0, T q.
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The periodic input up can be split up into two monotonic intervals which are
given by up´ and up`. The corresponding outputs are given by Yup´

pt, ζq and
Yup`

pt, γq, where γ, ζ are the independent variables. Let yup`
and yup´

be
the parameterization of the corresponding solutions Yup´

pt, ζq and Yup`
pt, γq

respectively. For γ0 P R, let the two sequences pζnqnPN and pγnqnPN be defined
recursively by

ζn :“ yup`
pνmax, γnq,

γn`1 :“ yuppνmin, ζnq.

Let γ0 “ y0, the output can also be recursively constructed:

Yuppt, y0q “

#

yup`
pupptq, γnq, if nT ď t ă t1 ` nT,

yup´
pupptq, ζnq, if t1 ` nT ď t ă pn ` 1qT.

The accommodation property refers to the property where the input-output
phase plot always converges to a periodic closed orbit given that the input
signal is periodic. This property can be captured by two propositions. The
first proposition, Proposition 1 shows a pair of inequalities that ensure the
convergence to some periodic orbit. Proposition 2 shows that the strict ver-
sions of the inequalities in the first proposition ensure the uniqueness of the
pair γ˚ P R and ζ˚ P R. Where γ˚ and ζ˚ are the pair to which the sequences
converge to. By the continuity and uniqueness of the solution of the Duhem
operator, the following equalities must hold:

yup`
pνmax, γ

˚
q “ ζ˚,

yup´
pνmin, ζ

˚
nq “ γ˚.

By this result, the parameterized solutions yup`
pν, γ˚q and yup´

pν, ζ˚
nq form a

closed orbit in the phase plot. Let us now state the first proposition.

Proposition 1. If the functions f1 and f2 with f1 and f2 as in (1) satisfy
@γ1 ‰ γ2 and ν P R

pf1pν, γ1q ´ f1pν, γ2qqpγ1 ´ γ2q ď 0,

pf2pν, γ1q ´ f2pν, γ2qqpγ1 ´ γ2q ě 0,

then @γ0 P R the sequences pζnqnPN and pγnqnPN are convergent.

12



Next to the convergence of solutions, one also wants to know whether those
solutions are unique. If the inequalities in Proposition 1 are strict, then the
solution is unique. This can be stated in the following proposition.

Proposition 2. If the functions f1 and f2 with f1 and f2 as in (1) satisfy
@γ1 ‰ γ2 and ν P R

pf1pν, γ1q ´ f1pν, γ2qqpγ1 ´ γ2q ă 0,

pf2pν, γ1q ´ f2pν, γ2qqpγ1 ´ γ2q ą 0,

then D a unique pair γ˚, ζ˚ P R such that for every γ0 P R, pγnqnPN Ñ γ˚ and
pζnqnPN Ñ ζ˚ with ζ˚ “ yup`

pν, γ˚q

The proof of these propositions can be found in [3] and relies on the three fol-
lowing lemmas. For Proposition 1, the convergence has to be studied. Since
the output recursively can be constructed, the convergence of the sequences
has to be considered. First of all, both sequences are either increasing or
decreasing. This is captured in Lemma 2

Lemma 2. Let γ0 P R. The sequences pζnqnPN and pγnqnPN are monotonic
and either both increasing or both decreasing.

The second important lemma tells us something about two consecutive ele-
ments in the sequence when they are the same.

Lemma 3. Let γ0 P R and consider the sequences pζnqnPN and pγnqnPN, then

(a) If γi “ γi`1 for some i P N, then @k ě i,

ζk “ ζk`1 and γk`1 “ γk`2

(b) If ζj “ ζj`1 for some j P N, then @k ě j,

ζk`1 “ ζk`2 and γk`1 “ γk`2

The final lemma shows that when both sequences do not have a bound, they
are strictly monotonic in the same direction.

Lemma 4. Let γ0 P R and consider the sequences pζnqnPN and pγnqnPN The
sequence pζnqnPN is unbounded if and only if pγnqnPN is unbounded. Moreover,
if they are both unbounded, they are strictly monotonic in the same direction.
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With the use of lemmas 2, 3 and 4 the accommodation property can be shown.
As the existence and uniqueness of solutions have been stated, an example
of the Duhem operator can help to illustrate the behaviour of the operator.
The example chosen is the Bouc-Wen model. This model is commonly used
to describe relations between displacement as input and restoring force as
output in piezo-actuated mechanical systems. The Bouc-Wen model can be
defined by the following differential equation

9yptq “ α 9uptq ´ β|yptq|
n 9uptq ´ ζyptq|yptq|

n´1
| 9uptq|, (2)

where α, β, ζ P R are the model parameters.

Example 3. If α “ ζ “ 1 and β “ 2, the condition for convergence as in
Proposition 1 is satisfied. This differential equation can be rewritten in the
form as in Equation 1 in the following manner

9yptq “

#

f1pν, γq 9uptq, if 9uptq ě 0,

f2pν, γq 9uptq if 9uptq ă 0.

“

#

pα ´ β|γ|n ´ ζγ|γ|n´1q 9uptq, if 9uptq ě 0,

pα ´ β|γ|n ` ζγ|γ|n´1q 9uptq, if 9uptq ă 0.

“

#

p1 ´ 2|γ|n ´ γ|γ|n´1q 9uptq, if 9uptq ě 0,

p1 ´ 2|γ|n ` γ|γ|n´1q 9uptq, if 9uptq ă 0.

To show this example, a periodic input function has to be considered. The
input considered is the function uptq “ sinptq. The derivative of the input is
given by The derivative of the input is defined in the following way 9uptq “

cosptq. Using MATLAB’s built-in function ODE45, the ordinary differential
equation can be solved. The hysteresis loop obtained from the Bouc-Wen
hysteresis operator when a periodic input is applied can be found in Figure
4
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Figure 4: The Bouc-Wen Hysteresis Operator.

2.5 Duhem Butterfly Operator

A special class of Duhem operators is the Duhem butterfly operators. The
principle of this operator is the same as for the Preisach butterfly operator.
The operator can produce complex periodic hysteresis loops where it inter-
sects itself. In this class of operators, f1 and f2 can both assume positive and
negative values as long as Proposition 2 is satisfied to guarantee the existence
of a unique solution that is periodic. Assume that the set-valued functions
ν ÞÑ tγ|f1pν, γq “ 0u and ν ÞÑ tγ|f2pν, γq “ 0u admit explicit solutions given
by

γ “ g1pνq and γ “ g2pνq

where g1, g2 P Ca such that

f1pν, g1pνqq “ 0 and f2pν, g2pνqq “ 0.

To summarize, the curves described by g1 and g2 are the zero level set of the
functions f1 and f2, which is the level set at height equal to zero.
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By Proposition 2, both g1 and g2 split the input-output plane into two regions
such that

f1pν, γq ă 0 whenever γ ą g1pνq;

f1pν, γq ą 0 whenever γ ă g1pνq;

f2pν, γq ą 0 whenever γ ą g2pνq;

f2pν, γq ă 0 whenever γ ă g2pνq.

Before being able to show that the butterfly hysteresis loop exists, the first
two lemmas have to be taken into account.

Lemma 5. If 0 ď
dg1pνq

dν
ď L1 for all ν ě u`p0q then for all γ0 ď

g1pu`p0qq, yu`
pν, γ0q ď g1pνq for all ν ě u`p0q.

The other way around, if ´L2 ď
dg2pνq

dν
ď 0 for all ν ď u´p0q then for all

γ0 ď g2pu´p0qq, yu´
pν, γ0q ď g2pνq for all ν ď u´p0q.

In this case L1 and L2 are the bounds for the derivatives.This lemma shows
the positive invariance of the region below the curves g1 and g2 concerning
their solutions yu`

and yu´
. Lemma 6 shows that the extended solutions yu`

and yu´
in the reverse direction intersect with the zero level set curve g2 and

g1, respectively, under certain assumptions.

Lemma 6. Assume that the assumptions in Lemma 5 hold. Furthermore,
assume that

pf1pν1, γq ´ f1pν2, γqqpν1 ´ ν2q ă 0,

for every ν1, ν2, γ P R and let νa, γa P R be such that γa “ g1pνaq ă g2pνaq.
Then there exists νb ă νa such that yu`

pνb, γaq “ g2pνbq.
Likewise, suppose that

pf2pν1, γq ´ f2pν2, γqqpν1 ´ ν2q ą 0,

for every ν1, ν2, γ P R and let νa, γa P R be such that γa “ g1pνaq ą g2pνaq.
Then there exists νb ą νa such that yu´

pνb, γaq “ g1pνbq.

When one combines Lemma 5 and Lemma 6, it can be shown that the ex-
tended solutions in the negative direction of the input corresponding to the
solutions intersect with the level set functions g1 and g2 can either have pos-
itive and negative slopes respectively or have negative and positive slopes
respectively. The proof of 5 and Lemma 6 can be found in [3]. The main
result can be found in 3. This proposition states existence of yu´

and yu`

with intersections.

16



Proposition 3. Assume that the hypothesis in both Lemma 5 and Lemma
6 are satisfied. Let νf P R be such that g1pνf q “ g2pνf q. Then @ νa`

ă νf ,
there exists numin, νx, νa´

and νmax P R such that numin ă νx ă νa´
ă νmax

and

yu`
pνmin, g1pνa`

qq “ yu´
pνmin, g2pνa´

qq

yu`
pνx, g1pνxqq “ yu´

pνx, g2pνa´
qq

yu`
pνmax, g1pνa`

qq “ yu´
pνmax, g2pνa´

qq

This proposition shows that the solutions yu`
p¨, g1pνa`

qq and yu´
p¨, g2pνa´

qq

which respectively intersect g1 and g2 at νa`
and νa´

also intersect each other
at νmin, νx and νmax. The proof of Proposition 3 can be found in [3].

Proposition 3 is a very strong proposition. When one combines Proposi-
tion 2, which shows the accommodation property, and Proposition 3, which
is on the existence of an invariant butterfly loop, the conclusion is that the
input-output phase plot will converge to the butterfly hysteresis loop for
every initial value γ0 P R of the output when one applies a periodic input
up P CapR`,Rq with only one maximum given by νmax and one minimum
νmin on the periodic interval. Let us next consider an example of the Duhem
butterfly hysteresis operator.

Example 4. First define the curves g1 and g2 satisfying the conditions of
Lemma 5.

g1pν, γq :“ a1 ` a2ν ` a3ν
3,

g2pν, γq :“ ´b1 ` b2ν ´ b3ν
3.

Next define f1 and f2 such that the curves corresponds to the zero level
set, meaning that f1pν, f1pνqq “ f2pν, f2pνqq “ 0, and both assumptions in
Lemma 6 and Proposition 3 are satisfied. Accordingly, f1 and f2 are chosen
to be

f1pν, γq :“ pa1 ` a2ν ` a3ν
3

´ γq,

f2pν, γq :“ pb1 ` b2ν ` b3ν
3

` γq.
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To show whether there exists a unique pair such that the generated sequences
are convergent, one has to check the inequalities in Proposition 2. One needs
to have that

pf1pν, γ1q ´ f1pν, γ2qqpγ1 ´ γ2q ă 0,

pf2pν, γ1q ´ f2pν, γ2qqpγ1 ´ γ2q ą 0,

By filling in the chosen f1 and f2,

´pγ1 ´ γ2q
2

ă 0,

pγ1 ´ γ2q
2

ą 0,

which is trivially true. Assume for simplicity that a1 “ a3 “ b1 “ b3 “ 1 and
a2 “ b2 “ 2, then

f1pν, γq :“ p1 ` 2ν ` ν3 ´ γq,

f2pν, γq :“ p1 ` 2ν ` ν3 ` γq.

This can be rewritten as the following ordinary differential equation

9yptq “ 9uptq ` 2uptq 9uptq ` uptq3 9uptq ´ yptq| 9uptq|.

Consider again a periodic input function uptq “ 5 sinptq. Again, using MAT-
LAB’s built-in function ODE45, the ordinary differential equation can be
solved. The hysteresis loop obtained from the Duhem butterfly hysteresis
operator when a periodic input is applied can be found in Figure 5
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Figure 5: Duhem Butterfly Hysteresis Operator
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3 Identification

The goal of system identification is to find mathematical models of dynam-
ical systems from observed input-output data[16]. In this section, two ways
to identify a mathematical model will be studied. First of all, the classical
approach will be taken. In the classical approach, the focus is on prediction
error methods. However, prediction error methods have some disadvantages.
An example of a disadvantage is overfitting. After studying these disad-
vantages, another approach that does not have those disadvantages will be
introduced. In particular, we will discuss kernel methods that have been
popularized in the machine learning community.

3.1 Classical Methods

The most used approach to identify dynamical systems is the parametric
prediction error method. Those classical methods in which mathematical
statistics play an important role are widely studied [6]. In this method, a
data set given by D is considered:

D “ tup1q, yp1q, . . . , upNq, ypNqu,

where upiq P Rm and ypiq P Rp for i “ 1, . . . , N . The model predicted values
given by ŷpt|θq are compared to the actual output in the following function
which represents the squared error of the outputs

VNpθq “

N
ÿ

t“1

pyptq ´ ŷpt|θqq
2.

In order to find the optimal parameter vector θ, one would like to minimize
VNpθq and hence the mathematical problem is given by

min
θ
VNpθq “

N
ÿ

t“1

pyptq ´ ŷpt|θqq
2.

The predictor output ŷpt|θq can be found by describing the model as a pre-
dictor of the next output and parametrizing the predictor using a finite-
dimensional parameter vector, which leads to

ŷpt|θq “ fpDt´1, θq,

where Dt´1 is the data set at the previous time. An example of a predictor
of the output is the predictor of the linear difference equation.
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Example 5. The linear difference equation is given by

yptq ` a1ypt ´ 1q ` ¨ ¨ ¨ ` anypt ´ nq “ b1upt ´ 1q ` ¨ ¨ ¨ ` bmupt ´ mq.

The predictor output is given as

ŷpt|θq “ fpDt´1, θq

“ a1ypt ´ 1q ` ¨ ¨ ¨ ` anypt ´ nq ´ b1upt ´ 1q ´ ¨ ¨ ¨ ´ bmupt ´ mq,

whereDt´1 is the data set up to time t´1. After parameterizing the predictor,
the model-predicted values are given by

fpDt´1, θq “ θTφptq,

with the following parameters

θ “
“

a1 . . . an b1 . . . bm
‰T

φptq “
“

´ypt ´ 1q . . . ´ypt ´ nq upt ´ 1q . . . upt ´ mq
‰T
,

To minimize the error given by the difference in the model predicted values
and the actual output, a decent parameter estimate has to be found. The
parameter estimate is given by θ̂N “ argminθ VNpθq, where argminθ returns
the input for minimum output over all θ. The parameter estimate can be
rewritten in the following way.

θ̂N “ argmin
θ
VNpθq

“ argmin
θ

N
ÿ

t“1

pyptq ´ ŷpt|θqq
2

“ argmin
θ

N
ÿ

t“1

pyptq ´ θTφptqq
2.

In order to find the solution, one needs to minimize the cost function

min
θ

||AT θ ´ y||
2,

where A is the matrix given by

A “

»

—

–

φpnqT

...
φpNqT

fi

ffi

fl

,
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if n ě m and the output y is given by the vector

y “

»

—

–

ypnqT

...
ypNqT

fi

ffi

fl

.

The solution to the least squares problem is given by

θ̂ “ A:y,

where A: represents the pseudo-inverse of the matrix A [17].

In the above example, the predictor depends linearly on the parameters,
and θ could be found using standard least squares. In general, however, the
predictor may depend on θ in a nonlinear way which leads to more com-
plex optimization problems. Furthermore, the number of predictors is large
in many physical problems. With this higher dimensionality, there are more
unknowns to estimate and thus the estimation of the parameter is more com-
plex.

In physical problems, often noise is introduced in a system. A noise source
describes the perturbations of a system due to for example vibrations and
measurement inaccuracies. Note that if the noise source follows a Gaus-
sian distribution, the method described above coincides with the well-known
Maximum Likelihood method[10]. This method is widely used because it can
be applied to a wide spectrum of model parametrizations to which it gives
very good asymptotic properties. Note that the prediction error method has
some advantages as it can be used in a closed-loop system and it has good
asymptotic properties for many parametrizations [1]. However, a lot of dis-
advantages occur due to the nonlinearity and the high dimensionality. Two
examples are overfitting and the bias-variance dilemma.
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3.2 Overfitting

Overfitting occurs when the provisional model tries to account for every
possible trend or structure in the training set. When a model has to be found,
a certain balance between the model’s complexity and its generalizability to
the test and training sets has to be established. With a highly complex
model, the accuracy is increased but a less general model is obtained. This
is called overfitting. The question that arises is the question when a model
is complex enough to describe the data but is also generalizable enough to
not take every possible structure in the dataset into account. An example of
polynomials with different degrees can be found in Figure 6 [4].

Figure 6: The concept of overfitting illustrated.

When the data set described by D is considered, it can be seen that a third-
order polynomial fit might be a sufficient choice. However, there is always a
higher-order polynomial for which the error is smaller.
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It has to be decided when the polynomial is a sufficient approximation since
higher order polynomials are more complex and computationally more costly.
Choosing the right model class depends a lot on the data set D that is
investigated and is a complex task [9], [12].

3.3 Bias-Variance Dilemma

Furthermore, the bias-variance dilemma occurs. Bias represents the deviation
of the mean prediction from the true target. The average is taken over many
randomized data sets. When the bias is small, there is a small error between
the hypotheses and the unknown target rule. Variance measures how much
individual predictions differ from the mean prediction. When the variance
is small, the outcome has robust behavior. In Figure 7, it can be seen that
for the data points of model A, the white dots, the bias is small and the
variance is large [4]. If one takes the average of the predictions, this is close
to the true target. However, the points are located all over the figure. The
points are not close to the target, this means that the variance is large. On
the other hand, if one looks at the fits of model B, the green dots, the bias
is large and the variance is small. The fits of model B are not located near
the target and thus the bias is large. The green dots are located close to the
average of all model fits and hence there is a robust system meaning that the
variance is small.

Figure 7: The bias-variance dilemma illustrated.
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One would like to have a robust and faithful approximation of the system.
This means that both the bias and the variance must be small. However, this
is often a conflicting aim. In practice, one cannot have both a small variance
and a small bias. Therefore, a conflict arises. A decision on which higher
values for the bias and variance has to be chosen. This is dependent on the
mathematical model that is studied and is called the bias-variance dilemma
[4].

From these two disadvantages, it can be seen that an issue is to choose a
suitable model order. One has to decide when the data is well represented
but the model is not overfitted and thus overly complex. An overly complex
model might lead to incorrectly predicted output when new data is put into
the system. Furthermore, the problem of minimizing an overfitted model
may lead to an ill-posed problem. The solution may become highly sensi-
tive to small perturbations of the data yi. This means that the model has a
higher variance and thus the obtained model is less robust. An identification
method with lower flexibility of the model class which can keep the well-
posedness of the solution is desired. The identification method that satisfies
these favorable properties is the function estimation by regularized kernel
methods [16].

3.4 Kernel Methods

Consider the function g : X Ñ R. For kernel methods, instead of con-
straining the unknown function g to specific parameters, g is searched over a
function space H which is possibly infinite-dimensional. To avoid overfitting
and ill-posedness, a regularization term Jpgq is added to penalize undesired
behaviours. Hence the objective functional becomes

min
gPH

˜

N
ÿ

i“1

pyi ´ gpxiqq
2

` γJpgq

¸

, (3)

where γ is a positive constant. When H is a Hilbert space, mathematical
analysis of regularization methods is possible [16]. Recall that a Hilbert space
is a complete inner product space. This is a space with inner product ⟨¨, ¨⟩
and since it is complete, every Cauchy sequence converges with respect to
the induced norm ||g||H “

a

pg, gqH [8].
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In this case, a specific choice for the regularizer is Jpgq “ ||g||2H . Hence, the
objective functional is given by

min
gPH

˜

N
ÿ

i“1

pyi ´ gpxiqq
2

` γ||g||
2
H

¸

.

A function space that is such that the problem is well-posed and hence there
exists a unique solution that is not too sensitive to data perturbations is the
reproducing kernel Hilbert space.

Definition 6. A Hilbert space of functions g : X Ñ R is called a reproduc-
ing kernel Hilbert space if

@x P X , DCx ă 8 : |gpxq| ď Cx||g||H , @g P H

A reproducing kernel Hilbert space is abbreviated as RKHS. The concept of
RKHS is linked to the concept of positive semidefinite kernels.

Definition 7. A function Kpxi, xjq is symmetric if Kpxi, xjq “ Kpxj, xiqA
symmetric function K : X ˆ X Ñ R is a positive semidefinite kernel if for
all p P N, it holds

p
ÿ

i“1

p
ÿ

j“1

aiajKpxi, xjq ě 0, @pxk, akq P pX ,Rq, k “ 1, . . . , p.

An example of such a positive semidefinite kernel is the Gaussian Kernel.

Example 6. The Gaussian Kernel is given by

Kpx1, x2q “ exp

ˆ

´
||x1 ´ x2||2

2σ2

˙

,

where x1 and x2 are vectors that represent the coordinates of the data points
and σ is the standard deviation.

The connection between RKHS and positive semidefinite kernels can be de-
scribed by the theorem of Moore and Aronszajn [16]:
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Theorem 2. Given a positive semidefinite kernel K, there exists a unique
RKHS of real valued functions defined over X whose reproducing kernel is K.
Conversely, to every RKHS H there corresponds a unique positive semidef-
inite kernel K, the reproducing kernel, such that the reproducing property
holds:

gpxq “ ⟨g,Kx⟩H , @px, gq P pX ,H q,

where the kernel section Kx P H centered at x is defined as Kxpaq :“
Kpx, aq, @a P X .

From this theorem, it follows that the Hilbert space is completely deter-
mined by its reproducing kernel and hence the kernel choice specifies both
the function space H as the regularizer. Furthermore, for modeling, a sin-
gle positive semidefinite kernel function that encodes the desired properties
of the function can be chosen [16]. An example that can be used to show
both the Moore-Aronszajn theorem and the Representer theorem is a space
of absolutely continuous functions.

Example 7. Consider an absolutely continuous function f : r0, 1s Ñ R.
The function f is searched over a function space H . The Hilbert space H
is completely determined by its reproducing kernel and therefore first the
RKHS has to be found. Assume that H is the set of all f such that f 1 is
square-integrable and fp0q “ fp1q “ 0. In this example, it will be shown
that H is an RKHS. Make H a Hilbert space by defining the following inner
product

⟨f, g⟩ “

ż 1

0

f 1
ptqg1

ptqdt.

Since 0 ď x ď 1 and f P H ,

fpxq “

ż x

0

f 1
ptqdt.

In order to be a RKHS, a Cx must be found such that

|fpxq| ď Cx||f ||H .

In order to find Cx, first let 0 ď x ď 1 and let f P H . Since f is assumed to
be absolutely continuous,

fpxq “

ż x

0

f 1
ptqdt

“

ż 1

0

f 1
ptqXr0,xsptqdt,
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where Xr0,xs is used to transform the integral upper boundary from x to 1.
By the Cauchy-Schwartz inequality

|fpxq| ď

d

ż 1

0

f 1ptq2dt

d

ż 1

0

Xr0,xsptqdt

“
?
x||f ||H ,

and hence Cx “
?
x [15]. Hence, the chosen set H is a RKHS. Next, one

would like to find the reproducing kernel. Let Kpt, xq “ kxptq. For the
function fpxq a boundary value problem that has a continuous solution can
not immediately be derived. However, it is known that kxptq exists and is
continuous, and hence fpxq is rewritten, and integration by parts will be
applied.

fpxq “ ⟨f, kx⟩ “

ż 1

0

f 1
ptqk1

xptqdt

“ ´

ż 1

0

fptqk2
xptqdt.

Introduce the Dirac-Delta function δx “ ´k2
x. The problem can be rewritten

as

fpxq “

ż 1

0

fptqδxptqdt,

with kxp0q “ kxp1q “ 0. Note that this boundary value problem is the
Green’s function. Therefore, the solution to this problem is

Kpt, xq “ kxptq “

#

p1 ´ xqt, t ď x,

p1 ´ tqx, t ě x.

And hence the reproducing kernel that is used to find the solution to the
minimization problem is found [15].

The solution to the optimization problem, given by Equation 3, is a finite-
dimensional representation. This can be captured in the representer theorem
and the representer kernel is used [16].
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Theorem 3. If H is a RKHS, the minimizer of mingPH

´

řN
i“1pyi ´ gpxiqq2 ` γJpgq

¯

,

is given by

ĝpxq “

N
ÿ

i“1

ĉiKxi
pxq,

with ĉ “ rĉ1, . . . , ĉN s
T is given by ĉ “ pK`γINq´1Y, where K is a Gram ma-

trix of size NˆN , IN the identity matrix of size NˆN and Y “ py1, . . . , yNq

is the column vector containing all available output measurements.

The Grammatrix is the matrixK with elementsKij “ kpxi, xjq. If kpxi, xjq “

xTi xj, the Grammatrix can be expressed in terms of the matrixX “
“

x1 . . . xm
‰

as

G “

»

—

–

xT1
...
xTN

fi

ffi

fl

“

x1 . . . xN
‰

If the kernel is symmetric and positive semidefinite, the Gram matrix is also
symmetric and positive semi-definite [18]. The reproducing kernel plays an
important role and therefore it must be chosen carefully. A large variety
of positive semidefinite kernel functions have been studied. The representer
theorem is an important result as an optimization over an infinitely large
space is possible.

Note that from the solution of the variational problem

min
gPH

˜

N
ÿ

i“1

pyi ´ gpxiqq
2

` γ||g||
2
H

¸

,

a finite-dimensional representation is found. Just as in the classical approach,
the optimal function is a linear combination of basis functions. The number of
basis functions is equal to the number of data pairs. The difference between
the prediction error method and the kernel method is that the number of
basis functions and data pairs are not fixed a priori [16].
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3.5 Impulse Response Estimation Problem

In this section, kernel methods to the problem of continuous-time system
identification will be applied via impulse response estimation. When a linear
time-invariant system is excited by an impulse input and noisy samples of the
output are collected, the linear system identification problem can be solved
using the function estimation techniques previously described. A continuous-
time single-input-single-output dynamic system is considered. Assume that
this system is linear, time-invariant, and causal. The output error model is
given by

yptiq “

ż 8

0

upti ´ sqgpsqds ` ei i “ 1, . . . , N.

Note that yptiq denotes the output measured at time ti and u the input.
Furthermore, ei is the white noise and the unknown function g is the system
impulse response. To identify the system, the function g : R` Ñ R must be
reconstructed from an inputvector u and an output vector y. The impulse
response will be estimated by an element of the RKHS which is associated
with the kernel K : R` ˆ R` Ñ R. The objective functional is given as

min
gPH

˜

N
ÿ

i“1

pyi ´ Lirgsq
2

` γ||g||
2
H

¸

, (4)

where ||g||2H is the regularizer. In this case, gpxiq is replaced by Lirgs since
the data of the nature is more complex. The functional Lirgs is given by

Lirgs “

ż 8

0

upti ´ sqgpsqds.

The question that arises is, can one find from the solution of the variational
problem a finite-dimensional representation? The answer is positive if the
linear functionals Lirgs are continuous on H , i.e.

@i, DCi ă 8 : |Lirgs| ď Ci||g||H , @g P H .

Before stating the main result, the output kernel O must be defined. The
output kernel is given by

Opt, τq “

ż 8

0

upt ´ xq

ˆ
ż 8

0

upτ ´ aqKpx, aqda

˙

dx.
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The output kernel matrix O P RNˆN is a positive semidefinite matrix with
(i, j) entry given as

Oij “ LirLjrKss “ Opti, tjq.

The main result is the representer theorem for system identification [16].

Theorem 4. If H is a RKHS induced by K and each Li : H Ñ R is a
continuous linear functional, the minimizer is

ĝpxq “

N
ÿ

i“1

ĉiLirKxs,

with ĉ “ rĉ1, . . . , ĉN s
T and ĉ “ pO ` γINq´1Y , where IN represents the

identity matrix of size N .

Thus, the solution to the optimization problem as given in Equation 4, admits
a finite-dimensional representation. The choice of the kernel is an important
decision to make as different kernels give different behaviour. Three examples
and their behaviour can be found in Figure 8.
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Figure 8: The different kernels used to obtain the impulse response estimates.

In this case, a stable linear system is considered and one would like to capture
this linear system in the kernel. As mentioned previously, the choice of this
kernel is very important. There are three examples written in Figure 8. In
the left top figure, the true impulse response and a noisy data set can be seen.
In the other three figures the true impulse response together with the impulse
response estimates obtained using the Gaussian kernel, cubic spline kernel,
and the stable spline kernel [16]. From this example, different behaviour in
the sense of oscillations, convergence, and stability can be seen. One can
conclude that for this linear, stable system the stable spline estimator is the
most suitable one[16].
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4 Hysteretic Deformable Mirror

The hysteretic deformable mirror is a deformable mirror with hysteresis be-
haviour and is abbreviated as HDM. The HDM is a new approach to the
design of deformable mirrors. The goal of a deformable mirror is to correct
the wavefront in advanced imaging systems. In Figure 9 the design of a HDM
can be seen.

Figure 9: The conceptual design of the HDM together with a zoomed-in view
of the HDM.

The HDM consists of a reflective top layer, thin piezo layers, and electrodes.
The stack of thin piezo layers is separated from each other by top and bottom
electrodes which consists of arrays of parallel metallic strips. The strips
of the bottom and top electrodes are placed perpendicular to each other.
Furthermore, the strips are equally aligned for all layers in the way that
the top electrode strips of the layers lay directly above each other and are
electrically connected. The same holds for the bottom layers. The electric
field that is generated when a voltage over any two perpendicular strips is
applied, causes a local deformation of the piezo layer that is sandwiched
between the two perpendicular strips at the crossing of the electrodes. When
this piezo layer deforms, the reflective top layer deforms as well and hence
the mirror is deformable [7].
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4.1 Experiments

The experiments have been executed together with SRON and ZIAM. Differ-
ent pallets were given as samples. The samples are fabricated with Nb-doped
PZT´ZrO2. To conduct the voltage that will be applied, the samples had
to be painted with silver paste. Thereafter, each sample was measured. The
information on the diameter and thickness was needed in the program on the
computer that performed the experiment.

Figure 10: Silverpaste. Figure 11: Sample.

Those samples were placed in a box where high voltages could be applied.
Due to the sensitivity of piezo-electric material, before applying certain volt-
ages and frequencies, a literature study has been performed. It can be found
that from 600 V a switch of the dipoles can be seen. During the experiments,
the voltages has been increased up to 1.3 kV. The frequency was 1 Hz during
the whole experiment [7]. To have the most accurate result, the sample had
to be placed as centered as possible.
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Figure 12: A Sample in the Box. Figure 13: Placing a Sample.

After the closure of the box, the laser has to be calibrated. One would like
to have a circle as in Figure 15 that has at least 70% to be accurate enough.
This is an application of opto-mechatronics.

Figure 14: The laser. Figure 15: Calibrating.
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During the experiment, a periodic input is applied. This periodic input
obtains its maximum at 1.3 kV and its minimum at -1.3 kV. This input has
been applied for one second. The periodic input uptq can be described by the
following function.

uptq “

$

’

&

’

%

5200t, if 0 ď t ď 0.25,

´5200t ` 2600, if 0.25 ď t ď 0.75,

5200t ´ 5200, if 0.75 ď t ď 1.

This function can be seen in Figure 16.

Figure 16: The input function of the HDM.

After applying the input, the output is obtained. This output can be found
in Figure 17.
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Figure 17: The output function of the HDM.

Combining both the input and the output, a butterfly-shaped loop is ex-
pected. The tested example indeed shows the behaviour as one can see in
Figure 18.

Figure 18: The input-output behaviour of the HDM.
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The next step is to find the mathematical model of the dynamical system from
the observed input-output data from the experiment with the HDM. The
mathematical model can be described as an ordinary differential equation
9y “ fpu, yq 9u.

4.2 Identification

Two ways of identification are used throughout this research. The prediction
error method and the kernel method.

4.2.1 Prediction Error Method

The first way of identification is a classical method. It is called the predic-
tion error method as discussed in Section 3.1. To identify the system, one
wants to find the parameters a0, . . . , a5 and c0, . . . , c5 such that the ordinary
differential equation describes the data as accurately as possible. The two
curves c1pν, γq and c2pν, γq that are used are given by:

c1pν, γq “

5
ÿ

n“0

anν
n c2pν, γq “ ´

5
ÿ

n“0

cnν
n.

The functions f1 and f2 are therefore given by

f1pν, γq “ ´γ `

5
ÿ

n“0

anν
n f2pν, γq “ γ `

5
ÿ

n“0

cnν
n.

[2]. This gives the following ordinary differential equation

9yptq “

#

pa0 ` a1uptq ` a2u
2ptq ` a3u

3ptq ` a4u
4ptq ` a5u

5ptq ´ yptqq 9uptq, if 9uptq ě 0,

pc0 ` c1uptq ` c2u
2ptq ` c3u

3ptq ` c4u
4ptq ` c5u

5ptq ` yptqq 9uptq, if 9uptq ă 0.

To find the parameters an and cn for n “ 0, . . . , 5, the least squares method
has to be applied. The least squares method finds the minimum over all
parameters for the system Aθ “ b. Note that since the differential equation
consists of two parts, one for 9uptq ě 0 and one for 9uptq ă 0, also the param-
eter fit will be applied two times.
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When 9uptq ě 0, the parameters that have to be found are a0, . . . , a5, therefore
θ has to be represented as

θ “

»

—

–

a0
...
a5

fi

ffi

fl

Note that the ODE can be rewritten as

9yptq “

˜

´yptq `

5
ÿ

n“0

anu
n
ptq

¸

9uptq,

9yptq “ ´yptq 9uptq `

˜

5
ÿ

n“0

anu
n
ptq

¸

9uptq,

9yptq ` yptq 9uptq “

˜

5
ÿ

n“0

anu
n
ptq

¸

9uptq

Therefore, the vector b is given by

b “

»

—

—

—

–

9yp0q ` yp0q 9up0q

9yp1q ` yp1q 9up1q
...

9ypT q ` ypT q 9upT q

fi

ffi

ffi

ffi

fl

,

and the matrix A can be denoted as

A “

»

—

—

—

–

9up0q up0q 9up0q . . . u5p0q 9up0q

9up1q up1q 9up1q . . . u5p1q 9up1q
...

...
...

...
9upT q upT q 9upT q . . . u5pT q 9upT q

fi

ffi

ffi

ffi

fl

.

The solution to this least squares problem can be found by multiplying the
vector b by the pseudo-inverse of the matrix A and is given by

θ “ A:b,

where θ represents the parameters ai.
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When 9uptq ă 0, the parameters that have to be identified are c0, . . . , c5.
Therefore, θ is represented as

θ “

»

—

–

c0
...
c5

fi

ffi

fl

.

The differential equation can be written as

9yptq ´ yptq 9uptq “

˜

5
ÿ

n“0

cnu
n
ptq

¸

9uptq.

Therefore, the matrix b is represented as

b “

»

—

—

—

–

9yp0q ´ yp0q 9up0q

9yp1q ´ yp1q 9up1q
...

9ypT q ´ ypT q 9upT q

fi

ffi

ffi

ffi

fl

,

and A is as before. The solution to this problem is again given by

θ “ A:b,

where θ represents in this case the parameters c0, . . . , c5 [17].

As one can see from the differential equation, the maximum order of the
input uptq is five. As the maximum input that is applied in the experiment
is 1300 volts, scaling is needed. If one does not scale the input uptq and the
output yptq it is hard to find the right parameters since for uptq5 values up
to 3.7 ˆ 1015 appear. In this case, the input function applied is

uptq “

$

’

&

’

%

5.2t, if 0 ď t ď 0.25,

´5.2t ` 2.6, if 0.25 ď t ď 0.75,

5.2t ´ 5.2, if 0.75 ď t ď 1.

40



By applying the least squares method to fit the data, the vectors θ are found.
When the derivative of the input 9uptq is positive, the vector θ is given by

θ “

»

—

—

—

—

—

—

–

a0
a1
a2
a3
a4
a5

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

«

»

—

—

—

—

—

—

–

´0.763
´0.699
2.651

´2.756
´1.072
´1.377

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

In the case that 9uptq is negative, the vector θ is

θ “

»

—

—

—

—

—

—

–

c0
c1
c2
c3
c4
c5

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

«

»

—

—

—

—

—

—

–

0.735
´0.299
´2.769
2.138
1.173

´1.138

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

When the ordinary differential equation

9yptq “

#

pa0 ` a1uptq ` a2u
2ptq ` a3u

3ptq ` a4u
4ptq ` a5u

5ptq ´ yptqq 9uptq, if 9uptq ě 0,

pc0 ` c1uptq ` c2u
2ptq ` c3u

3ptq ` c4u
4ptq ` c5u

5ptq ` yptqq 9uptq, if 9uptq ă 0.

is solved by using the ODE45 built-in function of MATLAB, the following
result is obtained.

Figure 19: The output function by the Duhem Model.
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When one compares the actual output with the obtained output by the ap-
proximation using the Duhem butterfly model, the following graph is ob-
tained.

Figure 20: The actual output and approximated output compared.

When one compares the input-output behaviour of the data together with
the approximation by the Duhem butterfly model, the following graph is
obtained.

Figure 21: The actual input-output and approximated input-output be-
haviour compared.
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The error can be computed by taking the norm of the vectors y and ŷ, where y
represents the actual output of the system and ŷ is the approximated output
and hence,

error “ ||y ´ ŷ||

“ 0.886.

After deriving the prediction error method using the Duhem butterfly model
with an error of 0.886, one would prefer to obtain a method that gives a
smaller error.
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4.2.2 Kernel Method

The second method that will be discussed is the kernel method. In this case,
one looks for a function f̂puq in the following manner

9y “ 9ufpu, yq

9y “ 9uf̂puq ` y 9u

f̂puq “
9y

9u
´ y (5)

To identify f̂puq, one would like to find the f in a reproducing kernel Hilbert
space. The least squares problem is in this case described by

min
fPH

˜

n
ÿ

i“1

||yi ´ fpuiq||
2
Y

¸

,

where ui is the input at time ti. The output yi at time ti is given by

yi “
9yptiq

uptiq
´ yptiq,

since the to be identified function f̂puq is described as in Equation 5. To
identify f , one can directly use Theorem 3 [20]. Recall that Theorem 3
states that if H is an RKHS, the solution ĝpxq to the optimization problem
is given by

ĝpxq “

N
ÿ

i“1

ĉiKxi
pxq,

with ĉ “ rĉ1, . . . , ĉN s
T is given by ĉ “ pK`γINq´1Y, where K is a Gram ma-

trix of sizeNˆN , IN the identity matrix of sizeNˆN and Y “ py1, . . . , yNq is
the column vector containing all available output measurements. The Gram
matrix K can be denoted in the following manner

K “

»

—

—

—

–

Kpu1, u1q Kpu1, u2q . . . Kpu1, unq

Kpu2, u1q Kpu2, u2q . . . Kpu2, unq
...

...
. . .

...
Kpun, u1q Kpun, u2q . . . Kpun, unq

fi

ffi

ffi

ffi

fl

,

The system of linear equations can be rewritten as

pK ` γIqpc1, . . . , cnq “ py1, . . . , ynq.
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To find the coefficients pc1, . . . , cnq, the following system of linear equations
has to be solved

pK ` γIqpc1, . . . , cnq “ py1, . . . , ynq,

which gives
pc1, . . . , cnq “ pK ` γIq

´1
py1, . . . , ynq.

Note that to define the Gram matrix, a linear combination of suitable kernels
has to be chosen. Those linear combinations can consist of different types of
kernels such as the Laplacian kernel and the Gaussian kernel [20].

The first kernel that is chosen to identify the data from the hysteretic de-
formable mirror is the Gaussian kernel. The Gaussian kernel function is given
by

kpx, yq “ exp

ˆ

´
||x ´ y||2

σ2

˙

,

where σ is a parameter that can be adjusted to optimize the solution. In the
MATLAB code in the appendix, it can be seen that first the Gram matrix
K is defined. Thereafter, the coefficients cj will be found. Thereafter the

output f̂puq of the kernel method is calculated. In order to compare this
output with the actual output the ODE given by

9y “ 9uf̂puq ` y 9u,

has to be computed. This can be done using the built-in function ODE45.
In order to optimize the Gaussian kernel method, the parameter σ can be
adjusted. To find the optimal value for σ, the error of different values of σ
are considered. This error is calculated as follows:

error “ ||y ´ ψ̂||,

where y is the actual output by the system and ψ̂ is the approximation of
the output using the Gaussian kernel function. By trial and error, it is found
that the optimal value for σ equals 0.1. This gives an error value of 0.355
which is significantly lower than the value of 0.886 which was found by using
the Duhem butterfly model. This result can also be seen when the plots of
the time, input, and output are generated. In Figure 22 the output for the
time t “ 0 to t “ 1 second can be seen.
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Figure 22: The output of the data, the output of the Duhem butterfly model,
and the output of the Gaussian kernel method compared.

As one can see from this graph, especially in the angular parts in the lower
part of the graph, the kernel method performs way better than the Duhem
butterfly model. This part also explains the large difference in the error, the
approximation of the Gaussian kernel method is more accurate. In Figure
23 the input-output behaviour is compared.

Figure 23: The input-output behaviour of the data, the Duhem butterfly
model, and the Gaussian kernel method compared.
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It can be seen that in the lower wings of the butterfly, the Gaussian kernel
method performs better. The gap between the red plot and the blue plot
is smaller than the gap between the blue and green plot. Thus, the error is
approximately 2.5 times smaller which gives a significantly better result.

Another kernel function that can be chosen is the Laplacian kernel function.
This kernel function is given by

kpx, yq “ ρ ¨ expp´||x ´ y||q

By following a similar method as for the Gaussian kernel, the output of the
Laplacian kernel function can be found. The optimal value for ρ is found
by trial and error. The optimal value is ρ “ 5 ¨ 10´4 By using the solver
ODE45 in MATLAB for which the code also can be found in the appendix,
the following figures are obtained. In Figure 24 the output of the Laplacian
kernel compared to the Duhem butterfly model and the actual output can be
seen. One can conclude that this kernel method is better than the Duhem
butterfly model just as the Gaussian kernel method.

Figure 24: The output of the data, the output of the Duhem butterfly model,
and the output of the Laplacian kernel method compared.
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If one looks at Figure 25, it is not immediately clear that the approximations
by the Laplacian kernel are better than the Gaussian kernel.

Figure 25: The output of the data, the output of the Duhem butterfly model
the output of the Gaussian kernel method, and the output of the Laplacian
kernel method compared.

However, when one calculates the error, the difference will be clear. In order
to calculate the error, assume that y represents again the actual output of
the system and ξ̂ represents the approximation using the Laplacian kernel
function. Then, the error is given by

error “ ||y ´ ξ̂||,

“ 0.285.

This error is smaller than the error of the Gaussian kernel method and this
gives an error that is approximately three times smaller than the error of the
Duhem butterfly model. In Figure 26 the input and output of the data, the
Duhem butterfly model and both kernel functions can be seen.
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Figure 26: The input-output behaviour of the data, the Duhem butterfly
model, the Gaussian kernel method, and the Laplacian kernel method com-
pared.

Another way to choose the kernel is to choose a linear combination of mul-
tiple kernel functions. In this section, a combination of the Gaussian and
Laplacian kernel function is chosen. In this case, the kernel function is given
by

kpx, yq “ exp

ˆ

´
||x ´ y||2

σ2

˙

` ρ ¨ expp´||x ´ y||q

By using a similar approach as for the Gaussian kernel and the Laplacian
kernel, the output by the linear combination of the Gaussian and Laplacian
kernel functionscan be obtained. Again, by trial and error, the optimal values
for σ and ρ are found. The optimal values are σ “ 0.11 and ρ “ 0.1. In
Figure 27 the output given by this kernel method can be seen. Again, this
choice for the kernel gives a better result than the Duhem butterfly model.
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Figure 27: The output of the data, the output of the Duhem butterfly model
the output of the combination of the Gaussian kernel and the Laplacian
kernel method compared.

In Figure 28 the input-output behaviour of all studied methods together with
the real input-output data can be found.

Figure 28: The input-output behaviour of the data, the Duhem butterfly
model, The Gaussian kernel method, the Laplacian kernel method and the
combination of the Laplacian and Gaussian kernel method compared.
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By calculating the error, a value of 0.2495 is found. This is lower than the
error of the Gaussian kernel function and the error of the Laplacian kernel
function. If one looks closer to the lower wing of the butterfly, the difference
in the methods can be studied more closely. This can be seen in Figure 29.

Figure 29: The input-output behaviour of the data, the Duhem butterfly
model, the Gaussian kernel method, the Laplacian kernel method, and the
combined Gaussian-Laplacian kernel method zoomed-in on the lower wing of
the butterfly.

From this figure, it can be concluded that the kernel methods are better
approximations of the obtained data than the fifth-order Duhem butterfly
model. If the different kernel methods are compared, it can be seen that the
linear combination of the Gaussian and Laplacian kernel functions gives the
smallest error and therefore is the best method.
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5 Conclusion

The hysteretic deformable mirror is a deformable mirror that exhibits hys-
teresis due to the piezoelectric-based actuators. To describe hysteretic phe-
nomena, hysteresis models are defined. An operator is called a hysteresis
operator if it is both causal and rate-independent. When a certain voltage
is applied to the HDM, the input-output behaviour describes butterfly be-
haviour. An operator is called a butterfly hysteresis operator if there exists
a hysteresis loop for which the signed area of the clockwise oriented loop
equals the signed area of the counterclockwise oriented loop. Phenomeno-
logical models focus on the empirical description of input-output behaviour.
Two commonly used phenomenological models are the Preisach butterfly op-
erator and the Duhem butterfly operator.

To find mathematical models of dynamical systems from observed input-
output data, identification is needed. The classical methods, such as para-
metric prediction error methods, focus on minimizing the difference between
the output given by the data and the output given by the model. One can
minimize this difference by finding an optimal parameter estimate. In the
case of the HDM, the expected output is described by the Bouc-Wen model.
The prediction error method has some advantages as it can be used in closed-
loop systems and it has good asymptotic properties for many parametriza-
tions. However, due to the for example high dimensionality, it also has some
disadvantages such as overfitting and the bias-variance dilemma. From these
two disadvantages, it can be an issue to choose the right model order. When
one chooses incorrectly, this might lead to an ill-posed problem or a less ro-
bust model.

An identification method that keeps the well-posedness of the solution is
needed. The identification method that satisfies the favorable properties is
function estimation with the use of regularized kernel methods. In this case,
the function g is searched in a reproducing kernel Hilbert space. The Hilbert
space is completely determined by its reproducing kernel and, for modeling,
a single positive semidefinite kernel function that encodes the desired prop-
erties of the function can be chosen. The difference between the prediction
error method and the kernel method is that the number of parameters are
not fixed a priori.
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To make a comparison with the prediction error method, the impulse response
estimation problem is considered. The solution to the objective functional
in the impulse response estimation problem admits a finite-dimensional rep-
resentation.

In the lab, an experiment with samples fabricated with Nb´doped PZT´ZrO2,
was executed. When a voltage with a maximum of 1300 Volt was applied,
the samples showed indeed the desired butterfly behaviour. In order to iden-
tify the butterfly behaviour, both the prediction error method and the kernel
method was used. For the prediction error method, the Duhem butterfly
model with real data is considered. In this case, a polynomial up to order 5
was used with 6 different parameters. As the loop was nonsymmetric, two
different series of parameters were chosen. One when the change over time of
the input was negative and one when the change over time of the input was
positive. Thereafter, the kernel method was applied. The Gaussian kernel
function, the Laplacian kernel function, and a linear combination of the two
of them were used to identify the data. After choosing the optimal parame-
ters for the kernel functions, it turned out that the linear combination of the
Gaussian kernel and the Laplacian kernel function was the best choice. This
kernel function gave an error that was 3.5 times as small as the fifth-order
Duhem butterfly model.
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6 Discussion

This discussion starts with the validity and reliability of the research. There-
after, suggestions for further research will be given.

The experiments have been performed with four different samples. To iden-
tify the system and make the identification more reliable, one would like to
have more samples. In this way, the identification can be done with the iden-
tification step and thereafter the validation. This will give a more accurate
description of the system. Furthermore, more data can help with choosing
the right kernel.

In this research, prediction error methods up to order five are discussed.
To make the model more accurate and make a comparison between the pre-
diction error method and the classical method, one could increase the order
to for example seven to make it more accurate. This comparison might be
more valid as a more accurate model using the prediction error method is
used.

There are some suggestions for future research. First of all, one could look
into the kernels that are causal and rate-independent. If this is the case, those
kernels could describe the hysteretic behaviour. Secondly, one could perform
more experiments to identify and validate kernels that can be used to describe
the mathematical behaviour of the HDM. Finally, one could look into iden-
tifying the differential equation that describes the hysteresis behaviour using
kernel methods rather than identifying a part of this differential equation.
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8 Appendix

Code belonging to Example 2.

clear all

close all

%Define time intervals

t1=1;

t2=2;

t3=3;

t4=4;

t5=5;

%Define input

umin= -1;

umax=-umin;

%Define time

t=[t1 :0.01: t5];

size_t=size(t);

T=size_t (1,2);

%Define input

for i = 1:T

if t(i)>=t1 && t(i)<=t2

u(i) = t(i)^2-2*t(i);

elseif t(i) >=t2 && t(i) <=t3

u(i) = t(i)^2-4*t(i)+4;

elseif t(i) >=t3 && t(i) <=t4

u(i) = -t(i)^2+6*t(i) -8;

elseif t(i) >=t4 && t(i) <=t5

u(i) = -t(i)+4;

end

end

%Define output

for i=1:T
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if t(i)>=t1 && t(i)<=t2

P(i) = -(umax+u(i)).^2;

elseif t(i) >=t2 && t(i) <=t3

P(i) = -(umax -u(i))*(umax +3*u(i));

elseif t(i) >=t3 && t(i) <=t4

P(i) = -(umax -u(i)).^2;

elseif t(i) >=t4 && t(i) <=t5

P(i) = -(umax+u(i))*(umax -3*u(i));

end

end

%Make a butterfly

figure;

plot(u,P)

title('Input -output phase plot of input and output

signal ')
xlabel('u(t)')
ylabel('P(t)')

%Input signal

figure;

plot(t,u)

title('Input signal u in periodic time interval [t_1

, t_5]')
xlabel('t')
ylabel('u(t)')
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Code belonging to Example 3.

%This ODE belongs to BoucWenmodel.m

function dydt = ODE_system(t, y, n)

u_prime_piecewise = @(t) cos(t);

dydt = u_prime_piecewise(t) - 2 * abs(y)^n *

u_prime_piecewise(t) - y * abs(y)^(n - 1)*abs

(u_prime_piecewise(t));

end

clear all

close all

%Define n as a natural number

n = 2;

t=0:0.01:20;

y0 = 0.5;

%Solve ODE in ODE_system

[t, y] = ode45 (@(t, y) ODE_system(t, y, n), t, y0);

%Define input

umin= -1;

umax=-umin;

%Define time

t=0:0.01:20;

size_t=size(t);

T=size_t (1,2);

%Define input

for i = 1:T

u(i) = sin(t(i));

end

%Make plot

figure;

plot(u, y);
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xlabel('u');
ylabel('y');
title('Plot of a continuous periodic input function

and its output ');

60



Code belonging to Example 4.

%This ODE belongs to duhembutterfly.m

function dydt = ODE_systemduhembutterfly(t, y)

u = @(t) 5*sin(t);

u_prime_piecewise = @(t) 5*cos(t);

dydt = u_prime_piecewise(t) + 2*u(t)*

u_prime_piecewise(t) + u(t)^3*

u_prime_piecewise(t)- y*abs(u_prime_piecewise

(t));

end

clear all

close all

%Define time for ODE

t=0:0.01:10;

%Define initial condition

y0 = -5;

%Solve ODE in ODE_systemduhembutterfly

[t, y] = ode45 (@(t, y) ODE_systemduhembutterfly(t, y

), t, y0);

%Define input

umin= -5;

umax=-umin;

%Define time

t=0:0.01:10;

size_t=size(t);

T=size_t (1,2);

%Define input

for i = 1:T

u(i) = 5*sin(t(i));

end
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% Make a butterfly

figure;

plot(u, y);

xlabel('u');
ylabel('y');
title('Plot of a piecewise continuous input function

and its output ');
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Code belonging to Section 4.1

T = readtable('C:\Users\lisah\Downloads\Data
Experiment 2 1.3kV.txt');

%Import data

time = T{: ,1};

input = T{:,2};

output1 = T{: ,10};

%Plots

plot(time ,input)

xlim ([0 1]);

xticks (0:0.25:1);

ylim ([ -1300 1300]);

xlabel('t');
ylabel('u(t)');
title('Applied input function ');

plot(time , output1)

xlim ([0 1]);

xticks (0:0.25:1);

xlabel('t');
ylabel('y(t)');
title('Obtained output function ');

plot(input , output1)

xlim ([ -1300 1300]);

xlabel('u(t)');
ylabel('y(t)');
title('The input output behaviour ');

63



Code belonging to Section 4.2.1

close all

close all

T = readtable('C:\Users\lisah\Downloads\Data
Experiment 2 1.3kV.txt');

%Import data

time = T{: ,1};

input = T{: ,2}./1000;

output1 = T{: ,10}./1000;

%output2=T{: ,11};

%output3=T{:12};

% subplot (2,2,1)

% plot(time ,input)

% subplot (2,2,2)

% plot(input , output1)

%Data fit

dudt = gradient(input (:))./ gradient(time (:));

dydt = gradient(output1 (:))./ gradient(time (:));

%Define parameters

syms a0 a1 a2 a3 a4 a5 a6

%Positive/Negative \dot{u}

index = find(dudt <0);

%Solve least squares

Alpha =[( dudt(index))';
(input(index).*dudt(index))';
(input(index).^2.* dudt(index)) ';
(input(index).^3.* dudt(index)) ';
(input(index).^4.* dudt(index))' ;

(input(index).^5.* dudt(index)) ']';
beta=dydt(index)-output1(index).*dudt(index);

64



%xi= [a0;a1;a2;a3;a4;a5];

xi= pinv(Alpha)*beta;

%Start solving ODEs

%First positive \dot{u}

t = [0:0.0025:0.25];

y0 = 0;

[t, y1] = ode45 (@(t, y) ODE_data_xi_5_pos1(t, y), t,

y0);

%Negative \dot{u}

t = [0.25:0.0025:0.75];

y0 = y1 (101);

[t,y2] = ode45 (@(t, y) ODE_data_xi_5_neg(t, y), t,

y0);

%Second positive \dot{u}

t = [0:0.0025:0.25];

y0 = y2 (201);

[t, y3] = ode45 (@(t, y) ODE_data_xi_5_pos1(t, y), t,

y0);

y = [0;y1 (1:100);y2 (1:200);y3 (1:100) ];

%plot(time ,output1 ,':')
%hold on

%plot(t, y,'--')
%legend('actual output ','output by Duhem model ')
%xlabel('t');
%ylabel('y(t)');

plot(input ,output1 ,':')
hold on

plot(input , y, '--')
xlabel('u(t)');
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ylabel('y(t)');
legend('actual input -output ','input -output by Duhem

model ')

norm(output1 -y);
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Code belonging to Section 4.2.2

Gaussian Kernel

close all

close all

T = readtable('C:\Users\lisah\Downloads\Data
Experiment 2 1.3kV.txt');

%Import data

time = T{: ,1};

input = T{: ,2}/1000;

output1 = T{: ,10}/1000;

dudt = gradient(input (:))./ gradient(time (:));

dydt = gradient(output1 (:))./ gradient(time (:));

%index = find(dudt <0)

inputneg = input (101:300);

inputpos = [input (1:100);input (301:400) ];

outputneg = output1 (101:300);

outputpos = [output1 (1:100);output1 (301:400) ];

dudtneg = dudt (101:300);

dudtpos = [dudt (1:100);dudt (301:400) ];

dydtneg = dydt (101:300);

dydtpos = [dydt (1:100);dydt (301:400) ];

%plot(time ,dudt);

hatfneg = dydtneg ./ dudtneg - outputneg;

hatfpos = dydtpos ./ dudtpos - outputpos;

%Gaussian Kernel

sigma = 0.01;

k = @(x,y) (exp(-norm(x-y)^2/ sigma ^2));
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%Case: \dot{u} is negative

Gneg=zeros (200);

for i = 1: 200

for j = 1:200

Gneg(i,j) = k(inputneg(i),inputneg(j));

end

end

gamma = 0.00000001;

%dit zijn de c_j 's
Cneg = inv(Gneg+gamma*eye (200))*hatfneg;

x_neg = inputneg;

y_neg = zeros (200 ,1);

for j = 1:200

sum = 0;

for i = 1:200

sum = sum + k(x_neg(j),inputneg(i))*Cneg(i);

end

y_neg(j) = sum;

end

%Case: \dot{u} is positive

Gpos=zeros (200);

for i = 1: 200

for j = 1:200

Gpos(i,j) = k(inputpos(i),inputpos(j));

end

end

gamma = 0.00000001;

%dit zijn de c_j 's
Cpos = inv(Gpos+gamma*eye (200))*hatfpos;
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x_pos = inputpos;

y_pos = zeros (200 ,1);

for j = 1:200

sum = 0;

for i = 1:200

sum = sum + k(x_pos(j),inputpos(i))*Cpos(i);

end

y_pos(j) = sum;

end

t1 = [0:0.0025:0.25];

y0 = 0;

[t1 , ykernel1] = ode45 (@(t, y)

ODE_data_kernel_Gaussian_pos1(t, y,Cpos , inputpos

), t1, y0);

t2 = [0.25:0.0025:0.75];

y1 = ykernel1 (101);

[t2 , ykernel2] = ode45 (@(t, y)

ODE_data_kernel_Gaussian_neg(t, y,Cneg , inputneg)

, t2, y1);

t3 = [0.75:0.0025:1];

y2 = ykernel2 (201);

[t3 , ykernel3] = ode45 (@(t, y)

ODE_data_kernel_Gaussian_pos2(t, y,Cpos , inputpos

), t3, y2);

ykernel = [ykernel1 (1:101);ykernel2 (2:201);ykernel3

(2:101) ];

t = [t1;t2 (2:201);t3 (2:101) ];

%plot(t,ykernel)

%plot(input ,ykernel)

error = norm(ykernel -output1)
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plot(input ,output1 ,"b")

hold on

plot(input , y,"g")

hold on

plot(input , ykernel ,"r")

xlabel('u(t)');
ylabel('y(t)');
legend('actual input -output ','input -output by Duhem

model ', 'input -output by Gaussian Kernel ')

close all

function dydt5 = ODE_data_kernel_Gaussian_pos1(t,y,

Cpos , inputpos)

u = @(t) 5.2*t;

u_dot = 5.2;

sigma = 0.01;

k = @(x,y) (exp(-norm(x-y)^2/ sigma ^2));

function sum = fhat_pos(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputpos(i))*Cpos(i);

end

end

dydt5 = fhat_pos(u(t))*u_dot + y*u_dot;

end

close all

function dydt5 = ODE_data_kernel_Gaussian_pos2(t,y,

Cpos , inputpos)

u = @(t) 5.2*t -5.2;

u_dot = 5.2;

sigma = 0.01;

k = @(x,y) (exp(-norm(x-y)^2/ sigma ^2));
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function sum = fhat_pos(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputpos(i))*Cpos(i);

end

end

dydt5 = fhat_pos(u(t))*u_dot + y*u_dot;

end

close all

function dydt5 = ODE_data_kernel_Gaussian_neg(t,y,

Cneg , inputneg)

u = @(t) -5.2*t+2.6;

u_dot = -5.2;

sigma = 0.01;

k = @(x,y) (exp(-norm(x-y)^2/ sigma ^2));

function sum = fhat_neg(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputneg(i))*Cneg(i);

end

end

dydt5 = fhat_neg(u(t))*u_dot + y*u_dot;

end
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Laplacian Kernel

close all

T = readtable('C:\Users\lisah\Downloads\Data
Experiment 2 1.3kV.txt');

%Import data

time = T{: ,1};

input = T{: ,2}/1000;

output1 = T{: ,10}/1000;

dudt = gradient(input (:))./ gradient(time (:));

dydt = gradient(output1 (:))./ gradient(time (:));

%index = find(dudt <0)

inputneg = input (101:300);

inputpos = [input (1:100);input (301:400) ];

outputneg = output1 (101:300);

outputpos = [output1 (1:100);output1 (301:400) ];

dudtneg = dudt (101:300);

dudtpos = [dudt (1:100);dudt (301:400) ];

dydtneg = dydt (101:300);

dydtpos = [dydt (1:100);dydt (301:400) ];

%plot(time ,dudt);

hatfneg = dydtneg ./ dudtneg - outputneg;

hatfpos = dydtpos ./ dudtpos - outputpos;

%Laplacian Kernel

rho = 0.0005;

k = @(x,y) rho*(exp(-norm(x-y)));

%Case: \dot{u} is negative

Gneg=zeros (200);
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for i = 1: 200

for j = 1:200

Gneg(i,j) = k(inputneg(i),inputneg(j));

end

end

gamma = 0.00000001;

%dit zijn de c_j 's
Cneg = inv(Gneg+gamma*eye (200))*hatfneg;

x_neg = inputneg;

y_neg = zeros (200 ,1);

for j = 1:200

sum = 0;

for i = 1:200

sum = sum + k(x_neg(j),inputneg(i))*Cneg(i);

end

y_neg(j) = sum;

end

%Case: \dot{u} is positive

Gpos=zeros (200);

for i = 1: 200

for j = 1:200

Gpos(i,j) = k(inputpos(i),inputpos(j));

end

end

gamma = 0.00000001;

%dit zijn de c_j 's
Cpos = inv(Gpos+gamma*eye (200))*hatfpos;

x_pos = inputpos;

y_pos = zeros (200 ,1);
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for j = 1:200

sum = 0;

for i = 1:200

sum = sum + k(x_pos(j),inputpos(i))*Cpos(i);

end

y_pos(j) = sum;

end

t1 = [0:0.0025:0.25];

y0 = 0;

[t1 , ykernel4] = ode45 (@(t, y)

ODE_data_kernel_Laplacian_pos1(t, y,Cpos ,

inputpos), t1, y0);

t2 = [0.25:0.0025:0.75];

y1 = ykernel4 (101);

[t2 , ykernel5] = ode45 (@(t, y)

ODE_data_kernel_Laplacian_neg(t, y,Cneg , inputneg

), t2, y1);

t3 = [0.75:0.0025:1];

y2 = ykernel5 (201);

[t3 , ykernel6] = ode45 (@(t, y)

ODE_data_kernel_Laplacian_pos2(t, y,Cpos ,

inputpos), t3, y2);

ykernellaplace = [ykernel4 (1:101);ykernel5 (2:201);

ykernel6 (2:101) ];

t = [t1;t2 (2:201);t3 (2:101) ];

% plot(t, ykernellaplace ,"r")

% xlabel('t');
% ylabel('y(t)');

% plot(t,output1 ,"b")

% hold on

% plot(t, y,"g")
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% hold on

% plot(t,ykernel , "r")

% hold on

% plot(t, ykernellaplace ,"m")

% xlabel('t');
% ylabel('y(t)');
% legend('actual output ','output by Duhem model ', '

output by Gaussian Kernel ', 'output by Laplacian

Kernel ')

plot(input ,output1 ,"b")

hold on

plot(input , y,"g")

hold on

plot(input ,ykernel , "r")

hold on

plot(input , ykernellaplace ,"m")

xlabel('u(t)');
ylabel('y(t)');
legend('actual input -output ','input -output by Duhem

model ', 'input -output by Gaussian Kernel ', 'input
-output by Laplacian Kernel ')

function dydt5 = ODE_data_kernel_Laplacian_pos1(t,y,

Cpos , inputpos)

u = @(t) 5.2*t;

u_dot = 5.2;

k = @(x,y) 0.0005*( exp(-norm(x-y)));

function sum = fhat_pos(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputpos(i))*Cpos(i);

end

end
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dydt5 = fhat_pos(u(t))*u_dot + y*u_dot;

end

function dydt5 = ODE_data_kernel_Laplacian_pos2(t,y,

Cpos , inputpos)

u = @(t) 5.2*t -5.2;

u_dot = 5.2;

k = @(x,y) 0.0005*( exp(-norm(x-y)));

function sum = fhat_pos(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputpos(i))*Cpos(i);

end

end

dydt5 = fhat_pos(u(t))*u_dot + y*u_dot;

end

function dydt5 = ODE_data_kernel_Laplacian_neg(t,y,

Cneg , inputneg)

u = @(t) -5.2*t+2.6;

u_dot = -5.2;

k = @(x,y) 0.0005*( exp(-norm(x-y)));

function sum = fhat_neg(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputneg(i))*Cneg(i);

end

end

dydt5 = fhat_neg(u(t))*u_dot + y*u_dot;
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end
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Laplacian and Gaussian Kernel combined

close all

T = readtable('C:\Users\lisah\Downloads\Data
Experiment 2 1.3kV.txt');

%Import data

time = T{: ,1};

input = T{: ,2}/1000;

output1 = T{: ,10}/1000;

dudt = gradient(input (:))./ gradient(time (:));

dydt = gradient(output1 (:))./ gradient(time (:));

%index = find(dudt <0)

inputneg = input (101:300);

inputpos = [input (1:100);input (301:400) ];

outputneg = output1 (101:300);

outputpos = [output1 (1:100);output1 (301:400) ];

dudtneg = dudt (101:300);

dudtpos = [dudt (1:100);dudt (301:400) ];

dydtneg = dydt (101:300);

dydtpos = [dydt (1:100);dydt (301:400) ];

%plot(time ,dudt);

hatfneg = dydtneg ./ dudtneg - outputneg;

hatfpos = dydtpos ./ dudtpos - outputpos;

%Gaussian + Laplacian Kernel

sigma =0.11;

rho = 0.01;

k = @(x,y) (exp(-norm(x-y)^2/ sigma ^2)) + rho*(exp(-

norm(x-y)));
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%Case: \dot{u} is negative

Gneg=zeros (200);

for i = 1: 200

for j = 1:200

Gneg(i,j) = k(inputneg(i),inputneg(j));

end

end

gamma = 0.00000001;

%dit zijn de c_j 's
Cneg = inv(Gneg+gamma*eye (200))*hatfneg;

x_neg = inputneg;

y_neg = zeros (200 ,1);

for j = 1:200

sum = 0;

for i = 1:200

sum = sum + k(x_neg(j),inputneg(i))*Cneg(i);

end

y_neg(j) = sum;

end

%Case: \dot{u} is positive

Gpos=zeros (200);

for i = 1: 200

for j = 1:200

Gpos(i,j) = k(inputpos(i),inputpos(j));

end

end

gamma = 0.00000001;

%dit zijn de c_j 's
Cpos = inv(Gpos+gamma*eye (200))*hatfpos;
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x_pos = inputpos;

y_pos = zeros (200 ,1);

for j = 1:200

sum = 0;

for i = 1:200

sum = sum + k(x_pos(j),inputpos(i))*Cpos(i);

end

y_pos(j) = sum;

end

t1 = [0:0.0025:0.25];

y0 = 0;

[t1 , ykernel7] = ode45 (@(t, y)

ODE_data_kernel_GausLaplac_pos1(t, y,Cpos ,

inputpos), t1, y0);

t2 = [0.25:0.0025:0.75];

y1 = ykernel7 (101);

[t2 , ykernel8] = ode45 (@(t, y)

ODE_data_kernel_GausLaplac_neg(t, y,Cneg ,

inputneg), t2, y1);

t3 = [0.75:0.0025:1];

y2 = ykernel8 (201);

[t3 , ykernel9] = ode45 (@(t, y)

ODE_data_kernel_GausLaplac_pos2(t, y,Cpos ,

inputpos), t3, y2);

ykernelGausLaplac = [ykernel7 (1:101);ykernel8 (2:201)

;ykernel9 (2:101) ];

t = [t1;t2 (2:201);t3 (2:101) ];

% plot(t, ykernelGausLaplac ,"r")

% xlabel('t');
% ylabel('y(t)');
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% plot(t,output1 ,"b")

% hold on

% plot(t, y,"g")

% hold on

% plot(t,ykernel , "r")

% hold on

% plot(t, ykernellaplace ,"m")

% plot(t,ykernelGausLaplac ,"c")

% xlabel('t');
% ylabel('y(t)');
% legend('actual output ','output by Duhem model ', '

output by Gaussian Kernel ', 'output by Laplacian

Kernel ', 'output by Gaussian -Laplacian Kernel ' )

plot(input ,output1 ,"b")

hold on

plot(input , y,"g")

hold on

plot(input ,ykernel , "r")

hold on

plot(input , ykernellaplace ,"m")

hold on

plot(input ,ykernelGausLaplac ,"c")

xlabel('u(t)');
ylabel('y(t)');
legend('actual input -output ','input -output by Duhem

model ', 'input -output by Gaussian Kernel ', 'input
-output by Laplacian Kernel ', 'input -output by

Gaussian -Laplacian Kernel ')

error = norm(ykernelGausLaplac -output1);

function dydt5 = ODE_data_kernel_GausLaplac_pos1(t,y

,Cpos , inputpos)
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u = @(t) 5.2*t;

u_dot = 5.2;

sigma =0.11;

rho = 0.01;

k = @(x,y) (exp(-norm(x-y)^2/ sigma ^2)) + rho*(exp(-

norm(x-y)));

function sum = fhat_pos(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputpos(i))*Cpos(i);

end

end

dydt5 = fhat_pos(u(t))*u_dot + y*u_dot;

end

function dydt5 = ODE_data_kernel_GausLaplac_pos2(t,y

,Cpos , inputpos)

u = @(t) 5.2*t -5.2;

u_dot = 5.2;

sigma =0.11;

rho = 0.01;

k = @(x,y) (exp(-norm(x-y)^2/ sigma ^2)) + rho*(exp(-

norm(x-y)));

function sum = fhat_pos(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputpos(i))*Cpos(i);

end

end

dydt5 = fhat_pos(u(t))*u_dot + y*u_dot;
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end

function dydt5 = ODE_data_kernel_GausLaplac_neg(t,y,

Cneg , inputneg)

u = @(t) -5.2*t+2.6;

u_dot = -5.2;

sigma =0.11;

rho = 0.01;

k = @(x,y) (exp(-norm(x-y)^2/ sigma ^2)) + rho*(exp(-

norm(x-y)));

function sum = fhat_neg(x)

sum = 0;

for i = 1:200

sum = sum + k(x,inputneg(i))*Cneg(i);

end

end

dydt5 = fhat_neg(u(t))*u_dot + y*u_dot;

end
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