
Comparing Deadlock-Free Processes,

Revisited

Channa Dias Perera
First supervisor: Prof. Dr. Jorge A. Pérez

Second supervisor: Dr. Revantha Ramanayake

September 25, 2023

Abstract

Complex concurrent systems can often release with bugs as merely detecting these bugs is difficult. An
example of such a bug would be that of a concurrent process deadlocking. One method to detect deadlocks
robustly is by modelling these processes and subsequently checking them via some mechanism.

A formal mode of modelling concurrent systems is through the π-calculus, processes can be checked for
deadlock-freedom via a so-called type system. There are many type systems but there is very little work
that formally compares them, leaving us with a limited taxonomy for organising these systems against each
other.

We extend our current understanding of this taxonomy by broadening an existing comparison of two
type systems. We consider a third system which is a conceptual extension of one of the type systems
already compared. Notably however, this type system relies on different operational semantics, one which
allows for non-blocking actions, which makes a direct comparison of process syntax misleading. We resolve
this incongruence, leading to a set of processes relying on non-blocking actions H◦, and a set of processes
which do not H•. We compare this latter set to the sets defined in the original comparison. We also provide
a type-preserving translation (with examples) from H◦ to H•.

1

Contents

1 Introduction 3

2 Preliminaries 5

2.1 The Session π-calculus . 5

2.2 A π-calculus based on Linear Logic . 8

2.3 A π-calculus based on Channel Usage . 11

2.4 Encodings of π-calculi . 16

2.5 Conventions and Definitions For all π-calculi . 20

3 A Hypersequent Presentation of Process Calculi 21

3.1 Hypersequent Classical Processes . 21

3.2 Encoding HCP . 26

3.3 H ̸⊆ K . 26

4 Comparing HCP to other Deadlock-Free π-calculi 27

4.1 Comparing L,H•,K . 28

4.2 Characterising H◦ . 31

5 Translating H◦ to H• 34

5.1 Translating non-blocking and self-synchronizing behaviour . 34

5.2 Examples of the translation . 38

5.3 Properties of the translation . 42

6 Discussion 46

6.1 Future Work . 47

7 Related Work 48

8 Conclusion 49

A Omitted proofs for §4 52

A.1 Proof of theorem 4.2.1 . 52

1

B Omitted proofs for §5 58

B.1 Proof of Lemma 5.3.1 . 58

2

1 Introduction

Concurrent systems are more troublesome to ensure correctness for, due to a multitude of reasons. Traditional
approaches to debugging usually do not work, due to the non-deterministic nature of when a process is chosen
to continue its work. Novel errors, like the presence of race conditions, are present that do not exist in
sequential systems. Errors may only appear well after the program has begun execution, such as a process
deadlocking.

Thus, it is imperative to be able to statically check processes for such errors. One manner to do this is to
model the process, and apply some automated system to check the process. One such model would be the
π-calculus, whose processes can be checked for deadlock freedom, via type systems.

In this paper, we will discuss sets of processes specified in the π-calculus, first introduced by Milner et al.
in [MPW92]. The π-calculus models message-passing concurrent systems, and in particular, it entertains a
rich set of typing disciplines [Vas12, Yos96, IK04, TVTV13, Kob02, Kob06, CP10, Wad12, DG18], which are
systems that guarantee a property for processes it deems “well-typed”. However, in the papers that define
these different type systems, they usually define a different syntax and semantics for the π-calculus, with
respect to other papers. This makes the comparison of type systems a non-trivial task, and what is present
in these papers is usually an informal comparison, by way of example.

We directly continue the work in [DP22], which compared two type systems that preserve the same property.
We will conduct the same investigation as that in [DP22], except we exchange one typing system they
compare, for its conceptual extension. Notably, the type systems we consider are those that guarantee
that well-typed processes do not “get stuck”. More formally speaking, we are interested in type systems
that ensure deadlock freedom. This is the notion that a process, when not in its final state, will always
reduce (i.e: progress to another state). Furthermore, [DP22] was interested in session-based concurrency,
which is a form of concurrency where communication between concurrent processes can be characterised by
specification of “interaction sequences”, so-called session types. We follow them, in this regard.

[DP22] compared the type systems of [Wad12] and [Kob06], by considering the set of session-typed processes
these type systems induce: L and K, respectively. This comparison was worthwhile, as these type systems
are following two very different lines of research. The former presents a Curry-Howard interpretation of
processes, linking linear logic propositions and session types. The latter is interesting in the sense that it
is quite “expressive”, capturing a large number of deadlock free processes via sophisticated tracking of how
channels are used. As the syntax and semantics of [Wad12] and [Kob06] differ, there is a need for a common
unit of a process, in this set. This is satisfied by using processes typable under type system of [Vas12], which
captures session-typed processes, including those that deadlock.

This paper will add [KMP19] to this comparison, by comparing the set of processes it induces (which we
denote H). The type system in [KMP19] is a extension of [Wad12] in the sense that they present a Curry-
Howard presentation that links linear logic propositions with hypersequents to session types. This added
comparison is valuable, as it lets us see just exactly how this extension captures more processes.

Like in [DP22], we must mention that the processes in the aforementioned sets have the property of session
progress and but may not be deadlock-free. By session progress, we mean that these processes, when
composed with other appropriate process, will progress. However, when we restrict these processes to those
that are uncomposable (i.e: it does not need to interact with any outside process), such processes are deadlock
free. Thus, like [DP22], we say that these sets are sets of deadlock free processes. See Definition 2.1.10 for a
formal definition of (un)composable.

3

Now, [DP22] explored how L and K are related. In particular, they found that L is a strict subset of K.
Furthermore, they found a type-preserving translation of the process in K to those in L. In the “Discussion”
section of their paper, they suggested that if a similar analysis was done with the type system of [KMP19]
(instead of [Wad12]), similar results will follow. This leads us to two of our research questions:

• Is H a strict subset of K?

• Is there a type-preserving translation from H to K?

Notably however, the operational semantics (which assigns meaning to the formal process syntax) in [KMP19]
is non-trivially different operational semantics used by processes in [Wad12] and [Kob06]. In particular, it
allows for non-blocking actions, whereas the actions in the other π-calculi are blocking. This leads us to our
last research question:

• How does one compare two type systems that follow significantly different operational semantics?

Contributions In this paper, we define the set H, which consists of session typed processes that have
session progress (according to a variant of the type system in [KMP19]). We find that H is not a subset of
K, so we then split H into two sets: H◦ and H•. Processes in both sets have session progress with respect
to the the typing system of [KMP19], but the latter has session progress with respect to the typing system
of [Kob06].

We then characterise the set of processes that lie within H◦ and show that there is a type-preserving transla-
tion from H◦ to H•. We also showed that H• and L are intersecting, but neither are a subset of each other.
We also showed that H• is a strict subset of K.

The characterisation of the processes in H◦ is significant, in that it shows that processes outside K are those
that need to leverage a non-blocking interpretation of actions. The translation is significant, in that it shows
that the non-blocking actions are not essential to the process behaviour and the difference between processes
in H◦ and H• are syntactic. The separation results are significant, in that they show that the extension
in [KMP19] does not make it that much more expressive (in the sense that it captures more processes with
different behaviours).

Refer to Figure 1 for a visual summary of our contributions.

Paper Organisation In §2, we summarise the session π-calculus from [Vas12], and variants of the type
systems present in [Wad12], [Kob06]. In §3, we present a variant of the type system present in [KMP19] and
define H,H◦,H•. In §4, we separate the sets L,H•,K and characterise H•. In §5, we present a translation
of processes in H◦ to H•. In §6, we discuss elements of future work. In §7, we discuss related work and §8
contains some concluding remarks.

Omitted technical details are included in the appendices.

4

F

L

K D

H•H◦

Figure 1: A summary of this paper. We use the red circle to denote the set of processes induced by the type
system of [KMP19]. We use the red arrow to denote the translation of a process in H◦ to a process in H•.
We use D to denote the set of session processes that have session progress.

2 Preliminaries

In this section, we will define the various π-calculi (and their corresponding type systems) that will be relevant
in our comparison of type systems. Furthermore, in §2.4, we will introduce and apply the mechanism that
allows us to resolve the differences between the π-calculi, to allow a comparison of these systems. Lastly in
§2.5 we define various conventions and definitions that apply to all π-calculi.

During this section, we will also present interpretations of the formal syntax and semantics, that will help
the reader understand the constructs on an intuitive level.

2.1 The Session π-calculus

This section defines the session π-calculus we will use, as defined in [DP22] which is the linear fragment of
the π-calculus from [Vas12]. These processes will be the elements of the sets we define later.

We will refer to this π-calculus as the session π-calculus and we shall call processes in this calculi session
processes.

Definition 2.1.1. (Session Process) Let P,Q, . . . range over session processes and x, y, . . . range over (chan-
nel) names, which are communication endpoints. Let v, v′, . . . range over values.

The following BNF notation defines the syntax of our session processes:

P,Q ::= x⟨v⟩.P
∣∣∣ x(y).P ∣∣∣ x◁ lj .P

∣∣∣ x▷ {li : Pi}i∈I

∣∣∣ 0 ∣∣∣ P | Q
∣∣∣ (νxy)P

v ::= x, y

π ::= x⟨v⟩ | x(y) | x◁ lj

We write (νx̃y)P to abbreviate (νx1y1) · · · (νxnyn)P .

We now comment on the intended interpretation of the above syntax (given meaning by the operational
semantics described later). x⟨v⟩.P denotes the process that sends the value v along x and continues as P .
x(y).P denotes the process that receives input along x and continues as P , where instances of y in P acts

5

as placeholders for the input. x ▷ {li : Pi}i∈I denotes a process which continues as Pi upon receiving label
li along x. x◁ lj .P denotes a process that sends label lj along x and continues as P . 0 denotes an inactive
process and is the final state of a process. P | Q denotes placing processes P,Q in parallel. Finally (νxy)P
denotes linking two channel endpoints in the process P .

We say that | composes two processes. Furthermore, we refer to (νxy) as the restriction over x, y.

Definition 2.1.2. (Structural Congruence of Session Processes) We define a relation ≡ between processes
which, intuitively, group processes that are the same, modulo their structure. This is a structural congru-
ence.

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P

(νxy)P | Q ≡ (νxy)(P | Q) (νxy)0 ≡ 0 (νxy)(νwv)P ≡ (νwv)(νxy)P

Remark 2.1.1. Note the scope extrusion rule for restriction: (νxy)P | Q ≡ (νxy)(P | Q). This does
not have a condition that x, y is free in Q, present in many other definitions. This is because we maintain
Barendregt’s variable convention (see §2.5) which ensures that x, y will not appear in Q.

Definition 2.1.3. (Operational Semantics for the session π-calculus) Operational semantics give meaning
to the syntax presented earlier.

(R-Com) (νxy)(x⟨v⟩.P | y(z).Q → (νxy)(P | Q[v/z]))

(R-Case) (νxy)(x◁ lj .P | y ▷ {li : Pi}i∈I) → (νxy)(P | Pj) where j ∈ I

(R-Par) P → Q =⇒ P | R → Q | R
(R-Res) P → Q =⇒ (νxy)P → (νxy)Q

(R-Str) P ≡ P ′ ∧Q ≡ Q′ ∧ P → Q =⇒ P ′ → Q′

Semantics in this form are called reduction semantics. Generally, the form P → P ′ means that P will
progress into P ′, by itself. If P → P ′, we say that P reduces to P ′.

We now discuss these semantics. R-Com defines the message passing behaviour of our processes, where the
value v is transmitted to Q, which it inserts into its placeholder, z, via Q[v/z], where [v/z] denotes capture-
avoiding substitution of z as v. R-Case defines the branching communication behaviour. In both these
rules, we first place a restriction between two channel endpoints, which link these two endpoints into a single
channel.

R-Par defines independent reduction behaviour. R-Res defines internal communication. R-Str defines that
reduction is preserved, with respect to structural equivalence.

Definition 2.1.4. (Session Types) Let T, S, . . . range over session types, given by the following BNF gram-
mar:

T, S ::=?T.S | !T.S | ⊕{li : Si}i∈I | &{li : Si}i∈I | end

We briefly discuss the meaning of each type. ?T.S is assigned to a channel that receives a value of type T
and continues as type S. !T.S is assigned to a channel that sends a value of type T and continues as type S.
⊕{li : Si}i∈I is assigned to a channel that will continue as any of Si if it sends li. &{li : Si}i∈I is assigned
to a channel that will continue as any of Si if it receives li. end is assigned to a channel that has no future
actions.

6

Definition 2.1.5. (Session Contexts) Let Γ,Γ′, . . . range over contexts, given by the following BNF grammar:

Γ,Γ′ ::= ∅ | Γ,Γ′ | x : T

We say that ∅ is the empty session context. Session contexts are equivalent (≡) with respect to exchange
(i.e: context composition is commutative) and composition with the empty context.

Intuitively, each type assigned to a name in Γ is the expected behaviour of the name n of a process that is
typable under Γ.

We refer to the type T of a name n in a context Γ with the following notation: Γ(n) = T .

We say that n : end is a terminating type assignment (to n).

Definition 2.1.6. (Dual for Session Types)

We define the dual for session types as follows:

end ≜ end

!T.S ≜?T.S ?T.S ≜!T.S

⊕{li : Si}i∈I ≜ &{li : Si}i∈I &{li : Si}i∈I ≜ ⊕{li : Si}i∈I

A dual of a type intuitively represents mirrored behaviour, where communication between channel endpoints
of dual types can proceed safely.

Definition 2.1.7. (Unrestricted Contexts) We define the predicate un(Γ) such that

un(Γ) ⇐⇒ Γ ≡ n1 : end, . . . , nl : end

Remark 2.1.2. Unrestricted comes from the two types of channels in session-typed processes. There are
linear channels, which are channels that appear in only one process, whereas unrestricted channels are
channels that appear in (perhaps) multiple threads. Considering our focus on linear session types, the only
unrestricted channels that can be typed are those that appear in zero processes (which are those channels
that are finished, i.e: given a type assignment of end.

Definition 2.1.8. (Typing rules for the session π-calculus)

A session typing judgement is of the form Γ ⊢ST P and is recursively defined. See Figure 2 for the typing
rules.

We now briefly comment on the typing rules. T-Nil allows 0 to be well-typed only when all channels in
its associated context are terminated. T-Par allows parallel composition of two processes, by composing
their respective contexts. T-Res allows linking channel endpoints assuming these endpoints have mirrored
behaviour. T-In allows input by enforcing that x only accepts inputs that have type T (and thus replacing
y will that input will preserve communication fidelity). T-Out allows output of a name that has the type it
intends to output. T-Brch allows branching if all the possible branching options are well-typed. T-Sel allows
election if the continuation after the selection has the expected continuation.

7

un(Γ)

Γ ⊢ST 0
(T−Nil)

Γ1 ⊢ST P Γ2 ⊢ST Q

Γ1,Γ2 ⊢ST P | Q
(T− Par)

Γ, x : T, y : T ⊢ST P

Γ ⊢ST (νxy)P
(T− Res)

Γ, x : S, y : T ⊢ST P

Γ, x :?T.S ⊢ST x(y).P
(T− In)

Γ, x : S ⊢ST P

Γ, x :!T.S, y : T ⊢ST x⟨y⟩.P
(T−Out)

∀i ∈ I : Γ, x : Si ⊢ST P

Γ, x : &{li : Si}{i∈I} ⊢ST x▷ {li : Pi}i∈
(T− Brch)

∃j ∈ I : Γ, x : Sj ⊢ST P

Γ, x : ⊕{li : Si}i∈I ⊢ST x◁ li.P
(T− Sel)

Figure 2: Typing rules for the session π-calculus

Definition 2.1.9. (Well-Typed Session Process) We say that a session process P is well-typed if ∃Γ : Γ ⊢ST P .

We close this section with two useful definitions.

Definition 2.1.10. (Composability) If ∅ ⊢ST P , we say that P is uncomposable. Otherwise, we say that
P is composable.

We now define deadlock-freedom as defined in [DP22], which follows the definition in [KL17]:

Definition 2.1.11. (Deadlock-Freedom for Session Processes) P is deadlock-free if when P →∗ P ′ where

• P ′ ≡ (νx̃y)(x⟨v⟩.Q1 | Q2)

• P ′ ≡ (νx̃y)(x(y).Q1 | Q2)

• P ′ ≡ (νx̃y)(x◁ lj .Q1 | Q2)

• P ′ ≡ (νx̃y)(x▷ {li : Pi}i∈I | Q)

then there exists an R such that P ′ → R.

Intuitively, the idea here is that as our process reduces, if there is a request that is to be sent, it must be
satisfiable and hence the process must continue to reduce.

2.2 A π-calculus based on Linear Logic

This section defines one of the π-calculus we will compare, as defined in [DP22] which is a variant of the
linear fragment of the π-calculus from [Wad12].

We shall refer to this π-calculus as CP (following Wadler), and its processes CP-processes.

8

Definition 2.2.1. (CP-processes) Let P,Q, . . . range over CP-processes and x, y, . . . range over (channel)
names, which are endpoints of communication channels. Let v, v′, . . . range over values. The following BNF
grammar defines the syntax of our CP-processes:

P,Q ::= x⟨v⟩.P
∣∣∣ x(y).P ∣∣∣ x◁ lj .P

∣∣∣ x▷ {li : Pi}i∈I

∣∣∣ (νx)P ∣∣∣ [x ↔ y]
∣∣∣ P | Q

∣∣∣ 0
v ::= x, y

We write x(y).P to abbreviate (νy)x⟨y⟩.P . We also write (νx̃)P to abbreviate (νx1) · · · (νx1)P .

The intended interpretation of this syntax follows that of the session π-calculus. The notable exception is that
we have a single restriction construct (νx)P , meaning that instead of channel endpoints, we have channels.
We can connect different channels (which have different names) via the link [x ↔ y] and restriction operators
(see the operational semantics below).

For a channel x, we represent the endpoints of this channel as: x, x.

Definition 2.2.2. (Operational Semantics for CP)

(R-ChCom) x⟨v⟩ | x(z) → P | Q[v/z]

(R-ChCase) x◁ lj .P | x▷ {li : Pi}i∈I → P | Pj where j ∈ I

(R-Fwd) (νx)([x ↔ y] | P) → P [y/x]

(R-ChRes) P → Q =⇒ (νx)P → (νx)Q

While these operational semantics look different, they capture the same essential notions as the operational
semantics of the session π-calculus, after taking into account the notion that channels of the same name are
already linked.

R-ChCom and R-ChCase provides meaning for message-passing / branching behaviours. Note that there
is no need for a restriction operator. R-Fwd provides meaning for linking two names. R-ChRes provides
meaning for internal communication.

Definition 2.2.3. (Linear Logic Types) Let A,B, . . . range over linear logic propositions (without exponen-
tiation), given by the following grammar:

A,B ::= ⊥ | 1 | A⊗B | A O B | ⊕{li : Ai}i∈I | &{li : Ai}i∈I

Definition 2.2.4. (CP-Contexts) Let ∆,∆′, . . . range over (CP-) contexts, given by the following grammar:

∆,∆′ ::= · | ∆,∆′ | x : A

We say that · is the empty CP-context. CP-Contexts are equivalent (≡) with respect to exchange (i.e:
context composition is commutative) and composition with the empty context.

We briefly describe what linear logic types mean, in a context. x : ⊥ and x : 1 both mean that no action
will take place over x. x : A⊗B describes a channel that will send a value of type A from endpoint x, which
will continue as type B. x : A O B describes a channel that will receives a value of type A from endpoint x,
which will continue as type B. The meanings of x : &{li : Si}i∈I and x : &{li : Si}i∈I act exactly as that for
session types.

9

0 ⊢LL x : •
(T-1)

P ⊢LL ∆

P ⊢LL x : •,∆
(T-⊥)

[x ↔ y] ⊢LL x : A, y : A
(T-id)

P ⊢LL ∆, x : A Q ⊢LL ∆
′, x : A

(νx) (P | Q) ⊢LL ∆,∆′ (T-cut)
P ⊢LL ∆ Q ⊢LL ∆

′

P | Q ⊢LL ∆,∆′ (T-mix)

P ⊢LL ∆, y : A Q ⊢LL ∆
′, x : B

x(y).(P | Q) ⊢LL ∆,∆′, x : A⊗B
(T-⊗)

P ⊢LL ∆, y : A, x : B

x(y).P ⊢LL ∆, A O B
(T-O)

∃j ∈ I : P ⊢LL ∆, x : Aj

x◁ lj .P ⊢LL ∆, x : ⊕x{li : Ai}i∈I
(T-⊕)

∀i ∈ I : P ⊢LL ∆, x : Ai

x▷ {li : Ai}i∈I ⊢LL,∆, x : &{li : Ai}i∈I
(T-&)

Figure 3: Typing rules for CP

Definition 2.2.5. (Duals of Linear Logic Types)

We define the dual for linear logic types as follows:

1 ≜ ⊥ ⊥ ≜ 1

A⊗B ≜ A O B A O B ≜ A⊗B

&{li : Ai}i∈I ≜ ⊕{li : Ai}i∈I ⊕{li : Ai}i∈I ≜ &{li : Ai}i∈I

The intuition for duals of linear logic propositions follow that as for session types.

In the type system that follows, we introduce a Mix rule, not present in [Wad12]. As mentioned in the
discussion in [DP22], admitting such a rule means admitting ⊥ = 1 and so, we write • to denote either ⊥ or
1, and we have • = •.

We say that n : • is a terminating type assignment (to n).

Definition 2.2.6. Typing rules for CP See Figure 3 for the typing rules for CP.

We briely comment on the typing rules. T-1 and T-⊥ allow type assignments (for terminated channels) in
any process. T-id allows channels to be linked if they have symmetric behaviour. T-cut allows inter-process
communication. However, note that no other communication actions can be amended to this channel, after
composition. This is the so-called “composition plus hiding” principle. T-Mix allows composition of two
independent processes. T-⊗ allows for bound communication, meaning that we can only output values that
are already “visible” to x. Furthermore, this value must be from another process (that is in parallel to it).
T-O, T-⊕ and T-& allow similar behaviours as T-Inp, T-Brch and T-Sel for session processes.

Definition 2.2.7. (Well-Typed CP-Processes) We say that a CP-process P is well-typed if ∃∆ : P ⊢LL ∆

We now have the tools to show how CP ensures deadlock-freedom. We rephrase the theorem for deadlock-
freedom in [DP22] (Theorem 3.2) as follows:

10

Theorem 2.2.1. (Deadlock-Freedom for CP) If P ⊢LL · and P ≡ P ′ where:

• P ′ = (νñ)(x(y).Q | R)

• P ′ = (νñ)(x(y).Q | R)

• P ′ = (νñ)(x◁ lj .Q | R)

• P ′ = (νñ)(x▷ {li : Pi}i∈I | R)

then P → P ′, for some P ′.

2.3 A π-calculus based on Channel Usage

This section defines one of the π-calculus we will compare, as defined in [DP22] which is a variant of the
linear fragment of the π-calculus from [Kob06]. It is a dyadic π-calculus, unlike the session π-calculus and
CP, which means that we can send up to two (potentially zero) values when sending a message.

We shall refer to this calculi as the dπ-calculus and its’ processes dπ-processes.

Definition 2.3.1. (dπ-Processes) Let P,Q, . . . range over dπ-processes and x, y, . . . range over (channel)
names, which are communication channels. Let v, v′, . . . range over values. The following BNF grammar
defines the syntax of our dπ processes:

P,Q ::= x⟨ṽ⟩.P
∣∣∣ x(z̃) ∣∣∣ case v of {li xi ▷ P}i∈I

∣∣∣ lj v
∣∣∣ 0 ∣∣∣ P | Q

∣∣∣ (νx)P
v ::= x, y

We shall briefly comment on the intended interpretation of the above syntax. x⟨ṽ⟩.P means that we output
a 0,1,2-tuple of values along x and continue as P . x(ỹ).P means that we take in as input a 0,1,2-tuple of
values along x and continue as P . 0 is in the inactive process. We have the single restriction operator which
binds a channel to a process, essentially establishing communication on that channel to be within itself.

Two noteworthy process constructs is the variant value construct lj v′ and the case v of {li xi ▷ Pi}i∈I

construction. This construction lets us combine branching and message passing in one construction. Here, if
v = lj v′ where j ∈ I, then the process will continue as Pj [v/xj].

Like CP, channel names describe a channel (and not its endpoints). A channel x has endpoints x, x.

Definition 2.3.2. (Structural Relation) We define two relations ≡,⪯ as follows:

P ≡ Q ⇐⇒ (P ⪯ Q) ∧ (Q ⪯ P)

We define ⪯ as the least reflexive and transitive relation closed under the following rules:

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P (νv)P | Q ≡ (νx)(P | Q)

(νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P

P ⪯ Q =⇒ P | R ⪯ Q | R P ⪯ Q =⇒ (νx)P ⪯ (νx)Q

⪯ defines the structural relation, which is similar to the structural congruence except in one direction. By
this we mean that P ⪯ Q has the meaning “P can be restructured to Q” using the rules above.

11

Definition 2.3.3. (Operational Semantics for the dπ-calculus)

(Rπ-Com) x⟨ṽ⟩ | x(z̃) → P | Q[ṽ/̃z]

(Rπ-Case) case lj v of {li xi ▷ Pi}i∈I → Pj [v/xj]where j ∈ I

(Rπ-Par) P → Q =⇒ P | R → Q | R
(Rπ-Res) P → Q =⇒ (νx)P → (νx)Q

(Rπ-Str) P ⪯ P ′, P → Q,Q′ ⪯ Q =⇒ P ′ → Q′

These rules impart meaning on dπ-processes similar how to the corresponding rules in the session π-calculus
impart meaning on session processes. The only noticeably different rule is Rπ-Case, which provides the
branching plus substitution behaviour discussed earlier.

Definition 2.3.4. (Deadlock-Freedom for dπ-Processes) A dπ-process P is deadlock-free if when P →∗ P ′

where:

• P ′ ≡ (νx̃)(x⟨ṽ⟩.Q1 | Q2)

• P ′ ≡ (νx̃)(x(ỹ).Q1 | Q2)

• P ′ ≡ (νx̃)(case lj v of {li xi ▷ Pi}i∈I | Q)

then there exists a dπ-process R such that P ′ → R.

The intuition for deadlock-freedom here corresponds with that for deadlock-freedom for session processes.

The type system of the dπ-calculus preserves deadlock-freedom uses the notation of usages, which are meant
to specify how a channel may be used. As well as describing the action that a channel must undergo, usages
are also annotated with capability and obligation information of a certain level.

This information relates to an abstract global “time”. An action with obligation o means that the action
must be executed before time o. An action with capability c means that the action has the capability to be
executed only before time c. We now formalise these notions.

Definition 2.3.5. (Channel Usages) Let U,U ′, . . . range over all usages. The following BNF notation defines
the syntax of usages:

U,U ′ ::= 0
∣∣∣ ?oκ.U ∣∣∣ !oκ.U ∣∣∣ U1 | U2

∣∣∣ ↑t U
We shall briefly comment on the meaning behind these usages. A channel with usage 0 means that the
channel cannot be used at all. A channel with usage ?oκ.U is a channel that will be used to receive a message
and then proceed to be used as U . A channel with usage !oκ.U is a channel that will be used to send a message
and then proceed to be used as U . A channel with usage U1 | U2 means that the channel can be used as U1

and U2 in parallel. A channel with usage ↑t U is a channel that is used as U , but its obligation levels are
lifted to t.

Definition 2.3.6. (Sequential Usage / Action) We let α to denote the sequential usages (which we may
sometimes call an action). If we have an action α, we say that α is its co-action. Let α, β, . . . range over all
actions. The following BNF notation defines the syntax of actions:

α, β ::= ! |?

12

Definition 2.3.7. (Duals of actions) We define duals of actions (or co-actions), as follows:

! ≜ ?

? ≜ !

Definition 2.3.8. (Structural Relation on Usages) We will define a reduction of usages shortly, which relies
on a structural relation ⪯ on usages, defined as follows:

U1 | U2 ⪯ U2 | U1 ↑t (U1 | U2) ⪯ (↑t U1) | (↑t U2)

(U1 | U2) | U3 ⪯ U1 | (U2 | U3)

U1 ⪯ U ′
1 ∧ U2 ⪯ U ′

2 =⇒ U1 | U2 ⪯ U ′
1 | U ′

2

↑t αo
κ.U ⪯ αmax(o,t)

κ .U U ⪯ U ′ =⇒ ↑t U ⪯↑t U ′

Intuitively, U1 ⪯ U2 means that U1 can be restructured into U2. Observe that this definition internalises ↑t,
but never extracts it out. This is important for the reduction on usages (defined below), for it to terminate.
Otherwise, the reduction can proceed indefinitely.

Definition 2.3.9. (Reduction on Usages) A reduction relation on usages is defined as follows, which conforms
to intuition of usages and its structural relation.

?oκ.U1 |!o
′

κ′ .U2 → U1 | U2

U → U ′ =⇒ U | U ′′ → U ′ | U ′′

U ⪯ U1, U1 → U2, U2 ⪯ U ′ =⇒ U → U ′

This notion of reduction on usages is important, as when a process reduces, the usage that describes channels
in that process must also change (i.e: reduce) in a similar manner. The rules themselves are self-explanatory.

We will now define the notion of reliability. Fundamentally, a usage is reliable if any action has a parallel
co-action that has a higher capability than the action’s obligation. That is to say, it can be adequately
fulfilled in time.

Definition 2.3.10. (Capability / Obligation) We define two functions capα(P), obα(P) as follows:

capα(0) ≜ ∞ obα(0) ≜ ∞
capα(α

o
κ.U) ≜ ∞ obα(α

o
κ.U) ≜ ∞

capα(α
o
κ.U) ≜ κ obα(α

o
κ.U) ≜ o

capα(U1 | U2) ≜ min(capα(U1), capα(U2)) obα(U1 | U2) ≜ min(obα(U1), obα(U2))

capα(↑t U) ≜ capα(U) obα(↑t U) ≜ max(t, obα(U))

We write ob(U) for max(ob?(U), ob!(U)).

Intuitively, it captures the immediate capability / obligation information ascribed to the top level actions of
a usage.

Definition 2.3.11. (Reliability) We define conα(), con(), rel() as follows:

• obα(U) ≤ capα(U) =⇒ conα(U)

• con?(U) ∧ con!(U) =⇒ con(U)

• (∀U ′ : U →∗ U ′ =⇒ con(U ′)) =⇒ rel(U)

13

con!(U), con?(U) can be thought of as asserting that a channel with usage U is has a satisfactory co-action,
if it is an output / input action respectively.

con(U) can be thought of as asserting that a channel with usage U is reliable for the next action.

rel(U) can be thought of as asserting that a channel with usage U will always be reliable. Thus, if rel(U), we
say that U is reliable.

Definition 2.3.12. (Types with Usages) Let τ, τ ′, . . . range over channel types, given by the following
grammar:

τ ::= chan(τ̃ ;U) | ⟨li : τi⟩i∈I

Definition 2.3.13. (dπ-calculus Contexts) Let Γ,Γ′, . . . range over contexts, given by the following grammar:

Γ,Γ′ = ∅ | Γ,Γ′ | x : τ

We say that ∅ is the empty dπ-calculus context. dπ-calculus contexts are equivalent (≡) with respect to
exchange (i.e: context composition is commutative) and composition with the empty context.

If we have x : chan(τ̃ ;U), we mean that x is used in terms of usage U (which encodes the behaviour of the
action) and sends value(s) of type τ̃ .

We say that n : chan(−; 0) is a terminating type assignment (to n).

When a channel is used but transfers no values, we write that the type of that channel is chan(−;U).

If we have v : ⟨li : τi⟩i∈I , we mean that a value v may be used as part of the case of construction.

We now repeat the auxiliary definitions in [DP22] that is used when defining the type system for the dπ-
calculus.

Definition 2.3.14. (Channel recency)We define the partial order ≺, where x ≺ y means that channel x was
created “more recently” than channel y. More precisely, if x ≺ y, a restriction over x occurs earlier (reading
the process syntax from outside in) than a restriction over y.

Definition 2.3.15. (Extending lift to types)We extend the ↑t operation to types:

↑t chan(τ̃ ;U) = chan(τ̃ ; ↑t U)

Definition 2.3.16. (Extending parallel composition to types / contexts)We extend the parallel composition
| operator to types and contexts:

chan(τ̃ ;U1) | chan(τ̃ ;U2) ≜ chan(τ̃ ;U1 | U2)

⟨li : τi⟩i∈I | ⟨li : τi⟩i∈I ≜ ⟨li : τi⟩i∈I

(Γ1 | Γ2)(x) =

Γ1(x) | Γ2(x) x ∈ cn(Γ1) ∩ cn(Γ2)

Γ1(x) x ∈ cn(Γ1) \ cn(Γ2)

Γ2(x) x ∈ cn(Γ2) \ cn(Γ1)

14

x : τ ⊢≺ x : τ
(Tπ-Var)

Γ1 ⊢≺ v1 : τ1 Γ2 ⊢≺ v2 : τ2 ⊢≺ ṽ = v1, v2 τ̃ = τ1, τ2

Γ1 | Γ2 ⊢≺ ṽ : τ̃
(Tπ-Tup)

∃j ∈ I : Γ ⊢≺ v : τj

Γ ⊢≺ lj v : ⟨li : τi⟩i∈I
(Tπ-LVal)

∅ ⊢≺ 0
(Tπ-Nil)

Γ, x : chan(τ̃ ;U) ⊢≺′ P rel(U) ≺′=≺ ∪{(x, y) | y ∈ fn(P) \ {x}}
Γ ⊢≺ (νx)P

(Tπ-Res)

Γ1 ⊢≺ P1 Γ2 ⊢≺ P2

Γ1 | Γ2 ⊢≺ P | Q
(Tπ-Par)

Γ1 ⊢≺ P Γ2 ⊢≺ ṽ : τ̃

x : chan(τ̃ ; !0κ);≺ (Γ1 | Γ2) ⊢≺ x⟨ṽ⟩.P
(Tπ-Out)

Γ, ỹ : τ̃ ⊢≺ P

x : chan(τ̃ ; ?0κ);≺ Γ ⊢≺ x(ỹ).P
(Tπ-In)

∀i ∈ I : Γ1 ⊢≺ v : ⟨li : τi⟩i∈I ∀i ∈ I : Γ2, xi : τi ⊢≺ P

Γ1 | Γ2 ⊢≺ case v of {li xi ▷ P}i∈I
(Tπ-Case)

Figure 4: The typing rules for the dπ-calculus.

Definition 2.3.17. (Type assignment compositions)We define a type assignment composition operator “;≺”,
which combines a type assignment to a context:

Let Γ be some context. Then x : chan(τ̃ ;αo
κ);≺ Γ = Γ′ where

cn(Γ′) =≜ {x} ∪ cn(Γ′)

Γ′(x) ≜

{
chan(τ̃ ;αo

κ.U) Γ(x) = chan(τ̃ ;U)

chan(τ̃ ;αo
κ) x /∈ cn(Γ)

Γ′(y) =

{
↑κ Γ(y) y ̸= x ∧ x ≺ y

↑κ+1 Γ(y) y ̸= x ∧ x ̸≺ y

Intuitively, this operator adds the type assignment to channel x to the context Γ. If there already exists a
type assignment to x, the type assignment is modified to specify that the channel will be used according to
αo
κ first (assuming that the values transferred across the channel are the same).

Definition 2.3.18. (Typing system for the dπ-calculus) See Figure 4 for the typing rules for the dπ-calculus.

We now briefly comment on the typing rules. Tπ-Var, Tπ-Tup and Tπ-LVal define types for the values that
can be communicated (single values, tuples of values and a labelled value).

Tπ-Nil observes that 0 can only be typed under the empty context.

Tπ-Res observes that if there is a process with a channel that has a reliable usage in P , communication
along that channel can happen internally, with no outside process interacting with it. Tπ-Par observes
independently parallel processes. Tπ-In, Tπ-Out gives meaning to input/output actions, by attaching an
input/output action to the usage of x. Finally, Tπ-Case allows branching plus substitution if the context
defines all labelled values and the substituted process expects a value of a type suggested by the label.

Definition 2.3.19. (Well-Typed dπ-Processes) We say that a dπ-process P is well-typed if ∃Γ : Γ ⊢≺ P .

15

We have the following key result via [DP22] (Corollary 3.1):

Theorem 2.3.1. (Deadlock-Freedom for the dπ-calculus) If ∅ ⊢≺ P , then P is deadlock free.

2.4 Encodings of π-calculi

Now that we have presented the π-calculi with existing comparisons, we shall now present the relevant
definitions used to perform the comparison in [DP22].

The key idea is as follows. Both CP and the dπ-calculus capture processes that follow session types. Thus,
there must be some process in the session π-calculus that would map to the a process in CP or the dπ-calculus.

Thus, we define encodings that take the notions of session processes, types and typing contexts to their
corresponding notions in CP and the dπ-calculus. Then, we collect the set of processes whose encodings are
typable under each π-calculi and compare them.

This allows us to reconcile the syntactic differences present between these two process calculi, and compare
them on common ground.

Encoding to CP We start by encoding constructions in the session π-calculus to constructs in CP.

Definition 2.4.1. (Encoding to CP-processes)

Jx⟨y⟩.P Kℓ ≜ x(z).([z ↔ y] | JP Kℓ)

J(νxy)P Kℓ ≜ (νw)JP Kℓ[w/x][w/y] where w /∈ fn(P)

J·Kℓ for processes is defined as a homomorphism for other process constructs. That is to say, the outer-
most process construct remains verbatim and the encoding is applied to the continuation(s). For example:
Jx(y).P Kℓ = x(y).JP Kℓ

Encoding session processes to CP-processes involves resolving the existence of the link construct and the
usage of a single restriction, as opposed to a double restriction.

We have to encode the free action, as there is no means to type the free action in the type system for CP.
To do this, we link the free name to a bound name, and output that.

Encoding session types to linear logic types is straight forward:

Definition 2.4.2. (Encoding to Linear Logic types)

JendKℓ = •
J?T.SKℓ = JT Kℓ O JSKℓ
J!T.SKℓ = JT Kℓ ⊗ JSKℓ

J&{li : Si}i∈IKℓ = &{li : JSiKℓ}i∈I

J⊕{li : Si}i∈IKℓ = ⊕{li : JSiKℓ}i∈I

Encoding typing contexts is also straight forward:

16

Definition 2.4.3. (Encoding to CP-contexts)

J∅Kℓ ≜ ∅
JΓ, x : T Kℓ ≜ JΓKℓ, x : JT Kℓ

Remark 2.4.1. [DP22] observes that the encoding is “operationally correct”, in the sense that actions and
their order are preserved, due to the direct nature of this encoding. To this end, a session process P is
deadlock-free if JP Kℓ is deadlock-free.

Encoding to the dπ-calculus We now encode constructs in the session π-calculus to constructs in the
the dπ-calculus, following [DP22] (which itself follows a suggestion in [Kob07] developed in [DGS12]).

First, we introduce some auxiliary notation, regarding functions, which will serve a name mappings: Let
N be the set of all channel names and let f : N → N . We will use the following notation for a function:
fx = f(x).

Furthermore, we modify functions as follows. Let f ′ = f, {x1, . . . , xn 7→ c}. Then:

f ′(n) =

{
c n = xi ∧ 1 ≤ i ≤ n

f(x) Otherwise

Encoding session processes as dπ-processes is as follows:

Definition 2.4.4. (Encoding to dπ-processes)

J0Kfu = 0

J(νxy)P Kfu = (νc)JP Kf,{x,y 7→c}
u

JP | QKfu = JP Kfu | JQKfu
Jx⟨v⟩.P Kfu = (νc)fx⟨fv, c⟩.JP Kf,{x 7→c}

u

Jx(y).P Kfu = fx(y, c).JP Kf,{x, 7→c}
u

Jx◁ lj .P Kfu = (νc)fx⟨lj c⟩.JP Kf,{x 7→c}
u

Jx▷ {li : Pi}i∈IKfu = fx(y).case y of {li c▷ JPiKf,{x 7→c}
u }i∈I

Encoding dπ-processes is straight forward for processes construct that do not involve communication directly.

For actions involving sending values: x⟨v⟩.P, x ◁ lj .P , we output the value via the existing encoding, but
then we continue using a new name (c), instead of the old name (x).

For actions involving receiving values: x(y).P, x▷ {li : Pi}i∈I , we receive two values: the actual value (which
will be received into y) but also the name that communication will continue through, since sending actions
will continue via a different name (as discussed above).

Encoding session types and typing contexts is straight forward:

17

Definition 2.4.5. (Encoding to Types with Usages)

JendKu = chan(−; 0)

J?T.SKu = chan(JT Ku, JSKu; ?
0
0)

J!T.SKu = chan(JT Ku, JSKu; !
0
0)

J&{li : Si}i∈IKu = chan(⟨li : JSiKu⟩i∈I ; ?
0
0)

J⊕{li : Si}i∈IKu = chan(⟨li : JSiKu⟩i∈I ; !
0
0)

Note that when encoding the output session type !T.S, the second value we output is the encoded dual of S.
This is because the process receiving the this value must act in a dual way to how the channel acts in the
process that sent the value.

Definition 2.4.6. (Encoding to dπ-calculus contexts)

J∅Kfu ≜ ∅
JΓ, x : T Kfu ≜ JΓKfu, fx : JT Ku

The channel usage is worth discussing however. Observe that the usage is always simply the one action,
followed by inactivity. This is because our communication actions involves switching names immediately
following the communication action, which was discussed earlier.

This leads to the key result of this encoding, achieved via Proposition 3.1 and Corollary 3.2 from [DP22]:

Theorem 2.4.1. (Encoding to the dπ-calculus preserves Deadlock-Freedom) If P is a deadlock-free session
process, JP Kfu is a deadlock-free dπ process.

We close this section with an important Lemma (and a corollary of it) from [DP22] (Lemma 4.4). Consider
τ = chan(τ̃ ;U). We write u(τ) to denote U .

Lemma 2.4.1. (Reliability of dual session types) Let T be a session type. Then rel(u(JT Ku) | u(JT Ku)).

This says that when placing dual session types in parallel, we have a reliable usage.

We have the corollary:

Corollary 2.4.1. Let T be a session type. Then rel(u(JT Ku | JT Ku)).

Proof. Observe that JT Ku = chan(τ̃ ;α0
0) and JT Kh = chan(τ̃ ′;α0

0). Following the proof of Lemma 4.4
in [DP22], we can show that τ̃ ′ = τ̃ . Thus, u(JT Ku | JT Ku) = α0

0 | α0
0, which is reliable (again following

the same proof in [DP22]). Thus, we have our result.

2.4.1 Defining the session process sets to compare

We will now compare the sets of session processes that (once encoded) are typable under the typing systems
for CP and the dπ-calculus.

First, however, we must define one auxiliary operation on typing contexts for the dπ-calculus. This is to
resolve the discrepancy in typing 0, as in the dπ-calculus, only the empty set types 0, whereas in the session
π-calculus, the context can be non-empty (i.e: contain terminated type assignments).

18

Definition 2.4.7. (Core Context) Given Γ ⊢ST P , we write Γ↓ such that:

• Γ = Γ↓,Γ′

• un(Γ′)

• Γ′(x) = end =⇒ x /∈ fn(P)

• Γ↓(x) = T =⇒ x ∈ fn(P)

Definition 2.4.8. (Defining sets of deadlock-free processes) Now, we can define the following sets:

L ≜ {P | ∃Γ : (Γ ⊢ST P ∧ JP Kℓ ⊢LL JΓKℓ)}
K ≜ {P | ∃Γ : (Γ ⊢ST P ∧ JΓ↓Kfu ⊢≺ JP Kfu)}

These sets contain processes that may be:

• Uncomposable: If so, they are deadlock free. For L, this means that the encoded process is deadlock-
free in the sense of Definition 2.2.1 and for K, this means that the encoded process is deadlock-free in
the sense of Definition 2.3.4.

• Composable: If so, they may deadlock. However, if composed with processes that are typable by the
(currently) deadlocking processes’ context, then the process will not deadlock.

One of the key results from [DP22] (Corollary 4.1) is as follows:

Theorem 2.4.2. (Comparing L,K)
L ⊊ K

This shows that the type system of the dπ-calculus is more expressive than the type system of CP, in that it
captures more deadlock-free processes.

A unification result Another key result from [DP22] is a unification result, in which they found two
translations from K to L, which is type preserving and maintains an operational correspondence
(Theorem 5.1 and Theorem 5.2). The specific translations are not relevant to this thesis, but we will now
take this moment to formally discuss the properties of type preservation and operational correspondence, as
we will provide our own translation which should also possess these properties.

Definition 2.4.9. (Type preservation) Let P ⊢ Γ, for some type system ⊢, for some process P and for some
context Γ. A translation J·K is type-preserving if:

JP K ⊢ Γ

This property essentially guarantees that the translated process retains session fidelity, the property that
the process respects the protocols expected of it. In this sense, the untranslated process can be replaced with
translated process without “breaking”.

However, this is not sufficient, as it allows for the underlying computation to be changed. We need another
property that states that this underlying computation remains. This is an operational correspondence.
There are many formulations of operational correspondence, but we use a variant in [Gor10] (Property 3),
for translation within the same process calculi:

19

Definition 2.4.10. (Operational Correspondence) Let P be some process, let J·K be some translation of it
and let → be the operational semantics for such a process. Let →∗ denote the reflexive and transitive closure
of →. We say that J·K maintains an operational correspondence if it is:

Complete : ∀P : P →∗ Q : JP K →∗ JQK

Sound : ∀P : JP K →∗ Q : ∃R : P →∗ R ∧Q →∗ JRK

The completeness criterion states that any sequence of transitions (i.e: computation) is retained by the
translation. The second criterion states that any sequence of transitions (i.e: computation) in the translation
is represented in the untranslated processes.

2.5 Conventions and Definitions For all π-calculi

This section defines some notation and conventions that all π-calculi use and follow. This includes the
definition of a π-calculus that follows in §3.

Definition 2.5.1. (Prefixes) We let π, π′, . . . range over prefixes, where we refer to x⟨v⟩, x(v), x(y), x◁ lj as
prefixes.

Definition 2.5.2. (Continuation) If we have a process P = π.P ′, we say that P ′ is its continuation. We
sometimes might say that P ′ is the continuation of π.

Definition 2.5.3. (Subject and Object) We say that x⟨v⟩, x(y), x◁ lj and x▷{li : Pi}i∈I are actions. Here,
we say that x is the subject in each action. For the first two actions, we say v and y are objects in that
action (respectively).

Definition 2.5.4. (Action) We denote actions as α, β, . . . or π, ρ, ϕ, For the actions above, we write
sub(α) to denote the subject of action α and obj(α) for the object of an action, if it exists. For all actions,
we say that the action occurs or is over the subject.

Definition 2.5.5. (Free and bound names) We say that y is bound in x(y).P . We say that x, y is bound in
(νxy)P . Similar notions apply to syntax that is similar. Any non-bound name that appears in a process is
said to be free.

We denote the free names of a process as fn(P) and the bound names of a process as bn(P). We denote all
names in a process cn(P).

Definition 2.5.6. (Domain or channel names of a context) We denote all the names given a type in a context
Γ as cn(Γ).

Definition 2.5.7. (α-conversion) We call the process of renaming a bound variable α-conversion and if P
and Q are the same, except for the names of bound variables, we write P ≡α Q.

Definition 2.5.8. (Subprocess) Observe that all our definitions of process syntax (except for 0) involve aug-
menting a process (e.g: x⟨v⟩.P ′ augments P ′) or composing multiple processes in some way (e.g: x▷ {li : Pi}i∈I).
To this end, we say that the existing process (e.g: P ′, Pi in the processes above) is a subprocess of the
resulting process. This definition is transitive.

20

Convention 2.5.1. (0 as the continuation of a process) We omit 0 if it is the continuation of a process.
That is, if we have a process P ′.0 we shall write P ′.

Convention 2.5.2. (Barendregt’s Variable Convention) We will follow Barendregt’s variable conven-
tion. This means that in any mathematical context, all binding names are pairwise distinct, and are also
distinct from any free name in that context. Note that this allows us to still change the names of the bound
variables (as long as the convention still holds).

Convention 2.5.3. (Typing judgement proofs will omit rule names) Usually, it is obvious which rule was
selected when a typing judgement proof is presented, and so, we will omit the names of the rules, for brevity’s
sake. This is because the syntax of process necessitates the rule that must be applied to write a specific process
construct.

Proofs constructed in this way (inferring the rule used by the process syntax) is said to be constructed via
an inversion of typing judgement.

Thus we will specify the name if it improves clarity or if the choice of rule is relevant.

3 A Hypersequent Presentation of Process Calculi

We will consider a variant of the linear linear fragment of the π-calculus presented in [KMP19], which define
processes that have session types. Modifications upon the π-calculus in [KMP19] largely follow in how CP
was modified in [DP22].

We shall refer to this π-calculus as HCP (following Kokke et al.) and to its processes as HCP-processes.

3.1 Hypersequent Classical Processes

Definition 3.1.1. HCP-processes Let P,Q, . . . range over HCP-processes and x, y, . . . range over (channel)
names, which are communication endpoints. Let v, v′, . . . range over values. The following BNF notation
defines the syntax of our HCP processes:

P,Q ::= x(v).P
∣∣∣ x(y).P ∣∣∣ x◁ lj .P

∣∣∣ x▷ {li : Pi}i∈I

∣∣∣ (νxy)P ∣∣∣ P | Q
∣∣∣ 0 ∣∣∣ [x ↔ y]

v ::= x, y

Process syntax is similar to that for CP, and where the syntax is the same, the meanings are the same.

Notably, we have directly placed bound output x(y).P into our process syntax, instead of defining it through
a free output and restriction. This is because we do not have a single restriction operator that allows us to
do this.

Definition 3.1.2. (HCP-Context) Let A,B, . . . range over Linear Logic Types (from Definition 2.2.3). Let
Γ,Γ′, . . . range over contexts, given by the following grammar:

Γ,Γ′ ::= ◦ | Γ,Γ′ | x : A

We say that ◦ is the empty HCP-context. HCP-contexts are equivalent (≡) with respect to exchange (i.e:
context composition via “,” is commutative) and composition with the empty context.

21

Definition 3.1.3. (Hypercontext) Let G,G′, . . . range over hypercontexts, given by the following grammar:

G,G′ ::= ∅
∣∣∣ G | G′

∣∣∣ G,Γ
We say that ∅ is the empty hypercontext. Hypercontexts are equivalent (≡) with respect to exchange
(i.e: context composition via “|” is commutative) and composition with the empty hypercontext.

HCP differs from CP at the typing context level. The key separating notion is that HCP encodes thread-level
information at the level of types. That is to say, it encodes whether names can appear in parallel processes,
or whether they must appear in the same process.

Note that (hyper)context composition (via , or |) is only possible if the operands being composed do not
share channel names.

Note that the same notion of duals of Linear Logic Types (from Definition 2.2.5) applies in HCP as well.

Before discussing the typing system for HCP, we first discuss some auxiliary notation and definitions. We let
• denote either 1 or ⊥ and as such • = •, following [DP22] in this regard. We say that n : • is a terminating
type assignment (to n).

Definition 3.1.4. (Name Parition of a Hypercontext) We define the name partition of a hypercontext
G to be the partition where a cell in the parition contains all the names in the same context. We write ⌊G⌋
to denote the name parition of G.

Example 3.1.1. (Name Parition) Let G = x : T, y : T | z : T . Then ⌊G⌋ = {{x, y}, {z}}

Definition 3.1.5. (Same / Different Partition) We say that ⌊G⌋ separates x, y if ∀S ∈ ⌊G⌋ : ¬(x ∈ S∧y ∈ S).

We write x ∗P y (respectively x ⃝∗P y) if there is a name partition G ∈ ⌊G⌋ that separates (respectively does
not separate) x, y, where G is a hypercontext such that P ⊢H G.

We also write x∗G y (respectively x⃝∗G y) if the name partition of G separates (respectively does not separate)
x, y.

For convenience, if we write x ⃝∗ · y or x ∗· y, this implies that x ̸= y.

Definition 3.1.6. (Typing system for HCP) See Figure 5 for the typing rules for HCP.

We refer to H-id, H-cut, H-Mix and H-Mix0 as structural rules and all other rules as logical rules.

This is the fragment of the typing rules in [KMP19] that type linear process constructs, slightly modified
to accommodate the removal of process constructs that allow communication without value transfer. This
modification follows how the typing system of [Wad12] is modified in [DP22].

H-Mix0 notes that 0 can be typed with the empty hypercontext. H-1 and H-⊥ observe that you can annotate
the terminating type assignment to any process, in any context (in the typing hypercontext). H-id observes
that you can only link two channel endpoints if they have symmetric behaviors. H-Mix lets you compose any
two processes in parallel (by composing their hypercontexts). H-Cut allows inter-process communication, if
the two channels being restricted have symmetric behaviours. H-⊗ allows bound output, if the output value
is not in the same thread as the channel endpoint being used for transmission. H-O allows input, if the
placeholder for substitution is in the same thread as the channel endpoint used for transmission. H-⊗ and
H −& faciliate branching, in a similar manner to the type system for CP.

22

0 ⊢H ∅
H-Mix0

P ⊢H G
P ⊢H G | x : •

H-1
P ⊢H G | Γ

P ⊢H G | Γ, x : •
H-⊥

[x ↔ y] ⊢H x : A, y : A
H-id

P ⊢H G Q ⊢H H
P | Q ⊢H G | H

H-Mix
P ⊢H G | Γ, x : A | ∆, y : A

(νxy)P ⊢H G | Γ,∆
H-Cut

P ⊢H G | Γ, y : A | ∆, x : B

x(y).P ⊢H G | Γ,∆, x : A⊗B
H-⊗

P ⊢H G | Γ, y : A, x : B

x(y).P ⊢H G | Γ, x : A O B
H-O

∃j ∈ I : P ⊢H Γ, x : Aj

x◁ lj .P ⊢H Γ, x : ⊕{li : Ai}i∈I

H-⊕
∀i ∈ I : Pi ⊢H Γ, x : Ai

x▷ {li : Pi}i∈I ⊢H Γ, x : &{li : Ai}i∈I
H-&

Figure 5: The typing rules for HCP

It is notable that the subprocesses Pi in the premise for H-& must be typable under a hypercontext that is
a single context.

it is also notable that the the rules for bound output and restriction require the bound variable to be in a
different context than the transmitting endpoint, similar to how in CP the bound variable is in a parallel
processes than then transmitting endpoint. This conforms to the intuition that each independent context in
the hypercontext contains the names that can be in two parallel component, and names in the same context
must be in the same component.

Lastly, it is worth observing that given some typing judgement P ⊢H Γ1 | · · · | Γn, by repeated applications
of H-1, H-⊥, we can obtain:

P ⊢H Γ1,Γ
′
1 | · · · | Γn,Γ

′
n | Γ′

n+1 | · · · | Γ′
m

Where Γi, where 1 ≤ i ≤ n ≤ m, is a (possibly empty) context which only contains type assignments to •.
That is to say, we can arbitrarily add type assignments to • in any (perhaps new) context of the hypercontext,
as long as it does not contain any names that appear in any other context.

We will utilise this in our typing judgement proofs of an HCP process. In particular, when apply H-Mix0 or
H-id, we will silently apply H-⊥, H-1 to yield the following “axioms”:

0 ⊢H Γ′
1 | · · · | Γ′

m

H-Mix0

[x ↔ y] ⊢H x : A, y : A,Γ′
1 | · · · | Γ′

m

H-id

Where Γ′
i is as defined earlier.

Definition 3.1.7. We say that a HCP-process P is well-typed if ∃G : P ⊢H G.

Before we move onto the operational semantics of HCP, an important observation that can be made is that
a process is (perhaps) under typable multiple hypercontexts, in a non-trivial manner:

Example 3.1.2. (Multiple hypercontexts type the same process) Let R = • O •, S = • ⊗ •

x(n1).y(n2).z(n3) ⊢H x : R, y : S | z : S

x(n1).y(n2).z(n3) ⊢H y : S | x : R | z : S

23

Thus, a single typing judgement can have multiple proofs (i.e: typing derivation). We see this by example:

Example 3.1.3. Multiple typing derivations for the same proof Consider

(νxy)x(n1).y(n2).z(n3)

It has two typing derivations:
x(n1).y(n2).z(n3) ⊢H x : R, y : S | z : S

(νxz)x(n1).y(n2).z(n3) ⊢H y : S

and
x(n1).y(n2).z(n3) ⊢H y : S | x : R | z : S

(νxz)x(n1).y(n2).z(n3) ⊢H y : S

To refer to a specific proof of P ⊢H G, let us define the following notation:

Notation 3.1.1. (Proofs of P ⊢H G) We let ▽, ▽’ range over a specific proof (derivation) of P ⊢H G

Definition 3.1.8. (Subproof) Consider the proof ▽:

▽∗

...
P ⊢H G

where ▽∗ is some proof. We say that ▽∗ is a subproof of ▽.

Given this definition of (sub)proofs, we often wish to refer to subproofs within a proof, that are rooted at
the start of a named hypercontext. To this end, we define the following convention:

Convention 3.1.1. (Automatic proof naming) If we define a hypercontext Gi,G′,G∗ when presenting a proof
▽, we define a new proof ▽i,▽′,▽∗ respectively, that consists of the proof from the point of the hypercontext
definition.

Example 3.1.4. (Example of automatic proof naming) If we have the proof ▽:

...

P ∗ ⊢H G1

P ′ ⊢H Γ1 | · · · | Γn ≜ G′

P ⊢H G

Then we use ▽′ to refer to
...

P ∗ ⊢H G1

P ′ ⊢H G′

And ▽1 to refer to
...

P ∗ ⊢H G1

And we say that ▽′ is a subproof of ▽ and ▽1 is a subproof of both ▽,▽′.

24

We now present the operational semantics of HCP.

Definition 3.1.9. (Action labels) Let l, l′, . . . range over the set of action labels, given by the following
grammar:

l ::= x(y)
∣∣∣ x(y) ∣∣∣ x◁ lj

∣∣∣ x▷ lj

∣∣∣ [x ↔ y]
∣∣∣ τ

Definition 3.1.10. (Operational semantics for HCP)

[x ↔ y]
[x↔y]−−−−→ 0 (RH− Link1) [x ↔ y]

[y↔x]−−−−→ 0 (RH− Link2)

π.P
π−→ P (RH−Action) x▷ {li : Pi}i∈I

x▷lj−−−→ Pj (RH−Offer)

P
l−→ P ′ bn(l) ∩ fn(Q) = ∅

P | Q l−→ P ′ | Q
(RH− Par1)

Q
l−→ Q′ bn(l) ∩ fn(P) = ∅

P | Q l−→ P | Q′
(RH− Par2)

P
[y↔z]P ′

−−−−−→
(νxy)P

τ−→ P ′[x/z]
(RH− Id)

P ≡α Q Q
l−→ R

P
l−→ R

(RH− ≡α)

P
l−→ P ′ Q

l′−→ Q′ bn(l) ∩ bn(l′) = ∅

P | Q l∥l′−−→ P ′ | Q′
(RH− Syn)

P
l−→ x, y /∈ cn(l) x ∗P ′ y

(νxy)P
l−→ (νxy)P ′

(RH− Res)

P
x(x′)∥y(y′)−−−−−−−→ P ′

(νxy)P
τ−→ (νxy)(νx′y′)P ′

(RH− Com)
P

x◁lj∥x▷lj−−−−−−−→ P ′

(νxy)P
τ−→ (νxy)P ′

(RH− Case)

P
l−→ P ′ x /∈ cn(l)

x◁ lj .P
l−→ x◁ lj .P ′

(RH−DelSel)

P
l−→ P ′ x, x′ /∈ cn(l) x ∗P ′ x′

x(x′).P
l−→ x(x′).P ′

(RH−DelOut)
P

l−→ P ′ y, y′ /∈ cn(l) y ⃝∗P ′ y′

y(y).P
l−→ π.P ′

(RH−DelIn)

π.P
l−→ π.P ′ fn(π) ∗π.P fn(l)

π.P
π∥l−−→ P ′

(RH− SelfSyn)

This differs quite dramatically from the semantics presented earlier, which use reductions. Generally, the

form of P
l−→ P ′ can be interpreted as “P progresses to P ′ after executing action l”. Notably, we sometimes

observe that P
l1∥l2−−−→ P ′, which can be be interpreted as “P progresses to P ′ after executing actions l1, l2

in parallel”. Lastly, the form P
τ−→ P ′ can be interpreted as “P processes to P ′ without any action”, which

corresponds to the notion of reduction. Such a presentation of semantics is called a labelled transition
system (LTS).

This is the fragment of the operational semantics in [KMP19] that type linear process constructs.

We comment on these rules briefly. RH-Linki, RH-Action, RH-Offer gives semantics for progress under the
core actions. RH-Pari gives semantics for independent parallel progress. RH-Id observes that if you link and
then restrict channel endpoints, they form the same channel. RH-≡α observes that actions are independent
of bound name renaming. RH-Syn allows actions to occur in parallel. RH-Res allows actions to occur
under restriction, if the restriction does not affect it, and the action allows x, y to stay in different parallel
components. RH-Com and RH-Case allows progress evaluation without action. RH-DelSel, RH-DelOut,
RH-DelIn allows delaying of selecting, output and input actions. Notably for the latter two, the action
being delayed for must allow for correct partitioning such that the delayed action is still well-typed. Lastly,
RH-SelfSyn allows for self synchronisation.

It is also worth observing that message-passing communication (via RH-Com) does not involve substitution.

25

Rather, the names that are transferred have a restriction placed over them. This differs from Rπ-Com,
R-ChCom and R-Com.

Finally, we have the tools to state the key property of this type system. Via Corollary 3.12 in [KMP19], we
have:

Theorem 3.1.1. (Progress) If P ̸≡ 0 is well-typed, then P
l−→ P ′ for some l, P ′.

That is to say, if P is a well-typed process that is not in its terminating state, it can progress to some other
process, under some action (delayed or otherwise).

This is quite different from the presentation of deadlock-freedom in our π-calculi, but it captures the same
notion, that a process that isn’t terminated will not “get stuck”, that it will always progress.

3.2 Encoding HCP

Like CP and the dπ-calculus, to compare HCP to either of them, we must encode the constructs of the session
π-calculus to constructs in HCP.

Definition 3.2.1. (Encoding to HCP-processes) We define J·Kh on processes as follows:

Jx⟨y⟩.P Kh ≜ x(z).([z ↔ y] | JP Kh)

With J·Kh defined as an homomorphism for other process constructs. The reasoning is similar as for J·Kℓ.

Definition 3.2.2. (Encoding to Linear Logic Types / HCP-contexts) We define J·Kh on types and HCP-
contexts as J·Kℓ (from Definitions 2.4.2, 2.4.3), however we use J·Kh for clarity.

Observe we do not encode the session typing context into hypercontexts. This is because this thread-level
information is specific to processes. Indeed, a single session typing context can result in multiple unique
hypercontexts.

Thus, we define the encoding of the hypercontext once we have a process in the same mathematical context,
which occurs in our definition of H, which is the set of session typed processes that we will compare to L,K:

We define H as follows

Definition 3.2.3. (Processes induced by HCP)

H ≜ {P | ∃Γ1, . . . ,Γk : Γ1, . . . ,Γk ⊢ST P ∧ JP Kh ⊢H JΓ1Kh | · · · | JΓkKh}

Our definition follows the same idea as in [DP22]. The notion is that we first consider the set of all session
typed processes, followed by a restriction to that which is typable in HCP. Then the session typing context
that would type the session process P are the session types that corresponds to the HCP contexts that type
JP Kh.

3.3 H ̸⊆ K

We now have the definitions and tools to begin our comparison between [KMP19] and [Kob06] (via a com-
parison of H and K). However, consider the following session process (and its encodings):

26

Example 3.3.1. (Process in H and not in K)

P = (νxy)(y(n1).x⟨n2⟩)
JP Kh = (νxy)(y(n1).x(z).[z ↔ n2])

JP Kfu = (νc)(c(n1, d).(νe)c⟨n2, e⟩)

JP Kh is well-typed:
[z ↔ n2] ⊢H z : •, n2 : • | x : • | y : •, n1 : •

x(z).[z ↔ n2] ⊢H x : • ⊗ •, n2 : • | y : •, n1 : •
y(n1).x(z).[z ↔ n2] ⊢H • ⊗ •, n2 : • | y : • O •
JP Kh = (νxy)(y(n1).x(z).[z ↔ n2]) ⊢H n1 : •

However, JP Kfu is not well-typed. Let Γ ⊢≺ c(n1, d).(νe)c⟨n2, e⟩. As c is free in this process, c ∈ cn(Γ). Let
u(Γ(c)) = U . Then, u(Γ(c)) =?oκ.!

o′

κ′ , for some κ, κ′, o, o′. However, ¬rel(u(Γ(c))):

ob!(U) = ∞ > o = cap?(U) =⇒ ¬con?(U)

=⇒ ¬con(U)

=⇒ ¬rel(U)

Which leads to the following theorem:

Theorem 3.3.1.
H ̸⊆ K

Proof. Via Example 3.3.1.

The reason that P /∈ H is that it uses self synchronisation and non-blocking rules not present in the dπ-
calculus to progress. Thus, comparing H and K is not fair. Rather, we should compare the processes in H
that do not use self-synchronisation or non-blocking actions.

This motivates the following definition:

Definition 3.3.1. (Splitting H) We define H◦,H•, such that H = H◦ ∪H•, where:

H◦ = {P | P ∈ H ∧ P /∈ K}
H• = {P | P ∈ H ∧ P ∈ K}

Naturally, as H• ⊆ K, P ∈ H must be able to progress without self-synchronisation and non-blocking
semantics. Thus, it is reasonable to compare H• to L and K, as we do in the section that follows.

To observe that H• is not the empty set, see Proposition 4.1.1.

4 Comparing HCP to other Deadlock-Free π-calculi

In this section, we focus on H• and then H◦. We will compare the sets L,H•,K to each other in §4.1 and
then characterise the processes within H◦, in §4.2.

27

4.1 Comparing L,H•,K

We begin by first comparing H• to K. By definition of H•, we have that H• ⊆ K. Thus, what remains is to
clarify whether H• = K.

This leads to the following Lemma:

Lemma 4.1.1.
H• ̸= K

Proof. Consider the process P from the proof of Lemma 4.2, in [DP22] and a slightly adjusted variant of it
P ′:

P = (νa1b1)(νa2b2)(a1(x).a2⟨x⟩ | b1⟨n⟩.b2(z))
P ′ = (νa1b1)(νa2b2)(a1(x).a2⟨x⟩.a1(y) | b1⟨n⟩.b2(z).b1⟨z⟩)

The only change is that there is one last communication over a1, b1. Noting that P ∈ K, it is evident that
P ′ ∈ K.

We will show that P ′ /∈ H•, which shows that H• ̸= K.

Observe:

JP ′Kh = (νa1b1)(νa2b2)(a1(x).a2(z1).([z1 ↔ x] | a1(y)) | b1(z2).([n ↔ z2] | b2(z).b1(w).[w ↔ z]))

Suppose JP ′Kh ⊢H G and let ▽ be a proof of this.

We define the following, for brevity:

P ∗ = (νa2b2)(P1 | P2)

P1 = a1(x).R1 P2 = b1(z2).([n ↔ z2] | Q1)

R1 = a2(z1).R2 Q1 = b2(z).Q2

R2 = ([z1 ↔ x] | a1(y)) Q2 = b1(w).[w ↔ z]

Then ▽ must be:

...

R2 ⊢H R2

a2(z1).R2 ⊢H R1

a1(x).R1 ⊢H G1

[n ↔ z2] ⊢H n : A, z2 : A

...

Q2 ⊢H Q2

b2(z).Q2 ⊢H Q1

[n ↔ z2] | Q1 ⊢H Q′

b1(z2).([n ↔ z2] | Q1) ⊢H G2

P1 | P2 ⊢H G′

P ∗ ⊢H G∗

JP ′Kh ⊢H G
(H-Cut)

We must have that a1 ⃝∗G1
a2, b1 ⃝∗G2

b2. This is observed as follows:

1. For P1, observe that a1(x).R1 necessitates that a1 ⃝∗G1 x and that if n ⃝∗R1 x then a1 ⃝∗G1 n.

28

Now for R1 = a2(z1).R2, we must have that if n⃝∗R2 z1 then a2 ⃝∗R1 n

Observe that for R2 = [z1 ↔ x] | a1(y) we have that z1 ⃝∗R2 x.

Thus we have a2 ⃝∗R1 x and therefore we have a1 ⃝∗G1 a2.

2. For P2 = b1(z2).([n ↔ z2] | Q1), observe that if b1 ⃝∗Q1
n, then b1 ⃝∗G2

n.

Now for Q1 = b2(z).Q2, if z ⃝∗Q2
n, then n ⃝∗Q1

b2.

Then for Q2 = b1(w).[w ↔ z], we have that b1 ⃝∗Q2 z.

Therefore, we have b1 ⃝∗Q1 b2, meaning that b1 ⃝∗G2 b2.

Then, however we will have a1 ⃝∗G∗ b1. This however would imply that you cannot apply H-Cut to P ∗ and
our assumption that ▽ exists is false.

Thus, P ′ /∈ H.

Now, we shall compare H• to L. In [KMP19], a comparison was conducted between their type system and a
double restriction variant of the type system by [Wad12], present in [CLM+16]. They found that well-typed
process in the latter system are well-typed processes in their type system. Thus, it would be natural for
L ⊆ H.

However, interestingly, this is not the case. Admitting mix principles to CP gives process syntax structures
that are not found in HCP, as the following Lemma shows:

Lemma 4.1.2.
L ̸⊆ H•

Proof. Consider
P = x(y).(x(n1) | y(n2))

.

Then

JP Kℓ = JP Kh = x(y).(x(n1) | y(n2))

Let R = • O •.

Observe that JP Kℓ ⊢LL x : R O R:

0 ⊢LL x : •, n1 : •
x(n1) ⊢LL x : R

0 ⊢LL y : •, n2 : •
y(n2) ⊢LL y : R

x(n1) | y(n2) ⊢LL x : R, y : R

x(y).(x(n1) | y(n2)) ⊢LL x : R O R

However, JP Kh is not well-typed, which we show by contradiction. Let ▽ b a proof of P ⊢H G.

Then ▽ must be:
...

x(n1) | y(n2) ⊢H G′

x(y).(x(n1) | y(n2)) ⊢H G
H-O

Observe that we must have x ∗G′ y. Thus, we cannot apply H-O and thus, ▽ cannot exist.

29

Therefore, P /∈ H =⇒ P /∈ H• and so, L ̸⊆ H•.

Remark 4.1.1. The reason mix principles allow this result is easily seen if you consider the type system
without the mix rule. In any typing rule that combined two processes in parallel, they were immediately
brought into the same thread and thus, if you recreated (in [KMP19]) the same proofs of a typing judgement
in [Wad12], at each level of the proof, the hypercontext would always simply be a context, and there would
be no trouble applying H-O. However, admitting a mix rule does not let us guarantee that the hypercontext
is a context, and which adds another item to consider when applying the HCP typing rules.

It is also possible to find a process typable in HCP but not in CP.

Lemma 4.1.3.
H• ̸⊆ L

Proof. Consider:

P = (νxy)(w(v).(x⟨n1⟩ | y(z) | w(n2).v(n3)))

Then:

JP Kℓ = (νc)(w(v).(c(z).[z ↔ n1] | c(z1) | w(n2).v(n3)))

JP Kh = (νxy)(w(v).(x(z).[z ↔ n1] | y(z1) | w(n2).v(n3)))

JP Kfu = (νc)(w(v, w1).((νd)c⟨n1, d⟩ | c(z, c′) | w1(n2, w2).v(n3, v1)))

We will show that P /∈ L ∧ P ∈ H•, proving L ⊊ H•.

Immediately, JP Kℓ cannot be a well-typed CP-process, since there is no parallel process under the outer
restriction, which is required by T-cut. Thus P /∈ L.

Let

S = • ⊗ •
T = • O •

Thus, S = T .

Now, observe:

[z ↔ n1] ⊢H z : •, n1 : •
[z ↔ n1] ⊢H z : •, n1 : • | x : •
x(z).[z ↔ n1] ⊢H x : S, n : •

0 ⊢H y : •, z1 : •
y(z1) ⊢H y : T

0 ⊢H v : •, w : •, n2 : •, n3 : •
v(n3) ⊢H v : T,w : •, n2 : •
w(n2).v(n3) ⊢H w : T, v : T

x(z).[z ↔ n1] | y(z1) | w(n2).v(n3) ⊢H x : S, n1 : • | y : T | w : T, v : T

w(v).(x(z).[z ↔ n1] | y(z1) | w(n2).v(n3)) ⊢H w : T ⊗ T | x : S, n1 : • | y : T

JP Kh = (νxy)(w(v).(x(z).[z ↔ n1] | y(z1) | w(n2).v(n3))) ⊢H w : T O T | n1 : •

Let E = chan(−; 0), R = chan(E,E; ?00), S = chan(E,E; !00).

30

Then observe that w : chan(R,R; ?00), n1 : E ⊢≺ P , and so P ∈ K:

c⟨n1, d⟩ ⊢≺ c : S, d : E,n1 : E

(νd)c⟨n1, d⟩ ⊢≺ c : S, n1 : E
c(z, c′) ⊢≺ c : R

v(n3, v1) ⊢≺ v : R,n2 : E,w2 : E,

w1(n2, w2).v(n3, v1) ⊢≺ v : R,w1 : R

(νd)c⟨n1, d⟩ | c(z, c′) | w1(n2, w2).v(n3, v1) ⊢≺ c : chan(E,E; !00 |?00)), n1 : E, v : R,w1 : R

w(v, w1).((νd)c⟨n1, d⟩ | c(z, c′) | w1(n2, w2).v(n3, v1)) ⊢≺ c : chan(E,E; !00 |?00)), n1 : E, v : R,w : chan(R,R; ?00)

(νc)(w(v, w1).((νd)c⟨n1, d⟩ | c(z, c′) | w1(n2, w2).v(n3, v1))) ⊢≺ n1 : E, v : R,w : chan(R,R; ?00)

Thus as P ∈ K ∧ P ∈ H, we see that P ∈ H•.

Thus, we have that L ≠ H•.

Remark 4.1.2. Now [KMP19] provided an example that is typable under HCP in [KMP19], and not in
the variant of CP present in [CLM+16]. Adapting it to our syntax, it is:

x▷ {l : P | Q, r : P ′ | Q′}

where x appears in Q,Q′.

However, their separating process relies on T-mix being absent from the typing system in [Wad12, CLM+16],
as processes in each branch (P | Q and P ′ | Q′) cannot be in parallel without communication, in the type
system of [Wad12, CLM+16]. As such a rule exists in the variant of CP we are discussing, we cannot use
the same process as a separating process.

Proposition 4.1.1.
L ∩H• ̸= ∅

Proof. Observe that J0Kh ∈ H, J0Kfu ∈ K and so J0Kh ∈ H•. Also observe that J0Kℓ ∈ L. Thus 0 ∈ L ∩ H•

and this proves our proposition.

Collecting all these results, we have the following theorem:

Theorem 4.1.1. (Comparing L,H•,K) We have:

1. L ∩H• ̸= ∅

2. L ̸⊆ H• ∧H• ̸⊆ L

3. L ⊊ K

4. H• ⊊ K

Proof. We have the first result via Proposition 4.1.1. We have the second result via Lemmas 4.1.2, 4.1.3. We
have the third result via Theorem 2.4.2. We have the fourth result as follow. By definition of H•, we have
H• ⊆ K. By Lemma 4.1.1, we have H• ̸= K and so we have H• ⊊ K.

4.2 Characterising H◦

The form of processes in H◦ Having compared H•, let us now shift our focus to processes in Ho. In
particular, we aim to discover their exact structure.

31

To this end, it is worth recalling the proof for Theorem 3.3.1. Observe that our separation relied on a session
process that encodes to a dπ-process which contains a restriction over a channel that has an unreliable usage,
i.e: a usage of the form α.U ′. This corresponds to a channel which has a message passing action as the most
recent action. We will show that processes that lie in H◦ have at least one channel with such a usage (prior
to restriction over that channel).

To illustrate this, consider a session process of the form (νxy)P . Let P have the subprocess x(z1).R and let
R have the subprocess y⟨z2⟩.Q. By Barendregt’s convention, we will never have a subprocess x(z1).R | P ′ in
P , where x, y ∈ fn(P ′).

As a consequence, the channel formed by x, y will always have a usage be of the form α.U and thus, that
channel will always be unreliable, meaning we cannot form a restriction over it.

This is the essence of the process structures that our formal characterisation will now capture.

In our characterisation, we will need to refer to subprocesses within subprocesses, and to treat this succinctly
and formally, we introduce Definitions 4.2.1 and 4.2.2.

Definition 4.2.1. (Subprocess) We define a session typed process with a hole D[·] as follows:

D[·] ::= x⟨v⟩.D′[·]
| x(y).D′[·]
| x◁ lj .D

′[·]
| x▷ {li : Pi}i∈I where ∃j ∈ I : Pj = D′[·]
| D′[·] | Q
| (νxy)D′[·]
| [·]

A process with a hole is a process in which another process can be “plugged” into into, it, as the example
shows:

Example 4.2.1. Consider the process with a hole: D[·] = x⟨v⟩.[·]. Then:

D[y⟨w⟩] = x⟨v⟩.y⟨w⟩
D[z(w)] = x⟨v⟩.z(w)

Now recall H-&:
Pi ⊢H Γ, x : Ai ∀i ∈ I

x▷ {li : Pi}i∈I ⊢H Γ, x : &{li : Ai}i∈I
H-&

Observe that x ▷ {li : Pi}i∈I is only typable under a context and not a hypercontext. Observe that if we
have a process (νxy)P ′, P ′ ⊢H G′ | G1, x : T | G2 : y : T , meaning that P ′ cannot be a choice construct
(i.e x▷ {li : Pi}i∈I). Indeed, until an action over x or y occurs, no choice construct must be used. Thus, we
define a process with a hole, without the choice construct:

Definition 4.2.2. (Subprocess without choice) We define a session typed process with a hole C[·] as follows:

C[·] ::= x⟨v⟩.C ′[·]
| x(y).C ′[·]
| x◁ lj .C

′[·]
| C ′[·] | Q
| (νxy)C ′[·]
| [·]

32

Definition 4.2.3. (Non-Blocking Reliant Processes) Let P be a session process. We define the predicate
NBR(·) (read: Non-Blocking Reliant) such that

NBR(P) ⇐⇒ ∃D,C, P ′ : (P = D[(νxy)C[π.P ′]])

Where π is some prefix such that:

• sub(π) = x ∨ sub(π) = y

• (x = sub(π) ∧ y ∈ fn(P ′))⊕ (y = sub(π) ∧ x ∈ fn(P ′))

Note that ⊕ is the Exclusive Or (XOR) Boolean connective. Intuitively, this definition captures all the
processes that are reliant on non-blocking semantics for deadlock-freedom.

Example 4.2.2. To demonstrate this definition, let us apply it to the process in Example 3.3.1.

Observe that
NBR((νxy)(y(n1).x⟨n2⟩))

is true, by observing that
(νxy)(y(n1).x⟨n2⟩) = D[(νxy)C[π.P ′]]

where

D[P ∗] = P ∗

C[P ∗] = P ∗

π = y(n1)

P ′ = x⟨n2⟩

and sub(π) = y ∧ x ∈ fn(P ′) = {x, n2}.

Utilising this definition, we now characterise H◦:

Theorem 4.2.1. (Characterising H◦)

∀P ∈ H : (P ∈ H◦ ⇐⇒ NBR(P))

Under the assumption P ∈ H, we show:

1. P ∈ H◦ =⇒ NBR(P). We prove the contrapositive: ¬NBR(P) =⇒ P /∈ H◦. By assuming
¬NBR(P), we show that P ∈ K and thus, P /∈ H◦.

2. NBR(P) =⇒ P ∈ H◦. If NBR(P), we show that a channel c has usage α.U ′ just before it is restricted
over. As ¬rel(α.U ′), we cannot form a restriction over this channel and thus, P /∈ K, leading to P ∈ H◦.

See §A.1 for details.

As we close this section, we define the following useful terminology:

Definition 4.2.4. (Non-Blocking Channels) Let P be a session process. Then let:

NBC(P) = {(a, b) | ∃D,C, P ′ : P = D[(νab)C[π.P ′]] ∧ sub(π) ∈ {a, b}}

33

NBC(P) (read: Non-Blocking (reliant) Channels) is the set of channels (as endpoint pairs) that rely on
non-blocking semantics for communication. Any channel (a, b) ∈ NBC(P) is said to be non-blocking reliant
in P . We may say (a, b) is non-blocking reliant if P is obvious from context.

Example 4.2.3. To demonstrate this definition, let us apply it to the process in Example 3.3.1

NBC((νxy)y(n1).x⟨n2⟩) = {(x, y)}

5 Translating H◦ to H•

Having characterised H◦, there is an interesting observation to be made.

Consider the process P = (νxy)y(u).x⟨n⟩. It is easy to see that NBR(P) and thus by Theorem 4.2.1, P ∈ H◦.

Now, consider the process P •, which is P , except we move the action that must be non-blocking (i.e: y(u)
and place it in a parallel process to its continuation. That is:

P • = (νxy)(y(u) | x⟨n⟩)

It is plain to see that P • is deadlock-free under non-blocking semantics and will be captured in the set K.

This is the essence of a translation F·(·) that we will define in the following section. Subsequently, we will
show example of the translation in §5.2. We conclude this section with properties of the translation in §5.3.

5.1 Translating non-blocking and self-synchronizing behaviour

Key to our translation is the idea that we “split” a process into two. Take our example P from earlier. One
parallel process had actions related to x and another had actions related to y.

Another perspective on this is one parallel process has actions that keep actions related to x and another
removes actions related to y.

We formalise these notions as K(·) and R(·) respectively.

We demonstrate them, by way of informal example:

34

Example 5.1.1. Now
R{x,n}(y(u).x⟨n⟩)

is the process after the removal of actions related to x, n from the process. This will result in

y(u).R{x,n}(x⟨n⟩)

As y(u) should not be removed from the result. Continuing on, this results in:

y(u).0

as x⟨n⟩ is removed.

Similarly,
K{x,n}(y(u).x⟨n⟩)

is the process after keeping actions only related to x, n from the process. This results in

K{x,n}(x⟨n⟩)

As no name in y(u) is in {x, n}. Continuing on, this results in:

x⟨n⟩

As x⟨n⟩ contains names in {x, n}.

Placing these in parallel
R{x,n}(y(u).x⟨n⟩) | K{x,n}(y(u).x⟨n⟩)

we will have:
y(u) | x⟨n⟩

as expected.

Remark 5.1.1. R(P),K(P) both require information from the hypercontext that types P . However both
R(P) and K(P) are recursive upon subprocesses in P . Thus if our procedure was parameterised by a
hypercontext that types P , it will not be well-defined as recursive applications of the procedure will have a
choice of hypercontexts that type the subprocess it is being applied to.

However, it is well-defined upon a proof of a hypercontext, as the recursive calls have one hypercontext to
refer to: the hypercontext that types the subprocess in the proof.

We now formalise these intermediate procedures as follows:

Definition 5.1.1. (Keeping constructs acting on certain names in a process) Given a well-typed session
process P , a set of names S and a proof ▽ of JP Kh ⊢H G , we define the session process KS

▽(P) as follows:

KS
▽(P) =

x⟨v⟩.KS\{v}
▽′ (R) P = x⟨y⟩.R ∧ x ∈ S

x(y).KS∪{y}
▽′ (R) P = x(y) ∧ x ∈ S

x◁ lj .KS
▽′(R) P = x◁ lj .R ∧ x ∈ S

KS
▽′(R) P = π.R ∧ sub(π) /∈ S

x▷ {li : Pi}i∈I x▷ {li : Pi}i∈I ∧ (x ∈ S ∨ ∃i : ∃n ∈ S : n ∈ fn(Pi))

KS\fn(P2)
▽1

(P1) | KS\fn(P1)
▽2

(P2) P = P1 | P2

(νxy)(KS∪{x,y}
▽′ (R)) P = (νxy)R ∧ ∃n ∈ S : n ∈ cn(∆1) ∪ cn(∆2)

KS
▽′(R) P = (νxy)R ∧ ¬(∃n ∈ S : n ∈ cn(∆1) ∪ cn(∆2))

0 Otherwise

35

Where ∆i,▽′,▽i are defined as follows (recalling Convention 3.1.1):

When P = (νxy)R, ▽ must be:

...

JRKh ⊢H G′ | ∆1, x : T | ∆2, y : T ≜ ▽′

J(νxy)RKh ⊢H G′ | ∆1,∆2

When P = P1 | P2, ▽ must be:
▽1 ▽2

JP1 | P2Kh ⊢H R1 | R2

where ▽i is a proof of Pi ⊢H Ri.

Otherwise, ▽ must be:
▽′

JP Kh ⊢H G

We briefly comment on each case (and similar but dual comments apply to the next intermediate definition,
Definition 5.1.2). The first three cases are to do with prefix actions which contain a subject which we wish
to keep in the result. In all these cases, the prefix is present in the resulting process, with the continuation
being transformed. Where these transformation differs is in the names it continues to keep, augmented based
on the object of the action. For the first case, we do not keep the free name v, as we do not need to bring
it with x. For the second case, we must keep y in the same process as x, as we must substitute y after the
input action. For the last case, there is no object, and thus we do not have to modify S.

The fourth case involves a prefix we do not keep, and the resulting process does not include that prefix.
The last action construct we consider is the choice construct. In this case, we keep the choice construct if it
contains a name that we wish to keep (either as a subprocess or as the subject in the action). The parallel
composition rule applies the procedure recursively, making sure to remove names that we wish to keep if we
know it cannot be in that process. The rules to do with the restriction operator include the restriction if
at least the restricted endpoint must appear in the same context as the names we are keeping in the same
process (information we can obtain via the hypercontext G′ | ∆1, x : T | ∆2, y : T).

Definition 5.1.2. (Removing constructs acting on certain names from a process) Given a well-typed session
process P , a set of names S and a proof ▽ of JP Kh ⊢H G , we define the session process RS

▽(P) as follows:

RS
G(P) =

RS\{v}
G′ (R) P = x⟨v⟩.R ∧ x ∈ S

RS∪{y}
G′ (R) P = x(y).R ∧ x ∈ S

RS
G′(R) P = x◁ lj .R ∧ x ∈ S

π.RS
G′(R) P = π.R ∧ sub(π) /∈ S

0 x▷ {li : Pi}i∈I ∧ (x ∈ S ∨ ∃i : ∃n ∈ S : n ∈ fn(Pi))

RS\fn(P2)
G1

(P1) | RS\fn(P1)
G2

(P2) P = P1 | P2

(νxy)(RS
G′(R)) P = (νxy)R ∧ ¬(∃n ∈ S : n ∈ cn(∆1) ∪ cn(∆2))

RS∪{x,y}
G′ (R) P = (νxy)R ∧ ∃n ∈ S : n ∈ cn(∆1) ∪ cn(∆2)

P Otherwise

Where ∆i,▽′,▽i are defined as follows (recalling Convention 3.1.1):

36

When P = (νxy)R, ▽ must be:

...

JRKh ⊢H G′ | ∆1, x : T | ∆2, y : T ≜ ▽′

J(νxy)RKh ⊢H G′ | ∆1,∆2

When P = P1 | P2, ▽ must be:
▽1 ▽2

JP1 | P2Kh ⊢H R1 | R2

where ▽i is a proof of Pi ⊢H Ri.

Otherwise, ▽ must be:
▽′

JP Kh ⊢H G
Now having defined our auxiliary functions, we can resolve one channel by following our aforementioned
approach. We define the sets N1, N2 to move all the names in the same context as x, y, as they must remain
in the same process.

Definition 5.1.3. (Parallelizing one non-blocking reliant channel) Given a well-typed session process P and
a proof ▽ of JP Kh ⊢H G , we define the set of session process F ′

▽(P) as follows:

F ′
▽(P) =

D[(νxy)(RN1

▽∗ (C[π.P ′]) | KN1
▽∗ (C[π.P ′])] P = D[(νxy)C[π.P ′]] ∧ x = sub(π) ∧ y ∈ fn(P ′)

D[(νxy)(RN2
▽∗ (C[π.P ′]) | KN2

▽∗ (C[π.P ′]))] P = D[(νxy)C[π.P ′]] ∧ y = sub(π) ∧ x ∈ fn(P ′)

P Otherwise

We must have ▽ be:
...

JC[π.P ′]Kh ⊢H G′′ | ∆, x : T | Θ, y : T ≜ ▽∗

J(νxy)C[π.P ′]Kh ⊢H G′

...
JP Kh ⊢H G

Then, we have the following definitions:

N1 = {x} ∪ cn(∆)

N2 = {y} ∪ cn(Θ)

Finally, we apply F ′
· (·) repeatedly, to resolve all channels, as follows:

Definition 5.1.4. (Parallelizing all non-blocking reliant channels) Given a well-typed session process P and
a proof ▽ of JP Kh ⊢H G , we define the set of session process RS

▽(P) as follows:

F▽(P) =

{⋃
▽′ F▽′(F ′

▽(P)) NBR(P)

{P} Otherwise

where ▽′ is a proof of F ′
▽(P) ⊢H G

37

5.2 Examples of the translation

Before we define properties upon this translation, let us first apply this translation to some examples, to both
provide a better understanding of its mechanics, as well as to motivate the properties that follow.

Furthermore, to motivate an operational correspondence conjecture we will present, we will enumerate the
transitions of the example process and the translated processes, and compare them.

Example 5.2.1. (Simple translation) This example shows a simple translation, taking a process that requires
on non-blocking semantics to be deadlock-free to one that is deadlock-free under blocking semantics.

Consider

P = (νxy)(y(n1).x⟨n2⟩)

And the following proof ▽ of JP Kh ⊢H G:

[z ↔ n2] ⊢H z : •, n2 : •
[z ↔ n2] ⊢H z : •, n2 : • | x : • | y : •, n1 : •

x(z).[z ↔ n2] ⊢H n2 : •, x : • ⊗ • | y : •, n1 : • ≜ G2

y(n1).x(z).[z ↔ n2] ⊢H n2 : •, x : • ⊗ • | y : • O • ≜ G1

JP Kh = (νxy)(y(n1).x(z).[z ↔ n2]) ⊢H n2 : • ≜ G

Then:

F ′
▽(P) = (νxy)(R{n2,x}

▽1
(y(n1).x⟨n2⟩) | K{n2,x}

▽1
(y(n1).x⟨n2⟩))

= (νxy)(y(n1).Rn2,x
▽2

(x⟨n2⟩) | Kn2,x
▽2

(x⟨n2⟩))
= (νxy)(y(n1) | x⟨n2⟩)

As we can see, this translation correctly splits the process, in an expected manner. It is instructive to
observe that the encoding of the free output x⟨n2⟩ poses no trouble to the translation here. We will see a
more representative example of this in the following example.

Furthermore, we can observe that the translation was type preserving on this example. Let R = • O •, S =
• ⊗ •:

0 ⊢H y : •, n1 : •
y(n1) ⊢H y : R

[z ↔ n2] ⊢H z : •, n2 : • | x : •
x(z).[z ↔ n2] ⊢H x : S, n2 : •

y(n1) | x(z).[z ↔ n2]y : R | x : S, n2 : •
JF ′

G(P)Kh = (νxy)(y(n1) | x(z).[z ↔ n2]) ⊢H n2 : •

As ¬NBR(F ′
▽(P)) =⇒ F▽(P) = {F ′

▽(P)}.

Observe that:

JP Kh
τ−→ (νxy)(νn1z)[z ↔ n2]

[z↔n2]−−−−→ (νxy)(νn1z)0 ≡ 0

Let JFG(P)Kh ≜ P • = (νxy)(y(n1) | x(z).[z ↔ n2]).

Then:

P • τ−→ (νxy)(νn1z)(0 | [z ↔ n2]) ≡ (νxy)(νn1z)[z ↔ n2]
[z↔n2]−−−−→ (νxy)(νn1z)0 ≡ 0

These are the only possible transitions that can occur for JP Kh, P •. Thus, we can see the translation main-
tained the possible computations (i.e: transitions) and did not create any new ones.

38

Example 5.2.2. (Unrelated Names) This example shows a more complex translation, where there are actions
that are unrelated to the non-blocking actions being moved. Consider:

P = (νxy)(w(v).x⟨n1⟩.y(n2).w(n3).v(n4))

Let R = • O •, S = • ⊗ •. Observe that S = R.

Now consider the following proof ▽ of JP Kh ⊢H G:

0 ⊢H y : •, n2 : • | w : •, n3 : •, v : •, n4 : •, x : • ≜ G5

v(n4) ⊢H y : •, n2 : • | w : •, n3 : •, v : R, x : • ≜ G4

w(n3).v(n4) ⊢H y : •, n2 : • | w : R, v : R, x : • ≜ G3

y(n2).w(n3).v(n4) ⊢H y : R | w : R, v : R, x : • ≜ G2

[z ↔ n1] ⊢H z : •, n1 : •

[z ↔ n1] | y(n2).w(n3).v(n4) ⊢H z : •, n1 : • | y : R | w : R, v : R, x : •
x(z).([z ↔ n1] | y(n2).w(n3).v(n4)) ⊢H w : R, v : R, x : S, n1 : • | y : R ≜ G1

w(v).x(z).([z ↔ n1] | y(n2).w(n3).v(n4)) ⊢H w : R O R, x : S, n1 : • | y : R

JP Kh = (νxy)(w(v).x(z).([z ↔ n1] | y(n2).w(n3).v(n4))) ⊢H w : R O R,n1 : • ≜ G

Then:

F ′
▽(P) = (νxy)(w(v).(R{w,v,x,n1}

▽1
(x⟨n1⟩.y(n2).w(n3).v(n4)) | K{w,v,x,n1}

▽1
(x⟨n1⟩.y(n2).w(n3).v(n4))))

= (νxy)(w(v).(R{w,v,x}
▽2

(y(n2).w(n3).v(n4)) | x⟨n1⟩.K{w,v,x}
▽2

(y(n2).w(n3).v(n4))))

= (νxy)(w(v).(y(n2).R{w,v,x}
▽3

(w(n3).v(n4)) | x⟨n1⟩.K{w,v,x}
▽3

(w(n3).v(n4))))

= (νxy)(w(v).(y(n2).R{w,v,x,n3}
▽4

(v(n4)) | x⟨n1⟩.w(n3).K{w,v,x,n3}
▽4

(v(n4))))

= (νxy)(w(v).(y(n2) | x⟨n1⟩.w(n3).v(n4)))

As ¬NBR(F ′
▽(P)) =⇒ F▽(P) = {F ′

▽(P)}.

Let us now show the transitions for JP Kh

JP Kh
w(v)−−−→ (νxy)(x(z).([z ↔ n1] | y(n2).w(n3).v(n4)))
τ−→ (νxy)(νzn2)([z ↔ n1] | w(n3).v(n4))

JP Kh
τ−→ (νxy)(νzn2)(w(v).([z ↔ n1] | w(n3).v(n4)))

Let JF ′
G(P)Kh ≜ P • = (νxy)(w(v).(y(n2) | x(n2).([z ↔ n1] | w(n3).v(n4)))). Then, looking at its transitions:

P • w(v)−−−→ (νxy)(y(n2) | x(n2).([z ↔ n1] | w(n3).v(n4)))
τ−→ (νxy)(νzn2)(0 | [z ↔ n1] | w(n3).v(n4)) ≡ (νxy)(νzn2)([z ↔ n1] | w(n3).v(n4))

P • τ−→ (νxy)(νzn2)(w(v).(0 | [z ↔ n1] | w(n3).v(n4))) ≡ (νxy)(νzn2)(w(v).([z ↔ n1] | w(n3).v(n4)))

We do not continue the subsequent transitions, since it is obvious that the generated sequences will be present
when transition from P • or JP Kh.

Thus, we can see the translation maintained the possible computations (i.e: transitions) and did not create
any new ones.

39

Example 5.2.3. (Same Process, Different Translation) This example shows a translation of the process in
Example 5.2.2, but using a different proof of P ⊢H G.

P = (νxy)(w(v).x⟨n1⟩.y(n2).w(n3).v(n4))

Let R = • O •, S = • ⊗ •. Observe that S = R.

Now consider the following proof ▽ of JP Kh ⊢H G:

0 ⊢H w : •, n3 : •, v : •, n4 : •, y : •, n2 : • | x : • ≜ G5

v(n4) ⊢H w : •, n3 : •, v : R, y : •, n2 : • | x : • ≜ G4

w(n3).v(n4) ⊢H w : R, v : R, y : •, n2 : • | x : • ≜ G3

y(n2).w(n3).v(n4) ⊢H w : R, v : R, y : R | x : • ≜ G2

[z ↔ n1] ⊢H z : •, n1 : •

[z ↔ n1] | y(n2).w(n3).v(n4) ⊢H z : •, n1 : • | w : R, v : R, , y : R | x : •
x(z).([z ↔ n1] | y(n2).w(n3).v(n4)) ⊢H x : S, n1 : • | w : R, v : R, y : R ≜ G1

w(v).x(z).([z ↔ n1] | y(n2).w(n3).v(n4)) ⊢H x : S, n1 : • | w : R O R, y : R

JP Kh = (νxy)(w(v).x(z).([z ↔ n1] | y(n2).w(n3).v(n4))) ⊢H w : R O R,n1 : • ≜ G

Then:

F ′
▽(P) = (νxy)(w(v).(R{x,n1}

▽1
(x⟨n1⟩.y(n2).w(n3).v(n4)) | K{x,n1}

▽1
(x⟨n1⟩.y(n2).w(n3).v(n4))))

= (νxy)(w(v).(R{x}
▽2

(y(n2).w(n3).v(n4)) | x⟨n1⟩.K{x}
▽2

(y(n2).w(n3).v(n4))))

= (νxy)(w(v).(y(n2).R{x}
▽3

(w(n3).v(n4)) | x⟨n1⟩.K{x}
▽3

(w(n3).v(n4))))

= (νxy)(w(v).(y(n2).w(n3).R{x}
▽4

(v(n4)) | x⟨n1⟩.K{x}
▽4

(v(n4))))

= (νxy)(w(v).(y(n2).w(n3).v(n4) | x⟨n1⟩))

As ¬NBR(F ′
▽(P)) =⇒ F▽(P) = {F ′

▽(P)}.

We do not present the transitions that JP Kh can follow, as they are the same from the previous example.

Let JF ′
G(P)Kh ≜ P • = (νxy)(w(v).(y(n2).w(n3).v(n4) | x(z).[z ↔ n1])). Then looking at its transitions.

Then

P • w(v)−−−→ (νxy)(y(n2).w(n3).v(n4) | x(z).[z ↔ n1])
τ−→ (νxy)(νzn2)(w(n3).v(n4) | [z ↔ n1])

P • τ−→ (νxy)(νzn2)(w(v).(w(n3).v(n4) | [z ↔ n1])) ≡ (νxy)(νzn1)(w(v).([z ↔ n1] | w(n3).v(n4)))

We do not continue the subsequent transitions, since it is obvious that the generated sequences will be present
when transition from P • or JP Kh.

Thus, we can see the translation maintained the possible computations (i.e: transitions) and did not create
any new ones.

So it is reassuring to observe that using a different proof for F ′
· (·) does not effect the transition sequences

that can be generated.

40

Example 5.2.4. (Movement of the restriction operator) This example shows how restriction might be
indirectly moved. Consider:

P = (νxy)(νwv)x⟨n1⟩.y(n2).(v⟨n3⟩ | w(n4))

Let R = • O •, S = • ⊗ •. Observe that S = R.

We can have:

[z1 ↔ n1] ⊢H z1 : •, n1 : •
[z1 ↔ n1] ⊢H| z1 : •, n1 : •

[z2 ↔ n3] ⊢H z2 : •, n3 : •
[z2 ↔ n3] ⊢H z2 : •, n3 : • | v : •

v(z2).[z2 ↔ n3] ⊢H v : S, n3 : • ≜ Gl
5

0 ⊢H x : •, w : •, n4 : • | y : •, n2 : •
w(n4) ⊢H x : •, w : R | y : •, n2 : • ≜ Gr

5

v(z2).[z2 ↔ n3] | w(n4) ⊢H v : S, n3 : • | x : •, w : R | y : •, n2 : • ≜ G4

y(n2).(v(z2).[z2 ↔ n3] | w(n4)) ⊢H v : S, n3 : • | x : •, w : R | y : R ≜ G3

[z1 ↔ n1] | y(n2).(v(z2).[z2 ↔ n3] | w(n4)) ⊢H z1 : •, n1 : • | v : S, n3 : • | x : •, w : R | y : R

x(z1).([z1 ↔ n1] | y(n2).(v(z2).[z2 ↔ n3] | w(n4))) ⊢H x : S,w : R,n1 : • | v : S, n3 : • | y : R ≜ G2

(νwv)x(z1).([z1 ↔ n1] | y(n2).(v(z2).[z2 ↔ n3] | w(n4))) ⊢H x : S, n1 : R,n3 : • | y : R ≜ G1

JP Kh = (νxy)(νwv)x(z1).([z1 ↔ n1] | y(n2).(v(z2).[z2 ↔ n3] | w(n4))) ⊢H n1 : •, n3 : • ≜ G

Then:

F ′
▽(P) = (νxy)(R{x,n1}

▽1
((νwv)x⟨n1⟩.y(n2).(v⟨n3⟩ | w(n4))) | K{x,n1}

▽1
((νwv)x⟨n1⟩.y(n2).(v⟨n3⟩ | w(n4))))

= (νxy)(R{x,n1,w,v}
▽2

(x⟨n1⟩.y(n2).(v⟨n3⟩ | w(n4))) | (νwv)K{x,n1,w,v}
▽2

(x⟨n1⟩.y(n2).(v⟨n3⟩ | w(n4))))

= (νxy)(R{x,w,v}
▽3

(y(n2).(v⟨n3⟩ | w(n4))) | (νwv)x⟨n1⟩.K{x,w,v}
▽3

(y(n2).(v⟨n3⟩ | w(n4))))

= (νxy)(y(n2).R{x,w,v}
▽4

((v⟨n3⟩ | w(n4))) | (νwv)x⟨n1⟩.K{x,w,v}
▽4

((v⟨n3⟩ | w(n4))))

= (νxy)(y(n2).(R{x,v}
▽l

5
(v⟨n3⟩) | R{x,w}

▽r
5

(w(n4))) | (νwv)x⟨n1⟩.(K{x,v}
▽l

5
(v⟨n3⟩) | K{x,w}

▽r
5

(w(n4))))

= (νxy)(y(n2) | (νwv)x⟨n1⟩.(v⟨n3⟩ | w(n4)))

As ¬NBR(F ′
▽(P)) =⇒ F▽(P) = F ′

▽(P).

Now observe that:

JP Kh
τ−→ (νxy)(νwv)(νz1n2)([z1 ↔ n1] | v(z2).[z2 ↔ n3] | w(n4))

Let JF ′
G(P)Kh ≜ P • = (νxy)(y(n2) | (νwv)x(z1).([z1 ↔ n1] | v(z2).[z2 ↔ n3] | w(n4))). Then:

P • τ−→ (νxy)(νz1n2)(0 | (νwv)([z1 ↔ n1] | v(z2).[z2 ↔ n3] | w(n4)))

≡ (νxy)(νz1n2)(νwv)([z1 ↔ n1] | v(z2).[z2 ↔ n3] | w(n4))

≡ (νxy)(νwv)(νz1n2)([z1 ↔ n1] | v(z2).[z2 ↔ n3] | w(n4))

We do not continue the subsequent transitions, since it is obvious that the generated sequences will be present
when transition from P • or JP Kh.

Thus, we can see the translation maintained the possible computations (i.e: transitions) and did not create
any new ones.

41

5.3 Properties of the translation

We first discuss properties associated with the auxiliary translation, F ′
· (·), and then those of the main

translation F·(·). The following Lemmas will be useful for proving properties of the main translation.

Lemma 5.3.1. (F ′
· (·) is type preserving)

JP Kh ⊢H G ∧ P /∈ K =⇒ JF ′
▽(P)Kh ⊢H G

for all proofs, ▽, of JP Kh ⊢H G.

Proof. By case analysis on the definition of F ′
· (·)· and by observing that if JC[π.P ′]Kh ⊢H G∗ then

JRNi
▽∗(C[π.P ′]) | KNi

▽∗(C[π.P ′])Kh ⊢H G∗

for i ∈ {1, 2}, where C, π, P ′,▽∗, Ni are as defined in the definition of F ′
· (·)· (Definition 5.1.3).

See §B.1 for the proof.

The following two lemmas will be useful for the proof of Lemma 5.3.3. This shows that the order of actions
is maintained by F ′

· (·).

We split this property into two properties / lemmas, to precisely refer to this notion.

Lemma 5.3.2. (F ′
· (·) maintains order of actions)

F ′
▽(P) = D1[α.D2[β.Q]] =⇒ P = D′

1[α.D
′
2[β.Q

′]]

Proof. It suffices to show that this property holds for K·
·(·) and R·

·(·).

That is, we seek to prove:

KN
▽ (P) = D1[α.D2[β.Q]] =⇒ P = D′

1[α.D
′
2[β.Q

′]]

RN
▽ (P) = D1[α.D2[β.Q]] =⇒ P = D′

1[α.D
′
2[β.Q

′]]

This is proven via case analysis over the definition of K·
·(·) and R·

·(·) respectively.

Corollary 5.3.1.

F ′
▽(P) = D1[α.D2[b▷ {li : Pi}i∈I]] =⇒ P = D′

1[α.D
′
2[b▷ {li : Pi}i∈I]]

Proof. The proof is the same as for Lemma 5.3.2, except we change the properties we seek to prove for
K·

·(·),R·
·(·). However, the method to prove these properties are the same.

Lemma 5.3.3. (F ′
· (·) reduces number of non-blocking reliant channels)

JP Kh ⊢H G ∧ P /∈ K =⇒ |NBC(JF ′
▽(P)Kh)| ≤ |NBC(P)| − 1

for all proofs, ▽, of JP Kh ⊢H G.

42

Proof. Let ▽ be any proof of JP Kh ⊢H G.

As JP Kh ⊢H G ∧ P /∈ K, we have that P ∈ H◦, meaning that NBR(P), by Theorem 4.2.1. Thus:

∃D,C, P ′ : P = D[(νxy)C[π.P ′]]

where sub(π) = x ∧ y ∈ fn(P ′) (or sub(π) = y ∧ x ∈ fn(P ′), but the argument follows analogously), with
(x, y) ∈ NBC(P).

However, observe that (x, y) /∈ NBC(F ′
G(P)).

We have x ∈ fn(KN1
▽∗ (C[π.P ′])), x /∈ fn(RN1

▽∗ (C[π.P ′])), y ∈ fn(RN1
▽∗ (C[π.P ′])), y /∈ fn(KN1

▽∗ (C[π.P ′])) via struc-
tural induction over C[π.P ′].

Thus, observe that (x, y) /∈ NBC(RN1
▽∗ (C[π.P ′]) | KN1

▽∗ (C[π.P ′])).

Then x, y are bound and thus, can never prefix each other again, due to Barendregt’s convention. And so,
(x, y) /∈ NBC(D[(νxy)(RN1

▽∗ (C[π.P ′]) | KN1
▽∗ (C[π.P ′]))])

Furthermore, NBC(F ′
▽(P)) ⊆ NBC(P). We will prove this via contradiction. Suppose

∃(a, b) ∈ NBC(F ′
▽(P)) : (a, b) /∈ NBC(P)

This means that
∃Dt, Ct, Pt : F ′

▽(P) = Dt[(νab)Ct[α.Pt]]

where, without loss of generality, we have sub(α) = a and b ∈ fn(Pt). For our assumption to be true, we
cannot have

∃Du, Cu, Pu : P = Du[(νab)Cu[α.Pu]]

where b ∈ fn(Pu).

Now b ∈ Pt =⇒ Pt = D1[β.R] (where sub(β) = b) or Pt = D1[b▷ {li : Pi}i∈I].

However, if α.D1[β.R] (or α.D1[b ▷ {li : Pi}i∈I]) is a subprocess in F ′
▽(P), we must have α.D2[β.Q] (or

α.D2[b▷ {li : Pi}i∈I]) be a subprocess in P , via Lemma 5.3.2 (or Corollary 5.3.1).

Furthermore, if F ′
▽(P) = D[(νab)Q] then P = D′[(νab)Q′], as (νab)Q∗ must be a subprocess in either

K▽∗

Ni
(C[π.P ′]) or R▽∗

Ni
(C[π.P ′]), by definition, for the appropriate Q∗.

Then, by Barendregt’s variable convention, we must have P = Du[(νab)Cu[α.Pu]], with b ∈ fn(Pu), as α and
β (or b▷ {li : Pi}i∈I) cannot appear outside of Q′.

Thus, NBC(F ′
▽(P)) ⊊ NBC(P).

Therefore, |NBC(JF ′
▽(P)Kh)| ≤ |NBC(P)| − 1.

We now discuss properties of our main translation.

As our translation is algorithmic in nature, we must show that it is terminating (in the sense that it does
not infinitely apply F ′).

43

Lemma 5.3.4. (Translation is terminating)

JP Kh ⊢H G ∧ P /∈ K =⇒ ∃m : ∀P • ∈ F▽1
(P) : P • = F ′

▽m
(F ′

▽m−1
(· · · (F ′

▽1
(P))))

for some proofs ▽i of F ′
▽i−1

(F ′
▽m−1

(· · · (F ′
▽1
(P)))) ⊢H G

Proof. Let ▽1 be any proof of JP Kh ⊢H G. Let P • ∈ F▽1(P).

We will have m ≤ |NBC(P)|.

When |NBC(P)| = 0, we have that ¬NBR(P) and so P • = P . Thus m = |NBC(P)| = 0.

Otherwise, observe that ¬NBR(P) and so ∃D,C, P ′ : P = D[(νxy)C[π.P ′]] where sub(π) = x ∧ y ∈ fn(P ′)
(or sub(π) = y ∧ x ∈ fn(P ′), but the argument follows analogously).

Thus, P • = F▽2
(F ′

▽1
(P)), for some proof ▽2 of F ′

▽1
(P) ⊢H G (which must exist due to Lemma 5.3.1). But

observe that |NBC(F ′
▽1
(P))| ≤ m− 1, via Lemma 5.3.3

Thus, by the same argument, we must have P • = F▽3
(F ′

▽2
(F ′

▽1
(P))), with NBC(F ′

▽2
(F ′

▽1
(P))) ≤ m− 2

Repeating this argument m− 2 more times, we have

P • = F▽m+1
(F ′

▽m
(· · · (F ′

▽1
(P))))

where
|NBC(F ′

▽m
(· · · (F ′

▽1
(P))))| ≤ 0

which means that |NBC(F ′
▽m

(· · · (F ′
▽1
(P))))| = 0.

But then P • = F▽(F ′
▽m

(· · · (F ′
▽1
(P)))) = F ′

▽m
(· · · (F ′

▽1
(P))), and we have concluded our proof.

We then prove that our translation results in a process that is not reliant on non-blocking semantics, a key
goal of our translation.

Corollary 5.3.2. (Translation fixes all channels)

JP Kh ⊢H G ∧ P /∈ K =⇒ ∀P • ∈ F▽(P) : ¬NBR(P •))

for all proofs ▽ of JP Kh ⊢H G

Proof. Let ▽ be some proof of JP Kh ⊢H G. Let P • ∈ F▽(P).

By the proof of Lemma 5.3.4, we have that P • = F ′
▽m−1

(· · · (F ′
▽1
(P))), with NBC(P •) = 0.

Thus, ¬NBR(P •), which concludes our proof.

We then prove our translation is type preserving, in that the resulting translation is typable under the same
hypercontext as the untranslated process.

Lemma 5.3.5. (Translation is type preserving)

JP Kh ⊢H G ∧ P /∈ K =⇒ ∀P • ∈ F▽(P) : JP •Kh ⊢H G

44

for all proofs ▽ of JP Kh ⊢H G.

Proof. Let ▽ be some proof of JP Kh ⊢H G. Let P • ∈ F▽(P).

Observe that P • = F ′
▽m

(F ′
▽m−1

(· · · (F ′
▽1
(P)))), via Lemma 5.3.4. By Lemma 5.3.1 and induction on the

length of the composition, we have our thesis.

Finally, using the aforementioned results, we can show our translation achives its goal: translating processes
in H◦ to H•.

Theorem 5.3.1. (Translation guarantees deadlock-freedom under blocking semantics)

JP Kh ⊢H G ∧ P /∈ K =⇒ ∀P • ∈ F▽(P) : JP •Kh ⊢H G ∧ P • ∈ H•

for all proofs ▽ of JP Kh ⊢H G.

Proof. Let ▽ be some proof of JP Kh ⊢H G. Let P • ∈ F▽(P).

By Lemma 5.3.5, we have that P • ∈ H. By Corollary 5.3.2 and Theorem 4.2.1 we have that P • /∈ H◦ and so
P • /∈ H ∨ P • /∈ K. Thus we have that P • ∈ K and so we have P • ∈ H•.

However, these properties merely show that our translation satisfies the basic quality of session fidelity. As
discussed in §2, we must show translation does not lose any behaviour captured by a process in H◦. Thus
we must establish an operational correspondence property, for our translation.

We have not been able to prove any results on operational correspondence, due to the time afforded to this
project, but we will present operational conjectures motivated by our examples from §5.2.

Furthermore, we will present two conjectures. This is because we are dealing with two different semantics,
which will have a consequence on the behaviour that our translation introduces or preserves. Thus, we
present a conjecture with regards to blocking semantics and another with regards to non-blocking / self-
synchronisation semantics.

We first present a conjecture regarding operational correspondence under the blocking semantics:

Conjecture 5.3.1. (Completeness under blocking semantics)

Let JP Kh ⊢H G. Then:

• P →∗ Q =⇒ ∃Q• ∈ F▽Q
(Q) : P • →∗ Q•

for all P • ∈ F▽P
(P) where:

• ▽P is any proof of JP Kh ⊢H G

• ▽Q is a proof of JP Kh ⊢H Q

We suspect there is a completeness property in our translation but not a soundness property. This is because
our translation takes some deadlocked processes and makes them deadlock-free, meaning that there might be
a processes P where P • ∈ F▽(P) reduces, but P itself cannot reduce (as it deadlocks). However, any process
that would have an action under reduction semantics should occur under the translated process, since we
merely add parallelism to the process.

45

We now present a conjecture regarding operational correspondence under the non-blocking semantics.

Conjecture 5.3.2. (Operational Correspondence under non-blocking semantics)

Let JP Kh ⊢H G. Then:

• JP Kh
l1−→ · · · ln−→ JQKh =⇒ ∃Q• ∈ F▽Q

(Q) : JP •Kh
l1−→ · · · ln−→ JQ•Kh

• JP •Kh
l1−→ · · · ln−→ JQKh =⇒ ∃P ′ : JP Kh

l1−→ · · · ln−→ JP ′Kh ∧Q ∈ F▽P ′ (P
′)

For all P • ∈ F▽(P) where:

• ▽P is any proof of JP Kh ⊢H G

• ▽P ′ is any proof of JP Kh ⊢H G′

• ▽Q is a proof of JP Kh ⊢H Q

We believe there is both a completeness and soundness property in our translation. The fact that the examples
show new transition sequences lost / created gives confidence to this effect.

The key reasons we believe these properties hold is as follows:

• Our translation preserves the order in which actions are taken.

• Our translation does not “add” or “remove” process constructs.

• Parallelism does not affect the order in which actions must be taken. If we have a process α.β.P and the
process α.P1 | β.P2, both processes can have transition on either α or β, due to non-blocking semantics.

6 Discussion

In the following section, we discuss some insights gained in this work. Note that we often refer to the systems
in [Wad12], [KMP19] as independent and different systems to our variant of these systems. For clarity and
brevity, we refer to the linear fragment of [Wad12] as CP’ and the linear fragment of [KMP19] as HCP’.

Also note that in CP’, HCP’, their syntax allows for communication without message-passing: x(), x().
Lastly, note that CP’ and HCP’ use different notation for (non-message passing) bound output: x[], x[y].

Non-blocking semantics do not yield new interactive behaviours A interesting consequence of
our translation (if the operational correspondence holds true) is that non-blocking semantics do not yield
behaviours that are not captured by blocking semantics. However, this should not be altogether that surpris-
ing, as using hypersequents does not yield an extension or different formulation of linear logic, just merely a
different presentation. In this sense, the proofs in linear logic it captures (and thus the processes it induces)
should not be significantly different.

Safe Cyclic Processes in HCP [DP22] conjectures that a of HCP and the dπ-calculus would enjoy
the same results as a comparison between CP and the dπ-calculus, as HCP cannot capture the safe cyclic
processes that the dπ-calculus captures. Thus, we would expect the process P in the proof of Lemama 4.2

46

would not be well-typed in HCP (after encoding). Thus, we should be able to use P to separate H• and K.
However, observe that it will-typed in HCP:

[z1 ↔ x] ⊢H z1 : •, x : •
[z1 ↔ x] ⊢H a1 : •, z1 : •, x : • | a2 : •
a2(z1).[z1 ↔ x] ⊢H a1 : •, a2 : S, x : •
a1(x).a2(z1).[z1 ↔ x] ⊢H a1 : R, a2 : S

[n ↔ z2] ⊢H n : •, z2 : •
[n ↔ z2] ⊢H b1 : •, n : •, z2 : •

0 ⊢H b2 : •, z : •
b2(z) ⊢H b2 : R

[n ↔ z2] | b2(z) ⊢H b1 : •, n : •, z2 : • | b2 : R

b1(z2).([n ↔ z2] | b2(z)) ⊢H b1 : S, n : • | b2 : R

a1(x).a2(z1).[z1 ↔ x] | b1(z2).([n ↔ z2] | b2(z)) ⊢H a1 : R, a2 : S | b1 : S, n : • | b2 : R

(νa2b2)(a1(x).a2(z1).[z1 ↔ x] | b1(z2).([n ↔ z2] | b2(z))) ⊢H a1 : R | b1 : S, n : •
JP Kh = (νa1b1)(νa2b2)(a1(x).a2(z1).[z1 ↔ x] | b1(z2).([n ↔ z2] | b2(z))) ⊢H n : •

Furthermore, we do not believe this is an anomaly of HCP in comparison to HCP’. Consider another safe
cyclic process (in the sense that it shares multiple sessions across two parallel processes), that is typable
under the exact rules of [KMP19]:

a2() ⊢H a2 : 1

a1().a2() ⊢H a1 : ⊥ | a2 : 1

y().a1().a2() ⊢H a1 : ⊥ | a2 : 1 | y : 1

x().y().a1().a2() ⊢H a1 : ⊥, x : ⊥ | a2 : 1 | y : 1

a2(y).x().y().a1().a2() ⊢H a1 : ⊥, x : ⊥ | a2 : 1⊗ 1

a1(x).a2(y).x().y().a1().a2() ⊢H a1 : ⊥ O ⊥ | a2 : 1⊗ 1

b1() ⊢H b1 : 1

b2().b1() ⊢H b1 : 1 | b2 : ⊥
z().b2().b1() ⊢H b1 : 1 | b2 : ⊥, z : ⊥

n().z().b2().b1() ⊢H b1 : 1 | n : 1 | b2 : ⊥, z : ⊥
b2(z).n().z().b2().b1() ⊢H b1 : 1 | n : 1 | b2 : ⊥ O ⊥

b1(n).b2(z).n().z().b2().b1() ⊢H b1 : 1⊗ 1 | b2 : ⊥ O ⊥
a1(x).a2(y).x().y().a1().a2() | b1(n).b2(z).n().z().b2().b1() ⊢H a1 : ⊥ O ⊥ | a2 : 1⊗ 1 | b1 : 1⊗ 1 | b2 : ⊥ O ⊥

(νa2b2)(a1(x).a2(y).x().y().a1().a2() | b1(n).b2(z).n().z().b2().b1()) ⊢H a1 : ⊥ O ⊥ | b1 : 1⊗ 1

(νa1b1)(νa2b2)(a1(x).a2(y).x().y().a1().a2() | b1(n).b2(z).n().z().b2().b1())) ⊢H ∅)

It seems that HCP allows some cyclic processes. It would be worth exploring exactly which safe cyclic
processes can be typed by HCP.

6.1 Future Work

Finishing the comparison In terms of future work, we seek to complete our project. In particular:

• We wish to prove our Operational Correspondence Conjectures (Conjectures 5.3.1, 5.3.2)

• Find if a unification result exists between K andH•. That is, find if there is a type preserving translation
from K to H•, that has an operational correspondence property.

Further properties of H◦ Furthermore, note how we separated H in terms of K. This directly leads to
separation results, which is why it was the approach chosen. However, we believe this set also captures two
other properties.

The first is that all processes in H that would utilise non-blocking semantics is inside this set. Formally
speaking, this would involve proving that for all P ∈ H◦, we have that:

P
l1−→ · · · ln−→ π.Q

π∥l−−→ Q′

where the last transitions occurs due to RH-SelfSyn.

47

That is to say, that any process inH◦ requires utilising non-blocking semantics at some point in its transitions.
We leave such technical work as future work.

The second is that H◦ is the set of all well-typed HCP-processes that do not have session progress. That is
H◦ = H ∩ D, where D is the set of all session processes that have session progress.

In the forward direction, any action that relies on a non-blocking interpretation must be blocking its con-
tinuation in a blocking interpretation, and so all its processes must deadlock. In the reverse direction, the
rules that result in deadlocking behaviour must be those that are unique to HCP and these are the rules that
involve non-blocking semantics, which must mean that a process that deadlocks (but is typable under HCP)
utilises such rules, and therefore, must fall into H◦, if the previous property holds true.

Extending HCP with priorities CP has already been extended to a type system that includes priorities,
as explored by Dardha and Gay in [DG18]. However, it would be worth exploring the effects of extending
HCP with priorities, as HCP captures novel behaviours not present in CP (via its non-blocking / self-
synchronisation semantics).

7 Related Work

Curry-Howard Interpretations of Processes [Wad12] and [KMP19] are merely two instances of a
Curry-Howard interpretation of processes, a project initiated by Abramsky in [Abr94] and Bellin and Scott
in [BS94]. This project seeks to find a logical foundation for concurrency, and the last two papers sought to
use the linear logic of Girard [Gir87] for this purpose. In the last decade or so, there has been a revitalisation
in this line of work by Caires and Pfenning in [CP10], which presented a Curry-Howard Correspondence
with intuitionistic linear logic and session processes. Both these systems capture deadlock-free processes, but
there are other deadlock-free processes it does not capture, notably that which contain so-called “safe” cyclic
process dependencies. The type system by Dardha and Gay in [DG18] captures exactly these processes.
It does so by annotating linear logic types with priorities, which is a simplification of the obligations /
capabilities notion in [Kob06], á la the type system by Padovani [Pad14].

More recently, Qian et al. introduced Client-Server Linear Logic [QKB21], which is an extension of linear
logic, and a corresponding π-calculus for it. Another extension to linear logic, by Rocha and Caires in
[RC21], adds the notion of shared state to CP, based on a “second-order Classical Linear Logic with mix”.
All these type systems thus far connect linear logic propositions with binary session types. That is, session
types between two parties. [CMS23], in contrast, connects linear logic to multiparty session types, which
are protocols between two or more participants. Lastly, we have [VDHP21], which extends PCP to support
notions of asynchronous communication;

Comparisons of type systems The line of research involving comparing type systems of the π-calculus
is relatively novel and to our knowledge, no new comparisons (at this level of rigour) have been formulated
since [DP22]. The only similar comparison we have found is by van den Heuvel and Pérez in [HP20], which
compares a type system derived from intuitionistic linear logic and from classical linear logic. It finds that
the type system for classical linear logic is more expressive, in the sense that it captures more processes. One
notable difference between it and [DP22] (as well as this paper) is that it defines type systems upon a single
π-calculus, whereas [DP22] (and consequently this work) defines multiple π-calcululi.

48

8 Conclusion

We have extended a formal comparison of two type systems for the π-calculus that capture deadlock-free
processes. We extend an existing comparison between [Kob06] and [Wad12] (which uses processes from [Vas12]
as the unit of comparison), with a conceptual extension of [Wad12]: [KMP19].

One major difficulty for this is the presence of non-trivial differences in the operational semantics of [KMP19],
in comparison to [Kob06], [Wad12], [Vas12]. Specifically, [KMP19] introduces notions of non-blocking actions
and self-synchronisation, originally introduced by [MS04], that makes utilizing the methods of [DP22] inad-
equete. Specifically, replicating their methodology would result in a comparing a set of processes that may
deadlock H to a set of processes that are deadlock-free (L,K from [DP22]).

To resolve this, we first characterise the portion of H that lies outside K: H◦, by means of the predicate
NBR(·). Then, we provide a type-preserving translation F·(·) that takes such processes and places them into
the portion of H that lies inside K: H•.

We also considered how H• compares to L and K. As expected, we found that H• ⊊ K. Surprisingly,
we found that L ̸⊆ H• but rather, they simply intersected. In essence, adding mix principles to Wadler’s
Classical Processes produces syntactic structures not captured by HCP.

We also conjecture an operational correspondence property of that translation. If shown to be true, this would
suggest that the non-blocking and self-synchronization semantics added are superfluous in terms of behaviour,
and would make comparing H• to L,K a fair characterisation for comparing [KMP19] to [Wad12],[Kob06].

To motivate the conjecture, we have provided representative examples of the transformation.

Acknowledgements We would like to acknowledge Prof. Dr. Jorge Peŕez, for supervising this project
and providing invaluable insight and discussion during the process of writing this paper. We would also like
to acknowledge Dr. Revantha Ramanayake for his additional supervision as well.

This work was completed as part of the Bachelor’s Project course at the University of Groningen.

References

[Abr94] Samson Abramsky. Proofs as processes. Theoretical Computer Science, 135(1):5–9, December
1994.

[BS94] Gianluigi Bellin and Phillip J. Scott. On the π-calculus and linear logic. Theoretical Computer
Science, 135(1):11–65, December 1994.

[CLM+16] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. Coher-
ence Generalises Duality: A Logical Explanation of Multiparty Session Types. In International
Conference on Concurrency Theory, page 15 pages, 2016. Artwork Size: 15 pages Medium: appli-
cation/pdf Publisher: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saar-
bruecken, Germany.

[CMS23] Marco Carbone, Sonia Marin, and Carsten Schürmann. A logical interpretation of asynchronous
multiparty compatibility, 2023.

[CP10] Lúıs Caires and Frank Pfenning. Session Types as Intuitionistic Linear Propositions. In Paul
Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, Lecture Notes
in Computer Science, pages 222–236, Berlin, Heidelberg, 2010. Springer.

49

[DG18] Ornela Dardha and Simon J. Gay. A New Linear Logic for Deadlock-Free Session-Typed Processes.
In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation
Structures, Lecture Notes in Computer Science, pages 91–109, Cham, 2018. Springer International
Publishing.

[DGS12] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Proceedings
of the 14th Symposium on Principles and Practice of Declarative Programming, PPDP ’12, page
139–150, New York, NY, USA, 2012. Association for Computing Machinery.

[DP22] Ornela Dardha and Jorge A. Pérez. Comparing type systems for deadlock freedom. Journal of
Logical and Algebraic Methods in Programming, 124:100717, 2022.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, January 1987.

[Gor10] Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Information and Computation, 208(9):1031–1053, September 2010.

[HP20] Bas van den Heuvel and Jorge A. Pérez. Session Type Systems based on Linear Logic: Classical
versus Intuitionistic. Electronic Proceedings in Theoretical Computer Science, 314:1–11, April
2020. arXiv:2004.01320 [cs].

[IK04] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the Pi-calculus. Theoretical
Computer Science, 311(1):121–163, January 2004.

[KL17] Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process networks. Infor-
mation and Computation, 252:48–70, February 2017.

[KMP19] Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never: a fully-
abstract semantics for classical processes. Proceedings of the ACM on Programming Languages,
3(POPL):24:1–24:29, January 2019.

[Kob02] Naoki Kobayashi. A Type System for Lock-Free Processes. Information and Computation,
177(2):122–159, September 2002.

[Kob06] Naoki Kobayashi. A New Type System for Deadlock-Free Processes. In David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, Christel Baier, and Holger Hermanns, editors,
CONCUR 2006 – Concurrency Theory, volume 4137, pages 233–247. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006. Series Title: Lecture Notes in Computer Science.

[Kob07] Naoki Kobayashi. Type systems for concurrent programs, extended version of [?], Tohoku Uni-
versity, www.kb.ecei.tohoku.ac.jp/koba/papers/tutorial- type- extended.pdf, 2007.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Information
and Computation, 100(1):1–40, September 1992.

[MS04] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. Mathematical
Structures in Computer Science, 14(5):715–767, October 2004. Publisher: Cambridge University
Press.

[Pad14] Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-
LICS ’14, pages 1–10, New York, NY, USA, July 2014. Association for Computing Machinery.

[QKB21] Zesen Qian, G.A. Kavvos, and Lars Birkedal. Client-Server Sessions in Linear Logic, March 2021.
arXiv:2010.13926 [cs].

50

[RC21] Pedro Rocha and Lúıs Caires. Propositions-as-types and shared state. Proceedings of the ACM
on Programming Languages, 5(ICFP):1–30, August 2021.

[TVTV13] Hugo Torres Vieira and Vasco Thudichum Vasconcelos. Typing Progress in Communication-
Centred Systems. In Rocco De Nicola and Christine Julien, editors, Coordination Models and
Languages, Lecture Notes in Computer Science, pages 236–250, Berlin, Heidelberg, 2013. Springer.

[Vas12] Vasco T. Vasconcelos. Fundamentals of session types. Information and Computation, 217:52–70,
August 2012.

[VDHP21] Bas Van Den Heuvel and Jorge A. Pérez. Deadlock Freedom for Asynchronous and Cyclic Process
Networks. In Electronic Proceedings in Theoretical Computer Science, volume 347, pages 38–56,
October 2021. ISSN: 2075-2180 Journal Abbreviation: Electron. Proc. Theor. Comput. Sci.

[Wad12] Philip Wadler. Propositions as sessions. In Proceedings of the 17th ACM SIGPLAN international
conference on Functional programming, ICFP ’12, pages 273–286, New York, NY, USA, September
2012. Association for Computing Machinery.

[Yos96] Nobuko Yoshida. Graph types for monadic mobile processes. In Gerhard Goos, Juris Hartma-
nis, Jan Leeuwen, V. Chandru, and V. Vinay, editors, Foundations of Software Technology and
Theoretical Computer Science, volume 1180, pages 371–386. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1996. Series Title: Lecture Notes in Computer Science.

51

A Omitted proofs for §4

A.1 Proof of theorem 4.2.1

We divide the proof into two lemmas: Lemma A.1.1 and Lemma A.1.2.

Lemma A.1.1. P ∈ Ho =⇒ NBR(P)

Proof. Suppose P ∈ Ho. We will prove NBR(P) by showing that ¬NBR(P) leads to a contradiction.

Suppose ¬NBR(P). We will show that P ∈ K via structural induction.

1. Consider P = 0. Let Γ = Γ1, . . . ,Γk. The proof follows as in Lemma A.2, case 1 in [DP22], except we
have

0 ⊢H x1,1 : •, . . . , x1,n1 : • | · · · | xk,1 : •, . . . , xk,nk
: •

for some xi,j ∈ cn(Γi) and ni = cn(Γi).

instead of
0 ⊢LL x1 : •, . . . , xn : •

but the subsequent justification remains the same, as Γ↓ = ∅ and we use ⊢≺ instead of ⊢µ
≺.

2. Consider P = x(y).P ′. Let Γ = Γ1, . . . ,Γk. The proof follows as in Lemma A.2, case 2 in [DP22],
except we use definitions of H instead of L and ⊢≺ instead of ⊢µ

≺.

3. Consider P = x⟨y⟩.P ′. We have:

Γ1, . . . ,Γk, x : !T.S, y : T ⊢ST x⟨y⟩.P ′

for some contexts Γ1, . . . ,Γk and session types S, T .

Let Γ = Γ1, . . . ,Γk.

By inversion on typing judgment on the above, we have:

Γ, x : S ⊢ST P
′

By induction hypothesis on the above, we have:

JΓ↓Kf
′

u , f ′
x : JSKu ⊢≺′ JP ′Kf

′

u (1)

for some renaming function f ′ and some ≺ such that ≺′=≺ ∪{(c, y) | y ∈ fn(JP ′Kf,{x 7→c}
u) \ {c}}.

Now we must show:

fx : chan(JT Ku, JSKu; !
0
0);≺ (y : JT Ku | JΓ↓Kfu) ⊢≺ (νc)fx⟨y, c⟩.JP ′Kf,{x 7→c}

u

We let f be such that f ′ = f, {x 7→ c}. We can rewrite (1) as follows:

JΓ↓Kfu, c : JSKu ⊢≺′ JP ′Kf,{x 7→c}
u (2)

Applying Tπ-Var and Tπ-Tup, we can derive:

y : JT Ku, c : JSKu ⊢≺′ y : JT Ku, c : JSKu (3)

52

Applying Tπ-Out to (2) and (3) we derive:

fx : chan(JT Ku, JSKu; !
0
0);≺′ (c : JSKu | JSKu, y : JT Ku | JΓ↓Ku) ⊢≺′ fx⟨y, c⟩.JP ′Kf,{x 7→c}

u (4)

Let U1 = u(JSKu), U2 = u(JSKu). Observe that rel(U1 | U2)

Observing that JSKu | JSKu = chan(τ̃ ;U1 | U2) and applying Tπ-Res to (4), we have:

fx : chan(JT Ku, JSKu; !
0
0);≺ (y : JT Ku | JΓ↓Ku) ⊢≺ (νc)fx⟨y, c⟩.JP ′Kf,{x 7→c}

u

which proves our thesis.

4. Consider P = x▷{li : Pi}i∈I . Let Γ = Γ1, . . . ,Γk. The proof follows as in Lemma A.2, case 4 in [DP22],
except we use definitions of H instead of L and ⊢≺ instead of ⊢µ

≺.

5. Consider P = x ◁ lj .Pj . Let Γ = Γ1, . . . ,Γk. The proof follows as in Lemma A.2, case 5 in [DP22],
except we use definitions of H instead of L and ⊢≺ instead of ⊢µ

≺.

6. Consider P = (νxy)P ′. Observe that we have:

Γ1, . . . ,Γk ⊢ST (νxy)(P
′) (5)

(νxy)JP ′Kh ⊢H JΓ1Kh | · · · | JΓkKh (6)

By inversion on typing judgements on (6) we have:

JP ′Kh ⊢H JΓ1Kh | · · · | JΓiKh, x : JT Kh | · · · | JΓjKh, y : JT Kh | · · · | JΓkKh
(νxy)JP ′Kh ⊢H JΓ1Kh | · · · | JΓkKh

(7)

For JT Kh to be assigned to x (or y), either:

• JP ′Kh = D[P ′
1.π.P

′′] = D′[P ′
1.π.P

′′ | P2]

• JP ′Kh = D[P ′
1.x▷ {li : Pi}i∈I] = D′[P ′

1.x▷ {li : Pi}i∈I | P2]

• JP ′Kh = D[P ′
1.[x ↔ z]] = D′[P ′

1.[x ↔ z] | P2]

Where sub(π) = x (or sub(π) = y).

In all cases, by ¬NBR(P), we must y /∈ fn(P ′′), y /∈ fn(P ′
1), y /∈ fn(Pi). Thus, y ∈ fn(P2), as y ∈ fn(P ′).

This is analogous for y.

Let P1 = P ′
1.π.P

′′, P1 = P ′
1.x ▷ {li : Pi}i∈I , P1 = P ′

1.[x ↔ z] in the respective cases. Then continuing
the inversion on typing judgements in (7):

JP1Kh ⊢H G1 | J∆1Kh, x : JSKh JP2Kh ⊢H G2 | J∆2Kh, y : JS′Kh
...

H-Mix
...

JP ′Kh ⊢H JΓ1Kh | · · · | JΓiKh, x : JT Kh | · · · | JΓjKh, y : JT Kh | · · · | JΓkKh
(νxy)JP ′Kh ⊢H JΓ1Kh | · · · | JΓkKh

Then observe that S = T and S′ = T , via ¬NBR(P). If S ̸= T , we must have P ′ = C2[π.C1[P1 | P2]],
with sub(π) = x ∨ sub(π) = y, but this is disallowed under ¬NBR(P). A similar argument follows for
S′.

Thus, under our inductive hypothesis JP1K
f ′,{x,y 7→c}
u is typable under a context with type assign-

ment c : JT Ku and JP2K
f ′,{x,y 7→c}
u is typable under a context with type assignment c : JT Ku. Then

JP1 | P2K
f ′,{x,y 7→c}
u has a context with type assignment c : JT Ku | JT Ku.

53

So we have Γ, c : JT Ku | JT Ku ⊢≺ JP1 | P2K
f ′,{x,y 7→c}
u . Now observe that P ′ ̸= D1[π.D1[P1 | P2]] where

sub(π) ∈ {x, y}, as this would contradict NBR(P). Thus we will have

Γ′, c : JT Ku | JT Ku ⊢≺ JP ′Kf
∗,{x,y 7→c}

u

Let U = u(JT Ku | JT Ku). We have it that rel(U), via Corollary 2.4.1. As as rel(U), we can apply Tπ-Res
over channel c, and we have our thesis. Thus, we have:

Γ′, c : JT Ku | JT Ku ⊢≺ JP ′Kf
∗,{x,y 7→c}

u rel(U)

Γ′ ⊢≺ (νc)JP ′Kf
∗,{x,y 7→c}

u

And we conclude this case.

7. Consider P = P1 | P2. Let Γ = Γ1, . . . ,Γk. The proof follows as in Lemma A.2, case 6 in [DP22],
except we use definitions of H instead of L and ⊢≺ instead of ⊢µ

≺. The proof holds as because P ∈ H,
every channel name in Γ must be unique and hence splitting it must have the split domains share no
names.

As P ∈ K, then P /∈ Ho. However, this is a contradiction and so, ¬¬NBR(P) ≡ NBR(P). Thus, we have
our thesis.

Lemma A.1.2. (P ∈ H ∧NBR(P)) =⇒ P ∈ Ho

Proof. Suppose that NBR(P). Then ∃D,C, P ′ : P = D[(νxy)C[π.P ′]], where sub(π) = s ∈ {x, y} and
o ∈ fn(P ′) where o ∈ {x, y} \ {s}.

Observe that ∃Γ : Γ ⊢≺ JP Kfu =⇒ ∃Γ′ : Γ′ ⊢≺′ J(νxy)C[π.P ′]Kf
′

u (as all well-typed processes must have
well-typed subprocesses).

We will show that ¬∃Γ′ : Γ′ ⊢≺′ JC[π.P ′]Kf
′

u and thus, by contrapositive, we have ¬∃Γ : Γ ⊢≺ JP Kfu.

Suppose ∃Γ′ : Γ′ ⊢≺′ J(νxy)C[π.P ′]Kf
′

u . By inversion on typing judgements:

Γ′, c : chan(τ̃ ;U) ⊢≺′∪{(c,y)|y∈fn(P)\{c}} JC[π.P ′]Kf
′,{x,y 7→c}

u rel(U)

Γ′ ⊢≺′ J(νxy)C[π.P ′]Kf
′

u

Thus, if we show ¬rel(U), we will have a contradiction.

To show that ¬rel(U), it suffices to show that U = α.U ′, where α is a sequential usage. We will show this by

applying Lemma A.1.3 to JC[π.P ′]Kf
′,{x,y 7→c}

u .

We can apply this Lemma as we satisfy its conditions:

• We have C[π.P ′] ∈ H as (νxy)C[π.P ′] ∈ H (via Lemma A.1.4) and (νxy)C[π.P ′] ∈ H =⇒ C[π.P ′] ∈
H, via inversion of typing judgements on (νxy)C[π.P ′].

• The rest of the conditions are immediate from the definition of NBR(·).

Therefore, we have a contradiction and ¬∃Γ′ : Γ′ ⊢≺′ J(νxy)P ′Kf
′

u .

Therefore, through the aforementioned contrapositive, we have ¬∃Γ : Γ ⊢≺ JP Kfu.

Thus P /∈ K and as P ∈ H, we have P ∈ Ho.

54

Lemma A.1.3. Consider C1[π.P] ∈ H, and x, y, π such that:

• sub(π) = s ∧ s ∈ {x, y}

• o ∈ {x, y} \ {s} ∧ o ∈ fn(P)

• x, y ∈ fn(C1[π.P])

Then:

Γ, c : chan(τ̃ ;U) ⊢≺ JC1[π.P]Kf,{x,y 7→c}
u =⇒ U = α.U ′

Proof. We prove this via structural induction on the definition of the process context C1, on the process

JC1[π.P
′]Kf,{x,y 7→c}

u .

1. Consider C1[π.P] = v⟨w⟩.C ′[π.P]

Suppose:
Γ, c : chan(τ̃ ;U) ⊢≺ Jv⟨w⟩.C ′[π.P]Kf,{x,y 7→c}

u

Let f ′ = f, {x, y 7→ c}.
Then

Γ, c : chan(τ̃ ;U) ⊢≺ (νd)f ′
v⟨f ′

w, d⟩.JC ′[π.P]Kf
′,{v 7→d}

u

Then by inversion on typing judgments:

Γ1 ⊢≺′ JC ′[π.P]Kf
′,{v 7→d}

u Γ2 ⊢≺′ f ′
w, d : τ̃ ′

Γ, c : chan(τ̃ ;U), d : chan(τ̃ ′;U1) ⊢≺′ f ′
v⟨f ′

w, d⟩.JC ′[π.P]Kf
′,{v 7→d}

u

rel(U1)

Γ, c : chan(τ̃ ;U) ⊢≺ (νd)f ′
v⟨f ′

w, d⟩.JC ′[π.P]Kf
′,{v 7→d}

u

With Γ, c : chan(τ̃ ;U), d : chan(τ̃ ′;U1) = f ′
v : chan(τ̃ ; !0κ);≺ (Γ1 | Γ2).

There are two cases:

• Consider v ∈ {x, y}. We have f ′
v = c. Then

Γ, c : chan(τ̃ ;U), d : chan(τ̃ ′;U1) = c : chan(τ̃ ; !0κ);≺ (Γ1 | Γ2)

Observe then that U =!0κ.U
′, for some U ′. Thus, we have achieved our thesis.

• Consider v /∈ {x, y}. Then by our induction hypothesis, Γ1 = Γ′
1, c : chan(τ̃

∗;U∗), with U∗ = α.U ′.
Observing that c /∈ dom(Γ2), and f ′

v ̸= c, U = U∗ = α.U ′, and thus, we have achieved our thesis.

2. Consider C1[π.P] = v ◁ lj .C
′[π.P]

This case is similar to the previous case.

3. Consider C1[π.P] = v(w).C ′[π.P]

Suppose:
Γ, c : chan(τ̃ ;U) ⊢≺ Jv(w).C ′[π.P]Kf,{x,y 7→c}

u

Let f ′ = f, {x, y 7→ c}.
Then

Γ, c : chan(τ̃ ;U) ⊢≺ f ′
v(w, d).JC

′[π.P]Kf
′,{v 7→d}

u

55

Then by inversion on typing judgments:

Γ′ ⊢≺ JC ′[π.P]Kf
′,{v 7→d}

u

Γ, c : chan(τ̃ ;U) ⊢≺ f ′
v(w, d).JC ′[π.P]Kf

′,{v 7→d}
u

There are two cases:

• Consider v ∈ {x, y}. Let Γ′ = ∆, w, d : τ̃∗. Observing that f ′
v = c, we will have

Γ, c : chan(τ̃ ;U) = c : chan(τ̃∗; ?0κ);≺ ∆

Then U =?0κ.U
′, for some U ′ and so, we have our thesis.

• Consider v /∈ {x, y}. Observe that as x, y ∈ fn(v(w).C ′[π.P]), then x, y ∈ fn(C ′[π.P]), meaning

that c ∈ dom(Γ′). Thus Γ′ = Γ′′, c : chan(τ̃ ′;U∗). By the induction hypothesis, U∗ = α.U ′.

Now let Γ′ = ∆, c : chan(τ̃ ′;U∗), w, d : τ̃∗.

We have

Γ, c : chan(τ̃ ;U) = f ′
v : chan(τ̃∗; ?0κ);≺ (∆, c : chan(τ̃ ′;U∗)) = c : chan(τ̃ ′;U∗), f ′

v : chan(τ̃∗; ?0κ);≺ ∆

Thus, U = U∗ = α.U ′, and we have achieved our thesis.

4. Consider C1[π.P] = C ′[π.P] | Q.

As C1[π.P] ∈ H, by inversion of typing judgments we have:

JC ′[π.P]Kh ⊢H G1 JQKh ⊢H G2

JC ′[π.P] | QKh ⊢H G1 | G2

Suppose {x, y} ∩ cn(G2) ̸= ∅. Then {x, y} ∪ cn(G1) ̸= cn(G1), as otherwise G1 | G2 is not defined. That
is to say, suppose G2 assigns a type to at least one of x, y.

However, then x ∈ fn(Q) ∨ y ∈ fn(Q) and x /∈ fn(C ′[π.P]) ∨ y /∈ fn(C ′[π.P]), meaning that the free
occurrences of x, y in P are bound occurrences in C ′[π.P]. However, then we have names in binding
occurences in C ′[π.P] | Q that are not distinct from the free names in C ′[π.P] | Q and thus would not
follow Barendregt’s variable convention.

Therefore, x, y /∈ cn(G2) and x, y /∈ fn(Q). However, x, y ∈ fn(C1[π.P]) and so, x, y ∈ fn(C ′[π.P]).

Now, if
Γ, c : chan(τ̃ ;U) ⊢≺ JC ′[π.P] | QKf,{x,y 7→c}

u

By inversion of typing judgments:

Γ1 ⊢≺ JC ′[π.P]Kf,{x,y 7→c}
u Γ2 ⊢≺ JQKf,{x,y 7→c}

u

Γ, c : chan(τ̃ ;U) ⊢≺ JC ′[π.P] | QKf,{x,y 7→c}
u

With Γ, c : chan(τ̃ ;U) = Γ1 | Γ2.

Observe that c /∈ cn(Γ2), as x, y /∈ fn(Q). But as c ∈ cn(Γ1 | Γ2), c ∈ cn(Γ1). Thus, Γ1 = Γ′
1, c : chan(τ̃

′;U∗).

As c /∈ cn(Γ2) , we have Γ1 | Γ2 = c : chan(τ̃ ′;U∗), (Γ′
1 | Γ2).

Thus, τ̃ ′ = τ̃ and U = U∗. Now applying our inductive hypothesis to C ′[π.P], we have U∗ = α.U ′

And thus we have our thesis.

56

5. Consider C1[π.P] = (νvw)C ′[π.P].

If we have
Γ, c : chan(τ̃ ;U) ⊢≺ J(νvw)C ′[π.P]Kf,{x,y 7→c}

u

By inversion on typing judgments:

Γ, c : chan(τ̃ ;U), d : chan(τ̃ ′;U ′) ⊢≺′ JC ′[π.P]Kf,{x,y 7→c},{v,w 7→d}
u rel(U ′)

Γ, c : chan(τ̃ ;U) ⊢≺ J(νvw)C ′[π.P]Kf,{x,y 7→c}
u

v, w /∈ {x, y}, as then x, y /∈ fn(C1[π.P]), which would violate our assumption x, y ∈ fn(C1[π.P]).

Observe then that:
Γ′, c : chan(τ̃ ;U) ⊢≺′ JC ′[π.P]Kf

′,{x,y 7→c}
u

And by our inductive hypothesis we have U = α.U∗

Thus, we have our thesis.

6. Consider C1[π.P] = π.P . Observe that as sub(π) = x ∨ sub(π) = y, sub(JπKf,{x,y 7→c}
u) = c. Thus, if

we have

Γ, c : chan(τ̃ ;U) ⊢≺ Jπ.P Kf,{x,y 7→c}
u

U = α.U ′, where

• α =!oκ if π = x⟨v⟩ ∨ π = x◁ lj

• α =?oκ if π = x(w)

For some U ′, as π is the last action over channel c.

Thus, we have our thesis.

Lemma A.1.4.
C[P] ∈ H =⇒ P ∈ H

Proof. We prove this via structural induction on C.

In the case: C[P] = P . Then our thesis follows immediately.

In other cases, we either have:

• C[P] = π.C ′[P]

• C[P] = C ′[P] | Q

• C[P] = (νxy)C ′[P]

Thus, if C[P] ∈ H, C[P] ⊢H G, which implies C ′[P] ⊢H G′, for some G,G′. Observe then that C ′[P] ∈ H and
thus by our inductive hypothesis, P ∈ H.

Thus, we have our thesis, via induction.

57

B Omitted proofs for §5

As a reminder, various proofs of HCP typing judgements (such as ▽i,▽′,▽∗) are implicitly defined via
Convention 3.1.1.

B.1 Proof of Lemma 5.3.1

We repeat Lemma 5.3.1
JP Kh ⊢H G ∧ P /∈ K =⇒ JF ′

▽(P)Kh ⊢H G

for all proofs, ▽, of JP Kh ⊢H G.

Proof. We assume JP Kh ⊢H G ∧ P /∈ K. Let ▽ be any proof of JP Kh ⊢H G. We perform case analysis on the
definition of F ′

· (·)·.

1. F ′
▽(P) = D[(νxy)(RN1

▽∗ (C[π.P ′]) | KN1
▽∗ (C[π.P ′]))].

Observe that that P = D[(νxy)C[π.P ′]].

Now by definition, ▽ must be:

...

JC[π.P ′]Kh ⊢H G′′ | ∆, x : T | Θ, y : T ≜ G∗

J(νxy)C[π.P ′]Kh ⊢H G′

...
JP Kh ⊢H G

Observe that as JC[π.P ′]Kh ⊢H G∗, then JRN1
▽∗ (C[π.P ′]) | KN1

▽∗ (C[π.P ′])Kh ⊢H G∗, by Lemma B.1.1, as
N1 is the set of names in the context containing x, in G, by definition.

Thus, JD[(νxy)(RN1

G∗ (C[π.P ′]) | KN1

G∗ (C[π.P ′]))]Kh ⊢H G, by Lemma B.1.4.

Thus, we conclude this case.

2. F ′
▽(P) = D[(νxy)(RN2

▽∗ (C[π.P ′]) | KN2
▽∗ (C[π.P ′]))]. Analogous to case 1.

3. F ′
▽(P) = P . Follows immediately.

Lemma B.1.1.

JP Kh ⊢H G =⇒ JRcn(Γi)
▽ (P) | Kcn(Γi)

▽ (P)Kh ⊢H G

where G = JΓ1Kh | · · · | JΓnKh and ▽ is any proof of JP Kh ⊢H G.

Proof. Suppose
JP Kh ⊢H G

where G = JΓ1Kh | · · · | JΓnKh and ▽ is any proof of JP Kh ⊢H G.

58

Observe by Lemma B.1.2, we have:

JRcn(Γi)
▽ (P)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓi+1Kh | · · · | JΓnKh

Observe by Lemma B.1.3, we have:

JKcn(Γi)
▽ (P)Kh ⊢H JΓiKh

Then observe that

JRN
G (P)Kh | JKN

G (P)Kh ⊢H Γi | JΓ1Kh | · · · JΓi−1Kh | JΓi+1Kh | · · · | JΓnKh ≡ JΓ1Kh | · · · JΓnKh

Observe that JRN
G (P)Kh | JKN

G (P)Kh = JRN
G (P) | KN

G (P)Kh, and so we have

JRN
G (P) | KN

G (P)Kh ⊢H JΓ1Kh | · · · | JΓnKh

which concludes our proof.

Lemma B.1.2. JP Kh ⊢H G =⇒ JRN
▽ (P)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

Where

• G = JΓ1Kh | · · · | JΓnKh

• N = cn(Γi) ∪ cn(Γi+1) ∪ · · · ∪ cn(Γj)

• ▽ is any proof of JP Kh ⊢H G

Proof. By structural induction on P .

1. P = x⟨y⟩.P ′.

JP Kh = x(z).([z ↔ y] | JP ′Kh).
▽ must be:

[z ↔ y] ⊢H z : A, y : A

...

JP ′Kh ⊢H JΓ1Kh | · · · | JΓk−1Kh | ∆2, x : S | JΓk+1Kh | · · · | JΓnKh ≜ G∗

[z ↔ y] | JP ′Kh ⊢H JΓ1Kh | · · · | JΓk−1Kh | z : A, y : A | ∆2, x : S | JΓk+1Kh | · · · | JΓnKh
x(z).([z ↔ y] | JP ′Kh) ⊢H JΓ1Kh | · · · | JΓnKh

Where JΓkKh = y : A,∆2, x : A⊗ S.

We have two cases:

(a) x ∈ N .

Now i ≤ k ≤ j, as for x ∈ N , we must have N = cn(Γi) ∪ · · · ∪ cn(Γk) ∪ · · · ∪ cn(Γj).

Thus we wish to show that

JRN\{y}
▽∗ (P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

Observe that by the inductive hypothesis:

JRN\{y}
▽∗ (P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

Thus we conclude this case.

59

(b) x /∈ N

Now k > j ∨ k < i, as otherwise, i ≤ k ≤ j and then x ∈ N , as shown in the previous case. We
shall assume k > j, but an analogous argument follows for k < i.

Thus we wish to show that

Jx⟨y⟩.RN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓkKh | · · · | JΓnKh

Oy inductive hypothesis:

JRN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | ∆2, x : S | JΓk+1Kh | JΓnKh

Then:

[z ↔ y] ⊢H z : A, y : A
JRN

▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | ∆2, x : S | JΓk+1Kh | JΓnKh

[z ↔ y] | JRN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | z : A, y : A | ∆2, x : S | JΓk+1Kh | JΓnKh

x(z).([z ↔ y] | JRN
▽∗(P ′)Kh) ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | y : A,∆2, x : A⊗ S | JΓk+1Kh | JΓnKh

Observing that y : A,∆2, x : A ⊗ S = JΓkKh, and Jx⟨y⟩.RN
▽∗(P ′)Kh = x(z).([z ↔ y] | JRN

▽∗(P ′)Kh)
we then have:

Jx⟨y⟩.RN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓkKh | · · · | JΓnKh

And we conclude this case.

2. P = x(y).P ′.

JP Kh = x(y).JP ′Kh.

▽ must be:

...

JP ′Kh ⊢H JΓ1Kh | · · · | JΓk−1Kh | ∆, y : A, x : B | JΓk+1Kh | · · · | JΓnKh ≜ G∗

x(y).JP ′Kh ⊢H JΓ1Kh | · · · | JΓnKh

Where JΓkKh = ∆, x : A O B

We have two cases:

(a) x ∈ N .

Now i ≤ k ≤ j, as for x ∈ N , we must have N = cn(Γi) ∪ · · · ∪ cn(Γk) ∪ · · · ∪ cn(Γj).

Thus we wish to show that:

RN∪{y}
▽∗ (P ′) ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

Observe that by the inductive hypothesis:

JRN∪{y}
▽∗ (P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

Thus we conclude this case.

(b) x /∈ N

Now k > j ∨ k < i, as otherwise, i ≤ k ≤ j and then x ∈ N , as shown in the previous case. We
shall assume k > j but an analogous argument follows for k < i.

Thus we wish to show that

Jx(y).RN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓkKh | · · · | JΓnKh

60

Observe by inductive hypothesis:

JRN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | ∆, y : A, x : B | JΓk+1Kh | JΓnKh

Then:

JRN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | ∆, y : A, x : B | JΓk+1Kh | JΓnKh

x(y).JRN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | ∆, x : A O B | JΓk+1Kh | JΓnKh

Observing that ∆, x : A O B = JΓkKh and Jx(y).RN
▽∗(P ′)Kh = x(y).JRN

▽∗(P ′)Kh, we then have:

Jx(y).RN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓkKh | · · · | JΓnKh

And we conclude this case.

3. Follows similarly to the previous case.

4. P = x▷ {li : Pi}i∈I .

Observe that if
JP Kh ⊢H JΓ1Kh | · · · | JΓnKh

We must have that n = 1, by the nature of applying H-N.

We have two cases:

(a) x ∈ N ∨ ∃i : ∃n ∈ N : n ∈ fn(Pi).

We must have N = cn(Γ1). This is immediate for x ∈ N . If ∃i : ∃n ∈ N : n ∈ fn(Pi), observe that
any name that is free in Pi must also be free in P and thus, must be present in any context that
types P . Thus, it must be present in Γ1.

Thus, we must show that JRN
▽ (P)Kh = 0 ⊢H ∅, which is immediate.

(b) Otherwise:

As there is no name in Γ1 that is in N , and there is only one context in the overall hypercontext,
we have that N = ∅.
Thus, we have to show that

JRN
▽ (P)Kh = JP Kh ⊢H Γ1

which is immediate.

5. P = P1 | P2

Consider:
JP Kh = JP1Kh | JP2Kh ⊢H JΓ1Kh | · · · | JΓnKh

▽ must be (for some 1 ≤ l ≤ n):

...

JP1Kh ⊢H JΓ1Kh | · · · | JΓlKh ≜ G1

...

JP2Kh | JΓl+1Kh | · · · | JΓnKh ≜ G2

JP1Kh ⊢H JP2Kh ⊢H JΓ1Kh | · · · | JΓnKh

We wish to show that:

JRN
▽ (P)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

Observing

JRN
▽ (P)Kh = JRN\fn(P2)

▽1
(P1) | RN\fn(P1)

▽2
(P2)Kh = JRN\fn(P2)

▽1
(P1)Kh | JRN\fn(P1)

▽2
(P2)Kh

We wish to prove:

JRN\fn(P2)
▽1

(P1)Kh | JRN\fn(P1)
▽2

(P2)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

There are three cases:

61

(a) j ≤ l:

N \ fn(P2) = N and by inductive hypothesis we will have

JRN\fn(P2)
▽1

(P1)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓkKh

We also have that N \ fn(P1) = ∅. And so by inductive hypothesis:

JRN\fn(P1)
▽2

(P2)Kh ⊢H JΓk+1Kh | · · · | JΓnKh

Thus,

P1 ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓkKh P2 ⊢H JΓk+1Kh | · · · | JΓnKh
P1 | P2 ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

where for brevity we have:

P1 = JRN\fn(P2)
▽1

(P1)Kh

P2 = JRN\fn(P1)
▽2

(P2)Kh

And we conclude this case

(b) i > l: Analogous to case 1

(c) i ≤ l < j:

N \ fn(P2) = N1 where:
N1 = cn(Γi) ∪ · · · ∪ cn(Γk)

and by inductive hypothesis we will have

JRN\fn(P2)
▽1

(P1)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh

We also have that N \ fn(P1) = N2 where:

N2 = cn(Γk+1) ∪ · · · ∪ cn(Γj)

and by inductive hypothesis we will have

JRN\fn(P1)
▽2

(P2)Kh ⊢H JΓj+1Kh | · · · | JΓnKh

Thus,

JRN\fn(P2)
▽1

(P1)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh JRN\fn(P1)
▽2

(P2)Kh ⊢H JΓj+1Kh | · · · | JΓnKh
JRN\fn(P2)

▽1
(P1)Kh | JRN\fn(P1)

▽2
(P2)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

And we conclude this case

6. P = (νxy)P ′.

Observe that JP Kh = (νxy)JP ′Kh.
▽ must be:

...

JP ′Kh ⊢H JΓ1Kh | · · · | JΓk−1Kh | ∆1, x : T | ∆2, y : T | JΓk+1Kh | · · · | JΓnKh ≜ G∗

(νxy)JP ′Kh ⊢H JΓ1Kh | · · · | JΓnKh

where
Γk = ∆1,∆2

Now either:

62

(a) i ≤ k ≤ j:

Then
N = cn(Γi) ∪ · · · ∪ cn(Γk−1) ∪ cn(∆1) ∪ cn(∆2) ∪ cn(Γk+1) ∪ · · · ∪ cn(Γj)

Thus
∃n ∈ N : n ∈ cn(∆1) ∪ cn(∆2)

Thus, we must prove

JRN∪{x,y}
▽∗ (P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

which we obtain via our induction hypothesis.

(b) k > j:

Then
N = cn(Γi) ∪ · · · cn(Γj)

Thus
¬(∃n ∈ N : n ∈ cn(∆1) ∪ cn(∆2))

Thus, we must prove

J(νxy)(RN
▽∗(P ′))Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

From our inductive hypothesis, we obtain:

JRN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | ∆1, x : T | ∆2, y : T | · · · | JΓnKh

Subsequently, applying H-Cut:

(νxy)JRN
▽∗(P ′)Kh = J(νxy)JRN

▽∗(P ′)KhKh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | ∆1,∆2 | · · · | JΓnKh

Observing that ∆1,∆2 = Γk and J(νxy)RN
▽∗(P ′)Kh = (νxy)JRN

▽∗(P ′)Kh, we have:

J(νxy)RN
▽∗(P ′)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓkKh | · · · | JΓnKh

which concludes this case.

(c) k < i: Analogous to case 2

7. P = 0

Consider:
J0Kh ⊢H JΓ1Kh | · · · | JΓnKh

Observe that this is only possible if all type assignments to Γi are terminating assignments.

Now, we wish to prove that

JRN
▽ (P)Kh ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

Observing that JRN
▽ (0)Kh = J0Kh = 0, we have to prove that:

0 ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | JΓnKh

which is possible via n− (j − i+ 1) applications of H-1 and (n− (j − i+ 1)) · |cn(Γi)| applications of
H-⊥.

63

Lemma B.1.3.
JP Kh ⊢H JΓ1Kh | · · · | JΓnKh =⇒ JKN (P,G)Kh ⊢H JΓiKh | · · · | JΓjKh

Where:

• G = JΓ1Kh | · · · | JΓnKh

• N = cn(Γi) ∪ cn(Γi+1) ∪ · · · ∪ cn(Γj)

Proof. Note that KN
▽ (P) is essentially a dual to RN

▽ (P) and thus, the proof will be is analogous to the proof
of Lemma B.1.2.

We will prove this Lemma by structural induction on P .

1. P = x⟨y⟩.P ′.

JP Kh = x(z).([z ↔ y] | JP ′Kh).

▽ must be:

[z ↔ y] ⊢H z : A, y : A

...

JP ′Kh ⊢H JΓ1Kh | · · · | JΓk−1Kh | ∆2, x : S | JΓk+1Kh | · · · | JΓnKh ≜ G∗

[z ↔ y] | JP ′Kh ⊢H JΓ1Kh | · · · | JΓk−1Kh | z : A, y : A | ∆2, x : S | JΓk+1Kh | · · · | JΓnKh
x(z).([z ↔ y] | JP ′Kh) ⊢H JΓ1Kh | · · · | JΓnKh

Where JΓkKh = y : A,∆2, x : A⊗ S.

We have two cases:

(a) x ∈ N .

Now i ≤ k ≤ j, as for x ∈ N , we must have N = cn(Γi) ∪ · · · ∪ cn(Γk) ∪ · · · ∪ cn(Γj).

Thus we wish to show that

Jx⟨y⟩.KN\{y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | JΓkKh | · · · | JΓjKh

Observe that by the inductive hypothesis:

JKN\{y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | ∆2, x : S | · · · | JΓjKh

Then:

[z ↔ y] ⊢H z : A, y : A
JKN

▽∗(P ′)Kh ⊢H JΓiKh | · · · | ∆2, x : S | · · · | JΓjKh

[z ↔ y] | JRN
▽∗(P ′)Kh ⊢H JΓiKh | · · · | z : A, y : A | ∆2, x : S | · · · | JΓjKh

x(z).([z ↔ y] | JRN
▽∗(P ′)Kh) ⊢H JΓ1Kh | · · · | JΓi−1Kh | JΓj+1Kh | · · · | y : A,∆2, x : A⊗ S | JΓk+1Kh | JΓnKh

Observing that y : A,∆2, x : A ⊗ S = JΓkKh, and Jx⟨y⟩.KN
▽∗(P ′)Kh = x(z).([z ↔ y] | JKN

▽∗(P ′)Kh)
we then have:

x(z).([z ↔ y] | JRN
▽∗(P ′)Kh) ⊢H JΓiKh | · · · | JΓkKh | · · · | JΓjKh

And we conclude this case.

64

(b) x /∈ N

Now k > j ∨ k < i, as otherwise, i ≤ k ≤ j and then x ∈ N , as shown in the previous case.

Thus we wish to show that
JKN

▽∗(P ′)Kh ⊢H JΓiKh | · · · | JΓjKh

We shall assume k > j, but an analogous argument follows for k < i.

Observe by inductive hypothesis:

JKN
▽∗(P ′)Kh ⊢H JΓiKh | · · · | JΓjKh

Thus we conclude this case.

2. P = x(y).P ′.

JP Kh = x(y).JP ′Kh.

▽ must be:

...

JP ′Kh ⊢H JΓ1Kh | · · · | JΓk−1Kh | ∆, y : A, x : B | JΓk+1Kh | · · · | JΓnKh ≜ G∗

x(y).JP ′Kh ⊢H JΓ1Kh | · · · | JΓnKh

Where JΓkKh = ∆, x : A O B

We have two cases:

(a) x ∈ N .

Now i ≤ k ≤ j, as for x ∈ N , we must have N = cn(Γi) ∪ · · · ∪ cn(Γk) ∪ · · · ∪ cn(Γj).

Thus we wish to show that

Jx(y).KN∪{y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | JΓkKh | · · · | JΓjKh

Observe by inductive hypothesis:

JKN∪{y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | ∆, y : A, x : B | JΓjKh

Then:
JKN∪{y}

▽∗ (P ′)Kh ⊢H JΓiKh | · · · | ∆, y : A, x : B | JΓjKh
Jx(y).KN∪{y}

▽∗ (P ′)Kh ⊢H JΓiKh | · · · | ∆, x : A O B | JΓjKh

Observing that ∆, x : A O B = JΓkKh, we then have:

Jx(y).KN∪{y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | JΓkKh | JΓjKh

And we conclude this case.

(b) x /∈ N

Now k > j ∨ k < i, as otherwise, i ≤ k ≤ j and then x ∈ N , as shown in the previous case. We
shall assume k > j but an analogous argument follows for k < i.

Thus we wish to show that:
JKN

▽∗(P ′)Kh ⊢H JΓiKh | · · · | JΓjKh

Observe that by the inductive hypothesis:

JKN
▽∗(P ′)Kh ⊢H JΓiKh | · · · | JΓjKh

Thus we conclude this case.

65

3. Follows similarly to the previous case.

4. P = x▷ {li : Pi}i∈I .

Observe that if
JP Kh ⊢H JΓ1Kh | · · · | JΓnKh

We must have that n = 1, by the nature of applying H-N.

We have two cases:

(a) x ∈ N ∨ ∃i : ∃n ∈ N : n ∈ fn(Pi).

We must have N = cn(Γ1). This is immediate for x ∈ N . If ∃i : ∃n ∈ N : n ∈ fn(Pi), observe that
any name that is free in Pi must also be free in P and thus, must be present in any context that
types P . Thus, it must be present in Γ1.

Thus, we have to show that
JKN

▽ (P)Kh = JP Kh ⊢H Γ1

which is immediate.

(b) Otherwise:

As there is no name in Γ1 that is in N , and there is only one context in the overall hypercontext,
we have that N = ∅.
Thus, we must show that JKN

▽ (P)Kh = 0 ⊢H ∅, which is immediate.

5. P = P1 | P2

Consider:
JP Kh = JP1Kh | JP2Kh ⊢H JΓ1Kh | · · · | JΓnKh

▽ must be (for some 1 ≤ l ≤ n):

...

JP1Kh ⊢H JΓ1Kh | · · · | JΓlKh ≜ G1

...

JP2Kh | JΓl+1Kh | · · · | JΓnKh ≜ G2

JP1Kh ⊢H JP2Kh ⊢H JΓ1Kh | · · · | JΓnKh

We wish to show that:
JKN

▽ (P)Kh ⊢H JΓiKh | · · · | JΓjKh

Observing

JKN
▽ (P)Kh = JKN\fn(P2)

▽1
(P1) | KN\fn(P1)

▽2
(P2)Kh = JKN\fn(P2)

▽1
(P1)Kh | JKN\fn(P1)

▽2
(P2)Kh

We wish to prove:

JKN\fn(P2)
▽1

(P1)Kh | JKN\fn(P1)
▽2

(P2)Kh ⊢H JΓiKh | · · · | JΓjKh

There are three cases:

(a) j ≤ l:

N \ fn(P2) = N and by inductive hypothesis we will have

JKN\fn(P2)
▽1

(P1)Kh ⊢H JΓiKh | · · · | JΓjKh

We also have that N \ fn(P1) = ∅. And so by inductive hypothesis:

JKN\fn(P1)
▽2

(P2)Kh ⊢H ∅

Thus,

JKN\fn(P2)
▽1

(P1)Kh ⊢H JΓiKh | · · · | JΓjKh JKN\fn(P1)
▽2

(P2)Kh ⊢H ∅

JKN\fn(P2)
▽1

(P1)Kh | JKN\fn(P1)
▽2

(P2)Kh ⊢H JΓiKh | · · · | JΓjKh | ∅

Observing that JΓiKh | · · · | JΓjKh | ∅ = JΓiKh | · · · | JΓjKh we conclude this case

66

(b) i > l: Analogous to case 1

(c) i ≤ l < j:

N \ fn(P2) = N1 where:
N1 = cn(Γi) ∪ · · · ∪ cn(Γl)

and by inductive hypothesis we will have

JKN\fn(P2)
▽1

(P1)Kh ⊢H JΓiKh | · · · | JΓlKh

We also have that N \ fn(P1) = N2 where:

N2 = cn(Γl+1) ∪ · · · ∪ cn(Γj)

and by inductive hypothesis we will have

JKN\fn(P1)
▽2

(P2)Kh ⊢H JΓl+1Kh | · · · | JΓjKh

Thus,

JKN\fn(P2)
▽1

(P1)Kh ⊢H JΓiKh | · · · | JΓlKh JKN\fn(P1)
▽2

(P2)Kh ⊢H JΓl+1Kh | · · · | JΓjKh
JKN\fn(P2)

▽1
(P1)Kh | JKN\fn(P1)

▽2
(P2)Kh ⊢H JΓiKh | · · · | JΓlKh | JΓl+1Kh | · · · | JΓjKh

Observing JΓiKh | · · · | JΓlKh | JΓl+1Kh | · · · | JΓjKh = JΓiKh | · · · | JΓjKh we conclude this case

6. P = (νxy)P ′. Observe that JP Kh = (νxy)JP ′Kh.
▽ must be:

...

JP ′Kh ⊢H JΓ1Kh | · · · | JΓk−1Kh | ∆1, x : T | ∆2, y : T | JΓk+1Kh | · · · | JΓnKh ≜ G∗

(νxy)JP ′Kh ⊢H JΓ1Kh | · · · | JΓnKh

where
Γk = ∆1,∆2

Now either:

(a) i ≤ k ≤ j:

Then
N = cn(Γi) ∪ · · · ∪ cn(Γk−1) ∪ cn(∆1) ∪ cn(∆2) ∪ cn(Γk+1) ∪ · · · ∪ cn(Γj)

Thus
∃n ∈ N : n ∈ cn(∆1) ∪ cn(∆2)

Thus, we must prove

J(νxy)KN∪{x,y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | JΓkKh | · · · | JΓjKh

From our inductive hypothesis, we obtain:

JKN∪{x,y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | ∆1, x : T | ∆2, y : T | · · · | JΓjKh

Subsequently, applying H-Cut:

(νxy)JKN∪{x,y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | ∆1,∆2 | · · · | JΓjKh

Observing that ∆1,∆2 = Γk and J(νxy)KN∪{x,y}
▽∗ (P ′)Kh = (νxy)JKN∪{x,y}

▽∗ (P ′)Kh, we have:

J(νxy)KN∪{x,y}
▽∗ (P ′)Kh ⊢H JΓiKh | · · · | JΓkKh | · · · | JΓjKh

which concludes this case.

67

(b) k > j:

Then
N = cn(Γi) ∪ · · · cn(Γj)

Thus
¬(∃n ∈ N : n ∈ cn(∆1) ∪ cn(∆2))

Thus, we must prove
JKN

▽∗(P ′)Kh ⊢H JΓiKh | · · · | JΓjKh

which we obtain via our induction hypothesis.

(c) k < i: Analogous to case 2

7. P = 0

Consider:
J0Kh ⊢H JΓ1Kh | · · · | JΓnKh

Observe that this is only possible if all type assignments to Γi are terminating assignments.

Thus, we wish to prove that
JKN

▽ (P)Kh ⊢H JΓiKh | · · · | JΓjKh

Observing that JKN
▽ (P)Kh = J0Kh = 0, we have to prove that:

0 ⊢H JΓiKh | · · · | JΓjKh

which is possible via j − i+ 1 applications of H-1 and (j − i+ 1) · |cn(Γi)| applications of H-⊥

Lemma B.1.4.
(JP Kh ⊢H G ∧ JP ′Kh ⊢H G ∧ JD[P]Kh ⊢H G′) =⇒ JD[P ′]Kh ⊢H G′

Proof (sketch).

Induction on D. As the inductive hypothesis preserves the context for D′[P ′], the result context of applying
the action on D′[P ′] will be the same as applying the action on D′[P].

68

	Introduction
	Preliminaries
	The Session pi-calculus
	A pi-calculus based on Linear Logic
	A pi-calculus based on Channel Usage
	Encodings of pi-calculi
	Conventions and Definitions For all pi-calculi

	A Hypersequent Presentation of Process Calculi
	Hypersequent Classical Processes
	Encoding HCP
	H not subseteq K

	Comparing HCP to other Deadlock-Free pi-calculi
	Comparing L, H*, K
	Characterising Ho

	Translating Ho to H*
	Translating non-blocking and self-synchronizing behaviour
	Examples of the translation
	Properties of the translation

	Discussion
	Future Work

	Related Work
	Conclusion
	Omitted proofs for §4
	Proof of theorem 4.2.1

	Omitted proofs for §5
	Proof of Lemma 5.3.1

