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Summary

Flocking-like behavior occurs in many species. Swarms of birds, schools of fish, and herds of large herbivores
all display behavior that can be categorized as flocking. Research has been done not only into how this
flocking works, but also to find out why flocking is prevalent. The fact that flocking-like behavior occurs in
many very diverse environments, suggests that it is a solution to a common problem. Candidate problems
here are the need to find food and the need for social contact. Another theory is that flocking-like behavior
helps in evading predators. The theory behind this is that it is harder for a predator to attack a large, dense
group of prey animals than single prey animals. This “confusion” effect can be further enhanced by the prey
flock displaying visually complex movement patterns.

Carsten Hahn, Thomy Phan, Thomas Gabor, Lenz Belzner and Claudia Linnhoff-Popien, at the 2019
Conference on Artificial Life, presented research where agents learned to evade a predator in an empty
toroidal 2D environment through Q-Learning. The agents could perceive the location and orientation of the
five nearest neighbouring agents as well as the predator at all times. The predator loses hunting efficiency
when more than one agent is close to it, mimicking the increased required effort seen in real predators when
attacking a flock of prey animals. Their results showed the agents adopting flocking-like behavior. Agents
randomly initialized throughout the environment would quickly group together and stay together.

In order to try and further strengthen the evidence for predation being a possible driver behind the
widespread adoption of flocking-like behavior, this thesis attempts to extend the findings of Hahn et al. to a
3D environment. This was done by first recreating the experiment performed by Hahn et al. This 2D recre-
ation model was trained and tested under a variety of parameter conditions. Among the varied parameters
was the number of observable neighbours. Because flocking behavior requires coordination with neighbouring
flockmates, all real flocking-like behavior should only be present in observable neighbour conditions. Next,
a 3D version of the same model was built in order to see if any emergent flocking-like behavior in the 2D
model still emerges in a 3D environment.

Unfortunately, the recreation of the results obtained by Hahn et al. in 2D was unsuccessful. The agents
would learn to evade the predator, but no real flocking-like behavior could be observed. Any behavior
observed which did resemble flocking was explainable by the agents simply fleeing the predator while close
to other agents, as this behavior visually resembling flocking was also observed in conditions where agents
could not see neighbouring agents.

A second smaller experiment where the predator pauses after eating an agent was performed. This
experiment aimed to give the agents an advantage by allowing time for the agents to reform any groups that
had had been scattered by the predator. This did not change the behavior the agents displayed.

Although no real flocking-like behavior emerged in the 2D experiments, the 3D model was still trained
and tested. This, as expected, also did not result in flocking-like behavior. The agents displayed random
looking behavior, not convincingly reacting to the predator when it would get close.

Potential reasons for the failure of the replication are errors in the code responsible for training the
agents, undetected differences between the behavior of the predator Hahn et al. used and the one used
in the recreation attempt, or significant differences in model parameters. While code used by Hahn et al.
was referenced in the building of the recreation model, the referenced code was not complete and several
assumptions about model parameters had to be made.

Potential future research could look further into the use of different learning algorithms like NEAT and
DDPG. Pretraining the agents is also an option. One way this could be done is to first train the agents
to flock and group before introducing a predator. Another possibility is to train the agents to evade the
predator before introducing other agents into the model.

3



4



Contents

1 Introduction 7

2 Background 9
2.1 Flocking in nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Flocking and predation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Boids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Trained Boids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Experience Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Exploration strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Problem statement and overview 17

4 Methods 19
4.1 The general flocking model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Boids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Being eaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Predator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Target selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Chasing the target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.4 Eating the target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Why Deep Q-learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Training the boids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.3 The flow of training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.1 Objective of the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.3 The performed analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Experiments 29
5.1 General experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 2D experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 2D experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5



6 CONTENTS

5.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 3D experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Results 35
6.1 2D experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 2D experiment 1 boid behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 2D experiment 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.3 2D experiment 1 analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.4 2D experiment 1 validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 2D experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.1 2D experiment 2 boid behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 3D experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.1 3D experiment boid behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Discussion 49
7.1 Interpreting the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.1 2D experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.1.2 2D experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.1.3 3D experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Reviewing the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Potential changes to the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Conclusion 53

A Full results 2D experiment 1 59



Chapter 1

Introduction

Flocking is a recurring phenomenon in nature. Examples one could think of are swarms of starlings evading
diving falcons, giant schools of fish dodging attacks from hungry tuna and herds of wildebeest navigating
across large distances. The pervasiveness of flocking-like behaviour suggests that it offers some concrete
advantages.

Among these advantages are a dilution effect, a confusion effect and a vigilance effect [7]. By dilution
effect it is meant that as a flock grows in size, the less likely any single member of that flock is to fall prey to
a predator attacking the flock. Additionally, being in a large group facilitates movement patterns that can
confuse the predator [16]. This, combined with the fact that tracking a single target among many is harder
than tracking a target in isolation [19], is responsible for the confusion effect. Finally, being part of a group
comes with the advantage that there are more of you to spot potential dangers; the vigilance effect.

Another possible advantage of flocking is reduced energy expenditure. Ibis flying in a V-formation gain
aerodynamic benefits from flying in such an arrangement [33]. Similar effects have been observed in pelicans
flying close to the water surface [42]. However, flying in a flock does not always lead to such benefits. Flying
in more unorganised flocks, especially when members of the flock fly directly behind other flockmates, can
actually cost more effort than flying solo [41].

Flocking or similar behavior occurring across a large range of species and environments strongly suggests
that the behaviour convergently evolved in multiple independent species. Generally, this occurs in nature
when there is a common problem that needs a solution. An example of such convergent evolution is the
body plan of sharks, dolphins and ichthyosaurs (see Figure 1.1). Even thought one is a fish, one is a mammal
and one was a reptile, they evolved nearly identical body plans. Apparently, this body plan is an efficient
solution to the problems faced by a relatively large aquatic predator.

This line of reasoning can be extended to flocking; what common problem is efficiently solved by flocking-

Figure 1.1: Convergent evolution in sharks, dolphins and ichthyosaurs.
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8 CHAPTER 1. INTRODUCTION

like behavior? Candidates here are the search for food or the need for social contact with others. Another
potential problem, as mentioned above, is predation. Many animals that flock face frequent danger from
predators. This thesis attempts to determine if predatory pressure could be a driving force behind the
evolution of flocking behaviour.

Earlier research has shown that in a simplified 2-dimensional model, the presence of a predator can induce
flocking behaviour in agents trying to not get eaten [13]. Through the use of Deep Q-Learning, agents are
trained to survive in an empty and toroidal 2-D world populated by multiple other identical agents and a
single predator. This predator has hard-coded behavior. It loses hunting efficiency when multiple agents are
close to it, paralleling the confusion effect observed in nature. The flocking behaviour was achieved without
any reward being directly given for flocking behaviour. The only objective of the agents was to not be eaten
by the predator.

This thesis first seeks to replicate results of the study mentioned above using a similar 2D model. After
this, the same concept was tried in 3 dimensions using a 3D model. It stands to reason that flocking in 3D is
more complex than flocking in 2D from the point of view of the flocking agents. This increase in complexity
could be a step too far, making flocking no longer an effective and efficient solution to the predation problem.

Theory and research related to flocking and models of flocking are presented in Chapter 2. A concise
overview of what needs to be done to accomplish the goals of this thesis is given in Chapter 3. This is followed
by an explanation of the methods used in Chapter 4, with a description of the experiments performed in
Chapter 5. The results are presented in Chapter 6 and further discussed in Chapter 7. Finally, the conclusion
is given in Chapter 8.



Chapter 2

Background

This chapter is spent reviewing literature related to flocking in nature, computer models of flocking and
flocking by learning agents. First, in Section 2.1, some light is shed on flocking in nature. Next, in Section
2.2, computer models of flocking featuring programmed agents are discussed. This is followed by models
that feature learning agents. Finally, in Section 2.3, the method of Deep Q-Learning used for the models of
this thesis is explored.

2.1 Flocking in nature

The exact workings of flocking have long interested experts. Very early theories proposed some sort of group
mind to be governing the process [35]. This theory suggested that the nervous systems of the individuals
making up a flock are somehow connected through a type of telepathy, or at least that some sort of com-
munication is taking place. A more popular early theory assumed that there was a leader in each flock.
Actually identifying the leader of any given flock proved impossible though, suggesting that this also was not
the mechanism enabling flocking [17]. In 1980, J.M. Davis proposed that flocking is enabled by a process he
called ‘self-generated synchrony’ [8]. He speculated that through a democracy-like process, the number of
flock members displaying a specific behaviour can reach a threshold, upon which the rest of the flock follows.

A theory of how grouping in animals evolved was given in 1971 by Hamilton [14]. Through a series of
rudimentary computer models, it was shown that the presence of a predator can lead to a bunching up of
prey animals. A prey species was dispersed throughout a space randomly. When the model is run, each prey
agent tries to minimize its own “domain of danger”. This is the area that arises from the assumption that
the predator, which can suddenly appear anywhere in the environment, will always go for the closest prey
agent. The domain of danger of a prey agent therefore is the region of the environment where it itself is
the closest prey agent, if the predator were to appear in that area. If the model is run and each prey agent
moves around in order to minimize its own domain of danger, dense groups of agents start forming. This
occurs because the only way for an agents to shrink its own domain of danger is to get closer to other prey
agents.

This clumping has been seen in nature as well. Fish have been observed grouping together in such tight
schools that both birds on the surface of the water as well as sharks below the surface could eat mouthfulls
of fish at a time [5]. Similarly, an account has been presented where a group of striped mullet swarmed
in a group so dense that it appeared to be a small island, with fish being pushed up and out of the water
entirely [36]. When the observer’s boat approached, the grouping dove down about a meter. They did not
flee, however, and it was possible to easily catch multiple fish at a time by simply thrusting a spear into the
mass of mullets.

The model of grouping has been refined over time. Through analysis of video footage of shoals of fish,
evidence was found for “attraction” and “repulsion” zones around individual fish [39], with the attraction
zone being larger than the repulsion zone. The observed fish seem to be attracted to other fish in their
attraction zone. Once the fish get close enough to be in one another’s repulsion zone, they will move away
from each other. Additionally, there appears to be a neutral zone between the attraction and repulsion
threshold distances, where no attraction or repulsion reliably takes place.

9



10 CHAPTER 2. BACKGROUND

This theory of attraction and repulsion seems to be confirmed by Wood and Ackland [43]. They created
a model with agents that had programmed responses to other agents within their repulsion and attraction
radii. The optimal sizes of these radii were determined through evolution. Fitness was determined through
the addition of a predator to the environment. This resulted in a model that produced behaviour very
similar to schooling fish and flocking birds. It was also able to recreate patterns observed in real animals,
like milling. This suggests that real animals do in fact utilize similar repulsion and attraction thresholds in
order to form schools and flocks.

2.1.1 Flocking and predation

As early as 1922 [27], researchers thought about why many different types of animals in many different
environments display some sort of grouping, flocking or schooling behaviour. Robert Miller, during his
studies of the American bushtit, observed the behavior of the tits when a hawk or another raptor approached.
The tits are foraging in a tree, when one of them spots the predator. The spotter lets out a warning cry,
upon which the entire group becomes motionless. In addition, they all start producing a quavering note
which is hard to localize. This tends to result in the predator failing to catch one of the tits or just passing
without attempting to catch one.

Added to this observation is a report of a loon repeatedly diving through a school of sardines, but
somehow failing to catch one after several attempts [1]. These two cases lead to the suggestion that confusing
a potential predator is one possible goal of being in a flock or school, although the evidence for this claim is
not entirely clear-cut [22].

A study that looked at the predation behaviour of sticklebacks does suggest that attacking a larger group
of water fleas costs more mental resources than a small group [26]. When a hungry stickleback is let into a
reservoir with water fleas, it tends to attack areas with high flea density. When presented with a stimulus
mimicking an avian predator before entering the reservoir, the stickleback’s preferences changes to attacking
less dense regions. Important to note here is that the feeding rate of the stickleback is higher when it attacks
large, dense groups of water fleas than when it attacks small, less dense groups. The fact that it can be
coerced by the presence of a predator stimulus into attacking lower density groups leads to the speculation
that attacking a high-density area costs more of the stickleback’s attention. The underlying idea here is that
attacking a large group leads to lessened awareness and therefore a heightened risk of being ambushed by an
unseen predator. When the presence of a predator is suggested, the stickleback chooses the less risky option
of attacking a lower-density area.

In 1979, Gillett et al. [12] examined the effect of prey group size on the time it takes for a predator to
catch a single locust nymph. The role of predator was played by both a lizard and a human. In all cases,
the time to catch decreased as the group size of locusts increased, up to a point. Once the group size of the
locusts crossed 50, the time to catch increased for both the humans and the lizard. When the group size
crossed 100, the lizard failed to catch any and tried to escape the feeding environment. This suggests that at
some point (around 50 here), the number of prey becomes too much for the predator to effectively process.

A relation between predator accuracy and prey flock size and density is suggested by a study where
humans were tasked with hunting down a marked individual in a realistically simulated starling flock [19].
The participants where tasked with navigating a predator towards a single simulated bird, marked by a
crosshair. The participants had 30 seconds to catch the target, and they were told to hit the “catch” button
when they thought they were as close as possible. At that point, the distance between the predator and
the prey was recorded as the targeting error. While the time until the catch button was hit decreased with
increasing flock size, the targeting error grew significantly with both increasing flock size and increasing flock
density. This again suggests that attacking larger and/or more dense flocks is harder for a predator.

Still, even with the above experiments showing or suggesting some benefit for the prey of being in large
groups, it is hard to determine that this is definitely due to the predator getting confused. Nevertheless,
there is likely a causal link between predation and flocking. A paper by Magurran and Pitcher [24] describes
the behavior of minnows when attacked by a pike. Several small loose shoals of minnows are observed to
come together into a tight school when a pike is introduced into their tank, if the number of minnows is
high enough. The likelihood of forming such a tight school increased with increasing number of minnows.
When the school was attacked, it would evade the pike through complex patterns. This suggests that there
is more to predator evasion than purely the movement of individual fish, as all avoiding trajectories taken
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by a member of a school can also be taken by a single fish in isolation. The element a singular fish cannot
replicate is the presence of many more fish, suggesting that at least part of the advantage of a school is the
overwhelming number of potential targets it affords the predator.

The evidence for a link between flocking and predation is reinforced by studies that compare flock sizes
between bird populations in areas with high and low predatory pressure. It has been found that populations
on islands with low predatory pressure (compared to the mainland) feature either a similar or a lower mean
and maximum flock size when compared to their counterparts on the mainland [2]. This paper gathered data
on 47 species of bird from a total of 22 different islands. Possible alternative explanatory factors like a reduced
population density on islands failed to explain the observed effect. A similar effect was observed between
two groups of starlings, each roosting in a different area [6]. The group roosting in the area featuring a lower
predatory pressure featured a higher frequency of loose or low density flocking formations, with the higher
predatory pressure group featuring a higher frequency of large and high density formations. Additionally,
when peregrine falcons attacked each population, their success rate was significantly higher when attacking
the low predatory risk group. This again suggests that predation coaxes prey into flocking behaviour, and
that this flocking behaviour is an effective defense against predation.

2.2 Boids

One of the first attempts to simulate flocking was undertaken by Reynolds and led to a model with a group
of flocking agents he called boids [34]. The idea behind the used approach was to simulate the forces acting
upon a member of a real school or flock. The simulated forces are collision avoidance, velocity matching and
flock centering. In order to combine these possibly competing forces into a single instruction for a boid, a
weighted average of all three can be used.

Collision avoidance prevents boids from overlapping in position. In real flocks, members have to maintain
a safe distance from their neighbours in order to prevent collisions. In practice, this establishes a safe minimal
distance from all immediate neighbors. This distance is then maintained through the second force, velocity
matching. ‘Velocity’ here consists of two components; speed and direction. By matching both the speed and
direction of travel with all nearby neighbours, a uniform, ‘polarized’ flock can be formed.

The final force is flock centering. This makes each boid want to fly towards the average position of nearby
boids. This force keeps the flock together, preventing boids from drifting away from their flockmates. If a
boid does find itself moving away from the flock, flock centering will push it back towards the flock again.
Subsequently, collision avoidance prevents the boid from crashing into the flock and velocity matching ensures
it will travel in unison with its flockmates from now on.

Obstacle avoidance is also a possibility in this flocking model. This can be achieved by having each boid
regularly check if they are about to run into anything. If it is determined that a surface will indeed be hit, a
point one body length away from the object to be hit will be determined and the boid will be made to aim
for that point. This impulse can be made to override the three fundamental forces in order to ensure that
no obstacles are hit.

In 1990 Heppner and Grenander [17] published an alternative flocking model. This model relies upon
four forces governing the behaviour of each individual in a flock flying over its roost. The four functions
are a homing force, which attracts individuals towards the roosting area; an interaction force, which coaxes
individuals towards maintaining a certain distance from their neighbours; a random force, which simulates
gusts of wind and other local disturbances; and finally a velocity force, which encourages an individual to
move at a set speed if one of the other forces previously accelerated or decelerated the individual.

The resulting model supports several types of behaviour that are also observed in real flocks. The artificial
flock is able to mill over its roost, it is possible for the flock to break up and reform, and for chaotic flight
to develop into orderly milling and the other way around.

Another possible approach to flocking is one rooted in real-world physics. An example of a model that
utilizes this method is StarDisplay [18]. This model has been used to explore numerous facets of starling
flocking, from patterns that confuse predators [15] to the effectiveness of falcon attacks [28]. It has also been
used to demonstrate the utility of flocking against predation [19].
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2.2.1 Trained Boids

Instead of writing rules for agents to follow in order to create flocking, it is also possible to obtain flocking
behaviour through learning agents. A straightforward method, originally presented by Morihiro et al., would
be to have the agents learn to follow the three rules the original boids [34] utilised using Q-Learning [30]
(for more on Q-Learning see Section 2.3.1). In order to accomplish this, the agents could select any of four
actions (Table 2.1).

Each step each agent i selects another agent j in order to learn, where i and j are from the set of all
agents and i ̸= j. Depending on the distance between i and j, a reward value is chosen.

Action Description

a1 Move closer to agent j
a2 Turn in order to match agent j ’s heading
a3 Turn in order to head in the opposite direction of agent j ’s heading
a4 Move further away from agent j

Table 2.1: Possible actions in the model of Morihiro et al. [30]

When i is too close to j, a positive reward will only be given if the action selected by i is to move away
from j. If i is too far away from j, a positive reward can only be obtained by moving closer. If the distance
between the two agents is not too small and not too large, a positive reward is given if i turns to match j ’s
heading. In all of the previous cases, a negative reward is given if the right action has not been selected. If
i and j are a large distance away from one another, no reward or punishment is given at all.

This method also supports the addition of a predator to the simulation. In the case that for any agent
i the predator is chosen as agent j, moving away from the predator will net a positive reward with all other
actions giving a negative reward. Similarly, if j is just another agent, if the predator is far enough away no
reward or punishment will be given no matter the action chosen by i.

The resulting model is able to convincingly flock and evade a predator. Each agent, however, is still
essentially following the rules set originally by Reynolds. Although the agents did learn the rules instead of
being programmed to follow them, the flocking behaviour did not emerge as the solution to a problem the
agents were facing.

Training a flock of boids does raise an issue: How does one train an entire flock of agents based on actions
each individual takes? A solution is proposed in 2016 by Maxim Egorov [9]. The proposed method only
actually trains one single agent. While this agent has its decision making process trained, all other agents
have their decision-making process frozen. After a set interval, the updated decision making process of the
single trained agent is shared with all other agents, after which this repeats.

This allows for all agents to decide on actions for themselves, but it also allows for a gradual learning
process in which all agents utilise the same strategy. This last point is especially important when trying
to induce some sort of emergent behavior, like flocking. If not all agents are participating in the emergent
behavior, the few that are will likely learn it is not an effective strategy. By copying the trained-decision
making process to all other agents, cooperation can be ensured.

This method of training a population of boids by only training one of them was used by Hahn et al. in
order to produce emergent flocking behavior in a group of boids through the use of Deep Q-Learning [13].
During training, ten boids were put in an empty 2D toroidal environment, together with a predator. The
trained boid here was given a small positive reward each timestep it managed to not be eaten by a predator,
and a big negative reward if it was eaten. The predator worked by picking a target boid and chasing it
down. To this was added a simulation of the confusion effect; if there were multiple boids in close proximity
to the predator, it was made to needlessly switch targets frequently. This reduced the hunting efficiency of
the predator when the boids were grouping together. The result was a group of boids that reliably flocked
together and tried to stay together. The methods of this paper are discussed further in Chapter 4, Methods,
because this thesis, among other things, attempts to recreate it.
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2.3 Deep Q-Learning

This section explores the workings of Q-Learning and Deep Q-Learning.

2.3.1 Q-Learning

Q-Learning has its roots in Bellman’s 1957 book “Dynamic Programming” [3]. In this book, he describes a
method for selecting actions in order to influence a system that changes state based on the chosen actions.
The innovation here is that this method will ‘learn’ in order to maximise a reward that accompanies every
encountered state-action pair. This allows this method to learn to function in a wide range of applications.

Given a set of system states S and a set of possible actions A, the system transitions from state to state
through actions performed by some agent. This agent selects which action a ∈ A should be taken in a given
state s ∈ S through a function Q(s, a) that determines the quality of each state-action combination (s, a).
Once an action is taken, the newly transitioned to state is valued by a numerical reward r. This reward can
be positive or negative. If the new state is in line with what the programmer wants the system to achieve, a
positive reward should be given. In the case that the taken action is detrimental and leads to an unwanted
state, a negative reward should be given.

In the most basic implementation of Q-Learning, the action valuation function Q takes the shape of a
table. This table is known as the q-table and it contains q-values for every possible action in every possible
state. Actions are selected by picking the action a with the highest q-value for the current state s. The taken
action is then responded to with a reward and a new state, upon which the process repeats. This leads to a
sequence of triples of states, taken actions, and received rewards {(s0, a0, r0), (s1, a1, r1), (s2, a2, r2)...}. The
received reward rt is then used to update the q-value of the preceding state-action (st, at) combination.

Updating the q-table is done through the use of the Bellman Equation.

Q(st, at)← Q(st, at) + α · (rt + γ ·max
a

Q(st+1, a)−Q(st, at)) (2.1)

The equation works as follows. The q-value of the current state-action pair Q(st, at) is updated to the
value it already had, plus a second term which is multiplied by the learning rate α. By varying α, generally
between 0 and 1, the speed of the training process can be adjusted.

The second term, which is multiplied by α, consist of two parts; the received reward rt, and the second
part which is multiplied by the discount factor γ. This second part accounts for any future rewards. This is
done by adding the maximum q-value possible in the next state st+1 to the q-value of the current state-action
pair Q(st, at). The maximum q-value possible in the next state st+1 itself again includes the q-value possible
in the next-next state st+2, and so on. This way possible future rewards are propagated backwards through
the states leading up to them. By tuning the discount factor γ, the weight of future rewards can be modified.
γ is generally set somewhere between 0 (future rewards are not considered at all) and 1 (future rewards are
just as valuable as current rewards). Higher values for γ tend to result in agents more willing to invest in
future rewards.

The agent must fully explore the possible state-space in order to eventually construct the most accurate
q-table possible. If during the training process actions are always selected by their q-value, it is likely that
certain state-regions will not be explored thoroughly enough. As soon as a specific action in a specific state
gets the highest q-value out of all possible actions in that state, it will always be picked.

One solution to this problem is through the use of the ϵ-greedy policy during training. This policy works
by selecting a random action with probability ϵ and otherwise selecting the action with the highest q-value.
By choosing ϵ, the balance between exploration and exploitation of the environment can be fine-tuned. This
is explained further in Section 2.3.4.

2.3.2 Deep Q-Learning

While Q-Learning as described in Section 2.3.1 can be very effective, it has its limitations. One of these is
the fact that the action valuation function Q(s, a) is implemented through a table. This becomes a problem
when the number of states grows, as this requires a larger and larger table. The context of this thesis,
flocking, would require an impractically large table in order to describe every possible observable state.



14 CHAPTER 2. BACKGROUND

It is possible to circumvent this issue by replacing the q-table with an approximation of Q(s, a) of some
sort. A deep neural network can be trained for this task. If an effective enough approximation can be
constructed this way, it enables learning in far more complex environments. The trained agent will be better
at generalizing what it has learned to new situations, making it more effective at learning to function within
environments with many moving parts.

An early example of this method is given by Mnih et al. [29], where Deep Q-Learning is used to play a
variety of Atari 2600 games. Earlier attempts to utilize Deep Q-Learning in order to train agents to perform
well in tasks were generally unsuccessful or required learning setups or preprocessing that was specific to the
task at hand. Mnih et al. were able to devise an architecture that was able to learn to play seven different
Atari games well without any game-specific changes. The major innovation provided my Mnih et al. was
the use of experience replay [23], which will be explained further in the next section.

2.3.3 Experience Replay

Assume we have an agent we are training through Deep Q-Learning. In order to collect the needed training
data, the agent is released into an environment where it can make observations, take actions and receive
rewards. A naive way to train the agent would be to use each observation-action-reward triple for updating
the agent’s network as they come in. This means that the triples used to train the agent are ordered
temporally.

While this can work, it also has its problems. If we assume that the agent gradually makes its way through
the state space, the naive method means that we repeatedly train the agent on possibly quite similar states.
This can lead to overfitting to the local states.

This is a recurring problem, because once the agent traversed the state space more, we then again fit
the agent very specifically to the now local states. This repeated overfitting to local states means that it is
possible that beneficial changes to the network are removed later in the training process, because the states
where those changes are beneficial have not been encountered in a long time.

To illustrate this concept further, consider the following: When training a network to be able to classify
images of dogs and cats, one does not first feed the network all the dogs and then the cats. The way to train
such a network is to present stimuli randomly selected from the entire training set, ensuring a good mix
between the two classes. Randomly selecting from the entire training set is hard to do in a reinforcement
learning case, because the training set is gradually “generated” as the agent picks actions and transitions to
new states.

A way to approximate this random selection is to make use of experience replay [23]. This works by
keeping track of a memory for the agent. Each time a reward is given for a particular action from a
particular state, this combination is stored in memory. Then, when it is time to update the network, the
network is not updated with the most recent action-state-reward combinations, but instead with a random
selection from memory. This memory has a fixed size, meaning that if it is filled up, new action-state-reward
combinations overwrite old ones.

By randomly selecting action-state-reward combinations in this manner, we prevent the repeated over-
fitting to local state spaces of the naive approach, by breaking any relation (temporal, causal or otherwise)
between consecutive network updates. This ensures a more gradual training across the entire state space,
leading to better performance.

2.3.4 Exploration strategy

The described selection of actions in Deep Q-Learning has a flaw in practice [40]; in training for tasks where
it is not immediately obvious how to get positive rewards efficiently, the agent might get stuck on a bad or
non-optimal solution. Once a first successful strategy is found and incorporated into the Q-network, that
solution will always be picked because it has high q-values associated with it. This can prevent an agent
from fully exploring the environment space and from finding (the most) efficient solutions to problems in the
environment.

In order to facilitate a more thorough exploration of the environment and of the strategies available to
the agent, an action selection policy can be used. A simple example of this is the ϵ-greedy strategy [38].
Here the action with the highest q-value is chosen with probability 1− ϵ, and a random action is picked with
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probability ϵ. By sometimes picking a random action, the agent can be maneuvered into unknown states
which may prove to be beneficial.

Picking a suitable ϵ for the entire training process is difficult. At the beginning of training more explo-
ration is generally a good idea, suggesting a high ϵ. Towards the end of training, one might want the learning
agent to perfect and reinforce its strategies, which is easier with a lower ϵ. A solution to this is annealing.
When using annealing, ϵ starts out with a relatively high value which slowly decays during the training
process. This means that the agent can quickly explore the possible states at the beginning of training,
while still benefiting from everything it has learned towards the end of training.
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Chapter 3

Problem statement and overview

The research question this thesis aims to answer is “Can predatory pressure induce flocking behavior in Deep
Q-Learning agents”? This was tested in both 2D and 3D environments. The predator’s behavior has been
hand-coded, and the behavior of the agents was purely determined by Deep Q-Learning. The only objective
of the agents was to not be eaten by the predator.

Through this research question, this thesis attempts to verify the claim made by Hahn en al. [13] that
predatory pressure can induce emergent flocking in Deep Q-Learning equipped prey animals, in a simple 2D
environment. It also attempts to extend this claim to a 3D environment. The underlying reasoning behind
this is that predatory pressure is a prime candidate for the reason many diverse animals in many diverse
environments display flocking or flocking-adjacent behavior. If flocking behavior can indeed be induced purely
through predatory pressure, this strengthens the claim that predatory pressure can explain why flocking is
so widespread in the animal kingdom. Before being able to come to a conclusion on this, several things had
to be done.

First, models had to be built and trained for both the 2D and 3D cases. The 2D version was closely
modelled after the model used by Hahn et al. The 3D model is a relatively straightforward extension of the
2D model. The 2D model was trained under a variety of parameter configurations, in order to maximise
the chance of finding a configuration in which flocking occurs. Another advantage to this approach is that
it might give insight into which parameters are important for the formation of flocking behavior. The exact
specifications of the models and reasoning for made choices can be found in Chapter 4, Methods.

Secondly, the trained models needed to be evaluated on the extent to which the agents in them displayed
flocking behavior. This meant that the concept of flocking needed to be quantified, ideally in a fashion
that allows for comparisons between different models. This was done by making snapshots of agent positions
while a model ran, and processing these snapshots in order to come to several measures indicative of flocking.
Added to this was a visual sanity check, making sure that measurements indicating flocking were not instead
produced by other behaviour that happened to have similar characteristics in the measured factors. The
manner in which all of this was done is motivated and described in Section 4.5, Statistical Analysis.

Finally, the statistics were compiled in order to draw conclusions. Here, attention was paid to which
parameters had what effect on the measurements of factors indicative of flocking. The compiled statistics
are presented in Chapter 6, Results. A discussion of the methods used and experiments performed is given
in Chapter 7, Discussion. Finally, concrete conclusions are drawn and laid out in Chapter 8, Conclusion.
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Chapter 4

Methods

In this chapter the used methods will be explained and justified. First a high level view of the used models
is presented in Section 4.1. Next, Section 4.2 will go in depth about the behaviour of the boids and Section
4.3 discusses behaviour of the predator. The manner in which the boids were trained is presented in Section
4.4. Finally, which statistical analyses were performed and in what manner is laid out in Section 4.5.

4.1 The general flocking model

The computational 2D and 3D models developed for this research project largely share a common design.
Both feature toroidal empty environments, populated by a number of boids and a predator. The models
feature discrete time steps. Every step in the environment has the boids and the predator move forward and
possibly rotate. The time steps are relatively small, allowing for smooth movement. Screenshots of both the
2D model and the 3D model are shown in Figure 4.1.

The boids select the action taken each step using a policy trained through Deep Q-Learning. The used
reward function encourages the boids to stay alive by giving a small positive reward for staying alive and a
large negative reward for dying. This means that any flocking behavior that occurs is a direct result of the
boids’ strategy to stay alive, because no reward is directly given for flocking-like behaviour. Each step, each
boid feeds its current observation through its policy network. The action with the highest activation is then
picked. Section 4.2 goes further into detail about how the boids work.

In contrast to the trained boids, the predator has hand-coded behaviour. It will select the closest boid as
a target and chase it for a set amount of time. If the predator gets sufficiently close to the boid it is chasing,
it will eat it. If there are multiple boids close to the predator, it will select one at random, simulating the
predator getting confused by a flock of prey and having a hard time tracking any single one of them for an
extended period of time. The resulting frequent target switching will effectively slow the predator down as
it keeps changing direction. Additionally, the predator can speed up for a short amount of time to simulate
a short sprint in order to catch the prey. In Section 4.3, the precise behaviour of the predator is laid out.

The training of the boids is done by only actually training a single boid and copying that boid’s policy
to all other boids. This both speeds up training and ensures a common strategy shared between all boids,
which is essential for flocking to occur. A large flock cannot form unless a large number of boids are trying
to flock together. The training occurs in episodes that end after a set number of steps or when the one
trained boid is eaten. The exact method of training is specified in Section 4.4.2.

The models were created using python. The Deep Q-Learning implementation in Keras-RL was used [32]
for the learning boids. This implementation is meant to be used with an OpenAI Gym [4] like environment,
where the environment’s step function is repeatedly called by the learning agent in order to advance the
model. The written python code follows this convention. Further specifics of the training logic is found in
Section 4.4.3.
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(a) Screenshot of the 2D model. The white
square is the edge of the environment

(b) Screenshot of the 3D model. The white
lines are the edges of the cube-shaped environ-
ment.

Figure 4.1: Screenshots of the two models. The predator is red, the targeted prey boid is orange and the
one trained boid is green. If viewed in black and white, the predator is the darkest grey, the current target
is the lightest grey and the one trained boid is in between.

4.2 Boids

This section explains how the boids are implemented. First an overview is given to help in understanding
the rest of the explanation. Then, the decision making of the boids and their possible actions are elaborated
upon, followed by what happens if a boid is eaten.

4.2.1 General characteristics

The boids in the models move around freely in the environment. They move with a set speed and the only
action they can take is changing their direction of travel. Generally, the boids are at most as fast as the
predator in their respective model. Combined with slightly higher maneuverability than the predator, this
creates a standard predator-prey dynamic. Since the predator is at least as fast as the boids and is possibly
able to speed up for a short amount of time, simply running away from the predator is not a viable survival
strategy. This leaves two possible successful strategies for a boid; it can either try and outmanoeuvre the
predator, or fly close to other boids in order to form a flock that will confuse the predator.

4.2.2 Decision making

Each step of the model, each boid gets a state representing the current environment from that boid’s point
of view. This state contains information about the boid itself, the predator, and the n closest other boids.
This simulates the boids not being able to keep track of all other boids, but only paying attention to the
closest few. The state is passed to the boid as a 2D array with n+ 2 rows, featuring information about the
boid itself at the top, then the predator, and finally the n closest boids.

The information in each row represents a snapshot of the current situation; each row contains the current
distance and vector to the subject of the row as well as the current heading of the subject of the row. In the
row about the boid itself, the current absolute position and current heading are given, with distance being
reported as 0.

The state is then fed into each boid’s neural network. This network has a neuron for each possible action
in the output layer. The action with the highest activation is chosen and executed. Since this method can
only select discrete actions, the boid cannot simply select the exact direction it wants to head in. The way
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the boid picks a direction differs slightly between the 3D and 2D models. In 2D, the boid gets to choose
between nine different options. If r is the maximum number of radians the boid can turn in one step, the
nine options are equally space apart from r to −r (see table 4.1). The selected option is then used to rotate
the boid the desired amount.

Action index Rotation

0 r
1 r · 0.75
2 r · 0.5
3 r · 0.25
4 0
5 −r · 0.25
6 −r · 0.5
7 −r · 0.75
8 −r

Table 4.1: Possible actions for boids in the 2-Dimensional models where r is the maximum turning radius.

In 3D this is trickier, because multiplying a single scalar with a single rotation does not work anymore.
A possible workaround is the utilisation of not only a left/right rotation, but also an up/down rotation, with
separate scalars for each. While this does allow for free movement, it would require the boid to have not
only a direction of travel but also an orientation. This in turn necessitates the boid having control over this
orientation by being able to roll. In order to avoid this added complexity, the 3D models make use of a
set number of goal directions. The boid is then able to pick between these goal directions, and it will turn
towards the selected direction. The turning speed is limited by the boid’s maximum turning speed. In total
the boids can pick between fourteen directions (see Table 4.2). These directions correspond to the vectors
from the center of a cube to the middle of its six faces and to all eight vertices. This creates a fairly uniform
distribution of goal directions, ensuring that the boid can navigate as freely as is needed.

Action index Direction vector

0 [1, 0, 0]
1 [0, 1, 0]
2 [0, 0, 1]
3 [-1, 0, 0]
4 [0, -1, 0]
5 [0, 0, -1]
6 [1, -1, -1]
7 [1, -1, 1]
8 [-1, -1, 1]
9 [-1, -1, -1]
10 [1, 1, -1]
11 [1, 1, 1]
12 [-1, 1, 1]
13 [-1, 1, -1]

Table 4.2: Possible goal directions for boids in the 3-Dimensional models.

4.2.3 Being eaten

If a boid is being chased by a predator and the predator gets sufficiently close, the predator will eat the boid.
This results in the boid being removed from the environment. If the single trained boid is eaten, a negative
reward will be given to the learning algorithm. This is described in more detail in Section 4.4.2.
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The disadvantage of boids being eaten by the predator is that fewer and fewer boids remain. With fewer
boids, confusing the predator by flocking becomes harder and harder. This shrinking of the boid population
continues until the one boid that is actually being trained is eaten, at which point the world will reset and
the population is briefly at maximum size, after which the boids are eaten once again and the population
shrinks once again. The result of this is that the optimal conditions for flocking are only present a fraction
of the time. In order to circumvent this problem, each boid that is eaten will respawn at a random position
instantly. This is not the case if the one trained boid is eaten, as the model will simply restart then.

4.3 Predator

This section specifies the behavior of the predator in the models. First a quick overview of the behavior is
given, accompanied by the algorithm of the predator in pseudocode. Afterwards, a more detailed explanation
of the algorithm is presented.

4.3.1 General characteristics

The predator’s behavior is determined by a hand-coded algorithm. This algorithms makes the predator
attempt to catch and eat the boids. In short, it will select a target boid and then start moving towards
it. Just like the predator in the flocking model from Hahn et al. [13], it briefly speeds up at a set interval.
This is to simulate a leap or short sprint by the predator. In order to eat a boid, the predator needs to
get sufficiently close to it. One of the experiments adds another behavior to the predator. In that case, the
predator halts for a set amount of time after eating a boid. In nature, this is similar to the time spent eating
the caught prey. This is implemented to make flocking a more viable strategy, because the boids have the
time to reform any flocks that were broken up by the attack.

For the purpose of illustration, the version of the algorithm with pausing after eating is listed in Figure
4.2.

4.3.2 Target selection

Whenever the predator is without a target, a new one must be selected. This is done by first creating a
list of all boids, ordered by the distance of the predator to each boid. If multiple boids are within the
preset confusion distance, a random boid of those within that distance is selected. If no boids are within the
confusion distance, the closest boid is selected as the next target. This is meant to simulate the predator
being unable to focus on one boid out of many.

4.3.3 Chasing the target

Once a target is selected, the predator starts chasing it. This is done by turning in the direction of the target
boid. The rate of turning is limited by the predator’s maximum turning speed. The length of time the
predator keeps chasing the same target before selecting a new one is limited by a chase timer, set as soon as
a target is selected. The reasoning behind this is that a more convenient prey boid may have presented itself
while the predator was chasing the current target. If the predator were to instantly switch to this new, now
closest target, it would have a hard time ever catching a single boid because it would switch between targets
and thus directions so frequently that it would not be able to get close enough to any boid. By locking on to
a single target for a while, the predator can actually approach and eat it. The intensity of this confusion-like
effect of repeatedly switching targets can be tuned by changing the length of the chase timer; lower values
simulate a higher amount of confusion.

If the chase timer runs out, the current target is forgotten and a new one is selected. This is where the
confusion effect becomes most clear: if the predator is close to multiple boids, it will likely switch to another
target once the chase timer runs out. The result of this is that the predator needs to change direction in
order to go after the current target. Ideally, for the boids, once the predator is closing in on its new target,
it will switch again to yet another target.

During the chase, the predator speeds up occasionally. The duration of this sprint and the interval at
which it occurs are set parameters (sprint duration and sprint interval respectively). The occasional speedup
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set target to None

set eating_timer to 0

set chase_timer to 0

set current_tick to 0

LOOP

IF chase_timer is 0 THEN

set target to None

IF target is None THEN

create list of boids ordered by closeness to predator

IF multiple boids are closer than confusion_distance THEN
set target to random boid within confusion_distance

ELSE

set target to closest boid

SET chase_timer to chase_time

change predator direction towards target by at most the turning_speed

IF eating_timer is greater than 0 THEN

do not move the predator

decrement eating_timer by 1

ELSE IF current_tick modulo sprint_interval is less than sprint_length:
move predator forward by sprint_speed

ELSE

move predator forward by speed

IF distance to target is less than eating_distance THEN
eat the target

set eating_timer to eating_time
set target to None

decrement chase_timer by 1

increment current_tick by 1

Figure 4.2: The algorithm of the predator including pausing after eating. Variables are styled in italic and
customizable parameters are styled in bold. The values used for these parameters are given in Section 5.2.1
for the 2D models and in Section 5.4.1 for the 3D models.

is implemented by taking the current tick number and performing a modulo on it with the sprint interval ;
if the result of this modulo is less than the sprint duration, the predator moves at sprinting speed. If the
modulo is greater than the sprint duration, the predator is moved at the normal speed. This way a sprint
starts every sprint interval ticks and lasts for sprint duration ticks each time.

4.3.4 Eating the target

Each step, the distance to the target is compared to the distance at which the predator can eat the target.
If the target is close enough, the predator will eat it and the current target will be cleared. What happens
to a boid if it is eaten is specified further in Section 4.2.3. If pausing after eating is enabled, the eating timer
is also set at this point. While this timer is counting down, the predator will not move, simulating the time
spent eating the prey. This gives the remaining boids a chance to reform any flock or formation they may
have been moving in. It also prevents the predator from quickly eating its way through a denser group of
boids, which would likely discourage flocking.
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4.4 Learning

This section is dedicated to the manner of learning used by the boids in both the 2D and the 3D model.
It will discuss which learning method was used and why it was chosen. After this, the way the boids were
trained will be explained.

4.4.1 Why Deep Q-learning?

There are many different ways of making an agent in an environment learn something. For the purposes of
this Master’s thesis, some type of Deep Learning method is preferable, as it allows the agent to generalize past
experiences to similar, but new situations. This is important, because the models feature a high-dimensional
continuous state-space, which can not be fully explored during the learning process. This, combined with
Deep Q-Learning’s past success in the learning of flocking [13] by Hahn et al., made Deep Q-Learning a
promising option for this thesis.

An alternative that was also looked at was Deep Deterministic Policy Gradient (DDPG). In addition to
Deep Q-Learning, Hahn et al. [13] also had success using this in order to teach boids flocking. The major
upside of DDPG over Deep Q-Learning is DDPG’s ability to utilize a continuous action space. This allows
the boids to be able to move around unrestricted by the discrete turning-steps necessary for Deep Q-Learning.
A downside to DDPG is that it can be unstable even in relatively simple environments [25, 21, 44].

In an early prototype model where a boid was tasked with learning to stay within a certain area, a DDPG-
equipped boid failed to learn this consistently. A boid with Deep Q-Learning performed better at this task,
quickly and consistently learning to stay within the set area. This led to the choice for Deep Q-Learning.
While a continuous action space would be preferable to a discrete one, flocking has been achieved before
using a discrete action space [13]. Additionally, since the amount of movement of boids between model steps
is small, alternating between discrete options can still lead to directions of movement that are not included
in the discrete action space.

4.4.2 Training the boids

The method used for training the boids is important. There should be room and opportunity for the boids
to display the goal behavior of flocking without the boids being encouraged directly to group and flock. In
order to achieve this, the reward function does not look at the behavior of the boids; it instead purely looks
at the period they manage to stay alive. Boids get a small positive reward for each step they are alive. If
a boid does get eaten by the predator, it gets a large negative reward. When this function is maximised,
it will lead to evasion of the predator. If flocking is indeed, as suspected, an efficient solution for evading
capture by the predator, it should be able to arise from these circumstances.

Training multiple boids at once can be done in various ways. Training each boid individually is an intuitive
solution. There are, however, some downsides to this. The first is the amount of time needed to train each
boid. Each boid needs to have its network updated each step, which involves a lot of computation time. A
second difficulty is that for flocking to occur, all or a majority of boids need to have it as a strategy. When
all boids are trained independently, this is hard to achieve. Even if one boid stumbles upon a flocking-like
strategy, without the cooperation of the others it is unlikely to succeed.

The used method instead only trains one single boid. Each step this trained boid’s network is also used
to determine the actions of all other boids. After each action taken by the one trained boid, the network
is updated using the reward value that the taken action resulted in. While the other boids use this same
network, it is not updated after these other boids have taken their actions. The result of this method is
exactly what we are looking for; the boids all learn to avoid the predator and they use the same strategy to
do so. This means that the scenario where a boid tries to flock but lacks the support from other boids to do
so cannot occur.

4.4.3 The flow of training

The total training time is defined as a number of steps. These steps form episodes; an episode ends when
either a set maximum episode length has been reached or the one trained boid is eaten. After an episode
ends, the environment is reset and a new episode begins.



4.4. LEARNING 25

Each episode starts with the construction of an initial observation for the one trained boid. This observa-
tion is used to kick-start the action-reward-observation loop that is responsible for the actual training. The
initial observation is fed through the trained boid’s network in order to obtain an action that the trained
boid should take. This action is executed, after which a reward value for the new state is determined and
communicated to the trained boid, together with a new observation. The reward is used to update the net-
work, and the observation is used to obtain a new action. This new action is then executed, which produces
a new reward and a new observation, and so forth.

In this description of the training loop, the actions taken by the other boids and the predator have not
been incorporated. With these added, the order in which the model updates each step is as follows. The
action of the trained boid is executed first. As this action is purely a rotation, the trained boid has not
moved yet. This action is determined using the observation from the previous tick. Next, the non-learning
boids determine their actions through the use of the trained boid’s network. Each non-learning boid feeds its
own observation, constructed in an identical manner to the trained boid’s observation, through the trained
boid’s network. The determined best actions are then executed. This does not move the other boids yet,
only rotates them. Then the predator acts. It changes direction to its target if needed, and then moves.
This is also the point at which the predator checks whether it is close enough to a boid to eat it (and does so,
if it is close enough). Finally, all boids, including the trained boid, move in the direction they are pointing.
Now that everyone has moved, the trained boid’s new observation is made and the reward determined. In
addition, it is also checked whether the episode needs to end prematurely, which happens if the trained boid
is eaten.

The process then repeats, with the new action of the trained boid being executed, followed by all non-
learning boids determining their action and executing it, followed by the predator’s action and movement,
followed by all boids including the trained boid moving. A new observation is constructed, and so forth.

The complete step function of the model is listed in Figure 4.3.

FUNCTION Step(action)

{
execute action for the trained boid

FOR boid in all non-learning boids

{
construct observation for boid

determine action for observation

execute action for boid

}

execute predator actions

move all boids forward

construct new observation for the trained boid

determine reward for the state of the trained boid

determine if episode is done

return observation, reward, done

}

Figure 4.3: The Step method used for training. The framework from which it is called is listed in Figure 4.4.

This step function is called by the trained agent in order to execute the selected action, progress time in
the model and obtain the new observation. The algorithm of the one trained agent is listed in Figure 4.4.

Once the model has been trained, it is used for an experiment. In this experiment, it is run for a large
number of steps, with a snapshot of the world being taken regularly. This is described in more detail in
Chapter 5, Experiments. The snapshots are used for statistical analysis which will be explained further in
the next section.
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set total_steps to 0

WHILE total_steps is less than n_steps
{

# start of an episode

initialize model in order to obtain initial observation

set episode_steps to 0

WHILE episode_steps is less than max_episode_steps
{

pass observation through network to obtain action

set observation, reward, done to Step(action)

update network using reward

increment episode_steps by 1

increment total_steps by 1

IF done

{
break

}
}

}

Figure 4.4: The training algorithm. The called Step function is listed in Figure 4.3.

4.5 Statistical analysis

The data generated by an experiment is a list of snapshots of the world. These snapshots contain the position
and rotation of each agent in the world as well as the number of boids eaten since the last snapshot was
taken. This section will go into how and why these snapshots are processed. It will also discuss the statistical
tests used.

4.5.1 Objective of the analysis

The analysis of the experiment results should accomplish two main tasks. Firstly, it should operationalise
the concept of flocking. This is necessary because it is not possible to directly measure a degree of flocking.
While it is somewhat possible to judge flocking visually, this is not reliable enough to base solid conclusions
on.

Secondly, the analysis should allow for statistical comparisons between differing models. This helps in
determining to what degree differing experimental results between two models are due to differences between
the models or due to chance. By then comparing a range of models against each other, parameters which
encourage or discourage flocking could be identified.

4.5.2 Measurements

In order to flock, the members of the flock must head in about the same direction as the flock as a whole and
they must stay together as a relatively coherent unit. These two factors, deviation from average heading and
average distance between flock members, have been used as a basis for the analysis that has been performed.

Computing these two measurements over the entire population of boids in each snapshot does not make
much sense; they should be done per flock. In order to approximate this, the DBSCAN clustering algorithm
is used [10]. This algorithm works using two parameters, an ϵ deciding how large each point’s neighbourhood
is, and a min neighbours, determining how many points must be within a point’s neighbourhood (including
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itself) for that point to become a core point. Core points in one another’s neighbourhood belong to the
same cluster. Any points that do not meet the min neighbours requirement but are within a core point’s
neighbourhood are still considered belonging to the core point’s cluster. Any points that are not a core point
themselves and are not in the neighbourhood of a core point are considered outliers and are not included in
any cluster.

For each of these clusters, the average pairwise distance between the boids is computed, as well as the
average deviation from the average heading of the cluster. The size of the cluster is recorded as well. The
result of this is that the collection of snapshots from an experiment is reduced down to several important
elements. These are:

• The total number of clusters: A larger number of clusters, all else being equal, indicates a stronger
tendency to flock by the boids.

• A table with for each cluster:

– Number of boids in the cluster: All else being equal, a larger average number of boids within
each cluster indicates a higher amount of flocking.

– Average pairwise distance: A higher average pairwise distance means that a flock is looser.
A lower average pairwise distance means a flock is denser.

– Average deviation from the average heading: A higher value here means that a flock is
messy, with individual boids not necessarily heading in the same direction. A low value indicates
a common heading among boids making up the flock.

• The total number of boids eaten: A measure of model performance. The lower this is, the more
successful the boids were in evading the predator.

For an example of the average pairwise distance and the average deviation from the average heading
measurements in action, consider the configuration of boids in Figure 4.5. In this configuration, two clusters
have been identified: an orange cluster and a blue cluster (light and dark grey respectively if viewed in black-
and-white). The orange cluster is more spread out and is quite polarised. The blue cluster on the other
hand is very tightly packed, and features boids heading in many different directions. This is mirrored in the
measurements. The orange cluster has an average pairwise distance of 0.180 units and an average deviation
from the average heading of 0.050 radians. The blue cluster has an average pairwise distance of 0.073 units
and an average deviation from the average heading of 0.941 radians. This correlates with the observations
that the orange cluster is spread out and polarised, and the blue cluster is tight and not polarized.

Figure 4.5: Configuration of boids with two identified clusters.
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4.5.3 The performed analyses

This section will go over the analyses that were performed.

Experiment reliability
Before drawing conclusions based on the done experiments, the reliability of the experiment must be

demonstrated. If the experiment is too short and does not capture enough data about the model being
measured, it is of no use. In other words, experiments of the same model should not differ significantly in
their results.

This is tested by testing a model for each possible parameter permutation twice. The resulting pairs of
experiments are then tested for any significant differences using a Hotelling’s T-squared test [36] over the size
of each cluster, the average pairwise distance within each cluster and the average deviation from the average
heading within each cluster. In order to reduce this set of 32 tests to a single p-value, Fisher’s method is
applied [11]. The results of all this are presented in Section 6.1.4.

Regression model
In order to find out more about what factors cause flocking-like behavior, linear regression models were

fitted to the measured flocking indicators. These models, given the parameter configuration of a model,
predict the expected measurements for the clusters in that model. The best fitting model for each of the
measurements was determined using the Akaike Information Criterion, which is an estimator for model
quality. The best fitting models and their coefficients are presented in Section 6.1.3.

4.6 Code

The source code of all models, as well as the tools used for analysing the experiments, is available as a GitHub
repository, and can be found on https://github.com/JRdeLange/MasterThesis. The trained models can
also be found there.

https://github.com/JRdeLange/MasterThesis


Chapter 5

Experiments

In this chapter, the experiments that were performed are explained. First, the general experimental design
is laid out in Section 5.1. Next, the three experiments that have been performed are presented in their own
sections. These are the main 2D experiment in Section 5.2, a second smaller 2D experiment in Section 5.3,
and finally a 3D experiment in Section 5.4.

The main 2D experiment trains the boids under varying parameter circumstances, among which those
used by Hahn et al. [13]. The second 2D experiment adds a pause after eating for the predator. The
3D experiment is exploratory, to see if any flocking observed in the 2D experiments also emerges in a 3D
environment.

5.1 General experiment design

All experiments that were performed followed the same structure. The goal of the experiments was to
establish whether there was any flocking-like behaviour exhibited by the boids after they have been trained.
If this was the case, then the predator was likely the cause of this behavior, as no other hazards were present.

In each experiment, the model was trained for a number of steps, after which the model was tested for a
set number of steps. During this test, the model was no longer updated and always selected what it deemed
to be the most optimal action. While the test was running, data on the positions and rotations of the boids
was collected (see Section 4.5.2).

The 2D model was trained for 500.000 steps before being subjected to the experiment. This follows Hahn
and colleagues, who also trained their 2D Deep Q-Learning flocking model for 500.000 steps [13].

The 3D model was trained for 1.000.000 steps before being tested in the experiment. The model was
trained longer than the 2D model since a 3D model is inherently more complex.

From the data collected from each experiment, measurements indicative of flocking behavior will be
calculated. These measurements are the number of eaten boids, the total number of boid clusters, the
number of boids in each cluster, the average pairwise distance within each cluster and finally the average
deviation from the average heading within each cluster. More detail on this is presented in Section 4.5.2.

The next sections will go further in depth on the experiment specific details.

5.2 2D experiment 1

After having been trained for 500.000 steps, the model is run for an additional 100.000 steps, without any
training, in order to collect data about the behavior of the boids. In order to prevent any close (causal or
temporal) relation between data points, a collection interval of 100 steps is used. This ensures that each
snapshot taken of the model does not relate to any other snapshot.

Since the training of a randomly initialized Deep Q-Network is not deterministic and not guaranteed to
achieve maximum performance, each configuration of parameters has been trained and tested a total of three
times. These three repetitions of each parameter configuration will henceforth be referred to as three “sets”
of trained models. For the statistical analysis, only the best performing model out of the three sets will be
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taken into account. Which result is best is determined through the number of boids that have been eaten
over the course of the test, because not being eaten is the only objective with which the boids have been
provided. A summary of the results of the three sets of models can be found in Appendix A.

In order to determine the reliability of the experiment itself, the experiment was run twice on one of the
sets. By comparing the similarity of the results between the two experiments that used the same underlying
model, experiment reliability can be judged. Very similar measurements indicate that the experiment gen-
erates enough data points in order to accurately judge model performance. The results of this comparison
can be found in Section 6.1.4.

5.2.1 Parameters

Whether or not flocking behavior emerges is dependent on parameters in the model. For example, if the
boids can easily outrun the predator, there is no reason for them to form a flock in order to confuse it. In
order to maximize the chance that the model produces flocking behaviour, several different configurations of
model parameters have been trained and tested. The parameters that were varied were chosen because they
influence key features in the model. The varied parameters will now be named and explained.

• Boid speed: By varying the movement speed of the boids, the relative speed to the predator changes.
It stands to reason that this will affect their behavior. Additionally, by the boids moving a smaller or
larger distance each step, their relative maneuverability to the predator is varied as well. This is most
easily imagined through the size of the smallest circle they can circumvent; Even if the turning speed
stays the same, if a boid moves a smaller distance each step, the resulting circle will be smaller.

The values used were 0.0333 (approximately 1/60th of the world each step) and 0.0283 (approximately
1/70th of the world each step).

• Boid count: By varying the number of present boids, we are effectively varying the boid density.
Flocking with a larger number of boids may be more effective, because the predator has more potential
prey agents to randomly pick between. On the other hand, since there is a larger density of boids,
maybe flocking is not as necessary for survival, since the predator encounters a new closer boid more
frequently than in lower boid densities.

The values used were 10 total boids and 20 total boids.

• Predator chase time: This varies the number of steps the predator is locked on to a single target.
When this is high, the predator will stay locked on to its target for longer. If this is low, the predator
will switch targets frequently, mimicking the confusion effect. This setting therefore fairly directly
controls how viable flocking is as a strategy.

The values used were 20 steps of continuous lock-on and 10 steps of continuous lock-on.

• Number of observable neighbours: Varying this has two main goals. First, it is a good control
trial in order to see if any observed flocking can be interpreted as intentional grouping. After all, boids
in similar positions might simply act similarly, therefore looking like they are flocking. If all flocking
observed in tests where boids can see multiple neighbours also occurs in tests where boids cannot see
any neighbours, then the observed flocking is likely a side-effect of boids just responding similarly to
similar circumstances.

Secondly, a smaller number of observable neighbours means that there is less information to pay
attention to, which could lead to different behavior in the trained boids.

The values used were 5, 2, 1 and 0 observable neighbours.

All possible permutations of the above parameters (see Table 5.1) were run. As already mentioned, all
permutations were trained and tested three times, with the best performing version of each permutation
being used for the final statistical analysis.

Parameters other than the ones above were not varied at all. These parameters and their values are:
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Configuration name Observable neighbours Boid count Boid speed Predator chase time

5 obs 10 boids 5 10 0.0333 20
5 obs 10 boids short chase 5 10 0.0333 10
5 obs 10 boids slower 5 10 0.0283 20
5 obs 10 boids slower short chase 5 10 0.0283 10
5 obs 20 boids 5 20 0.0333 20
5 obs 20 boids short chase 5 20 0.0333 10
5 obs 20 boids slower 5 20 0.0283 20
5 obs 20 boids slower short chase 5 20 0.0283 10
2 obs 10 boids 2 10 0.0333 20
2 obs 10 boids short chase 2 10 0.0333 10
2 obs 10 boids slower 2 10 0.0283 20
2 obs 10 boids slower short chase 2 10 0.0283 10
2 obs 20 boids 2 20 0.0333 20
2 obs 20 boids short chase 2 20 0.0333 10
2 obs 20 boids slower 2 20 0.0283 20
2 obs 20 boids slower short chase 2 20 0.0283 10
1 obs 10 boids 1 10 0.0333 20
1 obs 10 boids short chase 1 10 0.0333 10
1 obs 10 boids slower 1 10 0.0283 20
1 obs 10 boids slower short chase 1 10 0.0283 10
1 obs 20 boids 1 20 0.0333 20
1 obs 20 boids short chase 1 20 0.0333 10
1 obs 20 boids slower 1 20 0.0283 20
1 obs 20 boids slower short chase 1 20 0.0283 10
0 obs 10 boids 0 10 0.0333 20
0 obs 10 boids short chase 0 10 0.0333 10
0 obs 10 boids slower 0 10 0.0283 20
0 obs 10 boids slower short chase 0 10 0.0283 10
0 obs 20 boids 0 20 0.0333 20
0 obs 20 boids short chase 0 20 0.0333 10
0 obs 20 boids slower 0 20 0.0283 20
0 obs 20 boids slower short chase 0 20 0.0283 10

Table 5.1: All ran 2D model permutations.

• World dimensions: The width and height of the world. While not directly influencing the behavior of
the boids or the predator, this parameter is important to contextualize the other distances mentioned.
The used values here are -1 to 1 on both axes.

• Boid turning speed: The maximum number of radians a boid can turn each step. The used value
here is 0.5π.

• Predator speed: The distance the predator moves each step. The used value here is 0.0333.

• Predator sprint speed: The distance the predator moves each step during the periodic speed-up
lunge. The used value here is 0.0533.

• Predator sprint interval: The step interval at which the predator starts sprinting, increasing its
speed. The used value here is 100 steps.

• Predator sprint length: The number of steps the predator stays at sprint speed. The value used
here is 20 steps.
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• Predator turning speed: The maximum number of radians the predator turn each step. The used
value here is 0.25π.

• Predator confusion distance: Boids closer than this distance to the predator will be considered
close enough to cause confusion. If more than one boid is within this distance, the predator will pick
a target at random from all boids within this distance. The used value here is 0.4.

• Predator eating distance: The maximum distance at which the predator is considered close enough
to a boid in order to eat it. Since agents in the model do not have a diameter, this is measured between
the actual positions of the boid and the predator. The used value here is 0.0666.

During training, an action selection policy is used to help the agents in exploring the state-space. The
used policy is an annealing epsilon-greedy policy [38], which was described in detail in Section 2.3.4. At the
beginning of training we set ϵ = 0.2, which linearly scales to ϵ = 0.002 at the end of training.

5.2.2 Analysis

This section details the analyses performed on the results of the experiments. It first discusses the clustering
method used for determining potential flocks. Next, it discusses the statistical analysis that will be performed.

Clustering

For the analysis of each of the trained model permutations, the DBSCAN clustering algorithm [10] is used to
determine clusters, within which flocking-indicating values are then determined. The specific implementation
used [31] allows for the specification of several parameters to customize the manner of clustering. As described
in Section 4.5.2, this requires the setting of an ϵ to determine the size of the neighbourhood around a point
and a min neighbours to determine how many points need to be within a point’s neighbourhood for that
point to be a core point of a cluster.

After some experimentation, an ϵ value of 0.2 with a minimum cluster size of 3 provided reasonable
results. A lower ϵ quickly made the formation of clusters almost impossible, as shown in Figures 5.1 below.

(a) ϵ = 0.1 (b) ϵ = 0.2 (c) ϵ = 0.4

Figure 5.1: Clusters with different values of ϵ and min neighbours= 3. Each color constitutes a cluster.

In Subfigure 5.1(a), no clusters are formed at all, while in Subfigure 5.1(c) some agents that are quite far
apart are still classified as a cluster. The orange cluster (light grey in black and white) in Subfigure 5.1(c) is
a good example of this. Instead of only encompassing the four boids close together, like in Subfigure 5.1(b),
it now loops around the world to the right side, incorporating boids that are quite distant from the original
cluster.

Similar experimentation with the value of min neighbours can be seen in Figure 5.2.
A min neighbours of 2, like in Subfigure 5.2(a), leads to pairs of agents being classified as a cluster. This

bar is too low. With a value of 4 however, like in Subfigure 5.2(c), clusters are only made very small. If we
look at the blue clusters (dark grey in black and white) in Subfigures 5.2(b) and 5.2(c), we can see that in
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(a) min neighbours=2 (b) min neighbours=3 (c) min neighbours=4

Figure 5.2: Clusters with different values of min neighbours and ϵ = 0.2. Each color constitutes a cluster.

(c) two boids are culled from the cluster even though they are not noticeably separate from the four boids
that are still in the cluster.

The exact values here should not have a large influence on the measurements as long as they are reason-
able. If flocking is actually present, it should show in the results even if clusters sometimes include an extra
boid or do not include a boid that should have been included.

Statistical analysis

In order to understand the impact that the different parameter configurations have on the measured flocking
indication variables, linear regression will be used. Separate regression models will be fitted for each measured
flocking indicating variable, giving insight into correlations between the parameters and boid behavior.

5.3 2D experiment 2

After 2D experiment 1 was performed and no clear flocking behavior emerged (see Section 6.1), one of the
parameter configurations was trained and tested again with a change in predator behavior. In order to lessen
the predatory pressure on the boids, a pause after eating was implemented into the predator algorithm (see
Figure 4.2). The idea behind this was that this would prevent the predator from eating a whole cluster of
boids quickly. By pausing the predator for a set amount of time after each time it eats a boid, all other
boids get a chance to distance themselves from the predator and, possibly, to form a flock. Three separate
models were trained and tested in this experiment in order to create three opportunities where flocking-like
behavior could emerge.

5.3.1 Parameters

This experiment was run using configuration 2 obs 20 boids short chase in Table 5.1, with the addition of
predator pausing. A configuration with 20 boids was chosen because this increased amount of boids allows
for more and larger flocks. A short chase condition was chosen as it further favors the boids, allowing for
more flocking opportunities. Finally, an observed neighbour boids condition was picked as this is required
for real flocking behavior. As the number of observed neighbours did not appear to make a large difference
in the results (see Section 6.1.2), the middle option of two observed neighbours was used.

5.3.2 Analysis

The behavior of the boids in the finished models was analysed and examined for evidence of flocking-like
behavior. Since it was clear from this analysis that no flocking-like behavior was present (see Section 6.2.1),
no further analysis was done.
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The results were not directly compared to the same configuration without predator pausing from experi-
ment 1, as the small dataset (only three models) and the inconsistency of trained models meant that a direct
comparison would not be meaningful.

5.4 3D experiment

The final experiment that was conducted is one with a 3D environment. Apart from the environment being
3D and the actions that the boids choose to move around (see Section 4.2.2), the model is identical to the
2D models.

This experiment was meant to see whether any flocking behavior observed in the earlier 2D experiments
would transfer over to a 3D environment. Although eventually no flocking-like behavior was observed in any
of the 2D experiments, the 3D experiment was still run.

5.4.1 Parameters

Just like the second 2D experiment, this experiment’s parameters are taken from the 2 obs 20 boids short chase
configuration (in Table 5.1). A number of 20 total present boids were used since this allows for more flocking
opportunities. The predator’s chase was short, since this gives an advantage to the boids. The two observ-
able neighbours condition was picked since the number of observable neighbours did not appear to strongly
influence the behavior the boids displayed in the 2D experiments (see Section 6.2.1). Picking a value here
where neighbour boids were observable, but the observation did not contain too much information, seemed
like a good balance, so a number of two observable neighbours was chosen.

5.4.2 Analysis

The results of this experiment were established through looking at the behavior of the boids. While mea-
surements were taken, these did not show any interesting trends nor did they hint at anything not observable
through simply looking at the behavior of the boids.



Chapter 6

Results

This chapter presents the results of all three performed experiments; the first and main 2D experiment (see
Section 6.1), the second 2D experiment with predator pausing (see Section 6.2), and the 3D experiment
(see Section 6.3). In each case, the results are reported in several subsections. First, a look is taken at the
behavior the boids displayed during the experiment. Next, the measurements are presented through tables
and various graphs. Finally, a more thorough analysis of the measurements is performed.

6.1 2D experiment 1

This section is dedicated to the presentation of the results of the first 2D experiment. In summary, this
experiment trained a group of boids through Deep Q-Learning. The goal of the boids was to not be eaten by
a predator. In total, the boids were trained under 32 different parameter configurations (see Section 5.2.1).
After training, the boids were tested in order to collect measurements of flocking-indicating factors in the
behavior of the boids (see Section 4.5.2). These measurements were then processed (see Section 5.2.2) into
the results presented in this section.

Three separate models were trained and tested for each parameter configuration. Then, in each configu-
ration only the model with the lowest number of eaten boids during the experiment was used for the data and
analysis presented in this section. This was done in order to reduce the inherent variance in performance of
trained neural networks, like the q-networks used by the boids. A summary of all trained and tested models,
including the ones that are not presented or used for analysis in this section, can be found in Appendix A.

If there is indeed emergent flocking-like behavior, this should become clear in the data presented in this
section. This would become evident in several ways; behavior which visually resembles flocking should be
observable. There should also be differences between the zero observed neighbour conditions and those
where boids did observe their neighbours. The expected differences are more and larger clusters in observ-
able neighbour conditions, as well as more aligned clusters in those conditions. This is because any boids
displaying real flocking behavior must utilise the observations of nearby boids in order to stay close to them
and to align with them. This is impossible in the conditions where no neighbouring boids are observed.
Flocking-like behavior therefore can only be present in conditions with observable neighbours.

This section is structured as follows: in Section 6.1.1 the types of behavior the trained boids display are
shown and compared to flocking. Next, Section 6.1.2 gives an impression of the taken measurements through
tables and graphs, in addition to checking if the measurements indicate flocking-like behavior. Section 6.1.3
then presents statistical analyses of the taken measurements. Finally, Section 6.1.4 discusses the validity of
the experimental design.

6.1.1 2D experiment 1 boid behavior

In this section, the types of behavior observed in the experiments will be shown. For each of the described
types of behavior it will be judged how much they resemble flocking behavior. Flocking behavior here is
defined as highly polarized groups of boids that move in unison by reacting to other boids in the same
flock. The behavior the boids displayed over all of the experiments roughly falls within one of four identified
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categories; random spinning, random spinning except when the predator is near, uniform fleeing, and linear
fleeing. These are now discussed one by one.

Each type of behavior is represented by a sequence of three images. The leftmost image is the first of
the sequence, with the middle image being taken a few steps after the leftmost image, and the rightmost
image being taken a few steps after the middle image. This gives a rudimentary sense of the movement of
the boids.

Random spinning

Figure 6.1: Boids showing exclusively spinning behavior. The images are ordered temporally from left to
right. The red agent is the predator, the orange boid is the current target and the green agent is the one
trained boid. If viewed in black and white, the predator is the darkest grey, the current target is the lightest
grey and the one trained boid is in between.

Figure 6.1 shows some of the least effective behavior the boids displayed. No reaction to the predator was
observed, and boids simply spun in circles or moved around randomly. This specific example was taken from
configuration 2 obs 20 boids in set one (see Table A.4). This behavior does not qualify as flocking-like. The
boids do not group together at all, let alone move together as a polarized group.

Random spinning except when the predator is near

Figure 6.2: Boids showing spinning behavior except when the predator is near.

The behavior depicted in Figure 6.2 consists of boids moving randomly or spinning around, like in Figure
6.1, except that when the predator gets close, they do react to it by fleeing. As can be expected, this is more
effective than not reacting to the predator. This is also evident in the number of eaten boids of the two
configurations these images were captured from; the purely spinning boids were eaten a total of 14534 times,
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whereas the boids in the configuration from which this example was captured (configuration 2 obs 20 boids
in set two. See Table A.5) had 8486 boids eaten.

Once again, this behavior does not qualify as flocking-like. The boids do not cluster together, which is
necessary for flocking-like behavior.

Uniform fleeing

Figure 6.3: Boids showing uniform fleeing behavior.

The most flocking-like behavior observed is depicted in Figure 6.3. Here, boids fairly uniformly flee from
the predator, forming what appears to be a flock. This potential flock starts at the top of the environment
and travels diagonally upward, reappearing at the bottom of the environment. This behavior appears quite
flocking-like; the boids here are grouped together and they are moving uniformly.

This specific example, though, is captured from a condition where no neighbouring boids were observed
((configuration 0 obs 20 boids in set two. See Table A.11). Because this behavior can also occur without
reacting to any neighbouring boids, this also is not flocking behavior. These are simply lone boids, fleeing a
predator, close to one another.

Linear fleeing

Figure 6.4: Boids showing linear fleeing behavior.

The final type of observed behavior is shown in Figure 6.4. This behavior consists of boids going mostly
straight, although less uniformly in one direction than the uniform fleeing behavior seen in Figure 6.3.

This type of behavior does not feature boids grouping together, and therefore cannot be classified as
flocking-like behavior.
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6.1.2 2D experiment 1 results

This section will further explore to what extent the behavior displayed by the trained boids is flocking-like.
If there is flocking-like behavior, the following observations are expected:

• Number of clusters: If there is flocking-like behavior, that means that boids are actively going
towards one another. This should result in more clusters in conditions where neighbouring boids are
observed than in conditions where no neighbours are observed.

• Cluster size: If there is flocking-like behavior, clusters will be larger in conditions where neighbours
are observable. This follows from the reasonable assumption that clusters made up of boids that
actively seek out other boids in order to form a flock would generally grow larger than clusters made
up of boids that coincidentally ended up close to one another.

• Mean deviation from average heading: Two things are expected here. First, any flocking behavior
should result in a mean deviation from the average heading of less than that of a completely random
cluster, which is 0.5π radians. This might also be the case in conditions where there is no flocking, as
boids might randomly cluster together while fleeing from the predator, therefore heading in a similar
direction as one another.

Second, if there is flocking-like behavior, clusters in observable neighbour conditions should be more
aligned than those in invisible neighbour conditions. This is because flocking-like behavior, which can
only arise in visible neighbour conditions, requires a polarized flock.

Number of clusters

Figure 6.5 shows the total number of observed clusters for all numbers of observed neighbours. A distinction
is made between the 10 and 20 present boids conditions, as the number of present boids has a large influence
on the number of formed clusters.

Figure 6.5: The number of observed clusters for each number of observed neighbours and each number of
total present boids.

As can be seen in Figure 6.5, the expected difference between invisible and observed neighbour conditions
if there was indeed flocking-like behavior is not present. In fact, the largest number of clusters observed in
both the 10 and 20 present boids conditions was observed in the zero observed neighbours condition.
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Cluster size

Figure 6.6 and Figure 6.7 show the distribution of cluster sizes in the 10 and 20 present boids conditions,
respectively.

Figure 6.6: Cluster size for each number of observed neighbours with 10 total present boids (note the log
scale).

Figure 6.7: Cluster size for each number of observed neighbours with 20 total present boids (note the log
scale).

If there is flocking-like behavior, this should manifest itself into larger clusters in conditions where neigh-
bours are observable. This is not the case, as can be seen in Figures 6.6 and 6.7. The differences between
the different numbers of observed neighbours are small, suggesting that whether the boids can see their
neighbours does not play a role in the size of the clusters they form. This in turn suggests that there is no
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flocking-like behavior.

Mean deviation from average alignment

The distribution of the average deviation from the mean heading within clusters for the different numbers
of observed neighbours is plotted in Figure 6.8.

Figure 6.8: The average deviation from the mean heading within clusters for all numbers of observed neigh-
bours. The width of each shape represents the distribution of the average deviation from the mean heading
values; a wide area means more values around that area. Within each shape a boxplot is displayed. The
box starts and ends at the first and third quartile, with the short horizontal line within the box marking the
median value.

Flocking-like behavior should result in a lower average mean deviation from the average heading in
observable neighbour conditions than in non-observable neighbour conditions. This means that the one,
two and five observable neighbour conditions should have averages less than the average of 0.87 of the no
observable neighbours condition. For the one and two observable neighbour conditions, which have averages
of 0.76 and 0.86 respectively, this is indeed the case. The difference between the conditions is significant
only for the one observed neighbour condition (t = 17.356, df = 11939, p < 2.2e-16).

6.1.3 2D experiment 1 analysis

None of the analyses so far have provided compelling evidence for flocking. In order to completely rule out
any flocking-behavior, this section will look at the measurements from a third perspective: linear regression
models. Any strong correlations between flocking behavior and one or more of the parameters should become
clear through this lens.

In order to determine which model parameters, if any, influence flocking-like behaviour, multiple linear
regression was performed for each of the three measured factors indicative of flocking (cluster size, average
pairwise distance within clusters and average deviation from the mean heading within a cluster). This section
discusses the model selection process and, afterwards, presents the best model for each of the measurements
indicative of flocking.

Regression model selection

In order to select the best possible regression model for each of the three flocking indicators, models with
all possible combinations of independent variables (these are the number of boids, the predator chase time,
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the boid speed and the number of neighbours observed) were made. These regression models were then
compared to one another using the Akaike Information Criterion (AIC) in order to select the best model for
each measurement. The AIC scores of all regression models can be found in Table 6.1 (cluster size), Table
6.2 (average pairwise distance) and Table 6.3 (average deviation from mean heading). For each variable, the
regression model with the lowest AIC was picked.

Model AIC AIC ∆

Cluster.NrOfBoids ChaseTime BoidSpeed NeighboursObserved 61775.51
Cluster.NrOfBoids BoidSpeed NeighboursObserved 61780.11 4.60
Cluster.NrOfBoids ChaseTime NeighboursObserved 61781.49 5.98
Cluster.NrOfBoids NeighboursObserved 61786.00 10.49
Cluster.NrOfBoids ChaseTime BoidSpeed 61850.67 75.16
Cluster.NrOfBoids BoidSpeed 61856.87 81.36
Cluster.NrOfBoids ChaseTime 61857.31 81.80
Cluster.NrOfBoids 61863.41 87.90
Cluster.ChaseTime BoidSpeed NeighboursObserved 62174.43 398.92
Cluster.BoidSpeed NeighboursObserved 62178.90 398.79
Cluster.ChaseTime NeighboursObserved 62181.29 405.78
Cluster.NeighboursObserved 62185.67 410.16
Cluster.ChaseTime BoidSpeed 62253.10 477.59
Cluster.BoidSpeed 62259.18 483.67
Cluster.ChaseTime 62260.69 485.18

Table 6.1: The AIC of all regression models predicting the size of clusters. The table is ordered based on the
AIC scores of the models, with the lowest at the top. The AIC ∆ column indicates the difference between
each regression model’s AIC and the lowest AIC of all regression models.

Model AIC AIC ∆

Distance.NrOfBoids BoidSpeed -73390.31
Distance.NrOfBoids BoidSpeed NeighboursObserved -73389.77 0.54
Distance.NrOfBoids ChaseTime BoidSpeed -73388.47 1.84
Distance.NrOfBoids -73388.39 1.92
Distance.NrOfBoids NeighboursObserved -73387.92 2.39
Distance.NrOfBoids ChaseTime BoidSpeed NeighboursObserved -73387.90 2.41
Distance.NrOfBoids ChaseTime -73386.54 3.77
Distance.NrOfBoids ChaseTime NeighboursObserved -73386.04 4.27
Distance.BoidSpeed -73320.76 69.55
Distance.BoidSpeed NeighboursObserved -73319.95 69.82
Distance.ChaseTime BoidSpeed -73318.91 71.40
Distance.NeighboursObserved -73318.40 71.91
Distance.ChaseTime BoidSpeed NeighboursObserved -73318.08 72.23
Distance.ChaseTime -73317.30 73.01
Distance.ChaseTime NeighboursObserved -73316.52 73.79

Table 6.2: The AIC of all models predicting average pairwise distance within a cluster.
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Model AIC AIC ∆

Heading.BoidSpeed 15128.28
Heading.NrOfBoids BoidSpeed 15128.50 0.22
Heading.ChaseTime BoidSpeed NeighboursObserved 15131.66 3.38
Heading.NrOfBoids NeighboursObserved 15131.88 3.60
Heading.ChaseTime BoidSpeed 15181.01 52.73
Heading.NrOfBoids ChaseTime BoidSpeed 15181.06 52.78
Heading.ChaseTime NeighboursObserved 15184.58 56.30
Heading.NrOfBoids ChaseTime 15184.63 56.35
Heading.NrOfBoids BoidSpeed NeighboursObserved 15308.35 180.07
Heading.BoidSpeed NeighboursObserved 15308.64 180.14
Heading.NrOfBoids ChaseTime BoidSpeed NeighboursObserved 15309.79 181.51
Heading.ChaseTime 15310.08 181.80
Heading.NrOfBoids 15363.23 234.95
Heading.NeighboursObserved 15363.73 235.45
Heading.NrOfBoids ChaseTime NeighboursObserved 15364.83 236.55

Table 6.3: The AIC of all models predicting average deviation from the average heading within a cluster.

Cluster size model

The best model predicting cluster size included all possible predictors. The coefficients of this model are
listed in Table 6.4. All predictors significantly aid in the predictions. As expected, a higher number of boids
appears to contribute to larger clusters (p < 2e−16). When going from 10 to 20 boids, the expected cluster
size increases by approximately 0.36.

If, as expected, a more easily confused predator leads to more flocking and therefore to larger cluster
sizes, the effect of predator chase time on cluster size should be negative. This means that as the predator
becomes more capable of tracking a single boid without being confused by other small boids, the average
cluster size shrinks. This is indeed the case in this regression model, although the effect is rather small and
the p value is not as convincing as those of other predictors (p = 0.01020). When the predator chase time
decreases from 20 steps to 10 steps, the predicted cluster size increases by only 0.032.

The third significant predictor is the speed of the boids. As this varies between 0.0333 and 0.0283, the
predicted difference value here is 0.035 higher for fast boids than for slow boids (p = 0.00475). This suggests
that faster boids form larger groups. This could be because they are harder to catch for the predator, which
leads to the boids having cluster members eaten less often, leading to larger overall clusters.

The final predictor is the number of observed neighbours. The effect and significance of this predictor
is important. Purposeful flocking can only occur if the boids can actually perceive one another. Therefore,
if there actually is any purposeful flocking, it is reasonable to assume that the expected cluster size rises
as more neighbours are observed. The opposite of this is actually observable in the regression model. The
predicted cluster size actually goes down by 0.029 for each additional observed neighbour. This change
significantly contributes to accurate predictions (p < 2e−16).

Estimate Std. Error t value Pr(>—t—)
(Intercept) 2.751078 0.085209 32.286 <2e-16
nr of boids 0.035881 0.001784 20.109 <2e-16
chase time -0.003172 0.001235 -2.569 0.01020
boid speed 6.968226 2.467947 2.823 0.00475
nr neighbors observed -0.029116 0.003312 -8.790 <2e-16

Table 6.4: Multiple linear regression coefficients on the size of clusters.
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Average pairwise distance model

The regression model predicting the average pairwise distance within clusters with the lowest AIC is given in
Table 6.5. Only two predictors are used here; the number of present boids and the speed of the boids. Notably
absent here is the number of observed neighbours, suggesting that boids seeing where their neighbours are
does not significantly influence the distance they keep to their neighbours.

The number of boids present does have significant value in predicting the average pairwise distance
between boids in a cluster (p < 2e−10). When going from 10 to 20 present boids, the expected mean pairwise
distance rises by 0.0079. This is a very small amount, given that the world size in the same units is 1 by 1
and the boids move a distance of 0.0333 or 0.0283 per tick.

The second predictor in the model is the speed the boids travel at. The p value here is only just significant,
at 0.0478. The predicted value of slow boids is 0,0013 higher than that of fast boids.

Estimate Std. Error t value Pr(>—t—)
(Intercept) 0.1679 4.329e-03 38.788 <2e-16
nr of boids 7.878e-04 9.307e-05 8.465 <2e-16
boid speed -0.2547 0.1287 -1.979 0.0478

Table 6.5: Multiple linear regression coefficients on the average pairwise distance within clusters.

Average deviation from mean heading model

The model with the lowest AIC predicting the average deviation from the mean heading only has 1 significant
predictive factor; the speed of the boids (p = 0.87e−14). The predicted value is 0,034 higher for slower boids
than for faster boids. Although the difference is quite small when compared to the intercept of 1.06, the low
p value does suggest it is a real difference. A possible reason for this could be that faster boids are harder to
catch for the predator. This then leads to fewer boids being eaten, meaning fewer boids are respawning at a
random position. When this newly spawned boid then joins a cluster, the joining process will likely lead to
a higher overall deviation from the mean heading, because a boid can only join a cluster by moving into it in
another direction than the one the cluster is heading in. Faster boids that are eaten less frequently therefore
lead to fewer cluster joining events, possibly keeping the average deviation from the mean heading down.

Estimate Std. Error t value Pr(>—t—)
(Intercept) 1.05553 0.02766 38.16 <2e-16
boid speed -6.76807 0.89406 -7.57 .87e-14

Table 6.6: Multiple linear regression coefficients on the average deviation from the average heading within
clusters.

6.1.4 2D experiment 1 validity

This section compares two experiments run using the same model for each parameter configuration. By
looking at the magnitude of the difference between the two experiments, it is possible to get a sense of how
reliable the experimental procedure is. If the performance of a model and the measurements indicative of
flocking differ only slightly between the two experiments, this indicates that the experiments are reliable and
a good judgement of the models.

The way this has been measured is by seeing whether there are any significant differences between the
results of two experiments of the same model. For this purpose, a model for each parameter configuration
has been tested with an experiment twice. On each experiment pair a Hotelling’s T-squared test [20] was
then performed. This way the results of the two experiments are compared. The variables used to compare
the experiments are the size of all found clusters, the average positional deviation within each cluster and
the average deviation from the average heading within each cluster. The results of these tests can be found
in Table 6.7.

Out of all experiment pairs, only two have a p-value below 0.05, indicating a significant difference. In
order to determine whether this is within reason (the two p < 0.05 tests could be significantly different purely
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Configuration p value Degrees of freedom Test statistic

0 obs 10 total boids 0.4437581 3, 477 2.6952658640934
0 obs 10 total boids short chase 0.2248029 3, 711 4.38604000609944
0 obs 10 total boids slower 0.02951269 3, 477 9.09692566844992
0 obs 10 total boids slower short chase 0.5964847 3, 522 1.89444170198225
0 obs 20 total boids 0.8466731 3, 3433 0.812123137477304
0 obs 20 total boids short chase 0.8208514 3, 2968 0.91956144670717
0 obs 20 total boids slower 0.8014116 3, 2237 1.0002337869975
0 obs 20 total boids slower short chase 0.8110781 3, 2731 0.960080962723253
1 obs 10 total boids 0.6827462 3, 411 1.50614091843049
1 obs 10 total boids short chase 0.9834854 3, 327 0.16272696030266
1 obs 10 total boids slower 0.7667526 3, 546 1.14713972629319
1 obs 10 total boids slower short chase 0.2544424 3, 357 4.10621161869531
1 obs 20 total boids 0.7194327 3, 2725 1.34201867278632
1 obs 20 total boids short chase 0.6291817 3, 2318 1.73676779996546
1 obs 20 total boids slower 0.5733845 3, 2274 1.99748355318666
1 obs 20 total boids slower short chase 0.3311882 3, 2665 3.42486280223181
2 obs 10 total boids 0.9385077 3, 322 0.410531732195444
2 obs 10 total boids short chase 0.7427536 3, 334 1.25071836275259
2 obs 10 total boids slower 0.1047603 3, 531 6.19821449066535
2 obs 10 total boids slower short chase 0.8632219 3, 524 0.744909666345674
2 obs 20 total boids 0.08652763 3, 2922 6.59165494789984
2 obs 20 total boids short chase 0.1160228 3, 2439 5.92178102330716
2 obs 20 total boids slower 0.6209664 3, 2413 1.77412094255429
2 obs 20 total boids slower short chase 0.8647807 3, 2394 0.736256561238979
5 obs 10 total boids 0.4567889 3, 543 2.61745412177831
5 obs 10 total boids short chase 0.5097093 3, 363 2.33168020697456
5 obs 10 total boids slower 0.09111449 3, 495 6.52551339206644
5 obs 10 total boids slower short chase 0.9976336 3, 372 0.0434881689971603
5 obs 20 total boids 0.7167636 3, 2545 1.35341115665669
5 obs 20 total boids short chase 0.1382797 3, 2811 5.51434426276737
5 obs 20 total boids slower 0.3372915 3, 2645 3.37942539112911
5 obs 20 total boids slower short chase 0.03396578 3, 2809 8.6913010836842

Table 6.7: Hotelling’s T-squared test results for all pairs of experiments for all models in set 1.

by chance), Fisher’s method [11] is used to combine all p values. This gives a combined p-value of 0.60,
suggesting that there is no significant difference between the results of the first and the second experiment.
This in turn indicates that the experiment captures a sufficient amount of data.
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6.2 2D experiment 2

This section is dedicated to the results of the 2D experiment with predator pausing (for more details see
Section 5.3). In order to increase the chances that flocking behavior emerges, three separate models have
been trained under the same circumstances. In this section a look is taken at the behavior displayed by the
boids in these experiments. This is done in order to see whether the predator pausing caused the emergence
of flocking-like behavior.

6.2.1 2D experiment 2 boid behavior

Here the behavior observed in each of the three trained models is discussed and judged on their likeness to
flocking behavior.

Model 1

Figure 6.9: Boids showing spinning behavior except when the predator is near. The images are ordered
temporally from left to right. The red agent is the predator, the orange boid is the current target and the
green agent is the one trained boid. If viewed in black and white, the predator is the darkest grey, the
current target is the lightest grey and the one trained boid is in between.

The behavior displayed by the first model is depicted in Figure 6.9. This behavior closely resembles the
“random spinning except when the predator is near” behavior observed in the main 2D experiment and
described in Section 6.1.1. The boids spin around or move randomly, but do usually react when the predator
gets close. In that case, they tend to move away from the predator, as the orange boid (or, in black and
white, light grey) in Figure 6.9 can be seen doing.

Just like the “random spinning except when the predator is near” behavior in Section 6.1.1 does not
qualify as flocking-like behavior, this also does not. The boids do not group together, which is a requirement
for flocking-like behavior.
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Model 2

Figure 6.10: Boids showing linear fleeing behavior.

Boids in the second model featuring predator pausing displayed behavior very similar to the “linear fleeing”
behavior discussed in Section 6.1.1. The behavior is presented in Figure 6.10. In this experiment, boids
generally did not turn, instead simply going in a straight line. When the predator got close, they often did
take evasive action, which is also visible in Figure 6.10.

This type of behavior does not resemble flocking. The boids here do not group together, and seem
to prefer heading in their own direction instead of aligning with other boids. Both of these things are
requirements for flocking behavior.

Model 3

Figure 6.11: Boids showing random spinning behavior.

The last model produced boids that randomly spin in place, not reacting to the predator. This resembles the
behavior described in Section 6.1.1. As the boids do not appear to react to other boids (nor to the predator
for that matter), this does not qualify as flocking-like behavior. No groups are actively formed and no boids
are aligning with one another.
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6.3 3D experiment

This Section discusses the results of the 3D experiment described in detail in Section 5.4. Three separate
models have been trained under the same parameter conditions. An experiment was then run with each of
these models. The goal of this experiment was to see whether any flocking-like behavior observed in the 2D
experiments would carry over to a 3D environment.

No flocking-like behavior is expected to emerge in these experiments, because no real flocking-like behavior
presented itself in the 2D conditions. Nevertheless, this experiment was run, since there was no good reason
not to. The behavior which the boids did display will now be discussed. No additional statistics or figures
have been provided, because these did not show anything of interest.

6.3.1 3D experiment boid behavior

Boids in all three trained models exhibited very similar behavior. In all cases they moved around randomly
and they did not effectively react to the predator. This can also be seen in each of the examples (Figures
6.12, 6.13 and 6.14). Each of these examples features the chased boid either not moving away from the
predator or being eaten by the predator.

Figure 6.12: Boids showing random behavior. The images are ordered temporally from left to right. The
red agent is the predator, the orange boid is the current target and the green agent is the one trained boid.
If viewed in black and white, the predator is the darkest grey, the current target is the lightest grey and the
one trained boid is in between.

Figure 6.13: Boids showing random behavior.
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Figure 6.14: Boids showing random behavior.

No intentional grouping of boids could be observed, nor could any aligning with neighbouring boids. As
expected, no flocking-like behavior occurred in any of the three models. Because the behavior of the boids
is practically random, nothing useful could be learned from additional analysis.



Chapter 7

Discussion

This chapter further interprets the results and discusses strong points and shortcomings of the methods that
produced them. It also speculates on the possible impact of several hypothetical changes to the methods, as
well as possible directions for future research.

7.1 Interpreting the results

This section summarizes the results of each of the experiments and judges them for any evidence of flocking-
like behavior.

7.1.1 2D experiment 1

No convincing evidence for emergent flocking-like behavior in any of the trained models has been found. The
behavior displayed by the boids generally did not resemble flocking, and the behavior which most resembled
flocking (see Section 6.1.1) was also present in no observable conditions, where flocking is impossible. The
closer look at the measurements taken during the experiment in Section 6.1.2 also was not convincing.

The only part in the analysis of the first 2D experiment that did hint at flocking-like behavior, the
alignment between boids being significantly stronger in the one visible neighbour condition than in the no
visible neighbours condition (see Section 6.1.2), should not be taken at face value. This is because the amount
of data generated by agent-based modelling is large, which causes small differences in the data between two
conditions to quickly be a significant difference. In the context of flocking, what we are looking for is a
shift in behavior between no visible neighbours (not flocking) and visible neighbours (flocking). This shift
should be accompanied by a difference in measured alignment. While there is indeed a difference in measured
alignment, this difference is quite small (0.87 vs 0.76). It is significant, with a very low p value (p < 2.2e-16),
but this p value is only this low because of the large amount of data generated by the experiment. If there
were indeed a shift in behavior, the difference itself would likely be larger. It is also expected that this shift
in behavior would influence other measurements, like cluster size and the number of observed clusters. This
is not the case.

The linear regression models fitted in Section 6.1.3 do not provide evidence for flocking-like behavior.
Effect sizes are generally small, and the large significance some of them have is explainable without there
being flocking-like behavior present. It stands to reason that if parameters used in the generation of data are
altered, the generated data itself could be slightly different. Due to the large amount of data generated by
agent-based modelling, these small differences can quickly become significant. This is no evidence for flocking-
like behavior, however, as it merely means there is a slight change in behavior when certain parameters are
varied. If flocking were present, there would not be a small change in behavior, but a major shift. This shift
is not visible in any of the regression models.

All three explorations of the behavior displayed by the boids in the first 2D experiment did not result in
any evidence for the emergence of flocking-like behavior in agents under predatory pressure.

49
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7.1.2 2D experiment 2

The idea behind having the predator pause after eating was to give the boids a chance to reform any clusters
broken up by a predator attack. This could help the boids flock, as they now had more opportunities to
cluster together. The trained models, however, did not display any flocking-like behavior. The behavior
which was observed, was also seen in the first 2D experiment. No evidence for flocking was therefore found
here.

7.1.3 3D experiment

Although no real flocking-like behavior was observed in any of the 2D models, the 3D experiment was still
performed. There was no reason not to see what behavior the boids would display. Once trained, the boids
still seemed to act almost randomly. No consistent reaction to the predator was observable, and no clusters
were actively being formed by the boids.

7.2 Reviewing the study

In this section, various encountered issues and potential limiting factors will be discussed. First, potential
problems to do with the implementation of the methods are presented, and afterwards the research process
itself is reflected upon.

7.2.1 Implementation

When replicating the methods originally used by Hahn et al [13], some of the needed parameters were not
given in their paper. Although they did provide a version of their code after that was requested, this code was
not final and did not include all of the missing parameters from the original paper. Final implementations
of the training loop and the predator algorithm were also missing.

This means that some of the parameters used in the experiments in this thesis had to be given a guessed,
reasonable value. Examples of this are the range at which the predator could be confused, and the speed and
duration of the predator’s periodic short sprint. The goal of this thesis was to potentially further strengthen
the idea that flocking is an efficient solution to predation under a lot of circumstances. If this were indeed
the case, small differences in model parameters would probably not hinder flocking; after all, flocking occurs
under many different parameter conditions in nature. Still, flocking occurred in the experiments of Hahn et
al. [13], and not in the experiments conducted for this thesis, which could be due to parameter choices unfit
for flocking.

Another possibility the reproduction of Hahn et al. [13] was unsuccessful could be because of implemen-
tation errors. Both the 2D and 3D models contain roughly a thousand lines of code each. Although both
models have been thoroughly checked for errors, it is impossible to completely rule out that the reason for
the failure of the replication is a simple coding error.

7.2.2 Process

The methods underwent a lot of changes over the duration of the research process. Initially, it was expected
that only a 3D model was necessary; once this did not return promising results in early testing, the decision
to also replicate Hahn et al.’s [13] experiment was made. The effect of this is that the eventually used
methods may not be optimal for the eventually set goal.

A good example of a possibly sub-optimal choice was that of which learning algorithm to use. Hahn et al.
[13] made functioning models displaying flocking-like behavior through the use of both Deep Q-Learning as
well as Deep Deterministic Policy Gradient. In an early version of the 3D model, Deep Q-Learning showed
better results faster than Deep Deterministic Policy Gradient. This is the reason behind the choice for Deep
Q-Learning. If the goal at the beginning was not just extending the flocking behavior to 3D, but also to
replicate the results achieved by Hahn et al., both Deep Q-Learning and Deep Deterministic Policy Gradient
might have been implemented. More examples of things that could have been done differently are discussed
next, in Section 7.3.
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7.3 Potential changes to the methods

Since the main experiment of this thesis (the first 2D experiment, see Section 5.2) was intended to recreate
the experiment conducted by Hahn et al. [13], the used methods were largely identical to those used by
Hahn et al. Because the original expectation was that flocking behavior would emerge (as it had when Hahn
et al. did their experiments [13]), and that this would then possibly transfer into 3D, alterations that could
possibly increase the likelihood of flocking or improve the quality of any emergent flocking-like behavior were
not made. This section will concisely discuss several of these potential changes, as well as their expected
effect.

More present boids With more present boids, confusing the predator purely by coincidence could occur
more frequently. This might cause flocking to emerge as a potential strategy. On the other hand, more
present boids means that more processing needs to be done in order to run the model. Another disadvantage
is that with more present boids, the one trained boid will be attacked less often, which might lead to a lack
training opportunities.

Train using all available state-action pairs Instead of only training one boid and using its Q-network
for all boids, it should also be possible to use state-action pairs from all boids to update a shared Q-network.
This would mean that there are a lot more updates per model step, which speeds up training. The speedup
would probably be small, since updating the network is relatively expensive.

Smoother turning agents Initially, the maximum angle the boids could turn in a single step of the model
was a lot lower than it ended up being. This alteration was made in order to more closely match what Hahn
et al. [13] did, since the aim was to replicate their results.

Having less maneuverable, smoother turning boids, would probably lead to different behavior than what
was observed in this thesis’ experiments. Perhaps the lessened agility of the boids would force them to rely
more on clusters and flocks for defense.

Use DDPG as a learning algorithm The biggest outward difference between the utilized method of
Deep Q-Learning and Deep Deterministic Policy Gradient is that DDPG supports a continuous action space.
This would allow for more precise movement control on the part of the boids, perhaps making flocking easier
to achieve.

Training stop condition Since the goal of the first 2D experiment was to replicate Hahn et al. [13],
their training method was also copied. In this method the boids were trained for a set number of 500.000
steps. There is, however, no reason to expect that this number of steps is optimal. Training until a stop
condition is met could make more sense. Possible stop conditions are a plateau in improvement, certain
behavior resembling flocking, or something different entirely.

7.4 Future research

This section presents various interesting direction for potential future research on the topic of this thesis.

Training methods Different training methods could produce very different behavior in trained agents.
Apart from Deep Deterministic Policy Gradient, which has already been discussed (see Section 7.3), Neuro
Evolution of Augmenting Topologies [37] would also be interesting to test. This method more closely resem-
bles evolution in nature. It works by starting with a sparse network with the state as an input and possible
actions as output. This network then, through an evolutionary algorithm, increases in capability through
the additions of new nodes and connections, as well as the alteration of existing ones. By adding some sort
of drawback as the complexity of the evolving network increases, increased emphasis could be placed on the
efficiency of the solution.
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Pre-training The issue of boids displaying seemingly random behavior can likely be solved through the
use of pre-training. For example, boids could be pre-trained to evade a predator with no other boids present
in the environment. This then leads to boids that at the very least can avoid the predator. When adding
the other boids back in, it may be that the boids will now learn to evade the predator even better through
working together by forming flocks.

More/better/worse/more realistic predators The predator is supposed to be the catalyst for flocking-
like behavior in the boids. Therefore, if the behavior of the predator is changed, it can be expected that the
behavior of the boids would change as well. Possible alterations to the predator are simply adding more of
them, making them more or less capable, or making more realistic predators.

More predators could lead to flocking because more predation reduces the effectiveness of simply moving
away from the predator that is chasing you, as this might only move you towards another predator. Multiple
predators also opens the door for pack hunting tactics, which could induce entirely different behavior in the
boids.

Increasing or decreasing the effectiveness of the predator could also change the extent to which flocking
is a good strategy; an ineffective predator would not require flocking to evade, but a predator that is too
effective might not even give the boids a chance to learn to flock. Somewhere in the middle there could be
a sweet spot where flocking is optimal and will therefore emerge.

The predator can be made more realistic in a number of ways. One way this could be done through the
addition of a field of view or another more accurate simulation of perception that is currently done. The
effect of this is hard to predict as it depends a lot on the made alterations. A field of view for the predator
might affect the behavior of the boids significantly, as prey can now “hide” behind the predator.

More accurate/physics-based model If the results of Hahn et al. [13] are successfully replicated and
extended to 3D, it would be interesting to see whether flocking behavior would still emerge in a more realistic
model. An example of such a realistic model would be StarDisplay [15], which simulates several of the forces
birds in flight are subject to. If flocking is indeed a good and efficient solution to predation, it should still
emerge in a model based on realistic physics.
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Conclusion

The goal of this thesis was to find out whether the 2D flocking behavior in response to a predator observed
by Hahn et al. [13] could be extended into a 3D environment. If this was possible, this would strengthen
the claim that flocking is induced by, and an efficient solution to, predatory pressure. In order to attempt
this extension to 3D, it was first tried to replicate Hahn et al. their 2D results. This was unsuccessful.

None of the performed experiments resulted in the trained boids displaying flocking-like behavior. Giving
the boids an advantage by making the predator’s sprint shorter, or adding a pause after eating for the
predator, did not change this. Tipping the balance in favor of the predator by making the boids slower also
did not induce flocking-like behavior.

Purely based on the results of the experiments conducted for this thesis, the answer to the question
“Can predatory pressure induce flocking behavior in Deep Q-Learning agents?” would be no, it cannot.
No evidence for this can be found in the results of the experiments conducted with the goal to find such
evidence. The observations made by Hahn et al. [13], however, still stand. This discrepancy implies that
either they had a freak success, or errors were made in the attempted recreation of their results. The actual
answer to the question of whether predatory pressure can induce flocking therefore is unclear.

The forces behind the convergent evolution of flocking behavior are still a mystery. Apart from predatory
pressure, many different factors could potentially be the source of flocking behavior. Maybe it is foraging
for food, social advantages, ease of travel, or a combination of some or all of these. Further research is still
necessary in order to come to a definitive conclusion here.
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Appendix A

Full results 2D experiment 1

This appendix lists a full summary of the results of 2D experiment 1. In order to limit the variance between
the extend to which trained networks differ in performance, three separate models were trained and tested for
each configuration. This results in three complete sets of models. From this, a ‘best set’ is then constructed.
The best set contains for each configuration the model which had the lowest number of boids eaten during
the experiment. This best set is what is presented in Section 6.1.

In this appendix, the experiment summaries are first grouped by the number of observed neighbours,
and then grouped by the set number. Models that made it into the best set have their configuration name
presented in bold. After all data has been listed, a summary of the best set is also given.

Five observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

5 obs 10 boids 2653 284 3,250 (0,487) 0,171 (0,043) 0,925 (0,321)
5 obs 10 boids short chase 521 176 3,176 (0,463) 0,167 (0,046) 0,896 (0,309)
5 obs 10 boids slower 2433 254 3,236 (0,576) 0,165 (0,046) 0,939 (0,308)
5 obs 10 boids slower short chase 1457 193 3,161 (0,421) 0,174 (0,044) 0,910 (0,314)

5 obs 20 boids 7620 1302 3,483 (0,868) 0,174 (0,050) 0,905 (0,310)
5 obs 20 boids short chase 13392 1404 3,659 (1,043) 0,175 (0,050) 0,935 (0,309)
5 obs 20 boids slower 14579 1323 3,638 (1,063) 0,178 (0,050) 0,942 (0,303)
5 obs 20 boids slower short chase 14007 1417 3,663 (1,095) 0,178 (0,051) 0,934 (0,307)

Table A.1: The results of experiment set one for five observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

5 obs 10 boids 2227 248 3,270 (0,565) 0,174 (0,042) 0,915 (0,294)
5 obs 10 boids short chase 1202 174 3,190 (0,509) 0,159 (0,046) 0,840 (0,330)
5 obs 10 boids slower 1944 242 3,269 (0,582) 0,167 (0,044) 0,916 (0,317)
5 obs 10 boids slower short chase 923 178 3,225 (0,557) 0,172 (0,045) 0,894 (0,317)

5 obs 20 boids 6985 1092 3,474 (0,859) 0,176 (0,048) 0,939 (0,307)
5 obs 20 boids short chase 6925 1157 3,455 (0,811) 0,176 (0,046) 0,911 (0,315)
5 obs 20 boids slower 6954 1098 3,492 (0,851) 0,175 (0,047) 0,921 (0,308)
5 obs 20 boids slower short chase 11808 1202 3,562 (0,913) 0,180 (0,049) 0,942 (0,308)

Table A.2: The results of experiment set two for five observed neighbour boids
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Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

5 obs 10 boids 1391 233 3,197 (0,440) 0,167 (0,047) 0,865 (0,352)
5 obs 10 boids short chase 710 194 3,144 (0,367) 0,169 (0,044) 0,868 (0,297)
5 obs 10 boids slower 2481 255 3,282 (0,594) 0,167 (0,047) 0,909 (0,300)
5 obs 10 boids slower short chase 870 178 3,242 (0,524) 0,172 (0,044) 0,888 (0,298)

5 obs 20 boids 3614 1171 3,442 (0,778) 0,174 (0,047) 0,871 (0,322)
5 obs 20 boids short chase 10356 1601 4,082 (1,580) 0,181 (0,053) 0,922 (0,313)
5 obs 20 boids slower 16386 1406 3,765 (1,215) 0,177 (0,052) 0,941 (0,302)
5 obs 20 boids slower short chase 14939 1452 3,718 (1,157) 0,176 (0,051) 0,951 (0,298)

Table A.3: The results of experiment set three for five observed neighbour boids

Two observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

2 obs 10 boids 364 154 3,162 (0,404) 0,169 (0,042) 0,886 (0,370)
2 obs 10 boids short chase 676 185 3,157 (0,480) 0,169 (0,042) 0,847 (0,315)
2 obs 10 boids slower 2680 275 3,331 (0,707) 0,166 (0,044) 0,909 (0,332)
2 obs 10 boids slower short chase 2180 236 3,246 (0,537) 0,171 (0,047) 0,903 (0,320)

2 obs 20 boids 14534 1458 3,691 (1,089) 0,174 (0,052) 0,935 (0,303)
2 obs 20 boids short chase 8337 1236 3,495 (0,841) 0,172 (0,050) 0,910 (0,320)
2 obs 20 boids slower 10295 1202 3,526 (0,934) 0,176 (0,049) 0,883 (0,317)
2 obs 20 boids slower short chase 6561 1183 3,456 (0,800) 0,173 (0,047) 0,868 (0,322)

Table A.4: The results of experiment set one for two observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

2 obs 10 boids 536 159 3,170 (0,424) 0,164 (0,045) 0,885 (0,311)
2 obs 10 boids short chase 2214 241 3,207 (0,473) 0,167 (0,043) 0,914 (0,308)
2 obs 10 boids slower 2619 265 3,275 (0,587) 0,174 (0,041) 0,919 (0,292)
2 obs 10 boids slower short chase 792 157 3,185 (0,436) 0,169 (0,046) 0,878 (0,318)

2 obs 20 boids 8486 907 3,455 (0,837) 0,180 (0,047) 0,906 (0,308)
2 obs 20 boids short chase 4442 1257 3,498 (0,850) 0,172 (0,050) 0,823 (0,324)
2 obs 20 boids slower 6532 1132 3,511 (0,874) 0,176 (0,049) 0,901 (0,305)
2 obs 20 boids slower short chase 15629 1444 3,678 (1,175) 0,174 (0,051) 0,932 (0,306)

Table A.5: The results of experiment set two for two observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

2 obs 10 boids 722 196 3,184 (0,482) 0,166 (0,043) 0,797 (0,355)
2 obs 10 boids short chase 690 158 3,165 (0,405) 0,167 (0,047) 0,857 (0,307)
2 obs 10 boids slower 1843 220 3,205 (0,556) 0,164 (0,048) 0,900 (0,324)
2 obs 10 boids slower short chase 918 179 3,123 (0,377) 0,163 (0,045) 0,858 (0,329)

2 obs 20 boids 4118 1193 3,539 (0,901) 0,176 (0,049) 0,776 (0,350)
2 obs 20 boids short chase 4175 1111 3,497 (0,872) 0,174 (0,048) 0,886 (0,317)
2 obs 20 boids slower 11279 1321 3,634 (1,035) 0,177 (0,051) 0,902 (0,316)
2 obs 20 boids slower short chase 13820 1335 3,734 (1,149) 0,179 (0,051) 0,949 (0,305)

Table A.6: The results of experiment set three for two observed neighbour boids
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One observed neighbour boid

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

1 obs 10 boids 1463 214 3,290 (0,504) 0,170 (0,045) 0,878 (0,313)
1 obs 10 boids short chase 476 169 3,172 (0,512) 0,167 (0,043) 0,876 (0,312)
1 obs 10 boids slower 2618 269 3,257 (0,537) 0,171 (0,047) 0,885 (0,303)
1 obs 10 boids slower short chase 967 185 3,189 (0,491) 0,171 (0,043) 0,865 (0,317)

1 obs 20 boids 12028 1373 3,749 (1,129) 0,181 (0,051) 0,894 (0,319)
1 obs 20 boids short chase 12882 1168 3,603 (1,005) 0,177 (0,050) 0,929 (0,308)
1 obs 20 boids slower 7306 1150 3,461 (0,773) 0,175 (0,048) 0,888 (0,327)
1 obs 20 boids slower short chase 12250 1346 3,654 (1,058) 0,175 (0,052) 0,916 (0,301)

Table A.7: The results of experiment set one for one observed neighbour boid

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

1 obs 10 boids 823 183 3,186 (0,455) 0,168 (0,044) 0,866 (0,320)
1 obs 10 boids short chase 949 292 3,312 (0,639) 0,167 (0,049) 0,722 (0,357)
1 obs 10 boids slower 1393 199 3,201 (0,471) 0,175 (0,041) 0,860 (0,316)
1 obs 10 boids slower short chase 869 178 3,197 (0,464) 0,171 (0,044) 0,896 (0,308)

1 obs 20 boids 12179 1183 3,614 (1,004) 0,178 (0,049) 0,928 (0,306)
1 obs 20 boids short chase 4122 1328 3,626 (1,035) 0,175 (0,049) 0,634 (0,331)
1 obs 20 boids slower 7898 1151 3,415 (0,787) 0,173 (0,050) 0,892 (0,309)
1 obs 20 boids slower short chase 11038 1272 3,723 (1,153) 0,182 (0,052) 0,869 (0,329)

Table A.8: The results of experiment set two for one observed neighbour boid

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

1 obs 10 boids 438 175 3,251 (0,508) 0,169 (0,046) 0,858 (0,343)
1 obs 10 boids short chase 625 179 3,212 (0,462) 0,169 (0,046) 0,889 (0,327)
1 obs 10 boids slower 1555 226 3,270 (0,519) 0,169 (0,046) 0,922 (0,290)
1 obs 10 boids slower short chase 2296 248 3,210 (0,455) 0,165 (0,043) 0,907 (0,318)

1 obs 20 boids 9675 1364 3,771 (1,162) 0,179 (0,052) 0,845 (0,338)
1 obs 20 boids short chase 13256 1545 3,739 (1,177) 0,174 (0,052) 0,928 (0,311)
1 obs 20 boids slower 7120 1265 3,655 (1,094) 0,177 (0,050) 0,617 (0,367)
1 obs 20 boids slower short chase 11452 1081 3,604 (1,021) 0,186 (0,049) 0,910 (0,306)

Table A.9: The results of experiment set three for one observed neighbour boid
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No observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

0 obs 10 boids 1203 245 3,261 (0,540) 0,166 (0,047) 0,617 (0,376)
0 obs 10 boids short chase 1485 354 3,350 (0,644) 0,166 (0,048) 0,851 (0,356)
0 obs 10 boids slower 844 170 3,171 (0,422) 0,167 (0,042) 0,889 (0,318)
0 obs 10 boids slower short chase 1728 255 3,271 (0,569) 0,166 (0,047) 0,802 (0,353)

0 obs 20 boids 8166 1713 4,039 (1,521) 0,169 (0,055) 0,749 (0,349)
0 obs 20 boids short chase 6035 1470 3,824 (1,265) 0,174 (0,053) 0,882 (0,328)
0 obs 20 boids slower 6053 1132 3,458 (0,838) 0,177 (0,047) 0,936 (0,308)
0 obs 20 boids slower short chase 11738 1355 3,592 (0,974) 0,171 (0,051) 0,809 (0,341)

Table A.10: The results of experiment set one for no observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

0 obs 10 boids 360 156 3,205 (0,450) 0,168 (0,043) 0,903 (0,290)
0 obs 10 boids short chase 1821 379 3,528 (0,817) 0,163 (0,051) 0,782 (0,374)
0 obs 10 boids slower 2816 285 3,211 (0,515) 0,166 (0,046) 0,888 (0,310)
0 obs 10 boids slower short chase 2251 287 3,279 (0,572) 0,171 (0,048) 0,828 (0,332)

0 obs 20 boids 9995 1830 4,211 (1,713) 0,168 (0,059) 0,741 (0,357)
0 obs 20 boids short chase 10527 1295 3,559 (0,899) 0,170 (0,050) 0,869 (0,320)
0 obs 20 boids slower 7945 1186 3,531 (0,900) 0,176 (0,048) 0,887 (0,334)
0 obs 20 boids slower short chase 9066 1378 3,581 (0,997) 0,172 (0,050) 0,865 (0,319)

Table A.11: The results of experiment set two for no observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

0 obs 10 boids 2012 293 3,324 (0,652) 0,165 (0,044) 0,880 (0,327)
0 obs 10 boids short chase 1222 329 3,322 (0,671) 0,165 (0,047) 0,681 (0,355)
0 obs 10 boids slower 2634 279 3,294 (0,611) 0,176 (0,044) 0,893 (0,325)
0 obs 10 boids slower short chase 2446 263 3,232 (0,513) 0,168 (0,043) 0,899 (0,344)

0 obs 20 boids 4411 1251 3,571 (0,979) 0,173 (0,050) 0,844 (0,338)
0 obs 20 boids short chase 10137 1179 3,530 (0,908) 0,177 (0,048) 0,907 (0,317)
0 obs 20 boids slower 13859 1466 3,837 (1,298) 0,176 (0,052) 0,910 (0,319)
0 obs 20 boids slower short chase 14258 1394 3,666 (1,065) 0,176 (0,050) 0,924 (0,307)

Table A.12: The results of experiment set three for no observed neighbour boids

Best performing 2D experiment results

In this section the best performing models across all three sets have been compiled. These models make up
the data used in
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Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

5 obs 10 boids 1391 233 3,197 (0,440) 0,167 (0,047) 0,865 (0,352)
5 obs 10 boids short chase 521 176 3,176 (0,463) 0,167 (0,046) 0,896 (0,309)
5 obs 10 boids slower 1944 242 3,269 (0,582) 0,167 (0,044) 0,916 (0,317)
5 obs 10 boids slower short chase 870 178 3,242 (0,524) 0,172 (0,044) 0,888 (0,298)

5 obs 20 boids 3614 1171 3,442 (0,778) 0,174 (0,047) 0,871 (0,322)
5 obs 20 boids short chase 6925 1157 3,455 (0,811) 0,176 (0,046) 0,911 (0,315)
5 obs 20 boids slower 6954 1098 3,492 (0,851) 0,175 (0,047) 0,921 (0,308)
5 obs 20 boids slower short chase 11808 1202 3,562 (0,913) 0,180 (0,049) 0,942 (0,308)

Table A.13: The results of the best experiment set for five observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

2 obs 10 boids 364 154 3,162 (0,404) 0,169 (0,042) 0,886 (0,370)
2 obs 10 boids short chase 676 185 3,157 (0,480) 0,169 (0,042) 0,847 (0,315)
2 obs 10 boids slower 1843 220 3,205 (0,556) 0,164 (0,048) 0,900 (0,324)
2 obs 10 boids slower short chase 792 157 3,185 (0,436) 0,169 (0,046) 0,878 (0,318)

2 obs 20 boids 4118 1193 3,539 (0,901) 0,176 (0,049) 0,776 (0,350)
2 obs 20 boids short chase 4175 1111 3,497 (0,872) 0,174 (0,048) 0,886 (0,317)
2 obs 20 boids slower 6532 1132 3,511 (0,874) 0,176 (0,049) 0,901 (0,305)
2 obs 20 boids slower short chase 6561 1183 3,456 (0,800) 0,173 (0,047) 0,868 (0,322)

Table A.14: The results of the best experiment set for two observed neighbour boids

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

1 obs 10 boids 438 175 3,251 (0,508) 0,169 (0,046) 0,858 (0,343)
1 obs 10 boids short chase 476 169 3,172 (0,512) 0,167 (0,043) 0,876 (0,312)
1 obs 10 boids slower 1393 199 3,201 (0,471) 0,175 (0,041) 0,860 (0,316)
1 obs 10 boids slower short chase 869 178 3,197 (0,464) 0,171 (0,044) 0,896 (0,308)

1 obs 20 boids 9675 1364 3,771 (1,162) 0,179 (0,052) 0,845 (0,338)
1 obs 20 boids short chase 4122 1328 3,626 (1,035) 0,175 (0,049) 0,634 (0,331)
1 obs 20 boids slower 7120 1265 3,655 (1,094) 0,177 (0,050) 0,617 (0,367)
1 obs 20 boids slower short chase 11038 1272 3,723 (1,153) 0,182 (0,052) 0,869 (0,329)

Table A.15: The results of the best experiment set for one observed neighbour boid

Configuration name Eaten boids Clusters Cluster size Pairwise distance Heading deviation

0 obs 10 boids 360 156 3,205 (0,450) 0,168 (0,043) 0,903 (0,290)
0 obs 10 boids short chase 1222 329 3,322 (0,671) 0,165 (0,047) 0,681 (0,355)
0 obs 10 boids slower 844 170 3,171 (0,422) 0,167 (0,042) 0,889 (0,318)
0 obs 10 boids slower short chase 1728 255 3,271 (0,569) 0,166 (0,047) 0,802 (0,353)

0 obs 20 boids 4411 1251 3,571 (0,979) 0,173 (0,050) 0,844 (0,338)
0 obs 20 boids short chase 6035 1470 3,824 (1,265) 0,174 (0,053) 0,882 (0,328)
0 obs 20 boids slower 6053 1132 3,458 (0,838) 0,177 (0,047) 0,936 (0,308)
0 obs 20 boids slower short chase 9066 1378 3,581 (0,997) 0,172 (0,050) 0,865 (0,319)

Table A.16: The results of the best experiment set for no observed neighbour boids
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