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Abstract

By making an adjustment in the axiomatization of betweenness, we find
new but very general examples of betweenness spaces. In particular it turns
out that enriched categories come equipped with a betweenness relation and
that betweenness spaces can be thought of as enriched categories. In this
line of thought we construct functors between the category of betweenness
spaces and the category of enriched categories equipped with some suitable
notion of morphism. We introduce the concepts of betweenness and enriched
categories formally and accompanied by various examples.
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1 Prologue

1.1 Acknowledgment

My special thanks to Arthemy Kiselev for planting a seed, Alef Sterk for making
it sprout, Jaap Top for saving it from early frost, Oliver Lorscheid for his many
useful remarks and suggestions towards the soil. On a personal note, I want to
thank Esther de Boer. Without these people I would have graduated with a very
different thesis.

1.2 Introduction

(i) Betweenness relations were first formally defined by Moritz Pasch [3] in 1882.
However, betweenness existed in nature before it was described in literature. The
greek mathematician Heron of Alexandria solved an optimization problem by (per-
haps implicitly) making use of betweenness around 60 AD. The problem is as fol-
lows. Given two points A and C on one side of a line, find a point B on the
straight line that minimizes AB + BC. The solution is to reflect the point C in
the straight line to find a point C ′. Draw the line AC ′ and find its intersection
with the straight line. This intersection point is the solution denoted B.

A
C

C′

B

X

To see this is indeed the solution, note that for an arbitrary point X on the
straight line we have XC = XC ′. Because B is between A and C ′, we have
AB + BC ′ = AC ′ ≤ AX +XC ′. This shows that AB + BC ≤ AX +XC for all
points X on the straight line. Thus B is indeed the solution.

What is important about the work of Pasch is that he defines betweenness as
a property instead of implicitly making use of it when thinking of proofs. This
opened the door to reason about betweenness per se. Later on, various definitions
were invented to capture betweenness as a property in increasingly abstract con-
texts. For example, a good overview of betweenness in ordered geometry is given
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in [4]. Moreover, many of these newly found axioms and how they interrelate have
been systematically studied in [5].

Recent publications [6, 7, 8, 9] show that the topic of betweenness is still an
active research topic. In fact, research is currently carried out on the modal logic
of betweenness at the Institute for Logic, Language and Computation (ILLC)
in Amsterdam. Furthermore, grant applications that are visible online suggest
the structure of betweenness preserving maps is being investigated in the Czech
Republic. Various applications of betweenness exist. For instance, betweenness
relations can be used to construct a notion of line for which a generalization of the
Sylvester Gallai theorem is proven in [10]. Furthermore, betweenness relations are
used to model causality. There is a notion of causal betweenness introduced by
Reichenbach which is characterized in [11]. Betweenness relations are even finding
applications in artificial intelligence [12] and they are taken into consideration for
the purpose of modelling social choice theory [13]. Because there are so many
examples of betweenness, one concludes there are either many different notions,
or there is a very general framework that captures the property.

(ii) In this thesis we contribute an axiomatization of betweenness that allows us
to view it as a property intrinsic to the general theory of enriched categories.
Explicitly, every enriched category comes with a betweenness relation, and every
betweenness relation has an associated enriched category. We prove this correspon-
dence is functorial. In order to achieve this result, we make use of the following
key observation.

The commonly usedminimality axiom of betweenness is too restrictive.
It states that “[a, b, a] implies a = b”. Instead we introduce the weaker
and more symmetric version “[a, b, a] and [b, a, b] imply a = b”.

This allows us to define betweenness on arbitrary enriched categories in terms
of their composition morphism. The payoff is that the intuitive clarity of be-
tweenness could aid the use of ordered geometry in enriched categories. Since
enriched categories are highly complex mathematical structures they are in liter-
ature often considered with simplifications. Thus betweenness may prove itself a
usefull mnemonic device. In the other direction, if we are thinking of composition
morphisms as generalized triangle inequalities, then by analogy we can think of
hom-objects as generalized distances. Since betweenness geometry is a geometry
without reference to measurement, this thesis arguably labours to find abstract
forms of measurement for arbitrary betweenness spaces by interpreting them as
enriched categories. However, these two views only concern the object part of our
functors. The morphism part describes how seemingly unrelated structures can
have the same betweenness geometry.
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Among the new contributions in this thesis we find

+ A symmetric version of the minimality axiom for betweenness in section 2.1.

+ A notion of betweenness for ideals in a commutative ring in section 2.2.

+ A topological characterization of betweenness preserving functions in section
2.5.

+ Lattice betweenness in terms of presheaves in section 3.3.

+ A notion of morphism of enriched categories for non-fixed monoidal category
in section 4.6.

+ A notion of betweenness on enriched categories in section 4.5 and the functori-
ality of this interpretation in section 4.7.

+ The associated enriched category of a betweenness space and the functoriality
of this interpretation in section 5.

(iii) The document is structured as follows. In chapter 2 we explain what be-
tweenness relations are, how its defining axioms interact and we provide various
examples. After betweenness preserving functions are defined, we show an appli-
cation of the existence of a particular betweenness preserving function acting on
metric lattices. We moreover show a characterization of betweenness preserving
functions in terms of topology.

In chapter 3 we explain how Lawvere’s observation can be used to interpret be-
tweenness categorically. We then explain how the composition in cartesian closed
categories is internalized and as a result we obtain that the familliar notion of
lattice betweenness is a property of internal composition morphisms.

In chapter 4 we define enriched categories accompanied with examples. Af-
ter defining the needed enriched categorical notions, we formulate a betweenness
relation on arbitrary enriched categories and see that the minimality axiom is
closely related to the Cantor-Schroeder-Bernstein theorem. We proceed to define
morphisms between arbitrary enriched categories that preserve the betweenness
structure. These morphisms can be seen as a generalization of V-functors as de-
scribed in [15]. In contrast to the notion of V-functor, our morphisms do not
require its domain and codomain to be enriched over the same monoidal category.
This generalization allows us to capture familiar notions of morphism such as the
usual notion of functor, Lipschitz functions and geometric morphisms.

In chapter 5 we show that betweenness spaces themselves can be seen as en-
riched categories, that the betweenness on these associated enriched categories is
compatible with the underlying betweenness space and that these shifts in inter-
pretation are functorial. We conclude with a suggestion for further research.
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2 Betweenness Relations

2.1 Definition and Examples

Betweenness relations are a geometrically intuitive notion that is axiomatized dif-
ferently by various authors. Typically, for some space X a ternary relation B ⊆ X3

(the betweenness relation) is defined. Then we say that b is between a and c when-
ever (a, b, c) ∈ B, and write [a, b, c]B to indicate this. If there is no risk of confusion
with respect to which betweenness relation b is between a and c, then we may
forget about the subscript and write [a, b, c] instead of [a, b, c]B. We axiomatize
betweenness by means of the following properties.

Definition 2.1. A ternary relation B ⊆ X3 on a set X is called a betweenness
relation whenever the relation B satisfies:

(B1) Symmetry: [a, b, c]B if and only if [c, b, a]B,

(B2) Reflexivity: [a, b, b]B holds for all a, b ∈ X,

(B3) Minimality: if [a, b, a]B and [b, a, b]B, then a = b,

(B4) Transitivity: if [a, b, c]B and [a, c, d]B, then [a, b, d]B.

If in addition the betweenness relation B satisfies:

(B5) Cancellation : if [a, b, c]B and [a, c, d]B, then [b, c, d]B,

then the betweenness relation is called metrizable. There is another property some
betweenness relations can have, namely that of separation.

(B6) Separation: [a, b, c]B and [a, c, b]B, if and only if b = c.

Remark 2.2. In literature, the minimality condition is often formulated to state
“[a, b, a]B implies a = b”. We will refer to this notion as strong minimality. Our
notion of minimality is slightly weaker. We will later see an interpretation of
betweenness for which we require both [a, b, a]B and [b, a, b]B to hold, before a = b
can be concluded. This requirement is not too exotic since the notion of strong
minimality can be proven as a lemma from the axioms defined above.

Lemma 2.3. Suppose a ternary relation [·, ·, ·] ⊆ X3 satisfies axioms B1, B2, B3
and B5, then [a, b, a] implies a = b.

Proof. Suppose that [a, b, a] holds, then from B2 we know that [b, a, a] holds and
from B1 we have [a, a, b]. Combining this with B5, we have [a, a, b] and [a, b, a]
imply [b, a, b]. This means that both [a, b, a] and [b, a, b] hold so that by B3 we
have a = b. l
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Lemma 2.4. There are the following dependencies

1) B6 implies B2,

2) B1 and B6, imply B3,

3) B2, B3 and B5, imply B6.

Proof. If B6 holds, then automatically B2 holds. Namely b = b and therefore
[a, b, b]B holds for all a and b. If in addition, B1 holds, then [b, a, a]B implies
[a, a, b]B. This way we retrieve B3, because if [a, b, a]B holds, then in combination
with [a, a, b]B one uses B6 to conclude that a = b. Lastly, whenever B2, B3 and
B5 hold, then one can deduce B6. In particular, if b = c then [a, b, c]B and [a, c, b]B
hold by B2. For the converse suppose that [a, b, c]B and [a, c, b]B hold, then by B5
one obtains [b, c, b]B and [c, b, c]B so that by using B3 we find b = c. l

From the above definition, the geometric intuition of betweenness may not be
immediately clear. To clarify, we consider the following examples.

Example 2.5. This example is due to Pasch [3] and dates 1882. It is the first
formal definition of betweenness in literature. Suppose there are four colinear
points A,B,C and D and suppose that D is not on the segment AB. Then C is
between A and B whenever the segment AB goes through the segment CD.

This example is already very general, as it only depends on the notions of point,
line and segment. One straightforward specialization would be to consider points
in the Euclidean plane with the usual lines. If one has colinear points A,B,C in
the plane R2, one sees that C is between A and B in the sense of Pasch precisely
when |A−C|+ |C−B| = |A−B|. At the time, the idea of length of a segment was
not new, however the general notion of metric only came later. In 1906, Fréchet
introduced the notion of écart (semi-metric). Afterwards, in 1928, as part of a
larger project on the foundation of geometry inside the theory of metric spaces,
Menger introduces the notion of metric betweenness in [16]. It is stated as follows:

Example 2.6. For a metric space (X, ρ) and points a, b, x ∈ X, it is said that x
is between a and b whenever a ̸= x ̸= b and:

ρ(a, x) + ρ(x, b) = ρ(a, b).

Thus the triangle inequality is an equality for these points. In particular, when
the metric space is a finite undirected graph, and the metric is the shortest path
metric, then x being in between a and b means that x lies on a shortest path from
a to b. The requirement that a ̸= x ̸= b is often omitted. Metric betweenness then
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satisfies all the properties B1 to B6. The properties B1 to B3 are immediate and
B4, B5 can be seen because [a, x, b] and [a, y, x] imply that

ρ(a, b) = ρ(a, x) + ρ(x, b),

= ρ(a, y) + ρ(y, x) + ρ(x, b),

≥ ρ(a, y) + ρ(y, b),

≥ ρ(a, b).

The above inequalities must be equalities, because certainly ρ(a, b) = ρ(a, b). It
follows that [a, y, b] and [y, x, b] hold. Since B2, B3 and B5 hold, also B6 holds.
We call property B5 cancellation since we used the cancellation property of the
monoidal operator + to prove that it holds.

Example 2.7. A lattice (X,∧,∨,≤) is called a metric lattice whenever it admits
a positive valuation, i.e. a function v : X → R that satisfies:

v(a) + v(b) = v(a ∧ b) + v(a ∨ b),

and
a < b implies v(a) < v(b).

Such a valuation induces a metric on the lattice, namely ρ(a, b) := v(a∨b)−v(a∧b).
Glivenko proved [17, 18] that in a metric lattice, a point x is metrically between a
and b if and only if

(a ∧ x) ∨ (x ∧ b) = x = (a ∨ x) ∧ (x ∨ b).

As this relation can be formulated without reference to any metric, Pitcher and
Smiley study it as a definition for betweenness in more general lattices (possibly
without valuation). They show in [5, Thm. 9.1] that lattice betweenness satisfies
property B4 if and only if the lattice is modular. Smiley later establishes a criterion
in [19] for when metric and lattice betweenness are the same relation in arbitrary
lattices equipped with a metric.

Example 2.8. Bankston introduces in [7] a notion of road system which yields a
betweenness relation. For a set X, a road system R is defined as a collection of
subsets of X, such that 1) {a} ∈ R for all a ∈ X, and 2) for all a, b ∈ X there
exists at least one road R ∈ R such that a, b ∈ R. Any road system induces a
betweenness relation in the following way. Given a road system (X,R), a point
x is said to be between points a and b whenever any road R containing both a
and b must also contain x. Informally this means that one cannot avoid x when
traveling from a to b. Formally we write

[a, x, b]R if and only if x ∈ R(a, b), where R(a, b) :=
⋂

a,b∈R∈R

R.
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Bankston proves that a betweenness relation is induced by a road system if and
only if it satisfies the following axioms:

(R1) Symmetry: [a, x, b] if and only if [b, x, a],

(R2) Reflexivity: [a, b, b],

(R3) Strong minimality: [a, b, a] implies b = a,

(R4) Strong transitivity: if [a, x, b] and [a, y, b] and [x, z, y], then [a, z, b].

Indeed, properties R1 and R2 are the same as properties B1 and B2. Furthermore,
B3 is implied by R3. Transitivity B4 is implied by strong transitivity R4 combined
with R1, R2. Furthermore, Bankston points out that for distributive lattices,
lattice betweenness satisfies the strong transitivity axiom by [5, Thm. 9.3] and
that it is consequently induced by a road system.

2.2 Ideal Betweenness

Let R be a commutative ring. An ideal A is a subgroup of the additive group of
R such that xA ⊆ A for all x ∈ R. Here xA = {xa : a ∈ A}. For ideals A,B their
product is an ideal defined by AB := {

∑
i aibi : ai ∈ A, bi ∈ B}. Their quotient

ideal is defined by (A : B) := {x ∈ R : xB ⊆ A}.

Lemma 2.9 (triangle inequality). For all ideals A,B,C belonging to the commu-
tative ring R, we have the inclusion (A : B)(B : C) ⊆ (A : C).

Proof. To see the inclusion holds, take a point x ∈ (A : B)(B : C). Then we can
write x =

∑
n ynzn as a finite sum where yn ∈ (A : B) and zn ∈ (B : C). If c ∈ C,

then xc =
∑

n ynznc. Here znc ∈ B and so yn(znc) ∈ A. Consequently we must
have that xc ∈ A. In particular, xC ⊆ A and hence x ∈ (A : C). This proves the
result. l

Using the analogy between the triangle inequality for ideals and for metric
spaces, we can define a betweenness relation on the set of ideals of R as follows.

Definition 2.10. We say that an ideal B is between A and C and write [A,B,C]
whenever

(A : B)(B : C) = (A : C) and (C : B)(B : A) = (C : A).

The thus defined ternary relation is called ideal betweenness.

Proposition 2.11. Ideal betweenness is a betweenness relation.
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Proof. We verify that this indeed defines a betweenness relation. By construction
property B1 holds. Moreover, we have (B : B) = R for all ideals B, as by definition
of ideal, xB ⊆ B for all x ∈ R. This means that both (B : B)(B : A) = (B : A)
and (A : B)(B : B) = (A : B) hold. In other words, [A,B,B] holds for all
ideals A and B and hence property B2 is satisfied. To see property B3, suppose
that [A,B,A] holds, we have (A : B)(B : A) = (A : A). Then we certainly
have R = (A : B)(B : A) ⊆ (A : B) ∩ (B : A). Because 1 ∈ R, we have that
1A ⊆ B and 1B ⊆ A so that A = B. Lastly to see that property B4 holds, Take
ideals A,B,C,D that satisfy both [A,B,C] and [A,C,D]. We want to show that
[A,B,D] holds. There are two equalities to prove, but their proof is the same.
That is, we only need to prove the inclusion (A : D) ⊆ (A : B)(B : D) as the
other inclusion follows from Lemma 2.9. Indeed, (A : D) = (A : C)(C : D) =
(A : B)(B : C)(C : D) ⊆ (A : B)(B : D) by Lemma 2.9. Conclude that ideal
betweenness is indeed a betweenness relation. l

Besides betweenness in terms of quotient ideals, we can also consider the be-
tweenness relation induced by the lattice structure of the ideals of R. If we de-
note Ideal(R) for the set of ideals in R, we see that (Ideal(R),∩,+,⊆) defines
a lattice. Indeed, ideals are partially ordered by set inclusion. For two ideals
A and B, their intersection A ∩ B is again an ideal. This is the largest ideal
contained in both A and B with respect to the partial ordering. Furthermore,
their sum A + B = {a + b : a ∈ A, b ∈ B} is again an ideal. It is the smallest
ideal containing both A and B. This lattice satisfies the modular law, meaning
A+(B∩C) = (A+B)∩C whenever A ⊆ C. Consequently, by [5, Thm. 9.1] lattice
betweenness satisfies axiom B4. This means that lattice betweenness for the ideals
in a commutative ring defines a betweenness relation in the sense of Definition 2.1.
Comparing this to our notion of ideal betweenness we have the following results.

Proposition 2.12. Lattice betweenness is stronger than ideal betweenness.

Proof. Suppose that an ideal B is between ideals A and C, in the sense of lattice
betweenness. Then we know they satisfy the relation

(A ∩B) + (B ∩ C) = B = (A+B) ∩ (B + C).

To verify that B is between A and C in the sense of ideal betweenness, we have to
verify that (A : B)(B : C) = (A : C) and (C : B)(B : A) = (C : A). By symmetry
it is enough to verify only one of these equalities. It is enough to prove only the
inclusion (A : C) ⊆ (A : B)(B : C). Since B = (A∩B) + (B ∩C) we may rewrite

(A : B) = (A : (A ∩B) + (B ∩ C)) = (A : A ∩B) ∩ (A : B ∩ C) = (A : B ∩ C).
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Thus if x ∈ (A : C), then x(B ∩ C) ⊆ xC ⊆ A. Consequently, it follows that
(A : C) ⊆ (A : B∩C) = (A : B). Similarly, we may rewrite B = (A+B)∩(B+C)
to obtain

(B : C) = ((A+B) ∩ (B + C) : C) = (A+B : C) ∩ (B + C : C) = (A+B : C).

Thus if x ∈ (A : C), we know xC ⊆ A ⊆ A+B. This means that x ∈ (A+B : C)
so that (A : C) ⊆ (A+B : C) = (B : C). Consequently, (A : C) ⊆ (A : B)(B : C)
which concludes the proof. l

Proposition 2.13. If lattice betweenness and ideal betweenness coincide, then two
ideals A and B are coprime precisely whenever (A : B) = A and (B : A) = B.

Proof. Suppose that A + B = 1, then since (A ∩ (A + B)) + ((A + B) ∩ B) =
A + B = (A + (A + B)) ∩ ((A + B) + B) we have that 1 is between A and B in
the sense of lattice betweenness. Consequently, 1 is between A and B in the sense
of ideal betweenness. We thus find A = (A : 1)(1 : B) = (A : B). The argument
to show that B = (B : A) is similar. Conversely, if 1 is between A and B in the
sense of ideal betweenness, then it must be between A and B in the sense of lattice
betweenness. This means that (A ∩ 1) + (1 ∩ B) = 1 = (A+ 1) ∩ (1 + B) so that
A and B are coprime. l

Corollary 2.14. Ideal betweenness and lattice betweenness need not coincide.

Proof. Consider a polynomial ring k[X, Y ]. We have that (X : Y ) = X and
(Y : X) = Y . However X + Y ̸= 1. The contrapositive of Proposition 2.13 proves
the two betweenness relations are distinct. l

Corollary 2.15. Ideal betweenness and lattice betweenness need not be distinct.

Proof. Consider a commutative ring whose ideals are totally ordered by inclusion,
in particular, a valuation ring. We show for such a ring that ideal betweenness
implies lattice betweenness. Suppose we are given ideals A,B,C that satisfy both
(A : B)(B : C) = (A : C) and (C : B)(B : A) = (C : A). Then because the ideals
are totally ordered by inclusion, we have A ⊆ C or C ⊆ A. By symmetry, we may
assume without loss of generality that A ⊆ C. Consequently, (C : A) = 1. This
means that

1 = (C : A) = (C : B)(B : A) ⊆ (C : B) ∩ (B : A).

Therefore must have that (C : B) = 1 = (B : A). Consequently A ⊆ B ⊆ C. One
can now verify that the equations (A∩B)+(B∩C) = B = (A+B)∩(B+C) hold,
so that B is also between A and C in the sense of lattice betweenness. Indeed,
lattice and ideal betweenness are equivalent for these types of rings. l
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2.3 Betweenness Preserving Mappings

In the previous section we have defined the notion of betweenness relation. To
study the structure of sets with a betweenness relation, we consider structure
preserving morphisms.

Definition 2.16. Let (X,BX) and (Y,BY ) be betweenness spaces. A function
f : X → Y is said to be betweenness preserving whenever:

[a, b, c]X implies [f(a), f(b), f(c)]Y .

In other words, for points a, b, c ∈ X, if b lies between a and c, then f(b) lies
between f(a) and f(c) in Y .

With this above notion of structure preserving morphism, there is a category
denoted Bet. Objects of Bet are tuples (X,B) called betweenness spaces. Here X
is a set, and B is a betweenness relation on the set X. The morphisms consist of
betweenness preserving functions. Indeed, given a pair of betweenness preserving
functions, f : X → Y , and g : Y → Z, their composition gf : X → Z is also
betweenness perserving. To see this, note that [a, b, c]X implies [f(a), f(b), f(c)]Y
which in turn implies [g(f(a)), g(f(b)), g(f(c))]Z . Moreover, for each betweenness
space (X,B) there is an identity morphism, idX : X → X : x 7→ x. This arrow
identically preserves the betweenness relation.

Many examples of betweenness preserving mappings are known. Here are some
examples.

Example 2.17. Let V be a vector space over the complex numbers C. Suppose
we say a point x ∈ V is between points a and b whenever x = λa + (1 − λ)b
for some λ ∈ [0, 1]. Then any linear map f : V → V is betweenness preserving
because, f(x) = f(λa+ (1− λ)b) = λf(a) + (1− λ)f(b).

Example 2.18. An isometry f : X → Y of metric spaces (X, dX) and (Y, dY )
satisfies by definition that dX(a, b) = dY (f(a), f(b)). Such a function f is then
betweenness preserving. Namely, if [a, b, c]X , then

dY (f(a), f(c)) = dX(a, c) = dX(a, b) + dX(b, c) = dY (f(a), f(b)) + dY (f(b), f(c)).

Thus [f(a), f(b), f(c)]Y .

Example 2.19. Consider the set X consisting of sequences of 0’s and 1’s. We
have that X := {x = (xi)i : xi ∈ {0, 1} for all i ∈ N} is a metric space when

equipped with the metric ρ(x, y) :=
∑∞

i=0
|xi−yi|

2i
. Then x is between a and b

precisely whenever |ai−xi|+ |xi−bi| = |ai−bi| for all i ∈ N. This in turn happens
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precisely whenever xi ∈ {ai, bi} for all i ∈ N. Consider the shift map S : X → X
acting on sequences such that

S : (x1, x2, x3, . . . ) 7→ (x2, x3, . . . ).

Then S is betweenness preserving, since [a, x, b] means xi ∈ {ai, bi} for all i ∈ N.
So then it follows that S(x)i = xi+1 ∈ {ai+1, bi+1} = {S(a)i, S(b)i} for all i ∈ N.
Thus we have that [S(a), S(x), S(b)] holds. Note however that S is not an isometry
since given y, z ∈ X such that y − z = (0, 1, 1, 1, . . . ) we have that ρ(y, z) = 1
while ρ(Sy, Sz) = 2.

A semi-metric space is a metric space that need not satisfy the property
“d(a, b) = 0 implies a = b”. We can define equivalence classes [a] := {b ∈
X : d(a, b) = 0}. Then the set [X] := {[a] ⊆ X : a ∈ X} with the metric
d′([a], [b]) := d(a, b) defines a metric space. Metric betweenness can be defined for
semi-metric spaces and in this context there is the following result.

Theorem 2.20 (Smiley [19]). If (X, d,∧,∨,≤) is a semi-metric space which is also
a lattice, then metric betweenness [·, ·, ·]M and lattice betweenness [·, ·, ·]L coincide
in X if and only if:

i) For every a, b, c ∈ X the inequalities a ≤ b ≤ c implies that [a, b, c]M .

ii) For every a, b ∈ X, d(a, b) = d(a ∨ b, a ∧ b) and d(a, a ∨ b) = d(b, a ∧ b).

The conditions i) and ii) hold if and only if for each a∗ ∈ M the functional m[a] :=
d(a ∨ a∗, a∗) − d(a∗, a ∧ a∗) is a sharply positive modular functional and X is a
metric lattice with metric d(a, b) = m[a ∨ b]−m[a ∧ b]

Example 2.21. Theorem 2.20 gives a setting in which metric and lattice between-
ness coincide. Namely, the setting of metric lattices. So the identity function
idX : (X,BM) → (X,BL) : x 7→ x is a betweenness preserving isomorphism. Note
that apriori it is not clear if these betweenness spaces are isomorphic.

2.4 Application

One reason to study betweenness preserving mappings is to find different formu-
lations of the same geometric structure. This can provide interesting interactions
between the interpretations. In particular, suppose that (X, d,∧,∨,≤) is both a
complete metric space and a distributive lattice, and suppose that metric between-
ness and lattice betweenness coincide. Then we can prove a best approximation
theorem for closed convex sets.

Definition 2.22. Given a set X equipped with a betweenness relation BX , we say
a subset S ⊆ X is convex, whenever a, b ∈ S and [a, x, b]X imply x ∈ S.
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Define the closed metric interval of points between a and b as follows,

[a, b] := {x ∈ X : d(a, x) + d(x, b) = d(a, b)}.

We can reformulate the definition of convex to the requirement that a, b ∈ S
implies [a, b] ⊆ S. There is the following Lemma:

Lemma 2.23. Let (X, d) be a metric space and let a, b, x ∈ X, then we have

d(x, [a, b]) ≥ 1

2
(d(a, x) + d(x, b)− d(a, b)),

where d(x, [a, b]) := inf{d(x, y) : y ∈ [a, b])}.

Proof. Suppose that y ∈ [a, b], then we have

2d(x, y) ≥ |d(a, x)− d(a, y)|+ |d(x, b)− d(b, y)|,
≥ |d(a, x) + d(x, b)− d(a, y)− d(y, b)|,
= d(a, x) + d(x, b)− d(a, b).

Then taking the infimum over y ∈ [a, b] provides the result. l

The lower bound in the above lemma is called the Gromov product. We will
denote it by (a, b)x := 1/2(d(a, x) + d(x, b)− d(a, b)).

Lemma 2.24. Suppose (X, d,∧,∨,≤) is a distributive metric lattice, then for all
points a, b, x ∈ X we have d(x, [a, b]) = (a, b)x.

Proof. We will first show there is a point y ∈ [a, b] ∩ [b, x] ∩ [a, x] and then its
existence implies the result. This point need not exist in arbitrary metric spaces
(just remove it from the set and we have a metric space in which the property fails).
However, for a distributive lattice we can construct a point which is between a, b, x
in terms of lattice betweenness. Let y := (a ∧ b) ∨ (b ∧ x) ∨ (x ∧ a). We can verify
that y ∈ [a, b] ∩ [b, x] ∩ [x, a]. To do this we will use that:

(a ∧ b) ∨ (b ∧ x) ∨ (x ∧ a) = (a ∧ (b ∨ x)) ∨ (b ∧ x),

= (a ∨ (b ∧ x)) ∧ ((b ∨ x) ∨ (b ∧ x)),

= (a ∨ (b ∧ x)) ∧ (b ∨ x),

= (a ∨ b) ∧ (b ∨ x) ∧ (x ∨ a).

Now we see a ∧ y = a ∧ (a ∨ b) ∧ (b ∨ x) ∧ (x ∨ a) = a ∧ (b ∨ x), and similarly
b ∧ y = b ∧ (a ∨ x). Then (a ∧ y) ∨ (y ∧ b) = ((a ∧ (b ∨ x)) ∨ (b ∧ (a ∨ x))) =
(a ∧ b) ∨ (b ∧ x) ∨ (x ∧ a) = y. The other equalities are dual or symmetric to this
case. So indeed there exists a point y ∈ [a, b] ∩ [b, x] ∩ [x, a]. For this y we have
y ∈ [a, b] and hence d(x, y) ≥ d(x, [a, b]). But notice that d(x, y) = (a, b)x. l
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Theorem 2.25 (Proximinality). Let (X, d) be a complete metric space such that
for all a, b, x ∈ X we have d(x, [a, b]) = (a, b)x. Suppose that S ⊆ X is closed and
convex. Then for all x ∈ X there exists a unique s ∈ S such that d(x, s) = d(x, S).

Proof. Let us denote d := d(x, S). Since S is convex, we know for all a, b ∈ S that
[a, b] ⊆ S. Since d = inf{d(x, s) : s ∈ S} we obtain that d ≤ d(x, [a, b]) = (a, b)x.
Moreover we have the existence of a sequence (sn)n∈N in S such that d(x, sn) → d.
Therefore we know that for all ε > 0 there exists some N ∈ N such that for all
n,m ≥ N we have d(x, sn) < d+ ε/2 and d(x, sm) < d+ ε/2. We must obtain

d(sn, sm)

2
=

d(x, sn) + d(x, sm)

2
− (sn, sm)x,

=
d(x, sn) + d(x, sm)

2
− d(x, [sn, sm]),

≤ d(x, sn) + d(x, sm)

2
− d,

<
d+ d+ ε

2
− d,

=
ε

2
.

We see that (sn) is a cauchy sequence and because X is complete this sequence
converges to some s ∈ X. By the fact that S is closed we have that s ∈ S.
Because d(x, s) ≤ d(x, sn) + d(sn, s) → d we see that d(x, s) ≤ d but because
d = inf{d(x, s) : s ∈ S} we find d(x, s) = d(x, S) so that a best approximation
exists.

To prove the approximation is unique, suppose that d(x, s) = d = d(x, t) for
some s, t ∈ S. Then we see

d(s, t)

2
=

d(x, s) + d(x, t)

2
− (s, t)x,

=
d(x, s) + d(x, t)

2
− d(x, [s, t]),

≤ d(x, s) + d(x, t)

2
− d,

=
d+ d

2
− d = 0.

So that s = t. l

Definition 2.26. Let (X, d) be a metric space as above and suppose that S ⊆ X
is a closed convex set. We define the map PS : X → S so that PS(x) is the unique
element in S satisfying the property d(x, PS(x)) = d(x, S). We refer to this map
as the projection onto S. If it is clear from the context what set we project onto,
then we just write P instead of PS.
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Lemma 2.27. Let S ⊆ X be closed and convex. Then PS(x) ∈ [x, s] for all s ∈ S.

Proof. We have that (PS(x), s)x = d(x, [PS(x), s]) = d(x, PS(x)) for all s ∈ S.
Writing this out in full gives

d(x, PS(x)) =
1

2
(d(x, PS(x)) + d(x, s)− d(s, PS(x))).

This is equivalent to d(x, PS(x)) + d(PS(x), s) = d(x, s) which is equivalent to the
desired result PS(x) ∈ [x, s]. l

Proposition 2.28. Let S ⊆ X be closed and convex, then the projection map
PS : X → S is continuous.

Proof. For arbitrary x, y ∈ X we have Py ∈ S. Therefore Px ∈ [x, Py] by Lemma
2.27. In other words we have:

d(Px, Py) = d(x, Py)− d(x, Px),

≤ d(x, y) + d(y, Py)− d(x, Px),

= d(x, y) + d(y, S)− d(x, S).

By symmetry we obtain d(Px, Py) ≤ d(x, y) + |d(x, S) − d(y, S)| ≤ 2d(x, y) so
that P is continuous. l

Proposition 2.29. Suppose A ⊆ X is a convex set. Then its closure A is convex.

Proof. Take a0 ∈ A and a ∈ A. There exits a sequence (an)n∈N so that an → a.
Let us define fn(x) := (a0, an)x then fn is continuous and converges uniformly to
f(x) := (a0, a)x. Namely, for all ε > 0 there exists N such that n ≥ N implies
d(an, a) < ε. But then we also have:

∥fn − f∥∞ = sup
x∈X

|(a0, an)x − (a0, a)x|,

≤ d(an, a) < ε.

Because A is convex we have that [a0, an] ⊆ A. Therefore we obtain fn(x) =
(a0, an)x = d(x, [a0, an]) ≥ d(x,A). Consequently, we have f(x) ≥ d(x,A) so that
f(x) = 0 implies that x ∈ A, but f(x) = 0 if and only if x ∈ [a0, a] so that
[a0, a] ⊆ A. Repeating the argument for a0 ∈ A shows that A is convex. l

2.5 Topology Induced by Betweenness

Now that we have a notion of betweenness preserving mapping, we will look closer
at what structure these maps actually preserve. Given a set with a betweenness
relation (X,B) we find that each point x ∈ X induces a pre-order on X given by

a ≤x b if and only if [x, a, b]B.
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To see this defines a pre-order note that axiom B2 states that [x, a, a]B holds for
all x, a ∈ X. Therefore we obtain a ≤x a for all a ∈ X. This proves reflexivity.
Moreover, from axiom B4 we have that [x, a, b]B and [x, b, c]B imply [x, a, c]. This
means that a ≤x b and b ≤x c imply a ≤x c. This proves transitivity so that for
each x ∈ X we have a pre-order ≤x. This is the reason for referring to B2 and B4
as reflexivity and transitivity respectively.

Remark 2.30. If in addition the betweenness relation satisfies the separation
axiom B6, then each pre-order ≤x is in fact a partial order. Namely a ≤x b and
b ≤x a both state that [x, a, b] and [x, b, a] so that B6 implies a = b. We will see
why we refer to B6 as separation, and not as antisymmetry.

The family of partial orders induced by a betweenness relation that satisfies
axiom B6 has been studied in [20]. There is the following Theorem:

Theorem 2.31 ([20] Thm. 5). Let {≤x: x ∈ X} be a family of partial orders on
a set X that satisfies y ≤x z if and only if y ≤z x for all x, y, z ∈ X. Then the
ternary relation BX := {(x, a, b) ∈ X3 | a ≤x b} defines a betweenness relation.

Proof. The fact that each binary relation ≤x is a partial order states that BX

satisfies axioms B2, B4 and B6. The property y ≤x z if and only if y ≤z x is
precisely B1. Then Lemma 2.4 together with B1 and B6 provides B3. l

The above construction does not work in the weaker setting where one only con-
siders a family of pre-orders. For example, take X = {a, b} and let the pre-orders
≤a and ≤b be given by ≤a=≤b= {(a, a), (b, b), (a, b), (b, a)}. Then BX constructed
as above, is given by:

BX := {(a, a, a), (b, b, b), (a, b, b), (b, a, a), (a, a, b), (b, b, a), (a, b, a), (b, a, b)}.

This ternary relation does satisfy B1, B2 and B4, however, it does not satisfy
B3, since we do have [a, b, a] and [b, a, b] but a ̸= b. This means that it is not a
betweenness relation in the sense of Definition 2.1. Since we consider betweenness
relations that do not necessarily satisfy B6, we cannot guarantee that the induced
pre-orders are partial orders. This also means that we cannot characterize be-
tweenness the same way as was done in [20]. However, for some distinguished
point x ∈ X, each such pre-order ≤x still defines a topological space (X, τx) when
we set

τx := {U ⊆ X : if a ∈ U and a ≤x b then b ∈ U}.

In words, the topology τx is the collection of upward closed subsets of X.

Lemma 2.32. For a fixed x ∈ X, write (↑a)x := {b ∈ X : a ≤x b}. Then the
family {(↑a)x : a ∈ X} defines a basis for the topology τx.
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Proof. Each set (↑a)x is open in τx because if b ∈ (↑a)x and b ≤x c, then we have
[x, a, b] and [x, b, c]. It follows by axiom B4 that [x, a, c] holds and consequently
c ∈ (↑a)x. Furthermore, for any U ∈ τx we have

⋃
a∈U(↑a)x = U . Indeed, a ∈ (↑a)x

because [x, a, a] holds by axiom B2. It follows that U ⊆
⋃

a∈U(↑a)x. To see the
reverse inclusion, if b ∈ (↑a)x and a ∈ U , then we have by definition that a ≤x b
so that by upward closedness of U , we find b ∈ U . Therefore we have (↑a)x ⊆ U
for all a ∈ U . We must conclude that

⋃
a∈U(↑a)x = U . l

Remark 2.33. Axiom B6 is satisfied precisely whenever each topological space
τx satisfies the separation axiom T0. To see this, take a ̸= b, then for each x we
have ¬[x, a, b] or ¬[x, b, a] which states a /∈ (↑b)x or b /∈ (↑a)x. But we do have
that a ∈ (↑a)x and b ∈ (↑b)x so that τx satisfies T0. Conversely if axiom B6 is not
satisfied, then there exist x, a, b with a ̸= b such that [x, a, b] and [x, b, a] hold. In
particular a ∈ (↑b)x and b ∈ (↑a)x. Since the upwards closed sets form a basis, τx
does not satisfy the separation axiom T0.

Definition 2.34. An Alexandrov topological space (X, τ) is a set X equipped
with a family τ of subsets of X, that satisfies the following properties.

1) ∅, X ∈ τ ,

2) if {Ui}i∈I ⊆ τ , then
⋃

i∈I Ui ∈ τ and
⋂

i∈I Ui ∈ τ .

Proposition 2.35. The family τx defines an Alexandrov topology.

Proof. Note that ∅ ∈ τx vacuously. Moreover, we have that X ∈ τx since if
a ∈ X and a ≤x b, then (x, a, b) ∈ B ⊆ X3 and therefore b ∈ X. Suppose that
{Uλ : λ ∈ Λ} is some family of open sets in τx. Then

⋃
Uλ ∈ τx because if a ∈

⋃
Uλ

and a ≤x b, then there exists some λ0 such that a ∈ Uλ0 . Since Uλ0 is upward
closed, we have b ∈ Uλ0 and hence b ∈

⋃
Uλ. The proof for arbitrary intersections

is similar. l

Proposition 2.36. Let (X,BX) and (Y,BY ) be sets equipped with a betweenness
relation. For a function f : X → Y , the following are equivalent:

1) The function f is betweenness preserving,

2) f is monotone with respect to ≤x and ≤f(x) for all x ∈ X,

3) f is continuous with respect to τx and τf(x) for all x ∈ X.

Proof. We first prove that 1) is equivalent to 2). Suppose that f is between-
ness preserving, fix some x ∈ X. Then a ≤x b holds if and only if [x, a, b]X .
Since f preserves betweenness, we obtain [f(x), f(a), f(b)]Y which is equivalent to
f(a) ≤f(x) f(b). Similarly, suppose f is monotone with respect to ≤x and ≤f(x) for
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all x ∈ X. Then [a, b, c]X implies b ≤a c and hence f(b) ≤f(a) f(c). This implies
that [f(a), f(b), f(c)]Y holds.

We prove that 2) is equivalent to 3). Suppose that f is monotone, Fix some
x ∈ X and take an open set U ∈ τf(x). We want to see that f−1(U) is open in τx.
Pick some y ∈ f−1(U), suppose we have that y ≤x z. Then f(y) ≤f(x) f(z). Since
f(y) ∈ U , we have that f(z) ∈ U because U is open (and hence upwards closed).
This means that z ∈ f−1(U) so that f−1(U) is open in (X, τx) meaning that f is
τx/τf(x) continuous. Conversely, suppose that f is τx/τf(x) continuous. We want
to see that f is monotone. Suppose we have a, b ∈ X such that a ≤x b. Since the
set (↑f(a))f(x) = {y : f(a) ≤f(x) y} is open in (Y, τf(x)), we therefore also have
that f−1((↑f(a))f(x)) is open in (X, τx). Now because [f(x), f(a), f(a)]Y holds, we
know that a ∈ f−1((↑f(a))f(x)). Because we’re given that a ≤x b, we know (by
definition of τx) that b ∈ f−1((↑f(a))f(x)). This means that f(b) ∈ (↑f(a))f(x) so
that f(a) ≤f(x) f(b). Conclude that f is monotone. l
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3 Betweenness in a Categorical Setting

3.1 Motivation

In section 2.2 we’ve seen a notion of triangle inquality for quotient ideals that can
be used to define a betweenness relation on the ideals of a commutative ring. While
this particular notion of ideal betweenness is not described in previous literature,
the idea of a more general version of triangle inequality is not new.

In [14], Lawvere points out that the triangle inequality for metric spaces

d(b, c) + d(a, b) ≥ d(a, c),

looks very similar to the composition of morphisms in a category

Hom(B,C)× Hom(A,B) // Hom(A,C).

He continues to describe how metric spaces can be seen as a category enriched over
a monoidal category and proves that many notions in metric spaces have mean-
ingfull interpretations in this categorical context. It turns out that this categorical
context provides a very general example of betweenness relation. In particular, we
will exploit the composition law (the triangle inequality) to define a betweenness
relation for enriched categories. Intuitively, given objects A,B,C in a category C,
we can think of B to lie between A and C whenever every morphism A // C
factors through B. This reminds vaguely of the notion of betweenness induced
by road systems, “every road from A to C goes via B”. Equivalently we can
require that every morphism from A to C is the composition of a pair of mor-
phisms (g, f) ∈ Hom(B,C) × Hom(A,B). In other words, the composition is
surjective. By the axiom of choice, every surjective function has a section. In the
analogy between composition and triangle inequality, we can think of the inequal-
ity d(b, c) + d(a, b) ≥ d(a, c) as a composition morphism. Then this morphism
has a section precisely whenever d(b, c) + d(a, b) ≤ d(a, c) so that b is between a
and c in terms of metric betweenness. We will generalize this further in a later
section. Before we get into the topic of enriched categories, we first provide some
categorical preliminaries.

3.2 Exponentials and Internalization

Definition 3.1. For objects X and Y in a category C with finite limits, an ex-

ponential is an object Y X in C with an arrow ev : Y X ×X // Y having the

property that for every object A ∈ C and arrow h : A×X // Y there is an
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unique arrow H : A // Y X that makes the diagram

Y X ×X
ev // Y

A×X

H×1

OO

h

::

commute. The arrow H and h are called each others exponential transpose.

Definition 3.2. A category C is said to be Cartesian closed whenever it has finite
products, a terminal object (denoted I), and all exponentials. The latter meaning
that for any pair of objects X and Y , there exists an object Y X in C.

Proposition 3.3. In a Cartesian closed category C, for each object X of C, we
have a functor (−)X .

Proof. The object part is given by Y 7→ Y X . For a morphism f : Y // Z we

have a uniquely induced arrow fX making the diagram

ZX ×X ev // Z

Y X ×X

fX×1

OO

ev
// Y

f

OO

commute. By uniqueness, we have (gf)X = gXfX and (idY )
X = id(Y X). l

The previous proposition shows we have a natural transformation

ev : (−)X ×X +3 1C.

Proposition 3.4. The functor (−)X is a right adjoint to the functor (−)×X.

Proof. Let mA,Y : HomC(A×X, Y ) // HomC(A, Y
X) , be the map that sends

an arrow h to its exponential transpose m(h). Then this map is injective, because
if m(h) = m(g), then

h = ev ◦ (m(h)× 1) = ev ◦ (m(g)× 1) = g.

Moreover, the map is surjective, because if H : A → Y X , then denoting h =
ev ◦ (H × 1), we have H = m(h) because H is the unique arrow that makes the
following diagram commute

Y X ×X
ev // Y

A×X.

H×1

OO

h

::
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Thus mA,Y is indeed a bijection.
Naturality means that for arrows f : A′ → A and g : Y → Y ′, the following

square commutes,

HomC(A×X, Y )
mA,Y //

Hom(f×1,g)

��

HomC(A, Y
X)

Hom(f,gX)
��

HomC(A
′ ×X, Y ′)mA′,Y ′

// HomC(A
′, (Y ′)X).

To see this square indeed commutes, pick an arrow h : A×X → Y . Then in the
diagram

(Y ′)X ×X ev // Y ′

Y X ×X ev //
gX×1

gg

Y

g

??

A×X

m(h)×1

OO

h

::

A′ ×X
f×1

77

OO

the top square commutes by naturality of ev : (−)X×X ⇒ 1C and the inner triangle
commutes by the exponential property and the fact that m(h) is the exponential
transpose of h. Thus we find m(g ◦ h ◦ (f × 1)) = gX ◦m(h) ◦ f as this choice of
transpose makes the outer triangle commute. This is precisely saying that m is
natural in A and Y . l

Proposition 3.5. Let C be Cartesian closed, we have a functor Y (−) : Cop // C.

Proof. Given an arrow f : A // B in Cop there is an arrow f : B // A in C.
Thus from the exponential property we know there is a uniquely induced arrow
Y f that makes the following diagram commute.

Y B ×B
ev // Y

Y A ×B

Y f×1

OO

1×f
// Y A × A.

ev

OO

From this we find that if 1A : A → A is the identity arrow, then Y 1A = 1Y A
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Moreover, given g : B → C in Cop, we have a commutative diagram

Y C × C
ev // Y

Y B × C
1×g //

Y g×1

OO

Y B ×B

ev

88

Y A × C
1×g
//

Y f×1

OO

Y A ×B
1×f
//

Y f×1

OO

Y A × A.

ev

OO

From the outside square, we see that Y gf = Y gY f . l

Corollary 3.6. There is a bifunctor Cop × C // C whose action on objects is
given by (X, Y ) 7→ Y X .

Proof. The action on objects is well defined. To define the action on morphisms,
take an arrow (f, g) : (X,A) → (Y,B) in Cop × C, and consider the following
diagram

AX ×X

gX×1

��

ev // A

g

��

AX × Y

gX×1

��

1×f
88

Af×1 // AY × Y

gY ×1

��

ev

;;

BX ×X
ev // B

BX × Y
Bf×1

//

1×f
88

BY × Y.

ev

;;

The back square of this cube commutes since gX is the unique arrow that makes it
commute. The right square commutes since gY is the unique arrow that makes it
commute. The left square commutes trivially. The top square commutes since Af

is the unique arrow that makes it commute. The bottom square commutes since Bf

is the unique arrow that makes it commute. Since the arrows gY ◦Af and Bf ◦ gX
are both the exponential transpose of the same arrow, we see that they are equal.
Thus the front square commutes. For the action on morphisms, the bifunctor sends
the arrow (f, g) to gY ◦Af = Bf◦gX . This is indeed a bifunctor because it preserves

identity and moreover, for a pair of morphisms (f1, g1) : (X,A) // (Y,B) and
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(f2, g2) : (Y,B) // (Z,C) , we have a commutative diagram

AX Af1 //

gX1 ��

AY Af2 //

gY1 ��

AZ

gZ1 ��
BX Bf1 //

gX2 ��

BY Bf2 //

gY2 ��

BZ

gZ2 ��
CX Cf1 // CY Cf2 // CZ .

By commutativity we have that (g2g1)
Z ◦A(f2f1) = (gZ2 ◦Bf2) ◦ (gY1 ◦Af1). Indeed

this defines a functor. l

Remark 3.7. Because I is a terminal object, there is an isomorphism l : I×X ∼= X
(and similarly an isomorphism r : X × I ∼= X). So there is a natural bijection

Hom(X, Y ) // Hom(I ×X, Y ) // Hom(I, Y X)

f � // f ◦ l � //m(f ◦ l).

Therefore, the functor Hom(I,−) : C // Set can be seen as a map that sends

Y X to the set of morphisms X → Y . This way it makes sense to think of exponen-
tials as generalized hom-sets. For this reason the object Y X is called the internal

hom ofX and Y . Going further, there is an induced arrow MXY Z : ZY × Y X // ZX

which is the exponential transpose of the arrow

(ZY × Y X)×X
a // ZY × (Y X ×X)

1×ev // ZY × Y
ev // Z,

where a denotes the associativity isomorphism. This arrow MXY Z is called the
internal composition. Given two arrows f : X → Y and g : Y → Z, there are
corresponding arrows:

f : I // Y X , g : I // ZY , ⟨g, f⟩ : I // ZY × Y X .

Thus we have an arrow

MXY Z⟨g, f⟩ : I // ZX .

To see this arrow corresponds to the composition gf ∈ Hom(X,Z), we note that
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it corresponds to ev(MXY Z⟨g, f⟩ × 1X). We compute:

ev(MXY Z⟨g, f⟩ × 1) = ev(MXY Z × 1)(⟨g, f⟩ × 1)

= ev(1× ev)a(⟨g, f⟩ × 1)

= ev(1× ev)a((g × f)× 1)l−1

= ev(1× ev)(g × (f × 1))l−1

= ev(g × ev(f × 1))l−1

= ev(g × fl)l−1

= ev(g × 1)(1× fl)l−1

= gl(1× fl)l−1

= gfl : I ×X → Z.

This means that MXY Z⟨g, f⟩ = m(gfl) = gf is the exponential transpose of
gf . Indeed, the term internal composition is justified. One might ask if this
composition is associative and the answer is yes. Consider the following diagram

(ZY × Y X)×XW a //

MXY Z×1
��

ZY × (Y X ×XW )

1×MWXY

��
ZX ×XW

MWXZ ((

ZY × Y W

MWY Zvv
ZW .

This diagram commutes because both the arrows M(M × 1) and M(1×M)a are
the exponential transpose of iterated evaluation

ZY × Y X ×XW ×W
1×1×ev// ZY × Y X ×X

1×ev // ZY × Y
ev // Z.

Because exponential transposes are unique, we find that M(M×1) = M(1×M)a.
Thus we can say that the internal composition is associative.

Moreover, we have that internal composition satisfies the unit axiom. There is
a commutative diagram

Y Y × Y X M // Y X Y X ×XXMoo

I × Y X

l

::

jY ×1

OO

Y X × I,

r

ee

1×jX

OO

where the arrows jX corresponds to the identity arrow idX via the natural bijection
Hom(X,X) ∼= Hom(I×X,X) ∼= Hom(I,XX). To see that the diagram commutes,
note that both l and M(jY × 1) are the exponential transpose of the map

I × Y X ×X
1×ev // I × Y l // Y.
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Example 3.8. For a category C, the category of its presheaves Ĉ is Cartesian
closed. If for any two presheafs X and Y there exits a presheaf Y X(−) then by
the Yoneda lemma it satisfies Y X(C) ∼= Hom

Ĉ
(yC , Y

X) ∼= Hom
Ĉ
(yC ×X, Y ). This

bijection is natural in C. The latter term is a well defined presheaf, so it is taken
as the definition of Y X .

3.3 Lattice Betweenness Revisited

Definition 3.9. For a lattice (L,≤,∧,∨) and for points a, x, b ∈ L, we say that x
is between a and c whenever it satisfies

(a ∧ x) ∨ (x ∧ b) = x = (a ∨ x) ∧ (x ∨ b).

Remark 3.10. For a distributive lattice, this definition is equivalent to the prop-
erty a∧ b ≤ x ≤ a∨ b. Note that this definition is self dual, that is, if x is between
a and b in L, then that remains the case in the lattice Lop with reverse partial
ordering.

Considering L as a category, we say there exists an arrow a // b precisely
whenever a ≤ b. Explicitly,

Hom(a, b) =

{
{∗}, if a ≤ b

∅, otherwise.

This indeed defines a category since the fact that a = a for all a ∈ L provides
existence of identity morphisms for all a ∈ L. Furthermore, there is a composition
of morphisms that follows from the transitivity of the partial order ≤. The lattice
L can be embedded in its category of presheaves L̂ = [Lop,Set] via the Yoneda
embedding. Since presheaf categories are Cartesian closed, we can consider the
betweenness relation on L defined by internal composition of the internal homs in
its presheaves. Explicitly the internal hom objects are given by

yyab (−) = HomL̂(y(−) × ya, yb).

Now at each component c, we have yyab (c) = HomL̂(yc × ya, yb). And because L
has finite products, we see that the functor yc × ya is representable. In particular,

Hom(−, c)× Hom(−, a) ∼= Hom(−, c ∧ a).

That is; yc × ya ∼= yc∧a. The Yoneda Lemma now provides a natural isomorphism

HomL̂(yc × ya, yb) ∼= HomL̂(yc∧a, yb)
∼= HomL(c ∧ a, b).
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In terms of the internal composition law for L̂, we say that x is between a and
b whenever the composition morphism M : L(x, b) × L(a, x) → L(a, b) admits a
section. Letting φ denote the right inverse, and using the above computation, we
find that at each component c, we have a map;

φc : Hom(c ∧ a, b) → Hom(c ∧ x, b)× HomL(c ∧ a, x).

Because these homsets are either singleton or empty, we need not say a lot about
what this map is. We just find that its existence is equivalent to the condition

c ∧ a ≤ b if and only if, c ∧ a ≤ x and c ∧ x ≤ b, for all c ∈ L.

If we in addition require that the composition in Lop, enriched over its presheaves
[L,Set], admits a section, then we find that this L̂op-betweenness is equivalent to
the property

c ∨ a ≥ b if and only if, c ∨ a ≥ x and c ∨ x ≥ b, for all c ∈ L.

Assuming the lattice L is distributive, we find that the above two conditions for
L̂- and L̂op-betweenness, are equivalent to lattice betweenness.

Proposition 3.11. For a distributive lattice L, we have that a point x is between
points a and b in terms of lattice betweenness if and only if it is so in terms of L̂-
and L̂op- betweenness.

Proof. Suppose [a, x, b]L, that is, x is between a and b in the sense of lattice
betweenness. Then (a ∧ x) ∨ (x ∧ b) = x = (a ∨ x) ∧ (x ∨ b). Using distributivity,
we find x ∧ (a ∨ b) = x = x ∨ (a ∧ b). This means that a ∧ b ≤ x ≤ a ∨ b.
Therefore, if c ∧ a ≤ b, then c ∧ a = c ∧ a ∧ b ≤ c ∧ x ≤ x. Moreover, c ∧ x ≤
c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b) ≤ b. This shows that x is between a and b in the

sense of L̂-betweenness. The proof for L̂op is dual. So we conclude that lattice
betweenness implies L̂- and L̂op- betweenness. Conversely, if x is between a and
b in the sense of L̂ and L̂op, then because b ∧ a ≤ b, we find by definition that
b ∧ a ≤ x. Moreover, b ∨ a ≥ b implies b ∨ a ≥ x. So that x is between a and b in
the sense of lattice betweenness. l

The main point of the above proposition is that even if we are not be able to
find a real valued metric that is compatible with the betweenness relation on a
distributive lattice in the sense of Smiley[19], we can still obtain the betweenness
relation from a composition morphism. In fact we used intuition from betweenness
in metric spaces and road systems to see the analogy with Lawvere’s work. The
remarkable fact that we re-obtain lattice betweenness shows the analogy is fitting.
Consequently we consider the notion of betweenness in enriched category theory.
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4 Enriched Categories

We will recall some notions from enriched category theory. A comprehensive text-
book on enriched categories is the book by Kelly [15]. We will first define what
an enriched category is and then give various examples. We furthermore prove
some lemmas that we need in order to define a notion of betweenness in enriched
categories.

4.1 Definition

Definition 4.1. A monoidal category V = (V0,⊗, I, a, l, r) consists of:

i) a category V0,

ii) a functor ⊗ : V0 × V0
// V0 ,

iii) an object I of V0,

iv) natural isomorphisms: aXY Z : (X ⊗ Y )⊗ Z // X ⊗ (Y ⊗ Z),

lX : I ⊗X // X and rX : X ⊗ I // X.

subject to two coherrence axioms expressed by commutativity of the following
diagrams:

((W ⊗X)⊗ Y )⊗ Z a //

1⊗a
��

(W ⊗X)⊗ (Y ⊗ Z) a //W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z a
//W ⊗ ((X ⊗ Y )⊗ Z),

1⊗a

OO

(X ⊗ I)⊗ Y
a //

r⊗1 ''

X ⊗ (I ⊗ Y )

1⊗lww
X ⊗ Y.

Definition 4.2. A monoidal functor V // U between monoidal categories V =
(V0,⊗, IV, a, l, r) and U = (U0,⊗, IU, a, l, r) is a functor F : V0

// U0 on the
underlying categories together with an isomorphism φ0 : IU → F (IV) and natu-

ral isomorphisms φ2,X,Y : F (X)⊗ F (Y ) // F (X ⊗ Y ) such that the following

diagrams
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(F (X)⊗ F (Y ))⊗ F (Z) a //

φ2⊗id

��

F (X)⊗ (F (Y )⊗ F (Z))

id⊗φ2

��
F (X ⊗ Y )⊗ F (Z)

φ2

��

F (X)⊗ F (Y ⊗ Z)

φ2

��
F ((X ⊗ Y )⊗ Z)

Fa
// F (X ⊗ (Y ⊗ Z)),

I ⊗ F (X) l //

φ0⊗id
��

F (X) F (X)⊗ I

id⊗φ0

��

r // F (X)

F (I)⊗ F (X) φ2

// F (I ⊗X),

F (l)

OO

F (X)⊗ F (I) φ2

// F (X ⊗ I),

F (r)

OO

commute for all objects X, Y, Z ∈ ob(V). The monoidal functor is said to be strict
if the isomorphisms φ0 and φ2 are identities.

Definition 4.3. A V-category A consists of:

i) a set of objects, denoted ob(A),

ii) a hom-object A(A,B) ∈ V0 for each pair of objects A,B in ob(A),

iii) a composition law MAXB : A(X,B)⊗A(A,X) // A(A,B) for each triple of

objects A,X,B ∈ ob(A),

iv) and an identity element jA : I // A(A,A) for each object A ∈ ob(A),

subject to the associativity and unit axioms expressed respectively by the commu-
tativity of the following diagrams:

(A(X,B)⊗A(Y,X))⊗A(A, Y ) a //

MY XB⊗1
��

A(X,B)⊗ (A(Y,X)⊗A(A, Y )),

1⊗MAY X

��
A(Y,B)⊗A(A, Y )

MAY B ))

A(X,B)⊗A(A,X)

MAXBtt
A(A,B)

A(B,B)⊗A(A,B) M // A(A,B) A(A,B)⊗A(A,A).Moo

I ⊗A(A,B)

l

66

jB⊗1

OO

A(A,B)⊗ I

r

hh

1⊗jA

OO
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4.2 Examples

Example 4.4. A small category C is enriched over the category Set. The objects
are given by the objects of the category C. For each two pair objects A,B in C

there is a hom-object in Set, namely the set of arrows HomC(A,B). For any triple
of objects, A,B,C in C, there is a composition law

◦ : HomC(B,C)× HomC(A,B) → HomC(A,C) : (g, f) 7→ gf.

The identity element is given by a map jA : {∗} → HomC(A,A) : ∗ 7→ idA. The
associativity axiom (hg)f = h(gf), and the unit axiom f idA = f = idB f for all
f : A → B ensures that the required diagrams commute.

Example 4.5 (Lawvere, [14]). A metric space (X, d) is enriched over the category
R+. The objects are the points in X. For two points a, b, there is a hom-object
d(a, b) in R+. Note that + is the monoidal operation in R+ and that for r, s ∈ R+

there is an arrow r → s precisely whenever r ≥ s. Thus, for any triple of points
a, b, c, there is a composition morphism d(b, c) + d(a, b) ≥ d(a, c). Moreover, there
is an identity element since 0 ≥ d(a, a) for all points a ∈ X. With these definitions
of composition and identity, we see that the required diagrams commute.

Remark 4.6. This means the condition that a point x is between two other points
a and b in a metric space can be seen as a property of the composition morphism
Maxb. Namely, the triangle inequality becomes an equality, or the composition is
an isomorphism.

Example 4.7. In section 3.2 we see that a Cartesian closed category C is enriched
over itself when one considers the hom-objects C(X, Y ) to be the exponentials
Y X . The composition morphism of this enriched category is then the internal
composition. Its unit is given by the arrow jX corresponding to the identity arrow
idX under the natural bijection HomC(X,X) ∼= HomC(I ×X,X) ∼= HomC(I,X

X).

Example 4.8. Let R be a commutative ring and denote Ideal(R) for its collection
of ideals. We can view Ideal(R) as a monoidal category. For two ideals I, J there
exists precisely one arrow I → J whenever I ⊆ J . Recall there is a monoidal
product of two ideals I and J denoted IJ = {

∑
i aibi : ai ∈ I, bi ∈ J}, that is, the

ideal consisting of all finite sums of products of elements of I and J . Moreover,
the ideal quotient is defined (J : I) := {x ∈ R : xI ⊆ J}. In terms of categories,

there is a pair of adjoint functors I(−) : Ideal(R) // Ideal(R) : J � // IJ and

(− : I) : Ideal(R) // Ideal(R) : J � // (J : I) . These form an adjunction since

IJ ⊆ K holds if and only if J ⊆ (K : I) we see that the quotient ideal is a right
adjoint to the monoidal product. Thus the category Ideal(R) is monoidally closed.
We can therefore think of the ideal (I : J) as the internal hom. In doing so we can
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view Ideal(R) as enriched over itself. Namely, let the set of objects be the set of
ideals Ideal(R). For the hom-object belonging to two ideals I, J we consider their
ideal quotient. Then there is a composition morphism:

MIJK : (K : J)(J : I) // (K : I).

This morphism is the inclusion from lemma 2.9. Moreover, for any ideal I, we
have an identity element

jI : R // (I : I),

because for all x ∈ R, we have that xI ⊆ I. The associativity and unit diagrams
commute because the category Ideal(R) is posetal, so all existing arrows are unique.
Indeed, the ideals of R are enriched over themselves.

Example 4.9. This example is due to Simon Willerton. Given a group G, a G-
torsor is a set T together with a group action a : G× T // T such that the map

G× T // T × T : (g, t) � // (a(g, t), t) is a bijection. We will write gt instead

of a(g, t). The group G can be thought of as a monoidal category by taking
for the objects, the members of G. The monoidal operation is then the group
multiplication. There are only identity morphisms in this category. We can then
view T as a category enriched over G. The objects are given by the set T . For any
pair of objects t1, t2 ∈ T , there is a hom object g(t2, t1) ∈ G which is by definition
the unique element of G that satisfies g(t2, t1)t1 = t2. For any triple of objects
t3, t2, t1 ∈ T , we have that g(t3, t2)g(t2, t1)t1 = g(t3, t2)t2 = t3. By uniqueness
this means that g(t3, t2)g(t2, t1) = g(t3, t1), so there is a composition morphism.
Consequently, given any object t ∈ T , we have that g(t, t)g(t, t) = g(t, t). This
means that e = g(t, t) so that there is an identity element. From the fact that G
is a group and that e is its neutral element we find that diagrams expressing the
associativity and unit axioms must commute.

Example 4.10. For any monoidal category V, there is the unit V-category denoted
I with ob(I) = {0} and with I(0, 0) = I being the tensor unit.

4.3 V-categorical notions

For any category enriched over a monoidal category V there are the notions of
V-functor and V-natural transformation. They are defined as follows:

Definition 4.11. For V-categories A and B, a V-functor T : A // B consists
of a function

T : ob(A) // ob(B)
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together with for each pair A,B ∈ ob(A) a map TAB : A(A,B) // B(TA, TB),
subject to the compatibility with composition and with the identities expressed
by the commutativity of the diagrams

A(B,C)⊗A(A,B) M //

T⊗T
��

A(A,C)

T
��

B(TB, TC)⊗B(TA, TB)
M
// B(TA, TC),

and
A(A,A)

T

��

I

j
99

j %%
B(TA, TA).

We say a V-functor is fully faithfull if each TAB is an isomorphism.

Example 4.12. In the case that V = Set we refind the usual notion of functor
between categories A and B. Indeed, the usual notion of functor consists of a
function on objects, together with a function on morphisms that sends an arrow
f ∈ HomA(A,B) into an arrow Tf ∈ HomB(TA, TB). This moreover satisfies
that first composing and then mapping to the image under T , commutes with
first mapping to the image under T and then composing. Thus commutativity
of the top square states that TgTf = M(T × T )(g, f) = TM(g, f) = T (gf).
Commutativity of the lower triangle states that T idA = idTA. The terminology of
calling a V-functor fully faithfull whenever each TAB is an isomorphism is consistent
with the terminology for the usual notion of fully faithfull functor. This is the case
because the isomorphism TAB in the case of V = Set is a bijection HomA(A,B) ∼=
HomB(TA, TB).

Example 4.13. For metric spaces (X, dX) and (Y, dY ) a metric map is a function
f : X // Y such that dY (f(a), f(b)) ≤ dX(a, b) for all a, b ∈ X. This is precisely

the notion of R+ functor when thinking of metric spaces as categories enriched over
R+. Note that isometries are precisely given by the fully faithfull R+ functors.

Example 4.14. For G-torsors, T and S, a G-functor is a function f : T // S
together with arrows fs,t : g(s, t) = g(fs, ft). In other words, a function such that
the following diagram commutes, also known as equivariant map

G× T a //

1×f
��

T

f
��

G× S
a // S.
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Definition 4.15. For V-functors T, S : A // B, a V-natural transformation

α : T // S is an ob(A) indexed family of components αA : I // B(TA, SA)
that satisfy the V-naturality condition expressed by the commutativity of

I ⊗A(A,B)
αB⊗T // B(TB, SB)⊗B(TA, TB)

M

**
A(A,B)

l−1
77

r−1 ''

B(TA, SB).

A(A,B)⊗ I
S⊗αA

// B(SA, SB)⊗B(TA, SA)

M

44

The vertical composition β · α of α : T // S and β : S // R has the compo-
nent (β · α)A given by

I ∼= I ⊗ I
βA⊗αA

// B(SA,RA)⊗B(TA, SA)
M

// B(TA,RA).

Example 4.16. For a category enriched over V = Set, we see that V-natural trans-
formations coincide with the usual notion of natural transformation. Given func-
tors S, T : A // B , then a Set-natural transformation α : T // S specifies

a family of components αA : {∗} // HomB(TA, SA) . Since the domain of each

αA is the singleton set, this family determines a family of arrows { TA αA(∗) // SA :
A ∈ ob(A)}. The commutativity of the hexagon above states that this family
of arrows is a natural transformation. Namely, given an arrow f ∈ HomA(A,B),
then applying the top row of the hexagon M(αB ⊗T )(f) = αB(∗)◦Tf must equal
applying the bottom row of the hexagon M(S ⊗αA)(f) = Sf ◦αA(∗). This states
precisely that α(∗) : T +3 S is a natural transformation

TA
αA(∗) //

Tf
��

SA

Sf
��

TB
αB(∗)

// SB.

Example 4.17. If there is a R+-natural transformation between metric maps
f, g : X // Y , then there is a family of components {0 ≥ dY (f(x), g(x))}x∈X .
This means that f = g. Thus there are no non-trivial natural transformations
between metric maps.
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4.4 Underlying Category

There is a functor (−)0 : V-Cat // Cat mapping a V-category into its under-

lying category. For each V-category A there is a category A0 := V-Cat(I,A), the
V-functor category. Here I denotes the unit V-category. The objects of V-Cat(I,A)
are V-functors A : I // A . Because ob(I) = {0} is a singleton set, such a V-
functor determines precisely one object in ob(A). Thus we can think of such
V-functors as the objects of A. The morphisms of V-Cat(I,A) are V-natural
transformations f : A // B . Because such a V-natural transformation is ob(I)

indexed, there is a single component { f0 : I // A(A,B) }. This means the un-

derlying category A0 has the same objects as A, while a morphism f : A // B

is just an arrow f : I // A(A,B) in V. Composition of arrows in A0 is as fol-

lows. Given a pair of arrows f ∈ A0(A,B) and g ∈ A0(B,C) their composite is
an arrow denoted gf ∈ A0(A,C) given by

I ∼= I ⊗ I
g⊗f // A(B,C)⊗A(A,B) M // A(A,C).

Associativity of this composition follows from the commutativity of the pentagonal
diagram in Definition 4.3. Explicitly,

h(gf) = M(1⊗M)(h⊗ (g ⊗ f))

= M(1⊗M)a((h⊗ g)⊗ f)

= M(M ⊗ 1)((h⊗ g)⊗ f)

= (hg)f.

The identity arrow idA in A0(A,A) is given by jA : I // A(A,A). This also
satisfies the required properties with respect to composition, since we have a com-
mutative diagram

I ∼= I ⊗ I
jB⊗f //

1⊗f ))

A(B,B)⊗A(A,B) M // A(A,B)

I ⊗A(A,B).

jB⊗1

OO

l

66

Again commutativity follows from Definition 4.3. This shows that M(jB⊗f) = f ,
and the proof for M(f ⊗ jA) = f is similar. Indeed, A0 is a category.

For a V-functor T : A // B , the underlying functor (T )0 = T0 : A0
// B0

is given as follows. For the action of T0(A) = TA for all A ∈ ob(A0) = ob(A).
Given a morphism f ∈ A0(A,B) we have that T0(f) is given by the morphism
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I
f // A(A,B)

TAB // B(TA, TB) . This is indeed functorial, because given a pair

of arrows f ∈ A0(A,B) and g ∈ A0(B,C) then we find

T0(gf) = TACMABC(g ⊗ f) = MTATBTC(TBC ⊗ TAB)(g ⊗ f) = T0(g)T0(f)

To see the functor T0 respects unity, note that T0(idA) = TAAjA = jTA = idT0A.

Definition 4.18. We say two objects A and B in a V-category A are V-isomorphic
and write A ∼=V B whenever A and B are isomorphic objects in the underlying
category A0.

Lemma 4.19. The relation ∼=V is an equivalence relation.

Example 4.20. Consider a locally small category C. This is a category enriched
over Set. If two objects A and B are Set-isomorphic, then by definition, there
are elements f : {∗} // HomC(A,B) and g : {∗} // HomC(B,A) that satisfy

both M(g×f) = jA and M(f ×g) = jB. In the underlying category C, this means
that gf = idA and fg = idB, so A and B are isomorphic objects in C.

Example 4.21. Let (X, d) be a metric space. If a, b ∈ X are R+-isomorphic, then
0 ≥ d(a, b) so that a = b.

Lemma 4.22. If A ∼=V B then A(A,X) ∼= A(B,X) and A(X,A) ∼= A(X,B) for
all objects X in ob(A).

Proof. Since A ∼=V B, there are arrows f : I // A(A,B) and g : I // A(B,A)

in V for which M(g ⊗ f)r−1 = jA and M(f ⊗ g)r−1 = jB. Thus there are arrows

A(B,X) r−1
// A(B,X)⊗ I

1⊗f // A(B,X)⊗A(A,B) M // A(A,X),

A(A,X) r−1
// A(A,X)⊗ I

1⊗g // A(A,X)⊗A(B,A) M // A(B,X).

Their composition satisfies

M(1⊗ f)r−1M(1⊗ g)r−1 = M(1⊗ f)(M ⊗ 1)r−1(1⊗ g)r−1

= M(M ⊗ 1)(1⊗ 1⊗ f)r−1(1⊗ g)r−1

= M(M ⊗ 1)(1⊗ 1⊗ f)(1⊗ g ⊗ 1)r−1r−1

= M(M ⊗ 1)(1⊗ g ⊗ f)r−1r−1

= M(1⊗M)a(1⊗ g ⊗ f)r−1r−1

= M(1⊗M(g ⊗ f))r−1r−1

= M(1⊗ jA)r
−1

= idA(A,X) .

Similarly we find that M(1 ⊗ g)r−1M(1 ⊗ f)r−1 = idA(B,X). This proves that
A(A,X) ∼= A(B,X) are isomorphic in V. The proof for A(X,A) ∼= A(X,B) is
similar. l
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4.5 Betweenness and the Minimality Axiom

In this section we define a relation on the objects of enriched categories that corre-
sponds to equality of the triangle inequality. Namely, we consider triples (A,B,C)
such that the composition morphisms MABC and MCBA are split epimorphisms.

Definition 4.23. An arrow f : A // B in a category C is called a split epimor-

phism whenever there exists a g : B // A (called a section) such that fg = idB.

Theorem 4.24. For any V-category A, the relation [−,−,−]V ⊆ ob(A)3 given by

[−,−,−]V = {(A,B,C) ∈ ob(A)3 : MABC and MCBA are split epimorphisms},

satisfies axioms B1, B2 and B4 of definition 2.1. We will write [A,B,C]V to denote
(A,B,C) ∈ [−,−,−]V.

Proof. Recall that MABC denotes the composition morphism

MABC : A(B,C)⊗A(A,B) // A(A,C).

We point out that the axiom of symmetry, B1, holds by construction. Indeed,
[A,B,C]V is equivalent to [C,B,A]V because MABC and MCBA are split epimor-
phisms precisely whenever MCBA and MABC are split epimorphisms. Next we
prove B2, i.e. that [A,B,B]V holds. By definition of V-category, there is a com-
mutative diagram

A(B,B)⊗A(A,B)
MABB // A(A,B)

I ⊗A(A,B).

l

66

jB⊗1

OO

Because MABB(jB⊗1) = l, and because l is an isomorphism, we obtain that MABB

is a split epimorphism, because MABB(jB⊗1)l−1 = idA(A,B). The proof that MBBA

is a split epimorphism, is similar. To prove property B4, we assume that [A,B,C]V
and [A,C,D]V. We want to show that [A,B,D]V holds. Note that by definition,
we have a commutative diagram:

(A(C,D)⊗A(B,C))⊗A(A,B) a //

MBCD⊗1
��

A(C,D)⊗ (A(B,C)⊗A(A,B)).

1⊗MABC

��
A(B,D)⊗A(A,B)

MABD ))

A(C,D)⊗A(A,C)

MACDtt
A(A,D)
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We can write MABD(MBCD⊗1) = MACD(1⊗MABC)a. Since a is an isomorphism,
and since MABC and MACD are split epimorphisms, with sections ϕABC and ϕACD

respectively, we find

MABD(MBCD ⊗ 1)a−1(1⊗ ϕABC)ϕACD = MACD(1⊗MABC)(1⊗ ϕABC)ϕACD

= idA(A,D) .

Thus MABD is a split epimorphism with section (MBCD ⊗ 1)a−1(1⊗ ϕABC)ϕACD.
A similar argument works for showing that MDBA is a split epimorphism. Thus
showing that [A,B,D]V holds. l

Proposition 4.25. The relation [−,−,−]V is stable under V-isomorphisms. That
is, for A ∼=V B we have:

1. [A,X, Y ]V holds if and only if [B,X, Y ]V holds,

2. [X,A, Y ]V holds if and only if [X,B, Y ]V holds.

Proof. By Lemma 4.22 we have that A(A,X) ∼= A(B,X) and A(A, Y ) ∼= A(B, Y )
We claim that the diagram

A(X, Y )⊗A(A,X)

1⊗M(1⊗g)r−1

��

M // A(A, Y )

M(1⊗g)r−1

��
A(X, Y )⊗A(B,X)

M
// A(B, Y ).

commutes. Here M(1 ⊗ g)r−1 denotes the isomorphism A(A,X) // A(B,X)
from Lemma 4.22. Indeed this diagram commutes because

M(1⊗M(1⊗ g)r−1) = M(1⊗M)(1⊗ (1⊗ g))(1⊗ r−1)

= M(1⊗M)a((1⊗ 1)⊗ g)(1⊗ r−1)

= M(M ⊗ 1)((1⊗ 1)⊗ g)(1⊗ r−1)

= M(1⊗ g)r−1M.

Consequently, if MAXY is a split epimorphism, then it admints a section φAXY .
Since the inverse of M(1⊗g)r−1 is given by M(1⊗f)r−1 we see that MBXY admits
a section (the arrow going counter clockwise through the commutative square).

MBXY (1⊗M(1⊗ g)r−1)φAXYM(1⊗ f)r−1 = . . .

· · · = M(1⊗ g)r−1MAXY φAXYM(1⊗ f)r−1 = idA(B,Y )

In other words, if A ∼=V B, then MAXY is a split epimorphism implies that MBXY

is a split epimorphism. The properties that remain to be shown can be proven
similarly. l

38



Theorem 4.24 together with Proposition 4.25 shows that for any enriched cat-
egory there is a well behaved ternary relation, defined on the objects, satisfying
axioms B1, B2 and B4. However, something is left to be said about axiom B3.
Recall that axiom B3 states [a, b, a] and [b, a, b] imply a = b. This property need
not hold for arbitrary enriched category. The best we can do is via the following
equivalence relation.

Lemma 4.26. Suppose a ternary relation [·, ·, ·] ⊆ X3 satisfies axioms B1, B2
and B4, then the following defines an equivalence relation

a ∼ b if and only if [a, b, a] and [b, a, b].

Proof. By the reflexivity axiom B2 we have that [a, a, a] holds for all a in X. Thus
a ∼ a which shows the relation ∼ is reflexive. Suppose that a ∼ b, then [a, b, a]
and [b, a, b] hold. Then indeed [b, a, b] and [a, b, a] hold so that b ∼ a. Thus the
relation ∼ is symmetric. To show that ∼ is also transitive, suppose that a ∼ b
and b ∼ c. We have [b, b, a] by B1 and B2. Moreover, [b, c, b] holds by b ∼ c.
Consequently, using axiom B4 we find [b, c, a] which is equivalent to [a, c, b] under
B1. Since a ∼ b we have [a, b, a] so that in combination with [a, c, b] these imply
[a, c, a] under B4. The proof for [c, a, c] is the same but with the roles of a and c
interchanged. We conclude that a ∼ c which proves ∼ is an equivalence relation.

l

Lemma 4.27. A ternary relation satisfying B1, B2 and B4 is stable under the
equivalence relation ∼. Meaning that if a ∼ b, then

1) [x, y, a] holds if and only if [x, y, b] holds,

2) [x, a, y] holds if and only if [x, b, y] holds.

Proof. Firstly, suppose that [x, y, a] holds. From B2 we know that [x, b, b] holds.
From B1 also [b, b, x] holds. Since [b, a, b] holds, we can use axiom B4 to conclude
that [x, a, b] holds. Since [x, y, a] holds by assumption, we find under B4 that
[x, y, b] holds. Interchanging the roles of a and b provides the converse. Secondly,
suppose that [x, a, y] holds. From axiom B2 we know that [x, a, a] holds so that
under B1 also [a, a, x] holds. Because a ∼ b we have [a, b, a] so that together
[a, a, x] and [a, b, a] imply that [a, b, x] holds under B4. Axiom B1 then shows we
have [x, b, a]. By assumption we have [x, a, y] so that using B4 we can conclude
[x, b, y]. The converse follows by interchanging the roles of a and b. l

Definition 4.28. For a pair of objects A,B of a V-category A, we say they are
V-equivalent and write A ∼V B precisely whenever [A,B,A]V and [B,A,B]V hold.

Corollary 4.29. If A ∼=V B then A ∼V B.
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Proof. By Proposition 4.25 the relation [−,−,−]V is stable under V-isomorphisms.
Since we have that [A,A,A]V holds, and since we assumed that A ∼=V B, we find
that [A,B,A]V holds. Similarly [B,A,B]V holds so that A ∼V B. l

Remark 4.30. The ternary relation [−,−,−]V satisfies the minimality axiom B3
up to V-equivalence in arbitrary enriched categories. This equivalence ∼V can
be distinct from the notion of V-isomorphism but need not be. For particular
choices of enriched category (metric spaces, ideals enriched over themselves, dis-
tributive lattices), axiom B3 holds and the notions of equality, V-isomorphism and
V-equivalence coincide. We will illustrate the issue with the minimality condition
by means of examples.

Theorem 4.31 (Cantor-Schroeder-Bernstein). Let A and B be sets and suppose
there are injective maps f : A �

� // B and g : B �
� // A , then there exists a bi-

jection between A and B.

Example 4.32. Consider the category of sets Set. Suppose that [A,B,A]Set and
[B,A,B]Set hold. Then the composition morphisms

Hom(B,A)× Hom(A,B) // Hom(A,A),

Hom(A,B)× Hom(B,A) // Hom(B,B),

are split epimorphisms. This means that there exist arrows f, h : A // B and

g, k : B // A such that gf = idA and hk = idB. Consequently, f and k are
injective functions. Since there exist injections from A into B and from B into
A, by the Cantor-Schroeder-Bernstein Theorem, there is a bijection A ∼= B. So A
and B are Set-isomorphic. Thus, in this particular example of enriched category
the notion of V-equivalence and V-isomorphism coincide.

The above example shows that strong minimality ([a, b, a] implies a = b) is too
strong for the notion of betweenness in Set. Indeed, if [A,B,A]Set holds but not
[B,A,B]Set, then A is a retract of B, but they are not isomorphic.

Furthermore, there are examples of enriched categories for which the notions
of V-equivalent and V-isomorphic do not coincide.

Example 4.33. Given a G-torsor T , the composition morphisms g(a, b)g(b, a) =
g(a, a) and g(b, a)g(a, b) = g(b, b) are split epimorphisms for all a and b. However,
if a ̸= b, then [a, b, a]G and [b, a, b]G hold and (b, a) ̸= (a, a). Since the map
(g(t2, t1), t1) 7→ (t2, t1) is a bijection, we must conclude that g(b, a) ̸= g(a, a) = e.
So there do not exist arrows between a and b in the underlying category T0. This
means that a and b are not isomorphic in the underlying category T0 so that a
and b are not G-isomorphic. In particular, while a ∼G b for all a, b ∈ T , we have
a ∼=G b if and only if a = b. In other words, the betweenness relation on a G-torsor
is not compatible with the underlying category.
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4.6 A Category of Enriched Categories

Since we have a notion of betweenness in enriched categories, we may ask what
a betweenness preserving morphism of enriched categories is. For that matter,
we need a notion of morphism of enriched categories. We will define a category
of enriched categories which we will denote by EnCat. The author is aware of
issues with self referential statements and Russels paradox. We are also aware
of strategies around these issues such as the usage of Grothendieck universes and
conglomerates. These topics are beyond the scope of this thesis.

Definition 4.34. Denoted (A,V) for the V-category A, and (B,U) for the U-

category B. A morphism (A,V) // (B,U) of enriched categories consist of

f : ob(A) // ob(B), a function,

g : U // V, a monoidal functor,

such that f is a V-functor when viewing B as enriched over V via g. This means
that there is an arrow A(A,B) // gB(fA, fB) for each pair of objects A,B in

ob(A) such that the following diagrams commute

A(B,C)⊗A(A,B)

f⊗f
��

M // A(A,C)

f
��

gB(fB, fC)⊗ gB(fA, fB)
g(M)
// gB(fA, fC),

I
jA //

g(jfA)φ0 %%

A(A,A)

f

��
gB(fA, fA).

Here the arrow φ0 : IV // g(IU) denotes the isomorphism that comes with the
datum of the monoidal functor g.

Example 4.35. A morphism of enriched categories (f, idV) : (A,V) // (B,V)
where the monoidal functor is given by the identity functor on V, coincides with
the usual notion of V-functor. Thus morphisms of enriched categories are a gen-
eralization of V-functors.

Example 4.36. The shiftmap from Example 2.19 can be seen as a morphism of
enriched categories. Recall that we have a set X = {(xi)i∈N : xi ∈ {0, 1}} of se-

quences of 0’s and 1’s equipped with a metric ρ(x, y) :=
∑∞

i=0
|xi−yi|

2i
. This is a cat-

egory enriched over R+. The shiftmap is given by S(x0, x1, x2, . . . ) = (x1, x2, . . . )
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thus we obtain 1
2
ρ(Sx, Sy) = 1

2

∑∞
i=0

|xi+1−yi+1|
2i

=
∑∞

i=1
|xi−yi|

2i
≤ ρ(x, y). This

means that for each pair x, y ∈ X we have an arrow ρ(x, y) // 1
2
ρ(Sx, Sy).

Since multiplication by 1
2
is a monoidal functor R+

// R+ , we see that the

arrow (S, 1
2
·) : (X,R+) // (X,R+) defines a morphism in EnCat because the

required diagrams commute. The same reasoning shows that any arbitrary (non
constant) lipschitz continuous function f : A // B between metric spaces is a
morphism in EnCat. These functions satisfy dB(fx, fy) ≤ KdA(x, y) for some
constant K > 0. Thus (f, 1

K
) defines such a morphism.

Example 4.37. A geometric morphism F // E between toposes is an ad-
joint pair of functors f ∗ ⊣ f∗ with f ∗ : E // F and f∗ : F // E where f ∗

preserves finite limits. This can be seen as a morphism of enriched categories
(f ∗, f∗) : (E,E) // (F,F). Because toposes are Cartesian closed we can think of
F and E as enriched over themselves via the internal hom functor written out in
section 3.2. Note that because f ∗ preserves finite limits, we have an arrow

f ∗(BA)× f ∗(A) ∼= f ∗(BA × A)
f∗(ev)// f ∗(B).

This arrow then corresponds to an exponential transpose

f ∗
A,B : f ∗(BA) // f ∗(B)f

∗(A).

Under the adjunction f ∗ ⊣ f∗, this in turn corresponds to the arrow

f ∗
A,B : BA // f∗

(
f ∗(B)f

∗(A)
)
.

By the unicity of all involved arrows we find, for each triple of objects A,B,C ∈
ob(E), a commutative diagram

CB ×BA

f∗×f∗

��

M // CA

f∗

��
f∗

(
f ∗(C)f

∗(B)
)
× f∗

(
f ∗(B)f

∗(A)
)

f∗(M)
// f∗

(
f ∗(C)f

∗(A)
)
.

To see that f ∗M = f∗(M)(f ∗ × f ∗), note that under the adjunction f ∗ ⊣ f∗, the
arrow f ∗M corresponds to the arrow

f ∗(CB)× f ∗(BA)
f∗(M)// f ∗(CA)

f∗
// f ∗(C)f

∗(A).
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Its exponential transpose is given by:

ev(f ∗f ∗(M)× 1) = ev(f ∗ × 1)(f ∗(M)× 1)

= f ∗(ev)(f ∗(M)× 1)

= f ∗(ev(M × 1))

= f ∗(ev(1× ev)a).

Furthermore, the arrow f∗(M)(f ∗ × f ∗) corresponds under the adjunction f ∗ ⊣ f∗
to the arrow

f ∗(CB)× f ∗(BA)
f∗×f∗
// f ∗(C)f

∗(B) × f ∗(B)f
∗(A) M // f ∗(C)f

∗(A).

Its exponential transpose is given by

ev(M(f ∗ × f ∗)× 1) = ev(M × 1)((f ∗ × f ∗)× 1)

= ev(1× ev)a((f ∗ × f ∗)× 1)

= ev(f ∗ × 1)(1× ev(f ∗ × 1))

= f ∗(ev)(1× f ∗(ev))

= f ∗(ev(1× ev)a).

Because these exponential transposes are equal, we find that that they correspond
to the same arrow, thus f ∗f ∗(M) = M(f ∗ × f ∗). Consequently, these arrows
correspond to the same arrow under the adjunction f ∗ ⊣ f∗. This means that
f ∗M = f∗(M)(f ∗ × f ∗) so that the square commutes. Similarly, there is a com-
mutative diagram

I
jA //

f∗(jf∗(A))φ0 ''

AA

f∗

��
f∗(f

∗(A)f
∗(A)).

To see that f ∗jA = f∗(jf∗(A))φ0 note that under the adjunction f ∗ ⊣ f∗ the arrow
f ∗jA corresponds to

f ∗(I)
f∗(jA)// f ∗(AA)

f∗
// f ∗(A)f

∗(A).

Its exponential transpose is given by

ev(f ∗f ∗(jA)× 1) = ev(f ∗ × 1)(f ∗(jA)× 1) = f ∗(ev(jA × 1)) = f ∗(idA l) = f ∗(l).

The arrow f∗(jf∗(A))φ0 corresponds under the adjunction f ∗ ⊣ f∗ to the arrow

f ∗(I)
φ−1
0 // I

jf∗(A)// f ∗(A)f
∗(A).
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Its exponential transpose is given by

ev(jf∗(A)φ
−1
0 × 1) = ev(jf∗(A) × 1)(φ−1

0 × 1) = idf∗(A) l(φ
−1
0 × 1) = f ∗(l).

Here the last equality follows from Definition 4.2. In particular, we use that the
diagram

I × f ∗(A) l //

φ0×1

��

f ∗(A)

f ∗(I)× f ∗(A) φ2

// f ∗(I × A)

f∗(l)

OO

commutes. Again, because the exponential transposes are equal, we find by unicity
that f ∗f ∗(jA) = jf∗(A)φ

−1
0 . Consequently they correspond to the same arrow under

the adjunction f ∗ ⊣ f∗. This means that f ∗jA = f∗(jf∗(A)φ0). Because all the
required diagrams commute, a geometric morphism indeed fits the definition of a
morphism in EnCat.

Remark 4.38. A pair of morphisms (A,W)
(f1,g1) // (B,V)

(f2,g2)// (C,U) in EnCat

can be composed to give a morphism (f2f1, g1g2) : (A,W) // (C,U) consisting
of the function f2f1 and the monoidal functor g1g2. To see the required diagrams
commute, consider the square

A(B,C)⊗A(A,B) M //

f1⊗f1
��

A(A,C)

f1
��

g1B(f1(B)f1(C))⊗ g1B(f1(A), f1(B))
g1(M) //

g1(f2⊗f2)

��

g1B(f1(A), f1(C))

g1(f2)

��
g1g2C(f2f1(B), f2f1(C))⊗ g1g2C(f2f1(A), f2f1(B))

g1g2(M)
// g1g2C(f2f1(A), f2f1(C)).

The upper square commutes since (f1, g1) is a morphism in EnCat. The lower
square commutes since it is the g1 image of a commutative square. Namely (f2, g2)
is a morphism in EnCat. Similarly, for the unit axiom we have a commutative
diagram

IW

φ0

��

jA // A(A,A)

f1

��
g1(IV)

g1(jf1(A))
//

g1(φ0)

��

g1B(f1(A), f1(A))

g1(f2)

��
g1g2(IU)

g1g2(jf2f1(A))
// g1g2C(f2f1(A), f2f1(A)).
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The upper square commutes since (f1, g1) is a morphism in EnCat and the lower
square commutes because it is the g1 image of a commutative square. Thus we
have a well defined composition for this definition of morphism in EnCat. The
fact that this composition is associative follows from the fact that composition on
functions and monoidal functors is associative. Explicitly

(f3, g3)((f2, g2)(f1, g1)) = (f3, g3)(f2f1, g1g2) = (f3(f2f1), (g1g2)g3) = . . .

· · · = ((f3f2)f1, g1(g2g3)) = (f3f2, g2g3)(f1, g1) = ((f3, g3)(f2, g2))(f1, g1).

The identity arrow on an enriched category (A,V) is given by the pair (idA, idV).
Thus we have a well defined category EnCat.

4.7 Betweenness Preserving Morphisms

Definition 4.39. A morphism of enriched categories (f, g) : (A,V) // (B,U)

is called betweenness preserving whenever [A,B,C]V implies [fA, fB, fC]U.

We denote the category of enriched categories equipped with betweenness pre-
serving morphisms by EnCat′.

Theorem 4.40. There is a functor L : EnCat′ // Bet of which the action
on objects is given by L(A,V) := (ob(A)/∼V, [−,−,−]V). That is, it sends a
V-category A to the set of V-equivalence classes on ob(A) equipped with the be-
tweenness relation [−,−,−]V.

Proof. It is understood, when we denote [A]V := {B ∈ ob(A) : A ∼V B}, that we
have ([A], [B], [C]) ∈ [−,−,−]V if and only if [A,B,C]V . This is a well defined be-
tweenness relation by Theorem 4.24 and Lemma 4.27. It satisfies axiom B3 by con-
struction of the equivalence relation ∼V. Thus, L(A,V) = (ob(A)/∼V, [−,−,−]V)
indeed defines a betweenness space. For the morphism part, Given a between-
ness preserving morphism of enriched categories (f, g) : (A,V) // (B,U) , we

set L(f, g) := f . This is well defined, since if A ∼V B, then [A,B,A]V and
[B,A,B]V hold. By the fact that the morphism (f, g) is in EnCat′ we find
that [fA, fB, fA]U and [fB, fA, fB]U hold so that fA ∼U fB. In other words
[A] = [B] implies f [A] = [fA] = [fB] = f [B]. Hence we have a function

f : ob(A)/∼V
// ob(B)/∼U . This function is a morphism in Bet because if

[[A], [B], [C]]V holds, then equivalently [A,B,C]V holds so that [fA, fB, fC]U holds.
This means [[fA], [fB], [fC]]U which shows that L(f, g) is a morphism in Bet. To
see that L is functorial, note that it respects composition and unity

L((f2, g2)(f1, g1)) = L(f2f1, g1, g2)) = f2f1 = L(f2, g2)L(f1, g1),

L(idA, idV) = idA : ob(A)/∼V
// ob(A)/∼V = id(ob(A)/∼V,[−,−,−]V) .

l
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Example 4.41. We have seen in Example 2.19 and Example 4.36 that the shiftmap
is a betweenness preserving morphism of enriched categories.

Example 4.42. Every fully faithfull V-functor T : A // B is betweenness pre-
serving. Recall that a V-functor T is fully faithfull whenever for each pair of
objects A,B ∈ ob(A) the arrow A(A,B) // B(TA, TB) is an isomorphism.
By commutativity of the diagram

A(B,C)⊗A(A,B)
MABC //

T⊗T
��

A(A,C)

T
��

B(TB, TC)⊗B(TA, TB)
MTATBTC

// B(TA, TC)

and by the fact that T and T ⊗ T are isomorphisms, we see that MABC is a split
epimorphism if and only if MTATBTC is a split epimorphism. This means that
(T, idV) : (A,V) // (B,V) is a betweenness preserving morphism of enriched
categories.

Example 4.43. Similarly, continuing on Example 4.37, if a geometric morphism
f : F // E is also a logical functor, meaning it preserves finite limits, exponen-
tials and subobject identifiers, then it is also betweenness preserving. To see this,
recall we have a commutative diagram

CB ×BA

f∗×f∗

��

M // CA

f∗

��
f∗

(
f ∗(C)f

∗(B)
)
× f∗

(
f ∗(B)f

∗(A)
)

f∗(M)
// f∗

(
f ∗(C)f

∗(A)
)
.

and that under the adjunction f ∗ ⊣ f∗ this corresponds to a commutative diagram

f ∗(CB)× f ∗(BA)
f∗(M) //

f∗×f∗

��

f ∗(CA)

f∗

��
f ∗(C)f

∗(B) × f ∗(B)f
∗(A)

M
// f ∗(C)f

∗(A).

If MABC is a split epimorphism with section φABC , then f ∗(MABC) is also a split
epimorphism. Since f is a logical functor, we have by definition that the arrows
f ∗ and f ∗ × f ∗ are isomorphisms. Thus it follows that also Mf∗(A)f∗(B)f∗(C) is a

split epimorphism whose section is given by (f ∗×f ∗)f ∗(φABC)f ∗−1
. Indeed logical

functors can be seen as betweenness preserving morphisms.
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Different examples exist. We will continue to prove a sufficient condition for
enriched morphisms to be betweenness preserving.

Definition 4.44. An arrow B
f // C is said to be a regular epimorphism when-

ever it fits in a coequalizer diagram

A //// B
f // C.

Lemma 4.45. A split epimorphism is a regular epimorphism.

Proof. Say B
f // C is a split epimorphism, let g be its right inverse, then we

have a coequalizer diagram

B
f //

idB

22C
g // B

f // C.

Indeed, for any k : B // X that coequalizes idB and gf , we have kgf = k. So
k factors through f . To see this factorization is unique, if hf = k is an other
factorization, then hf = kgf implies h = kg by the fact that f is an epimorphism.

l

Remark 4.46. The converse of Lemma 4.45 need not hold. The statement that
the two notions coincide is referred to as the external regular axiom of choice.

Definition 4.47. A category C is called regular if:

i) it has all finite limits,

ii) the kernel pair

X ×Y X
p0 //

p1
��

X

f
��

X
f

// Y

of any morphism f : X // Y admits a coequalizer X ×Y X
p0 //
p1
// X // E,

iii) the pullback of a regular epimorphism along any morphism is again a regular
epimorphism.

Definition 4.48. In a regular category an object P is called (regular) projec-
tive if for every regular epimorphism f : X // Y , any arrow P // Y factors
through f .
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Lemma 4.49. In a regular category, an object P is projective if and only if every
regular epimorphism with codomain P is a split epimorphism.

Proof. Suppose that P is projective and let f : X // P be a regular epimor-

phism. Then the identity arrow idP : P // P factors through f . In other words,

there exists some g : P // X such that fg = idP , so f is split. Conversely, sup-
pose every regular epimorphism with codomain P is split. Pick a regular epimor-
phism f : X // Y . For any arrow g : P // Y we have a pullback diagram

P ×Y X
g∗(f) //

f∗(g)
��

X

f
��

P g
// Y.

Because in a regular category, regular epimorphisms are preserved under pullbacks,
we find that the arrow f ∗(g) is a regular epimorphism with codomain P . By
hypothesis, this means it is a split epimorphism. If k is its section, then g =
gf ∗(g)k = fg∗(f)k. This shows that g factors through f . We conclude that P is
projective. l

Lemma 4.50. Regular epimorphisms are preserved under pushouts.

Proof. Consider the following diagram

A
a //

b
// B

f //

g
��

C

�� ∃!k1

��

D
h //

c //

E
∃!k2

  
Y.

Suppose that A
a //

b
// B

f // C is a coequalizer diagram and that the square is

a pushout. Given an arrow D
c // Y such that c(ga) = c(gb), we then have an

arrow B
cg // Y that factors through f by its coequalizer property, i.e. k1f = cg.

This means the outer square is commutative. Since the inner square is a pushout,
there is a unique arrow k2 such that the two triangles commute. In other words,

c = k2h. But this must mean that A
ga //

gb
// D h // E is a coequalizer diagram.

Conclude that h is a regular epimorphism. l
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Corollary 4.51. Suppose the external regular axiom of choice holds in the category
V. If a V-functor T : A // B between V-categories satisfies that for all objects
A,B,C ∈ ob(A), the diagram

A(B,C)⊗A(A,B) M //

T⊗T
��

A(A,C)

T
��

B(TB, TC)⊗B(TA, TB)
M
// B(TA, TC),

is a pushout diagram. Then T is betweenness preserving.

Proof. If MABC is a split epimorphism, then it is a regular epimorphism by Lemma
4.45. Because regular epimorphisms are preserved under pushout diagrams, we
find that the composition MTATBTC is a regular epimorphism, c.f. Lemma 4.50.
Because the notion of regular epimorphism and split epimorphism coincide in V,
we find that T is betweenness preserving. l

Remark 4.52. From Lemma 4.49 we see that even if V does not satisfy the
regular axiom of choice, but that the hom objects of the V-category B are pro-
jective, then each composition morphism M has as codomain a projective ob-
ject in V. From the property that the above square is a pushout we find that

B(TB, TC)⊗B(TA, TB) M // B(TA, TC) is a regular epimorphism. Then be-

cause B(TA, TC) was assumed to be projective, M is a split epimorphism so that
T is betweenness preserving. More generally, the same result holds if in the above
Corollary we replace V-functor T : A // B with morphism of enriched category

(f, g) : (A,V) // (B,U) where g is a monoidal functor that reflects split epi-

morphisms. Simply because if g : U // V is such a monoidal functor, then we
can think of B as a V-category by taking the hom object of X, Y ∈ ob(B) to be
given by gB(X, Y ). Direct application of Corollary 4.51 provides the result.

49



5 Betweenness Space as an Enriched Category

We have seen that enriched categories can be seen as a set equipped with a be-
tweenness relation. Conversely, we can think of sets with a betweenness relation,
as enriched categories.

Suppose we have a set X with a betweenness relation B ⊆ X3. We can then
view X as a category enriched over the powerset of X denoted 2X , or V if it is
clear with respect to which set X and betweenness relation B it is defined. The
arrows in V are given by set inclusion, we say there is an arrow S → T precisely
whenever S ⊆ T . The tensor product in V is given by intersection and the tensor
unit is given by X. The objects of this V -category X are given by the points in
X. Given a pair of points x, y ∈ X, there is a hom object X(x, y) in V given by
X(x, y) := {a ∈ X : [a, y, x]B}. Furthermore, we have a composition law

X(x, y) ∩X(y, z) ⊆ X(x, z).

Namely, if a ∈ X(x, y) ∩ X(y, z) then both [a, y, x]B and [a, z, y]B hold. By the
transitivity axiom B4, this means that [a, z, x]B holds so that a ∈ X(x, z), which
proves the inclusion holds. Moreover, for each x ∈ X there is an identity arrow

X ⊆ X(x, x).

Because a ∈ X implies that [a, x, x]B by reflexivity B2. Since V is posetal, the
unit and associativity diagrams commute.

Definition 5.1. The enriched category (X, 2X) constructed above, is called the
associated enriched category to the betweenness space (X,B).

Proposition 5.2. In the associated enriched category (X, 2X), the notions of 2X-
isomorphic and 2X-equivalence and equality coincide.

Proof. From Corollary 4.29 we know that a ∼=V b implies a ∼V b. For the other
direction, suppose a ∼V b, then [a, b, a]V holds. This means that we have

X(a, b) ∩X(b, a) = X(a, a).

Since X(a, a) = X, the set inclusions X ⊆ X(a, b) and X ⊆ X(b, a) hold. This
gives arrows f : a // b and g : b // a in the underlying category X0. Their
composition gf is given by the arrow

X ⊆ X(a, b) ∩X(b, a) = X(a, a),

which is the identity arrow ida. Similarly fg = idb. This shows that a ∼=V b.
Notice that since X = X(a, b) = X(b, a) we have that a ∈ X(a, b) and b ∈ X(b, a)
so that [a, b, a]B and [b, a, b]B hold, which implies a = b by axiom B3. l
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5.1 Compatibility

Since any associated enriched category induces a betweenness relation on its own,
we can ask if V -betweenness coincides with the relation B. With regards to this
question, we have the following results.

Proposition 5.3. [a, x, b]V implies [a, x, b]B.

Proof. Suppose that [a, x, b]V , then X(x, b) ∩ X(a, x) = X(a, b). Hence, for all
y ∈ X we have that [y, a, b]B implies [y, a, x]B and [y, x, b]B. Since [a, a, b]B holds
we find by substituting y = a that [a, a, x]B and [a, x, b]B hold. l

Proposition 5.4. [a, x, b]V is equivalent to [a, x, b]B if and only if B (and then
also V ) satisfies the cancelation axiom B5.

Proof. Suppose [a, x, b]V and [a, x, b]B are equivalent. We want to prove they
satisfy the cancelation property. Suppose that [a, x, b]B and [a, y, x]B hold, we want
to conclude [y, x, b]B. By the equivalence of betweenness relations, we find that
[a, y, x]V holds. This means thatX(a, y)∩X(y, x) = X(a, x). Now since [a, x, b]B is
assumed to hold, we have by symmetry that [b, x, a]B holds, and therefore we know
that b ∈ X(a, x). It follows from X(a, y) ∩ X(y, x) = X(a, x) that b ∈ X(y, x).
This means that [b, x, y]B holds and by symmetry we find [y, x, b]B so that the
betweenness relation satisfies the cancelation property.

Conversely, if B satisfies the cancelation property, then we want to see that
[a, x, b]B implies [a, x, b]V , since the reverse implication is given for free. Suppose
that [a, x, b]B holds, then for all y ∈ X(a, b) we have [a, b, y]B. It follows that
[a, x, y]B and [x, b, y]B hold by transitivity and cancelation. In particular, y ∈
X(a, x) ∩ X(x, b). This means that X(a, b) = X(a, x) ∩ X(x, b) so that [a, x, b]V
holds. l

5.2 Functoriality

From the above discussion, we know each betweenness space has an associated
enriched category. It turns out that this defines the object part of a functor
R : Bet // EnCat . For the morphism part, consider two setsX and Y equipped
with betweenness relations [−,−,−]X and [−,−,−]Y respectively. Given a be-
tweenness preserving function f : X // Y , we know by definition that [a, x, b]X
implies [f(a), f(x), f(b)]Y . We have the following proposition.

Proposition 5.5. A function f : X // Y is betweenness preserving if and only if

f−1(Y (f(a), f(b))) =
⋃

[f(a),f(b),f(z)]Y

X(a, z).
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Proof. Suppose that f is betweenness preserving. Let x ∈
⋃

[f(a),f(b),f(z)]Y
X(a, z).

We have that there exists some z ∈ X for which [f(a), f(b), f(z)]Y holds, such
that x ∈ X(a, z). This means that [a, z, x]X holds, and since f preserves be-
tweenness, we also have [f(a), f(z), f(x)]Y . Then by transitivity it follows that
[f(a), f(b), f(x)]Y . Consequently we must find that x ∈ f−1(Y (f(a), f(b))). To
show the reverse inclusion, take any x ∈ f−1(Y (f(a), f(b))). Since [f(a), f(b), f(x)]Y
holds, we must have that x ∈ X(a, x) ⊆

⋃
[f(a),f(b),f(z)]Y

X(a, z). Equality is demon-
strated.

Conversely, suppose that the equality of sets holds, we have to show that f
preserves betweenness. Thus, for [a, b, c]X we have to show that [f(a), f(b), f(c)]Y .
Indeed, if [a, b, c]X , then c ∈ X(a, b). Because [f(a), f(b), f(b)]Y holds, we have
that

c ∈ X(a, b) ⊆
⋃

[f(a),f(b),f(z)]Y

X(a, z) = f−1(Y ((f(a), f(b))).

This means that f(c) ∈ Y (f(a), f(b)), or in other words, [f(a), f(b), f(c)]Y . This
completes the proof. l

Remark 5.6. The preimage f−1 : 2Y // 2X is a monoidal functor since it pre-
serves intersections and inclusions. Via this functor, we can view Y as a set
enriched over 2X if we take the hom-objects to be given by f−1(Y (x, y)) ⊆ 2X .
For any triple of objects a, b, c ∈ Y , the composition morphism then becomes

f−1(Y (a, b)) ∩ f−1(Y (b, c)) ⊆ f−1(Y (a, c)).

For any object a ∈ Y , the unit element is given by X ⊆ f−1(Y ) ⊆ f−1(Y (a, a)).

Proposition 5.7. If f : X // Y is a betweenness preserving function, then

(f, f−1) is a morphism of enriched categories (X, 2X) // (Y, 2Y ) .

Proof. Note that we have a commutative diagram:

X(a, x) ∩X(x, b) //

��

X(a, b)

��
f−1(Y (fa, fx)) ∩ f−1(Y (fx, fb)) // f−1(Y (fa, fb)).

Here the arrows are set inclusions. To see that X(a, b) ⊆ f−1(Y (fa, fb)), take
y ∈ X(a, b) so that [a, b, y]X holds. Then since f is betweenness preserving,
[fa, fb, fy]Y holds. This means that y ∈ f−1(Y (fa, fb)).

Similarly, we have a diagram

X //

&&

X(x, x)

��
f−1(Y (fx, fx)).
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Thus the function f : X // Y together with the collection of set inclusions

fa,b : X(a, b) // f−1(Y (fa, fb)) can be thought of as a 2X-functor between the

2X-categories X and Y where we view Y as enriched over 2X via f−1. l

Theorem 5.8. There is a faithful functor R : Bet // EnCat.

Proof. We have already defined the action of this functor on the objects and
morphisms. Betweenness spaces are mapped to their associated enriched cate-
gory, and betweenness preserving functions are mapped to their associated mor-
phism of enriched categories. What is left to be shown is that R respects com-
position and unity. Given betweenness spaces X, Y and Z along with between-

ness preserving morphisms X
f // Y

g // Z , we want to verify that R(gf) =
R(g)R(f). Indeed, R(gf) consists of a function gf : X // Z and a monoidal

functor (gf)−1 : 2Z // 2X . But (gf)−1 = f−1g−1. We find commutative dia-
grams

X(a, b) ∩X(b, c)

��

// X(a, c)

��
f−1Y (f(a), f(b)) ∩ f−1(f(b), f(c)) //

��

f−1Y (f(a), f(c))

��
f−1g−1Z(gf(a), gf(b)) ∩ f−1g−1Z(gf(b), gf(c)) // f−1g−1Z(gf(a), gf(c))

and
X(a, a)

��
X

66

//

((

f−1Y (f(a), f(a))

��
f−1g−1Z(gf(a), gf(a)).

Commutativity of the top square and top triangle has been shown in Proposition
5.7. Commutativity of the lower square and lower triangle is seen by noting that
it is the image under the monoidal functor f−1 of a commutative diagram. Thus
the outside square and triangle also commute. But this states that R(gf) =
R(g)R(f). To see that R respects unity, consider the betweenness preserving
function idX : X // X. We have that R(idX) consists of a function idX and a
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monoidal functor id−1
X : 2X // 2X . such that the diagrams

X(a, b) ∩X(b, c)

��

// X(a, c)

��
id−1

X X(idX(a), idX(b)) ∩ id−1
X X(idX(b), idX(c)) // id−1

X X(idX(a), idX(c))

,

and
X //

((

X(a, a)

��
id−1

X X(idX(a), idX(a))

commute. But this is the identity arrow of R(X), thus R(idX) = idR(X). To see
that R is faithful, Suppose that R(g) = R(f) for a pair of betweenness preserving
morphisms f and g. Since (f, f−1) = R(f) = R(g) = (g, g−1) we have f = g. l

Let us denote Bet(B5) for the category of betweenness spaces that satisfy the
cancellation axiom B5 with betweenness preserving functions as the morphisms.
If we restrict the functor R to Bet(B5) we land in EnCat′.

Corollary 5.9. There is a faithful functor R : Bet(B5)
// EnCat′.

Proof. From Proposition 5.4 we know that under axiom B5 we have for a be-
tweenness space (X,B) that the betweenness relation [−,−,−]VX

in the associ-
ated enriched category is equivalent to the betweenness relation [−,−,−]X of the
original betweenness space (X,B). Thus, given a betweenness preserving function

f : X // Y , we find that R(f) = (f, f−1) : (X, 2X) // (Y, 2Y ) is a between-
ness preserving morphism of enriched categories. Writing this out explicitly, if
[a, b, c]VX

holds, then equivalently [a, b, c]X holds. Since f is in Bet(B5) we have
[f(a), f(b), f(c)]Y which is equivalent to [f(a), f(b), f(c)]VY

. Conclude the mor-
phism R(f) is betweenness preserving. l

Remark 5.10. Denoting for ι the inclusion functor, we find that the following
diagram commutes

Bet(B5)
ι //

R
��

Bet

R
��

EnCat′ ι
// EnCat.

Corollary 5.11. There is a commutative diagram

Bet(B5)
ι //

R
��

Bet

EnCat′.
L

99
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Proof. For a betweenness space (X,B) we have

LR(X,B) = L(X, 2X) = (X/∼V , [−,−,−]V ) = (X,B)

where the last equality follows directly from Propositions 5.2 and 5.4. Moreover,
for an arrow f : X // Y in Bet(B5) we have LR(f) = L(f, f−1) = f . l

Remark 5.12. Let us denote EnCat′(B5) for the full subcategory of EnCat′ whose
objects consist of those enriched categories (A,V) for which the relation [−,−,−]V
satisfies axiom B5. Then we can think of L as a functor L : EnCat′(B5)

// Bet(B5)

Corollary 5.13. We can restrict L to find a pair of functors

Bet(B5)
R
// EnCat′(B5)

Loo

satisfying LR = idBet(B5)
. l

Remark 5.14. Since idBet(B5)
is an epimorphism, also L is an epimorphism. This

shows that we are justified in referring to betweenness relations that satisfy ax-
iom B5, as being metrizable. There is some enriched category that induces the
betweenness relation through its composition morphism.
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6 Concluding Remarks

If there were an adjuction L ⊣ R then by definition we would have that for every
object (X,BX) in Bet(B5), there exists an object R(X,BX) in EnCat′(B5) and a

morphism ϵ(X,BX) : LR(X,BX) // (X,BX), such that for every object (A,V) in

EnCat′(B5) and every morphism f : L(A,V) // (X,BX) there exists a unique

morphism g : (A,V) // R(X,BX) that makes the following diagram commute.

L(A,V)
f

''
L(g)

��
LR(X,BX) ϵ

// (X,BX).

Since we know that LR = idBet(B5)
, commutativity boils down to the requirement

that f = L(g). Note that g : (A,V) // R(X,BX) = (X, 2X) is given by a tuple

(g1, g2) where g1 : ob(A) // X is a function and g2 : 2
X // V is a monoidal

functor. Thus we would obtain f = L(g) = L(g1, g2) = g1. In other words,
g = (f, g2). This means that if there is an adjunction L ⊣ R, then every be-

tweenness preserving function f : L(A,V) = (ob(A)/∼V, [−,−,−]V) // (X,BX)

uniquely determines a monoidal functor g2 : 2
X // V that makes the tuple

(f, g2) : (A,V) // R(X,BX) = (X, 2X) a betweenness preserving morphism of

enriched categories. Thus for each pair of objects A,B ∈ ob(A) there is an ar-

row fA,B : A(A,B) // g2(X(fA, fB)) making the required diagrams commute.

However, we have the following proposition.

Proposition 6.1. Given a pair of adjoint functors

C ⊥
U

44 D
Ftt

the following are equivalent:

i) The right adjoint U is fully faithful.

ii) The counit ε : FU // 1C of the adjunction is a natural isomorphism of
functors.

Now note that while R : Bet(B5)
// EnCat′(B5) is faithful, it is not full. For

example consider Z and Q both equipped with the betweenness relation [a, x, b]
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if and only if a ≤ x ≤ b or b ≤ x ≤ a. This betweenness relation satisfies axiom
B5. Furthermore, the function f : Z // Q : x � // x

1
is betweenness preserving.

Then there is a morphism of enriched categories (f, g) : R(Z) // R(Q) given by

f : Z // Q : x � // x
1

g : 2Q // 2Z : S � // Z

where f is the function defined above and g is the constant monoidal functor that
sends everything to Z. Then we indeed find commutative diagrams

Z(a, b) ∩ Z(b, c) //

��

Z(a, c)

��
gQ(fa, fb) ∩ gQ(fb, fc) // gQ(fa, fc),

and
Z //

$$

Z(a, a)

��
gQ(fa, fa).

Moreover, since [−,−,−]V is equivalent to [−,−,−], we see that this morphism of
enriched categories is betweenness preserving. However, g is not the preimage of
a function. To see this take x ̸= y in Q, then g{x} ∩ g{y} = Z. For any preimage
h−1 of a function h we have h−1{x} ∩ h−1{y} = ∅. This means that (f, g) is not
of the form R(h) for any betweenness preserving function h and consequently we
find that the functor R does not act fully on the morphisms in Bet(B5). Because
LR = idBet(B5)

, we see that L ̸⊣ R do not form an adjunction for otherwise, by the
fact the counit would be a natural isomorphism, Proposition 6.1 would show R is
fully faithful, A contradiction.

Thus with the current definition of betweenness preserving morphism of en-
riched categories there can not be an adjunction L ⊣ R. As a sugestion for further
research we propose to formulate a restriction on the morphisms in EnCat′(B5) so
that R is a fully faithful functor. It would be interesting to see if for this restricted
version of morphism there can be an adjunction between L and R. In that case the
category Bet(B5) would be a reflective subcategory of some category of enriched
categories.
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[13] Baets Pérez-Fernández. The role of betweenness relations, monometrics and
penalty functions in data aggregation. 17th World Congress of International
Fuzzy Systems Association and 9th International Conference on Soft Com-
puting and Intelligent Systems (IFSA-SCIS), 2017.

[14] F.William Lawvere. Metric spaces, generalized logic, and closed categories.
Rendiconti del Seminario Matematico e Fisico di Milano, 43:135 – 166, 1973.

[15] G.M. Kelly. Basic Concepts of Enriched Category Theory. Cambridge Uni-
versity Press, 1 edition, 2005.

58



[16] K. Menger. Untersuchungen über algemeine metrik. Mathematische Annalen,
100:75–163, 1928.

[17] V. Glivenko. Geometrie des systemes de choses normees. American Journal
of Mathematics, 58, No.4:799 – 828 (30 pages), 1936.

[18] V. Glivenko. Contribution à l’Étude des systèmes de choses normées. Amer-
ican Journal of Mathematics, 59, No.4:941–956 (16 pages), 1937.

[19] M.F. Smiley. A comparison of algebraic, metric, and lattice betweenness.
Bulletin of the American Mathematical Society, 49:264–252, 1942.
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