
An Exploration of Current Techniques
in OWASP Vulnerability Detection
and Improvement Opportunities

Andrei-Claudiu Veres

University of Groningen & TNO

An Exploration of Current Techniques in OWASP
Vulnerability Detection and Improvement Opportunities

Internship Project

To fulfill the requirements for the course WMCS021-15 of
track Software Engineering and Distributed Systems
at University of Groningen under the supervision of

Dr. Fadi Mohsen (Computer Science, University of Groningen)
and

Dr. Michael Wilkinson (Computer Science, University of Groningen)
and

Thomas Rooijakkers (Cyber Security Researcher, TNO)
and

Thijs Klooster (Cyber Security Researcher, TNO)

Andrei-Claudiu Veres (s4047346)

October 10, 2023

3

Contents
Page

Abstract 4

1 Introduction 5

2 Literature Review 7
2.1 OWASP vulnerability classification . 7
2.2 White Box, Black Box and Grey Box . 9
2.3 Static and Dynamic Application Security Testing 9
2.4 Vulnerability Detection Efficiency Metrics . 10

3 Methodology 11
3.1 Methodology for IAST . 11
3.2 Methodology for Fuzzing . 11

4 IAST Technique Analysis 13
4.1 State of the Art of IAST . 13
4.2 Case Studies on IAST . 15
4.3 IAST Tools Comparison . 16

4.3.1 Seeker . 16
4.3.2 Contrast Assess . 17

5 Fuzzing Techniques Review 19
5.1 State of the Art of Fuzzing . 19
5.2 Web Fuzzing . 20
5.3 Fuzzing Tools Comparison . 22

5.3.1 Wfuzz . 22
5.3.2 SQLMap . 22

6 IAST and Fuzzing Comparison and Future Directions 24
6.1 Strengths . 24
6.2 Weaknesses . 25
6.3 Synergies . 25
6.4 Future Directions . 25

7 Conclusion 27

8 Limitations and Future Work 28

Bibliography 29

4

Abstract
Web applications are foundational in today’s digital landscape, necessitating advanced security mea-
sures. This study delves into Interactive Application Security Testing (IAST) and Web Fuzzing,
two pivotal techniques for detecting web vulnerabilities. We systematically evaluate their strengths
and weaknesses, emphasizing their potential in addressing vulnerabilities highlighted by the OWASP
Top 10. While IAST excels in real-time vulnerability detection, Web Fuzzing offers an expansive
approach, adept at uncovering elusive edge cases. Our research suggests that combining these tech-
niques could lead to substantial enhancements in web application security. Additionally, we introduce
the idea of an open-source IAST tool and contemplate the benefits that recent advances in artificial
intelligence might bring to these techniques. Furthermore, we underscore the significance of under-
standing these tools’ operation within the realm of cloud computing.

Chapter 1 INTRODUCTION 5

1 Introduction

A web application is a software application that is accessed via a web browser over the internet. Web
technology has evolved from static and informative content to powerful, dynamic, and engaging ma-
terials [1]. In recent years, as more and more businesses are using the internet to offer their products
and services, web-based applications have become the backbone of our modern digital society. The
development lifecycle of these applications consists of multiple sequential stages. These are feasibil-
ity, analysis, design, coding, testing, and finally, implementation and maintenance [2]. These stages
ensure not only the successful deployment of the application but also its correct functionality over
time.

However, the increased use of web applications by businesses has brought unwanted attention from
malicious actors. Now more than ever, the safety of web applications has become a great concern. Cy-
bersecurity statistics from 2023 indicate that the number of cyber attacks per year is currently around
800,000. With the cost of a data breach averaging at $9.44M, it is predicted that cybercrime will cost
$8 trillion by the end of 2023 [3]. A web application vulnerability is a security flaw or weakness
that can be exploited by a malicious hacker to gain unauthorized access to a system’s resources. The
increasing frequency of these issues has escalated the demand for robust software security measures.

One entity that plays an important role in addressing these vulnerabilities is The Open Web Applica-
tion Security Project (OWASP). This community-led, non-profit organization has tens of thousands
of members. Its mission is to improve software security through open-source software projects and
comprehensive resources that aid in the identification, prevention, and mitigation of web application
vulnerabilities [4].

Software security has become an essential effort in order to handle web-based vulnerabilities in an
efficient manner. This effort requires the implementation of security testing in the software develop-
ment cycle of these applications. The aim is to prevent, detect, and rectify security vulnerabilities
rapidly and efficiently. In this paper, we focus on Interactive Application Security Testing (IAST) and
fuzzing. These are popular security techniques that are key in the identification of web application
vulnerabilities.

The objective of this paper is to rigorously evaluate current techniques and tools used in OWASP
vulnerability detection. We assess the strengths, weaknesses, and effectiveness of IAST and fuzzing in
this context. These technologies were chosen as primary focuses due to their potential for enhancing
software security in web-based applications. Furthermore, we are identifying potential gaps and
areas for improvement in the vulnerability detection landscape with respect to the aforementioned
technologies. The research helps the security community to better understand and choose the right
software security testing technique and tool based on their needs.

We answer the following research questions:

• Q1: What are the current techniques and tools used in OWASP vulnerability detection, with a
particular focus on IAST and fuzzing?

• Q2: What are the strengths and weaknesses of these techniques, and how effective are they in
detecting OWASP vulnerabilities?

• Q3: What are the potential gaps or areas for improvement in current OWASP vulnerability
detection techniques?

6 Chapter 1 INTRODUCTION

The paper is structured as follows: In Section 2, we begin with a Literature Review. Here, we discuss
the background information and the context needed for understanding the thesis. Next, in Section
3, we discuss the Methodology, outlining our research approach. This is followed by Section 4, or
IAST Technique Analysis (Q1 & Q2), and Section 5, Fuzzing Technique Review (Q1 & Q2), where we
explore the main topics in more detail. Following that, we have Section 6, where we discuss the IAST
and Fuzzing Comparison and Future Directions (Q3). We conclude with Section 7, Conclusion, and
Section 8, Limitations and Future Work.

Chapter 2 LITERATURE REVIEW 7

2 Literature Review
In this section, we cover essential topics that lay the groundwork for subsequent sections of the paper.
We begin with an overview of the recent OWASP Top Ten report, followed by a discussion on web
vulnerability detection methods, including white, black, and grey box approaches. We also introduce
SAST and DAST, as they play a crucial role in one of the techniques detailed later in the paper. Lastly,
we outline fundamental metrics used to assess the effectiveness of vulnerability detection.

2.1 OWASP vulnerability classification
There are many types of web-based application vulnerabilities. To defend against potential attacks,
we first need to have a deep understanding of these vulnerabilities. On a high level, we can classify
web vulnerabilities into three categories: input validation vulnerabilities (IPV), session manage-
ment vulnerabilities (SMV), and application logic vulnerabilities (ALV) [5]. OWASP Top Ten is an
awareness document for developers and security experts, created with the aim of representing the
most critical and prevalent security risks for web applications [4]. In Figure 1 [4], the most recent
classification of the most threatening risks associated with web applications is displayed.

Figure 1: OWASP Top Ten Classification [4]

The color scheme in the above image represents the changes in the status of vulnerabilities ranked in
the OWASP top 10 list. The green arrows signify vulnerabilities that have increased in importance
and severity compared to 2017. The orange arrows indicate a decrease in the importance and severity
of the ranked vulnerabilities. Meanwhile, the yellow arrows denote vulnerabilities that have been
removed from the list and merged into other categories. The following list is based on the most recent
OWASP vulnerability classification, year 2021, found on the right side of Figure 1:

1. Broken Access Control refers to the failure of implementing restrictions and policies on which
actors can access specific resources. As the policy is written by humans, it is prone to error,
therefore common and, unfortunately, critical in nature [6]. Some examples of these types of
attacks are Local File Inclusion Attack and Remote File Inclusion Attack.

2. Cryptographic Failures indicate successful decryption of maliciously gathered data. For ex-
ample, the use of old or outdated ciphers may lead to quick and easy data decryption by the
hacker [6]. These types of attacks lead to sensitive data exposure. The most common attacks of
this type are: Information Leakage Attack and Database Theft [7].

3. Injections are cyber-attacks where the attacker sends malicious data as part of a command
or query. The aim of these attacks is to trick the interpreter into executing these commands,

8 Chapter 2 LITERATURE REVIEW

thereby illicitly retrieving, modifying, or deleting data. The most critical injection attacks are:
SQL Injections, Code Injections, and XPATH Injections [7]. As indicated by the OWASP top
10 [4], since 2021, Cross-Site Scripting (XSS) has also been classified as an injection attack.

4. Insecure Design occurs when a web application allows direct access to objects based on the
input supplied by the user. In this case, an attacker may be able to bypass authorization and
directly access system resources. Several types of attacks can be conducted by exploiting this
type of vulnerability: Path Traversal Attack, Direct Request Attack, and Authorization Bypass
Through User-Controlled SQL Primary Key [7].

5. Security Misconfiguration is an issue that arises due to the misconfiguration of one or more
components of the system. Secure settings must be defined, implemented, and maintained.
Unfortunately, in many cases, these components remain with their default settings. A plethora
of attacks can occur due to misconfiguration, and their severity depends on the level and lo-
cation of the misconfiguration [7]. Some examples of misconfiguration vulnerabilities are:
unimplemented HTTP security headers, unprotected files and directories, poorly configured
permissions, error messages that reveal sensitive information about the system, enabled default
accounts and passwords, and enabled unnecessary exploitable features [6].

6. Vulnerable and Outdated Components are software components that contain already known
security issues or are no longer supported by their developers and, therefore, are prone to se-
curity breaches. These components could be libraries, frameworks, APIs, or any other such
elements used in the creation of the web application. The severity of the vulnerability depends
on the nature of the component and the level at which it is utilized [6] [7].

7. Identification and Authentication Failure refers to the practice of exploiting vulnerabilities
during the authentication process in a web application and the malicious use of user credentials
to gain unauthorized access to information. These attacks can be classified into the follow-
ing categories: Brute Force Attack, Dictionary Attack, Credential Enumeration Attack, Session
Fixation Attack, and Cookie Poisoning Attack [7].

8. Software and Data Integrity Failures occur during the software development cycle due to the
use of modules, libraries, and plugins from untrusted third-party sources. If these components
are not properly maintained and validated, they may lead to vulnerabilities. Some scenarios
where the system is susceptible to compromise are: missing platform patches, missing unit
tests, incomplete vulnerability scanning, and improper input validation [6].

9. Security Logging and Monitoring Failures refer to the insufficient logging and monitoring of
a system’s activity. Logging is the process of recording the activity of a system. When a system
is not properly recording and monitoring its activity, detecting security breaches becomes more
difficult [6]. This vulnerability risk is due to a lack of a logging mechanism, failure to log
relevant information, not storing the logs for a sufficient amount of time, or an ineffective
monitoring process.

10. Server-Side Request Forgery (SSRF) is a vulnerability risk that can be exploited by an at-
tacker to make a server send an unintended request. It results from inadequate validation and
restrictions on the side of the web application. This type of vulnerability enables the attacker to
perform malicious actions such as scanning internal networks and exploiting unsecured services
[6].

Chapter 2 LITERATURE REVIEW 9

2.2 White Box, Black Box and Grey Box
While there are numerous security testing techniques, they can be categorized into three groups.
These are white box testing, black box testing, and grey box testing. In this section, we briefly explain
each category and discuss the advantages and disadvantages that come with their implementation.

White box testing, also known as glass box testing or open box testing, refers to a group of techniques
that utilize the internal knowledge of a system to perform testing. In this type of testing, the security
specialist is aware of the system’s architecture, has access to the source code, and understands the
underlying technology. Various techniques are used, but the overall process generally involves the
following steps: the testers use their system knowledge to develop specific testing scenarios, they cre-
ate the required data for these scenarios, then they run these tests, and finally, they analyze the results.
Some of the advantages that come with white box testing are: the revealing of errors in the code and
maximum coverage attained during testing. Unfortunately, this approach has its disadvantages: it is
time-consuming, requires a skilled tester, risk of testing bias, some paths may remain unchecked, and
some code might be omitted [8].

At the opposite end of the spectrum, we find black box testing. The techniques that fall under this
category treat the software as a ”Black Box,” implying that testing is performed without any knowl-
edge of the system’s internal workings. Although the methodologies applied in black box testing have
similarities with those in white box testing—particularly in evaluation procedures—the distinguishing
characteristic is the tester’s lack of architectural knowledge about the system and inability to access its
source code. The advantages of using this kind of approach are: efficiency for large code segments,
simple tester understanding, decreased of testing bias and rapid test case development. However,
the implementation of black box testing comes with some drawbacks: limited coverage, difficulty in
designing tests, and potentially inefficient testing [8].

Grey box testing aims to get the best from white box testing and mix it with the best of black box
testing. This hybrid approach allows the tester to have some knowledge about the internal structure
of the system and design efficient target testing accordingly. This approach has increased coverage
compared with black box testing while taking less time to execute than white box testing. Some of
the advantages of grey box testing are: enhanced test scenarios, employing the user’s point of view,
and unbiased testing. However, there are some disadvantages such as: limited test coverage due to
inaccessible source code, paths that may remain untested, and the potential to re-run test cases (redun-
dancy) [8]. Nevertheless, grey box testing has great potential when it comes to implementing security
in the development cycle of a web application. In this paper, we discuss interactive application secu-
rity testing (IAST) section 4, which is an interesting grey box testing approach.

2.3 Static and Dynamic Application Security Testing
Static Application Security Testing (SAST) is a methodology used in the identification of applica-
tion security vulnerabilities. It is a type of white-box security testing. The tester has access to the
source code and is familiar with the architecture of the application, network, and all other necessary
information regarding the system. The strength of SAST is the ability to pinpoint the vulnerabilities
inside the source code. Additionally, SAST checks for code coverage, data flow testing, path testing,
and loop testing [9].

However, SAST does not evaluate runtime data flow and operational security gaps. Dynamic Ap-
plication Security Testing (DAST) addresses this limitation by implementing a black-box-like ap-

10 Chapter 2 LITERATURE REVIEW

proach. The tester has no knowledge about the structure of the system, nor does he have access to the
source code. He uses the exposed (user) interface to perform the tests. The idea behind DAST is to
attack the application from the point of view of a malicious actor. The aim is to identify runtime vul-
nerabilities such as I/O validation issues, server configuration mistakes, and other such weaknesses
[9].

Unfortunately, DAST often fails to indicate precisely where in the source code the vulnerability is
located. Interactive Application Security Testing (IAST) is a mixture of the DAST and SAST
approaches. In this paper, we discuss how SAST and DAST can be combined to obtain enhanced
security performance.

2.4 Vulnerability Detection Efficiency Metrics
One of the most important metrics in the measurement of vulnerability detection is accuracy. To
understand this metric, it is essential to grasp the concepts of true positives, false positives, true
negatives, and false negatives in the context of vulnerability detection [10].

• True Positives (TP): In this scenario, the security approach correctly identifies a vulnerability.
The vulnerability exists and the technique correctly flags it.

• False Positives (FP): In this case, the security method incorrectly identifies a vulnerability. The
technique flags a vulnerability, but in reality, there is no vulnerability—it’s a false alarm.

• True Negatives (TN): In this situation, the security approach correctly identifies that a vulner-
ability does not exist. No vulnerability is flagged.

• False Negatives (FN): Under these circumstances, the security method fails to identify a vul-
nerability. Although the vulnerability exists, the technique fails to flag it.

Accuracy can be calculated using the following formula:

Accuracy =
T P+T N

T P+T N +FP+FN

Chapter 3 METHODOLOGY 11

3 Methodology
In this section, we discuss the methodology used to answer our research questions.

3.1 Methodology for IAST
The methodology for this section is focused on the analysis of IAST techniques, especially in relation
to OWASP classified vulnerabilities. This analysis is divided into three main parts: the current state
of IAST, case studies on IAST, and a comparison of IAST tools.

The first part looks at the current state of IAST techniques. A literature review was carried out using
search queries in Google Scholar with terms such as “IAST”, “SAST”, “DAST”, “interactive appli-
cation security testing”, “static application security testing”, “dynamic application security testing”,
“state of the art”, “OWASP”, and “OWASP Top 10”. Initially, 15 papers were chosen based on their
titles, but this was narrowed down to seven after reviewing the abstracts to assess their relevance.
This part explores the historical background of IAST, the pros and cons of SAST and DAST ap-
proaches, and how these relate to IAST. It also explores the techniques used in IAST, OWASP Top 10
vulnerabilities coverage, and how effective some tools are at identifying these vulnerabilities.

The second part discusses two case studies on IAST to understand what an IAST implementation
can look like and the possible improvements it can bring. The first case discusses a completely
open-sourced IAST implementation, while the second case examines the improvements achieved by
a DAST tool that uses information from inside the application.

The final part focuses on a discussion of two IAST tools: Seeker by Synopsys [11] and Contrast
Assess by Contrast Security [12]. This choice was made considering various factors, including the
absence of mainstream open-sourced IAST tools. Therefore, the discussion revolves around only
closed-sourced IAST tools. Seeker was chosen because it is a pioneering tool in the IAST domain,
and Contrast Assess was selected for its high user satisfaction ratings.

In assessing these tools, different aspects are discussed, including: type of testing (black/white/grey
box), main components of the tool, integration with development environments, detection techniques,
OWASP Top 10 classified vulnerabilities coverage, real-time analysis and feedback, reporting and
dashboard features, pricing and licensing, community and vendor support, and support for different
programming languages and platforms. This discussion aims to give an overview of the tools rather
than an exhaustive analysis.

3.2 Methodology for Fuzzing
The methodology for this section is centered around the analysis of fuzzing techniques, specifically
web fuzzing. This analysis is divided into three main parts, each focusing on a different aspect of
fuzzing techniques.

The initial segment offers a perspective on the current state of fuzzing techniques. A literature review
was undertaken, employing search queries in Google Scholar using the following terms: “fuzzing,”
“state of the art,” “black-box,” “white-box,” and “grey-box”. Initially, 25 papers were chosen based
on their titles, but this was narrowed down to 13 after reviewing the abstracts to assess their relevance.
T In addition, a study from TNO’s prior research was included [13]. This part discusses the historical
context of fuzzing, the functioning and components of a fuzzer, and the relevant definitions in the
field of fuzzing. It also delves into the distinctions between black, white, and grey box fuzzing.

12 Chapter 3 METHODOLOGY

The subsequent segment is dedicated to web fuzzing. It highlights how web fuzzing stands apart
from other fuzzing genres and investigates which vulnerabilities, as listed in the OWASP top 10, can
be pinpointed using web fuzzing. The data for this part was gathered following a similar literature
review approach as the prior segment, incorporating additional search terms like “web application”
and “OWASP”.

The concluding segment dives into an analysis of two web fuzzers: Wfuzz [14] and SQLMap [15].
The rationale behind their selection is based on several criteria:

• The fuzzer should target at least one vulnerability listed in OWASP.

• To avoid obsolete tools, the fuzzer must have been updated at least once in the past five years.

• The fuzzer should be well-documented.

• Preferably, the tool should primarily function as a fuzzer rather than a multifaceted instrument
like a web application vulnerability scanner.

• For better understanding the inclusion of both a multi-test fuzzer and a specific fuzzer is re-
quired.

In the assessment of these fuzzers we discuss aspects such as the type of testing (black/white/grey
box), the nature of the fuzzer (multi-test/specific test), the fuzzing technique employed, proficiency
in detecting web vulnerabilities, relevant features, pricing, customizability, community and vendor
support, and supported platforms. These criteria aim to offer an overview of the possibilities rather
than an exhaustive analysis.

Chapter 4 IAST TECHNIQUE ANALYSIS 13

4 IAST Technique Analysis
In this section, we start by exploring the state of the art in IAST and its integration of SAST and
DAST, particularly in relation to the OWASP Top Ten. We then examine two case studies, focusing
on efforts to develop open-source IAST frameworks. To conclude, we evaluate two IAST tools,
comparing them based on various criteria.

4.1 State of the Art of IAST
In recent years, there has been an increasing need in the cybersecurity field for robust and comprehen-
sive testing mechanisms capable of automating, at least partially, the evaluation of security aspects in
software applications. A notably efficient solution in this endeavor, especially for web applications, is
Interactive Application Security Testing (IAST). Initially proposed and developed by Synopsys [11]
[16], IAST leverages two well-established techniques: Static Application Security Testing (SAST)
and Dynamic Application Security Testing (DAST) [17].

As discussed in subsection 2.3, SAST operates as a white-box testing method, whereas DAST func-
tions as a black-box testing method. Employing SAST in security testing of applications provides
numerous benefits, including the identification of complex vulnerabilities in the early stages of de-
velopment. Since it pinpoints issues directly in the source code, it facilitates convenient resolution
for developers. Additionally, it integrates seamlessly into the development life cycle and, on aver-
age, identifies more vulnerabilities than DAST [18] [19]. However, this approach does come with
drawbacks such as a reliance on the specific programming language and framework used, a tendency
for false positives or negatives, and potential difficulties in reproducing identified vulnerabilities [18]
[17] [20].

Utilizing DAST, on the other hand, enables developers to uncover vulnerabilities at runtime that are
undetectable by SAST, presents fewer false positives, and offers both a cost-effective solution and
independence from the application’s programming language [18] [20]. Nevertheless, it also holds
disadvantages such as its confinement to the later stages of the development cycle, limitations imposed
by the tool’s vulnerability database, lack of feedback on the vulnerability detected, and a prolonged
testing duration for web applications [18].

IAST emerges as an intelligent combination of SAST and DAST, significantly enhancing the accuracy
of vulnerability detection in web applications [16] [18] [19] [20] [17]. By providing real-time code
analysis while operating directly on the server integrated into the web application, IAST can promptly
identify vulnerable source code during the early development stages. This is not only convenient for
developers but also saves financial and computational resources. Additionally, this approach lowers
the risk of exploitation of vulnerabilities and lower development costs to fix the issue. Its implementa-
tion as a server agent allows it to gather information on application behavior generated by end-users,
sanitize user input to prevent injection attacks or remote executions, and identify vulnerabilities with
increased accuracy. However, IAST has its shortcomings, including language dependency, inability
to detect client-side vulnerabilities, and the potential to incur runtime overhead on the application
server.

One of the primary techniques utilized in implementing the IAST approach is taint analysis. This
method is leveraged through dynamic taint analysis in IAST to monitor the flow of information be-
tween sources and sinks during runtime [20]. In this context, a program value deemed as “tainted” is
the result of computations based on data derived from a taint source, while all other values are con-

14 Chapter 4 IAST TECHNIQUE ANALYSIS

sidered “untainted.” Another pivotal technique in IAST implementations is symbolic execution. This
technique involves formulating a logical formula that represents a program’s execution, facilitating
the analysis of the program’s behavior across a wide array of inputs simultaneously [20].

In Table 1, we highlight the OWASP Top 10 classified vulnerabilities that can be identified through an
IAST approach. This assessment is partially based on previous research that explored the coverage for
OWASP TOP 10 2017 [18] and a more recent study on OWASP TOP 10 2019 [19]. IAST tools excel
in monitoring and analyzing the runtime behavior of applications, including the enforcement of access
controls. By scrutinizing HTTP requests and responses, these tools can pinpoint instances where
access controls are not enforced properly, therefore identifying broken access control vulnerabilities.

Furthermore, an IAST approach can detect injection vulnerabilities, which frequently arise due to
improper handling of inputs. This is achieved by monitoring the application during runtime and
identifying points where untrusted inputs are used. Similarly, security misconfigurations can be iden-
tified by examining the application’s behavior under various settings. Testing different configurations
might uncover issues like improper error handling or insecure default settings, indicative of miscon-
figurations. The monitoring capability of IAST extends to the authentication process, offering an
opportunity to reveal vulnerabilities associated with identification and authentication failures. This
process relies on a careful analysis of user authentication handling at runtime.

Moreover, IAST can identify software and data integrity failures by overseeing how the application
manages data. For instance, it can identify insecure deserialization incidents, potentially leading to
data integrity failures. Lastly, the technique proves efficient in recognizing server-side request forgery
(SSRF) vulnerabilities by supervising the application’s handling of external resource requests. When
the behavior showcases signs of an SSRF attack, such as unexpected outbound requests, the tool raises
an alarm to signal a potential attack.

The detectability of a couple of OWASP classified vulnerabilities, using an IAST approach, remains
a subject of debate. In regard to cryptographic failures, IAST could potentially spot certain irregular-
ities, such as the transmission of sensitive data in unencrypted form. Although IAST tools may not
be initially designed to find vulnerable and outdated components, they might still be capable of iden-
tifying anomalies in observable runtime behaviors. Developers can utilize IAST tools to help identify
security issues that need to be logged and monitored, and to verify whether the actual monitoring
systems is correctly flagging these security concerns, essentially serving as a form of double-check.
In this respect, it could be contended that an IAST approach may provide indirect assistance in rec-
ognizing security logging and monitoring failures.

However, it should be noted that there are vulnerabilities in the OWASP Top 10 list that are arguably
outside the identification purview of IAST approaches. For instance, the insecure design flaw, a high-
level security issue, is generally identified by software architects through a detailed analysis of the
application’s structure. Given that IAST primarily functions during runtime, it is not designed to
pinpoint vulnerabilities associated with software architecture design.

There are a couple of studies that delve into the effectiveness, efficiency, and accuracy of IAST tools
[20] [19]. We summarize the key findings from these studies regarding IAST as follows:

• IAST can detect a wider range of vulnerabilities compared to either SAST or DAST when used
individually.

• The IAST approach is capable of identifying a larger variety of vulnerability types in compari-
son to SAST and DAST.

Chapter 4 IAST TECHNIQUE ANALYSIS 15

• Utilizing a synergized approach that combines multiple tools yields better performance in de-
tecting vulnerabilities while minimizing false positives (two IAST tools yields the best results).

• Employing IAST can lead to a significant reduction in the number of false positives.

Table 1: OWASP Top Ten Vulnerabilities and IAST Identifiability

OWASP Vulnerability Identifiable by IAST
A01:2021-Broken Access Control ✓

A02:2021-Cryptographic Failures ∼
A03:2021-Injection ✓

A04:2021-Insecure Design ×
A05:2021-Security Misconfiguration ✓

A06:2021-Vulnerable and Outdated Components ∼
A07:2021-Identification and Authentication Failures ✓

A08:2021-Software and Data Integrity Failures ✓

A09:2021-Security Logging and Monitoring Failures ∼
A10:2021-Server-Side Request Forgery ✓

4.2 Case Studies on IAST

A recent case study explores the vulnerabilities present in an X-Government web-based application,
leveraging the Interactive Application Security Testing (IAST) methodology [18]. The authors inte-
grate Static Application Security Testing (SAST) and Dynamic Application Security Testing (DAST)
processes, facilitating both pre-run and runtime analyses. The outlined method goes through several
steps including target discovery, vulnerability scanning, and results analysis. This project leverages
well-known open-source tools to embody the IAST strategy, employing Jenkins [21] for integration,
ZAP [22] for DAST, and SonarQube [23] for SAST. The methodology was tested against the OWASP
Benchmark [24], hence ensuring a detailed vulnerability assessment.

Following this methodology, the study discovered 249 vulnerability risks, covering issues like injec-
tions, broken authentication, and security misconfigurations. When compared with standalone SAST
or DAST approaches, the IAST strategy outperforms in finding a more extensive range of vulnerabil-
ities. As of the time of this report, to the best of our knowledge, this specific implementation of the
IAST approach is the only fully open-source IAST tool available. This case study supports the use of
the IAST approach, and its significantly promising role in security testing.

In another case study, the effectiveness of DAST was enhanced by leveraging information about the
web application gathered using SAST [17]. The authors highlight that in recent years, the potential
of DAST has declined due to the restrictive filters introduced in web applications. These filters limit
the input parameters, consequently diminishing the capacity to identify vulnerabilities. To counter
this, they propose a solution formulated around an IAST approach. During static testing, vital details
such as the URL, parameter names, and filter constraints are stored. Subsequently, before initiating
dynamic testing, attack strings that can bypass the established filters are requested to facilitate a more
robust vulnerability detection process.

16 Chapter 4 IAST TECHNIQUE ANALYSIS

In the practical application of this concept, the authors leveraged well-established open-source soft-
ware applications to implement and validate their strategy. The experiment utilized SPARROW [25]
for SAST, ZAP [22] for DAST, and Z3str2 [26] for string constraint resolution. They employed the
OWASP Benchmark [24] to assess the approach, focusing strictly on cross-site scripting vulnerabil-
ities. The results are encouraging, demonstrating a significant improvement with a 33% increase in
the vulnerability detection rate when applying the IAST methodology as opposed to solely applying
DAST.

4.3 IAST Tools Comparison

4.3.1 Seeker

Seeker, developed by the Synopsys company, is a reputable interactive application security testing tool
[11]. It employs grey box testing methodologies to facilitate in-depth analysis of web applications,
offering real-time feedback encouraging secure coding habits, and it can be easily integrated into
various development environments.

1. Type of Testing: Seeker functions as a grey-box testing tool, delving into the application’s
internals in real-time to identify vulnerabilities.

2. Components: Seeker has two main components. The Seeker Server provides the user inter-
face, collects vulnerabilities and stores the vulnerabilities generated by the agent. Meanwhile,
the Seeker Agent is tasked with detecting vulnerabilities within the application, diligently mon-
itoring the web application server’s data flow from the initial request to the final response from
the application.

3. Integration with Development Environments: Seeker seamlessly integrates with many CI/CD
pipelines, including Jenkins [21] and GitLab [27], and is compatible with IDEs such as Visual
Studio [28] and Eclipse [29]. It is designed for containerized and cloud environments like AWS
[30], Azure [31], and Google Cloud [32]. Moreover, it facilitates continuous feedback in Agile
and DevOps workflows.

4. Detection Techniques and Methodologies: Seeker utilizes active verification technologies to
identify potential vulnerabilities and confirm their actuality and exploitability. It tracks sensitive
data through the data flow to scrutinize the security of data transmission and storage. More-
over, it ensures alignment with OWASP standards and compliance with PCI DSS and GDPR
regulations.

5. Detected Web Vulnerabilities (OWASP Top 10): Seeker is proficient in detecting a vast array
of web vulnerabilities, prominently those listed in the OWASP Top 10. Its capabilities align
with the details discussed previously and presented in Table 1.

6. Real-time Analysis and Feedback: Seeker provides real-time feedback coupled with con-
textual assistance to developers, pinpointing potential security issues and offering remediation
suggestions.

7. Reporting and Dashboard Features: The dashboard offers an extensive overview of the appli-
cation’s security status, detailing the vulnerabilities identified, their severity, and the progres-
sion of remediation efforts, enabling developers to garner profound insights into the security
landscape.

Chapter 4 IAST TECHNIQUE ANALYSIS 17

8. Pricing and Licensing: While the official website lacks pricing details, secondary sources
indicate a user-based licensing system with an annual fee of 70,000 dollars for 50 users [33].

9. Community and Vendor Support: Despite the restricted information available without prod-
uct registration, Seeker maintains regular updates, with the most recent being less than a month
prior to this paper’s drafting [34]. Synopsys fosters a community forum and supplies extensive
documentation to aid users.

10. Supported Programming Languages and Platforms: Seeker is compatible with Windows,
Linux, and macOS, supporting a range of technologies including Java, DotNet, PHP, C#,
JavaScript, PLSQL, TSQL, Groovy, Scala, and Clojure [35].

4.3.2 Contrast Assess

Contrast Assess is an interactive tool for testing the security of applications, created by the Contrast
Security Company [12]. It uses grey-box testing, which combines DAST and SAST methods, to
create a final product that can be easily integrated at various stages of the software development
life cycle. The tool supports many programming languages and gives real-time feedback along with
detailed reports, helping developers to build more secure web applications.

1. Type of Testing: Since Contrast Assess utilizes an IAST approach, it falls under the category
of grey-box testing tools.

2. Components: Contrast Assess comprises two primary components. The Contrast Platform
serves as the central hub where all vulnerability data and analytics are stored, offering deeper
insights into the security status of the web application. Meanwhile, the Contrast Agents are
embedded in the application’s runtime environment, continuously monitoring the behavior and
data flow to identify potential vulnerabilities in real time.

3. Integration with Development Environments: Contrast Assess is designed to seamlessly in-
tegrate with existing CI/CD pipelines, including Jenkins [21]. It also offers integration with
IDEs such as Visual Studio [28] and IntelliJ IDEA [36].

4. Detection Techniques and Methodologies: The tool offers more than just code analysis; it
brings insights from the runtime environment as well. One notable feature is path mapping,
which intelligently maps out all the routes within an application, helping to identify vulnerabil-
ities that might be exploited through specific paths.

5. Detected Web Vulnerabilities (OWASP Top 10): Contrast Assess is designed to discover
vulnerabilities classified under the OWASP Top 10. The tool provides coverage as indicated in
Table 1.

6. Real-time Analysis and Feedback: Contrast Assess offers instant feedback to developers,
along with suggestions for fixing identified security issues. It also provides educational re-
sources to help developers better understand and address the vulnerabilities highlighted.

7. Reporting and Dashboard Features: Contrast Assess offers detailed reporting, including an
assessment of vulnerability severity, accessible via a centralized dashboard. This dashboard
presents a comprehensive view of the application’s security status, facilitating easy monitoring
and management.

18 Chapter 4 IAST TECHNIQUE ANALYSIS

8. Pricing and Licensing: Pricing details are available upon request from the Contrast team.
Based on information from various websites, it appears that the pricing is user-based; for in-
stance, a package for 10 developers is priced at around 28,000 dollars per year [37].

9. Community and Vendor Support: Contrast Assess maintains a community forum where users
can engage with other professionals on a variety of topics related to application security. The
vendor provides robust support, including monthly updates; the most recent update was released
approximately one month prior to the writing of this paper.

10. Supported Programming Languages and Platforms: Contrast Assess is compatible with
Windows, Linux, and Mac OS, and supports a wide array of technologies including Java,
JavaScript, .NET, .NET Core, Node.js, Ruby, Python, Scala, PHP, Kotlin, Vue.js, and Type-
Script [38].

Chapter 5 FUZZING TECHNIQUES REVIEW 19

5 Fuzzing Techniques Review

In this section, we start by examining the state of the art in fuzzing techniques, focusing particularly
on web fuzzing. We delve into the mechanics of a web fuzzer, especially in relation to the OWASP
Top Ten. To conclude, we assess two fuzzers, comparing them based on various criteria.

5.1 State of the Art of Fuzzing

Introduced by Prof. Barton Miller in 1989, fuzzing is a methodology where a program is run repeat-
edly with input data that is either artificially or semantically altered [39]. This technique is frequently
utilized to detect security-related bugs within programs. Fuzz testing involves the application of
fuzzing techniques to a program with the objective of examining whether it adheres to its correctness
policy [40].

A fuzzer is a specific program designed to conduct fuzz testing on other programs [40]. In the context
of software security, fuzzers serve as valuable tools for security specialists, enabling them to analyze
various facets of a program. These tools prove particularly effective in identifying potential issues
across a range of software types, encompassing compilers and interpreters, application software, net-
work protocols, and operating systems [41].

Research discusses the general fuzzing process [41], as shown in Figure 2. The target program is
the program under test. The monitor component, mainly used in white-box and grey-box fuzzing,
collects relevant runtime information about the program, and is not required for black-box fuzzers.

The test case generator has two main implementation methods: mutation-based and grammar-based.
In the mutation-based method, seed files serve as starting points; they are original inputs that are
modified to produce new test cases. This method generates test cases by altering these seed files either
randomly or using predefined strategies. Meanwhile, the grammar-based method employs predefined
rules based on the target’s specification. The bug detector is a module designed to collect and analyze
crashes or errors reported during fuzzing, and anything flagged by it is sent to the final component,
the bug filter. In this final step, bugs are sorted and filtered for the convenience of security specialists.

Depending on the amount of information required from the targeted program by the fuzzing technique,
we can categorize it into: black-box fuzzing, white-box fuzzing, and grey-box fuzzing [41][40][13].

Black-box fuzzing does not necessitate any information from the program under test. It generates
random input from scratch or by mutating a provided seed using predefined rules. However, due to
its “blind” approach, black-box fuzzing suffers from low test coverage.

To address the low coverage issue of black-box fuzzing, researchers developed white-box fuzzing.
This technique gathers knowledge about the internal logic of the target program. Despite enabling
the security specialist to evaluate nearly all execution paths, it also brings considerable overhead and
implementation difficulties compared to its counterpart.

Finally, grey-box fuzzing stands between the previously mentioned methods. The fuzzer has some
system knowledge in this case. By analyzing the target program at runtime and mutating the input
data accordingly, the fuzzer obtains improved code coverage. This approach enhances code coverage
compared with black-box fuzzing, while maintaining lower overhead compared to white-box fuzzing.

20 Chapter 5 FUZZING TECHNIQUES REVIEW

Figure 2: General process of fuzzing [41]

5.2 Web Fuzzing

Web fuzzing refers to the action of fuzzing a web application with the goal of finding bugs or security
flaws. The most important security concerns found in web applications are classified in OWASP
Top 10 [4]. Web fuzzing is achieved by sending a set of HTTP requests to the program under test
and analyzing its behavior when receiving various inputs [42]. In short, the tester has to configure
the input that will be generated and after the HTTP request has been sent they analyze whether any
vulnerabilities has been found, consequently creating a testing report [42].

Although some research indicate a lack of research of web fuzzing [13][43], especially compared
with other use cases of fuzzing, recent work indicate that web fuzzing is an effective way to detect
web vulnerabilities [44].

Input generation mechanism is an essential part of a web fuzzer. The generated input applies to a
part of the HTTP request sent to the application under test. The input generation can be achieved by
using fuzz vectors, number generator, brute force or similar string generator [42]. Furthermore, the
generated input can be further modified with string substitution, case modification and encoding [42].

Vulnerability detection poses a challange as fuzzers, by their nature, send a huge number of HTTP
requests to test the web application. In order to filter the responses, the web fuzzers provide features
that help the tester identify vulnerabilities: HTTP response error, timeout or specific content (of the
HTTP response) [42]. Based on the number of types of vulnerabilities that the fuzzer is capable of
testing, we can classify them as multi-test fuzzers and specific vulnerability fuzzing [45].

In Table 2, we highlight which OWASP Top 10 vulnerabilities [4] can be identified using fuzzing
techniques. Prior research has shown significant results in vulnerability identification through injec-
tion [43] [42] [45] [46]. Vulnerabilities are identified by sending malicious input to the application,

Chapter 5 FUZZING TECHNIQUES REVIEW 21

including but not limited to SQL injections, command injections, and cross-site scripting (XSS). A
recent paper demonstrated how fuzzing can be used to detect Security Misconfigurations [47]. It’s
worth noting that while the approach described in this study incorporates a web crawler component
to pinpoint input points, it primarily relies on fuzzing to generate random input that is subsequently
sent to those input points.

Software and Data Integrity Failures can be detected using fuzzing [48]. For example, fuzzing is
effective in identifying insecure deserialization issues. Web applications that do not rigorously verify
the integrity of serialized data are vulnerable to such threats. Furthermore, fuzzing techniques can
also be employed to detect Server-Side Request Forgery [49]. Sending various payloads to the server
may prompt the server to initiate unintended requests.

While the rest of the OWASP Top 10 vulnerabilities continue to pose significant concerns, this re-
search posits that it is improbable for fuzzing techniques to successfully identify these vulnerabilities.
Broken Access Control and Identification and Authentication Failures are threats that can be discerned
either through manual testing or with software specifically tailored for this purpose. Cryptographic
Failures necessitate a profound grasp of cryptographic implementations and are not straightforwardly
identifiable using fuzzing.

Insecure Design stands out as a high-level vulnerability. To leverage it, an in-depth review of the
system’s architectural design is requisite. The challenges associated with Vulnerable and Outdated
Components are best addressed using dependency scanning tools. Hence, there exists no reason to
resort to fuzzing in this context. Finally, Security Logging and Monitoring Failures concern the lack
of a proper logging/monitoring system, which is not related to fuzzing.

Table 2: OWASP Top Ten Vulnerabilities and Fuzzing Identifiability

OWASP Vulnerability Identifiable by Fuzzing
A01:2021-Broken Access Control ×
A02:2021-Cryptographic Failures ×
A03:2021-Injection ✓

A04:2021-Insecure Design ×
A05:2021-Security Misconfiguration ✓

A06:2021-Vulnerable and Outdated Components ×
A07:2021-Identification and Authentication Failures ×
A08:2021-Software and Data Integrity Failures ✓

A09:2021-Security Logging and Monitoring Failures ×
A10:2021-Server-Side Request Forgery ✓

One of the primary metrics for evaluating fuzzing techniques is accuracy. This pertains specifically to
the precision of fuzzers, tools designed to implement these techniques. In certain scenarios, a fuzzer
can be directly tested in its original form. However, in the context of web application vulnerability
detection, fuzzers typically serve as integral components of a web application vulnerability scanner.
This integration makes it difficult to accurately evaluate the accuracy of fuzzing against vulnerabilities
as classified by OWASP. Such assessments are complicated by variables like the effectiveness of the
crawling mechanism and the precise implementation of the fuzzing strategy.

22 Chapter 5 FUZZING TECHNIQUES REVIEW

We were unable to locate prior research that clearly indicates the general accuracy of fuzzing in
relation to identifying vulnerabilities as per OWASP standards. Given the volume of academic papers
on fuzzing web applications focused on injection vulnerabilities, it suggests a heightened interest in
exploiting this type of vulnerability compared to others. Nevertheless, such a generalization remains
a limitation for this paper.

5.3 Fuzzing Tools Comparison
5.3.1 Wfuzz

Wfuzz is an open-source tool designed for assessing the security of web applications [14] [50]. It
aids penetration testers by fuzzing web application parameters, enabling them to identify potential
vulnerabilities. While Wfuzz can be used as a standalone tool, it is often integrated within larger
systems, like web application vulnerability scanners, to automate the process [51]. Below, we delve
deeper into the specifications of this fuzzer:

1. Type of Testing: Wfuzz functions as a black-box testing tool, meaning it doesn’t necessitate
prior knowledge of the application’s internals. Instead, it focuses on understanding the applica-
tion’s behavior by sending a variety of inputs and evaluating the subsequent responses.

2. Nature of the Fuzzer: Wfuzz is a multi-test fuzzer, purposefully crafted to uncover a range of
vulnerabilities in web applications.

3. Fuzzing Techniques: The primary technique employed by Wfuzz is mutation-based fuzzing.
It leverages predefined payloads that are modified to generate individual test cases.

4. Detected Web Vulnerabilities: While the exact detection capabilities hinge on various factors
like configurations and the payloads used, Wfuzz can potentially identify vulnerabilities such
as Injection Flaws, Authentication and Session Management issues, Directory Traversal, and
other Misconfigurations [52] [53].

5. Features: Wfuzz has several notable features, including Subdomain Fuzzing, Directory Fuzzing,
Cookie Fuzzing, Header Fuzzing, and HTTP OPTIONS fuzzing [53].

6. Pricing: As of the release of this paper, Wfuzz remains an open-source tool and is freely
accessible to users.

7. Customizability: Wfuzz offers high levels of customizability. Users have the option to define
or select from a vast array of payloads, utilize different encoders, and even combine payloads
using iterators [54].

8. Community and Vendor Support: Despite Wfuzz’s repository being dormant for the past
three years, it retains its significance and is still a part of the default package set in Kali Linux
[55].

9. Supported Platforms: Wfuzz, being written in Python, is platform-agnostic. This ensures its
compatibility across all platforms that support Python, such as Windows, macOS, and Linux.

5.3.2 SQLMap

SQLMap is an open-source penetration testing tool designed to automate the detection and exploita-
tion of SQL Injection flaws [56] [15]. Though it is more sophisticated than a fuzzer, one could argue

Chapter 5 FUZZING TECHNIQUES REVIEW 23

that its approach to assessing vulnerabilities incorporates fuzzing techniques. Below, we delve deeper
into the specifications of this tool within the context of web applications:

1. Type of Testing: SQLMap primarily operates as a black-box testing tool. It doesn’t require
knowledge about the internal structure or workings of the web application. Instead, it discerns
vulnerabilities based on the responses from the application.

2. Nature of the Fuzzer: SQLMap is a specific fuzzer, tailored to detect SQL injection vulnera-
bilities.

3. Fuzzing Techniques: Although SQLMap employs a mix of techniques, it predominantly lever-
ages mutation-based fuzzing.

4. Detected Web Vulnerabilities: SQLMap is designed to pinpoint a specific type of vulnerability
classified by OWASP. It’s primarily used to detect injection vulnerabilities, especially SQL
injections.

5. Features: SQLMap is multifaceted and boasts numerous features. Here are some of the most
prominent ones relevant to web applications [57]:

(a) Automatic detection of SQL injections.

(b) Support for most prevalent databases.

(c) Compatibility with various SQL injection techniques, including: boolean-based blind,
time-based blind, error-based, UNION query, and stacked queries.

6. Pricing: As of the publication of this paper, SQLMap continues to be an open-source tool and
is freely available for users.

7. Customizability: Having an open-source framework, SQLMap is highly customizable. Addi-
tionally, the tool offers an extensive set of command-line options to fine-tune testing.

8. Community and Vendor Support: The community steering its development is active. The
most recent update, at the time of writing, is less than a week old. The tool is included by
default in Kali Linux [58].

9. Supported Platforms: Since SQLMap is developed in Python, it’s cross-platform and can run
on any system supporting Python, such as Windows, macOS, and Linux.

24 Chapter 6 IAST AND FUZZING COMPARISON AND FUTURE DIRECTIONS

6 IAST and Fuzzing Comparison and Future Directions
In this paper, we have explored two prominent methodologies within the continuously evolving realm
of application security: Interactive Application Security Testing (IAST) and fuzzing. These method-
ologies have been examined with a specific focus on detecting vulnerabilities in web applications.
While previous sections delved into each method individually, this section juxtaposes them. We aim
to highlight their strengths and weaknesses, elucidate the potential synergies between them, and con-
template prospective future directions.

6.1 Strengths

Table 3: Strengths of IAST vs. Web Fuzzing

Methodology Strengths

IAST
• Real-time vulnerability detection.
• Precise location identification of vulnerabilities in source code.
• Intelligent combination of SAST and DAST.
• Low false-positive rates.
• Provides contextual information about vulnerabilities.
• Operates across multiple languages and frameworks.
• Reduced false negatives due to runtime operation.

Web Fuzzing
• Exceptional at identifying edge-case vulnerabilities.
• Automated, continuous testing.
• Operates independently of the application’s internal structure.
• Detects runtime issues like memory leaks and crashes.
• Easy to replicate attack as the HTTP request is provided.
• Versatile across various software types.
• Discovers previously unknown vulnerabilities.
• Can be integrated in a diverse range of tools.
• Plenty of open-source tools.

Chapter 6 IAST AND FUZZING COMPARISON AND FUTURE DIRECTIONS 25

6.2 Weaknesses

Table 4: Weaknesses of IAST vs. Web Fuzzing

Methodology Weaknesses

IAST
• Can be resource-intensive.
• Requires integration into the application.
• Introduces operational overhead.
• Limited to tested execution paths.
• Expensive products, no open-source alternatives.

Web Fuzzing
• Rather high rate of false positives.
• Often lacks precision in vulnerability location (in the source code).
• Demands substantial computational resources.
• Can be time-consuming.
• Might not fully understand application logic (especially black-box fuzzing).

6.3 Synergies
The prevailing environment of web application security testing demands flexible, thorough, and accu-
rate testing methods. Integrating both Fuzzing and IAST into the CI/CD pipeline is possible without
any inherent clashes, and it is set to offer an enhanced comprehensive vulnerability coverage. Fuzzing
acts as the initial line of defense due to its wide testing range, which can simulate different inputs and
has the capability to reveal edge-case vulnerabilities and potential runtime errors. In contrast, IAST,
with a deeper insight into the application’s internals, excels in identifying vulnerabilities that emerge
during particular execution paths, thereby complementing the broad approach of fuzzing with notable
precision.

While pinpointing the exact location of vulnerabilities detected by fuzzing in the source code can be
challenging, the integration of an IAST tool can assist developers in more efficiently locating these
vulnerabilities. This collaborative security approach can be characterized as dynamic and adaptive
testing. As fuzzing consistently exposes the web application to numerous inputs, IAST meticulously
monitors the application’s responses in such scenarios, generating detailed reports that enable devel-
opers to enhance the application’s security continuously. This robust combination not only ensures
that the web application remains resilient amidst unexpected conditions but also guards it against
unpredictable threats and inputs.

6.4 Future Directions
1. Machine Learning: The advancements in artificial intelligence, particularly machine learning,

could greatly improve security methods. Using AI’s ability to quickly process large datasets,
we might get better at automatically finding vulnerabilities in source code. Also, a well-tuned
AI model could reduce the number of false alerts.

26 Chapter 6 IAST AND FUZZING COMPARISON AND FUTURE DIRECTIONS

2. Cloud and Serverless Architecture: More companies are moving to cloud solutions and using
serverless architectures for their web applications. Serverless means the code runs in response
to events, and this approach has its own set of security challenges, especially around safely
moving data in the cloud. It would be useful to see tools like IAST that are specially made for
these cloud setups.

3. Open-Source Availability: While fuzzing has many open-source projects, IAST tools don’t
have any. The benefits of open-source tools, such as improvements from the community, being
transparent, being easy to customize, and being cost-effective, highlight their value in overall
security.

Chapter 7 CONCLUSION 27

7 Conclusion
The domain of web applications is both intricate and continuously growing. The vast number of web
applications requiring security testing surpasses what can be handled manually, prompting current
research to enhance automatic vulnerability detection techniques. It’s crucial for a web application to
be tested not only at the end of its development but also throughout its production phase. Introducing
security testing during production is cost-effective and yields superior outcomes compared to when
security is merely an afterthought. In this paper, we explored two methodologies for detecting web
vulnerabilities: interactive application security testing (IAST) and web fuzzing.

Our examination of IAST underscores its prowess in real-time vulnerability detection and its accuracy
in vulnerability identification. Merging the strengths of SAST and DAST, IAST provides a holistic
view, bridging the divide between static code analysis and dynamic runtime analysis. Its capability to
swiftly detect vulnerabilities and precisely locate them within the source code positions it as a foun-
dational methodology for crafting top-tier security tools, essential for web application development.
Regrettably, there are no open-source IAST tools currently, and the commercial options are priced
such that they are mainly accessible to larger corporations.

Conversely, fuzzing, with its automated, wide-ranging testing, excels in revealing edge-case vulner-
abilities that might elude other techniques. Its operation, requiring minimal (or no) insight into the
application’s internals, ensures an impartial testing scenario. While there’s a wealth of open-source
fuzzers, few are tailored specifically for web fuzzing, yet the entry threshold remains relatively low.
Though our paper emphasizes fuzzing as a technique rather than a tool, it’s worth noting that a stan-
dalone web fuzzer, while potent, isn’t wholly sufficient for tool creation. Fuzzers commonly serve in
the attack phase of web application vulnerability scanners; preceding fuzzing, a web crawler identifies
entry points, and post-fuzzing, a component reports the findings.

Comparing these techniques sheds light on their distinct strengths, shortcomings, and collaborative
potential, especially concerning the identification of web vulnerabilities as categorized in the OWASP
Top 10. While this paper provides an overview of these methods in the web application context, a
key takeaway from our research is the promising potential of integrating web fuzzing with IAST for
vulnerability detection. The IAST technique excels in monitoring web application internals during
runtime; employing a fuzzer allows for a diverse range of inputs that might otherwise be overlooked.
By dispatching strategically formulated requests, we can uncover specific scenarios less likely to be
detected otherwise. Given the web fuzzer’s capability to encompass a vast input spectrum, the IAST
tool can observe these requests within the application, identifying not just the problematic requests
but also pinpointing the associated issues in the source code.

Looking ahead, the incorporation of AI-driven algorithms, the ascent of cloud and serverless architec-
tures, and the growing emphasis on open-source tools present fresh prospects for application security.
It’s evident that both IAST and web fuzzing methodologies will adapt and respond to emergent secu-
rity challenges, capitalizing on technological advancements.

28 Chapter 8 LIMITATIONS AND FUTURE WORK

8 Limitations and Future Work
The research primarily concentrates on IAST and fuzzing, specifically in relation to vulnerabilities
enumerated in the OWASP Top 10. As a result, other application security testing methodologies and
less prominent web vulnerabilities, which might gain significance in the future, are not emphasized.
Although we examined multiple tools associated with both IAST and fuzzing, it was inevitable that
some tools would be excluded from our analysis. In terms of IAST, we couldn’t identify any open-
source tools. Consequently, most of the information regarding these tools was sourced from the
software providers, raising concerns about potential bias. When evaluating web fuzzing, gauging its
efficiency in detecting vulnerabilities becomes challenging. This is because fuzzing is often embedded
within a broader tool, making it tricky to isolate and assess the performance of the fuzzing component
alone.

For future endeavors, there is an opportunity to explore other application security testing approaches,
aiming to provide a holistic understanding of the domain. The creation of an open-source IAST tool,
especially for research, is a pressing requirement. Subsequent research might consider evaluating a
broader range of tools based on the criteria outlined in this paper. A valuable enhancement would
involve rigorously testing the efficacy of web fuzzing components across various tools. This can be
achieved by supplying fuzzers with a predefined list of entry points, thereby excluding the impact
of web crawlers, and juxtaposing the outcomes with established benchmarks. Lastly, it would be
intriguing to validate our hypothesis that a synergistic approach, integrating fuzzing with interactive
security testing, could lead to heightened security measures.

BIBLIOGRAPHY 29

Bibliography
[1] M. Jazayeri, “Some trends in web application development,” in Future of Software Engineering

(FOSE ’07), 2007, pp. 199–213.

[2] A. Sarkar, “Overview of web development life cycle in software engineering,” International
Journal of Scientific Research in Computer Science, Engineering and Information Technology,
vol. 3, no. 6, pp. 2456–3307, 2018.

[3] N. James, “AWS Penetration Testing report: Everything you should know!” 5 2023. [Online].
Available: https://www.getastra.com/blog/security-audit/cyber-security-statistics/

[4] “OWASP Top Ten — OWASP Foundation.” [Online]. Available: https://owasp.org/
www-project-top-ten/

[5] B. Zhang, J. Li, J. Ren, and G. Huang, “Efficiency and effectiveness of web application
vulnerability detection approaches: A review,” ACM Comput. Surv., vol. 54, no. 9, oct 2021.
[Online]. Available: https://doi-org.proxy-ub.rug.nl/10.1145/3474553

[6] M. Aljabri, M. Aldossary, N. Al-Homeed, B. Alhetelah, M. Althubiany, O. Alotaibi, and S. Al-
saqer, “Testing and exploiting tools to improve owasp top ten security vulnerabilities detection,”
in 2022 14th International Conference on Computational Intelligence and Communication Net-
works (CICN), 2022, pp. 797–803.

[7] O. B. Fredj, O. Cheikhrouhou, M. Krichen, H. Hamam, and A. Derhab, “An owasp top ten driven
survey on web application protection methods,” in Risks and Security of Internet and Systems,
J. Garcia-Alfaro, J. Leneutre, N. Cuppens, and R. Yaich, Eds. Cham: Springer International
Publishing, 2021, pp. 235–252.

[8] M. Ehmer and F. Khan, “A comparative study of white box, black box and grey box testing
techniques,” International Journal of Advanced Computer Science and Applications, vol. 3, 06
2012.

[9] L. Dencheva, “Comparative analysis of static application security testing (sast) and dynamic ap-
plication security testing (dast) by using open-source web application penetration testing tools,”
Ph.D. dissertation, Dublin, National College of Ireland, 2022.

[10] B. Mburano and W. Si, “Evaluation of web vulnerability scanners based on owasp benchmark,”
in 2018 26th International Conference on Systems Engineering (ICSEng), 2018, pp. 1–6.

[11] “Seeker IAST Tool and Services — Synopsys.” [Online]. Available: https://www.synopsys.
com/software-integrity/security-testing/interactive-application-security-testing.html

[12] “Contrast Assess — IAST Security Testing — Contrast Security.” [Online]. Available:
https://www.contrastsecurity.com/contrast-assess

[13] R. van Beckhoven, “Finding significant vulnerabilities in complex web applications using
fuzzing,” Jun 2022.

[14] Xmendez, “GitHub - xmendez/wfuzz: Web application fuzzer.” [Online]. Available:
https://github.com/xmendez/wfuzz

[15] “sqlmap: automatic SQL injection and database takeover tool.” [Online]. Available:
https://sqlmap.org/

https://www.getastra.com/blog/security-audit/cyber-security-statistics/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi-org.proxy-ub.rug.nl/10.1145/3474553
https://www.synopsys.com/software-integrity/security-testing/interactive-application-security-testing.html
https://www.synopsys.com/software-integrity/security-testing/interactive-application-security-testing.html
https://www.contrastsecurity.com/contrast-assess
https://github.com/xmendez/wfuzz
https://sqlmap.org/

30 BIBLIOGRAPHY

[16] Y. Pan, “Interactive application security testing,” in 2019 International Conference on Smart
Grid and Electrical Automation (ICSGEA), 2019, pp. 558–561.

[17] J. Im, J. Yoon, and M. Jin, “Interaction platform for improving detection capability of dynamic
application security testing.” in SECRYPT, 2017, pp. 474–479.

[18] H. Setiawan, L. E. Erlangga, and I. Baskoro, “Vulnerability analysis using the interactive ap-
plication security testing (iast) approach for government x website applications,” in 2020 3rd
International Conference on Information and Communications Technology (ICOIACT), 2020,
pp. 471–475.

[19] A. Seth, Comparing Effectiveness and Efficiency of Interactive Application Security Testing
(IAST) and Runtime Application Self-Protection (RASP) Tools. North Carolina State University,
2022.

[20] F. Mateo Tudela, J.-R. Bermejo Higuera, J. Bermejo Higuera, J.-A. Sicilia Montalvo, and
M. I. Argyros, “On combining static, dynamic and interactive analysis security testing tools to
improve owasp top ten security vulnerability detection in web applications,” Applied Sciences,
vol. 10, no. 24, p. 9119, Dec 2020. [Online]. Available: http://dx.doi.org/10.3390/app10249119

[21] “Jenkins.” [Online]. Available: https://www.jenkins.io/

[22] “The ZAP homepage.” [Online]. Available: https://www.zaproxy.org/

[23] Sonar, “Code Quality Tool and Secure Analysis with SonarQube.” [Online]. Available:
https://www.sonarsource.com/products/sonarqube/

[24] “OWASP Benchmark — OWASP Foundation.” [Online]. Available: https://owasp.org/
www-project-benchmark/

[25] Sparrow, “[Product] Sparrow SAST - Sparrow,” 7 2023. [Online]. Available: https:
//sparrowfasoo.com/en/product/sast/

[26] A. M.-A. S. Solver, “Z3str4.” [Online]. Available: https://z3str4.github.io/

[27] “The DevSecOps platform.” [Online]. Available: https://about.gitlab.com/

[28] “Visual Studio Code - Code editing. Redefined,” 11 2021. [Online]. Available: https:
//code.visualstudio.com/

[29] C. Guindon, “Eclipse Desktop Amp; Web IDEs — The Eclipse Foundation.” [Online].
Available: https://www.eclipse.org/ide/

[30] “Cloud computing services - Amazon Web Services (AWS).” [Online]. Available: https:
//aws.amazon.com/

[31] “Cloud Computing Services — Microsoft Azure.” [Online]. Available: https://azure.microsoft.
com/en-us

[32] W. contributors, “Google Cloud Platform,” Wikipedia, 9 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Google Cloud Platform

[33] “Compare Seeker vs Synopsys API Security Testing.” [Online]. Available: https:
//www.peerspot.com/products/comparisons/seeker-35912 vs synopsys-api-security-testing

http://dx.doi.org/10.3390/app10249119
https://www.jenkins.io/
https://www.zaproxy.org/
https://www.sonarsource.com/products/sonarqube/
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://sparrowfasoo.com/en/product/sast/
https://sparrowfasoo.com/en/product/sast/
https://z3str4.github.io/
https://about.gitlab.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.eclipse.org/ide/
https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us
https://en.wikipedia.org/wiki/Google_Cloud_Platform
https://www.peerspot.com/products/comparisons/seeker-35912_vs_synopsys-api-security-testing
https://www.peerspot.com/products/comparisons/seeker-35912_vs_synopsys-api-security-testing

BIBLIOGRAPHY 31

[34] “Synopsys Software Integrity Customer community.” [Online]. Available: https://community.
synopsys.com/s/seeker-status

[35] “Compare Seeker vs Synopsys API Security Testing.” [Online]. Available: https:
//www.peerspot.com/products/comparisons/seeker-35912 vs synopsys-api-security-testing

[36] “IntelliJ IDEA – the leading Java and Kotlin IDE,” 6 2021. [Online]. Available:
https://www.jetbrains.com/idea/

[37] “AWS Marketplace: Contrast Security- The Secure Code Platform.” [Online]. Available:
https://aws.amazon.com/marketplace/pp/prodview-g5df2jw32felw

[38] “Contrast supported technologies.” [Online]. Available: https://www.contrastsecurity.com/
security-agent

[39] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of unix
utilities,” Commun. ACM, vol. 33, no. 12, p. 32–44, dec 1990. [Online]. Available:
https://doi-org.proxy-ub.rug.nl/10.1145/96267.96279

[40] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo, “The art,
science, and engineering of fuzzing: A survey,” IEEE Transactions on Software Engineering,
vol. 47, no. 11, pp. 2312–2331, 2021.

[41] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the art,” IEEE Transactions
on Reliability, vol. 67, no. 3, pp. 1199–1218, 2018.

[42] I. Andrianto, M. M. I. Liem, and Y. D. W. Asnar, “Web application fuzz testing,” in 2017 Inter-
national Conference on Data and Software Engineering (ICoDSE), 2017, pp. 1–6.

[43] O. van Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and E. Athanasopoulos,
“webfuzz: Grey-box fuzzing for web applications,” in Computer Security – ESORICS 2021,
E. Bertino, H. Shulman, and M. Waidner, Eds. Cham: Springer International Publishing, 2021,
pp. 152–172.

[44] X. Zhou and B. Wu, “Web application vulnerability fuzzing based on improved genetic al-
gorithm,” in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), vol. 1, 2020, pp. 977–981.

[45] D. Zhao, “Fuzzing technique in web applications and beyond,” Journal of Physics:
Conference Series, vol. 1678, no. 1, p. 012109, nov 2020. [Online]. Available:
https://dx.doi.org/10.1088/1742-6596/1678/1/012109

[46] A. Alsaedi, A. Alhuzali, and O. Bamasag, “Effective and scalable black-box fuzzing
approach for modern web applications,” Journal of King Saud University - Computer and
Information Sciences, vol. 34, no. 10, Part B, pp. 10 068–10 078, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319157822003573

[47] S. Kumi, C. Lim, S.-G. Lee, Y. O. Oktian, and E. N. Witanto, “Automatic detection of security
misconfigurations in web applications,” in Proceedings of International Conference on Smart
Computing and Cyber Security, P. K. Pattnaik, M. Sain, A. A. Al-Absi, and P. Kumar, Eds.
Singapore: Springer Singapore, 2021, pp. 91–99.

https://community.synopsys.com/s/seeker-status
https://community.synopsys.com/s/seeker-status
https://www.peerspot.com/products/comparisons/seeker-35912_vs_synopsys-api-security-testing
https://www.peerspot.com/products/comparisons/seeker-35912_vs_synopsys-api-security-testing
https://www.jetbrains.com/idea/
https://aws.amazon.com/marketplace/pp/prodview-g5df2jw32felw
https://www.contrastsecurity.com/security-agent
https://www.contrastsecurity.com/security-agent
https://doi-org.proxy-ub.rug.nl/10.1145/96267.96279
https://dx.doi.org/10.1088/1742-6596/1678/1/012109
https://www.sciencedirect.com/science/article/pii/S1319157822003573

32 BIBLIOGRAPHY

[48] S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu, T. Su, L. Bo, B. Li, C. Ma, J. Li, and
T. Wei, “Oddfuzz: Discovering java deserialization vulnerabilities via structure-aware directed
greybox fuzzing,” 2023.

[49] “Testing for server-side request forgery.” [Online]. Avail-
able: https://owasp.org/www-project-web-security-testing-guide/v42/4-Web Application
Security Testing/07-Input Validation Testing/19-Testing for Server-Side Request Forgery

[50] “Wfuzz: The Web fuzzer — Wfuzz 2.1.4 documentation.” [Online]. Available: https:
//wfuzz.readthedocs.io/en/latest/

[51] Cuncis, “Fuzzing Made Easy: How to Use wfuzz for Efficient Web Ap-
plication Testing?” 4 2023. [Online]. Available: https://medium.com/@cuncis/
fuzzing-made-easy-how-to-use-wfuzz-for-efficient-web-application-testing-d843e5b089bf

[52] “WFUZZ-WEB FUZZER — briskinfosec.” [Online]. Available: https://www.briskinfosec.com/
tooloftheday/toolofthedaydetail/WFUZZ-WEB-FUZZER

[53] Moulik, “WFuzz Full Tutorial — Updated 2023,” TECHYRICK, 5 2023. [Online]. Available:
https://techyrick.com/wfuzz-full-tutorial/

[54] “Edge-security group - Wfuzz.” [Online]. Available: http://www.edge-security.com/wfuzz.php

[55] “wfuzz — Kali Linux Tools.” [Online]. Available: https://www.kali.org/tools/wfuzz/

[56] Sqlmapproject, “GitHub - sqlmapproject/sqlmap: Automatic SQL injection and database
takeover tool.” [Online]. Available: https://github.com/sqlmapproject/sqlmap

[57] ——, “Features.” [Online]. Available: https://github.com/sqlmapproject/sqlmap/wiki/Features

[58] “sqlmap — Kali Linux Tools.” [Online]. Available: https://www.kali.org/tools/sqlmap/

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/19-Testing_for_Server-Side_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/19-Testing_for_Server-Side_Request_Forgery
https://wfuzz.readthedocs.io/en/latest/
https://wfuzz.readthedocs.io/en/latest/
https://medium.com/@cuncis/fuzzing-made-easy-how-to-use-wfuzz-for-efficient-web-application-testing-d843e5b089bf
https://medium.com/@cuncis/fuzzing-made-easy-how-to-use-wfuzz-for-efficient-web-application-testing-d843e5b089bf
https://www.briskinfosec.com/tooloftheday/toolofthedaydetail/WFUZZ-WEB-FUZZER
https://www.briskinfosec.com/tooloftheday/toolofthedaydetail/WFUZZ-WEB-FUZZER
https://techyrick.com/wfuzz-full-tutorial/
http://www.edge-security.com/wfuzz.php
https://www.kali.org/tools/wfuzz/
https://github.com/sqlmapproject/sqlmap
https://github.com/sqlmapproject/sqlmap/wiki/Features
https://www.kali.org/tools/sqlmap/

	Abstract
	Introduction
	Literature Review
	OWASP vulnerability classification
	White Box, Black Box and Grey Box
	Static and Dynamic Application Security Testing
	Vulnerability Detection Efficiency Metrics

	Methodology
	Methodology for IAST
	Methodology for Fuzzing

	IAST Technique Analysis
	State of the Art of IAST
	Case Studies on IAST
	IAST Tools Comparison
	Seeker
	Contrast Assess

	Fuzzing Techniques Review
	State of the Art of Fuzzing
	Web Fuzzing
	Fuzzing Tools Comparison
	Wfuzz
	SQLMap

	IAST and Fuzzing Comparison and Future Directions
	Strengths
	Weaknesses
	Synergies
	Future Directions

	Conclusion
	Limitations and Future Work
	Bibliography

