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Abstract

This thesis examines in-situ simulation timestep selection and reconstruction, through
the use of a predictive autoencoder system. This autoencoder is used to detect various
anomalies within a simulated 2D Kármán Vortex Street ensemble in order to select timesteps
of interest, as well as to reconstruct timestep data from a given sub-sampling based on the
selected timesteps. This autoencoder setup is trained to predict subsequent timesteps in a
series. The detection capacity of this autoencoder is tested against a non-predictive autoen-
coder system. This is done using a number of datasets which are copied from the original
ensemble and subsequently modified to contain artificial anomalies of various types. Then
the detection and reconstruction ability of both systems are compared against each other.
The thesis finds that both autoencoder setups are similar in their detection capacity, but
the predictive model performs slightly better in data reconstruction. The detection system
is found to be only somewhat effective otherwise, and various possible reasons therefore as
well as some potential solutions and alternatives are discussed.
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1 Introduction

As computational technology and available software has improved over the decades, the scientific
community has taken the crucial step of making good use of the resources available to it. This has
led to the development of increasingly intricate, complex and extensive large-scale models and
simulations for the purposes of study and research. In-depth engineering simulations, expansive
climatology simulations and cosmological simulations on a grand scale, among others are all
prevalent examples. One of the common features of these simulated models is simply the large
amounts of data that is generated as timesteps for the end-user. When dealing with the vast
quantities of data that is created as the simulation output, the transfer of massive quantities of
timestep data to external storage media can be a significant bottleneck for larger simulations, as
the supercomputers and high-performance computing clusters these simulations are run on are
not designed to handle this volume of data.

This is not a new problem in the realm of modelling and simulation, and numerous methods are
already in general use to mitigate the issue[5]. Depending on the requirements of the research,
these methods can vary. If only a hollistic view of the data is needed, an abstraction or subset
of the output may be sufficient. But, often the phenomena being studied are specific events
occurring within a larger and more complex pattern of resultant data. This means that specific
timesteps within the output of a simulation are often much more desirable than large portions
of the rest of the data. The objective is to design an algorithm that selects and saves these
timesteps as appropriate, while discarding the unselected remainder. This selection of timesteps
during the actual processing of a simulation is often referred to as ”In-Situ Timestep Selection”.
An overview of some of the various timestep selection approaches is described by Bruder et al[5].
A more in-depth look is provided in the following Related Works section.

Some more recent works have begun looking into using Neural Networks to assist in the timestep
selection process[14], though the system reviewed in the related works section is specifically
selecting timesteps with the goal of Spatiotemporal Volume Visualization. Given the specializa-
tion of many of these systems, it is of interest to determine if a more generic detection system
is possible. Generic anomaly detection is a common use for Autoencoders[9][4], which can be
trained to reconstruct data based on a training dataset. This allows the reconstructions to be
compared to the original in order to detect discrepancies. Therefore, the goal of this thesis
project is to investigate the effectiveness of an autoencoder for in-situ timestep selection and
data reconstruction.

This thesis describes a simple autoencoder used as a test case to determine the validity of
such a system for timestep selection. This includes the results of a number of experiments
run to determine the capacity of this system when it comes to the detection of anomalies and
reconstruction of timesteps. The intention of the system presented here is to be trained on
a baseline of ”non-anomalous” or expected outputs, allowing it to detect instances that do not
conform to the trained values. The exact specifications of what is to be considered anomalous (eg.
what kind of data is of interest) up to the end user, as they will need to provide a baseline set of
”non-anomalous” training data for the autoencoder to train on. For the purposes of determining
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anomaly detection, this thesis covers three basic types of artificial anomalous data as described
in the following section, as well as an adjusted training set that isolates a more turbulent subset
of the flow data to use as anomalous data instead of the artificially created sets.

Chapter 2 will provide an overview of a number of related works, providing a brief synopsis
and describing their relation to this thesis. Chapter 3 will go into detail on the methodology
used, describing the systems and processes this thesis implements. This includes the structure
of the autoencoders, how they were separately trained, and the anomaly detection system for
which they are used. Chapter 4 will go over the parameters of the experiment and how they
were selected, as well as describe the specifications of the system on which the program was run.
It will discuss the data used in the experiments, and how the ensembles were augmented with
artificially anomalous datasets. Following this, chapter 5 will briefly present the training and
validation losses of the predictive and regular training processes, the baseline system output in a
non-anomalous scenario, and the standard output of the system. It will then present the system
output for the anomalous datasets, the detection accuracy and the results of the reconstruction
experiments. Chapter 6 provides an in-depth analysis of the results presented in chapter 5, as
well as the conclusions that can be drawn from them. Finally, Chapter 7 will summarize the
conclusions and present prospective work and experiments that could follow.
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2 Related Works

This thesis is based on similar works in the field of timestep selection, visualization, and anomaly
detection. A number of the papers referenced for this thesis are described in this section.

2.1 Timestep Selection

As described above, the core of this thesis is simulation timestep selection. In order to properly
review the various problems and solutions already existing in this field, the following papers were
referenced. These papers cover the numerous techniques and methods used by different authors
for various types of simulations circumstances. Xin Tong, Teng-Yok Lee and Han-Wei Shen[15]
describe a timestep selection algorithm for which the goal is to select a subset K of the total
collection of timesteps N which maximizes the information contained by the original data. To do
this, they use a method known as ”Dynamic Time Warping” to determine the similarity between
two given timesteps in separate series. They propose that this method could be used to determine
the similarity of a specific timestep to as many of its neighbours as possible so that an optimal
subset of timesteps could be found to minimize data loss. S. Frey and T.Ertl[8] provide a solution
more specific for volume visualization with an algorithm that makes use of a method known as
the ”Wasserstein Metric”, or ”Earth-Movers Distance”. This metric essentially calculates the
minimum cost of turning one mass distribution into another, and is used by Frey and Ertl to
determine the flow of voxels over time within their data. They can then select their timesteps
using more standard distance-based metrics in order to get optimal coverage of the volume flow
data. Yoshiaki Yamaoka, Kengo Hayashi, Naohisa Sakamoto and Jorji Nonaka[18] propose a
system that adaptively adjusts the sampling rate of timesteps during simulation runtime. This
is done by calculating the variation between timesteps for a set of subvolumes. The intensity of
these timestep divergences can then be used to determine the best timestep sampling rate for
different regions of the data. Much of the work in this thesis is based on the timestep selection
work demonstrated by S. Frey, T. Ertl and Gleb Tkachev[14]. In their paper they demonstrate a
simple Neural Network setup being used to predict events within a temporal data stream based
on local data, eg. the N most recent timesteps. The accuracy of these predictions are used for a
number of things, including ensemble analysis and timestep selection.

2.2 Anomaly Detection

Based on the above papers, an approach to timestep selection based on anomaly detection
through autoencoders was selected. The following papers were referenced for various anomaly
detection methods using autoencoders. Similar to the paper by S. Frey, T. Ertl and Gleb
Tkachev[14], authors Battikh and Lenskiy[4] describe a system which also uses the compari-
son between the output of a neural network setup and the expected output to detect anomalies
in given data. In this case, they use an Autoencoder setup to reconstruct a given input for
comparison. Their variant includes a latent training phase for the Autoencoder that freezes the
Encoder and Decoder networks to train only the latent layer of the Autoencoder. The basics of
anomaly detection with autoencoders are also described by An and Cho[2], as they describe the
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method of using the reconstruction loss to determine the probability of input data being anoma-
lous. Tziolas et al.[16] also describe the use of an autoencoder for anomaly detection, albeit for
time-series data in a real-time manufacturing setting. Similar work done by Lyudchik[12] uses
deep autoencoders for outlier detection for computer vision datasets. This thesis incorporates
autoencoders in a similar manner in its anomaly-detection mechanism, reconstructing the input
data and using the loss to determine deviation from the norm.

2.3 Visualization Through Dimension Reduction

Autoencoders are often used as data visualization tools, in which they perform dimension re-
duction on given data. This is frequently done through the extraction or manipulation of the
feature vector, as can be seen in the paper by Battey, Coffing and Kern[3]. They describe using
a variational autoencoder architecture to better cluster datapoints through training the system
to make better distinctions between data points in latent space. Similarly, Wang and Gu [17]
use a deep variational autoencoder for dimension reduction and clustering purposes to visualize
single-cell RNA sequence data. While none of these techniques are explicitly used in this thesis,
their use of the feature vector was referenced and used as inspiration for the feature-vector based
detection described later.

2.4 Predictive Models

In order to be able to reconstruct missing data from a linear series of timesteps that describe a
changing simulation over time, predictive modelling is required to determine subsequent timesteps
as accurately as possible. Without any kind of predictive modelling, the system should not
be capable of adapting to the changing timesteps. The following recent papers have begun
exploring the use of autoencoders in prediction models or as prediction models themselves. Jin
et al.[10] describe the use of a long-and-short term memory based autoencoder architecture in
their prediction model for a variety of atmospheric conditions, including air quality, humidity and
temperature. Lu, Hsu and Huang[11] also demonstrate a hybrid prediction model incorporating
an autoencoder and a gated recurrent unit in order to predict the remaining useful lifespan of
factory equipment.
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3 Methodology

In order to solve the problem of anomaly detection for the purposes of timestep selection, as
well as the reconstruction of unselected timesteps, this thesis proposes the use of an autoencoder
system. The idea being that autoencoders are already used for anomaly detection[14][4][2][16][12],
and the method by which they achieve this is through encoding and subsequently reconstructing
a given image. While a standard autoencoder would function for anomaly detection, it should
not function nearly as well for data reconstruction, as it is a system that simply reconstructs a
given input. Because of this, it should not be able to recreate any changes that should happen
from one timestep to the next.

The structure used for the autoencoder was modified from a basic autoencoder setup. Figure 1
shows a diagram of the autoencoders’ structure, in this case, three 2D convolution layers with a
decreasing number of filters for each layer in the encoder (16, 8 and 4), and an increasing number
of filters for the decoder (4, 8 and 16). The kernel size for each 2D convolution layer is 3, and each
has a stride of 2. A Tanh activation function was used for each layer. This structure allows for
basic anomaly detection via reconstruction and the extraction of a feature vector before encoding
again without taking too long to train or run in-situ. A few other structures were tested during
development, primarily adjusting the number of layers and neurons, but this setup was found to
detect anomalous timesteps well enough without excessively extending training time.

Figure 1: Visual representation of the autoencoder structure.

This autoencoder structure was then used as the anomaly detection system that acted as the
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core of the timestep selector. Figure 2 shows the process of the anomaly detection algorithm, in
which the autoencoder first encodes a given timestep into a feature vector. The feature vector
is set aside and, if this is not the first timestep, compared to the previous feature that was set
aside using a mean average error (MAE) loss function. The feature vector is then de-coded, and
the reconstructed image is then compared to the actual subsequent timestep, once again using
an MAE loss function. If the reconstruction loss and feature vector loss are both above their
respective thresholds, that timestep is saved.

The reconstruction loss represents the deviation of the generated timestep from the actual
timestep, and therefore the actual timesteps’ deviation from the expected value. The threshold
value here determines the algorithms’ sensitivity to anomalies. The lower the threshold value,
the more likely the algorithm should be to save a timestep based on unexpected changes in the
data, and vice-versa. The feature vector loss allows for the detection of sudden major change
from one timestep to the next. The threshold value here should adjust the algorithms’ sensitivity
to change in the data, the lower the value the smaller the change between timesteps needed to
trigger this threshold. These threshold values should be adjusted during setup to best match the
sensitivity desired by the end user.

Figure 2: Visual representation of the anomaly detection process.
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In order to solve the reconstruction issue, the training for the autoencoder was altered. This was
primarily done through the training process, in this case through altering the training targets
of the autoencoder. While standard procedure would be to provide the autoencoder with the
initial input again as the training target for the autoencoder (as represented in figure 3b), in
this case the input for the subsequent timestep would be used as the target for each individual
input timestep (as represented in figure 3a). This should allow the autoencoder system to
learn to predict upcoming timesteps. Should the predictions then prove accurate enough, these
predictions should be able to be used as inputs for subsequent predictions in order to reconstruct
any unselected timesteps.

In order to provide a proper baseline for comparison, a second autoencoder was trained. This time
using the more standard method of using the inputs as reconstruction targets during training.
Outside of this difference, there were no structural changes between the two autoencoders. Figure
3 demonstrates the differences in the training of the two autoencoder variants, showing how the
predictive autoencoder was provided future timesteps as targets while the regular autoencoder
was given the same timestep for both the input and the target.

(a) Predictive (b) Regular

Figure 3: The difference in training targets between the regular and predictive autoencoders.

In both cases, the autoencoders were trained for 30 epochs, using a learning rate of 0.001. During
development, other learning rates were experimented with, but it was found that the standard
learning rate behaved the best. Some examples of the training loss over time at these learning
rates can be seen below in figure 4.
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(a) Learning rate of 0.01 (b) Learning rate of 0.001

(c) Learning rate of 0.0001

Figure 4: Training and Validation loss over time with various learning rates.

An ablation test was also performed, removing various layers from the model and measuring
the performance of each structure. The results of this test can be seen in table 1, where the
reconstruction loss of non-anomalous timesteps for different structures are shown. The table
shows which layer from the full model is either the only one present, or the only one missing, and
what the average reconstruction loss was for that structure. The layers are identified by their
filter size, eg. 4, 8 or 16. The average reconstruction losses should be compared to the baseline
average reconstruction loss of 0.0209 for the fully-intact system. The table shows that different
layers had various effects on performance, and that indeed all 3 layers were required for the best
results.

N = 4 N = 8 N = 16
Model has layer with filters of size N 0.0294 0.0269 0.0234
Model is missing layer with filters of size N 0.0250 0.0244 0.0213

Table 1: Ablation Test Results: Average reconstruction loss of a non-anomalous timestep vs. missing model
component

The final training and validation losses of both types of autoencoder were plotted and can be
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seen in figures 5 below. This was also done for the autoencoder trained only on laminar datasets,
the results of which can be seen in figure 6. Training times varied only slightly between the
regular and predictive autoencoders, and the 30 epochs of training took about 3300 seconds on
average to complete on the standard data ensemble.

(a) Predictive training and validation loss (b) Regular training and validation loss

Figure 5: Both regular and predictive autoencoders have similar training and validation losses.

Figure 6: Training and Validation Loss during training of predictive autoencoder trained only on laminar data.

The methods described above were implemented in python 3. The autoencoder model was
created using Keras via the Tensorflow library [6][1], and the dataset and ensemble setup and
splitting for testing and training was implemented using sklearn [13]. The anomaly detection
algorithm itself and rest of the framework code was written by hand[7].
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4 Experiment

The following experiments were run on the Rijksuniversiteit Groningen’s Hábrók supercomputer
machine learning clusters. Hábrók has a number of nodes for machine learning, each of which
has 64 cores, 512 GB of memory, and for Nvidia A100 Graphics cards with 40 GB of memory
each.

A number of experiments were run to determine the capability of the system. For the first set,
both variants of the autoencoder were trained on the ensemble described above, excluding the
artificial anomalous datasets. The ensemble was split into a 90/10 train/test split. Once trained
on the training data, a random selection datasets was pulled from the non-anomalous data pool,
and a smaller subset was pulled from the anomalous pool. Then, for each set of timesteps
in each chosen dataset, the autoencoder was run on each timestep in order to represent an
active simulation. This was repeated for each type of artificial anomalous data, and the training
setup was used for all variations of the experiment, with the only changes being the datasets
used.

All of the experiments run here have the threshold pre-set to values specific to the kinds of
artificial anomalies being detected. These thresholds can be seen in table 2 below, and were
chosen based on histograms compiled on test runs of the training data, an example of which can
be seen in figure 7. The feature vector loss and reconstruction loss of each timestep was then
plotted, as well as the specific timesteps and resultant autoencoder timestep reconstructions.
Additional information was also collected, including the presence of anomalies within the timestep
and whether or not the anomalies were detected. These were both also included in the plots
alongside the feature vector and reconstruction losses to provide context. The accuracy of the
system’s detection was also recorded, calculating the true positive and negative rates, and then
averaging these values over the course of all timesteps in a dataset, and over each dataset in an
ensemble.

Anomaly Type Reconstruction Loss Threshold Feature Vector Loss Threshold
Blank 0.1 0.2
Blob 0.03 0.03
Chunk 0.046 0.047
Turbulent 0.03 0.05

Table 2: Threshold Values for Reconstruction and Feature Vector Losses
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Figure 7: Histogram of Average Feature Vector Loss for non-anomalous (clean) timesteps vs. anomalous timesteps.

Finally, a brief additional set of experiments was run to determine the system’s ability to recon-
struct missing output data from a selection of saved timesteps. For this, the autoencoders were
trained on the full data ensemble, and the primary experiment was run for both types of au-
toencoders. This was done twice, without any anomalous data, artificial or otherwise. The first
experiment run included periodic saving of the simulation output every 10 timesteps, whereas
the second saved only the first. The system was then run again in both cases, but instead of
using the input dataset, each timestep was provided the output of the previous timestep as the
input. The only exception being in cases where the simulation output for that timestep was
saved, in which case the saved simulation output was used instead. For both experiments, the
average loss of each reconstructed timestep as compared to the expected simulation output across
all datasets was then collected, for both autoencoder types. In all cases, the first 10 simulation
timesteps were saved, so as to effectively skip them for the duration of the experiment. This is
due to the unpredictability of the first 10 or so timesteps for which the simulation output is still
stabilizing.

The data used was from a 2D Kármán Vortex Street ensemble, depicting the flow of fluid around
an obstruction with varying parameters. Parameters changed in the data include flow rate,
Reynolds number, and obstruction size. Each run contains 54 timesteps. Generally each pixel
contained a value between 0 and 1, and represented the flow rate at that specific pixel. An
example of some renderings of this timestep data can be seen in figure 8 below.
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Figure 8: A collection of renderings from different timesteps within the 2D Kármán Vortex Street ensemble

(a) Blank-style anomaly

(b) Blob-style anomaly

(c) Chunk-style anomaly

Figure 9: Examples of the 3 artificial anomalies introduced into the datasets.
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To represent anomalous data, a few different methods were used in order to determine the
efficacy of the autoencoders at dealing with various kinds of anomalies. In each case , the
data was augmented with cloned datasets in which starting at a random timestep, a random
number of subsequent timesteps (between 5 and 10) was rendered anomalous through one of
three methods. For the first of the artificial anomalies, each selected timestep was ”blanked”
(each pixel set to a value of 1) in order to produce a noticeably anomalous set of timesteps with
a massive divergence from the baseline. For instance, a ”blanked” timestep can be seen in figure
9a below. The second means was to select a random pixel somewhere in the timestep, change its
value to 1, and then select a random neighbour and repeat the process a pre-determined number
of times (in the case of these experiments, 400). Through this method, a blob of pixels is set to
1, and this process was repeated up to 6 times for each anomalous timestep so that 6 such blobs
would appear in different shapes, and locations on each anomalous timestep. An example of such
an anomalous timestep can be seen in figure 9b below. The final method aimed to produce an
anomaly that better matched the style of the data itself. In this case, for each cloned dataset,
a second donor dataset was chosen, and a subset (or ”chunk”) of each timestep matching an
anomalous timestep in the cloned dataset was copied from the donor timestep to the clone one.
This resulted in timesteps such as the one that can be seen in figure 9c. For the sake of simplicity,
these anomalies will be referred to as ”blank”-style, ”blob”-style and ”chunk”-style anomalies
respectively. These ”Anomalous” timesteps were not used during training, but were introduced
during testing to determine the systems’ ability to detect anomalies while simultaneously not
returning back-to-back timesteps of anomalous outputs.

An additional data ensemble was made that separated the turbulent datasets from the more
laminar ones. This final ensemble was not provided with any artificially anomalous data, but
treated the turbulent datasets as anomalous instead.
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5 Results

5.1 Baseline Results

The recorded data was then plotted, with a sample shown in figure 10 displaying the results at
the end of a series of timesteps for the predictive system. Figure 11 then shows the results at the
end of a series of timesteps for the same dataset but using a regular autoencoder. These graphs
display the reconstruction and feature vector loss over time, with the dotted lines representing
the color-corresponding thresholds, and the vertical lines representing points at which anomalous
data was detected. In certain cases the outputs of datasets containing anomalies (see figures 12,
13 and 14), there are also portions of the data that contain a raised line. This represents the
period of time in which the timesteps are anomalous. Additionally, periodic or otherwise notable
timesteps were saved and included in the figures, in line with where they would occur in the time
series.

The baseline system output for both autoencoder types show the expected reconstruction and
feature vector losses which in both cases hover around 0.025 and near 0 respectively, especially as
the simulation progresses. This was the standard across most datasets, only increasing slightly
in cases of higher turbulence in the data. This is to be expected given the lack of any meaningful
anomalies.

Regardless of autoencoder type, the processing time for each timestep averaged about 0.0111
seconds. The average runtime of an entire dataset was about 1.5620 seconds, though this was
within the bounds of the experiment, eg. feeding existing data through the system, and does
not accurately represent runtimes for an actual simulation scenario for the same number of
timesteps.
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Figure 10: Total system output from a collection of timesteps with no anomalous data using a predictive autoen-
coder
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Figure 11: Total system output from a collection of timesteps with no anomalous data using a standard autoen-
coder

5.2 Anomalous Results

The resultant figures show that each of the artificially anomalous dataset types have very differ-
ent interactions with the feature vector and reconstruction losses of this system. The blanked
anomalies (figure 12), being the most obvious, have the greatest jump in reconstruction loss
across the entire anomalous period, and large spikes of feature vector loss at the start and end of
the segment of anomalous timesteps. Not only is the change in feature vector and reconstruction
loss is evident in the plot, but the resultant outputs as well. Figure 12 clearly shows the output
nearly inverting the given input entirely. This massive change is the source of the huge spike in
both the feature vector and reconstruction loss.
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Figure 12: Inputs and outputs of predictive autoencoder encountering ”blanked”-style anomalous data.

The blob-style (figure 13) anomalies provide distinct enough increases in both the feature vector
and reconstruction loss, but are relatively noisy throughout. This is because each timestep in
the anomalous period has a different set of randomly-generated blobs, as can be seen in the
autoencoder input/output portion of the figure. These anomalies are still detectable with the
system, but not as cleanly as the blanked dataset, though this is to be expected given the nature
of the anomalous data. Were these blob-style anomalies to be more consistent from timestep to
timestep, it is likely that the change in the feature vector loss would be a lot less noisy.
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Figure 13: Inputs and outputs of predictive autoencoder encountering ”blob”-style anomalous data.

The more ”chunk”-style anomalies (figure 14) are detected by reconstruction loss, though due to
the much more subtle changes from the regular timestep to the anomalous ones, they are hardly
noticed at all by the feature vector loss. This is pretty clearly demonstrated in the inputs and
outputs of the autoencoder, where the differences can go unnoticed by a passive observer. In
figure 14 only timestep 30’s input and output is anomalous, and at a glance it appears to fit
in with the rest, only being given away by the lack of turbulence in the upper portions of the
image. In this case, change in the reconstruction loss is all that can really be used to attempt to
detect the anomalous timesteps.
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Figure 14: Inputs and outputs of predictive autoencoder encountering ”chunk”-style anomalous data.

Figure 15 shows that when trained on laminar data the turbulent data does stand out, displaying
a steadily increasing reconstruction loss that certainly becomes more obvious over time. This
shows the expected result of the training data having a heavy impact on the actual application.
But, demonstrates that anomaly detection is possible when training with only baseline data.
That said, the gradual nature of the appearance of turbulence in this dataset is a stark contrast
to the sudden appearance of the other types of artificial anomalies discussed earlier. This causes
the feature vector loss to remain relatively consistent across most timesteps, as no major change
is happening from one to the next. The inputs and outputs show the degrading reconstruction
loss pretty effectively, while also demonstrating that no major change in the feature vector loss
is occurring for the system to detect.
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Figure 15: Inputs and outputs of a predictive autoencoder trained on non-turbulent data being presented with
turbulence

Table 3 shows that both types of autoencoders had similar true positive and negative detection
rates for the reconstruction loss portion of the detector, with both autoencoders easily able to
detect the more extreme ”Blanked” anomalous timesteps, but then having their accuracy drop
off somewhat when detecting the more subtle anomalies. The true positive and negative rates
for the turbulent data ensemble are missing from this table due to the setup of the turbulent
data. The turbulent dataset timesteps tended towards turbulent or non-turbulent immediately,
meaning there was no identifying labels marking a subset of a dataset as anomalous and such
labels would have had to be added manually. Additionally, as can be seen in figure 15, no
timesteps were generally detected as anomalous due to the low amount of change in the feature
vector loss. Because of this, the true positive and true negative rates were not calculated for the
turbulent data ensemble, as the results would not be useful.
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Regular Predictive
Glitch Type True Positive Rate True Negative Rate True Positive Rate True Negative Rate
Blank 1.0 1.0 1.0 1.0
Blob 0.7106 0.8512 0.7829 0.8476
Chunk 0.7308 0.9473 0.6015 0.9710

Table 3: Detection true positive and true negative rates for reconstruction loss of artificial anomalous data.

5.3 Reconstruction Results

The reconstruction loss rates collected from the reconstruction tests was averaged across the
entire ensemble then plotted, for both the predictive-style of autoencoder as well as the regular
style. This was also done for both a case in which the timesteps were saved periodically, as well
as a case in which no periodic saving occurred. The graphs plotted can be seen in figures 16 and
17.

Figure 16: Average loss per timestep of reconstructed data, compared between predictive and regular autoen-
coders, using periodic timestep saving.
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Figure 17: Average loss per timestep of reconstructed data, compared between predictive and regular autoen-
coders, without periodic timestep saving.

Comparing these plots, it is evident that the predictive autoencoder does a better job of recon-
structing missing data. While the two autoencoder types occasionally overlap and perform at
similar rates in figure 16, this occurs almost entirely near points where a timestep was saved
periodically. Outside of these expected overlaps, the predictive autoencoder consistently out-
performs the regular autoencoder in timestep reconstruction. An example of reconstructed data
taken from just after a timestep was periodically saved, 5 timesteps after saving, and from right
before the next periodic saving can be seen in figure 18c for the predictive autoencoder, and
in figure 18b for the regular autoencoder. The original input timesteps for each can be seen in
figure 18a.
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(a) Initial system input timesteps

(b) Reconstructions generated by a regular au-
toencoder

(c) Reconstructions generated by a predictive
autoencoder

Figure 18: Example of the degradation of reconstructed data over time compared to the original timesteps, for
both predictive and regular autoencoders

While the timesteps obviously degrade the more times the are reconstructed from previous re-
constructions, it is still evident as to what these images are. However, even though the original
timestep is still recognizable, it is especially evident that the regular autoencoder does not re-
ally adapt to any changes. It is obvious that it mostly returns the same images over and over,
slowly fading out as it degrades. The predictive autoencoder fares better, producing some actual
changes, but not any that match the original timesteps too closely, though they maintain a much
sharper quality than the regular autoencoder.
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6 Discussion

The first thing to note is that there is not too much difference between the predictive and regular
autoencoders when it comes to anomaly detection. While the predictive autoencoder style results
in outputs with more extreme values, they do not actually differ too much from one another,
with preliminary comparisons showing loss differentials of about 0.001 on average. This is shown
in the detection rate of the ”Blanked”-style anomalies of both autoencoder types, with both
having a 100% true positive and true negative detection rate. This is to be expected, as the
anomaly type exemplifies the characteristics that are sought by the detection algorithm. The
blank timestep acts both as a massive discrepancy between the predicted timestep and the actual
timestep, as well as a very significant change in the features that are present within the timestep.
This means that both the change in feature vector loss and spike reconstruction loss are both
easily detected by the system.

The predictive autoencoder demonstrates a mild improvement in detecting ”Blob”-style anoma-
lies, this likely being a result of the predictive autoencoder’s tendency to blur hard edges slightly
more than its regular counterpart. This results in the blobs blending slightly more into the back-
ground data, especially near areas where the data changes rapidly from high to low values. The
predictive autoencoder thus generates timesteps slightly closer to the expected non-anomalous
baseline in these scenarios instead of the anomalous timesteps that actually appear, allowing for
slightly better detection accuracy of said anomalies.

The regular autoencoder shows improved detection capacity for the ”chunk”-style of anomaly, as
the hard edges of the displaced chunk of another timestep acting as the anomalous portion of the
timestep in question are maintained far better by the predictive autoencoder than the regular one.
This means the predictive autoencoder does a better job of reconstructing the anomalous data
than the regular one, thereby worsening its anomaly detection capacity in comparison.

Outside of the differences between the autoencoder types, figures 12, 13, 14 and 15 demonstrate
that the system can be used to find various errors and anomalous timesteps, and only a baseline
set of generic outputs needs to be used for training. However, if a specific type of anomaly needs
to be detected, then this should be known ahead of time so that the system can be appropriately
tuned to detect it. These tests also assume that the timesteps progress in a predictable manner,
and as such, though untested, it is likely that the anomaly detection and reconstruction capacity
of the system could be limited by less linearly progressive inputs.

The experiments done have also highlighted that there is no major difference in the anomaly
detection ability of the predictive and regular style of autoencoders, with both showing similar
feature vector and reconstruction loss values. There is a difference between the two when it
comes to the reconstruction of missing data, though the difference is less substantial than would
be relevant to use in a real setting. In the reconstruction of lost timesteps, as shown in figures 16
and 17, the predictive autoencoder eventually outperforms the regular autoencoder where there
are no periodically saved simulation timesteps. In the presence of periodic saving, the predictive
autoencoder still functions somewhat better. Although both autoencoders do perform similarly
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enough thanks to the periodic saves acting as resets for the reconstruction process.

These results demonstrate that the system is capable on a basic level, as it displays a capacity
to detect anomalies and recreate timesteps to a reasonable degree. The similarity between the
detection accuracy of the predictive and regular autoencoders indicates that, at least for the
anomaly types used, there is little enough difference in anomaly detection capacity. On the other
hand, for general timestep reconstruction, the predictive autoencoder does prove to outperform
the regular version. This disparity in performance between the two modes of operation, anomaly
detection and data reconstruction, imply that it may be advantageous to use separate systems for
each, allowing specialized systems to perform anomaly detection and data reconstruction, as any
specialized system for reconstruction does not have to worry about any potential bottlenecking
constraints imposed by working in-situ with the processing of the simulation that a timestep
selection system would.
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7 Summary and Conclusion

The results demonstrated above show the restrictions and limitations of the autoencoder system,
predictive or not. If set up as described in this set of experiments, the system does not provide
a generalist solution to all anomalous data detection, though it can be used to detect deviations
from the expected outputs. While not entirely necessary, some foreknowledge of the kinds of
errors and anomalies that might be encountered by the system can improve detection accuracy.
This is so that detection thresholds can be fine-tuned to provide the best anomaly detection rates.
While this foreknowledge can be useful for fine-tuning and best results, it does not help with
other, more systematic anomalies such as non-sequential behaviour. These will not be detected
by this kind of system without adjustments to the algorithm itself.

The experiments also demonstrate that the predictive and regular autoencoder models behave
fairly similarly in terms of detection. Though there is a small amount of variance in each method’s
success rate for each kind of anomaly, the difference is small enough in most cases as to not be too
significant. The more noticeable difference between the two autoencoder variants lies within the
system’s ability to reconstruct unsaved data from given saved timesteps, in which the predictive
autoencoder fares somewhat better. Ultimately, neither performs too well in the long-term.
The regular autoencoder simply reproduces the original input timestep over and over, slowly
degrading with each reconstruction attempt. Even the predictive autoencoder does not provide
a convincing reconstruction of the original data, though the image produced is sharper than its
regular counterpart. On less turbulent data, this is much less noticeable, with the autoencoders
being able to reproduce the lengthening of the flow without too much trouble. The simplicity
of the algorithm being used for reconstruction is a likely cause, given it is the same structure as
that used for the anomaly detection rather than its own specialized structure.

Considering what has been demonstrated in this thesis, the autoencoder system as presented did
not produce effective enough results for immediate use. As such, future work should look into
increasing the complexity of the autoencoder architecture, something that was not done originally
due to the long training and runtimes involved. Alternatively, it may be worth investigating other
ML frameworks altogether, as a comparison between different kinds of models could provide
insights into the efficacy of other kinds of models for this task. It would likely also be useful to
investigate developing separate networks for anomaly detection and missing data reconstruction,
allowing a simple system to work as the anomaly detector so as to not bottleneck any simulation
it’s attached to. Meanwhile a more complex system works to recreate missing data when it is
required.

As the experiments presented in this thesis were performed with only the given narrow set of
artificial anomalies and a specific set of linearly-progressing 2D data, it would be prudent to
investigate the system’s function with other forms of data and anomalies. A greater variety of
simulations could be used as sources for data for future investigations, and this should not be
restricted to 2D sources. Other variations of anomalies are also important, some simple examples
of which that were not used for these experiments include simple blurring, shifting or scaling,
or finding simulations that include known anomalous data. In addition , future investigations
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should experiment with non-linear time simulations, eg. those that do not progress in a linear
manner. This would include things that occur in non-repeating patterns, periodically reverse, or
perhaps are cyclic in nature.
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