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Abstract

The study of mathematical billiards is a prominent topic within dy-
namical systems. One of the most important examples of a billiard is the
Sinai billiard: a single particle on a 2-torus with a circular obstacle, if the
particle collides with the boundary of the obstacle, it does so elastically.
Once the particle is set in motion, its long term behavior is studied: is the
motion ergodic, do there exist periodic trajectories? Other such billiards
can be devised, and for each we can expect its own challenge.

We consider a variation of the Sinai billiard where the solid boundary
is removed and in the interior of the disc there is a magnetic field. Now,
the particle passes through and its trajectory is deflected. This introduces
a parameter, the magnetic field strength, which we can vary, and study.

We approach the magnetic Sinai billiard from two perspectives. First,
we consider it in the context of KAM theory, which deals with Hamilto-
nian systems and small perturbations. Next, we study the system using
symbolic dynamics, more specifically, we use the Lempel-Ziv complexity
to distinguish initial conditions that lead to ordered dynamics from those
that lead to disorder. In such a way, we characterize qualitatively different
dynamics of the system.
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1 Introduction

In the theory of mathematical billiards, a particle, much like a billiard ball, is
set in motion on a “table”. The table may have walls or obstructions or there
may be regions where the velocity of the particle is deflected in some way. The
table need not be flat, and can seem entirely unrealistic. The goal of the game
in our case is to characterize the long term behavior of the particle as it travels
on the table.

The study of mathematical billiards can be traced back to Boltzmann’s er-
godic hypothesis in statistical mechanics. The question at its simplest was: do
gas particles trapped in a box behave stochastically? That is, can we determine
whether the motion of these particles is truly random? This was modeled with
the Sinai billiard [Sin63], a particular instance of a Lorentz gas, and determined
to be true. The Sinai billiard is a billiard on a 2-torus T2 = R2/Z2 with a
disc shaped wall on it, an example can be found in fig. 1a, where the torus is
unfolded on the plane, and the system is viewed as a periodic Lorentz gas. The
particle travels along a straight path on T2 and is elastically reflected when it
hits the boundary of the disc.

(a) A particle in a periodic Lorentz gas. (b) A particle in a periodic magnetic
Lorentz gas.

Figure 1: Unlike a classical Lorentz gas with elastic reflection, a particle in a
magnetic one experiences a translation along the boundary of the discs together
with the elastic reflection. Hence, introducing a new variable for study.

In this thesis we consider a variation of this problem which we call a magnetic
billiard, where instead of a solid disc, we have a magnetic bump. When the space
the particle travels in is R2 with circular obstacles, the system is called a Lorentz
gas, while when the space is T2, it is a Sinai billiard. We study the magentic
Sinai billiard but find it useful to also consider the periodic magnetic Lorentz
gas, since they are related by unfolding the 2-torus. In fig. 1b we demonstrate the
types of motion exhibited by a trajectory of a particle in a magnetic Lorentz
gas. In blue we indicate free motion, and in red we have motion within the
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magnetic field, the black square is the initial position. The red segments should
instead be circular arcs, we reserve some artistic liberty in this choice. There
is a magnetic disc at every point in the lattice Z2 + 1/2 but we only draw the
boundary of the discs that are hit by the particle, and skip the rest to improve
legibility. More precisely, we study the dynamics arising from the magnetic
Hamiltonian H : R3 × R3 → R:

H(q, p) =
1

2
‖p−A(q)‖2 (1)

where q = (q1, q2, q3) is position, p = (p1, p2, p3) is momentum, and A : R3 → R3

is a magnetic vector potential defined as follows:

A(q) =


(−bq2, 0, 0), if (q1, q2) ∈ S,
(0, 0, 0), if (q1, q2) ∈ [0, 1]2\S,
A(q mod 1), otherwise,

where S = {x ∈ R2 : ‖x−1/2‖ ≤ R} is a disc centered at (1/2, 1/2) with radius
R ∈ (0, 1/2) and b ∈ (0,∞) is the magnetic field strength. We finish formally
introducing the system in the preliminaries.

Similar problems have been considered before in [KS17] and [Gas21]. In
the former, the dynamics of a particle in the plane with finitely many mag-
netic bumps was considered and this was studied using symbolic dynamics. In
the latter, we see inverse magnetic billiards, where the particle experiences a
magnetic field in the space surrounding the bumps and free motion within the
bumps, such a system gives rise to interesting periodic behavior. We take in-
spiration from these works, and use techniques in symbolic dynamics and also
study periodic trajectories that arise from the system in question.

More generally, billiards for a wide range of potentials have been considered,
as in [DL91], where several classes of radially symmetric potentials are stud-
ied and conditions for ergodicity are given. Similar systems are considered in
applications as well, for example in the study of quantum dots and magnetic
quantum dots [LSIC04], which model particle and field interaction in spintronic
materials. Hence, understanding the dynamics of (1) more deeply has practical
interest as well.

Focusing on the behavior of the trajectory in fig. 1b, we see:

• erratic behavior, that is, the trajectory seems to bounce around in a
chaotic manner;

• evidence for existence of trapped quasi-periodic motion, specifically refer-
ring to the spot where the particle is trapped between four discs before
eventually escaping;

• two distinct scales, the intervals of magnetic motion serve as a perturba-
tion or deflection and are rather local, while the intervals of free motion
can be long and in fact can be arbitrarily long provided that the particle
exits a disc at a shallow enough angle.

We see that the motion is not trivial, and warrants study. What is not yet
evident from fig. 1b is the influence of the parameters R and b on the general
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behavior of the system. This is what we aim to better understand by the end
of the thesis.

We outline how we study this system. We focus on varying b, and identify
three modes. For some b1, b2 ∈ R with 0 < b1 � 1/R < b2,

1. If 0 < b < b1, the field strength is weak. We can use KAM theory to
make sense of quasi-periodicity at these strengths. We find that we may
consider our system as a perturbation of either free motion, or the flow of
a uniform magnetic field in the plane.

2. If b1 < b < b2, the field has moderate strength and new dynamics of
varying complexity start appearing. We study this mode, using symbolic
dynamics and the Lempel-Ziv complexity.

There is also the strong field case b > b2 which is also interesting to consider
but will not be treated here. We expect in this case to see disorganised, possibly
ergodic in T2, motion almost everywhere. This can be motivated by considering
the limit as b → ∞, the magnetic deflection of (1) tends to elastic collision, so
the motion is comparable to the Sinai billiard which we know to be ergodic.

To aid in the exploration, a large component of our work is numerical analysis
and the use of symbolic algebra systems. We primarily use the tools provided
by the Python language, specifically, we use existing tools such as NumPy, SymPy,
and Matplotlib. We also wrote our own module magdynsys.py for computing
and visualizing data. Our material is available online [Sil23], along with all the
figures we made and the Jupyter notebooks we created.
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2 Prelimiaries and basic properties

2.1 Equations of motion of the magnetic Sinai billiard

We first define the Hamiltonian equation of a magnetic vector potential A, and
some related concepts. We then solve for the equations of motion for a specific
choice of vector field. We follow the description of a magnetic Hamiltonian as
in [Ser22]. Let H : R3 × R3 → R be a magnetic Hamiltonian function:

H(q, p) =
1

2m

∥∥∥p− e

c
A(q)

∥∥∥2
as before A : R3 → R3 is a magnetic vector potential, we also have mass m,
the charge of a point particle e, and the speed of light in a vacuum c. In our
discussions, the physical constants are not important, so we set m = e = c = 1.
Equivalently, p and A can be scaled to compensate the contribution of m, c, and
e. The magnetic vector field is defined as B = curlA = ∇× A. The magnetic
field B is a physical quantity, when visualizing, we typically draw the field lines,
that is, we draw the curves that indicate the direction of B. The potential A
is a more abstract notion, and we have some freedom in its choice. To define
a system, we first consider the field B we want to study, and then to construct
a Hamiltonian H which governs the motion due to B, we choose a potential A
such that B = curlA. There is freedom in choosing A, since picking any twice
differentiable f : R3 → R, we see that curl(A + divf) = curlA by the result:
∇× (∇f) = 0. Lastly, since H does not depend explicitly on time, it is constant
on its trajectories, and the subspaces {(q, p) ∈ R3×R3 : H(q, p) = E} for E ∈ R
are invariant subspaces of the motion.

Another important quantity we will use is the flux ΦB(U) of the normal
component of a magnetic field B through a surface U , defined as

ΦB(U) =

∫∫
U

B · dS,

where dS is the surface area form on U . An important result to mention is that
the quantity ΦB(U) depends solely on the geometry of the boundary ∂U . This
is true by Stokes’ theorem:

ΦB(U) =

∫∫
U

∇×A · dS =

∫
∂U

A · dΓ,

where Γ is a parametrization of ∂U consistent with the orientation of U . The
value of ΦB(U) should be the same for any choice of A, so only ∂U decided the
value. In particular, when ∂U is empty, that is, when U is a surface with no
boundary, Stokes’ theorem states that ΦB(U) = 0.

One of the simplest non-trivial vector fields B we can consider, and the
one we use throughout the thesis is B = (0, 0, b) for b ∈ (0,∞). We see B is
uniformly constant and points in the positive q3-direction. We call the parameter
b the field strength. It is readily verified that we can pick A = (−bq2, 0, 0) as
a vector potential, and the flux for a surface U contained in the q1q2-plane is
ΦB(U) = bVol(U) where Vol(U) is the area of U .

Let us now determine the equations of motion of H(q, p) given our choice of
potential A. So, explicitly, H is as follows:

H(q, p) =
1

2
(p1 + bq2)2 +

1

2
p22.
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The equations of motion are the solution of the system of differential equations:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

where q̇, ṗ are derivatives with respect to time. Explicitly, we get:

q̇1 = p1 + bq2 ṗ1 = 0

q̇2 = p2 ṗ2 = −b(p1 + bq2)

q̇3 = 0 ṗ3 = 0.

Notice how the equations for q̇1, q̇2, ṗ1, ṗ2 are independent of q3, and p3, hence
if we take initial conditions q3 = p3 = 0, the motion will be restricted to the
q1q2-plane. So, we can ignore q3 altogether. Next, we can simplify the system
further by noticing:

q̈1 = bq̇2, q̈2 = −bq̇1,

which is a system of coupled harmonic oscillators which we know how to solve.
We provide the answer and skip further computations:

q1(t) = q1(0) +
p2(0)

b
+ ρ sin(ωt+ ϕ),

q2(t) = q2(0)− p1(0)

b
+ ρ cos(ωt+ ϕ),

where ρ, ϕ ∈ R are integration constants. Commonly, ω is called the Larmor
frequency, it can be shown in the case at hand that ω = b. By association we will
also call ρ the Larmor radius. We see now that a particle in the field B will trace
a circle of radius ρ centered at the point (q1(0) + p2(0)/b, q2(0)− p1(0)/b) ∈ R2.
We also see that the Larmor radius satisfies:

ρ =
‖(q1(t), q2(t))‖

b
=

2H(q1(0), q2(0))

b
,

that is, ρ relates to b and the value of H, which is constant for a particular
solution of the equations of motion of H. Hence, for the rest of the thesis we
restrict H = 1/2, so that the Larmor radius is given by ρ = 1/b.

Coming back to the magnetic potential defined in (1), that is,

A(q) =


(−bq2, 0, 0), if (q1, q2) ∈ S,
(0, 0, 0), if (q1, q2) ∈ [0, 1]2\S,
A(q mod 1), otherwise,

Where S = {x ∈ R2 : ‖x−1/2‖ ≤ R} is a disc centered at (1/2, 1/2) with radius
R ∈ (0, 1/2). We now know that if (q1, q2) ∈ S, then the trajectory follows a
circular arc as described above. In the second case, there is no magnetic field, so
the trajectory is in free motion, that is, it is a straight line. The last condition
simply states that we tile S over the lattice Z2 + 1/2. This also means that we
can consider H on the 2-torus T2 = R2/Z2 via the quotient π : R2 → T2 with
π(x) = x mod 1 where the mod function is applied entry-wise. We will refer to
H on either surfaces R2 or T2 interchangeably, since visualization is sometimes

8



easier on R2 while certain theory is applicable only on T2. Likewise, we use S
to refer to the lattice of discs on Z2 + 1/2 and the one disc in T2, and make it
clear which we are referring to on a case by case basis.

The motion of a particle under H in the interior and exterior of S is now
clear. However, we notice that A is discontinuous on ∂S. This is an issue
when a trajectory enters S tangentially, when this happens the solution is not
necessarily unique. Luckily, the set ∂S has measure zero, so its contribution to
our analysis is negligible. In what follows, we assume that trajectories tangential
to ∂S are in free motion. Now, the motion of (1) is completely determined.

2.2 KAM theory

We begin by recalling Kolmogorov-Arnold-Moser (KAM) theory, state one of
the main KAM theorems, and briefly outline the main points of the theory. We
refer the reader to [Kna18] for a more detailed account. We strongly recommend
[Pö82] for reference, as it presents the version of the KAM theorem we use here.

KAM theory is a method for studying perturbations of integrable Hamilto-
nian systems. Its origins lie in Celestial and Hamiltonian mechanics, where it
was used to study the orbits of planets. We denote by H0(q, p) an integrable
Hamiltonian and by H1(q, p, ε) a perturbation, where ε > 0 is a small parameter.

Focusing on the integrable case, it is known by the Liouville-Arnold theorem
that there exist action-angle coordinates, p, and q, respectively, so H0 := H0(p)
can be expressed in terms of the action variable only. The equations of motion
in action-angle coordinates are given by:

q̇ = ω, ṗ = 0,

where ω = ∂pH
0(p), and ∂pH

0 : I → Ω ⊆ Rn is the frequency map. It is called
the frequency map, since in action-angle coordinates, the phase-space becomes
Tn× I where I ⊆ Rn, and the dynamics of the system are completely expressed
as rotations on an n-torus. More generally, this is only true for integrable
systems with compact Lagrangian subspaces. Recall, that for fixed values of
H, trajectories of the system lie on invariant subspaces, in fact, phase-space
is foliated by a family of invariant tori Tn × {p} for each p ∈ I ⊆ Rn. We
consider only integrable Hamiltonians with a non-degenerate frequency map,
that is, det ∂2pH

0 6= 0. Now, KAM theory deals with Hamiltonians of the form

H(q, p) = H0(p) + εH1(q, p, ε),

where 0 < ε � 1 is considered small, H0 is the integrable part and H1 is the
perturbation. We can also define H for q ∈ Rn instead but make sure H is
2π-periodic in the position coordinates:

H(q + 2π, p) = H(q, p), for all (q, p) ∈ Rn × I,

so that we can quotient Rn to a torus Tn. What KAM theory ensures is that un-
der the correct conditions, a “large” subset Ωγ,τ ⊆ Ω, with γ, τ > 0 of invariant
tori of H0(p) are preserved, though possibly deformed, under the perturbation
H1. The set Ωγ,τ is given by:

Ωγ,τ =
⋂
k∈Z
k 6=0

{
ω ∈ Ω : |ω · k| ≥ γ|k|−τ

}
. (2)
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The condition for Ωγ,τ is called the Diophantine condition. It can be shown for
τ > n− 1 that for almost all x ∈ Rn there exists a γ > 0 such that x ∈ Ωγ,τ , so
in particular, we can find γ > 0 so that a point ω ∈ Ω satisfies ω ∈ Ωγ,τ . We
finally consider the Cantor set

Ω̂γ,τ = Ωγ,τ ∩ {ω ∈ Ω : d(ω, ∂Ω) ≥ γ},

that is, we remove points in Ωγ,τ that have distance less than γ from the bound-

ary of Ω. It can be shown that Ω\
⋃
γ>0 Ω̂γ,τ is a set of measure zero, so the

measure of Ω̂γ,τ becomes large for small γ, justifying the term “large”. We can
now give the KAM theorem as stated in [Pö82].

Theorem 1 (KAM Theorem). Let the integrable Hamiltonian H0 : Tn×I → R
be real analytic and non-degenerate, such that the frequency map ∂pH

0 : I → Ω
is a diffeomorphism and let the perturbed Hamiltonian H = H0 + εH1 be of
class Cαλ+λ+τ with λ > τ + 1 > n and α > 1. Then there exists a positive
γ-independent δ such that for |ε| < γ2δ with γ sufficiently small, there exists a
diffeomorphism

T : Tn × Ω→ Tn × I,

which on Tn × Ω̂γ,τ transforms the equations of motion of H into

θ̇ = ω, ω̇ = 0.

The map T is of class Cα for non-integer α.

So, for ω ∈ Ω̂γ,τ , we parametrize an invariant torus via the map θ 7→ T(θ, ω).
There are a few theorems in use now that are titled the KAM theorem, and
they differ mainly whether they discuss analytic or smooth perturbations. It is
easier to find sources discussing the analytic versions, since they provide stronger
results about the invariant tori. Having said this, we use the Cr version because
it is easier to construct smooth approximations of discontinuous functions as
opposed to analytic. We bring smooth approximations into the mix, since (1)
alone is clearly discontinuous.

2.3 Approximating locally L1 functions

The Hamiltonian (1) we wish to study is discontinuous, which by itself makes
it not suitable for the KAM theorem. We can, however, smoothly approximate
the Hamiltonian by using mollifiers. The KAM theorem then can be applied to
the smoothed Hamiltonian, which of course means we are not directly studying
(1) but instead gaining an intuition for the true behavior.

The standard mollifier ϕ : Rn → R is the following function:

ϕ(x) =

{
c exp

(
1

|x|2−1

)
, |x| < 1

0, |x| ≥ 1,

where c > 0 is a scaling factor chosen so that the integral of ϕ over Rn is 1.
Also, ϕ is commonly called a bump function, since its support is compact, and
its graph resembles a bump in space. For ε > 0, let

ϕε(x) =
1

εn
ϕ
(x
ε

)
,
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this function has the following properties:

ϕε ∈ C∞c (Rn), ϕ ≥ 0,∫
Rn

ϕε = 1, supp(ϕε) ⊂ Bε(0) = {x ∈ Rn : |x| < ε},

that is, the function ϕε is smooth in Rn with compact support, it is positive, its
integral is 1, and the support of ϕε is fully contained in the unit ball of radius
ε > 0 centered at the origin.

We say the function f is in the space of locally p-integrable functions Lploc(X),
if f : X → R is measurable, and for every open V ⊆ X which is compactly
supported in X, the restriction of f to V satisfies f |V ∈ Lp(V ).

Let f ∈ L1
loc(X) be a locally integrable function in X ⊆ Rn. The mollifica-

tion of f is defined as the convolution of f with ϕε, that is, ϕε ∗ f : Xε → R
where Xε = {x ∈ X : d(x, ∂X) > ε}. Explicitly,

fε(x) =
(
ϕε ∗ f

)
(x) =

∫
X

ϕε(x− y)f(y)dy

=

∫
Bε(0)

ϕε(y)f(x− y)dy, x ∈ Xε

Some properties that the mollification fε has are summarized here:

Theorem 2. Let f ∈ L1
loc(X). Then the mollification fε has the following

properties:

1. fε ∈ C∞(Xε),

2. fε → f almost everywhere as ε→ 0,

3. if f is continuous on X, then fε → f as ε → 0 uniformly on compact
subsebts of X,

4. if 1 ≤ p <∞ and f ∈ Lploc(X), then fε → f as ε→ 0 in Lploc(X)

Proof. The proof of this theorem can be found in Appendix C of [Eva98] �

Theorem 2 states that we can construct a family of smooth approximations
to any function f that converge to f almost everywhere.

2.4 Poincaré sections and stability of maps

The Poincaré section (and map) method is a common way of studying a contin-
uous time dynamical system. An account of the method can be found in [Ras90]
and [HSD13], we will use both sources since they are complimentary.

First recall that for a dynamical system defined by a system of differential
equations Ẋ = F (X) where F : Rn → Rn, the flow of the system is the collec-
tion of trajectories resulting from an open neighborhood of initial conditions.
The flow is typically denoted as a map φ(t, x0) where x0 refers to the initial
conditions, and the map t 7→ φ(t, x0) is a solution of the system with initial
conditions x0.

For an n-dimensional system, a Poincaré section is a subspace Σ of the
phase-space of dimension k < n such that the flow φ(t, x0) of the system is
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transverse to Σ, and for each x0 ∈ Σ there exists a time t′ > 0 such that
φ(t′, x0) ∈ Σ. To be transverse means that the flow is never parallel to Σ. The
second condition means that any point in U must return to Σ under the action
of the flow in finite time

The Poincaré map or return map is P : Σ→ Σ with P (x) = φ(τx, x) where
τx > 0 is the first time the trajectory with initial condition x ∈ Σ returns to
Σ after leaving it. Given the map P : Σ → Σ, we can consider a new discrete
dynamical system with state-space Σ and governed by iterations of P . An orbit
of a point x ∈ Σ is the sequence xn = Pn(x) where Pn = P ◦ · · · ◦ P denotes
n-fold composition of P .

We recall now two concepts: the Jacobian matrix, and stability of a periodic
trajectory. Let F : Rn → Rm with F = (F1, . . . , Fm) be a differentiable map,
the Jacobian matrix JF (X) of the function F at the point X is an m×n matrix
of partial derivatives of F of the form

JF (X) =
∂(F1, . . . , Fm)

∂(x1, . . . xn)
=



∂F1

∂x1

∂F1

∂x2
. . . ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
. . . ∂F2

∂xn

...
...

. . .
...

∂Fm

∂x1

∂Fm

∂x2
. . . ∂Fm

∂xn

 =

[
∂Fi
∂xj

]
,

where i and j index rows and columns, respectively. One important property
of the Jacobian we will use is that it obeys the chain rule for compositions of
functions. Let F : Rn → Rm and G : Rp → Rn, then we have:

JF◦G(X) = JF (G(X)) · JG(X),

where we emphasize matrix multiplication with “·”.
Let r(t) with r(0) = X0 be a periodic trajectory of the system Ẋ = F (X).

The trajectory r(t) is stable if for all ε > 0 there exists a δ > 0 such that every
trajectory f(t) we have that:

‖f(0)− r(0)‖ < δ =⇒ ‖f(t)− r(t)‖ < ε, for all t ≥ 0.

In other words, a periodic trajectory is stable, if there is a neighborhood of
X0 that does not expand beyond a certain radius under the flow of the system
Ẋ = F (X). A periodic trajectory that is not stable is called unstable.

We now state a proposition relating the eigenvalues of a Poincaré map to
the stability of a periodic trajectory of a system.

Proposition 1. Let Ẋ = F (X) be a system in Rn, suppose that X0 ∈ Rn lies
on a periodic trajectory r(t). Let P be a Poincaré map defined in an open set
U containing X0. Let λi ∈ C for 1 ≤ i ≤ n be the eigenvalues of the Jacobian
matrix JP (X0), then we have the following:

1. If for all 1 ≤ i ≤ n we have |λi| < 1, then the trajectory r(t) is stable.

2. If there exists at least one 1 ≤ i ≤ n such that |λi| > 1, then the trajectory
r(t) is unstable.

In the last case when there is an eigenvalue |λi| = 1, then checking the Jaco-
bian is not enough to decide the stability of the trajectory, and more information
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is needed. There is a further classification of the stability of equilibrium points
of a system, that is, points X∗ such that F (X∗) = 0 but we do not need it here.

Now, we focus on our system (1). We prove the existence of a Poincaré
section, and construct it explicitly. We also explain some details of the symbolic
algebra computations we performed in the Jupyter notebook in [Sil23].

Recall, that the phase-space of (1) is T2 × R2, we claim that the subspaces

Sin =
{

(x, v) ∈ ∂S × R2 : v · (x− 1/2) < 0
}
, (3)

Sout =
{

(x, v) ∈ ∂S × R2 : v · (x− 1/2) > 0
}
, (4)

are Poincaré sections if we restrict to initial conditions on them. This greatly
reduces the dynamics, and can be later used to visualize trajectories

To prove that Sout and Sin are the Poincaré sections, we will use well known
results about rotations on the torus. Parametrize the torus T2 with angles
θ, ϕ ∈ [0, 1], a particle in free motion on T2 follows the trajectory r(t) = x0 + vt
where x0 ∈ T2 is the initial condition and v ∈ R2 is the velocity. If the angle of
v with respect to the axis θ is rational, then r(t) is periodic, otherwise r(t) is
dense in T2.

Lemma 1. The flow of (1) induces a well-defined map Poi : Sout → Sin.

Proof. Let (x, v) ∈ Sout, at this point the solution of (1) continues with free
motion r(t) = x + vt. If the angle of v is rational, then there exists some time
t2 at which r(t2) = x, and (r(t2), v) ∈ Sout. Since at time t2 the trajectory
intersects ∂S transversally, there must exist t1 < t2 such that (r(t1), v) ∈ Sin.
Since the trajectory intersects Sin at least once, there must exist a unique t0 ≤ t1
such that (r(t0), v) ∈ Sin.

If instead the angle of v is irrational, consider an open neighborhood U ⊆ ∂S
of x such that U × {v} ⊆ Sout. This can be done by taking a sufficiently small
interval in ∂S around x. Since r(t) is dense in T, there exists a time t1 such
that r(t1) ∈ U . By the same reasoning as in the previous case, there exists a
unique minimal time t0 such that (r(t0), v) ∈ Sin.

Define Poi(x, v) = (r(t0), v), which is well-defined. �

Lemma 2. The flow of (1) induces a well-defined map Pio : Sin → Sout.

Proof. Let (x, v) ∈ Sin, under the flow of (1) the trajectory r(t) follows some
Larmor circle C. We know x ∈ C∩∂S, so since (x, v) is transversal to ∂S, there
must exist a point x1 ∈ C∩∂S with x1 6= x. Hence, also there must exist a time
t0 at which the trajectory intersects Sout. Define Pio(x, v) = (r(t0), r′(t0)). �

Now, we state the existence of the Poincaré section as a proposition and
prove it.

Proposition 2. Let S be the disc of radius R centered at (1/2, 1/2) ∈ T2. The
sets Sin and Sout defined in (3) and (4), respectively, are Poincaré sections for
the system (1).

Proof. The map Pi = Poi ◦ Pio is a return map for Sin. Likewise, Po = Pio ◦ Poi

is a return map for Sout. �
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In [KS17] a similar result is proved for a configuration of finitely many
bumps. In that case a different method was used that did not rely on an infinite
number of bumps, in ours the reasoning was simplified due to this.

We proved the existence of the Poincaré map Po, now we provide an explicit
form of Po : Sout → Sout that is more convenient for computations. We specif-
ically take Sout and Sin as the circles with radius R center at (1/2, 1/2) in T2

and with their respective orientation of the velocity vectors. We define Po as
the composition

Po = ψ−1 ◦A2 ◦ π ◦A1 ◦ ψ,

where ψ : Sout → ψ(Sout) takes polar coordinates to Cartesian,

ψ(θ, ϕ) =

(
R cos θ +

1

2
, R sin θ +

1

2
, cosϕ, sinϕ

)
,

A1 : ψ(Sout) → R2 × R2 finds the first positive time intersection of a ray
(x+ vt, y +wt) with the lattice of circles of radius R and centered at Z2 + 1/2,

A1(x, y, v, w) = (x+ vT, y + wT, v, w),

with T = min
n,m∈Z

{
t > 0 :

∥∥∥∥(x+ vt− n− 1

2
, y + wt−m− 1

2

)∥∥∥∥ = R

}
,

the value of T can be determined explicitly by solving for the roots of a quadratic
equation. In practice, one would like to know the pair n,m that minimizes the
expression ahead of time, for example, when the map is computed for a known
periodic trajectory. Next, π : R2 × R2 → T2 × R2, is the typical quotient map
taking the plane to the 2-torus,

π(x, y, v, w) = (bxc, byc, v, w).

Next, A2 : ψ(Sin) → ψ(Sout) encompasses the influence of the magnetic field,
for X = (x, y, v, w) we have

A2(X)=
1

α2 + β2


α2 − β2 2αβ 0 0

2αβ β2 − α2 0 0

0 0 β2 − α2 −2αβ

0 0 −2αβ α2 − β2



x− 1

2

y − 1
2

v

w

+


1
2
1
2

0

0


where (α, β) = (x+ v/b− 1/2, y −w/b− 1/2) is the center of the Larmor circle
of the trajectory with initial position (x, y) and velocity (v, w) but is shifted by
(−1/2,−1/2) for reasons we explain now.

The function A2 can be constructed using some plane geometry and linear
algebra. Consider two circles C1, C2 in the plane with centers a1, a2, respec-
tively. Let A denote the reflection in the line ` containing a1 and a2. We notice
that C1 and C2 are invariant under the action of A and are symmetric with
respect to the reflection, so if C1, C2 intersect in two points, and we know one
point z, we know the other is Az. Suppose now v is a tangent vector of C1 at
z, then Av is a tangent vector at Az. Lastly, we take −Av, since we need it
to point in the opposite direction, that is, if v points into C2, then −Av points
outwards.
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Coming back to the definition of A2, the matrix represents a reflection
in the line parallel to ` and passing through the origin. The translations
±(1/2, 1/2, 0, 0) are needed to account for the fact the matrix reflects in the
wrong line. We can construct the matrix via its diagonalization, by picking
appropriate eigenvalue, eigenvector pairs. We pick v1 = (α, β) with 1, since it
is parallel to `, and we pick v2 = (−β, α) with −1, since it is orthogonal to `.
Let D = diag(−1, 1) be a diagonal matrix with −1, 1 on the diagonal, and let
M = [v1 v2], then MDM−1 gives the matrix.

Finally, the map ψ−1 : ψ(Sout) → Sout switches back to polar coordinates
and is given by

ψ(x, y, v, w) =

(
arctan2

(
y − 1

2
, x− 1

2

)
, arctan2(w, v)

)
.

This form for Po seemed to be the simplest and most convenient we could find
for symbolic algebra. For numerical computations, some changes had to be
made for the sake of efficiency, though we will not discuss this here.

The map Po contains many moving parts due to the composition of 5 maps.
We cannot provide the Jacobian JP explicitly, since the expression would take
up many pages and not add anything to the discussion. The situation gets worse
when we try to analyze the stability of fixed points of Pno for n > 1, for example
we will do so for n = 2, 4, ane 8. Still, it’s nice to mention some ways to simplify
the computations. By the chain rule,

JPo
= Jψ−1JA2

JπJA1
Jψ,

where we suppressed the arguments for the Jacobians in the notation. We notice
that Jπ = I for points in the interior of squares [n, n+1]×[m,m+1] for n,m ∈ Z,
since for such points π is locally a translation. Then, composing JPo

we see

JnPo
=
(
Jψ−1JA2

JπJA1
Jψ

)n
= Jψ−1

(
JA2

JA1

)n
Jψ,

so, we only need to convert between polar and Cartesian at the beginning and
end. Likewise, we can show that the coordinate conversions cancel out when
composing Po. The above form of Po and JPo were used in [Sil23], in a later
section we will provide some examples of our results.

2.5 Symbolic dynamics and semi-conjugacy

In this section we recall the basics of symbolic dynamics and topological semi-
conjugacy of dynamical systems, we follow the relevant sections in [HSD13].

For N ∈ N consider the shift space ΣN = {0, 1, . . . , N − 1}N, the space of
sequences consisting of N symbols. We can endow ΣN with a metric:

d(x, y) =
∑
n∈N

|xn − yn|
Nn

.

With this metric ΣN is also a compact metric space. On ΣN we can consider
the shift map:

σ : ΣN → ΣN

(x1, x2, x3, . . . ) 7→ (x2, x3, . . . ),
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that is, we shift the indices to the left, and drop the first element. The map σ
is uniformly continuous. Together with σ, the space ΣN becomes a discrete dy-
namical system. It can be proven directly with straight-forward techniques that
this system is, in fact, chaotic by Devaney’s definition: the system is transitive,
and the set of periodic orbits is dense.

Proving directly that a system is chaotic in general is difficult, so another
method should be used. This is where (semi)-conjugacies come in. Two maps
f : I → I and g : J → J on topological spaces I and J are conjugate if there
exists a homeomorphism h : I → J such that h ◦ f = g ◦ h. Likewise, f and
g are semi-conjugate if there exists a continuous surjective map h : I → J
satisfying the same equation. One important result about (semi)-conjugacies is
the following:

Proposition 3. Suppose f : I → I and g : J → J are (semi)-conjugate via
h : I → J , where both I and J are compact metric spaces. If f is chaotic on I,
then g is chaotic on J .

Another simple result is that a conjugacy preserves periodic orbits and their
period, that is since h ◦ f = g ◦ h implies h ◦ fn = gn ◦ h, where fn means we
compose f a total of n times. For semi-conjugacies we have a similar result,
periodic orbits are mapped to periodic orbits however their periods need not
be preserved. Hence, we can discern a lot about a system if we construct a
(semi)-conjugacy to, for example, ΣN . This is the core of symbolic dynamics.

2.6 The Lempel-Ziv compression algorithm

Here we introduce the Lempel-Ziv complexity (LZC) as described in [LZ76],
give some basic examples, and describe some cases where it was used effectively.
We suggest as reading the original paper [LZ76], the article [KS87] for nice
examples, and [Ras90] for a easily digestable summary of LZC.

LZC operates on finite length sequences, strings, of symbols by applying a
compression algorithm, the complexity of the original sequence is then quantified
by the result of the compression. For convenience, for a string A = a1a2 . . . an
we define the notation A(i, j) = ai . . . aj to denote a substring. Below we give
the LZC algorithm.

1 Input a string A of length n;

2 Define the number of words C = 1;

3 Define i = 2;

4 Repeat forever:

5 Determine the longest k for which there exists an index j < i

such that A(j,j+k) is the same as A(i,i+k);

6 Increment i by k+2;

7 Increment C by 1;

8 If i >= n go to line 9, otherwise return to line 4;

9 Output C;

We provide examples below. The · is used as a substring delimiter, the over-
line indicates the longest substring A(i, i+ k) that was found and the underline
indicates where we found it, i.e., A(j, j + k). Notice the starting index of the
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longest substring is not necessarily unique.

01011010001101110010
(1)−−→ 0 · 1011010001101110010

(2)−−→ 0 · 1 · 011010001101110010

(3)−−→ 0 · 1 · 011 · 010001101110010

(4)−−→ 0 · 1 · 011 · 0100 · 01101110010

(5)−−→ 0 · 1 · 011 · 0100 · 011011 · 10010

(6)−−→ 0 · 1 · 011 · 0100 · 011011 · 1001 · 0 ,

the number of substrings is 7, so the LZC of this sequence is 7. Let’s consider
another example with repetition:

01101101101101101101
(1)−−→ 0 · 1101101101101101101

(2)−−→ 0 · 1 · 101101101101101101

(3)−−→ 0 · 1 · 10 · 1101101101101101 ,

the number of substrings is 4, so the LZC is 4. Notice how the two examples
have the same number of digits but the one with less repetition has greater
complexity. We consider one final example:

01010101010101010101
(1)−−→ 0 · 1010101010101010101

(2)−−→ 0 · 1 · 010101010101010101 ,

and we see the LZ complexity is 3. Notice that even though the last two ex-
amples are periodic, one has greater LZC, since the repeating substring 011 is
longer than 01. So, LZC not only differentiates between periodic and aperiodic
sequences, it also distinguishes between periodic sequences of different period.

All examples were with the alphabet {0, 1} but this can be done with an
arbitrary alphabet. It’s interesting to note that the LZC algorithm supports
infinite alphabets. The alphabet is taken to be finite because then one can
compute a lower theoretical bound on the LZC for the chosen alphabet, and
meaningfully compare the complexity of sequences: a sequence with LZC close
to the bound is likely to be random, while if the LZC is low comparative to the
bound, then the sequence may be (quasi)-periodic.

In [KS87] the authors used LZC to analyze a time series resulting from the
logistic map, and a system of coupled logistic maps. They determined that
LZC can be used to discern whether a signal is random or approaching an
equilibrium or a periodic trajectory. They noticed that despite its strength in
detecting structures like attractors, the LZC does not however give information
about the structure itself.
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3 Weak magnetic fields and KAM theory

In this section we will study the dynamics of (1) for “small” values of b, and
use the KAM theorem to motivate our ideas. We claim that (1) can be viewed
as a perturbation of at least two different Hamiltonian systems. In one case,
we can consider (1) as a perturbation of H0(q, p) = ‖p‖2/2 on T2, that is, free
motion on the 2-torus. In the other case, we can consider it as a perturbation
of a uniform magnetic field in R2. We corroborate our reasoning with numerical
simulations which can be found in the notebook Figures.ipynb at [Sil23].

One thing to notice immediately is that the magnetic potential A is dis-
continuous along ∂S, what we will see is that the perturbation term H1 in
H = H0 + bH1 is also discontinuous due to this, so we cannot directly apply
the KAM theorem to H. To address this we introduce mollifiers to smoothly
approximate H1 by Ĥ1 = ϕε ∗ H1, we can then apply the KAM theorem to
H̃ = H0 + bĤ1. Of course, using such an approach, we do not make statements
about H, instead we do so for H̃. We insist however that we can still motivate
a lot about the behavior of H by the theory that applies to H̃.

3.1 Investigating small magnetic field strengths

In fig. 2 we numerically solve system (1) and observe some interesting relations.
Each plot shows 5 trajectories varying b = 10−1, . . . , 10−5. In fig. 2a and 2b the
initial conditions and parameters are the same X ≈ (0.38, 0.81) and V ≈ (0, 1),
and R = 1/3, only the duration of the simulation is longer in fig. 2b. In fig. 2c,
V is the same, X ≈ (0.44, 0.65) and R = 1/6.

(a) (b) (c)

Figure 2: For the smallest b, the trajectories resemble straight lines for a long
time. As b increases, the trajectories appear to bend more and form circular
paths. This motivates viewing the system as a perturbation of either free motion
in T2 or of motion in a uniform magnetic field in the plane.

First, we see in each figure that the trajectory for b = 0.1 appears as a smear
near the origin, this is likely because b is large enough for the deflection in each
disc to no longer be considered a small perturbation. We note, however, in
later sections we also find circle-like quasiperiodic trajectories for significantly
larger values of b. The difference here is that the circular arcs here seem to be
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generic, while for larger b the circle-like trajectories are more scarce and each
has a smaller region of stability.

For the values of b < 0.1 we can make two observations. First, for very low b,
the trajectories start out rather straight and only accumulate a deflection after
a long time. This is the behavior we see in R2, in T2 we expect rotations with
some drift. For particular choices of b and intial conditions, we could expect
that after a number of rotations in T2, the drift adds up in a way that makes
the trajectory closed. This motion motivates perturbing free motion on T2.

The other observation is that for sufficiently long times, it looks like the
trajectories form circles in R2. This motivates the idea to perturb a uniform
magnetic field in the plane.

3.2 Perturbations of linear motion

Here we will use the KAM theorem to motivate the idea of viewing the motion
we find in fig. 2 as a perturbation of free motion on T2. First, let us determine
a Hamiltonian H1 such that H = H0 + bH1 and H0 = ‖p‖2/2. Denoting
A = (A1, 0), we see:

H(q, p) =
1

2
‖p−A(q)‖2 =

1

2
(p1 +A1(q))

2
+

1

2
p22

=
‖p‖2

2
+

1

2

(
2p1A1(q) +A2

1(q)
)

(?)
= H0(p) + bH1(q, p, b),

where in (?) we used that we can factor out b from A1(q). As previously dis-
cussed, H1 is discontinuous, so to apply KAM, we need to mollify H1. Hence,
consider the mollified perturbation Ĥ1 = ϕε ∗H1, where ε > 0 is independent of
b. We see H0 is real analytic, it is also in action-angle coordinates, since we con-
sider the motion on T2. We also see H0 is non-degenerate: det ∂2pH

0 = 1 6= 0,
and the frequency map ∂pH

0(p) = p is a diffeomorphism. Now, by theorem 1,
for sufficiently small b∗ > 0 there are tori of H0 that are preserved under the
perturbation Ĥ1.

Since Ĥ1 is always smooth, the above reasoning is valid for any ε > 0. The
caveat is that the KAM theorem may provide for each choice of ε a different
b∗ := b∗(ε), i.e., it is a function of ε. The question that we should answer then
is whether b∗ → 0 as ε→ 0, that is whether the reasoning is valid and useful in
the limit. We determined that this is difficult, and did not pursue the answer.

3.3 Perturbation of motion in a constant field

In this section we first motivate why we can consider the motion of (1) as per-
turbed motion of a uniform magnetic field in the plane, and afterwards provide
some numerical evidence supporting the claim.

We first reason heuristically to see that the idea is valid. Comparing the
trajectories for b = 0.01 and 0.001 in fig. 2a and 2b, we see that the radius
of the trajectory is ≈ 250 and ≈ 2500, respectively. If we assume this is the
value of the Larmor radius L̂ in each case, then we see L̂ ∝ 1/b or b̂ ∝ b. Now,
comparing the trajectories for b = 0.01 in fig. 2a and 2c, we see halving the
radius R of the magnetic bumps roughly quadruples the radius L̂ from 250 to
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1000, that is, L̂ ∝ 1/R2, and the strength then relates as b̂ ∝ R2b. The task

then is to determine C ∈ R such that b̂ = CR2b.
We can reason more directly by comparing fluxes. Focusing on U = [0, 1]2,

we would like the unperturbed uniform field B̂ = (0, 0, b̂) to deflect trajectories
on U as would the piecewise defined B of (1). How much a trajectory is deflected
depends on the flux of the field, since the flux measures the “flow” of the field
through a surface. Equating the fluxes ΦB(U) = ΦB̂(U), we can compute the

required strength b̂ for B̂. In our case, this implies b̂ = πR2b, which is about
what we expected.

Now, we should numerically test this hypothesis. To test the validity of the
relation, we give two tests, the results of which can be found in fig. 3.

The first test:

1. For 1 ≤ i ≤ 50, sample (Ri, bi) uniformly from [0.25, 0.45]× [10−10, 10−6]

2. For Ri, bi uniformly sample initial conditions Xij , Vij with 1 ≤ j ≤ 20.

3. Using the method in [Coo93], fit a circle to the trajectory of each Xij , Vij ,

the radius of which is L̂ij . We take the average L̂i =
∑20
j=1 L̂ij/20.

4. Via a least squares method, we fit a general cubic:

a0 + a1Ri+a2bi + a3R
2
i

+ a4Ribi + a5b
2
i + a6R

3
i + a7R

2
i bi + a8Rib

2
i + a9b

3
i = 1/L̂i.

The second test is similar, we fix Ri = 1/3, and fit a line a0 + a1R
2
i bi = 1/L̂i.

We opt to fit a general cubic function to avoid any bias in reasoning. We should
expect after fitting that only a7 contributes significantly.

(a) Fitting a cubic surface
(b) Fitting a line

Figure 3: We conjectured that the motion of (1) for a range of b is comparable to

the motion of a uniform magnetic field in the plane with field strength b̂ = CR2b
for some C ∈ R. We collected data and fit a cubic and a line, in each case we
find C = 3.2 and C = 3.12, respectively, which is ≈ π.
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The coefficients of the fitted cubic surface in fig. 3a come out as

a0 ≈ 6.7 · 10−8, a1 ≈ −6.2 · 10−7, a2 ≈ 6.7 · 10−3,

a3 ≈ 1.9 · 10−6, a4 ≈ −5.3 · 10−2, a5 ≈ −1.9 · 10+2,

a6 ≈ −1.8 · 10−6, a7 ≈ 3.2, a8 ≈ −6.6 · 10+1,

a9 ≈ −3.0 · 10−4,

The values of a0 to a4, a6 and a9 are negligible as expected, likewise a7 ≈ π.
We notice that a5 and a8 are quite large but we reason that the contribution
of their respective monomial term is still small, since both contain a factor of
b2 which has an order of magnitude at most 10−6. The coefficients of the fitted
line in fig. 3b are a0 ≈ 4.4 · 10−10 and a1 ≈ 3.12, which can be explained in the
same way. So, the relation b̂ = πR2b seems valid, and this motivates perturbing
a uniform magnetic field into the bump field.

Overall, the results show that our assumptions are plausible, we approxi-
mately see π in the coefficient. The results are not as precise as desired but
that can be due to randomly choosing the initial conditions for the trajecto-
ries. The circular trajectories correspond to invariant tori, and since not all
tori are preserved under the perturbation, we expect that, chosen at random,
some trajectories will not follow closely a circular path. Similarly, the chosen
range for sampling R and b could be too large, though in tests we made that
we omit here, we noticed that the relation holds more or less for a wider range
of [0.1, 0.45]× [10−16, 10−2].

We conclude this section by stating a conjecture motivated by the numerical
findings demonstrated above.

Conjecture 1. There exists an open subset V ⊂ (0, 1/2)× (0,∞) such that for
all (R, b) ∈ V the phase-space of (1) contains an open set of initial conditions
resulting in trajectories that are close, in some appropriate sense, to trajectories
arising due to a uniform magnetic field B = (0, 0, πR2b).
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4 Complexity and symbolic dynamics

In this section we consider the dynamics of (1) for large b, that is, in the case
where KAM and perturbative methods are not readily applicable. We approach
the system in an exploratory way: we first consider some simple examples of
periodic trajectories we found by hand, and analyze their stability. Afterwards,
we search for more complicated behaviors.

The examples we find by hand range from simple to rather complicated, and
both stable and unstable. The existence of these periodic trajectories of varying
complexity motivates the search for more examples. Furthermore, to make the
search more systematic, we introduce new numerical methods.

Using the Poincaré section we constructed in section 2.4 we will map trajec-
tories of (1) to a shift space Σ and analyze the complexity of these trajectories
with the Lempel-Ziv complexity. What we find is rich dynamics and a visual
method of analysis well suited for similar problems.

4.1 First periodic trajectories and stability analysis

We begin our analysis by showing some (quasi)-periodic trajectories that we
found by hand. For some of them we analyzed their stability using the Poincaré
section method with the help of a computer algebra system. Throughout we
reference results produced using Sympy that we documented in [Sil23].

For each figure below, on the left is the trajectory in the plane, and on the
right is the trajectory restricted to the Poincaré section Sout as viewed on T2.
The depth of computation is 2000 iterations of Po, unless stated otherwise.

The trajectory in fig. 4a is periodic, by visual inspection we can determine
that its minimal period is 4. To see this we can count how many times the
trajectory enters Sout on the plot. Hence, to analyze the stability of this trajec-
tory, we need to determine the eigenvalues of JP 4

o
and apply proposition 1. We

determined with the help of Sympy that the eigenvalues of JP 4
o

at (0, 0) are

λ+ = −1

2
+

√
3

2
i, λ− = −1

2
−
√

3

2
i,

where we see |λ±| = 1. So, in this case, proposition 1 cannot tell us whether
the system is stable or not. The eigenvalues suggest that iterates of P 4

o starting
near (0, 0) experience a rotation motion. Since, |λ±| = 1, it is not clear whether
the iterates at some point escape from (0, 0). However, in fig. 4b we see that
the iterates around (0, 0) organise into an ellipse, further suggesting that the
trajectory at (0, 0) is stable.

Applying the same reasoning as before to the trajectory in fig. 4c, we check
the eigenvalues of JP 8

o
at (0, 0) which are precisely

λ± = −159432
√

2 +
1803761

8
±
√

21
√

309863321949− 219106456192
√

2

8
,

approximately they are λ± ≈ −0.772± 0.636i. Again, we notice that |λ±| = 1,
so the Jacobian cannot inform us on the stability. Then again, fig. 4d suggests
that the trajectory is stable.

Meanwhile, fig. 5a, fig. 5b seem to be unstable or have very small regions of
stability, in fact, the plots are given only to 35 iterations due to sensitivity. To
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(a) (b)

(c) (d)

Figure 4: On the left are periodic orbits and on the right are perturbations. This
suggest that the periodic orbits are stable, however the results of the Jacobian
test using the Poincaré return map were inconclusive, since in both cases the
eigenvalues were complex with norm 1.

study the stability of fig. 5a we considered the one parameter family of initial
condtions (θ, ϕ) = (δ, 0) for 0 < δ < π/2 and field strength b = 3/ sin δ.

Notice that as δ → π/2, we have b → 3, which would mean the Larmor
circle of the trajectory would have the same radius as the magnetic disc. This
limiting case does not occur but for δ ≈ π/2 we see a relatively large radius. It
is not unlikely that in this limit, the trajectories are unstable, since they come
so close to the boundary. If instead we consider δ → 0, we see b → ∞ and as
discussed before, in this limit, the system reduces to a classical periodic Lorentz
gas, which supports the case for instability. We computed the eigenvalues of
JP 2

o
at (δ, 0) for this family and see

λ± =
cos2 δ − 12 cos δ + 18

cos2 δ
± 2
√

3
√

3− 2 cos δ (cos δ − 3)

cos2 δ
.

It can be determined graphically that both λ± ∈ R, furthermore |λ+| < 1
and |λ−| > 1, which means that we have a one parameter family of unstable
trajectories. We did not conduct the same analysis for the trajectory in fig. 5b
but expect the trajectories to be unstable.

We note that the trajectory in fig. 4a also belongs to a one parameter family
of periodic orbits with (θ, ϕ) = (δ, 0) and b = 3/(sin δ+cos δ) for δ ∈ (−π/4, π/2)
but we could not find an expression for the eigenvalues in this case because
the computation time was unreasonably long which was probably due to the
algebra system not being able to simplify the trigonometric expressions in any
meaningful way. Since we have evidence that (θ, ϕ) = (0, 0) with b = 3 is a stable
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(a) (b)

Figure 5: The left periodic orbit was verified using the Jacobian test to be
unstable. The right orbit is also believed to be unstable, though this has not
bee proven.

trajectory, we expect there exists an interval I = (−ε, ε) ⊆ (−π/4, π/2) with
ε > 0 such that for all δ ∈ I, the trajectory for (δ, 0) and b = 3/(sin δ+ cos δ) is
also stable.

Having analyzed these examples, we have an idea of what kind of behavior
to expect from (1). We expect both stable and unstable periodic trajectories,
however to continue studying periodic trajectories we need a more systematic
way of finding periodicity. We continue with this in the next sections.

4.2 Symbolic dynamics of the magnetic Sinai billiard

Recalling that the system (1) has a Poincaré section Sout with a Poincaré map
P : Sout → Sout as proven in section 2.4, we would like to find a shift space
ΣN for N ∈ N and a (semi)-conjugacy h : Sout → ΣN to reduce the system
further and analyze the dynamics on the shift space. What we actually do is a
bit different, we pick a shift space Σ with a countably infinite alphabet, and we
do not check whether h is a (semi)-conjugacy. We explain our reasoning below.

Let A = Z2 be our alphabet, and consider the shift space Σ = AN. Here we
take Sout in R2 instead of T2, that is, Sout is the union of the outward pointing
boundaries of discs centered at Z2 + 1/2. So, P : Sout → Sout takes values in all
of R2 and not just [0, 1]2. Now, define the map h : Sout → Σ as:

h : Sout → Σ

h(x) = bP (x)c − bxc

where b·c is applied entry-wise. We see that bxc and bP (x)c are both a pair
of integers, they are also 1/2 off the coordinate of the disc P (x) and x are on,
hence h maps x to the displacement between x and P (x) when clamped to the
lattice Z2 + 1/2. As an example, recall the trajectory in fig. 1b. We give the
first few symbols of this trajectory, starting from the black square:

(1, 0), (1,−1), (−1,−1), (−2, 1), (1, 2), (1, 0), . . . ,

and for example we see that the LZC of the first 5 strings is 5, since they are
all unique.

Since A is countably infinite, the typical metric as discussed in section 2.5
cannot be used to make Σ a compact metric space. With the choice of alphabet
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A, we cannot use the theory in section 2.5 to definitively prove that (1) has
chaotic components.

Despite the above mentioned drawbacks, we insist this choice is sufficient.
We had introduce the LZC in section 2.6, and we find later that the symbols
produced by the map h are enough to distinguish between quasi-periodic behav-
ior and seemingly “random” behavior. Note, that once we compute some finite
sequence of symbols, computing the LZC of the sequence is done just as in the
examples in section 2.6. Despite the fact A is countably infinite, and not finite,
this is not an issue for computing the LZC, since the complexity is capped by
the length of the sequence. So, even if A is infinite, we can only observe finitely
many symbols in a finite string.

4.3 Lempel-Ziv varying b and initial conditions

In this section we focus on fig. 6, 7, and 8, they give us a good idea of the
“landscape” of dynamics of (1). The figures present the LZC of a slice of initial
conditions and parameters much like a bifurcation diagram. What we find and
describe are regions of low complexity of varying size and structure.

To create fig. 6 we computed trajectories for varying initial conditions and
parameter b, specifically, we computed the trajectories for:1

2
+

√
R2 −

(
y − 1

2

)2

, y, 1, 0

 for y ∈ 1

2
+ 0.32 · [−1, 1],

and b ∈ [0.001, 5], R =
1

3
,

where we sampled y and b in 500 equidistant points, and the trajectories were
computed to a depth of 128 iterations. For fig. 7 we did the same except we
varied b ∈ [0.1, 1]. The color in the plots indicates the LZC of the sampled
trajectory. From the colorbar on the right, we see blue indicates low LZC, red
intermediate, and yellow high LZC. The colors are scaled between the lowest
and highest LZC in the plot, so colors in separate plots may vary. Also, notice
the colorbar is scaled logarithmically, this improves legibility.

We immediately notice large regions of uniformly low LZC scattered across
the plots, these suggest regions of stable quasi-periodic behavior. This is corrob-
orated by the fact that in fig. 6 the trajectory for (y, b) = (1/2, 3), corresponding
to the periodic orbit in fig. 4a, lands inside one of these low LZC regions, and
far from the boundary. In fact, the initial conditions for all of the quasi-periodic
orbits we discovered can be found in either of these plots.

We note the color of the regions differs, indicating that the behavior produc-
ing the regions is qualitatively different. The regions do not seem to be arranged
in any specific pattern, yet they all seem to have a similar structure: that being
1, 2, or 3 “bulbs”. It might be that the number of bulbs may change depending
on the resolution of the plot and depth of the interations. Figure 7 also suggests
quasi-periodic trajectories exist for a large range of b, also for b in the range of
our KAM results.

If we repeat the same analysis for smaller b, the details are harder to discern.
Focusing on b ∈ (0.2, 0.4) in fig. 7, we still see the stable regions as before,
however the color blends with the surrounding noise. This can be explained by
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Figure 6: We take a 2-parameter family of initial conditions and visualize the
Lemple-Ziv complexity (LZC). We see large regions of low complexity, suggest-
ing that there should be periodic orbits present in these regions. The regions
appear to also have varying complexity.

Figure 7: Here we consider the LZC for a narrower range of b and find a similar
picture. There are regions with low complexity but they are smaller in size.

the effect mentioned: the period of the trajectories is comparable to the time
horizon, so periodicity is less distinguishable from noise.

Lastly, we discuss the boundary of the regions. Note that for b ∈ (2, 3)
and y ∈ (0.7, 0.8) the plot seems grainy, in fact, zooming in, we find fractal-
like behavior which can be seen in fig. 8. This is in contrast to the rest of the
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boundary which seems differentiable. We do not provide a figure but zooming
in on the boundary for b ∈ (3, 4) we see it is also grainy. It is not clear whether
the noise is due to intrinsic structure or precision error.

Figure 8: Zooming in on another region we find fractal like structures. At this
scale it seems that these structures are localized in some parts on the boundary
of the low complexity regions instead of present along the whole boundary.

Apart from regions of stability, there is a sea of high and noisy LZC through-
out the plots. Closer inspection shows specks with low LZC, it is not clear
whether these specks are trajectories like fig. 1b or if they correspond to quasi-
periodic regions with a very small radius of stability. Focusing on fig. 6, there
is a peculiar vertical line at b ≈ 2.8. On the right of this line the average LZC
looks higher than to the left, we are curious whether there is any significance to
this or if it is just a coincidence. Lastly, we also checked the plot for b ∈ (5, 10)
and found the same behavior as b ∈ (4.3, 5): high LZC with no stable regions.

Using symbolic dynamics together with LZC we have probed a rich landscape
of behavior. The choice of initial conditions and parameters for the above
figures was deliberate, so it is interesting to ask whether we can expect a similar
landscape for other choices. For example, will the view change if we vary velocity
at a point, or if we pick a different radius R 6= 1/3. There are many option, and
we invite the reader to explore as well.
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4.4 Lempel-Ziv Poincaré sections for fixed b

A commonn method of analyzing dynamical systems is plotting a trajectory’s
return to a Poincaré section. In some cases one can also use it to prove the
existence of a limit cycle or chaotic behavior. When it comes to visualization,
one can only plot a handful of different trajectories in a Poincaré section before
the image becomes too busy and illegible, so we see the details of a selection of
trajectories and not the full picture.

We propose to apply a similar procedure for Poincaré sections as in the
previous section: fix a value for b, and sample initial conditions on the Poincaré
section, and compute LZC for each. If the resolution and depth of iteration is
high enough. In such a way, we achieve a general picture of the dynamics.

Recall, the Poincaré section is parametrized by two angles θ and ϕ, the
former is for the position, and the latter for the direction of the velocity. We
fixed the speed to be 1. We only consider θ ∈ [−π/4, π/4], that is, only the
right “side” of the circle Sout. We do not lose information doing this, since
system eq. (1) has 4-fold rotational symmetry due to the lattice arrangement
of the magnetic discs. The lattice is invariant under all square symmetries, but
since the magnetic field always turns trajectories to the right, we cannot use
reflections to further shrink the window to plot.

(a) (b)

Figure 9: With the same approach as in the previous section, we analyze a piece
of the Poincaré section for fixed values of b. When b = 3 we see one large low
complexity region, while for b = 2.8, we see something similar but deformed.
The appearance of more little regions suggests a bifurcation might have occured.
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In fig. 9a, we again focus on b = 3, which has the periodic trajectory fig. 4a.
The dynamics appears to be simple, there is a large region of quasi-periodic
trajectories around (θ, ϕ) = (0, 0), and the rest is uniformly high LZC. In fig. 9b,
we perturb b = 2.8, the stable region from 9a changed shape, it is smaller, and
there are now more noticeable artifacts along the boundary. Besides that, we
see new stable regions: one larger, and two small. The two small ones likely
belong to the same quasi-periodic trajectory, while the larger region belongs to
its own. Looking back at fig. 13b, since there we had b = 2.805, we see indicated
a periodic trajectory along the bottom edge of the Poincaré section. Here, we
expect a similar trajectory, perhaps slightly perturbed. It’s interesting to note
that in fig. 9a we see faint streaks in the same spots where there are stable
regions in fig. 9b. We conjecture that the patterns and streaks in the noise
suggest a nearby bifurcation.

(a) (b)

Figure 10: We look at more values of b to illustrate the range of different
structures. For b = 3(

√
2− 1) we see some rotating fractal-like structures, and

for b = 2.32 we see regions of varying shape and complexity.

In fig. 10a we plot the same data except b ≈ 3(
√

2 − 1), corresponding to
fig. 4c. The size of the blue regions is about the same, so there should relate to
the same quasi-periodic orbit. What’s different in this case is the pronounced
teardrop with fractal-like structure. If we were to iterate deeper, it looks like
the fractal branches would connect to make 4 disjoint blue blobs. Around the
main big region, we see smaller red specks, suggesting another quasi-periodic
trajectory that we didn’t expect before.
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In fig. 10b, b = 2.32, the kind of quasi-periodicity here should be similar to
13a, 12a, and 11b. It’s plausible there are 3 different quasi-periodic regions here,
since you can separate the blobs easily into three sets: blue along the bottom,
purple along the top, and small red in between.

4.5 Checking for quasi-periodicity

In the previous two sections we described the “landscape” of the dynamics of
(1) and determined regions with low complexity, signalling that potentially for
initial conditions and parameters in those regions we can expect quasi-periodic
behavior. In this section we pick points from the low LZC regions in fig. 7,
6 and fig. 9, 10 to check what the corresponding trajectories look like. Each
trajectory is visualized to a depth of 2000 iterations of the Poincaré map, unless
stated otherwise.

(a) (b)

Figure 11: Picking initial conditions from the low complexity regions in fig. 6 we
find immediately some quasi-periodic behavior. The above two examples seem
similar, yet the right one has a doubled period compared to the left.

Figure 11a and 11b are interesting, since they have a similar shape. The
latter seems to be a “doubled” version of the former, and not a perturbation,
since even after 2000 iterations the trajectory of 11b does not change, e.g., it
does not smear like in the case of 4b.

(a) (b)

Figure 12: Examples of quasi-periodic trajectories that we would not have found
without the LZC analysis in the previous section.

Figure 12a and 12b are surprisingly complex patterns, and unlike the rest of
the examples, involve many discs in the plane

30



(a) (b)

Figure 13: The trajectory on the left is the first we fould that only has one
reflectional symmetry, unlike the other examples that have many symmetries.
The trajectory on the right does not demonstrate anything new but we included
it anyway.

So far, we have seen trajectories that have lots of symmetries, the first to
break this is 13a with a bottom-heavy hexagon. It would be interesting to see
if there are other polygon, for example triangles or pentagons. Figure 13b does
not illustrate anything new, we included it because it is aesthetically pleasing.

(a) (b)

Figure 14: The above trajectories are examples that are quasi-periodic in T2 but
are wandering in R2, illustrating how the magnetic Lorentz gas and magnetic
Sinai billiard are qualitatively different.

In fig. 14a and 14b we have the first examples of trajectories that wander
in the plane but are quasi-periodic in the torus. It seems that these patterns
arise in between values of b that produce trajectories as in fig. 15, that is, as b
decreases, the radii of the circles in the pattern increases, and if, in a specific
way, the circle does not close, you can still see repetition.

The last 15a - 15d are examples with values of b relatively small compared
to the rest. The lower the value of b, the closer the shape resembles a circle,
which is in line with what we had seen using KAM. We have not found any
intricate patterns for low values of b.

31



(a) (b)

(c) (d)

Figure 15: These trajectories are evidence supporting the claims that (1) can
be viewed as a perturbation of a uniform magnetic field in the plane.

We see that in this simple system there is interesting dynamics with varying
levels of complexity. It is safe to say that at least some of these would be
hard to find by hand, and would be feasible only with some numerics and a
measure of complexity for determining good candidates. We now construct the
Poincaré section Sin and after that we outline the methods we used to obtain
these quasi-periodic trajectories.
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5 Conclusion

We began by introducing the magnetic Sinai billiard, and the relevant material
for KAM theory, stability analysis, symbolic dynamics and Lempel-Ziv com-
plexity. With that we analyzed the dynamics of the system which helped us
characterize two modes: a weak mode, and an intermediate mode.

The weak mode is characterized by a small value for the field strength b.
Using the KAM theorem, we reasoned that for b ≈ 0, the dynamics on T2 can
be interpretted as a perturbation of free motion on T2. Furthermore, we noticed
that if b 6≈ 0 but still not too large, then the dynamics can be interpretted as a
perturbation of a uniform field with strength b̂ ≈ πR2b where R is the radius of
the magnetic disc. The value of π was predicted theoretically and substantiated
with numerical evidence.

The idea to study (1) as a perturbation of free motion on T2 was considered
from the very start of the thesis. Originally, we did not intend to consider the
uniform field in the plane, we only stumbled upon the idea when developing the
code and figures. Wrapping the trajectories to the unit square [0, 1]2 seemed like
extra work at the time, and, knowing the numerical sensitivity of the system, it
was decided that unwrapping trajectories to the plane would help visualization
and debugging of code. Only once we unwrapped the trajectories did we notice
that they had a circular shape. In short, a change of perspective showed another
facet of the problem we didn’t expect.

Continuing with the intermediate mode, it is characterized by a wide range
of b for which we can find both seemingly ergodic components of the phase-
space and stable components. Using the Lempel-Ziv complexity, we discovered
many quasi-periodic trajectories that we would not have found otherwise. The
Lempel-Ziv complexity proved to be a useful and efficient tool for detecting
quasi-periodic trajectories among disorganised trajectories.

Studying the intermediate mode came with its own challenges as well, it was
expected to be a difficult problem from the start. We wanted to try symbolic
dynamics, yet were overwhelmed with both the restrictions and possibilities pre-
sented. For example, we suspected that Sout was a Poincaré section early on
but only proved the fact quite late into the research. It also seemed that the
literature on Markov partitions and semi-conjugacies for extracting symbolic
dynamics was too restrictive and difficult to determine in our case. A prelim-
inary analysis had indicated that some choices of b gave rise to more compli-
cated behavior, and it was not clear how to capture it all with one Markov
partition. Eventually, we switched to a more signal-processing like approach
using the Lempel-Ziv complexity. Once that happened, there was no need for
semi-conjugacies and compatible partitions, so restrictions were loosened. Still,
we needed to generate symbols in some way and the options we considered
seemed artificial. Before settling on the alphabet (Z2)N, for a while we used
{N,S,E,W}, for North, South, East, and West. We then tracked how a trajec-
tory interacted with the boundary of [0, 1]2, if it crossed one of the lines y = 1,
y = 0, x = 1, x = 0 before wrapping to the other side of [0, 1]2, then we recorded
the symbol N , S, E or W , respectively. The results we found using this alpha-
bet were similar to what we have now, however there were extra artifacts. One
possible cause for this could be the accumulation of redundant information, for
example, if we know the trajectory leaves the disc at (1/2, 1/2) and enters the
one at (1 + 1/2, 1 + 1/2), then either EN or NE could be recorded. In general,
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for any jump, this alphabet accumulates possibly long sequences of 2 symbols
where a number of different permutations could occur. So, we introduced un-
necessary noise this way. The alphabet (Z2)N avoids introducing this noise but
since it is infinite, it’s not ideal either, yet it still produced interesting results.

We covered a lot of ground while studying (1), considered a few options
and found a few dead ends. We believe this is a good first step at a better
understanding of this system. Having said this, there are still questions that
can be explored further.

5.1 Further questions

Despite the work that we’ve done, there is still much to ask about this system
and its dynamics.

We posed conjecture 1. We had used KAM theory to motivate it but further
theoretical study probably requires different methods. From the perspective of
numerics, one can make the applicable range of values of R and b more precise.

The use of Sympy greatly helped to compute eigenvalues of the Poincaré
map. There were limitations on the complexity of the expressions that could be
computed in a reasonable length of time. This makes it a less attractive method
of analysis, despite the sophisticated expressions it can produce. So, to make it
more viable, one could either try different software or try to find another simpler
expression for Po which could speed up the process.

On the same note, we had only determined eigenvalue pairs λ± that either
both had |λ±| = 1 or |λ+| < 1 and |λ−| > 1. So, we did not find periodic points
of the Poincaré map that had both |λ±| < 1. Can we find trajectories that are
difinitively stable or even asymptotically stable?

When analyzing the LZC plots, we only considered a handful of trajectories,
and only one or two from each region of low complexity. It would be interesting
to study more deeply a single such region to see if these regions are as homoge-
neous as they seem. Due to LZC we have a general picture but the detail is lost,
in fig. 9a there is a large region of low complexity surrounding (θ, ϕ) = (0, 0).
However, we only considered trajectories near (0, 0), and not farther away. We
noticed but did not report that the point (0.695,−0.695) falls within the region
but has a period of 20 iterations. Using LZC we could not detect this long
period, since the trajectory was trapped between the same 4 magnetic bumps.
This is evidence that, indeed, the low complexity regions contain more to study.

Building on the previous point, one shortcoming of our analysis using LZC
was the naive choice of alphabet and corresponding map to the shift space. One
could search for a better alphabet, one that is more efficient (possibly finite)
and one that would reveal more detail with LZC.

We discussed weak and intermediate field strengths b and did not consider
b� 1/R. It’s expected that the dynamics of the system will be ergodic almost
everywhere for large values of b, though this still needs to be explored.

Another thing we noticed but did not address is that for large b, the system
behaves similar to a Levy flight. A Levy flight [CMKG08] is a type of random
walk in which the step lengths have a stable distribution.

A stable distribution is characterized by a slowly decaying tail which allows
extremely long step lengths to occur more frequently than for example in Brow-
nian motion where the step lengths are distributed normally. Due to this, Levy
flights exhibit clustering, as can be seen in fig. 16. The size of the clusters and
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Figure 16: A trajectory computed to 10000 iterations. The result resembles a
Levy flight, since there are clusters of short range motion along with long jumps.

the frequency of the jumps seem to depend on both b and R, the radius of the
magnetic discs.

Levy flights are used to model many real world processes, for example, chem-
ical processes, spread of infection diseases, and stock option strategies, so un-
derstanding (1) from this perspective can prove useful.
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